WO2024174298A1 - 一种光伏组串能量管理系统、方法及设备 - Google Patents

一种光伏组串能量管理系统、方法及设备 Download PDF

Info

Publication number
WO2024174298A1
WO2024174298A1 PCT/CN2023/080427 CN2023080427W WO2024174298A1 WO 2024174298 A1 WO2024174298 A1 WO 2024174298A1 CN 2023080427 W CN2023080427 W CN 2023080427W WO 2024174298 A1 WO2024174298 A1 WO 2024174298A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
photovoltaic
junction box
data information
smart
Prior art date
Application number
PCT/CN2023/080427
Other languages
English (en)
French (fr)
Inventor
郭钟
黄伟栋
龚裕和
Original Assignee
意美旭智芯能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 意美旭智芯能源科技有限公司 filed Critical 意美旭智芯能源科技有限公司
Publication of WO2024174298A1 publication Critical patent/WO2024174298A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification

Definitions

  • the present invention relates to the technical field of photovoltaic power station energy management, and in particular to a photovoltaic string energy management system, method and equipment.
  • Photovoltaic strings are formed by connecting multiple photovoltaic modules in series.
  • photovoltaic power generation systems there is a major disadvantage, that is, the output power of photovoltaic power generation systems is seriously affected by weather conditions, such as changes in light intensity and ambient temperature. Therefore, the component optimization products in the industry currently have one end connected to the photovoltaic module and one end connected in series to the inverter, which is called an intelligent optimizer or intelligent junction box.
  • an intelligent junction box a buck-boost circuit is mostly used to convert the input voltage and current of the component.
  • the working power of the solar cell array is adjusted appropriately with the external environment to achieve the purpose of outputting maximum power at any time.
  • the perturbation observation method is mostly used to track the maximum power point of the photovoltaic module.
  • the optimal working point of the photovoltaic array will deviate; even if the optimal working point is found, the next round of disturbance will also cause the photovoltaic array to deviate from the optimal working point.
  • This setting will result in the use of optimizer strings often generating electricity when there is no shadow, dust, or power mismatch. Therefore, the existing intelligent optimizer will cause the photovoltaic modules to deviate from the optimal working point of the modules, making the power generation efficiency of the photovoltaic modules equipped with intelligent junction boxes lower than that of conventional photovoltaic modules in the absence of shading.
  • the purpose of the present invention is to provide a photovoltaic string energy management system, method and equipment to solve the problem that the optimization method in the prior art may cause the photovoltaic components to deviate from the optimal working point of the components, making the power generation efficiency of the photovoltaic components equipped with smart junction boxes lower than that of conventional photovoltaic components in the unobstructed condition.
  • a photovoltaic string energy management system comprising:
  • each PV module is connected to the input of the corresponding smart junction box.
  • the outputs of the smart junction boxes are connected in series and then connected to the grid through the inverter.
  • An intelligent repeater connected to each intelligent junction box
  • the smart junction box is used to obtain data information of the corresponding photovoltaic components and itself, and send it to the smart repeater;
  • the intelligent repeater is used to calculate the baseline data of each photovoltaic component according to the data information using a preset algorithm; determine whether the difference between the data information and the baseline data exceeds a preset threshold; if so, control the intelligent junction box to start a preset optimization algorithm to optimize the output power of the photovoltaic component; if not, control the intelligent junction box to work in a direct-through state to maintain the output power.
  • the intelligent junction box is a DC-DC converter.
  • the intelligent junction box is also used to perform real-time detection on the photovoltaic assembly and obtain data information of the photovoltaic assembly and itself;
  • the data information includes but is not limited to: detection information of the voltage and current output by the photovoltaic assembly, and relevant parameters of the smart junction box itself, wherein the relevant parameters include but are not limited to output voltage and current data, temperature and PWM.
  • the base number of each photovoltaic module is calculated using a preset algorithm according to the data information. According to, including:
  • the weights of the new data and the old data were adjusted, and a weighted average was performed; the average data information obtained after the processing was completed was used as the benchmark data of the photovoltaic module.
  • the intelligent junction box starts a preset optimization algorithm to optimize the output power of the photovoltaic module, including:
  • the smart junction box monitors the output power of the photovoltaic module in real time and adjusts the electrical parameters of the DC-DC conversion circuit of the smart junction box according to the change by using the perturbation observation method, so that the optimized output power is always kept at the maximum power point.
  • the intelligent junction box and the intelligent repeater are connected via a wired manner or a wireless manner.
  • a photovoltaic string energy management method comprising:
  • the preset optimization algorithm is started to optimize the output power of the photovoltaic module
  • the calculating the benchmark data of each photovoltaic module using a preset algorithm according to the data information includes:
  • the weights of the new data and the old data were adjusted, and a weighted average was performed; the average data information obtained after the processing was completed was used as the benchmark data of the photovoltaic module.
  • the starting of the preset optimization algorithm to optimize the output power of the photovoltaic module includes: real-time monitoring of the output power of the photovoltaic module and adjusting the output power of the photovoltaic module according to the change by using the perturbation observation method.
  • the electrical parameters of the DC-DC conversion circuit of the intelligent junction box ensure that the optimized output power is always kept at the maximum power point.
  • a photovoltaic string energy management device comprising:
  • a main controller and a memory connected to the main controller
  • the memory stores program instructions
  • the main controller is used to execute the program instructions stored in the memory to execute any of the above methods.
  • the technical solution provided by the embodiment of the present invention may have the following beneficial effects:
  • the photovoltaic string energy management system includes: a photovoltaic string formed by connecting multiple groups of photovoltaic components and smart junction boxes in series, and a smart repeater connected to each smart junction box; the smart junction box obtains the data information of the corresponding photovoltaic component and itself; the smart repeater calculates the reference power of each photovoltaic component using a preset algorithm based on the data information; determines whether the difference between the data information and the reference data exceeds a preset threshold; if so, controls the smart junction box to start the preset optimization algorithm to optimize the output power of the photovoltaic component; if not, controls the smart junction box to work in a straight-through state to maintain the output power.
  • the system can keep the output power of the photovoltaic component at the maximum power point in the case of shading, and the photovoltaic component can still be at the optimal working point in the case of no shading.
  • FIG1 is a schematic block diagram of a photovoltaic string energy management system according to an exemplary embodiment
  • FIG2 is a schematic diagram of steps of a photovoltaic string energy management method according to an exemplary embodiment.
  • FIG1 is a schematic block diagram of a photovoltaic string energy management system according to an exemplary embodiment.
  • a photovoltaic string energy management system including:
  • each photovoltaic module 101 is connected to the input of the corresponding smart junction box 102, and the outputs of the smart junction boxes 102 are connected in series and then connected to the power grid 104 through the inverter 103;
  • An intelligent repeater 105 connected to each intelligent junction box 102;
  • the smart junction box 102 is used to obtain data information of the corresponding photovoltaic module 101 and itself, and send it to the smart repeater 105;
  • the intelligent repeater 105 is used to calculate the benchmark data of each photovoltaic component 101 according to the data information using a preset algorithm; determine whether the difference between the data information and the benchmark data exceeds a preset threshold; if so, control the intelligent junction box 102 to start a preset optimization algorithm to optimize the output power of the photovoltaic component 101; if not, control the intelligent junction box 102 to work in a through state to maintain the output power.
  • the smart junction box 102 works in the escape (pass-through) state; the smart junction box 102 reports data information to the smart repeater 105; the smart repeater 105 collects the input and output data information of all photovoltaic components 101 on the string, and calculates the current photovoltaic component 101 benchmark data based on (but not limited to) weighted average algorithm and other methods; when it is determined that the difference between the data information and the benchmark data exceeds a preset threshold, it is determined that there is an optimization demand in this case; the smart repeater 105 sends a command to the smart junction box 102 to start the optimization algorithm; the smart junction box 102 performs power optimization; when the difference between the optimized data information of the smart junction box 102 and the benchmark data is less than the preset threshold, the relay determines that the optimization demand no longer exists in this case; the smart repeater 105 sends a command to the smart junction box 102 to terminate the optimization algorithm and restore to the escape (pass-through) state.
  • the smart repeater 105 sends a command to the
  • the data information and the reference data may be current and voltage data, or power data, and may be specifically set according to actual conditions.
  • the photovoltaic string energy management system includes: a photovoltaic string formed by connecting multiple groups of photovoltaic components and smart junction boxes in series, and a smart repeater connected to each smart junction box; the smart junction box obtains the data information of the corresponding photovoltaic component and itself; the smart repeater calculates the reference power of each photovoltaic component using a preset algorithm based on the data information; determines whether the difference between the data information and the reference data exceeds a preset threshold; if so, controls the smart junction box to start the preset optimization algorithm to optimize the output power of the photovoltaic component; if not, controls the smart junction box to work in a straight-through state to maintain the output power.
  • the system can keep the output power of the photovoltaic component at the maximum power point in the case of shading, and the photovoltaic component can still be at the optimal working point in the case of no shading.
  • the intelligent junction box 102 is a DC-DC converter.
  • the smart junction box 102 is a DC-DC converter in the smart photovoltaic solution.
  • the output of the photovoltaic module 101 is connected to the input of the smart junction box 102, the outputs of the smart junction box 102 are connected in series, and then connected to the input of the inverter 103, and the output of the inverter 103 is connected to the power grid 104.
  • the smart junction box 102 starts a preset optimization algorithm to optimize the output power of the photovoltaic module 101, including:
  • the smart junction box 102 monitors the output power of the photovoltaic module 101 in real time and adjusts the electrical parameters of the DC-DC conversion circuit of the smart junction box 102 according to the change by using the perturbation observation method, so that the optimized output power of the photovoltaic module 101 is always maintained at the maximum power point.
  • the smart junction box 102 continuously detects the output voltage, current and other data of the photovoltaic module 101, and adjusts the electrical parameters of the DC-DC conversion circuit of the smart junction box 102 according to the change of the output power of the photovoltaic module 101, so that the output of the photovoltaic module 101 is always maintained at the maximum power point.
  • the smart junction box 102 generally works in two states. One is that the circuit electrical parameters are not adjusted, also known as the straight-through state, that is, the output of the photovoltaic module 101 and the output of the smart junction box 102 are exactly the same. In this state, the photovoltaic module 101 is already working in the optimal state, and does not need to be adjusted by the smart junction box 102, and the power consumption of the smart junction box 102 is extremely small; the other state is to adjust the circuit electrical parameters, also known as the optimization state, and the smart junction box 102 adjusts the output of the photovoltaic module 101. At this time, the output parameters of the photovoltaic module 101 and the output parameters of the smart junction box 102 are not the same. In this case, the power consumption of the smart junction box 102 is increased, but because the photovoltaic module 101 is working in the optimal state with a larger output power, the comprehensive power generation power of the entire system is still optimal.
  • the straight-through state that is, the output of the photovoltaic module 101 and the output of
  • the smart junction box 102 is also used to perform real-time detection on the photovoltaic module 101 and obtain data information of the photovoltaic module 101 and itself;
  • the data information includes but is not limited to: the detection information of the voltage and current output by the photovoltaic module 101, and the relevant parameters of the smart junction box 102 itself, including but not limited to output voltage and current data, temperature and PWM.
  • the PWM generally refers to pulse width modulation.
  • Step S1 When light shines on the photovoltaic module 101, the photovoltaic module 101 starts to generate electricity and the smart junction box 102 starts. After the smart junction box 102 is initialized, it enters the direct state. At this time, the smart junction box 102 continuously sends the detection information of the voltage and current output by the photovoltaic module 101, as well as the relevant parameters of the smart junction box 102 itself, including but not limited to the output voltage and current data, temperature, PWM, etc. to the smart repeater 105.
  • Step S2 It should be noted that the intelligent repeater 105 calculates the reference data of each photovoltaic module 101 using a preset algorithm according to the data information, including:
  • Step S21 sorting each type of data in the data information and calculating the outlier boundary, removing the outliers, and then calculating the average value;
  • Step S22 adjust the weights of new data and old data according to the time when the data was obtained, and perform weighted averaging;
  • Step S23 using the average data information obtained after the processing as the reference data of the photovoltaic module 101.
  • the average data information may be average voltage and current data;
  • Step S3 When the intelligent repeater 105 compares the reference data with the actual data reported by each intelligent junction box 102, The data values are compared, and if the difference does not reach a certain threshold (such as 5%), it can be determined that the difference belongs to the difference error between components or random sampling error, and the system does not need to be optimized. The intelligent repeater 105 continues to collect and calculate the next round of data.
  • a certain threshold such as 5%
  • Step S4 When the difference value exceeds a certain threshold, it can be determined that the difference is caused by environmental changes, and the smart junction box 102 needs to be optimized to improve the overall power generation of the system. At this time, the smart repeater 105 sends a start optimization command to the corresponding smart junction box 102.
  • Step S5 After receiving the command from the smart repeater 105, the smart junction box 102 switches to the optimized state.
  • the perturbation observation method is used to adjust the electrical parameters of the smart junction box 102 so that the photovoltaic module 101 works in the optimal state, and the sampled relevant parameters are continuously sent to the smart repeater 105.
  • Step S6 When the intelligent repeater 105 finds during the timing calculation that the data of the intelligent junction box 102 in the optimization state has returned to within the threshold, the intelligent repeater 105 sends a command to the corresponding intelligent junction box 102 to stop the optimization.
  • Step S7 After receiving the stop optimization command, the intelligent junction box 102 switches the state to the through state, and the electrical parameters of the intelligent junction box 102 are no longer adjusted by the perturbation and observation method.
  • the smart junction box 102 and the smart repeater 105 are connected via a wired or wireless connection.
  • the system communication method can be wireless, that is, the smart junction box 102 and the smart repeater 105 are connected wirelessly; or it can be wired, that is, the smart junction box 102 and the smart repeater 105 are connected through power carrier communication.
  • This embodiment is explained by taking wireless communication as an example.
  • this embodiment also provides another use form: the intelligent repeater 105 sends the benchmark data and threshold value to the intelligent junction box 102; the intelligent junction box 102 determines whether there is an optimization demand based on the current data situation, benchmark data and threshold value. If there is, the optimization algorithm is started; when the data optimized by the intelligent junction box 102 is close to the benchmark data, the intelligent junction box 102 determines that the optimization demand no longer exists in this case; thus terminating the optimization algorithm; and returning to the escape (through) state.
  • the intelligent repeater 105 sends the benchmark data calculated in this round To each smart junction box 102.
  • the smart junction box 102 continuously sends the sampled data to the smart repeater 105, and obtains the latest benchmark data from the smart repeater 105.
  • the smart junction box 102 compares the real-time sampled data information with the benchmark data sent by the smart repeater 105, and adjusts according to its current state. If the current state is through and the difference is less than the threshold, the through state is maintained; if the difference is greater than the threshold, the optimization state is entered. If the current state is optimized and the difference is greater than the threshold, the optimization state is maintained; if the difference is less than the threshold, the through state is changed.
  • the system may also include a data cloud center and a mobile terminal for cloud services.
  • the smart repeater 105 uploads and stores the acquired and generated data to the cloud. Users can use the smart terminal to view the cloud data and keep abreast of the operating data of the photovoltaic strings at any time.
  • FIG2 is a schematic diagram of steps of a photovoltaic string energy management method according to an exemplary embodiment, and provides a photovoltaic string energy management method, including:
  • Step S101 obtaining data information of corresponding photovoltaic modules and intelligent junction boxes
  • Step S102 Calculate the reference data of each photovoltaic module using a preset algorithm according to the data information
  • Step S103 determining whether the difference between the data information and the reference data exceeds a preset threshold
  • Step S104 If yes, start the preset optimization algorithm to optimize the output power of the photovoltaic module
  • Step S105 If not, maintain the output power.
  • the photovoltaic string energy management method includes: obtaining data information of corresponding photovoltaic modules and intelligent junction boxes; calculating the baseline data of each photovoltaic module using a preset algorithm according to the data information; judging whether the difference between the data information and the baseline data exceeds a preset threshold; if so, starting a preset optimization algorithm to optimize the output power of the photovoltaic module; if not, maintaining the output power.
  • This method can ensure that the output power of the photovoltaic module in the case of shading is always maintained at the maximum power point, and the photovoltaic module in the case of no shading can still be at the optimal working point.
  • Benchmark data including:
  • the weights of the new data and the old data were adjusted, and a weighted average was performed; the average data information obtained after the processing was completed was used as the benchmark data of the photovoltaic module.
  • the starting of the preset optimization algorithm to optimize the output power of the photovoltaic module includes:
  • the output power of the photovoltaic module is monitored in real time and the electrical parameters of the DC-DC conversion circuit of the intelligent junction box are adjusted by using the perturbation observation method according to the change, so that the optimized output power of the photovoltaic module is always maintained at the maximum power point.
  • a photovoltaic string energy management device comprising:
  • a main controller and a memory connected to the main controller
  • the memory stores program instructions
  • the main controller is used to execute the program instructions stored in the memory to execute any of the above methods. It is understandable that the same or similar parts of the above embodiments can refer to each other, and the content not described in detail in some embodiments can refer to the same or similar content in other embodiments.
  • Any process or method description in a flowchart or otherwise described herein may be understood to represent a module, segment or portion of code that includes one or more executable instructions for implementing the steps of a specific logical function or process, and the scope of the preferred embodiments of the present invention includes alternative implementations in which functions may not be performed in the order shown or discussed, including performing functions in a substantially simultaneous manner or in the reverse order depending on the functions involved, which should be understood by those skilled in the art to which the embodiments of the present invention belong.
  • a plurality of steps or methods can be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a discrete logic circuit having a logic gate circuit for implementing a logic function for a data signal
  • a dedicated integrated circuit having a suitable combination of logic gate circuits
  • PGA programmable gate array
  • FPGA field programmable gate array
  • each functional unit in each embodiment of the present invention may be integrated into a processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above-mentioned integrated module may be implemented in the form of hardware or in the form of a software functional module. If the integrated module is implemented in the form of a software functional module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
  • the storage medium mentioned above can be a read-only memory, a magnetic disk or an optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及光伏电站能量管理技术领域,具体涉及一种光伏组串能量管理系统、方法及设备,该系统包括:由多组光伏组件与智能接线盒串联形成的光伏组串,每个智能接线盒分别连接的智能中继器;智能接线盒获取相应光伏组件及自身的数据信息;智能中继器根据数据信息,利用预设算法计算每个光伏组件的基准数据;判断数据信息与所述基准数据的差异是否超过预设阈值;若是,则控制智能接线盒启动预设优化算法,对输出功率进行优化;若否,则控制智能接线盒工作在直通状态,保持输出功率。该系统能够使得在有遮挡的情况下的光伏组件的输出功率始终保持在最大功率点上,在无遮挡的情况下的光伏组件仍然能够处于最优工作点。

Description

一种光伏组串能量管理系统、方法及设备 技术领域
本发明涉及光伏电站能量管理技术领域,具体涉及一种光伏组串能量管理系统、方法及设备。
背景技术
光伏组串为多个光伏组件串联形成。在光伏发电系统中,存在一个主要的缺点,即为光伏发电系统的输出功率受天气情况影响严重,如光照强度和环境温度的改变都会使它发生变化。因此目前业内的组件优化产品,一端接光伏组件,一端串联接入逆变器,称为智能优化器或智能接线盒。在智能接线盒内部大多采用升降压电路对组件的输入电压、电流进行转换。使太阳能电池阵列的工作电能随外界环境做出适当调整,达到任何时刻都能输出最大功率的目的。在监控的过程中,大多采用扰动观察法来对光伏组件做最大功率点的跟踪。
扰动观察法,又叫做爬山法,扰动光伏阵列的输出电压,并根据P=U×I计算扰动前后光伏阵列的输出功率,将扰动前后的两个输出功率进行比较的方法。若扰动后光伏阵列输出功率增加,则说明该扰动能够提高光伏阵列的输出功率,下一次继续往相同的方向扰动光伏阵列的输出电压;反之,若扰动后光伏阵列输出功率减小,则说明该扰动不利于提高光伏阵列的输出功率,下一次往相反的方向扰动。
很显然在扰动的过程中,会偏离光伏阵列的最优工作点;即使找到了最优工作点,那么下一轮的扰动也会使得光伏阵列偏离最优工作点。如此设置就会导致在没有阴影遮挡、灰尘、功率失配的时候,使用优化器的组串往往发电 量会低于不使用优化器的组串。因此,现有的智能优化器会使得光伏组件偏离组件最优工作点,使得配置了智能接线盒的光伏组件在无遮挡情况下发电效率低于常规光伏组件。
发明内容
有鉴于此,本发明的目的在于提供一种光伏组串能量管理系统、方法及设备,以解决现有技术中的优化方式会使得光伏组件偏离组件最优工作点,使得配置了智能接线盒的光伏组件在无遮挡情况下发电效率低于常规光伏组件的问题。
根据本发明实施例的第一方面,提供一种光伏组串能量管理系统,包括:
每个光伏组件的输出连接于对应智能接线盒的输入,智能接线盒的输出相互串联,再通过逆变器接入电网;
与每个智能接线盒分别连接的智能中继器;
所述智能接线盒用于获取相应光伏组件及自身的数据信息,并发送至所述智能中继器;
所述智能中继器用于根据所述数据信息,利用预设算法计算每个光伏组件的基准数据;判断所述数据信息与所述基准数据的差异是否超过预设阈值;若是,则控制所述智能接线盒启动预设优化算法,对光伏组件的输出功率进行优化;若否,则控制智能接线盒工作在直通状态,保持所述输出功率。
优选的,所述智能接线盒为直流直流转换器。
优选的,所述智能接线盒还用于对所述光伏组件进行实时检测,获取所述光伏组件及自身的数据信息;
所述数据信息包括但不限于:所述光伏组件输出的电压、电流的检测信息,及,所述智能接线盒自身的相关参数,所述相关参数包括但不限于输出电压电流数据、温度和PWM。
优选的,所述根据所述数据信息,利用预设算法计算每个光伏组件的基准数 据,包括:
将所述数据信息中的每一类数据进行排序并计算异常点边界,去掉异常点后,求取平均值;
根据获得数据的时间,调整新数据与旧数据的权重大小,并进行加权平均;将处理完成后得到的平均数据信息,作为光伏组件的基准数据。
优选的,所述智能接线盒启动预设优化算法,对光伏组件的输出功率进行优化,包括:
所述智能接线盒实时监测所述光伏组件的输出功率并根据变化情况,采用扰动观察法,调整智能接线盒直流直流转换电路电气参数,使得优化后的输出功率始终保持在最大功率点上。
优选的,所述智能接线盒与所述智能中继器通过有线方式,或,无线方式连接。
根据本发明实施例的第二方面,提供一种光伏组串能量管理方法,包括:
获取相应光伏组件及智能接线盒的数据信息;
根据所述数据信息,利用预设算法计算每个光伏组件的基准数据;
判断所述数据信息与所述基准数据的差异是否超过预设阈值;
若是,则启动预设优化算法,对光伏组件的输出功率进行优化;
若否,则保持所述输出功率。
优选的,所述根据所述数据信息,利用预设算法计算每个光伏组件的基准数据,包括:
将所述数据信息中的每一类数据进行排序并计算异常点边界,去掉异常点后,求取平均值;
根据获得数据的时间,调整新数据与旧数据的权重大小,并进行加权平均;将处理完成后得到的平均数据信息,作为光伏组件的基准数据。
优选的,所述启动预设优化算法,对光伏组件的输出功率进行优化,包括:实时监测所述光伏组件的输出功率并根据变化情况,采用扰动观察法,调整 智能接线盒直流直流转换电路的电气参数,使得优化后的输出功率始终保持在最大功率点上。
根据本发明实施例的第三方面,提供一种光伏组串能量管理设备,包括:
主控器,及与所述主控器相连的存储器;
所述存储器,其中存储有程序指令;
所述主控器用于执行存储器中存储的程序指令,执行上述任一项所述的方法。本发明的实施例提供的技术方案可以包括以下有益效果:
可以理解的是,本发明提供的一种光伏组串能量管理系统包括:由多组光伏组件与智能接线盒串联形成的光伏组串,每个智能接线盒分别连接的智能中继器;智能接线盒获取相应光伏组件及自身的数据信息;智能中继器根据数据信息,利用预设算法计算每个光伏组件的基准功率;判断数据信息与所述基准数据的差异是否超过预设阈值;若是,则控制智能接线盒启动预设优化算法,对光伏组件的输出功率进行优化;若否,则控制智能接线盒工作在直通状态,保持输出功率。该系统能够使得在有遮挡的情况下的光伏组件的输出功率始终保持在最大功率点上,在无遮挡的情况下的光伏组件仍然能够处于最优工作点。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的一种光伏组串能量管理系统的示意框图;图2是根据一示例性实施例示出的一种光伏组串能量管理方法的步骤示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述 涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
实施例一
图1是根据一示例性实施例示出的一种光伏组串能量管理系统的示意框图,参见图1,提供一种光伏组串能量管理系统,包括:
每个光伏组件101的输出连接于对应智能接线盒102的输入,智能接线盒102的输出相互串联,再通过逆变器103接入电网104;
与每个智能接线盒102分别连接的智能中继器105;
所述智能接线盒102用于获取相应光伏组件101及自身的数据信息,并发送至所述智能中继器105;
所述智能中继器105用于根据所述数据信息,利用预设算法计算每个光伏组件101的基准数据;判断所述数据信息与所述基准数据的差异是否超过预设阈值;若是,则控制所述智能接线盒102启动预设优化算法,对光伏组件101的输出功率进行优化;若否,则控制智能接线盒102工作在直通状态,保持所述输出功率。
在具体实践中,正常情况下,智能接线盒102工作在逃逸(直通)状态;智能接线盒102向智能中继器105上报数据信息;智能中继器105收集组串上所有光伏组件101的输入、输出数据信息,并根据(但不限于)加权平均算法等方法,计算当前光伏组件101基准数据;当判断出所述数据信息与所述基准数据的差异超过预设阈值时,认定该情况下有优化需求;智能中继器105发命令给智能接线盒102,启动优化算法;智能接线盒102进行功率优化;当智能接线盒102优化后的数据信息与所述基准数据的差异小于预设阈值后,中继认定该情况下优化需求不再存在;智能中继器105发命令给智能接线盒102,终止优化算法,恢复到逃逸(直通)状态。
优选的,数据信息与基准数据可以是电流、电压数据,也可以为功率数据,可以根据实际情况具体设定。
可以理解的是,本发明提供的一种光伏组串能量管理系统包括:由多组光伏组件与智能接线盒串联形成的光伏组串,每个智能接线盒分别连接的智能中继器;智能接线盒获取相应光伏组件及自身的数据信息;智能中继器根据数据信息,利用预设算法计算每个光伏组件的基准功率;判断数据信息与所述基准数据的差异是否超过预设阈值;若是,则控制智能接线盒启动预设优化算法,对光伏组件的输出功率进行优化;若否,则控制智能接线盒工作在直通状态,保持输出功率。该系统能够使得在有遮挡的情况下的光伏组件的输出功率始终保持在最大功率点上,在无遮挡的情况下的光伏组件仍然能够处于最优工作点。
需要说明的是,所述智能接线盒102为直流直流转换器。
在实际应用中,智能接线盒102是智能光伏解决方案中的一种直流直流转换器。光伏组件101的输出和智能接线盒102的输入连接,智能接线盒102的输出相互串联,然后接入逆变器103的输入,逆变器103的输出接电网104。需要说明的是,所述智能接线盒102启动预设优化算法,对光伏组件101的输出功率进行优化,包括:
所述智能接线盒102实时监测所述光伏组件101的输出功率并根据变化情况,采用扰动观察法,调整智能接线盒102直流直流转换电路电气参数,使得光伏组件101优化后的输出功率始终保持在最大功率点上。
在实际应用中,智能接线盒102不断的对光伏组件101的输出进行电压、电流等数据的检测,并根据光伏组件101输出功率的变化,调整智能接线盒102直流直流转换电路电气参数,使得光伏组件101的输出始终保持在最大功率点上。
智能接线盒102,一般会工作在两种状态。一种是不调整电路电气参数,又称为直通状态,也就是光伏组件101输出和智能接线盒102的输出完全相同, 这种状态下,光伏组件101已经工作在最优状态,不需要智能接线盒102进行调节,智能接线盒102的功耗极小;另一种状态,是调整电路电气参数,又称为优化状态,智能接线盒102调节光伏组件101的输出,此时光伏组件101的输出和智能接线盒102的输出参数并不相同,这种情况下,智能接线盒102的功耗有所提升,但是由于让光伏组件101工作在了更大输出功率的最优状态,所以整个系统的综合发电功率还是最优的。
需要说明的是,所述智能接线盒102还用于对所述光伏组件101进行实时检测,获取所述光伏组件101及自身的数据信息;
所述数据信息包括但不限于:所述光伏组件101输出的电压、电流的检测信息,及,所述智能接线盒102自身的相关参数,所述相关参数包括但不限于输出电压电流数据、温度和PWM。所述PWM一般指脉冲宽度调制。
上述实施例在实际应用过程中的应用流程如下所述:
步骤S1、当有光线照到光伏组件101上时,光伏组件101开始发电,智能接线盒102启动。当智能接线盒102初始化完成后,进入直通状态。此时,智能接线盒102不断将光伏组件101输出的电压、电流的检测信息,以及智能接线盒102自身的相关参数,包含但不限于输出电压电流数据、温度、PWM等发送到智能中继器105。
步骤S2、需要说明的是,智能中继器105根据所述数据信息,利用预设算法计算每个光伏组件101的基准数据,包括:
步骤S21、将所述数据信息中的每一类数据进行排序并计算异常点边界,去掉异常点后,求取平均值;
步骤S22、根据获得数据的时间,调整新数据与旧数据的权重大小,并进行加权平均;
步骤S23、将处理完成后得到的平均数据信息,作为光伏组件101的基准数据。优选的,该平均数据信息可以为平均电压、电流数据;
步骤S3、当智能中继器105将基准数据和每一个智能接线盒102上报的实际 数据值进行比较,如果差异没有达到一定的阈值(比如5%),那么可以认定差异属于组件间差异误差或随机采样误差,系统无需优化。智能中继器105继续采集并计算下一轮数据。
步骤S4、当差异值超过一定的阈值时,可以认定差异属于环境变化造成的差异,需要智能接线盒102通过进行优化来提升系统整体的发电功率。这时,智能中继器105,下发启动优化命令给对应的智能接线盒102。
步骤S5、智能接线盒102收到智能中继器105下发的命令后,切换到优化状态。采用扰动观察法,调节智能接线盒102的电气参数,使得光伏组件101工作到最优状态,并持续的把采样到的相关参数发送给智能中继器105。
步骤S6、当智能中继器105在定时计算中,发现正在优化状态的智能接线盒102的数据已经回到阈值以内,则智能中继器105向对应的智能接线盒102下发停止优化的命令。
步骤S7、智能接线盒102收到停止优化命令后,将状态切换到直通状态。不再采用扰动观察法来调校智能接线盒102的电气参数。
需要说明的是,所述智能接线盒102与所述智能中继器105通过有线方式,或,无线方式连接。
在具体实践中,系统通讯方式可以是无线方式,既智能接线盒102和智能中继器105之间通过无线连接;也可以是有线方式,既智能接线盒102和智能中继器105之间通过电力载波通讯连接,本实施例以无线通信方式为例进行的说明。
优选的,本实施例还提供另一种使用形式:智能中继器105将基准数据和阈值下发到智能接线盒102;智能接线盒102根据当前的数据情况、基准数据及阈值,智能接线盒102自行判断是否有优化需求。如果有,则启动优化算法;当智能接线盒102优化后的数据接近基准数据后,智能接线盒102认定该情况下优化需求不再存在;从而终止优化算法;恢复到逃逸(直通)状态。
上述使用形式在实际应用中,智能中继器105将本轮计算出的基准数据下发 给每一个智能接线盒102。智能接线盒102持续将采样数据发给智能中继器105,并从智能中继器105获得当前最新的基准数据。智能接线盒102根据实时采样的数据信息,和智能中继器105下发的基准数据进行比较,并根据自己当前的状态进行调整。如果当前为直通状态,且差异小于阈值,则继续保持直通状态;如果差异大于阈值,则进入优化状态。如果当前为优化状态,且差异大于阈值,则继续保持优化状态;如果差异小于阈值,则改为直通状态。
优选的,系统还可以包括云端服务的数据云中心和移动终端,智能中继器105将获取和产生的数据上传存储至云端,用户可以使用智能终端查看云端数据,随时了解光伏组串的运行数据。
实施例二
图2是根据一示例性实施例示出的一种光伏组串能量管理方法的步骤示意图,提供一种光伏组串能量管理方法,包括:
步骤S101、获取相应光伏组件及智能接线盒的数据信息;
步骤S102、根据所述数据信息,利用预设算法计算每个光伏组件的基准数据;
步骤S103、判断所述数据信息与所述基准数据的差异是否超过预设阈值;
步骤S104、若是,则启动预设优化算法,对光伏组件的输出功率进行优化;
步骤S105、若否,则保持所述输出功率。
可以理解的是,本实施例提供的一种光伏组串能量管理方法包括:获取相应光伏组件及智能接线盒的数据信息;根据所述数据信息,利用预设算法计算每个光伏组件的基准数据;判断所述数据信息与所述基准数据的差异是否超过预设阈值;若是,则启动预设优化算法,对光伏组件的输出功率进行优化;若否,则保持所述输出功率。该方法能够使得在有遮挡的情况下的光伏组件的输出功率始终保持在最大功率点上,在无遮挡的情况下的光伏组件仍然能够处于最优工作点。
需要说明的是,所述根据所述数据信息,利用预设算法计算每个光伏组件的 基准数据,包括:
将所述数据信息中的每一类数据进行排序并计算异常点边界,去掉异常点后,求取平均值;
根据获得数据的时间,调整新数据与旧数据的权重大小,并进行加权平均;将处理完成后得到的平均数据信息,作为光伏组件的基准数据。
需要说明的是,所述启动预设优化算法,对光伏组件的输出功率进行优化,包括:
实时监测所述光伏组件的输出功率并根据变化情况,采用扰动观察法,调整智能接线盒直流直流转换电路的电气参数,使得光伏组件优化后的输出功率始终保持在最大功率点上。
实施例三
提供一种光伏组串能量管理设备,包括:
主控器,及与所述主控器相连的存储器;
所述存储器,其中存储有程序指令;
所述主控器用于执行存储器中存储的程序指令,执行上述任一项所述的方法。可以理解的是,上述各实施例中相同或相似部分可以相互参考,在一些实施例中未详细说明的内容可以参见其他实施例中相同或相似的内容。
需要说明的是,在本发明的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本发明的描述中,除非另有说明,“多个”的含义是指至少两个。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种光伏组串能量管理系统,其特征在于,包括:
    每个光伏组件的输出连接于对应智能接线盒的输入,智能接线盒的输出相互串联,再通过逆变器接入电网;
    与每个智能接线盒分别连接的智能中继器;
    所述智能接线盒用于获取相应光伏组件及自身的数据信息,并发送至所述智能中继器;
    所述智能中继器用于根据所述数据信息,利用预设算法计算每个光伏组件的基准数据;判断所述数据信息与所述基准数据的差异是否超过预设阈值;若是,则控制所述智能接线盒启动预设优化算法,对光伏组件的输出功率进行优化;若否,则控制智能接线盒工作在直通状态,保持所述输出功率。
  2. 根据权利要求1所述的系统,其特征在于,
    所述智能接线盒为直流直流转换器。
  3. 根据权利要求2所述的系统,其特征在于,
    所述智能接线盒还用于对所述光伏组件进行实时检测,获取所述光伏组件及自身的数据信息;
    所述数据信息包括但不限于:所述光伏组件输出的电压、电流的检测信息,及,所述智能接线盒自身的相关参数,所述相关参数包括但不限于输出电压电流数据、温度和PWM。
  4. 根据权利要求3所述的系统,其特征在于,所述根据所述数据信息,利用预设算法计算每个光伏组件的基准数据,包括:
    将所述数据信息中的每一类数据进行排序并计算异常点边界,去掉异常点后,求取平均值;
    根据获得数据的时间,调整新数据与旧数据的权重大小,并进行加权平均;
    将处理完成后得到的平均数据信息,作为光伏组件的基准数据。
  5. 根据权利要求3所述的系统,其特征在于,所述智能接线盒启动预设优化算法,对光伏组件的输出功率进行优化,包括:
    所述智能接线盒实时监测所述光伏组件的输出功率并根据变化情况,采用扰动观察法,调整智能接线盒直流直流转换电路电气参数,使得优化后的输出功率始终保持在最大功率点上。
  6. 根据权利要求1所述的系统,其特征在于,
    所述智能接线盒与所述智能中继器通过有线方式,或,无线方式连接。
  7. 一种光伏组串能量管理方法,其特征在于,包括:
    获取相应光伏组件及智能接线盒的数据信息;
    根据所述数据信息,利用预设算法计算每个光伏组件的基准数据;
    判断所述数据信息与所述基准数据的差异是否超过预设阈值;
    若是,则启动预设优化算法,对光伏组件的输出功率进行优化;
    若否,则保持所述输出功率。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述数据信息,利用预设算法计算每个光伏组件的基准数据,包括:
    将所述数据信息中的每一类数据进行排序并计算异常点边界,去掉异常点后,求取平均值;
    根据获得数据的时间,调整新数据与旧数据的权重大小,并进行加权平均;
    将处理完成后得到的平均数据信息,作为光伏组件的基准数据。
  9. 根据权利要求7所述的方法,其特征在于,所述启动预设优化算法,对光伏组件的功率进行优化,包括:
    实时监测所述光伏组件的输出功率并根据变化情况,采用扰动观察法,调整智能接线盒直流直流转换电路的电气参数,使得优化后的输出功率始终保持在最大功率点上。
  10. 一种光伏组串能量管理设备,其特征在于,包括:
    主控器,及与所述主控器相连的存储器;
    所述存储器,其中存储有程序指令;
    所述主控器用于执行存储器中存储的程序指令,执行如权利要求7~9任一项所述的方法。
PCT/CN2023/080427 2023-02-24 2023-03-09 一种光伏组串能量管理系统、方法及设备 WO2024174298A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310162552.1A CN115987207A (zh) 2023-02-24 2023-02-24 一种光伏组串能量管理系统、方法及设备
CN202310162552.1 2023-02-24

Publications (1)

Publication Number Publication Date
WO2024174298A1 true WO2024174298A1 (zh) 2024-08-29

Family

ID=85968258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080427 WO2024174298A1 (zh) 2023-02-24 2023-03-09 一种光伏组串能量管理系统、方法及设备

Country Status (2)

Country Link
CN (1) CN115987207A (zh)
WO (1) WO2024174298A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115987207A (zh) * 2023-02-24 2023-04-18 意美旭智芯能源科技有限公司 一种光伏组串能量管理系统、方法及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109193777A (zh) * 2018-10-12 2019-01-11 阳光电源股份有限公司 一种功率优化器以及光伏发电系统
CN212392680U (zh) * 2020-09-18 2021-01-22 广州中旭新能源有限公司 辐照及温度自适应电压优化控制的超长串光伏系统
US20220038052A1 (en) * 2020-07-30 2022-02-03 Sungrow Power Supply Co., Ltd. Method For Controlling Operation Of MLPE Device, Method For Controlling MLPE Devices, and Photovoltaic System
CN114142525A (zh) * 2021-12-17 2022-03-04 深圳市中旭新能源有限公司 一种双模式优化控制的光伏发电系统
CN115987207A (zh) * 2023-02-24 2023-04-18 意美旭智芯能源科技有限公司 一种光伏组串能量管理系统、方法及设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291052B (zh) * 2011-08-22 2014-01-22 浙江昱能光伏科技集成有限公司 太阳能光伏系统及其能量采集优化方法和故障检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109193777A (zh) * 2018-10-12 2019-01-11 阳光电源股份有限公司 一种功率优化器以及光伏发电系统
US20220038052A1 (en) * 2020-07-30 2022-02-03 Sungrow Power Supply Co., Ltd. Method For Controlling Operation Of MLPE Device, Method For Controlling MLPE Devices, and Photovoltaic System
CN212392680U (zh) * 2020-09-18 2021-01-22 广州中旭新能源有限公司 辐照及温度自适应电压优化控制的超长串光伏系统
CN114142525A (zh) * 2021-12-17 2022-03-04 深圳市中旭新能源有限公司 一种双模式优化控制的光伏发电系统
CN115987207A (zh) * 2023-02-24 2023-04-18 意美旭智芯能源科技有限公司 一种光伏组串能量管理系统、方法及设备

Also Published As

Publication number Publication date
CN115987207A (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
CN101677222B (zh) 用于控制太阳能光伏系统爬坡速率的系统及其方法
US20160254673A1 (en) Power point tracking
CN105610333A (zh) 用于操作功率转换器的系统、方法和设备
JP6236923B2 (ja) 太陽光発電モジュールの直並列組合わせ決定方法
BR112020019760A2 (pt) usina de pico renovável em escala de utilidade, ar-mazenamento de energia e pv solar fortemente acoplado
CN104104112B (zh) 用于两级拓扑结构的光伏并网逆变器的mppt控制方法
CN103683324A (zh) 一种微型电网系统中用于分布式电源并联运行模式的基于通信网络的改进的下垂控制方法
EP3836389A1 (en) Method for controlling photovoltaic power generation, control device, and photovoltaic power generation system
CN109193777B (zh) 一种功率优化器以及光伏发电系统
WO2024174298A1 (zh) 一种光伏组串能量管理系统、方法及设备
CN103178544A (zh) 并联型多单元光伏并网逆变器系统的启停控制方法
CN108539789A (zh) 一种光伏发电系统
CN109888827A (zh) 光伏并网逆变器功率限制方法、装置、控制器及逆变器
CN112491079A (zh) 一种光伏电站逆变器功率快速控制的方法
KR20140071028A (ko) 전력 변환 장치, 태양광발전 시스템 및 이의 제어 방법
WO2024104363A1 (zh) 光伏逆变器及其功率调节方法以及光伏系统
CN113725921B (zh) 一种光伏运行在最大功率点左侧参与电网调频的控制方法
CN107968433B (zh) 一种提高光伏逆变器利用效率的直流拓扑结构及控制方法
CN109038666B (zh) 太阳能电池板输出功率调节系统
CN105159388B (zh) 一种用于光伏微网系统中的最大功率点跟踪的方法
US20220416546A1 (en) Photovoltaic system and control method
Dat et al. Modeling the dynamics of a DC distribution grid integrated of renewable energy sources
CN113489007A (zh) 一种基于边缘物联代理的光伏出力预测方法及系统
Salam et al. Design of an efficient mppt for grid connected photovoltaic system
CN107968432A (zh) 一种提高光伏电池板输出利用率的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23923470

Country of ref document: EP

Kind code of ref document: A1