WO2024177152A1 - Antenna device and wireless communication device - Google Patents

Antenna device and wireless communication device Download PDF

Info

Publication number
WO2024177152A1
WO2024177152A1 PCT/JP2024/006645 JP2024006645W WO2024177152A1 WO 2024177152 A1 WO2024177152 A1 WO 2024177152A1 JP 2024006645 W JP2024006645 W JP 2024006645W WO 2024177152 A1 WO2024177152 A1 WO 2024177152A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
antenna device
simulation
director
plane
Prior art date
Application number
PCT/JP2024/006645
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 古賀
哲 安田
Original Assignee
国立研究開発法人情報通信研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人情報通信研究機構 filed Critical 国立研究開発法人情報通信研究機構
Publication of WO2024177152A1 publication Critical patent/WO2024177152A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/16Folded slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic

Definitions

  • the present invention relates to an antenna device and a wireless communication device.
  • JP 2012-49865 A Japanese Patent Application Publication No. 11-55025 Japanese Patent Application Publication No. 6-283923
  • One aspect of the disclosed technology is to provide an antenna device and a wireless communication device that can reduce phase fluctuations with respect to the radiation angle of the radiated radio waves or the arrival angle of the received radio waves.
  • This antenna device includes a plate-shaped ground having a through hole, a plate-shaped antenna element disposed within the through hole and having a length corresponding to half the wavelength of a radio wave of a first frequency, and a waveguide element disposed in a radiation direction in which the antenna element radiates the radio wave and disposed so as to overlap at least a portion of an end of the antenna element in the longitudinal direction when viewed in the radiation direction, and the waveguide element has a size corresponding to 0.1 to 0.38 times the wavelength of the radio wave.
  • the disclosed technology can reduce phase fluctuations with respect to the radiation angle of the emitted radio waves or the arrival angle of the received radio waves.
  • FIG. 1 is a perspective view illustrating an example of an antenna device according to an embodiment.
  • FIG. 2 is a view of the antenna element viewed in the Z direction.
  • FIG. 3 is a view of the antenna device as viewed in the X direction.
  • FIG. 4 is a view of the antenna device viewed in the Z direction.
  • FIG. 5 is a first diagram illustrating the results of the first simulation.
  • FIG. 6 is a second diagram illustrating the results of the first simulation.
  • FIG. 7 is a third diagram illustrating the result of the first simulation.
  • FIG. 8 is a diagram showing an example of a sleeve antenna according to a first comparative example.
  • FIG. 9 is a first diagram illustrating the results of the second simulation.
  • FIG. 10 is a second diagram illustrating the results of the second simulation.
  • FIG. 10 is a second diagram illustrating the results of the second simulation.
  • FIG. 11 is a third diagram illustrating the results of the second simulation.
  • FIG. 12 is a diagram showing an example of a folded slot antenna according to a second comparative example.
  • FIG. 13 is a first diagram illustrating the results of the third simulation.
  • FIG. 14 is a second diagram illustrating the results of the third simulation.
  • FIG. 15 is a third diagram illustrating the results of the third simulation.
  • FIG. 16 is a diagram showing an example of an antenna device used in the fourth simulation.
  • FIG. 17 is a first diagram illustrating the results of the fourth simulation.
  • FIG. 18 is a second diagram illustrating the results of the fourth simulation.
  • FIG. 19 is a third diagram illustrating the results of the fourth simulation.
  • FIG. 20 is a first diagram illustrating the results of the fifth simulation.
  • FIG. 20 is a first diagram illustrating the results of the fifth simulation.
  • FIG. 21 is a second diagram illustrating the results of the fifth simulation.
  • FIG. 22 is a third diagram illustrating the results of the fifth simulation.
  • FIG. 23 is a first diagram illustrating the results of the sixth simulation.
  • FIG. 24 is a second diagram illustrating the results of the sixth simulation.
  • FIG. 25 is a third diagram illustrating the results of the sixth simulation.
  • FIG. 26 is a first diagram illustrating the results of the seventh simulation.
  • FIG. 27 is a second diagram illustrating the results of the seventh simulation.
  • FIG. 28 is a third diagram illustrating the results of the seventh simulation.
  • FIG. 29 is a first diagram illustrating a schematic view of an electric field visualized by the eighth simulation.
  • FIG. 30 is a second diagram illustrating a schematic view of the electric field visualized by the eighth simulation.
  • FIG. 29 is a first diagram illustrating a schematic view of an electric field visualized by the eighth simulation.
  • FIG. 31 is a third diagram illustrating the electric field visualized by the eighth simulation.
  • FIG. 32 is a diagram showing an example of the appearance of a smartphone.
  • FIG. 33 is a diagram showing an example of an antenna device including a circular director element.
  • FIG. 34 is a diagram showing an example of an antenna device including a rectangular frame-type director element.
  • FIG. 35 is a diagram showing an example of an antenna device in which a ground, an antenna element, and a director element are arranged on a dielectric substrate.
  • Fig. 1 is a perspective view showing an example of an antenna device 1 according to the embodiment.
  • the antenna device 1 includes a ground 10, an antenna element 20, director elements 31 and 32, and a feed point 40.
  • the width direction of the ground 10 is defined as an X direction
  • the height direction of the ground 10 is defined as a Y direction
  • the direction from the ground 10 toward the director elements 31 and 32 is defined as a Z direction.
  • the ground 10, antenna element 20, and waveguide elements 31 and 32 are formed, for example, from plate-shaped metal.
  • the ground 10 is formed, for example, in a rectangular shape when viewed in the Z direction (when viewed in the radiation direction in which the antenna element 20 radiates radio waves).
  • the ground 10 is formed with a through hole 11 that penetrates the ground 10 in the thickness direction (Z direction).
  • the antenna element 20 is disposed within the through hole 11.
  • the ground 10 is an example of a "ground”.
  • the through hole 11 is an example of a "through hole”.
  • the antenna element 20 is formed, for example, in a rectangular shape when viewed in the Z direction.
  • Figure 2 is a view of the antenna element 20 viewed in the Z direction.
  • the ground 10 is also illustrated.
  • the antenna element 20 has a longitudinal direction in the Y direction and a transverse direction in the X direction.
  • the longitudinal length L1 of the antenna element 20 is, for example, a length corresponding to half the wavelength of the frequency of the radio wave radiated by the antenna element 20.
  • the antenna element 20 is formed, for example, in a rectangular shape with a longitudinal length of L1.
  • the antenna element 20 is placed in the through hole 11 so as not to come into contact with the ground 10. That is, a gap is formed between the ground 10 and the antenna element 20 in the through hole 11.
  • the antenna element 20 is connected to the power supply point 40 at the center in the longitudinal direction.
  • the antenna element 20 receives power from the power supply point 40 and radiates radio waves in the Z direction. That is, the antenna element 20 is a power supply element.
  • the radio waves radiated by the antenna element 20 are, for example, radio waves used in fifth generation mobile communications (5G).
  • the wavelength of the radio waves radiated by the antenna element 20 is ⁇ .
  • the antenna element 20 is an example of an "antenna element.”
  • the frequency of the radio waves radiated by the antenna element 20 is an example of a "first frequency.”
  • the director elements 31 and 32 are arranged in the radiation direction of the antenna element 20.
  • the director elements 31 and 32 are formed, for example, in a rectangular shape when viewed in the Z direction.
  • the director elements 31 and 32 are arranged side by side in the Y direction.
  • FIG. 3 is a view of the antenna device 1 viewed in the X direction.
  • the director elements 31 and 32 are arranged at a position spaced a distance D1 from the ground 10. In other words, the director elements 31 and 32 are not in contact with the ground 10 and the antenna element 20.
  • the director elements 31 and 32 are not in contact with each other.
  • the distance between the director elements 31 and 32 is, for example, 42 mm (0.12 ⁇ ) or more.
  • the director elements 31 and 32 are examples of a "first director element" and a "second director element".
  • FIG. 4 is a view of the antenna device 1 as viewed in the Z direction.
  • the director elements 31 and 32 are seen through to show the ground 10 and antenna element 20 behind them.
  • the director elements 31 and 32 are arranged so as to overlap the longitudinal ends 21 and 22 of the antenna element 20 as viewed in the Z direction.
  • the director elements 31 and 32 are formed, for example, in a square shape with a side length of L3 as viewed in the Z direction. That is, the width W3 and the height L3 may be the same value.
  • the director elements 31 and 32 may be formed in a rectangular shape as viewed in the Z direction. That is, the width W3 and the height L3 may be different values.
  • the ground 10 is formed in a square shape with a side length of L2.
  • the ground 10 may be formed in a shape other than a square (for example, a rectangle).
  • a simulation (first simulation) was performed on the characteristics of the antenna device 1 according to the embodiment, which will be described below with reference to the drawings.
  • the length L2 of one side of the ground 10 was set to 200 mm
  • the longitudinal length L1 of the antenna element 20 was set to 166 mm
  • the length L3 of one side of the waveguide elements 31 and 32 was set to 70 mm.
  • the distance D1 between the ground 10 and the waveguide elements 31 and 32 was set to 15 mm.
  • FIGS. 5 to 7 are diagrams illustrating the results of the first simulation.
  • FIG. 5A illustrates the gain in the XY plane.
  • FIG. 5B illustrates the phase in the XY plane.
  • FIG. 6A illustrates the gain in the ZX plane.
  • FIG. 6B illustrates the phase in the ZX plane.
  • FIG. 7A illustrates the gain in the YZ plane.
  • FIG. 7B illustrates the phase in the YZ plane.
  • the phase difference in the communication range is considered.
  • the phase difference is defined as the difference between the maximum phase and the minimum phase in the communication range in each of the XY plane, ZX plane, and YZ plane.
  • the phase difference in the XY plane is a maximum of 15 degrees.
  • the phase difference in the ZX plane is a maximum of 8 degrees.
  • the phase difference in the YZ plane is a maximum of 3 degrees.
  • FIG. 8 is a diagram showing an example of a sleeve antenna 800 according to a first comparative example.
  • the sleeve antenna 800 includes an antenna element 801, a sleeve 802, a main body 803, and a feeding point 840.
  • the main body 803 houses a power source, a signal processing circuit, and the like.
  • a linear antenna element 801 is connected to a feeding point 840 provided at the tip of the sleeve 802.
  • FIGS. 9 to 11 are diagrams illustrating the results of the second simulation.
  • Figure 9A illustrates the gain in the XY plane.
  • Figure 9B illustrates the phase in the XY plane.
  • Figure 10A illustrates the gain in the ZX plane.
  • Figure 10B illustrates the phase in the ZX plane.
  • Figure 11A illustrates the gain in the YZ plane.
  • Figure 11B illustrates the phase in the YZ plane.
  • phase difference in the communication possible range is a maximum of 29 degrees.
  • phase difference in the ZX plane is a maximum of 50 degrees.
  • phase difference in the YZ plane is a maximum of 59 degrees.
  • ⁇ Second Comparative Example> 12 is a diagram showing an example of a folded slot antenna 900 according to a second comparative example.
  • the folded slot antenna 900 includes a ground 910, an antenna element 920, and an antenna element 920.
  • a through hole 911 is provided in the ground 910.
  • the antenna element 920 is disposed in the through hole 911, and receives power from a power feed point 940 to radiate radio waves.
  • the folded slot antenna 900 according to the second comparative example can be said to be the antenna device 1 according to the embodiment without the director elements 31 and 32.
  • FIGS. 13 to 15 are diagrams illustrating the results of the third simulation.
  • Figure 13A illustrates the gain in the XY plane.
  • Figure 13B illustrates the phase in the XY plane.
  • Figure 14A illustrates the gain in the ZX plane.
  • Figure 14B illustrates the phase in the ZX plane.
  • Figure 15A illustrates the gain in the YZ plane.
  • Figure 15B illustrates the phase in the YZ plane.
  • phase difference in the communication possible range Assuming that the range where a gain of -10 dBi or more is obtained is the communication possible range, we will consider the maximum phase difference in the communication possible range. Referring to Figure 13, the phase difference in the XY plane is a maximum of 12 degrees. Referring to Figure 14, the phase difference in the ZX plane is a maximum of 8 degrees. Also, referring to Figure 15, the phase difference in the YZ plane is a maximum of 18 degrees.
  • the phase difference generated in the antenna device 1 according to the embodiment is smaller than that of the sleeve antenna 800 and the folded slot antenna 900. It can also be seen that the phase difference in the ZX plane and the YZ plane, which are the main radiation direction, is improved in the antenna device 1 compared to the sleeve antenna 800 and the folded slot antenna 900. In other words, the antenna device 1 according to the embodiment can radiate radio waves with a small phase difference in the main radiation direction.
  • Fig. 16 is a diagram showing an example of an antenna device 1A used in the fourth simulation.
  • the antenna device 1A is the antenna device 1 from which the director element 32 has been removed.
  • the director element 31 was moved 120 mm in the +Y direction from a position where the center of the director element 31 and the power feed point 40 coincide when viewed in the Z direction, and the phase difference was confirmed.
  • FIGS. 17 to 19 are diagrams illustrating the results of the fourth simulation.
  • FIG. 17A illustrates the gain in the XY plane.
  • FIG. 17B illustrates the phase in the XY plane.
  • FIG. 18A illustrates the gain in the ZX plane.
  • FIG. 18B illustrates the phase in the ZX plane.
  • FIG. 19A illustrates the gain in the YZ plane.
  • FIG. 19B illustrates the phase in the YZ plane.
  • FIGs. 17 to 19 illustrate the gain and phase difference for the movement amounts of the waveguide element 31 of 0 mm, 30 mm, 60 mm, 90 mm, and 120 mm.
  • the phase difference is improved by moving the waveguide element 31 in the +Y direction rather than the state in which the center of the waveguide element 31 and the power supply point 40 overlap when viewed in the Z direction (movement amount 0 mm).
  • the state in which the waveguide element 31 and the end 21 of the antenna element 20 overlap when viewed in the Z direction is preferable in terms of improving the phase difference.
  • the state in which the center of the waveguide element 31 and the end 21 of the antenna element 20 overlap when viewed in the Z direction (movement amount 120 mm) is even more preferable in terms of improving the phase difference.
  • FIGS. 20 to 22 are diagrams illustrating the results of the fifth simulation.
  • FIG. 20A illustrates the gain in the XY plane.
  • FIG. 20B illustrates the phase in the XY plane.
  • FIG. 21A illustrates the gain in the ZX plane.
  • FIG. 21B illustrates the phase in the ZX plane.
  • FIG. 22A illustrates the gain in the YZ plane.
  • FIG. 21B illustrates the phase in the YZ plane.
  • FIGS. 20 to 22 illustrate the gain and phase for distances D1 of 5 mm, 30 mm, 55 mm, 80 mm, 105 mm, 130 mm, 155 mm, 180 mm, and 200 mm.
  • the distance D1 is preferably 30 mm or less (0.09 ⁇ or less), and more preferably 5 mm (0.015 ⁇ ) or less.
  • the sixth simulation which examines the width W3 (see Figure 4) of the director elements 31 and 32.
  • the width W3 of the director elements 31 and 32 was changed in various ways to check the fluctuations in gain and phase difference.
  • the vertical width L3 was set to 70 mm, and the distance D1 was set to 15 mm.
  • FIGS. 23 to 25 are diagrams illustrating the results of the sixth simulation.
  • FIG. 23A illustrates the gain in the XY plane.
  • FIG. 23B illustrates the phase in the XY plane.
  • FIG. 24A illustrates the gain in the ZX plane.
  • FIG. 24B illustrates the phase in the ZX plane.
  • FIG. 25A illustrates the gain in the YZ plane.
  • FIG. 25B illustrates the phase in the YZ plane.
  • FIGs. 23 to 25 illustrate the gain and phase for widths W3 of 5 mm, 20 mm, 35 mm, 50 mm, 65 mm, 80 mm, 95 mm, 110 mm, 125 mm, and 140 mm.
  • the width W3 is preferably 50 mm or more and 80 mm or less.
  • the width W3 across the longitudinal direction of the antenna element 20 is preferably a length corresponding to 0.1 ⁇ or more and 0.38 ⁇ or less.
  • a width W3 of around 70 mm is more preferable for improving the phase difference.
  • the seventh simulation which examines the vertical width L33 (see Figure 4) of the director elements 31 and 32.
  • the vertical width L3 of the director elements 31 and 32 was changed in various ways to check the fluctuations in gain and phase.
  • the horizontal width W3 was set to 70 mm, and the distance D1 was set to 15 mm.
  • FIGS. 26 to 28 are diagrams illustrating the results of the seventh simulation.
  • FIG. 26A illustrates the gain in the XY plane.
  • FIG. 26B illustrates the phase in the XY plane.
  • FIG. 27A illustrates the gain in the ZX plane.
  • FIG. 27B illustrates the phase difference in the ZX plane.
  • FIG. 28A illustrates the gain in the YZ plane.
  • FIG. 28B illustrates the phase difference in the YZ plane.
  • FIGs. 26 to 28 illustrate the gain and phase difference for vertical widths L3 of 20 mm, 35 mm, 50 mm, 65 mm, 80 mm, 95 mm, 110 mm, 125 mm, and 140 mm.
  • the vertical width L3 is 35 mm (0.1 ⁇ ) or more and 95 mm (0.38 ⁇ ) or less. Furthermore, it is considered more preferable that the vertical width L3 is around 70 mm in order to improve the phase difference.
  • the eighth simulation that visualizes the electric field radiated by the antenna device 1.
  • the electric field was visualized for the antenna device 1 with the vertical width L3 set to 70 mm, the antenna device 1 with the vertical width L3 set to 140 mm, and the folded slot antenna 900 according to the second comparative example.
  • FIG. 29 is the first diagram that shows a schematic representation of the electric field visualized by the eighth simulation.
  • the electric field of the radio waves radiated by the antenna element 20 is visualized for an antenna device 1 with a vertical width L3 set to 70 mm.
  • the electric field E1 in FIG. 29 is a diagram that shows a schematic representation of the entire electric field.
  • the electric fields E2 and E3 also show curves that indicate a position 1 meter away from the feed point 40.
  • FIG 30 is a second diagram that shows a schematic representation of the electric field visualized by the eighth simulation.
  • the electric field of the radio waves radiated by the antenna element 20 is visualized for an antenna device 1 with a vertical width L3 set to 140 mm.
  • the electric field E11 in Figure 30 is a diagram that shows a schematic representation of the entire electric field.
  • the electric fields E12 and E13 also show curves that indicate a position 1 meter away from the feed point 40.
  • FIG. 31 is a third diagram that shows a schematic representation of the electric field visualized by the eighth simulation.
  • the electric field of the radio waves radiated by the antenna element 920 is visualized for the folded slot antenna 900 according to the second comparative example.
  • the electric field E21 in FIG. 31 is a diagram that shows a schematic representation of the entire electric field.
  • the electric fields E22 and E23 also show curves that indicate a position 1 meter away from the feed point 40.
  • FIG. 32 is a diagram showing an example of the external appearance of a smartphone 100.
  • the antenna device 1 that is not visible from the outside is illustrated by a dotted line.
  • the smartphone 100 has three antenna devices 1 inside a housing 110.
  • FIG. 32 shows a smartphone 100 as an example, the antenna device 1 may be implemented in a wireless communication device other than the smartphone 100. Examples of wireless communication devices other than the smartphone 100 include a notebook personal computer, a tablet computer, a wearable terminal, a base station, a drone, and a feature phone.
  • the antenna element 20 is disposed in the through hole 11 of the antenna device 1, and the director elements 31 and 32 are disposed in the radio wave radiation direction of the antenna element 20.
  • the director elements 31 and 32 By disposing the director elements 31 and 32, the radiation timing of the radio waves can be adjusted and the phase difference due to the radiation direction can be reduced. This effect is not limited to the radiation of radio waves by the antenna device 1, but also applies to the reception of radio waves by the antenna device 1.
  • the antenna device 1 reduces the phase difference, so that it is possible to improve the position detection accuracy when detecting the spatial position of the smartphone 100 using radio waves radiated from the three antenna devices 1 of the smartphone 100.
  • the position detection accuracy can be about ⁇ 1 cm.
  • the director elements 31 and 32 are rectangular, but the shape of the director elements 31 and 32 is not limited to a rectangle.
  • FIG. 33 is a diagram showing an example of an antenna device 1A having circular director elements 31A and 32A.
  • FIG. 34 is a diagram showing an example of an antenna device 1B having rectangular frame-type director elements 31B and 32B.
  • the director elements 31 and 32 can adopt various shapes. Note that, it is considered that the diameter of the circular director elements 31A and 32A is preferably, for example, 50 mm or more and 80 mm or less (0.1 ⁇ or more and 0.38 ⁇ or less) similar to the width W3.
  • the length of the width W4 of the rectangular frame-type director elements 31B and 32B crossing the longitudinal direction of the antenna element 20 is preferably, for example, 50 mm or more and 80 mm or less (0.1 ⁇ or more and 0.38 ⁇ or less) similar to the width W3.
  • electronic components may be mounted on the ground 10, antenna element 20, and waveguide elements 31 and 32 of the antenna device 1.
  • electronic components may be mounted on the ground 10, antenna element 20, and waveguide elements 31 and 32, for example, when the antenna device 1 is mounted on a smartphone 100, the space inside the housing 110 can be effectively utilized.
  • the ground 10, antenna element 20, and director elements 31, 32 may also be arranged on a dielectric substrate.
  • FIG. 35 is a diagram showing an example of an antenna device 1C in which the ground 10, antenna element 20, and director elements 31, 32 are arranged on dielectric substrates B1 and B2.
  • the ground 10 is arranged on the dielectric substrate B1
  • the dielectric substrate B2 is arranged on the ground 10
  • the director elements 31, 32 are arranged on the dielectric substrate B2.
  • a capacitor, inductor, switch, etc. may be placed at the power supply point 40.
  • a capacitor, inductor, switch, etc. By placing a capacitor, inductor, switch, etc., the resonant frequency of the antenna element 20 can be adjusted and matching can be easily achieved.
  • the antenna device 1 has two waveguide elements 31 and 32, but the antenna device 1 may have one waveguide element or three or more.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)

Abstract

Provided are an antenna device and a wireless communication device with which it is possible to reduce phase variations with respect to the emission angle of radio waves being emitted or the arrival angle of radio waves being received. The antenna device comprises: a plate-shaped ground having a through-hole; a plate-shaped antenna element which is disposed in the through-hole and has a length corresponding to a half-wavelength of radio waves of a first frequency; and a waveguide element which is disposed in an emission direction in which the antenna element emits the radio waves, and which is disposed so as to at least partly overlap an end in the length direction of the antenna element when viewed in the emission direction. The waveguide element has a size corresponding to 0.1 to 0.38 times the wavelength of the radio waves.

Description

アンテナ装置及び無線通信装置Antenna device and wireless communication device
 本発明は、アンテナ装置及び無線通信装置に関する。 The present invention relates to an antenna device and a wireless communication device.
 無線通信技術が広く利用されていることから、様々な工夫がアンテナに施されている。例えば、無指向性アンテナや自動車の埋め込み型アンテナとして好適な折り返しスロットアンテナが提案されている(例えば、特許文献1-3参照)。 Because wireless communication technology is widely used, various innovations have been implemented in antennas. For example, folded slot antennas that are suitable as omnidirectional antennas and built-in antennas for automobiles have been proposed (see, for example, Patent Documents 1-3).
特開2012-49865号公報JP 2012-49865 A 特開平11-55025号公報Japanese Patent Application Publication No. 11-55025 特開平6-283923号公報Japanese Patent Application Publication No. 6-283923
 複数のアンテナから放射された電波を用いて、当該複数のアンテナを備える装置の空間上の位置を検出する技術が利用されている。このような技術では、複数のアンテナから放射される電波の位相が方位角または仰角に対して一定ではない(位相の変動がある)場合、位置の検出精度が低下する。 Technology is used to detect the spatial position of a device equipped with multiple antennas using radio waves emitted from the multiple antennas. With such technology, if the phase of the radio waves emitted from the multiple antennas is not constant with respect to the azimuth or elevation angle (there is phase fluctuation), the accuracy of position detection decreases.
 開示の技術の1つの側面は、放射する電波の放射角度または受信する電波の到来角度に対する位相の変動を軽減できるアンテナ装置及び無線通信装置を提供することを目的とする。 One aspect of the disclosed technology is to provide an antenna device and a wireless communication device that can reduce phase fluctuations with respect to the radiation angle of the radiated radio waves or the arrival angle of the received radio waves.
 開示の技術の1つの側面は、次のようなアンテナ装置によって例示される。本アンテナ装置は、貫通孔を有する板状のグランドと、上記貫通孔内に配置され、第1の周波数の電波の半波長に対応する長さを有する板状のアンテナ素子と、上記アンテナ素子が上記電波を放射する放射方向に配置され、上記放射方向視において上記アンテナ素子の上記長さ方向の端部と少なくとも一部が重なるように配置される導波素子と、を備え、上記導波素子は、上記電波の波長の0.1倍から0.38倍に対応する大きさである。 One aspect of the disclosed technology is exemplified by the following antenna device. This antenna device includes a plate-shaped ground having a through hole, a plate-shaped antenna element disposed within the through hole and having a length corresponding to half the wavelength of a radio wave of a first frequency, and a waveguide element disposed in a radiation direction in which the antenna element radiates the radio wave and disposed so as to overlap at least a portion of an end of the antenna element in the longitudinal direction when viewed in the radiation direction, and the waveguide element has a size corresponding to 0.1 to 0.38 times the wavelength of the radio wave.
 開示の技術によれば、放射する電波の放射角度または受信する電波の到来角度に対する位相の変動を軽減できる。 The disclosed technology can reduce phase fluctuations with respect to the radiation angle of the emitted radio waves or the arrival angle of the received radio waves.
図1は、実施形態に係るアンテナ装置の一例を示す斜視図である。FIG. 1 is a perspective view illustrating an example of an antenna device according to an embodiment. 図2は、アンテナ素子をZ方向視した図である。FIG. 2 is a view of the antenna element viewed in the Z direction. 図3は、アンテナ装置をX方向視した図である。FIG. 3 is a view of the antenna device as viewed in the X direction. 図4は、アンテナ装置をZ方向視した図である。FIG. 4 is a view of the antenna device viewed in the Z direction. 図5は、第1シミュレーションの結果を例示する第1の図である。FIG. 5 is a first diagram illustrating the results of the first simulation. 図6は、第1シミュレーションの結果を例示する第2の図である。FIG. 6 is a second diagram illustrating the results of the first simulation. 図7は、第1シミュレーションの結果を例示する第3の図である。FIG. 7 is a third diagram illustrating the result of the first simulation. 図8は、第1比較例に係るスリーブアンテナの一例を示す図である。FIG. 8 is a diagram showing an example of a sleeve antenna according to a first comparative example. 図9は、第2シミュレーションの結果を例示する第1の図である。FIG. 9 is a first diagram illustrating the results of the second simulation. 図10は、第2シミュレーションの結果を例示する第2の図である。FIG. 10 is a second diagram illustrating the results of the second simulation. 図11は、第2シミュレーションの結果を例示する第3の図である。FIG. 11 is a third diagram illustrating the results of the second simulation. 図12は、第2比較例に係る折り返しスロットアンテナの一例を示す図である。FIG. 12 is a diagram showing an example of a folded slot antenna according to a second comparative example. 図13は、第3シミュレーションの結果を例示する第1の図である。FIG. 13 is a first diagram illustrating the results of the third simulation. 図14は、第3シミュレーションの結果を例示する第2の図である。FIG. 14 is a second diagram illustrating the results of the third simulation. 図15は、第3シミュレーションの結果を例示する第3の図である。FIG. 15 is a third diagram illustrating the results of the third simulation. 図16は、第4シミュレーションに用いたアンテナ装置の一例を示す図である。FIG. 16 is a diagram showing an example of an antenna device used in the fourth simulation. 図17は、第4シミュレーションの結果を例示する第1の図である。FIG. 17 is a first diagram illustrating the results of the fourth simulation. 図18は、第4シミュレーションの結果を例示する第2の図である。FIG. 18 is a second diagram illustrating the results of the fourth simulation. 図19は、第4シミュレーションの結果を例示する第3の図である。FIG. 19 is a third diagram illustrating the results of the fourth simulation. 図20は、第5シミュレーションの結果を例示する第1の図である。FIG. 20 is a first diagram illustrating the results of the fifth simulation. 図21は、第5シミュレーションの結果を例示する第2の図である。FIG. 21 is a second diagram illustrating the results of the fifth simulation. 図22は、第5シミュレーションの結果を例示する第3の図である。FIG. 22 is a third diagram illustrating the results of the fifth simulation. 図23は、第6シミュレーションの結果を例示する第1の図である。FIG. 23 is a first diagram illustrating the results of the sixth simulation. 図24は、第6シミュレーションの結果を例示する第2の図である。FIG. 24 is a second diagram illustrating the results of the sixth simulation. 図25は、第6シミュレーションの結果を例示する第3の図である。FIG. 25 is a third diagram illustrating the results of the sixth simulation. 図26は、第7シミュレーションの結果を例示する第1の図である。FIG. 26 is a first diagram illustrating the results of the seventh simulation. 図27は、第7シミュレーションの結果を例示する第2の図である。FIG. 27 is a second diagram illustrating the results of the seventh simulation. 図28は、第7シミュレーションの結果を例示する第3の図である。FIG. 28 is a third diagram illustrating the results of the seventh simulation. 図29は、第8シミュレーションによって可視化した電界を模式的に示す第1の図である。FIG. 29 is a first diagram illustrating a schematic view of an electric field visualized by the eighth simulation. 図30は、第8シミュレーションによって可視化した電界を模式的に示す第2の図である。FIG. 30 is a second diagram illustrating a schematic view of the electric field visualized by the eighth simulation. 図31は、第8シミュレーションによって可視化した電界を模式的に示す第3の図である。FIG. 31 is a third diagram illustrating the electric field visualized by the eighth simulation. 図32は、スマートフォンの外観の一例を示す図である。FIG. 32 is a diagram showing an example of the appearance of a smartphone. 図33は、円形の導波素子を備えるアンテナ装置の一例を示す図である。FIG. 33 is a diagram showing an example of an antenna device including a circular director element. 図34は、矩形枠型の導波素子を備えるアンテナ装置の一例を示す図である。FIG. 34 is a diagram showing an example of an antenna device including a rectangular frame-type director element. 図35は、グランド、アンテナ素子及び導波素子が誘電体基板上に配置されたアンテナ装置の一例を示す図である。FIG. 35 is a diagram showing an example of an antenna device in which a ground, an antenna element, and a director element are arranged on a dielectric substrate.
 <実施形態>
 以下、図面を参照して実施形態についてさらに説明する。図1は、実施形態に係るアンテナ装置1の一例を示す斜視図である。アンテナ装置1は、グランド10、アンテナ素子20、導波素子31、32及び給電点40を備える。図1において、グランド10の幅方向をX方向、グランド10の高さ方向をY方向、グランド10から導波素子31、32に向かう方向をZ方向とする。
<Embodiment>
Hereinafter, the embodiment will be described further with reference to the drawings. Fig. 1 is a perspective view showing an example of an antenna device 1 according to the embodiment. The antenna device 1 includes a ground 10, an antenna element 20, director elements 31 and 32, and a feed point 40. In Fig. 1, the width direction of the ground 10 is defined as an X direction, the height direction of the ground 10 is defined as a Y direction, and the direction from the ground 10 toward the director elements 31 and 32 is defined as a Z direction.
 グランド10、アンテナ素子20及び導波素子31、32は、例えば、板状の金属によって形成される。グランド10は、例えば、Z方向視(アンテナ素子20が電波を放射する放射方向視)において矩形に形成される。グランド10には、グランド10を厚さ方向(Z方向)に貫く貫通孔11が形成される。貫通孔11内には、アンテナ素子20が配置される。グランド10は、「グランド」の一例である。貫通孔11は、「貫通孔」の一例である。 The ground 10, antenna element 20, and waveguide elements 31 and 32 are formed, for example, from plate-shaped metal. The ground 10 is formed, for example, in a rectangular shape when viewed in the Z direction (when viewed in the radiation direction in which the antenna element 20 radiates radio waves). The ground 10 is formed with a through hole 11 that penetrates the ground 10 in the thickness direction (Z direction). The antenna element 20 is disposed within the through hole 11. The ground 10 is an example of a "ground". The through hole 11 is an example of a "through hole".
 アンテナ素子20は、例えば、Z方向視において長方形に形成される。図2は、アンテナ素子20をZ方向視した図である。図2では、グランド10も例示される。アンテナ素子20は、Y方向に長手方向を有し、X方向に短手方向を有する。アンテナ素子20の長手方向の長さL1は、例えば、アンテナ素子20が放射する電波の周波数の半波長に対応する長さである。アンテナ素子20は、例えば、長手方向の長さがL1の長方形に形成される。アンテナ素子20は、グランド10と接触しないように貫通孔11内に配置される。すなわち、貫通孔11内において、グランド10とアンテナ素子20との間には、隙間が形成される。アンテナ素子20は、長手方向の中央において給電点40に接続される。アンテナ素子20は、給電点40からの給電を受けて、Z方向に電波を放射する。すなわち、アンテナ素子20は、給電素子である。アンテナ素子20が放射する電波は例えば、第5世代移動体通信(5G)で用いられる電波である。以下、本明細書において、アンテナ素子20が放射する電波の波長をλとする。アンテナ素子20は、「アンテナ素子」の一例である。アンテナ素子20が放射する電波の周波数は、「第1の周波数」の一例である。 The antenna element 20 is formed, for example, in a rectangular shape when viewed in the Z direction. Figure 2 is a view of the antenna element 20 viewed in the Z direction. In Figure 2, the ground 10 is also illustrated. The antenna element 20 has a longitudinal direction in the Y direction and a transverse direction in the X direction. The longitudinal length L1 of the antenna element 20 is, for example, a length corresponding to half the wavelength of the frequency of the radio wave radiated by the antenna element 20. The antenna element 20 is formed, for example, in a rectangular shape with a longitudinal length of L1. The antenna element 20 is placed in the through hole 11 so as not to come into contact with the ground 10. That is, a gap is formed between the ground 10 and the antenna element 20 in the through hole 11. The antenna element 20 is connected to the power supply point 40 at the center in the longitudinal direction. The antenna element 20 receives power from the power supply point 40 and radiates radio waves in the Z direction. That is, the antenna element 20 is a power supply element. The radio waves radiated by the antenna element 20 are, for example, radio waves used in fifth generation mobile communications (5G). Hereinafter, in this specification, the wavelength of the radio waves radiated by the antenna element 20 is λ. The antenna element 20 is an example of an "antenna element." The frequency of the radio waves radiated by the antenna element 20 is an example of a "first frequency."
 導波素子31、32は、アンテナ素子20の放射方向に配置される。導波素子31、32は、例えば、Z方向視において矩形に形成される。また、導波素子31、32は、Y方向に並んで配置される。図3は、アンテナ装置1をX方向視した図である。導波素子31、32は、グランド10から距離D1だけ離れた位置に配置される。すなわち、導波素子31、32とグランド10及びアンテナ素子20とは、非接触である。また、導波素子31、32は互いに非接触である。導波素子31、32間の距離は、例えば、42mm(0.12λ)以上である。導波素子31、32は、「第1の導波素子」、「第2の導波素子」の一例である。 The director elements 31 and 32 are arranged in the radiation direction of the antenna element 20. The director elements 31 and 32 are formed, for example, in a rectangular shape when viewed in the Z direction. The director elements 31 and 32 are arranged side by side in the Y direction. FIG. 3 is a view of the antenna device 1 viewed in the X direction. The director elements 31 and 32 are arranged at a position spaced a distance D1 from the ground 10. In other words, the director elements 31 and 32 are not in contact with the ground 10 and the antenna element 20. The director elements 31 and 32 are not in contact with each other. The distance between the director elements 31 and 32 is, for example, 42 mm (0.12 λ) or more. The director elements 31 and 32 are examples of a "first director element" and a "second director element".
 図4は、アンテナ装置1をZ方向視した図である。図4では、導波素子31、32を透視して背後にあるグランド10及びアンテナ素子20が見えるようにしている。導波素子31、32は、アンテナ素子20の長手方向の端部21、22とZ方向視において重なるように配置される。導波素子31、32は、例えば、Z方向視において一辺の長さがL3の正方形に形成される。すなわち、横幅W3と縦幅L3とは同一の値となってもよい。なお、導波素子31、32は、Z方向視において長方形に形成されてもよい。すなわち、横幅W3と縦幅L3とは異なる値となってもよい。また、グランド10は、一辺の長さL2の正方形に形成される。なお、グランド10は、正方形以外の形状(例えば、長方形)に形成されてもよい。 FIG. 4 is a view of the antenna device 1 as viewed in the Z direction. In FIG. 4, the director elements 31 and 32 are seen through to show the ground 10 and antenna element 20 behind them. The director elements 31 and 32 are arranged so as to overlap the longitudinal ends 21 and 22 of the antenna element 20 as viewed in the Z direction. The director elements 31 and 32 are formed, for example, in a square shape with a side length of L3 as viewed in the Z direction. That is, the width W3 and the height L3 may be the same value. The director elements 31 and 32 may be formed in a rectangular shape as viewed in the Z direction. That is, the width W3 and the height L3 may be different values. The ground 10 is formed in a square shape with a side length of L2. The ground 10 may be formed in a shape other than a square (for example, a rectangle).
 実施形態に係るアンテナ装置1の特性についてシミュレーション(第1シミュレーション)を行ったので、以下図面を参照して説明する。以下に例示する第1シミュレーションでは、グランド10の一辺の長さL2を200mm、アンテナ素子20の長手方向の長さL1を166mm、導波素子31、32の一辺の長さL3を70mmに設定した。また、グランド10と導波素子31、32との距離D1を15mmに設定した。 A simulation (first simulation) was performed on the characteristics of the antenna device 1 according to the embodiment, which will be described below with reference to the drawings. In the first simulation illustrated below, the length L2 of one side of the ground 10 was set to 200 mm, the longitudinal length L1 of the antenna element 20 was set to 166 mm, and the length L3 of one side of the waveguide elements 31 and 32 was set to 70 mm. In addition, the distance D1 between the ground 10 and the waveguide elements 31 and 32 was set to 15 mm.
 図5から図7は、第1シミュレーションの結果を例示する図である。図5Aでは、XY平面におけるゲインが例示される。図5Bでは、XY平面における位相が例示される。図6Aでは、ZX平面におけるゲインが例示される。図6Bでは、ZX平面における位相が例示される。図7Aでは、YZ平面におけるゲインが例示される。図7Bでは、YZ平面における位相が例示される。 FIGS. 5 to 7 are diagrams illustrating the results of the first simulation. FIG. 5A illustrates the gain in the XY plane. FIG. 5B illustrates the phase in the XY plane. FIG. 6A illustrates the gain in the ZX plane. FIG. 6B illustrates the phase in the ZX plane. FIG. 7A illustrates the gain in the YZ plane. FIG. 7B illustrates the phase in the YZ plane.
 -10dBi以上のゲインが得られる範囲を通信可能な領域と仮定し、通信可能な領域における位相差の最大値を検討する。以下、本明細書において、XY平面、ZX平面及びYZ平面の夫々において、通信可能な領域内の最も大きい位相、最も小さい位相の差を位相差とする。XY平面における位相差は、図5を参照すると、最大で15度となる。ZX平面における位相差は、図6を参照すると、最大で8度となる。また、YZ平面における位相差は、図7を参照すると、最大で3度となる。 Assuming that the range where a gain of -10 dBi or more is obtained is the communication range, the maximum value of the phase difference in the communication range is considered. In the rest of this specification, the phase difference is defined as the difference between the maximum phase and the minimum phase in the communication range in each of the XY plane, ZX plane, and YZ plane. With reference to Figure 5, the phase difference in the XY plane is a maximum of 15 degrees. With reference to Figure 6, the phase difference in the ZX plane is a maximum of 8 degrees. Furthermore, with reference to Figure 7, the phase difference in the YZ plane is a maximum of 3 degrees.
 <第1比較例>
 ここで、比較例について説明する。図8は、第1比較例に係るスリーブアンテナ800の一例を示す図である。スリーブアンテナ800は、アンテナ素子801、スリーブ802、本体803及び給電点840を備える。本体803には、電源や信号処理回路等が収容される。スリーブアンテナ800では、スリーブ802の先端に設けられた給電点840に線状のアンテナ素子801が接続される。
<First Comparative Example>
Here, a comparative example will be described. Fig. 8 is a diagram showing an example of a sleeve antenna 800 according to a first comparative example. The sleeve antenna 800 includes an antenna element 801, a sleeve 802, a main body 803, and a feeding point 840. The main body 803 houses a power source, a signal processing circuit, and the like. In the sleeve antenna 800, a linear antenna element 801 is connected to a feeding point 840 provided at the tip of the sleeve 802.
 第1比較例に係るスリーブアンテナ800の特性についてシミュレーション(第2シミュレーション)を行ったので、以下図面を参照して説明する。図9から図11は、第2シミュレーションの結果を例示する図である。図9Aでは、XY平面におけるゲインが例示される。図9Bでは、XY平面における位相が例示される。図10Aでは、ZX平面におけるゲインが例示される。図10Bでは、ZX平面における位相が例示される。図11Aでは、YZ平面におけるゲインが例示される。図11Bでは、YZ平面における位相が例示される。 A simulation (second simulation) was performed on the characteristics of the sleeve antenna 800 according to the first comparative example, which will be described below with reference to the drawings. Figures 9 to 11 are diagrams illustrating the results of the second simulation. Figure 9A illustrates the gain in the XY plane. Figure 9B illustrates the phase in the XY plane. Figure 10A illustrates the gain in the ZX plane. Figure 10B illustrates the phase in the ZX plane. Figure 11A illustrates the gain in the YZ plane. Figure 11B illustrates the phase in the YZ plane.
 -10dBi以上のゲインが得られる範囲を通信可能な領域と仮定し、通信可能な領域における位相差の最大値を検討する。XY平面における位相差は、図9を参照すると、最大で29度となる。ZX平面における位相差は、図10を参照すると、最大で50度となる。また、YZ平面における位相差は、図11を参照すると、最大で59度となる。 Assuming that the range where a gain of -10 dBi or more is obtained is the communication possible range, we will consider the maximum phase difference in the communication possible range. Referring to Figure 9, the phase difference in the XY plane is a maximum of 29 degrees. Referring to Figure 10, the phase difference in the ZX plane is a maximum of 50 degrees. Also, referring to Figure 11, the phase difference in the YZ plane is a maximum of 59 degrees.
 <第2比較例>
 図12は、第2比較例に係る折り返しスロットアンテナ900の一例を示す図である。折り返しスロットアンテナ900は、グランド910、アンテナ素子920及びアンテナ素子920を備える。グランド910には貫通孔911が設けられる。アンテナ素子920は、貫通孔911内に配置され、給電点940からの給電を受けて電波を放射する。第2比較例に係る折り返しスロットアンテナ900は、実施形態に係るアンテナ装置1から導波素子31、32を除いたものということができる。
<Second Comparative Example>
12 is a diagram showing an example of a folded slot antenna 900 according to a second comparative example. The folded slot antenna 900 includes a ground 910, an antenna element 920, and an antenna element 920. A through hole 911 is provided in the ground 910. The antenna element 920 is disposed in the through hole 911, and receives power from a power feed point 940 to radiate radio waves. The folded slot antenna 900 according to the second comparative example can be said to be the antenna device 1 according to the embodiment without the director elements 31 and 32.
 第2比較例に係る折り返しスロットアンテナ900の特性についてシミュレーション(第3シミュレーション)を行ったので、以下図面を参照して説明する。図13から図15は、第3シミュレーションの結果を例示する図である。図13Aでは、XY平面におけるゲインが例示される。図13Bでは、XY平面における位相が例示される。図14Aでは、ZX平面におけるゲインが例示される。図14Bでは、ZX平面における位相が例示される。図15Aでは、YZ平面におけるゲインが例示される。図15Bでは、YZ平面における位相が例示される。 A simulation (third simulation) was performed on the characteristics of the folded slot antenna 900 according to the second comparative example, which will be described below with reference to the drawings. Figures 13 to 15 are diagrams illustrating the results of the third simulation. Figure 13A illustrates the gain in the XY plane. Figure 13B illustrates the phase in the XY plane. Figure 14A illustrates the gain in the ZX plane. Figure 14B illustrates the phase in the ZX plane. Figure 15A illustrates the gain in the YZ plane. Figure 15B illustrates the phase in the YZ plane.
 -10dBi以上のゲインが得られる範囲を通信可能な領域と仮定し、通信可能な領域における位相差の最大値を検討する。XY平面における位相差は、図13を参照すると、最大で12度となる。ZX平面における位相差は、図14を参照すると、最大で8度となる。また、YZ平面における位相差は、図15を参照すると、最大で18度となる。 Assuming that the range where a gain of -10 dBi or more is obtained is the communication possible range, we will consider the maximum phase difference in the communication possible range. Referring to Figure 13, the phase difference in the XY plane is a maximum of 12 degrees. Referring to Figure 14, the phase difference in the ZX plane is a maximum of 8 degrees. Also, referring to Figure 15, the phase difference in the YZ plane is a maximum of 18 degrees.
 <実施形態と比較例の検証>
 第1シミュレーションから第3シミュレーションの結果を検討すると、XY平面、ZX平面及びYZ平面のいずれにおいても、実施形態に係るアンテナ装置1で生じる位相差はスリーブアンテナ800及び折り返しスロットアンテナ900よりも小さなものとなる。また、主放射方向となるZX平面及びYZ平面における位相差は、スリーブアンテナ800及び折り返しスロットアンテナ900と比較してアンテナ装置1では改善されたことが理解できる。すなわち、実施形態に係るアンテナ装置1であれば、主放射方向において位相差の小さい電波を放射することができる。
<Verification of the embodiment and comparative example>
Considering the results of the first to third simulations, in all of the XY plane, ZX plane, and YZ plane, the phase difference generated in the antenna device 1 according to the embodiment is smaller than that of the sleeve antenna 800 and the folded slot antenna 900. It can also be seen that the phase difference in the ZX plane and the YZ plane, which are the main radiation direction, is improved in the antenna device 1 compared to the sleeve antenna 800 and the folded slot antenna 900. In other words, the antenna device 1 according to the embodiment can radiate radio waves with a small phase difference in the main radiation direction.
 <バリエーションの検討>
 ここで、このような特性を有するアンテナ装置1の各サイズや導波素子31、32の位置について検討を行ったので、以下に説明する。まず、導波素子31の位置について検討する第4シミュレーションについて説明する。図16は、第4シミュレーションに用いたアンテナ装置1Aの一例を示す図である。アンテナ装置1Aは、アンテナ装置1から導波素子32を除いたものである。第4シミュレーションでは、導波素子31の中心と給電点40とがZ方向視において一致する位置から、+Y方向に120mmまで移動させて、位相差を確認した。
<Consideration of variations>
Here, the sizes of the antenna device 1 having such characteristics and the positions of the director elements 31 and 32 were examined, which will be described below. First, a fourth simulation for examining the position of the director element 31 will be described. Fig. 16 is a diagram showing an example of an antenna device 1A used in the fourth simulation. The antenna device 1A is the antenna device 1 from which the director element 32 has been removed. In the fourth simulation, the director element 31 was moved 120 mm in the +Y direction from a position where the center of the director element 31 and the power feed point 40 coincide when viewed in the Z direction, and the phase difference was confirmed.
 図17から図19は、第4シミュレーションの結果を例示する図である。図17Aでは、XY平面におけるゲインが例示される。図17Bでは、XY平面における位相が例示される。図18Aでは、ZX平面におけるゲインが例示される。図18Bでは、ZX平面における位相が例示される。図19Aでは、YZ平面におけるゲインが例示される。図19Bでは、YZ平面における位相が例示される。図17から図19では、導波素子31の移動量0mm、30mm、60mm、90mm、120mmの夫々についてゲイン及び位相差が例示される。 FIGS. 17 to 19 are diagrams illustrating the results of the fourth simulation. FIG. 17A illustrates the gain in the XY plane. FIG. 17B illustrates the phase in the XY plane. FIG. 18A illustrates the gain in the ZX plane. FIG. 18B illustrates the phase in the ZX plane. FIG. 19A illustrates the gain in the YZ plane. FIG. 19B illustrates the phase in the YZ plane. FIGs. 17 to 19 illustrate the gain and phase difference for the movement amounts of the waveguide element 31 of 0 mm, 30 mm, 60 mm, 90 mm, and 120 mm.
 図17から図19を参照すると、導波素子31の中心と給電点40とがZ方向視において重なっている状態(移動量0mm)の状態よりも、導波素子31を+Y方向に移動させた方が、位相差が改善されることが理解できる。すなわち、導波素子31とアンテナ素子20の端部21とがZ方向視において重なっている状態が位相差の改善において好ましいことが理解できる。さらには、導波素子31の中心とアンテナ素子20の端部21とがZ方向視において重なっている状態(移動量120mm)が、位相差の改善においてより好ましいことが理解できる。 With reference to Figures 17 to 19, it can be seen that the phase difference is improved by moving the waveguide element 31 in the +Y direction rather than the state in which the center of the waveguide element 31 and the power supply point 40 overlap when viewed in the Z direction (movement amount 0 mm). In other words, it can be seen that the state in which the waveguide element 31 and the end 21 of the antenna element 20 overlap when viewed in the Z direction is preferable in terms of improving the phase difference. Furthermore, it can be seen that the state in which the center of the waveguide element 31 and the end 21 of the antenna element 20 overlap when viewed in the Z direction (movement amount 120 mm) is even more preferable in terms of improving the phase difference.
 つづいて、導波素子31、32とグランド10との距離D1(図3参照)について検討する第5シミュレーションについて説明する。第5シミュレーションでは、距離D1を様々に変更して、ゲインと位相の変動について確認した。図20から図22は、第5シミュレーションの結果を例示する図である。図20Aでは、XY平面におけるゲインが例示される。図20Bでは、XY平面における位相が例示される。図21Aでは、ZX平面におけるゲインが例示される。図21Bでは、ZX平面における位相が例示される。図22Aでは、YZ平面におけるゲインが例示される。図21Bでは、YZ平面における位相が例示される。図20から図22では、距離D1の5mm、30mm、55mm、80mm、105mm、130mm、155mm、180mm、200mmの夫々についてゲイン及び位相が例示される。 Next, a fifth simulation will be described, which examines the distance D1 (see FIG. 3) between the director elements 31, 32 and the ground 10. In the fifth simulation, the distance D1 was changed in various ways to confirm the fluctuations in gain and phase. FIGS. 20 to 22 are diagrams illustrating the results of the fifth simulation. FIG. 20A illustrates the gain in the XY plane. FIG. 20B illustrates the phase in the XY plane. FIG. 21A illustrates the gain in the ZX plane. FIG. 21B illustrates the phase in the ZX plane. FIG. 22A illustrates the gain in the YZ plane. FIG. 21B illustrates the phase in the YZ plane. FIGS. 20 to 22 illustrate the gain and phase for distances D1 of 5 mm, 30 mm, 55 mm, 80 mm, 105 mm, 130 mm, 155 mm, 180 mm, and 200 mm.
 図20から図22を参照すると、導波素子31、32は、距離D1が小さいほど位相差を改善する効果は高いことが理解できる。距離D1は、例えば、30mm以下(0.09λ以下)が好ましく、5mm(0.015λ)以下がより好ましい。 With reference to Figures 20 to 22, it can be seen that the smaller the distance D1, the more effective the waveguide elements 31 and 32 are at improving the phase difference. For example, the distance D1 is preferably 30 mm or less (0.09 λ or less), and more preferably 5 mm (0.015 λ) or less.
 つづいて、導波素子31、32の横幅W3(図4参照)について検討する第6シミュレーションについて説明する。第6シミュレーションでは、導波素子31、32の横幅W3を様々に変更して、ゲインと位相差の変動について確認した。なお、第6シミュレーションでは、縦幅L3は70mm、距離D1は15mmに設定した。 Next, we will explain the sixth simulation, which examines the width W3 (see Figure 4) of the director elements 31 and 32. In the sixth simulation, the width W3 of the director elements 31 and 32 was changed in various ways to check the fluctuations in gain and phase difference. In the sixth simulation, the vertical width L3 was set to 70 mm, and the distance D1 was set to 15 mm.
 図23から図25は、第6シミュレーションの結果を例示する図である。図23Aでは、XY平面におけるゲインが例示される。図23Bでは、XY平面における位相が例示される。図24Aでは、ZX平面におけるゲインが例示される。図24Bでは、ZX平面における位相が例示される。図25Aでは、YZ平面におけるゲインが例示される。図25Bでは、YZ平面における位相が例示される。図23から図25では、横幅W3の5mm、20mm、35mm、50mm、65mm、80mm、95mm、110mm、125mm、140mmの夫々についてゲイン及び位相が例示される。 FIGS. 23 to 25 are diagrams illustrating the results of the sixth simulation. FIG. 23A illustrates the gain in the XY plane. FIG. 23B illustrates the phase in the XY plane. FIG. 24A illustrates the gain in the ZX plane. FIG. 24B illustrates the phase in the ZX plane. FIG. 25A illustrates the gain in the YZ plane. FIG. 25B illustrates the phase in the YZ plane. FIGs. 23 to 25 illustrate the gain and phase for widths W3 of 5 mm, 20 mm, 35 mm, 50 mm, 65 mm, 80 mm, 95 mm, 110 mm, 125 mm, and 140 mm.
 図23から図25を参照すると、位相差の改善を考慮すると、横幅W3は50mm以上、80mm以下が好ましいと考えられる。換言すれば、アンテナ素子20の長手方向を横切る横幅W3は、0.1λ以上0.38λ以下に対応する長さが好ましいと考えられる。また、位相差の改善には、横幅W3は70mm前後がより好ましいと考えられる。 Referring to Figures 23 to 25, when considering the improvement of the phase difference, it is considered that the width W3 is preferably 50 mm or more and 80 mm or less. In other words, it is considered that the width W3 across the longitudinal direction of the antenna element 20 is preferably a length corresponding to 0.1 λ or more and 0.38 λ or less. Furthermore, it is considered that a width W3 of around 70 mm is more preferable for improving the phase difference.
 つづいて、導波素子31、32の縦幅L33(図4参照)について検討する第7シミュレーションについて説明する。第7シミュレーションでは、導波素子31、32の縦幅L3を様々に変更して、ゲインと位相の変動について確認した。なお、第7シミュレーションでは、横幅W3は70mm、距離D1は15mmに設定した。 Next, we will explain the seventh simulation, which examines the vertical width L33 (see Figure 4) of the director elements 31 and 32. In the seventh simulation, the vertical width L3 of the director elements 31 and 32 was changed in various ways to check the fluctuations in gain and phase. In the seventh simulation, the horizontal width W3 was set to 70 mm, and the distance D1 was set to 15 mm.
 図26から図28は、第7シミュレーションの結果を例示する図である。図26Aでは、XY平面におけるゲインが例示される。図26Bでは、XY平面における位相が例示される。図27Aでは、ZX平面におけるゲインが例示される。図27Bでは、ZX平面における位相差が例示される。図28Aでは、YZ平面におけるゲインが例示される。図28Bでは、YZ平面における位相差が例示される。図26から図28では、縦幅L3の20mm、35mm、50mm、65mm、80mm、95mm、110mm、125mm、140mmの夫々についてゲイン及び位相差が例示される。 FIGS. 26 to 28 are diagrams illustrating the results of the seventh simulation. FIG. 26A illustrates the gain in the XY plane. FIG. 26B illustrates the phase in the XY plane. FIG. 27A illustrates the gain in the ZX plane. FIG. 27B illustrates the phase difference in the ZX plane. FIG. 28A illustrates the gain in the YZ plane. FIG. 28B illustrates the phase difference in the YZ plane. FIGs. 26 to 28 illustrate the gain and phase difference for vertical widths L3 of 20 mm, 35 mm, 50 mm, 65 mm, 80 mm, 95 mm, 110 mm, 125 mm, and 140 mm.
 図26から図28を参照すると、位相差の改善を考慮すると、縦幅L3は35mm(0.1λ)以上、95mm(0.38λ)以下が好ましいと考えられる。また、位相差の改善には、縦幅L3は70mm前後がより好ましいと考えられる。 Referring to Figures 26 to 28, when considering the improvement of the phase difference, it is considered preferable that the vertical width L3 is 35 mm (0.1 λ) or more and 95 mm (0.38 λ) or less. Furthermore, it is considered more preferable that the vertical width L3 is around 70 mm in order to improve the phase difference.
 つづいて、アンテナ装置1によって放射される電界を可視化する第8シミュレーションについて説明する。第8シミュレーションでは、縦幅L3を70mmに設定したアンテナ装置1、縦幅L3を140mmに設定したアンテナ装置1、第2比較例に係る折り返しスロットアンテナ900の夫々について電界を可視化した。 Next, we will explain the eighth simulation that visualizes the electric field radiated by the antenna device 1. In the eighth simulation, the electric field was visualized for the antenna device 1 with the vertical width L3 set to 70 mm, the antenna device 1 with the vertical width L3 set to 140 mm, and the folded slot antenna 900 according to the second comparative example.
 図29は、第8シミュレーションによって可視化した電界を模式的に示す第1の図である。図29では、縦幅L3を70mmに設定したアンテナ装置1について、アンテナ素子20が放射する電波の電界を可視化した。図29の電界E1は、電界の全体を模式的に示す図である。電界E2は、電界E1においてθ=0度方向の領域を拡大した図である。電界E3は、電界E1においてθ=90度方向の領域を拡大した図である。電界E2及び電界E3には、給電点40から1メートル離れた位置を示す曲線も例示される。 FIG. 29 is the first diagram that shows a schematic representation of the electric field visualized by the eighth simulation. In FIG. 29, the electric field of the radio waves radiated by the antenna element 20 is visualized for an antenna device 1 with a vertical width L3 set to 70 mm. The electric field E1 in FIG. 29 is a diagram that shows a schematic representation of the entire electric field. The electric field E2 is an enlarged view of the region in the θ=0 degree direction in the electric field E1. The electric field E3 is an enlarged view of the region in the θ=90 degree direction in the electric field E1. The electric fields E2 and E3 also show curves that indicate a position 1 meter away from the feed point 40.
 図30は、第8シミュレーションによって可視化した電界を模式的に示す第2の図である。図30では、縦幅L3を140mmに設定したアンテナ装置1について、アンテナ素子20が放射する電波の電界を可視化した。図30の電界E11は、電界の全体を模式的に示す図である。電界E12は、電界E11においてθ=0度方向の領域を拡大した図である。電界E13は、電界E11においてθ=90度方向の領域を拡大した図である。電界E12及び電界E13には、給電点40から1メートル離れた位置を示す曲線も例示される。 Figure 30 is a second diagram that shows a schematic representation of the electric field visualized by the eighth simulation. In Figure 30, the electric field of the radio waves radiated by the antenna element 20 is visualized for an antenna device 1 with a vertical width L3 set to 140 mm. The electric field E11 in Figure 30 is a diagram that shows a schematic representation of the entire electric field. The electric field E12 is an enlarged view of the region in the θ = 0 degree direction in the electric field E11. The electric field E13 is an enlarged view of the region in the θ = 90 degree direction in the electric field E11. The electric fields E12 and E13 also show curves that indicate a position 1 meter away from the feed point 40.
 図31は、第8シミュレーションによって可視化した電界を模式的に示す第3の図である。図31では、第2比較例に係る折り返しスロットアンテナ900について、アンテナ素子920が放射する電波の電界を可視化した。図31の電界E21は、電界の全体を模式的に示す図である。電界E22は、電界E21においてθ=0度方向の領域を拡大した図である。電界E23は、電界E21においてθ=90度方向の領域を拡大した図である。電界E22及び電界E23には、給電点40から1メートル離れた位置を示す曲線も例示される。 FIG. 31 is a third diagram that shows a schematic representation of the electric field visualized by the eighth simulation. In FIG. 31, the electric field of the radio waves radiated by the antenna element 920 is visualized for the folded slot antenna 900 according to the second comparative example. The electric field E21 in FIG. 31 is a diagram that shows a schematic representation of the entire electric field. The electric field E22 is an enlarged view of the region in the θ=0 degree direction in the electric field E21. The electric field E23 is an enlarged view of the region in the θ=90 degree direction in the electric field E21. The electric fields E22 and E23 also show curves that indicate a position 1 meter away from the feed point 40.
 図29から図31を比較すると、縦幅L3を70mmに設定したアンテナ装置1をシミュレーションした図29では、「θ=0度」及び「θ=90度」のいずれにおいても、「1mライン」が電界の谷に収まっている。一方、縦幅L3を140mmに設定したアンテナ装置1をシミュレーションした図30及び折り返しスロットアンテナ900をシミュレーションした図31では、「θ=90度」では「1mライン」が電界の谷に収まっている一方で、「θ=0度」では「1mライン」が電界の谷から外れている。すなわち、縦幅L3を70mmに設定したアンテナ装置1は、縦幅L3を70mmに設定したアンテナ装置1及び折り返しスロットアンテナ900よりも位相差を軽減できているということができる。これは、導波素子31、32によって電波の放射タイミングが調整された結果、電界の谷の位置をずらすことができるため、「θ=0度」及び「θ=90度」の位相差が軽減したものと考えられる。 Comparing Fig. 29 to Fig. 31, in Fig. 29, which is a simulation of antenna device 1 with vertical width L3 set to 70 mm, the "1 m line" falls within the electric field valley at both "θ = 0 degrees" and "θ = 90 degrees". On the other hand, in Fig. 30, which is a simulation of antenna device 1 with vertical width L3 set to 140 mm, and Fig. 31, which is a simulation of folded slot antenna 900, the "1 m line" falls within the electric field valley at "θ = 90 degrees", but is outside the electric field valley at "θ = 0 degrees". In other words, it can be said that antenna device 1 with vertical width L3 set to 70 mm is able to reduce the phase difference more than antenna device 1 and folded slot antenna 900 with vertical width L3 set to 70 mm. This is thought to be because the phase difference at "θ = 0 degrees" and "θ = 90 degrees" is reduced because the timing of radio wave emission is adjusted by the wave director elements 31 and 32, and the position of the electric field valley can be shifted.
 以上説明したアンテナ装置1は、例えば、スマートフォンに実装させることができる。図32は、スマートフォン100の外観の一例を示す図である。図32では、外観視できないアンテナ装置1は点線で例示される。スマートフォン100は、筐体110内に3つのアンテナ装置1を備える。なお、図32ではスマートフォン100が例示されたが、アンテナ装置1はスマートフォン100以外の無線通信装置に実装されてもよい。スマートフォン100以外の無線通信装置としては、例えば、ノートブック型パーソナルコンピュータ、タブレット型コンピュータ、ウェアラブル端末、基地局、ドローン、フィーチャーフォン等を挙げることができる。 The antenna device 1 described above can be implemented in, for example, a smartphone. FIG. 32 is a diagram showing an example of the external appearance of a smartphone 100. In FIG. 32, the antenna device 1 that is not visible from the outside is illustrated by a dotted line. The smartphone 100 has three antenna devices 1 inside a housing 110. Note that, although FIG. 32 shows a smartphone 100 as an example, the antenna device 1 may be implemented in a wireless communication device other than the smartphone 100. Examples of wireless communication devices other than the smartphone 100 include a notebook personal computer, a tablet computer, a wearable terminal, a base station, a drone, and a feature phone.
 <実施形態の作用効果>
 本実施形態では、アンテナ装置1の貫通孔11内にアンテナ素子20が配置され、アンテナ素子20の電波放射方向に導波素子31、32が配置される。導波素子31、32が配置されることで、電波の放射タイミングが調整され、放射方向による位相差を軽減できる。このような効果は、アンテナ装置1による電波の放射に限定されず、アンテナ装置1による電波の受信においても同様である。
<Effects of the embodiment>
In this embodiment, the antenna element 20 is disposed in the through hole 11 of the antenna device 1, and the director elements 31 and 32 are disposed in the radio wave radiation direction of the antenna element 20. By disposing the director elements 31 and 32, the radiation timing of the radio waves can be adjusted and the phase difference due to the radiation direction can be reduced. This effect is not limited to the radiation of radio waves by the antenna device 1, but also applies to the reception of radio waves by the antenna device 1.
 本実施形態に係るアンテナ装置1であれば、位相差が軽減されるため、スマートフォン100の3つのアンテナ装置1から放射された電波を用いて、スマートフォン100の空間上の位置を検出する際に、位置の検出精度を高めることができる。例えば、縦幅L3を70mmに設定したアンテナ装置1を用いることで、位置の検出精度は±1cm程度とすることができる。 The antenna device 1 according to this embodiment reduces the phase difference, so that it is possible to improve the position detection accuracy when detecting the spatial position of the smartphone 100 using radio waves radiated from the three antenna devices 1 of the smartphone 100. For example, by using an antenna device 1 with a vertical width L3 set to 70 mm, the position detection accuracy can be about ±1 cm.
 <変形例>
 以上説明した実施形態では、導波素子31、32は矩形であったが、導波素子31、32の形状は矩形に限定されない。図33は、円形の導波素子31A、32Aを備えるアンテナ装置1Aの一例を示す図である。また、図34は、矩形枠型の導波素子31B、32Bを備えるアンテナ装置1Bの一例を示す図である。図33及び図34に例示されるように、導波素子31、32は、様々な形状を採用できる。なお、円形の導波素子31A、32Aの直径は、例えば、横幅W3と同様に、50mm以上、80mm以下(0.1λ以上0.38λ以下)が好ましいと考えられる。また、矩形枠型の導波素子31B、32Bのアンテナ素子20の長手方向を横切る横幅W4の長さは、例えば、横幅W3と同様に、50mm以上、80mm以下(0.1λ以上0.38λ以下)が好ましいと考えられる。
<Modification>
In the above-described embodiment, the director elements 31 and 32 are rectangular, but the shape of the director elements 31 and 32 is not limited to a rectangle. FIG. 33 is a diagram showing an example of an antenna device 1A having circular director elements 31A and 32A. FIG. 34 is a diagram showing an example of an antenna device 1B having rectangular frame- type director elements 31B and 32B. As exemplified in FIG. 33 and FIG. 34, the director elements 31 and 32 can adopt various shapes. Note that, it is considered that the diameter of the circular director elements 31A and 32A is preferably, for example, 50 mm or more and 80 mm or less (0.1 λ or more and 0.38 λ or less) similar to the width W3. It is also considered that the length of the width W4 of the rectangular frame- type director elements 31B and 32B crossing the longitudinal direction of the antenna element 20 is preferably, for example, 50 mm or more and 80 mm or less (0.1 λ or more and 0.38 λ or less) similar to the width W3.
 また、アンテナ装置1のグランド10、アンテナ素子20及び導波素子31、32には、例えば、電子部品が実装されてもよい。グランド10、アンテナ素子20及び導波素子31、32に電子部品が実装されることで、例えば、アンテナ装置1がスマートフォン100に実装される際に、筐体110内のスペースを有効に活用できる。 Furthermore, for example, electronic components may be mounted on the ground 10, antenna element 20, and waveguide elements 31 and 32 of the antenna device 1. By mounting electronic components on the ground 10, antenna element 20, and waveguide elements 31 and 32, for example, when the antenna device 1 is mounted on a smartphone 100, the space inside the housing 110 can be effectively utilized.
 また、グランド10、アンテナ素子20及び導波素子31、32は、誘電体基板上に配置されてもよい。図35は、グランド10、アンテナ素子20及び導波素子31、32が誘電体基板B1、B2上に配置されたアンテナ装置1Cの一例を示す図である。図35では、誘電体基板B1上にグランド10が配置され、グランド10の上に誘電体基板B2が配置され、誘電体基板B2上に導波素子31、32が配置される。このような構成となることで、アンテナ素子20が放射する電波の波長は、誘電体基板B1、B2の誘電率の影響を受けた実効波長となる。 The ground 10, antenna element 20, and director elements 31, 32 may also be arranged on a dielectric substrate. FIG. 35 is a diagram showing an example of an antenna device 1C in which the ground 10, antenna element 20, and director elements 31, 32 are arranged on dielectric substrates B1 and B2. In FIG. 35, the ground 10 is arranged on the dielectric substrate B1, the dielectric substrate B2 is arranged on the ground 10, and the director elements 31, 32 are arranged on the dielectric substrate B2. With this configuration, the wavelength of the radio waves radiated by the antenna element 20 becomes an effective wavelength influenced by the dielectric constant of the dielectric substrates B1 and B2.
 また、給電点40には、コンデンサ、インダクタ、スイッチ等が配置されてもよい。コンデンサ、インダクタ、スイッチ等が配置されることで、アンテナ素子20の共振周波数が調整されたり、整合が容易にとれたりする。 In addition, a capacitor, inductor, switch, etc. may be placed at the power supply point 40. By placing a capacitor, inductor, switch, etc., the resonant frequency of the antenna element 20 can be adjusted and matching can be easily achieved.
 実施形態に係るアンテナ装置1は、2つの導波素子31、32を備えたが、アンテナ装置1が備える導波素子はひとつでもよいし、3つ以上であってもよい。 The antenna device 1 according to the embodiment has two waveguide elements 31 and 32, but the antenna device 1 may have one waveguide element or three or more.
 以上で開示した実施形態や変形例はそれぞれ組み合わせることができる。 The embodiments and variations disclosed above can be combined with each other.
 1・・アンテナ装置
 1A・・アンテナ装置
 1B・・アンテナ装置
 1C・・アンテナ装置
 10・・グランド
 11・・貫通孔
 20・・アンテナ素子
 21・・端部
 22・・端部
 31・・導波素子
 32・・導波素子
 40・・給電点
 100・・スマートフォン
 110・・筐体
 800・・スリーブアンテナ
 801・・アンテナ素子
 802・・スリーブ
 803・・本体
 840・・給電点
 900・・折り返しスロットアンテナ
 910・・グランド
 911・・貫通孔
 920・・アンテナ素子
 940・・給電点
 B1・・誘電体基板
 B2・・誘電体基板
1 Antenna device 1A Antenna device 1B Antenna device 1C Antenna device 10 Ground 11 Through hole 20 Antenna element 21 End 22 End 31 Director element 32 Director element 40 Feed point 100 Smartphone 110 Housing 800 Sleeve antenna 801 Antenna element 802 Sleeve 803 Main body 840 Feed point 900 Folded slot antenna 910 Ground 911 Through hole 920 Antenna element 940 Feed point B1 Dielectric substrate B2 Dielectric substrate

Claims (10)

  1.  貫通孔を有する板状のグランドと、
     前記貫通孔内に配置され、第1の周波数の電波の半波長に対応する長さを有する板状のアンテナ素子と、
     前記アンテナ素子が前記電波を放射する放射方向に配置され、前記放射方向視において前記アンテナ素子の前記長さ方向の端部と少なくとも一部が重なるように配置される導波素子と、を備え、
     前記導波素子は、前記電波の波長の0.1倍から0.38倍に対応する大きさである、
     アンテナ装置。
    A plate-shaped ground having a through hole;
    a plate-shaped antenna element disposed in the through hole and having a length corresponding to a half wavelength of a radio wave of a first frequency;
    a waveguide element disposed in a radiation direction in which the antenna element radiates the radio wave and arranged so as to overlap at least a part of an end portion of the antenna element in the longitudinal direction as viewed in the radiation direction;
    The director element has a size corresponding to 0.1 to 0.38 times the wavelength of the radio wave.
    Antenna device.
  2.  前記導波素子の中心と、前記アンテナ素子の前記長さ方向の端部とが、前記放射方向視において重なるように、前記導波素子が配置される、
     請求項1に記載のアンテナ装置。
    The director element is arranged so that a center of the director element and an end of the antenna element in the longitudinal direction overlap with each other when viewed in the radiation direction.
    2. The antenna device according to claim 1.
  3.  前記アンテナ素子は、前記長さ方向の中央に給電点が接続される、
     請求項1に記載のアンテナ装置。
    The antenna element has a feed point connected to the center in the longitudinal direction.
    2. The antenna device according to claim 1.
  4.  前記導波素子は前記放射方向視において矩形に形成されており、
     前記導波素子上の前記アンテナ素子を横切る辺の長さが、前記第1の周波数の0.1倍から0.38倍に対応する長さである、
     請求項1に記載のアンテナ装置。
    The director element is formed in a rectangular shape when viewed in the radial direction,
    A length of a side of the director element that crosses the antenna element corresponds to 0.1 to 0.38 times the first frequency.
    2. The antenna device according to claim 1.
  5.  前記導波素子は前記放射方向視において円形に形成されており、
     前記導波素子の直径の長さは、前記第1の周波数の0.1倍から0.38倍に対応する長さである、
     請求項1に記載のアンテナ装置。
    The director element is formed in a circular shape when viewed in the radial direction,
    The length of the diameter of the waveguide element corresponds to 0.1 to 0.38 times the first frequency.
    2. The antenna device according to claim 1.
  6.  前記導波素子は矩形枠状に形成されており、
     前記導波素子上の前記アンテナ素子を横切る辺の長さが、前記第1の周波数の0.1倍から0.38倍に対応する長さである、
     請求項1に記載のアンテナ装置。
    The director element is formed in a rectangular frame shape,
    A length of a side of the director element that crosses the antenna element corresponds to 0.1 to 0.38 times the first frequency.
    2. The antenna device according to claim 1.
  7.  前記導波素子と前記アンテナ素子との距離は、前記波長の0.09倍以下である、
     請求項1に記載のアンテナ装置。
    The distance between the director element and the antenna element is equal to or less than 0.09 times the wavelength.
    2. The antenna device according to claim 1.
  8.  前記導波素子は、第1の導波素子と第2の導波素子とを含み、
     前記第1の導波素子と前記第2の導波素子とは、前記アンテナ素子の前記長さ方向に沿って並んで配置される、
     請求項1に記載のアンテナ装置。
    the waveguide element includes a first waveguide element and a second waveguide element;
    The first and second director elements are arranged side by side along the length of the antenna element.
    2. The antenna device according to claim 1.
  9.  前記第1の導波素子と前記第2の導波素子との間隔は、前記波長の0.12倍以上である、
     請求項8に記載のアンテナ装置。
    The distance between the first waveguide element and the second waveguide element is equal to or greater than 0.12 times the wavelength.
    9. The antenna device according to claim 8.
  10.  請求項1から9のいずれか一項に記載のアンテナ装置を備える、
     無線通信装置。
    Equipped with an antenna device according to any one of claims 1 to 9,
    Wireless communication device.
PCT/JP2024/006645 2023-02-22 2024-02-22 Antenna device and wireless communication device WO2024177152A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023026575A JP2024119573A (en) 2023-02-22 2023-02-22 Antenna device and wireless communication device
JP2023-026575 2023-02-22

Publications (1)

Publication Number Publication Date
WO2024177152A1 true WO2024177152A1 (en) 2024-08-29

Family

ID=92500990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/006645 WO2024177152A1 (en) 2023-02-22 2024-02-22 Antenna device and wireless communication device

Country Status (2)

Country Link
JP (1) JP2024119573A (en)
WO (1) WO2024177152A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003309429A (en) * 2002-04-17 2003-10-31 Hitachi Cable Ltd Slot feeding type antenna
JP2006066993A (en) * 2004-08-24 2006-03-09 Sony Corp Multibeam antenna
JP2008053816A (en) * 2006-08-22 2008-03-06 Denki Kogyo Co Ltd Polarization shared antenna
JP2012049865A (en) * 2010-08-27 2012-03-08 Denki Kogyo Co Ltd Nondirectional antenna device and array antenna device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003309429A (en) * 2002-04-17 2003-10-31 Hitachi Cable Ltd Slot feeding type antenna
JP2006066993A (en) * 2004-08-24 2006-03-09 Sony Corp Multibeam antenna
JP2008053816A (en) * 2006-08-22 2008-03-06 Denki Kogyo Co Ltd Polarization shared antenna
JP2012049865A (en) * 2010-08-27 2012-03-08 Denki Kogyo Co Ltd Nondirectional antenna device and array antenna device

Also Published As

Publication number Publication date
JP2024119573A (en) 2024-09-03

Similar Documents

Publication Publication Date Title
US10249936B2 (en) Antenna device and wireless apparatus
US11095040B2 (en) Antenna and mimo antenna
EP3172797B1 (en) Slot antenna
JP2018085647A (en) Loop antenna and electronic equipment
WO2014103311A1 (en) Antenna apparatus
JP2016129320A (en) Antenna device
JPH11330842A (en) Wideband antenna
TWI518989B (en) Circularly polarized antenna
JP2002330024A (en) Slot antenna
EP2458682A1 (en) Dipole antenna
EP1950831A1 (en) Dipole array directional antenna
US9124001B2 (en) Communication device and antenna element therein
US10476161B2 (en) Loop antenna and electronic apparatus
WO2024177152A1 (en) Antenna device and wireless communication device
JP6221937B2 (en) Antenna device
EP2827447A1 (en) Antenna device
JP4905231B2 (en) Patch antenna and portable information device equipped with the same and having wireless communication function
WO2016186092A1 (en) Antenna device and electronic apparatus
CN112673522B (en) Antenna and wireless communication device
JP2003258546A (en) Antenna, reception method, and transmission method
JP2010239495A (en) Antenna apparatus
JP2017041837A (en) Antenna device and communication module
US7518559B2 (en) Inverted L-shaped antenna
JP2002198724A (en) Microstrip antenna
US20240106277A1 (en) Wireless power transmission system and power receiver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24760450

Country of ref document: EP

Kind code of ref document: A1