WO2024175859A1 - Device and method for controlling the excursion of the speed of the high-pressure shaft of a turbomachine engine - Google Patents
Device and method for controlling the excursion of the speed of the high-pressure shaft of a turbomachine engine Download PDFInfo
- Publication number
- WO2024175859A1 WO2024175859A1 PCT/FR2024/050226 FR2024050226W WO2024175859A1 WO 2024175859 A1 WO2024175859 A1 WO 2024175859A1 FR 2024050226 W FR2024050226 W FR 2024050226W WO 2024175859 A1 WO2024175859 A1 WO 2024175859A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure body
- speed
- torque
- pressure
- low
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 239000000446 fuel Substances 0.000 claims abstract description 53
- 230000001133 acceleration Effects 0.000 claims abstract description 26
- 238000004590 computer program Methods 0.000 claims description 11
- 238000002347 injection Methods 0.000 claims description 6
- 239000007924 injection Substances 0.000 claims description 6
- 238000005070 sampling Methods 0.000 claims description 5
- 230000001419 dependent effect Effects 0.000 claims description 3
- 230000003247 decreasing effect Effects 0.000 claims 1
- 238000002485 combustion reaction Methods 0.000 description 11
- 238000005259 measurement Methods 0.000 description 5
- 230000001276 controlling effect Effects 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 239000000567 combustion gas Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000001131 transforming effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000004513 sizing Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000002551 biofuel Substances 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001483 mobilizing effect Effects 0.000 description 1
- 238000011022 operating instruction Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000001141 propulsive effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/48—Control of fuel supply conjointly with another control of the plant
- F02C9/56—Control of fuel supply conjointly with another control of the plant with power transmission control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/36—Power transmission arrangements between the different shafts of the gas turbine plant, or between the gas-turbine plant and the power user
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/26—Control of fuel supply
- F02C9/28—Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/70—Application in combination with
- F05D2220/76—Application in combination with an electrical generator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/15—Load balancing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/90—Braking
- F05D2260/903—Braking using electrical or magnetic forces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/01—Purpose of the control system
- F05D2270/02—Purpose of the control system to control rotational speed (n)
- F05D2270/021—Purpose of the control system to control rotational speed (n) to prevent overspeed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/01—Purpose of the control system
- F05D2270/04—Purpose of the control system to control acceleration (u)
- F05D2270/042—Purpose of the control system to control acceleration (u) by keeping it below damagingly high values
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/30—Control parameters, e.g. input parameters
- F05D2270/304—Spool rotational speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/50—Control logic embodiments
- F05D2270/54—Control logic embodiments by electronic means, e.g. electronic tubes, transistors or IC's within an electronic circuit
Definitions
- the present invention relates to a turbomachine for an aircraft, in particular, to the control of a turbomachine in order to control the excursion of the speed of the high pressure shaft of an engine of the turbomachine.
- High bypass ratio (BPR) twin-spool turbomachines have a significant difference between the inertia of the low-pressure spool and the high-pressure spool. Consequently, the increase in fuel flow and potentially the electrical assistance by injecting torque on the low-pressure shaft during the acceleration phase of the low-pressure regime to meet the pilot's needs lead to a strong increase in the high-pressure regime, to the point of having an "excursion" of the high-pressure regime, due to the inertia difference between the high-pressure and low-pressure spools. This excursion of the high-pressure regime constrains from a cost and mass point of view the design of the mechanical parts of the high-pressure spool to ensure that the engine is maintained within the declared and demonstrated operating limits.
- the invention is the result of technological research aimed at very significantly improving the performance of aircraft and, in this sense, contributes to reducing the environmental impact of aircraft.
- One of the objectives of the present invention is to make it possible to limit the excursion of the high pressure body speed and to advantageously allow the reduction of fuel consumption in the context of hybrid engines.
- the present invention relates to a method for controlling an aircraft turbomachine, the turbomachine comprising a high-pressure body and a low-pressure body, the method comprising the following steps: a)- detecting an acceleration request, said acceleration request generating an increase in the fuel setpoint in the turbomachine and an excursion of the speed of said high-pressure body relative to the speed of said low-pressure body, b)- comparing the speed of said high-pressure body with a first predetermined threshold, and if the speed of said high-pressure body reaches the first threshold, taking torque from said high-pressure body, c)- if the speed of said high-pressure body reaches a second predetermined threshold higher than the first threshold, reducing said fuel setpoint, and d)- continuing to take torque from said high-pressure body, in order to bring the speed of said high-pressure body back below said second threshold.
- the method is such that: e)- when the speed of said high pressure body falls below said second threshold, said fuel setpoint is stabilized and the sampling on said high pressure body is maintained, f)- when the speed of the low pressure body reaches a speed setpoint of said low pressure body, the torque modulation on said low pressure shaft is set to zero, g)- when the speed of said high pressure body falls below said first threshold, the torque modulation on said high pressure shaft is set to zero.
- step b) at least part of the torque taken from said high pressure body is injected into said low pressure body in order to limit the fuel setpoint.
- the method comprises, during step d), an increase in torque on said low pressure shaft obtained from the sampling of torque on said high pressure shaft and the injection of at least part of this torque taken from said low pressure shaft.
- the mechanical power extracted from the high pressure shaft is advantageously reused, at least partially, to provide power to the low pressure shaft and thus limit the fuel required to maintain the speed of the low pressure shaft.
- step d) the increase in torque on said low pressure shaft is determined to compensate for the fuel setpoint of step c).
- the values of said first and second thresholds are dependent on a dimensioning of said high pressure shaft.
- the value of said first threshold is 5 to 6% lower than a maximum authorized value of said high pressure shaft speed and the value of said second threshold is 3 to 4% lower than said maximum authorized value of said high pressure shaft speed.
- the invention also relates to a computer program comprising instructions for implementing a method according to the invention, when said computer program is executed by a computer.
- the invention also relates to a computer-readable recording medium on which a computer program according to the invention is recorded.
- the invention also relates to a device for controlling an aircraft turbomachine, the turbomachine comprising a high-pressure body and a low-pressure body, the device comprising one or more processors configured together or separately to: a)- detect an acceleration request, said acceleration request generating an increase in a fuel setpoint in the turbomachine and an excursion of the speed of said high-pressure body relative to said low-pressure body, b)- compare the speed of said high-pressure body with a first predetermined threshold, and if the speed of said high-pressure body reaches said first threshold, take torque from said high-pressure body, c)- if said speed of said high-pressure body reaches a second predetermined threshold higher than said first threshold, decrease said fuel setpoint, and d)- continue taking torque from said high-pressure body, in order to bring the speed of said high-pressure body back below said second threshold.
- the invention also relates to an aircraft comprising a device according to the invention.
- Figure 1 is a schematic representation of a turbomachine according to an embodiment of the present invention.
- FIG. 2 Figure 2 is a schematic representation of a control system according to one embodiment of the invention.
- Figure 3 is a representation of the evolution of the low pressure regime, the high pressure regime, the torque of the high pressure shaft, the torque of the low pressure shaft and the fuel according to an embodiment of the invention.
- Figure 4 is a representation of a control method according to one embodiment of the invention.
- Figure 5 is a schematic representation of an electronic control unit allowing the implementation of the control loops of Figure 2.
- an aircraft engine assembly 100 may include a turbomachine 200, a first electric motor 300 and a second electric motor 400, and a control unit 500.
- the turbomachine 200 may include a low pressure shaft 210 and a high pressure shaft 220.
- the low pressure shaft 210 and the high pressure shaft 220 may be arranged coaxially, as illustrated.
- the turbomachine 200 may also comprise a low-pressure compressor 230, a high-pressure compressor 240, a combustion chamber 250, a high-pressure turbine 260, a low-pressure turbine 270, and an exhaust nozzle 275, arranged successively in the direction of flow in an annular vein of working fluid, such that air admitted upstream of the low-pressure compressor 230 is successively compressed in the low-pressure compressor 230 and in the high-pressure compressor 240, to then generate hot combustion gases in the combustion chamber 250 by combustion of a fuel injected into this combustion chamber 250. These combustion gases can then be successively expanded in the high-pressure turbine 260 and in the low-pressure turbine 270, so as to actuate them in rotation, before escaping through the nozzle 275.
- the high-pressure shaft 220 may be mechanically coupled to the high pressure turbine 260 and high pressure compressor 240, such that high pressure turbine 260 can rotate high pressure shaft 220 and high pressure compressor 240, while low pressure shaft 210 can be mechanically coupled to low pressure turbine 270 and low pressure compressor 230, such that low pressure turbine 270 can rotate low pressure shaft 210 and low pressure compressor 230.
- the turbomachine 200 may be a bypass turbojet engine also comprising a fan 280, which may also be mechanically coupled to the low-pressure shaft 230, so as to also be able to be driven in rotation by the low-pressure turbine 270 through the low-pressure shaft 210.
- the turbomachine 200 could also comprise a reducer 290 interposed between the low-pressure shaft 210 and the fan 280, so that the fan 280 can be driven with a lower rotational speed than the low-pressure shaft 210.
- a fan with direct drive by the low-pressure shaft 210 is also conceivable.
- the turbomachine 200 could alternatively be a turboprop, with at least one propulsive propeller mechanically coupled to the low-pressure shaft 210 through the reducer 290, or a turboshaft engine, with at least one lift rotor mechanically coupled to the low-pressure shaft 210 through the reducer 290.
- the turbomachine 200 comprises only one compressor, mechanically coupled to the high-pressure shaft 210.
- the first electrical machine 300 may be, as illustrated, configured as a motor-generator to selectively transform electrical energy into mechanical work in motor mode and mechanical work into electrical energy in generator mode.
- This first electrical machine 300 may be mechanically coupled to the low-pressure shaft 210 to actuate, in motor mode, the low-pressure shaft 210, and to be actuated, in generator mode, by the low-pressure shaft 210.
- the second electrical machine 400 may also be, as illustrated, configured as a motor-generator for selectively transforming electrical energy into mechanical work in motor mode and mechanical work into electrical energy in generator mode.
- This motor may be mechanically coupled to the high-pressure shaft 220 to actuate, in motor mode, the high-pressure shaft 220, and to be actuated, in generator mode, by the high-pressure shaft 220.
- the control unit 500 may be an electronic control unit, possibly a full authority digital engine control (FADEC) unit. It can in particular take the form of an electronic processor capable of implementing the instructions of a computer program to control the operation of the engine assembly 200. This control unit 500 obtains signals representing operating parameters of the turbomachine 200. This control unit 500 can be connected to the turbomachine 200 to control in particular the supply of fuel to the combustion chamber 250, by providing it with a fuel instruction WF_CMD, as well as to the engines 400 and 300 to provide them with a torque instruction TRQ_CMD to control the injection and/or extraction of mechanical work respectively from the high-pressure shaft 220 and the low-pressure shaft 210.
- FADEC full authority digital engine control
- the control unit 500 can also be connected to a manual control, such as for example a throttle lever 80, and/or to a flight computer 90, in order to receive an operating instruction from the engine assembly 200, which can for example take the form of a thrust, power, or rotation speed instruction of the low pressure shaft 210 and/or the high pressure shaft 220.
- a manual control such as for example a throttle lever 80
- a flight computer 90 in order to receive an operating instruction from the engine assembly 200, which can for example take the form of a thrust, power, or rotation speed instruction of the low pressure shaft 210 and/or the high pressure shaft 220.
- the control unit 500 can furthermore be connected to temperature sensors 276 and 277, arranged, respectively, directly downstream and upstream of the low-pressure turbine 270, to receive temperatures of the combustion gases at the outlet of the low-pressure turbine 270 and at the outlet of the high-pressure turbine 260, to one or more pressure sensors (not illustrated), arranged in the combustion chamber 250 to capture a static pressure at the inlet of the combustion chamber 250 and transmit it to the control unit 500, and to one or more flow rate sensors (not illustrated), arranged in a circuit for supplying fuel to the combustion chamber 250.
- Figure 2 is a schematic representation of a control system according to one embodiment of the invention.
- This control system is preferably implemented in a control unit 500 as illustrated in FIG. 1, for example in a FADEC.
- This system advantageously makes it possible to control the excursion of the high-pressure body speed during acceleration of the low-pressure body.
- excursion of the high-pressure body speed, in the present description is meant the exceeding of the high-pressure body speed beyond a high threshold linked to a maximum torque of the high-pressure shaft.
- This excursion may in particular be due to the difference in inertia between the low-pressure body and the high-pressure body of the turbomachine.
- This difference in inertia is particularly significant in the case of turbomachines with a high dilution ratio (also known under the English name "By-Pass Ratio"). Consequently, the acceleration of the low-pressure body, necessary to guarantee the required acceleration times, obeying a trajectory to limit the thrust asymmetry between the engines, can lead to an excursion of the high-pressure body speed.
- This system controls at least three commands:
- TRQBP torque setpoint on the low pressure shaft
- This system can also control or limit several output quantities
- the control unit 500 is configured to implement a control method according to a particular embodiment of the invention and can comprise several functions for controlling the turbomachine. It can also receive as input and provide as output several control or instruction signals, not mentioned in the context of the present invention.
- the control unit 500 may comprise in particular a module 501 configured to control the torque of the low-pressure engine shaft. This module receives as input a measurement of the speed of the low-pressure shaft, RegimeBP, and a trajectory setpoint, TrajBP, and provides as output a differential torque command ATRQBP TraJBP and a differential fuel setpoint AWF TraJBP . [0042]
- the control unit 500 may also comprise a second module 502 which determines a second differential fuel control AWF seui1 .
- the module 502 receives as input a high pressure speed threshold value, S2, called second threshold value, and a measurement of the speed of the high pressure shaft, RegimeHP.
- the control unit 500 may also comprise a third module 503 configured to control the torque of the high-pressure engine shaft in differential form ATRQHP Pre ' seui1 .
- the module 503 receives as input a high-pressure speed threshold value, SI, called the first threshold value, and the measurement of the speed of the high-pressure shaft, RegimeHP.
- a switch 504 controlled by an acceleration indicator signal TopAcc When activated, that is to say when an acceleration is detected, allows the switch 504 to select, as a torque setpoint command on the low pressure shaft, the command ATRQBP TraJBP . This representing a differential, this differential is applied to the previous value to obtain the current torque setpoint value on the low pressure shaft TRQBP.
- the value of the fuel command WF32 is obtained by selecting the minimum increment between an increment value determined by the module 501, AWF TraJBP , and an increment value determined by the module 502, AWF 561 " 1.
- the latter representing a differential, this differential is applied to the previous value to obtain the current value of fuel command WF32.
- a switch 505 selects as torque command on the high pressure shaft, the command the current value ATRQHP pre ' seui1 when the speed of the high pressure motor shaft is greater than the first threshold, SI. This representing a differential, this differential is applied to the previous value to obtain the current torque setpoint value of the high pressure shaft TRQHP.
- the module 501 controls the torque of the low pressure shaft and the fuel setpoint WF32 as long as the speed of the high pressure shaft does not exceed a threshold SI.
- a threshold SI As indicated above, turbomachines with a high bypass ratio can have a significant difference in inertia between the low-pressure body and the high-pressure body and thus, during acceleration, the torque on the high-pressure shaft can quickly reach values that could lead to a degradation thereof.
- the module 503 controls the torque of the high-pressure body by taking torque from the high-pressure shaft.
- the torque taken from the high-pressure shaft is reinjected, at least partially, onto the low-pressure shaft. This advantageously makes it possible to limit the fuel necessary to follow the acceleration trajectory by replacing the energy provided by the fuel with the mechanical energy provided by the torque of the high-pressure shaft.
- the module 502 controls the fuel setpoint WF32 instead of the module 501.
- This control consists of reducing the fuel setpoint so as to limit the excursion of the high pressure speed to the threshold S2, this is illustrated by phase 3 of FIG. 3.
- the power taken from the torque of the high pressure shaft is advantageously injected into the torque of the low pressure shaft to allow not to stray too far from the trajectory requested for the low pressure speed. This advantageously allows fuel savings.
- phase 5 of FIG. 3 the module 501 resumes control of the fuel setpoint WF32 to stabilize it and maintains the sampling on the high pressure body, phase 5 of FIG. 4.
- the modulation of the torque on the low pressure shaft is gradually set to zero.
- the modulation of the high pressure shaft torque is gradually set to zero, phase 6 of figure 3. The acceleration thrust is maintained by the fuel setpoint.
- the thresholds SI and S2 are advantageously dependent on the dimensioning of the high pressure shaft and can for example be located, for SI, between 5 and 6% below the maximum speed value, and for S2, between 3 and 4% below the maximum speed value.
- Figure 3 represents the phases or steps as observed for:
- the dotted curve represents the curves of the various quantities mentioned above by the implementation of an embodiment of the present invention and the solid curves represent the curves without the implementation of the invention.
- Figure 4 represents a method implemented, for example by the control unit 500 and the different modules included in the module 500, described in Figure 2.
- the method described in Figure 4 can also be implemented by one or more processors, together or separately, present in the control unit 500.
- the method of Figure 4 can also be described using Figure 3 which represents the evolution of the high pressure and low pressure engine speeds as well as the torque of the high pressure shaft TRQHP, the torque of the low pressure shaft TRQBP and the fuel consumption WF32.
- the control unit detects whether an acceleration request is requested. This detection can be carried out by detecting the value of the TopAcc signal for example. This detection can take into account a hysteresis, so as to be robust with respect to oscillations.
- This acceleration request generates, or triggers, an increase in the speed of the high pressure body and the low pressure body as well as an increase in fuel consumption to satisfy this acceleration request.
- the difference in inertia between the low pressure body and the high pressure body can generate a speed excursion of the high pressure body to allow the low pressure body speed to follow this trajectory. This excursion would lead to significant mechanical and cost constraints in the design of the high pressure body to avoid deterioration at these high speeds. It is therefore proposed to limit this excursion while best satisfying the desired trajectory of the low pressure shaft speed to satisfy this acceleration demand.
- the present invention therefore makes it possible to control this excursion in order in particular to ensure the following objectives:
- step E2 When the speed of the high-pressure body is greater than a first threshold SI, during step E2, torque is taken from the high-pressure body, step E3. Taking torque from the high-pressure body makes it possible to reduce the excursion of the speed of the high-pressure engine.
- the curve of the high-pressure speed in FIG. 3 indicates a slowdown in the excursion, phase 2.
- the torque draw from the high pressure body, or a portion of it, is injected into the low pressure body to limit the fuel setpoint WF32.
- step E4 If the modulation of the torque on the high-pressure shaft up to the maximum possible draw is not sufficient to maintain the high-pressure regime at the threshold SI, then the regime of the high-pressure body can reach a second threshold S2, during step E4.
- the fuel setpoint WF32 is then reduced, step E5, which is observed on the fuel curve during phase 3 of FIG. 3.
- the reduction in the fuel setpoint WF32 combined with the continuation of the draw of torque TRQHP on the shaft high pressure advantageously limits the excursion of the high pressure shaft below the S2 threshold.
- the increase in torque TRQBP on the low pressure shaft is obtained from taking torque TRQHP from the high pressure shaft and injecting at least a portion of this torque taken from the low pressure shaft.
- the torque increase TRQBP on the low pressure shaft is determined to compensate for the fuel setpoint WF32 of step E6.
- step E7 the fuel setpoint WF32 is stabilized, step E8, and the torque sampling TRQHP is maintained on the high pressure body, step E9.
- step E10 When the low pressure body speed reaches a low pressure body speed setpoint, step E10, the torque TRQBP of the low pressure shaft is set to zero, step Eli.
- step E12 When the high pressure body speed falls below the first threshold SI, step E12, the torque TRQHP of the high pressure shaft is set to zero, step E13.
- the functional modules of FIG. 2 correspond to the execution of a computer program by the control unit 500.
- An example of a control unit 500 is shown in FIG. 5.
- the control unit 500 has the hardware architecture of a computer and notably comprises one or more processors 21 (only one being shown), a non-volatile memory 22, a volatile memory 23 and an interface 24.
- the processor 21 allows the execution of computer programs stored in the non-volatile memory 22, using the volatile memory 23.
- the interface 24 makes it possible to obtain measurement signals and to emit control signals.
- the non-volatile memory 22 comprises in particular a computer program PI whose execution corresponds to the implementation of a control method in accordance with an embodiment of the invention, and for example that described with reference to FIG. 4.
- the interface 24 makes it possible to obtain measurement signals representing the regimes RegimeHP and RegimeBP, the signal TopAcc, the trajectory TrajBP and to emit the signals TRQBP, TRQHP, WF32.
- the functional modules of Figure 2 may correspond to hardware circuits, for example programmable logic circuits.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Supercharger (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
The invention relates to a method for controlling an aircraft turbomachine, the turbomachine comprising a high-pressure spool and a low-pressure spool, the method comprising the following steps: a)- detecting an acceleration request, said acceleration request generating an increase in a fuel setpoint in the turbomachine and an excursion of the speed of the high-pressure spool relative to the low-pressure spool, b)- comparing the speed of the high-pressure spool and a first predetermined threshold (S1), and if the speed of the high-pressure spool reaches the first threshold, diverting torque from the high-pressure spool, c)- if the speed of the high-pressure spool reaches a second predetermined threshold greater than the first threshold, reducing the fuel setpoint, and d)- continuing to divert torque from the high-pressure spool in order to return the speed of the high-pressure spool to below the second threshold.
Description
Description Description
Titre de l'invention : DISPOSITIF ET PROCEDE DE CONTROLE DE L'EXCURSION DU REGIME DE L'ARBRE HAUTE PRESSION D'UN MOTEUR DE TURBOMACHINE Title of the invention: DEVICE AND METHOD FOR CONTROLLING THE EXCURSION OF THE SPEED OF THE HIGH PRESSURE SHAFT OF A TURBOMACHINE ENGINE
Domaine Technique Technical Domain
[0001] La présente invention concerne une turbomachine pour aéronef, en particulier, la commande d'une turbomachine afin de contrôler l'excursion du régime de l'arbre haute pression d'un moteur de la turbomachine. [0001] The present invention relates to a turbomachine for an aircraft, in particular, to the control of a turbomachine in order to control the excursion of the speed of the high pressure shaft of an engine of the turbomachine.
Technique antérieure Prior art
[0002] Les turbomachines double corps double flux à fort taux de dilution (BPR) présentent une différence importante entre l'inertie du corps basse pression et du corps haute pression. Par conséquent, l'augmentation du débit de carburant et potentiellement l'assistance électrique par injection de couple sur l'arbre basse pression lors de la phase d'accélération du régime basse pression pour répondre au besoin du pilote entraînent une forte augmentation du régime haute pression, jusqu'à avoir une « excursion » du régime haute pression, due à l'écart d'inertie entre les corps haute pression et basse pression. Cette excursion du régime haute pression contraint d'un point de vue coût et masse la conception des pièces mécaniques du corps haute pression pour assurer le maintien du moteur dans les limites de fonctionnement déclarées et démontrées. [0002] High bypass ratio (BPR) twin-spool turbomachines have a significant difference between the inertia of the low-pressure spool and the high-pressure spool. Consequently, the increase in fuel flow and potentially the electrical assistance by injecting torque on the low-pressure shaft during the acceleration phase of the low-pressure regime to meet the pilot's needs lead to a strong increase in the high-pressure regime, to the point of having an "excursion" of the high-pressure regime, due to the inertia difference between the high-pressure and low-pressure spools. This excursion of the high-pressure regime constrains from a cost and mass point of view the design of the mechanical parts of the high-pressure spool to ensure that the engine is maintained within the declared and demonstrated operating limits.
[0003] Le changement climatique est une préoccupation majeure pour de nombreux organes législatifs et de régulation à travers le monde. En effet, diverses restrictions sur les émissions de carbone ont été, sont ou seront adoptées par divers états. En particulier, une norme ambitieuse s'applique à la fois aux nouveaux types d'avions mais aussi ceux en circulation nécessitant de devoir mettre en œuvre des solutions technologiques afin de les rendre conformes aux réglementations en vigueur. L'aviation civile se mobilise depuis maintenant plusieurs années pour apporter une contribution à la lutte contre le changement climatique. [0003] Climate change is a major concern for many legislative and regulatory bodies around the world. Indeed, various restrictions on carbon emissions have been, are being or will be adopted by various states. In particular, an ambitious standard applies both to new types of aircraft but also to those in circulation requiring the implementation of technological solutions in order to make them compliant with the regulations in force. Civil aviation has been mobilizing for several years now to make a contribution to the fight against climate change.
[0004] Les efforts de recherche technologique ont déjà permis d'améliorer de manière très significative les performances environnementales des avions. La Déposante prend en considération les facteurs impactant dans toutes les phases de conception et de développement pour obtenir des composants et des produits aéronautiques moins énergivores, plus respectueux de l'environnement et dont l'intégration et l'utilisation i
dans l'aviation civile ont des conséquences environnementales modérées dans un but d'amélioration de l'efficacité énergétique des avions. [0004] Technological research efforts have already made it possible to significantly improve the environmental performance of aircraft. The Applicant takes into consideration the impact factors in all phases of design and development to obtain less energy-intensive, more environmentally friendly aeronautical components and products whose integration and use i in civil aviation have moderate environmental consequences with the aim of improving the energy efficiency of aircraft.
[0005] Par voie de conséquence, la Déposante travaille en permanence à la réduction de son incidence climatique négative par l'emploi de méthodes et l'exploitation de procédés de développement et de fabrication vertueux et minimisant les émissions de gaz à effet de serre au minimum possible pour réduire l'empreinte environnementale de son activité. [0005] Consequently, the Applicant is constantly working to reduce its negative climate impact by using methods and operating virtuous development and manufacturing processes and minimizing greenhouse gas emissions to the minimum possible in order to reduce the environmental footprint of its activity.
[0006] Ces travaux de recherche et de développement soutenus portent à la fois sur les nouvelles générations de moteurs d'avions, l'allègement des appareils, notamment par les matériaux employés et les équipements embarqués allégés, le développement de l'emploi des technologies électriques pour assurer la propulsion, et, indispensables compléments aux progrès technologiques, les biocarburants aéronautiques. [0006] This sustained research and development work covers new generations of aircraft engines, the weight reduction of aircraft, particularly through the materials used and the lighter on-board equipment, the development of the use of electrical technologies to provide propulsion, and, as an essential complement to technological progress, aeronautical biofuels.
[0007] A cet effet, l'invention est le résultat des recherches technologiques visant à améliorer de manière très significative les performances des avions et, en ce sens, contribue à la réduction de l'impact environnemental des avions. [0007] To this end, the invention is the result of technological research aimed at very significantly improving the performance of aircraft and, in this sense, contributes to reducing the environmental impact of aircraft.
[0008] Un des objectifs de la présente invention est de permettre de limiter l'excursion du régime du corps haute pression et de permettre avantageusement la réduction de la consommation de carburants dans le cadre de moteurs hybrides. [0008] One of the objectives of the present invention is to make it possible to limit the excursion of the high pressure body speed and to advantageously allow the reduction of fuel consumption in the context of hybrid engines.
[0009] A cet effet, la présente invention concerne un procédé de contrôle d'une turbomachine d'aéronef, la turbomachine comprenant un corps haute pression et un corps basse pression, le procédé comprenant les étapes suivantes : a)- la détection d'une demande d'accélération, ladite demande d'accélération générant une augmentation de la consigne carburant dans la turbomachine et une excursion du régime dudit corps haute pression par rapport au régime dudit corps basse pression, b)- la comparaison entre le régime dudit corps haute pression et un premier seuil prédéterminé, et si le régime dudit corps haute pression atteint le premier seuil, le prélèvement de couple sur ledit corps haute pression, c)- si le régime dudit corps haute pression atteint un second seuil prédéterminé supérieur au premier seuil, la diminution de ladite consigne carburant, et d)- la poursuite du prélèvement de couple sur ledit corps haute pression, afin de faire repasser le régime dudit corps haute pression sous ledit second seuil. [0009] For this purpose, the present invention relates to a method for controlling an aircraft turbomachine, the turbomachine comprising a high-pressure body and a low-pressure body, the method comprising the following steps: a)- detecting an acceleration request, said acceleration request generating an increase in the fuel setpoint in the turbomachine and an excursion of the speed of said high-pressure body relative to the speed of said low-pressure body, b)- comparing the speed of said high-pressure body with a first predetermined threshold, and if the speed of said high-pressure body reaches the first threshold, taking torque from said high-pressure body, c)- if the speed of said high-pressure body reaches a second predetermined threshold higher than the first threshold, reducing said fuel setpoint, and d)- continuing to take torque from said high-pressure body, in order to bring the speed of said high-pressure body back below said second threshold.
[0010] Ainsi, il est possible de limiter le régime du corps haute pression sous un seuil prédéterminé tout en maintenant la trajectoire demandée pour obéir à la demande
d'accélération, en modulant certaines consignes et en compensant les consignes de carburant et les consignes de couple. Ceci permet notamment de limiter les risques de détérioration de la turbomachine et notamment du corps haute pression, causés par une excursion trop forte du régime du moteur haute pression. Le prélèvement de couple peut avantageusement permettre de réduire le régime du moteur haute pression et d'éviter cette excursion. [0010] Thus, it is possible to limit the regime of the high pressure body below a predetermined threshold while maintaining the requested trajectory to obey the demand acceleration, by modulating certain instructions and compensating for fuel instructions and torque instructions. This makes it possible in particular to limit the risks of deterioration of the turbomachine and in particular of the high-pressure body, caused by an excessive excursion of the high-pressure engine speed. Torque extraction can advantageously make it possible to reduce the high-pressure engine speed and avoid this excursion.
[0011] Selon certains modes de réalisation, le procédé est tel que : e)- lorsque le régime dudit corps haute pression repasse sous ledit second seuil, ladite consigne de carburant est stabilisée et le prélèvement sur ledit corps haute pression est maintenu, f)- lorsque le régime du corps basse pression atteint une consigne de régime dudit corps basse pression, la modulation de couple sur ledit arbre basse pression est mise à zéro, g)- lorsque le régime dudit corps haute pression repasse sous ledit premier seuil, la modulation de couple sur ledit arbre haute pression est mise à zéro. [0011] According to certain embodiments, the method is such that: e)- when the speed of said high pressure body falls below said second threshold, said fuel setpoint is stabilized and the sampling on said high pressure body is maintained, f)- when the speed of the low pressure body reaches a speed setpoint of said low pressure body, the torque modulation on said low pressure shaft is set to zero, g)- when the speed of said high pressure body falls below said first threshold, the torque modulation on said high pressure shaft is set to zero.
[0012] Selon certains modes de réalisation, lors de l'étape b), au moins une partie du prélèvement de couple sur ledit corps haute pression est injectée sur ledit corps basse pression afin de limiter la consigne de carburant. [0012] According to certain embodiments, during step b), at least part of the torque taken from said high pressure body is injected into said low pressure body in order to limit the fuel setpoint.
[0013] Ceci permet avantageusement de réinjecter la puissance du couple de l'arbre haute pression sur l'arbre basse pression et ainsi de faire des économies de carburant. [0013] This advantageously makes it possible to reinject the power of the torque from the high pressure shaft onto the low pressure shaft and thus save fuel.
[0014] Selon certains modes de réalisation, le procédé comprend lors de l'étape d), une augmentation de couple sur ledit arbre basse pression obtenue à partir du prélèvement de couple sur ledit arbre haute pression et de l'injection d'au moins une partie de ce couple prélevé sur ledit arbre basse pression. [0014] According to certain embodiments, the method comprises, during step d), an increase in torque on said low pressure shaft obtained from the sampling of torque on said high pressure shaft and the injection of at least part of this torque taken from said low pressure shaft.
[0015] Ainsi, la puissance mécanique extraite de l'arbre haute pression est avantageusement réutilisée, au moins partiellement, pour fournir de la puissance à l'arbre basse pression et ainsi limiter le carburant nécessaire pour maintenir le régime de l'arbre basse pression. [0015] Thus, the mechanical power extracted from the high pressure shaft is advantageously reused, at least partially, to provide power to the low pressure shaft and thus limit the fuel required to maintain the speed of the low pressure shaft.
[0016] Selon certains modes de réalisation, lors de l'étape d), l'augmentation de couple sur ledit arbre basse pression est déterminée pour compenser la consigne de carburant de l'étape c). [0016] According to certain embodiments, during step d), the increase in torque on said low pressure shaft is determined to compensate for the fuel setpoint of step c).
[0017] Selon certains modes de réalisation, les valeurs desdits premier et second seuils sont dépendantes d'un dimensionnement dudit arbre haute pression.
[0018] Selon certains modes de réalisation, la valeur dudit premier seuil est inférieure de 5 à 6 % à une valeur maximale autorisée dudit régime de l'arbre haute pression et la valeur dudit second seuil est inférieure de 3 à 4% à ladite valeur maximale autorisée dudit régime de l'arbre haute pression. [0017] According to certain embodiments, the values of said first and second thresholds are dependent on a dimensioning of said high pressure shaft. [0018] According to certain embodiments, the value of said first threshold is 5 to 6% lower than a maximum authorized value of said high pressure shaft speed and the value of said second threshold is 3 to 4% lower than said maximum authorized value of said high pressure shaft speed.
[0019] L'invention concerne également un programme d'ordinateur comportant des instructions pour la mise en œuvre d'un procédé selon l'invention, lorsque ledit programme d'ordinateur est exécuté par un ordinateur. [0019] The invention also relates to a computer program comprising instructions for implementing a method according to the invention, when said computer program is executed by a computer.
[0020] L'invention concerne également un support d'enregistrement lisible par un ordinateur sur lequel est enregistré un programme d'ordinateur selon l'invention. [0020] The invention also relates to a computer-readable recording medium on which a computer program according to the invention is recorded.
[0021] L'invention concerne également un dispositif de contrôle d'une turbomachine d'aéronef, la turbomachine comprenant un corps haute pression et un corps basse pression, le dispositif comprenant un ou plusieurs processeurs configurés ensemble ou séparément pour: a)- détecter une demande d'accélération, ladite demande d'accélération générant une augmentation d'une consigne de carburant dans la turbomachine et une excursion du régime dudit corps haute pression par rapport audit corps basse pression, b)- comparer le régime dudit corps haute pression avec un premier seuil prédéterminé, et si le régime dudit corps haute pression atteint ledit premier seuil, prélever du couple sur ledit corps haute pression, c)- si ledit régime dudit corps haute pression atteint un second seuil prédéterminé supérieur audit premier seuil, diminuer ladite consigne carburant, et d)- poursuivre le prélèvement de couple sur ledit corps haute pression, afin de faire repasser le régime dudit corps haute pression sous ledit second seuil. [0021] The invention also relates to a device for controlling an aircraft turbomachine, the turbomachine comprising a high-pressure body and a low-pressure body, the device comprising one or more processors configured together or separately to: a)- detect an acceleration request, said acceleration request generating an increase in a fuel setpoint in the turbomachine and an excursion of the speed of said high-pressure body relative to said low-pressure body, b)- compare the speed of said high-pressure body with a first predetermined threshold, and if the speed of said high-pressure body reaches said first threshold, take torque from said high-pressure body, c)- if said speed of said high-pressure body reaches a second predetermined threshold higher than said first threshold, decrease said fuel setpoint, and d)- continue taking torque from said high-pressure body, in order to bring the speed of said high-pressure body back below said second threshold.
[0022] L'invention concerne également un aéronef comportant un dispositif selon l'invention. [0022] The invention also relates to an aircraft comprising a device according to the invention.
[0023] D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-dessous, en référence aux dessins annexes qui en illustrent un exemple de réalisation dépourvu de tout caractère limitatif. [0023] Other characteristics and advantages of the present invention will emerge from the description given below, with reference to the accompanying drawings which illustrate an exemplary embodiment thereof without any limiting character.
Brève description des dessins Brief description of the drawings
[0024] [Fig. 1] La figure 1 est une représentation schématique d'une turbomachine suivant un mode de réalisation de la présente invention. [0024] [Fig. 1] Figure 1 is a schematic representation of a turbomachine according to an embodiment of the present invention.
[0025] [Fig. 2] La figure 2 est une représentation schématique d'un système de contrôle selon un mode de réalisation de l'invention.
[0026] [Fig. 3] La figure 3 est une représentation de l'évolution du régime basse pression, du régime haute pression, du couple de l'arbre haute pression, du couple de l'arbre basse pression et du carburant selon un mode de réalisation de l'invention. [0025] [Fig. 2] Figure 2 is a schematic representation of a control system according to one embodiment of the invention. [0026] [Fig. 3] Figure 3 is a representation of the evolution of the low pressure regime, the high pressure regime, the torque of the high pressure shaft, the torque of the low pressure shaft and the fuel according to an embodiment of the invention.
[0027] [Fig. 4] La figure 4 est une représentation d'un procédé de contrôle selon un mode de réalisation de l'invention. [0027] [Fig. 4] Figure 4 is a representation of a control method according to one embodiment of the invention.
[0028] [Fig. 5] La figure 5 est une représentation schématique d'une unité électronique de contrôle permettant la mise en œuvre des boucles de régulation de la figure 2. [0028] [Fig. 5] Figure 5 is a schematic representation of an electronic control unit allowing the implementation of the control loops of Figure 2.
Description des modes de réalisation Description of the embodiments
[0029] Comme illustré sur la figure 1, un ensemble moteur 100 d'aéronef suivant un mode de réalisation peut comprendre une turbomachine 200, un premier moteur électrique 300 et un second moteur électrique 400, et une unité de contrôle 500. La turbomachine 200 peut comprendre un arbre basse pression 210 et un arbre haute pression 220. L'arbre basse pression 210 et l'arbre haute pression 220 peuvent être arrangés coaxialement, comme illustré. La turbomachine 200 peut aussi comprendre un compresseur basse pression 230, un compresseur haute pression 240, une chambre de combustion 250, une turbine haute pression 260, une turbine basse pression 270, et une tuyère d'échappement 275, arrangés successivement dans le sens de l'écoulement dans une veine annulaire de fluide de travail, de manière à ce que de l'air admis en amont du compresseur basse pression 230 soit successivement comprimé dans le compresseur basse pression 230 et dans le compresseur haute pression 240, pour ensuite générer dans la chambre de combustion 250 des gaz de combustion chauds par combustion d'un carburant injecté dans cette chambre de combustion 250. Ces gaz de combustion peuvent alors être successivement détendus dans la turbine haute pression 260 et dans la turbine basse pression 270, de manière à les actionner en rotation, avant de s'échapper par la tuyère 275. L'arbre haute pression 220 peut être couplé mécaniquement à la turbine haute pression 260 et au compresseur haute pression 240, de manière à ce que la turbine haute pression 260 puisse entraîner en rotation l'arbre haute pression 220 et le compresseur haute pression 240, tandis que l'arbre basse pression 210 peut être couplé mécaniquement à la turbine basse pression 270 et au compresseur basse pression 230, de manière à ce que la turbine basse pression 270 puisse entraîner en rotation l'arbre basse pression 210 et le compresseur basse pression 230.
[0030] Comme dans le mode de réalisation illustré, la turbomachine 200 peut être un turboréacteur à double flux comprenant aussi une soufflante 280, qui peut aussi être couplée mécaniquement à l'arbre basse pression 230, de manière à pouvoir être aussi entraînée en rotation par la turbine basse pression 270 à travers l'arbre basse pression 210. Comme illustré, la turbomachine 200 pourrait comprendre aussi un réducteur 290 interposé entre l'arbre basse pression 210 et la soufflante 280, de manière à ce que la soufflante 280 puisse être entraînée avec une moindre vitesse de rotation que l'arbre basse pression 210. Toutefois, une soufflante à entraînement direct par l'arbre basse pression 210 est également envisageable. Par ailleurs, d'autres architectures de la turbomachine 200, sans soufflante, sont également envisageables. Ainsi, la turbomachine 200 pourrait alternativement être un turbopropulseur, avec au moins une hélice propulsive mécaniquement couplée à l'arbre basse pression 210 à travers le réducteur 290, ou un turbomoteur, avec au moins un rotor de sustentation mécaniquement couplé à l'arbre basse pression 210 à travers le réducteur 290. Il est également envisageable, en particulier pour un turbomoteur ou un turbopropulseur, que la turbomachine 200 ne comprenne qu'un seul compresseur, couplé mécaniquement à l'arbre haute pression 210. [0029] As illustrated in FIG. 1 , an aircraft engine assembly 100 according to one embodiment may include a turbomachine 200, a first electric motor 300 and a second electric motor 400, and a control unit 500. The turbomachine 200 may include a low pressure shaft 210 and a high pressure shaft 220. The low pressure shaft 210 and the high pressure shaft 220 may be arranged coaxially, as illustrated. The turbomachine 200 may also comprise a low-pressure compressor 230, a high-pressure compressor 240, a combustion chamber 250, a high-pressure turbine 260, a low-pressure turbine 270, and an exhaust nozzle 275, arranged successively in the direction of flow in an annular vein of working fluid, such that air admitted upstream of the low-pressure compressor 230 is successively compressed in the low-pressure compressor 230 and in the high-pressure compressor 240, to then generate hot combustion gases in the combustion chamber 250 by combustion of a fuel injected into this combustion chamber 250. These combustion gases can then be successively expanded in the high-pressure turbine 260 and in the low-pressure turbine 270, so as to actuate them in rotation, before escaping through the nozzle 275. The high-pressure shaft 220 may be mechanically coupled to the high pressure turbine 260 and high pressure compressor 240, such that high pressure turbine 260 can rotate high pressure shaft 220 and high pressure compressor 240, while low pressure shaft 210 can be mechanically coupled to low pressure turbine 270 and low pressure compressor 230, such that low pressure turbine 270 can rotate low pressure shaft 210 and low pressure compressor 230. [0030] As in the illustrated embodiment, the turbomachine 200 may be a bypass turbojet engine also comprising a fan 280, which may also be mechanically coupled to the low-pressure shaft 230, so as to also be able to be driven in rotation by the low-pressure turbine 270 through the low-pressure shaft 210. As illustrated, the turbomachine 200 could also comprise a reducer 290 interposed between the low-pressure shaft 210 and the fan 280, so that the fan 280 can be driven with a lower rotational speed than the low-pressure shaft 210. However, a fan with direct drive by the low-pressure shaft 210 is also conceivable. Furthermore, other architectures of the turbomachine 200, without a fan, are also conceivable. Thus, the turbomachine 200 could alternatively be a turboprop, with at least one propulsive propeller mechanically coupled to the low-pressure shaft 210 through the reducer 290, or a turboshaft engine, with at least one lift rotor mechanically coupled to the low-pressure shaft 210 through the reducer 290. It is also conceivable, in particular for a turboshaft engine or a turboprop, that the turbomachine 200 comprises only one compressor, mechanically coupled to the high-pressure shaft 210.
[0031] La première machine électrique 300 peut être, comme illustré, configurée en tant que moteur-générateur pour sélectivement transformer de l'énergie électrique en travail mécanique en mode moteur et du travail mécanique en énergie électrique en mode générateur. Cette première machine électrique 300 peut être couplée mécaniquement à l'arbre basse pression 210 pour actionner, en mode moteur, l'arbre basse pression 210, et pour être actionnée, en mode générateur, par l'arbre basse pression 210. Toutefois, il est également envisageable, dans le cadre de la présente invention, qu'elle ne soit configurée qu'en tant que générateur électrique, apte uniquement à transformer du travail mécanique en énergie électrique. [0031] The first electrical machine 300 may be, as illustrated, configured as a motor-generator to selectively transform electrical energy into mechanical work in motor mode and mechanical work into electrical energy in generator mode. This first electrical machine 300 may be mechanically coupled to the low-pressure shaft 210 to actuate, in motor mode, the low-pressure shaft 210, and to be actuated, in generator mode, by the low-pressure shaft 210. However, it is also conceivable, within the scope of the present invention, that it is configured only as an electrical generator, capable only of transforming mechanical work into electrical energy.
[0032] De manière analogue, la deuxième machine électrique 400 peut aussi être, comme illustré, configurée en tant que moteur-générateur pour sélectivement transformer de l'énergie électrique en travail mécanique en mode moteur et du travail mécanique en énergie électrique en mode générateur. Ce moteur peut être couplé mécaniquement à l'arbre haute pression 220 pour actionner, en mode moteur, l'arbre haute pression 220, et pour être actionné, en mode générateur, par l'arbre haute pression 220. Toutefois, il est également envisageable, dans le cadre de la présente invention, qu'elle ne soit
configurée qu'en tant que générateur électrique, apte uniquement à transformer du travail mécanique en énergie électrique. [0032] Similarly, the second electrical machine 400 may also be, as illustrated, configured as a motor-generator for selectively transforming electrical energy into mechanical work in motor mode and mechanical work into electrical energy in generator mode. This motor may be mechanically coupled to the high-pressure shaft 220 to actuate, in motor mode, the high-pressure shaft 220, and to be actuated, in generator mode, by the high-pressure shaft 220. However, it is also conceivable, within the scope of the present invention, that it is not configured only as an electrical generator, capable only of transforming mechanical work into electrical energy.
[0033] L'unité de contrôle 500 peut être une unité de commande électronique, éventuellement une unité de commande moteur numérique à pleine autorité (en anglais : « Full Authority Digital Engine Control » ou FADEC). Elle peut notamment prendre la forme d'un processeur électronique apte à mettre en œuvre les instructions d'un programme d'ordinateur pour commander le fonctionnement de l'ensemble moteur 200. Cette unité de contrôle 500 obtient des signaux représentant des paramètres de fonctionnement de la turbomachine 200. Cette unité de contrôle 500 peut être connectée à la turbomachine 200 pour commander notamment l'alimentation de la chambre de combustion 250 en carburant, en lui fournissant une consigne de carburant WF_CMD, ainsi qu'aux moteurs 400 et 300 pour leur fournir une consigne de couple TRQ_CMD pour commander l'injection et/ou extraction de travail mécanique respectivement de l'arbre haute pression 220 et de l'arbre basse pression 210. L'unité de contrôle 500 peut aussi être connectée à une commande manuelle, comme par exemple une manette de gaz 80, et/ou à un ordinateur de vol 90, afin de recevoir une consigne de fonctionnement de l'ensemble moteur 200, qui peut par exemple prendre la forme d'une consigne de poussée, de puissance, ou de vitesse de rotation de l'arbre basse pression 210 et/ou de l'arbre haute pression 220. [0033] The control unit 500 may be an electronic control unit, possibly a full authority digital engine control (FADEC) unit. It can in particular take the form of an electronic processor capable of implementing the instructions of a computer program to control the operation of the engine assembly 200. This control unit 500 obtains signals representing operating parameters of the turbomachine 200. This control unit 500 can be connected to the turbomachine 200 to control in particular the supply of fuel to the combustion chamber 250, by providing it with a fuel instruction WF_CMD, as well as to the engines 400 and 300 to provide them with a torque instruction TRQ_CMD to control the injection and/or extraction of mechanical work respectively from the high-pressure shaft 220 and the low-pressure shaft 210. The control unit 500 can also be connected to a manual control, such as for example a throttle lever 80, and/or to a flight computer 90, in order to receive an operating instruction from the engine assembly 200, which can for example take the form of a thrust, power, or rotation speed instruction of the low pressure shaft 210 and/or the high pressure shaft 220.
[0034] L'unité de contrôle 500 peut par ailleurs être connectée à des capteurs de température 276 et 277 , disposés, respectivement, directement en aval et en amont de la turbine basse pression 270, pour recevoir des températures des gaz de combustion en sortie de la turbine basse pression 270 et en sortie de la turbine haute pression 260, à un ou plusieurs capteurs de pression (non illustrés), disposés dans la chambre de combustion 250 pour capter une pression statique en entrée de la chambre de combustion 250 et la transmettre à l'unité de contrôle 500, et à un ou plusieurs capteurs de débit (non illustrés), disposés dans un circuit d'alimentation de la chambre de combustion 250 en carburant. [0034] The control unit 500 can furthermore be connected to temperature sensors 276 and 277, arranged, respectively, directly downstream and upstream of the low-pressure turbine 270, to receive temperatures of the combustion gases at the outlet of the low-pressure turbine 270 and at the outlet of the high-pressure turbine 260, to one or more pressure sensors (not illustrated), arranged in the combustion chamber 250 to capture a static pressure at the inlet of the combustion chamber 250 and transmit it to the control unit 500, and to one or more flow rate sensors (not illustrated), arranged in a circuit for supplying fuel to the combustion chamber 250.
[0035] La figure 2 est une représentation schématique d'un système de contrôle selon un mode de réalisation de l'invention. [0035] Figure 2 is a schematic representation of a control system according to one embodiment of the invention.
[0036] Ce système de contrôle est, de préférence, implémenté dans une unité de contrôle 500 telle qu'illustrée en figure 1, par exemple dans un FADEC.
[0037] Ce système permet avantageusement de contrôler l'excursion du régime du corps haute pression lors de l'accélération du corps basse pression. Par « excursion » du régime du corps haute pression, on entend dans la présente description le dépassement du régime du corps haute pression au-delà d'un seuil haut lié à un couple maximal de l'arbre haute pression. Cette excursion peut notamment être due à l'écart d'inertie entre le corps basse pression et le corps haute pression de la turbomachine. Cet écart d'inertie est particulièrement important dans le cas des turbomachines à fort taux de dilution (encore connu sous l'appellation anglaise « By-Pass Ratio »). Par conséquent, l'accélération du corps basse pression, nécessaire pour garantir les temps d'accélération exigés, obéissant à une trajectoire pour limiter la dissymétrie de poussée entre les moteurs, peut conduire à une excursion du régime du corps haute pression. [0036] This control system is preferably implemented in a control unit 500 as illustrated in FIG. 1, for example in a FADEC. [0037] This system advantageously makes it possible to control the excursion of the high-pressure body speed during acceleration of the low-pressure body. By "excursion" of the high-pressure body speed, in the present description is meant the exceeding of the high-pressure body speed beyond a high threshold linked to a maximum torque of the high-pressure shaft. This excursion may in particular be due to the difference in inertia between the low-pressure body and the high-pressure body of the turbomachine. This difference in inertia is particularly significant in the case of turbomachines with a high dilution ratio (also known under the English name "By-Pass Ratio"). Consequently, the acceleration of the low-pressure body, necessary to guarantee the required acceleration times, obeying a trajectory to limit the thrust asymmetry between the engines, can lead to an excursion of the high-pressure body speed.
[0038] Ce système contrôle au moins trois commandes : [0038] This system controls at least three commands:
- la consigne de carburant (WF32), - the fuel instruction (WF32),
- l'injection ou le prélèvement de puissance sur l'arbre haute pression via une machine électrique ou consigne de couple sur l'arbre haute pression (TRQHP), - injection or extraction of power from the high pressure shaft via an electric machine or torque setpoint on the high pressure shaft (TRQHP),
- l'injection ou le prélèvement de puissance sur l'arbre basse pression via une machine électrique ou consigne de couple sur l'arbre basse pression (TRQBP). - injection or extraction of power on the low pressure shaft via an electric machine or torque setpoint on the low pressure shaft (TRQBP).
[0039] Ce système peut contrôler ou limiter également plusieurs grandeurs de sortie,[0039] This system can also control or limit several output quantities,
- La vitesse de rotation de l'arbre haute pression (N H), - The rotation speed of the high pressure shaft (N H),
- La vitesse de rotation de l'arbre basse pression (NL), - The rotation speed of the low pressure shaft (NL),
- La pression en entrée de chambre de combustion (PS3) - The pressure at the combustion chamber inlet (PS3)
- La température en sortie de turbine basse pression (T5) - The temperature at the low pressure turbine outlet (T5)
- La température des gaz d'échappement (EGT) - Exhaust gas temperature (EGT)
[0040] L'unité de contrôle 500 est configurée pour implémenter un procédé de contrôle selon un mode de réalisation particulier de l'invention et peut comprendre plusieurs fonctions pour contrôler la turbomachine. Elle peut également recevoir en entrée et fournir en sortie plusieurs signaux de commande ou de consignes, non mentionnés dans le cadre de la présente invention. [0040] The control unit 500 is configured to implement a control method according to a particular embodiment of the invention and can comprise several functions for controlling the turbomachine. It can also receive as input and provide as output several control or instruction signals, not mentioned in the context of the present invention.
[0041] L'unité de contrôle 500 peut comprendre notamment un module 501 configuré pour piloter le couple de l'arbre moteur basse pression. Ce module reçoit en entrée une mesure de régime de l'arbre basse pression, RegimeBP, et une consigne de trajectoire, TrajBP, et fournit en sortie une commande différentielle de couple ATRQBPTraJBP et une consigne différentielle de carburant AWFTraJBP.
[0042] L'unité de contrôle 500 peut comprendre également un deuxième module 502 qui détermine une seconde commande différentielle de carburant AWFseui1. Le module 502 reçoit en entrée une valeur de seuil de régime haute pression, S2, dite seconde valeur de seuil, et une mesure de régime de l'arbre haute pression, RegimeHP. [0041] The control unit 500 may comprise in particular a module 501 configured to control the torque of the low-pressure engine shaft. This module receives as input a measurement of the speed of the low-pressure shaft, RegimeBP, and a trajectory setpoint, TrajBP, and provides as output a differential torque command ATRQBP TraJBP and a differential fuel setpoint AWF TraJBP . [0042] The control unit 500 may also comprise a second module 502 which determines a second differential fuel control AWF seui1 . The module 502 receives as input a high pressure speed threshold value, S2, called second threshold value, and a measurement of the speed of the high pressure shaft, RegimeHP.
[0043] L'unité de contrôle 500 peut également comprendre un troisième module 503 configuré pour piloter le couple de l'arbre moteur haute pression sous forme différentielle ATRQHPPre'seui1. Le module 503 reçoit en entrée une valeur de seuil de régime haute pression, SI, dite première valeur de seuil, et la mesure de régime de l'arbre haute pression, RegimeHP. [0043] The control unit 500 may also comprise a third module 503 configured to control the torque of the high-pressure engine shaft in differential form ATRQHP Pre ' seui1 . The module 503 receives as input a high-pressure speed threshold value, SI, called the first threshold value, and the measurement of the speed of the high-pressure shaft, RegimeHP.
[0044] Un commutateur 504 contrôlé par un signal indicateur d'accélération TopAcc. Le signal TopAcc, lorsqu'il est activé, c'est-à-dire lorsqu'une accélération est détectée, permet au commutateur 504 de sélectionner, comme commande de consigne de couple sur l'arbre basse pression, la commande ATRQBPTraJBP . Celle-ci représentant un différentiel, ce différentiel est appliqué à la valeur précédente pour obtenir la valeur courante de consigne de couple sur l'arbre basse pression TRQBP. [0044] A switch 504 controlled by an acceleration indicator signal TopAcc. The TopAcc signal, when activated, that is to say when an acceleration is detected, allows the switch 504 to select, as a torque setpoint command on the low pressure shaft, the command ATRQBP TraJBP . This representing a differential, this differential is applied to the previous value to obtain the current torque setpoint value on the low pressure shaft TRQBP.
[0045] La valeur de la commande de carburant WF32 est obtenue en sélectionnant le minimum d'incrément entre une valeur d'incrément déterminée par le module 501 ,AWFTraJBP, et une valeur d'incrément déterminée par le module 502, AWF561"1. Celle-ci représentant un différentiel, ce différentiel est appliqué à la valeur précédente pour obtenir la valeur courante de commande carburant WF32. [0045] The value of the fuel command WF32 is obtained by selecting the minimum increment between an increment value determined by the module 501, AWF TraJBP , and an increment value determined by the module 502, AWF 561 " 1. The latter representing a differential, this differential is applied to the previous value to obtain the current value of fuel command WF32.
[0046] Un commutateur 505 sélectionne comme commande de couple sur l'arbre haute pression, la commande la valeur courante ATRQHPpre'seui1 lorsque le régime de l'arbre moteur haute pression est supérieur au premier seuil, SI. Celle-ci représentant un différentiel, ce différentiel est appliqué à la valeur précédente pour obtenir la valeur courante de consigne de couple de l'arbre haute pression TRQHP. [0046] A switch 505 selects as torque command on the high pressure shaft, the command the current value ATRQHP pre ' seui1 when the speed of the high pressure motor shaft is greater than the first threshold, SI. This representing a differential, this differential is applied to the previous value to obtain the current torque setpoint value of the high pressure shaft TRQHP.
[0047] Nous allons décrire maintenant la figure 2 en relation avec la figure 3 qui représente les évolutions des régimes des moteurs basse pression et haute pression, les consignes de carburant WF32 et les consignes de couple des arbres haute pression TRQHP et basse pression TRQBP selon un mode de réalisation de l'invention. [0047] We will now describe Figure 2 in relation to Figure 3 which represents the changes in the speeds of the low pressure and high pressure engines, the fuel instructions WF32 and the torque instructions of the high pressure TRQHP and low pressure TRQBP shafts according to one embodiment of the invention.
[0048] Lors de la détection d'une demande d'accélération, phase 1 de la figure 3, le module 501 commande le couple de l'arbre basse pression et la consigne de carburant WF32 tant que le régime de l'arbre haute pression ne dépasse pas un seuil SI.
[0049] Comme indiqué précédemment, les turbomachines à fort taux de dilution peuvent présenter une différence d'inertie importante entre le corps basse pression et le corps haute pression et ainsi, lors de l'accélération, le couple sur l'arbre haute pression peut atteindre rapidement des valeurs qui pourraient conduire à une dégradation de celui-ci. Ainsi, lorsque le couple de l'arbre haute pression dépasse un premier seuil SI, le module 503 contrôle le couple du corps haute pression en prélevant du couple sur l'arbre haute pression. De manière avantageuse le couple prélevé sur l'arbre haute pression est réinjecté, au moins partiellement, sur l'arbre basse pression. Ceci permet avantageusement de limiter le carburant nécessaire pour suivre la trajectoire d'accélération en remplaçant l'énergie fournie par le carburant par l'énergie mécanique fournie par le couple de l'arbre haute pression. [0048] When detecting an acceleration request, phase 1 of FIG. 3, the module 501 controls the torque of the low pressure shaft and the fuel setpoint WF32 as long as the speed of the high pressure shaft does not exceed a threshold SI. [0049] As indicated above, turbomachines with a high bypass ratio can have a significant difference in inertia between the low-pressure body and the high-pressure body and thus, during acceleration, the torque on the high-pressure shaft can quickly reach values that could lead to a degradation thereof. Thus, when the torque of the high-pressure shaft exceeds a first threshold SI, the module 503 controls the torque of the high-pressure body by taking torque from the high-pressure shaft. Advantageously, the torque taken from the high-pressure shaft is reinjected, at least partially, onto the low-pressure shaft. This advantageously makes it possible to limit the fuel necessary to follow the acceleration trajectory by replacing the energy provided by the fuel with the mechanical energy provided by the torque of the high-pressure shaft.
[0050] Ainsi, le couple régime haute pression est limité dans son excursion, mais continue de croître plus lentement. Ceci est illustré par la phase 2 de la figure 3. [0050] Thus, the high pressure torque is limited in its excursion, but continues to increase more slowly. This is illustrated by phase 2 of Figure 3.
[0051] Lorsque le régime de l'arbre haute pression atteint un second seuil S2, plus élevé que le premier seuil SI, le module 502 contrôle la consigne de carburant WF32 au lieu du module 501. Ce contrôle consiste à diminuer la consigne de carburant de manière à limiter l'excursion du régime haute pression au seuil S2, ceci est illustré par la phase 3 de la figure 3. [0051] When the high pressure shaft speed reaches a second threshold S2, higher than the first threshold SI, the module 502 controls the fuel setpoint WF32 instead of the module 501. This control consists of reducing the fuel setpoint so as to limit the excursion of the high pressure speed to the threshold S2, this is illustrated by phase 3 of FIG. 3.
[0052] La consigne de carburant étant diminuée pour limiter l'excursion du régime de l'arbre haute pression, le prélèvement de la puissance sur le couple de l'arbre haute pression est avantageusement injecté sur le couple de l'arbre basse pression pour permettre de ne pas trop s'éloigner de la trajectoire demandée pour le régime basse pression. Ceci permet avantageusement des économies de carburant. [0052] The fuel setpoint being reduced to limit the excursion of the high pressure shaft speed, the power taken from the torque of the high pressure shaft is advantageously injected into the torque of the low pressure shaft to allow not to stray too far from the trajectory requested for the low pressure speed. This advantageously allows fuel savings.
[0053] L'injection de couple sur l'arbre basse pression permet de compenser la diminution de carburant, pour maintenir au plus proche la trajectoire, phase 4 de la figure 3. [0053] The injection of torque on the low pressure shaft makes it possible to compensate for the reduction in fuel, to maintain the trajectory as close as possible, phase 4 of figure 3.
[0054] Lorsque le régime de l'arbre haute pression redescend sous le seuil S2, phase 5 de la figure 3, le module 501 reprend le contrôle de la consigne de carburant WF32 pour la stabiliser et maintient le prélèvement sur le corps haute pression, phase 5 de la figure 4. Lorsque le régime du corps basse pression atteint une consigne de régime du corps basse pression, la modulation du couple sur l'arbre basse pression est mise à zéro progressivement.
[0055] Lorsque le régime du corps haute pression repasse sous ledit premier seuil, la modulation du couple de l'arbre haute pression est mise à zéro progressivement, phase 6 de la figure 3. La poussée d'accélération est maintenue par la consigne carburant. [0054] When the speed of the high pressure shaft falls below the threshold S2, phase 5 of FIG. 3, the module 501 resumes control of the fuel setpoint WF32 to stabilize it and maintains the sampling on the high pressure body, phase 5 of FIG. 4. When the speed of the low pressure body reaches a speed setpoint of the low pressure body, the modulation of the torque on the low pressure shaft is gradually set to zero. [0055] When the high pressure body speed falls below said first threshold, the modulation of the high pressure shaft torque is gradually set to zero, phase 6 of figure 3. The acceleration thrust is maintained by the fuel setpoint.
[0056] Les seuils SI et S2 sont avantageusement dépendants du dimensionnement de l'arbre haute pression et peuvent par exemple être situés, pour SI, entre 5 et 6% en dessous de la valeur maximale de régime, et pour S2, entre 3 et 4% en dessous de la valeur maximale de régime. [0056] The thresholds SI and S2 are advantageously dependent on the dimensioning of the high pressure shaft and can for example be located, for SI, between 5 and 6% below the maximum speed value, and for S2, between 3 and 4% below the maximum speed value.
[0057] La figure 3 représente les phases ou étapes telles qu'observées pour : [0057] Figure 3 represents the phases or steps as observed for:
- le régime du corps haute pression, - high pressure body regime,
- le régime du corps basse pression, - the low pressure body regime,
- le couple sur l'arbre haute pression TRQHP, - the torque on the high pressure shaft TRQHP,
- le couple sur l'arbre basse pression TRQBP, - the torque on the low pressure shaft TRQBP,
- la consigne de carburant WF32. - the WF32 fuel instruction.
[0058] La courbe en pointillé représente les courbes des différentes grandeurs mentionnées ci-dessus par la mise en œuvre d'un mode de réalisation de la présente invention et les courbes en trait plein représentent les courbes sans la mise en œuvre de l'invention. [0058] The dotted curve represents the curves of the various quantities mentioned above by the implementation of an embodiment of the present invention and the solid curves represent the curves without the implementation of the invention.
[0059] Les différentes phases ou étapes sont décrites en regard de la figure 2 et de la figure 4. [0059] The different phases or steps are described with reference to Figure 2 and Figure 4.
[0060] La figure 4 représente un procédé mis en œuvre, par exemple par l'unité de contrôle 500 et les différents modules compris dans le module 500, décrits en figure 2. Le procédé décrit en figure 4 peut également être mis en œuvre par un ou plusieurs processeurs, ensemble ou séparément, présents dans l'unité de contrôle 500. Le procédé de la figure 4 peut également être décrit à l'aide de la figure 3 qui représente l'évolution des régimes du moteur haute pression et basse pression ainsi que le couple de l'arbre haute pression TRQHP, le couple de l'arbre basse pression TRQBP et la consommation de carburant WF32. [0060] Figure 4 represents a method implemented, for example by the control unit 500 and the different modules included in the module 500, described in Figure 2. The method described in Figure 4 can also be implemented by one or more processors, together or separately, present in the control unit 500. The method of Figure 4 can also be described using Figure 3 which represents the evolution of the high pressure and low pressure engine speeds as well as the torque of the high pressure shaft TRQHP, the torque of the low pressure shaft TRQBP and the fuel consumption WF32.
[0061] Lors d'une étape El, l'unité de commande détecte si une demande d'accélération est demandée. Cette détection peut être effectuée par la détection de la valeur du signal TopAcc par exemple. Cette détection peut prendre en compte une hystérésis, de manière à être robuste par rapport aux oscillations. [0061] During a step E1, the control unit detects whether an acceleration request is requested. This detection can be carried out by detecting the value of the TopAcc signal for example. This detection can take into account a hysteresis, so as to be robust with respect to oscillations.
[0062] Cette demande d'accélération génère, ou déclenche, une augmentation de régime du corps haute pression et du corps basse pression ainsi qu'une augmentation de la consommation de carburant pour satisfaire cette demande d'accélération. Comme
indiqué précédemment, la différence d'inertie entre le corps basse pression et le corps haute pression peut générer une excursion de régime du corps haute pression pour permettre au régime du corps basse pression de suivre cette trajectoire. Cette excursion conduirait à des contraintes importantes au niveau mécanique et coût dans la conception du corps haute pression pour éviter une détérioration à ces régimes élevés. Il est donc proposé de limiter cette excursion tout en satisfaisant au mieux la trajectoire souhaitée du régime de l'arbre basse pression pour satisfaire cette demande d'accélération. [0062] This acceleration request generates, or triggers, an increase in the speed of the high pressure body and the low pressure body as well as an increase in fuel consumption to satisfy this acceleration request. As previously indicated, the difference in inertia between the low pressure body and the high pressure body can generate a speed excursion of the high pressure body to allow the low pressure body speed to follow this trajectory. This excursion would lead to significant mechanical and cost constraints in the design of the high pressure body to avoid deterioration at these high speeds. It is therefore proposed to limit this excursion while best satisfying the desired trajectory of the low pressure shaft speed to satisfy this acceleration demand.
[0063] La présente invention permet donc de contrôler cette excursion afin notamment d'assurer les objectifs suivants [0063] The present invention therefore makes it possible to control this excursion in order in particular to ensure the following objectives:
- Le bon fonctionnement du moteur (assurer les prélèvements avion, la richesse du mélange air/carburant dans la chambre de combustion, éviter l'extinction, notamment lors de l'ingestion d'eau ou de grêle), - The proper functioning of the engine (ensuring aircraft samples, the richness of the air/fuel mixture in the combustion chamber, avoiding extinction, particularly when ingesting water or hail),
- Les performances du moteur (temps d'accélération, temps de décélérations, manette pilote) - Engine performance (acceleration time, deceleration time, pilot throttle)
- Les limites physiques d'actionnement (dimensionnement du système carburant, dimensionnement des machines électriques) - Physical actuation limits (sizing of the fuel system, sizing of electrical machines)
- La protection du moteur (éviter le pompage du compresseur haute pression, éviter les surchauffes et le pompage à bas régime, éviter le dévissage, la limite basse de la survitesse et l'éclatement de la chambre de combustion, démarrage) - Engine protection (prevent high pressure compressor surge, prevent overheating and low speed surge, prevent unscrewing, low limit overspeed and combustion chamber burst, start-up)
[0064] Lorsque le régime du corps haute pression est supérieur à un premier seuil SI, lors de l'étape E2, du couple est prélevé sur le corps haute pression, étape E3. Le prélèvement de couple sur le corps haute pression permet de diminuer l'excursion du régime du moteur haute pression. La courbe du régime haute pression sur la figure 3 indique un ralentissement de l'excursion, phase 2. [0064] When the speed of the high-pressure body is greater than a first threshold SI, during step E2, torque is taken from the high-pressure body, step E3. Taking torque from the high-pressure body makes it possible to reduce the excursion of the speed of the high-pressure engine. The curve of the high-pressure speed in FIG. 3 indicates a slowdown in the excursion, phase 2.
[0065] Dans certains modes de réalisation, le prélèvement de couple sur le corps haute pression, ou une partie de ce prélèvement, est injecté sur le corps basse pression afin de limiter la consigne de carburant WF32. [0065] In some embodiments, the torque draw from the high pressure body, or a portion of it, is injected into the low pressure body to limit the fuel setpoint WF32.
[0066] Si la modulation du couple sur l'arbre haute pression jusqu'au prélèvement maximal possible ne suffit pas pour maintenir le régime haute pression au seuil SI, alors le régime du corps haute pression peut atteindre un second seuil S2, lors de l'étape E4. La consigne de carburant WF32 est alors diminuée, étape E5, ce que l'on observe sur la courbe de carburant lors de la phase 3 de la figure 3. La diminution de la consigne de carburant WF32 combinée à la poursuite de prélèvement de couple TRQHP sur l'arbre
haute pression permet avantageusement de limiter l'excursion de l'arbre haute pression sous le seuil S2. [0066] If the modulation of the torque on the high-pressure shaft up to the maximum possible draw is not sufficient to maintain the high-pressure regime at the threshold SI, then the regime of the high-pressure body can reach a second threshold S2, during step E4. The fuel setpoint WF32 is then reduced, step E5, which is observed on the fuel curve during phase 3 of FIG. 3. The reduction in the fuel setpoint WF32 combined with the continuation of the draw of torque TRQHP on the shaft high pressure advantageously limits the excursion of the high pressure shaft below the S2 threshold.
[0067] Afin de permettre au régime de l'arbre basse pression de suivre la trajectoire, de la puissance peut être injectée par augmentation de couple TRQBP, sur l'arbre basse pression, étape E6. [0067] In order to allow the low pressure shaft regime to follow the trajectory, power can be injected by increasing the torque TRQBP, on the low pressure shaft, step E6.
[0068] Dans certains modes de réalisation, l'augmentation de coupleTRQBP sur l'arbre basse pression est obtenue à partir du prélèvement de couple TRQHP sur l'arbre haute pression et de l'injection d'au moins une partie de ce couple prélevé sur l'arbre basse pression. [0068] In some embodiments, the increase in torque TRQBP on the low pressure shaft is obtained from taking torque TRQHP from the high pressure shaft and injecting at least a portion of this torque taken from the low pressure shaft.
[0069] Dans certains modes de réalisation, l'augmentation de couple TRQBP sur l'arbre basse pression est déterminée pour compenser la consigne de carburant WF32 de l'étape E6. [0069] In some embodiments, the torque increase TRQBP on the low pressure shaft is determined to compensate for the fuel setpoint WF32 of step E6.
[0070] Lorsque le régime du corps haute pression repasse sous ledit second seuil S2, étape E7, la consigne de carburant WF32 est stabilisée, étape E8, et le prélèvement de couple TRQHP est maintenu sur le corps haute pression, étape E9. [0070] When the speed of the high pressure body returns below said second threshold S2, step E7, the fuel setpoint WF32 is stabilized, step E8, and the torque sampling TRQHP is maintained on the high pressure body, step E9.
[0071] Lorsque le régime du corps basse pression atteint une consigne de régime du corps basse pression, étape E10, le couple TRQBP de l'arbre basse pression est mis à zéro, étape Eli. Lorsque le régime du corps haute pression repasse sous le premier seuil SI, étape E12, le couple TRQHP de l'arbre haute pression est mis à zéro, étape E13. [0071] When the low pressure body speed reaches a low pressure body speed setpoint, step E10, the torque TRQBP of the low pressure shaft is set to zero, step Eli. When the high pressure body speed falls below the first threshold SI, step E12, the torque TRQHP of the high pressure shaft is set to zero, step E13.
[0072] Dans un mode de réalisation, les modules fonctionnels de la figure 2 correspondent à l'exécution d'un programme d'ordinateur par l'unité de contrôle 500. Un exemple d'unité de contrôle 500 est représenté sur la figure 5. L'unité de contrôle 500 présente l'architecture matérielle d'un ordinateur et comprend notamment un ou plusieurs processeurs 21 (un seul étant représenté), une mémoire non-volatile 22, une mémoire volatile 23 et une interface 24. Le processeur 21 permet l'exécution de programmes d'ordinateur mémorisés dans la mémoire non-volatile 22, en utilisant la mémoire volatile 23. L'interface 24 permet d'obtenir des signaux de mesure et d'émettre des signaux de commande. [0072] In one embodiment, the functional modules of FIG. 2 correspond to the execution of a computer program by the control unit 500. An example of a control unit 500 is shown in FIG. 5. The control unit 500 has the hardware architecture of a computer and notably comprises one or more processors 21 (only one being shown), a non-volatile memory 22, a volatile memory 23 and an interface 24. The processor 21 allows the execution of computer programs stored in the non-volatile memory 22, using the volatile memory 23. The interface 24 makes it possible to obtain measurement signals and to emit control signals.
[0073] La mémoire non-volatile 22 comprend notamment un programme d'ordinateur PI dont l'exécution correspond à la mise en œuvre d'un procédé de commande conforme à un mode de réalisation de l'invention, et par exemple celui décrit en référence à la figure 4. Lors de l'exécution du programme d'ordinateur PI, l'interface 24 permet d'obtenir des signaux de mesure représentant les régimes RegimeHP et RegimeBP, le signal TopAcc,
la trajectoire TrajBP et d'émettre les signaux TRQBP, TRQHP, WF32. Alternativement, au moins une partie des modules fonctionnels de la figure 2 peuvent correspondre à des circuits matériels, par exemple des circuits logiques programmables.
[0073] The non-volatile memory 22 comprises in particular a computer program PI whose execution corresponds to the implementation of a control method in accordance with an embodiment of the invention, and for example that described with reference to FIG. 4. During the execution of the computer program PI, the interface 24 makes it possible to obtain measurement signals representing the regimes RegimeHP and RegimeBP, the signal TopAcc, the trajectory TrajBP and to emit the signals TRQBP, TRQHP, WF32. Alternatively, at least part of the functional modules of Figure 2 may correspond to hardware circuits, for example programmable logic circuits.
Claims
[Revendication 1] Procédé de contrôle d'une turbomachine d'aéronef, la turbomachine comprenant un corps haute pression et un corps basse pression, le procédé comprenant les étapes suivantes : a)- la détection (El) d'une demande d'accélération, ladite demande d'accélération générant une augmentation d'une consigne carburant dans la turbomachine et une excursion du régime dudit corps haute pression par rapport au régime dudit corps basse pression, b)- la comparaison entre le régime dudit corps haute pression et un premier seuil prédéterminé (SI), et si le régime dudit corps haute pression atteint (E2) le premier seuil (SI), le prélèvement (E3) de couple sur ledit corps haute pression, c)- si le régime dudit corps haute pression atteint (E4) un second seuil (S2) prédéterminé supérieur au premier seuil (SI), la diminution (E5) de ladite consigne carburant, et d)- la poursuite du prélèvement de couple sur ledit corps haute pression, afin de faire repasser (E7) le régime dudit corps haute pression sous ledit second seuil (S2). [Revendication 2] Procédé selon la revendication 1 tel que : e)- lorsque le régime dudit corps haute pression repasse (E7) sous ledit second seuil [Claim 1] A method for controlling an aircraft turbomachine, the turbomachine comprising a high-pressure body and a low-pressure body, the method comprising the following steps: a)- detecting (El) an acceleration request, said acceleration request generating an increase in a fuel setpoint in the turbomachine and an excursion of the speed of said high-pressure body relative to the speed of said low-pressure body, b)- comparing the speed of said high-pressure body with a first predetermined threshold (SI), and if the speed of said high-pressure body reaches (E2) the first threshold (SI), taking (E3) torque from said high-pressure body, c)- if the speed of said high-pressure body reaches (E4) a second predetermined threshold (S2) higher than the first threshold (SI), decreasing (E5) said fuel setpoint, and d)- continuing to take torque from said high-pressure body, in order to bring (E7) the speed of said high-pressure body back below said second threshold (S2). [Claim 2] Method according to claim 1 such that: e)- when the regime of said high pressure body returns (E7) below said second threshold
(S2), ladite consigne de carburant est stabilisée (E8) et le prélèvement sur ledit corps haute pression est maintenu (E9), f)- lorsque le régime du corps basse pression atteint (E10) une consigne de régime dudit corps basse pression, la modulation de couple sur ledit arbre basse pression est mise à zéro (Eli), g)- lorsque le régime dudit corps haute pression repasse (E12) sous ledit premier seuil (SI), la modulation de couple sur ledit arbre haute pression est mise à zéro (E13). (S2), said fuel setpoint is stabilized (E8) and the sampling on said high pressure body is maintained (E9), f)- when the speed of the low pressure body reaches (E10) a speed setpoint of said low pressure body, the torque modulation on said low pressure shaft is set to zero (Eli), g)- when the speed of said high pressure body falls (E12) below said first threshold (SI), the torque modulation on said high pressure shaft is set to zero (E13).
[Revendication 3] Procédé selon l'une des revendications 1 ou 2 dans lequel lors de l'étape b), au moins une partie du prélèvement de couple sur ledit corps haute pression est injectée sur ledit corps basse pression afin de limiter la consigne de carburant. [Claim 3] Method according to one of claims 1 or 2 in which during step b), at least part of the torque taken from said high pressure body is injected into said low pressure body in order to limit the fuel setpoint.
[Revendication 4] Procédé selon l'une des revendications 1 à 3 comprenant lors de l'étape d), une augmentation de couple sur ledit arbre basse pression obtenue à partir du prélèvement de couple sur ledit arbre haute pression et de l'injection d'au moins une partie de ce couple prélevé sur ledit arbre basse pression.
[Claim 4] Method according to one of claims 1 to 3 comprising during step d), an increase in torque on said low pressure shaft obtained from the taking of torque on said high pressure shaft and the injection of at least part of this torque taken on said low pressure shaft.
[Revendication 5] Procédé selon la revendication 4 dans lequel lors de l'étape d), l'augmentation de couple sur ledit arbre basse pression est déterminée pour compenser la consigne de carburant de l'étape c). [Claim 5] A method according to claim 4 wherein in step d), the increase in torque on said low pressure shaft is determined to compensate for the fuel setpoint of step c).
[Revendication 6] Procédé selon l'une des revendications précédentes selon lequel les valeurs desdits premier et second seuils sont dépendantes d'un dimensionnement dudit arbre haute pression. [Claim 6] Method according to one of the preceding claims according to which the values of said first and second thresholds are dependent on a dimensioning of said high pressure shaft.
[Revendication 7] Programme d'ordinateur comportant des instructions pour la mise en oeuvre d'un procédé selon l'une quelconque des revendications 1 à 6, lorsque ledit programme d'ordinateur est exécuté par un ordinateur. [Claim 7] A computer program comprising instructions for implementing a method according to any one of claims 1 to 6, when said computer program is executed by a computer.
[Revendication 8] Support d'enregistrement lisible par un ordinateur sur lequel est enregistré un programme d'ordinateur selon la revendication 7. [Claim 8] A computer-readable recording medium on which a computer program according to claim 7 is recorded.
[Revendication 9] Dispositif de contrôle d'une turbomachine d'aéronef, la turbomachine comprenant un corps haute pression et un corps basse pression, le dispositif comprenant un ou plusieurs processeurs configurés ensemble ou séparément pour: a)- détecter (El) une demande d'accélération, ladite demande d'accélération générant une augmentation d'une consigne carburant dans la turbomachine et une excursion du régime dudit corps haute pression par rapport audit corps basse pression, b)- comparer ledit régime du corps haute pression avec un premier seuil prédéterminé (SI), et si le régime dudit corps haute pression atteint (E2) ledit premier seuil (SI), prélever (E3) du couple sur ledit corps haute pression, c)- si ledit régime dudit corps haute pression atteint (E4) un second seuil (S2) prédéterminé supérieur au premier seuil (SI), diminuer (E5) ladite consigne carburant, et d)- poursuivre du prélèvement de couple sur ledit corps haute pression, afin de faire repasser (E7) le régime dudit corps haute pression sous ledit second seuil (S2).[Claim 9] Device for controlling an aircraft turbomachine, the turbomachine comprising a high-pressure body and a low-pressure body, the device comprising one or more processors configured together or separately to: a)- detect (El) an acceleration request, said acceleration request generating an increase in a fuel setpoint in the turbomachine and an excursion of the speed of said high-pressure body relative to said low-pressure body, b)- compare said speed of the high-pressure body with a first predetermined threshold (SI), and if the speed of said high-pressure body reaches (E2) said first threshold (SI), take (E3) torque from said high-pressure body, c)- if said speed of said high-pressure body reaches (E4) a second predetermined threshold (S2) higher than the first threshold (SI), decrease (E5) said fuel setpoint, and d)- continue taking torque from said high-pressure body, in order to bring (E7) the speed of said high-pressure body back below said second threshold (S2).
[Revendication 10] Aéronef comportant un dispositif selon la revendication 9.
[Claim 10] Aircraft comprising a device according to claim 9.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2301571A FR3145948A1 (en) | 2023-02-21 | 2023-02-21 | Device and method for controlling the excursion of the high pressure shaft speed of a turbomachine engine |
FRFR2301571 | 2023-02-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024175859A1 true WO2024175859A1 (en) | 2024-08-29 |
Family
ID=86271939
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2024/050226 WO2024175859A1 (en) | 2023-02-21 | 2024-02-21 | Device and method for controlling the excursion of the speed of the high-pressure shaft of a turbomachine engine |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR3145948A1 (en) |
WO (1) | WO2024175859A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4987737A (en) * | 1986-11-26 | 1991-01-29 | Rolls-Royce Plc | Fuel control system for gas turbine aeroengine overspeed protection |
US20200392859A1 (en) * | 2019-06-12 | 2020-12-17 | Rolls-Royce Plc | Limiting spool speeds in a gas turbine engine |
US20220403776A1 (en) * | 2021-06-18 | 2022-12-22 | Raytheon Technologies Corporation | Turbine over-speed brake for hybrid electric gas turbine engine |
-
2023
- 2023-02-21 FR FR2301571A patent/FR3145948A1/en active Pending
-
2024
- 2024-02-21 WO PCT/FR2024/050226 patent/WO2024175859A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4987737A (en) * | 1986-11-26 | 1991-01-29 | Rolls-Royce Plc | Fuel control system for gas turbine aeroengine overspeed protection |
US20200392859A1 (en) * | 2019-06-12 | 2020-12-17 | Rolls-Royce Plc | Limiting spool speeds in a gas turbine engine |
US20220403776A1 (en) * | 2021-06-18 | 2022-12-22 | Raytheon Technologies Corporation | Turbine over-speed brake for hybrid electric gas turbine engine |
Also Published As
Publication number | Publication date |
---|---|
FR3145948A1 (en) | 2024-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3123012B1 (en) | Method for assisting a turboshaft engine in standby of a multi-engine helicopter and architecture of a propulsion system of a helicopter comprising at least one turboshaft engine that can be in standby | |
EP2893169B1 (en) | Method and system for starting an aircraft turboengine | |
CA2752528C (en) | Method and system for tuning a gas turbine and gas turbine including such a system | |
EP3850202B1 (en) | Method for controlling a turbomachine comprising an electric motor | |
FR2964087A1 (en) | METHOD FOR OPTIMIZING THE ENGINE OPERABILITY OF AN AIRCRAFT AND AUTONOMOUS POWER PACKAGE FOR IMPLEMENTING THE SAME | |
CA2801193A1 (en) | Method and system for controlling the clearance at the blade tips of a turbine rotor | |
FR2958975A1 (en) | FUEL SUPPLY DEVICE OF AN AERONAUTICAL ENGINE | |
EP3995682B1 (en) | Method for controlling a drive system of a rotorcraft comprising at least two turboshaft engines | |
EP2633169B1 (en) | Method of controlling a turbomachine | |
EP2951092B1 (en) | Aircraft with a structure for supplying air to an auxiliary power unit | |
CA2969810C (en) | Device and method for controlling an auxiliary engine suitable for supplying thrust power to the rotor of a helicopter | |
EP3201455B1 (en) | Device and method for testing the integrity of a helicopter turbine engine rapid restart system | |
EP2058488A1 (en) | Turboshaft engine including means for heating the air entering the power turbine | |
WO2022112028A1 (en) | Method for controlling a turbine engine comprising an electric motor | |
WO2014068236A1 (en) | Control unit and method for controlling blade tip clearance | |
EP3959427B1 (en) | Method for regulating a turbomachine comprising a temporary power-increasing device | |
WO2024175859A1 (en) | Device and method for controlling the excursion of the speed of the high-pressure shaft of a turbomachine engine | |
FR3094043A1 (en) | Power draw on LP body and debris evacuation system | |
EP4118312A1 (en) | Method for controlling a turbomachine comprising an electric machine | |
FR2951540A1 (en) | NON-EXTINGUISHING TEST FOR TURBOMACHINE COMBUSTION CHAMBER | |
FR3133642A1 (en) | Engine assembly control method and unit | |
FR3133643A1 (en) | Engine assembly control method and unit | |
WO2023175271A1 (en) | Method and unit for controlling a motor assembly | |
FR3099207A1 (en) | TURBOMACHINE FUEL SUPPLY SYSTEM | |
FR3145775A1 (en) | Method and system for starting an aeronautical turbomachine with free turbine and single-body gas generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24710149 Country of ref document: EP Kind code of ref document: A1 |