WO2024169570A1 - 车载充电控制方法、装置、汽车、系统及存储介质 - Google Patents

车载充电控制方法、装置、汽车、系统及存储介质 Download PDF

Info

Publication number
WO2024169570A1
WO2024169570A1 PCT/CN2024/074349 CN2024074349W WO2024169570A1 WO 2024169570 A1 WO2024169570 A1 WO 2024169570A1 CN 2024074349 W CN2024074349 W CN 2024074349W WO 2024169570 A1 WO2024169570 A1 WO 2024169570A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
target vehicle
vehicle
management system
temperature
Prior art date
Application number
PCT/CN2024/074349
Other languages
English (en)
French (fr)
Inventor
丁更新
刘陈明
阳可怡
李冬冬
谢志能
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2024169570A1 publication Critical patent/WO2024169570A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present application relates to the technical field of electric vehicles, and in particular to a vehicle-mounted charging control method, device, vehicle, system and storage medium.
  • the embodiments of the present application provide a vehicle-mounted charging control method, device, vehicle, system and storage medium, which can increase the charging speed of the battery pack of the target vehicle.
  • an embodiment of the present application provides a vehicle charging control method, the method comprising:
  • the on-board charger is controlled to enter the DC charging mode to fast charge the battery pack of the target vehicle.
  • the method further includes:
  • the battery management system of the target vehicle is in a high voltage power-up state.
  • the battery management system of the target vehicle when the battery management system of the target vehicle is in a low-voltage wake-up state, if the battery management system does not receive a high-voltage power-on request from the vehicle controller of the target vehicle, the battery management system is controlled to enter a low-voltage power-on standby state.
  • the method before the battery management system of the target vehicle performs the pre-charging high voltage operation, the method further includes:
  • a method for determining that the battery management system of the target vehicle is in an upper high voltage state includes:
  • the difference between the voltage of the high-voltage connection port and the voltage of the battery pack of the target vehicle is less than a preset threshold, it is determined that the battery management system of the target vehicle is in an upper high-voltage state.
  • determining whether a charging socket of an onboard charger of a target vehicle is connected to a DC charging pile includes:
  • CC2 signal is a connection signal from a DC charging pile
  • the CC2 signal is used to indicate that the charging socket of the on-board charger of the target vehicle and the fast charging gun of the DC charging pile are connected.
  • the method further includes:
  • the on-board charger of the target vehicle is controlled to enter the AC charging mode.
  • the second preset time period is 30 seconds.
  • the method further includes:
  • the on-board charger After the on-board charger enters the AC charging mode, if a notification signal is received within a third preset time period, the battery cells are processed according to the temperature of the battery cells in the target vehicle so that the temperature of the battery cells is maintained within a preset range; the notification signal is used to indicate that the battery cells are processed;
  • the third preset time period is 30 seconds.
  • the notification signal includes a pulse width modulation (PWM) wave signal having a duty cycle of a preset value.
  • PWM pulse width modulation
  • the preset value ranges from 5% to 95%.
  • the battery cell is processed according to the temperature of the battery cell in the target vehicle, including:
  • the highest temperature of the battery cell in the target vehicle is greater than a preset first temperature, and the lowest temperature of the battery cell is greater than or equal to a preset second temperature, cooling the battery cell;
  • the battery cells are heated.
  • the preset range is greater than or equal to the second temperature and less than or equal to the first temperature.
  • the method further includes:
  • a notification message is sent to the vehicle controller, where the notification message is used to indicate that the battery cell temperature difference is greater than a preset value.
  • an embodiment of the present application provides a vehicle-mounted charging control device, the device comprising:
  • a judgment unit used to judge whether the charging socket of the on-board charger of the target vehicle and the DC charging pile are connected when the battery management system of the target vehicle is in an upper high voltage state
  • the processing unit is used to control the on-board charger to enter a DC charging mode if the charging socket of the on-board charger of the target vehicle is connected to a DC charging pile, so as to fast charge the battery pack of the target vehicle.
  • the optional implementation methods and beneficial effects of the on-board charging control device can be found in the relevant content of the first aspect above, and will not be described in detail here.
  • an embodiment of the present application provides an electric vehicle, which includes a vehicle body, a charging control module, and an energy storage module, wherein the energy storage module is used to provide electrical energy to the vehicle body, and the charging control module controls the charging and/or discharging of the energy storage module by executing the method provided in the first aspect.
  • an embodiment of the present application provides a charging system, which includes an electric vehicle and a charging pile.
  • the electric vehicle obtains electric energy from the charging pile by executing the method provided in the first aspect.
  • an embodiment of the present application provides a computer-readable storage medium, which stores a computer program.
  • the computer program is executed by a processor, the vehicle-mounted charging control method provided in the embodiment of the present application is implemented.
  • the user when the battery management system (BMS) of the target vehicle is in the high-voltage state, the user does not need to discharge the battery pack first, nor does the user need to power up from low voltage to high voltage during charging to complete the charging of the battery pack of the electric vehicle. Instead, it is directly determined whether the charging socket of the on-board charger of the target vehicle and the DC charging pile are connected; if the charging socket of the on-board charger of the target vehicle and the DC charging pile are connected, the on-board charger is controlled to enter the DC charging mode to fast charge the battery pack of the target vehicle, thereby increasing the charging speed of the battery pack of the target vehicle.
  • BMS battery management system
  • FIG1 is a schematic diagram of a charging interface provided in an embodiment of the present application.
  • FIG2 is a flow chart of a vehicle charging control method provided in an embodiment of the present application.
  • FIG3 is a flow chart of another vehicle charging control method provided in an embodiment of the present application.
  • FIG4 is a flow chart of another on-vehicle charging control method provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of a vehicle-mounted charging control device provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of the structure of an electric vehicle provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the structure of a charging system provided in an embodiment of the present application.
  • first, second, third, etc. may be used herein to describe various information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • word “if” as used herein may be interpreted as “at the time of” or “when” or “in response to determining”.
  • singular forms "a”, “an”, and “the” are intended to include the plural forms as well. formula, unless there is an indication to the contrary in the context.
  • A, B, C means "any one of the following: A; B; C; A and B; A and C; B and C; A and B and C
  • A, B or C or "A, B and/or C” means "any one of the following: A; B; C; A and B; A and C; B and C; A and B and C”.
  • the words “if” and “if” may be interpreted as “at the time of” or “when” or “in response to determining” or “in response to detecting”, depending on the context.
  • the phrases “if it is determined” or “if (stated condition or event) is detected” may be interpreted as “when it is determined” or “in response to determining” or “when detecting (stated condition or event)” or “in response to detecting (stated condition or event)", depending on the context.
  • step codes such as S201, S202, etc. are used for the purpose of expressing the corresponding content more clearly and concisely, and do not constitute a substantial limitation on the sequence.
  • those skilled in the art may execute S408b first and then S407a, may execute S409b first and then S408a, may execute S409b first and then S407b, etc., but these should all be within the scope of protection of the present application.
  • FIG. 1 is a schematic diagram of a charging interface provided in an embodiment of the present application.
  • the AC charging pile end 101 is connected to the on-board charger 1021 of the target vehicle end 102 through five charging interfaces.
  • L is the live wire
  • N is the neutral wire
  • PE is the ground wire, or called the protective earth wire (Protecting Earthing)
  • the CP signal is used by the battery management system 1022 of the target vehicle end 102 to determine whether a notification signal is received, and the notification signal is used to instruct the battery cell to be processed so that the temperature of the battery cell is kept within a preset range
  • the CC signal is used by the battery management system 1022 of the target vehicle end 102 to determine whether the charging gun in the AC charging pile end 101 and the charging socket of the on-board charger 1021 of the target vehicle end 102 are well connected
  • the CC2 connection port is used by the battery management system 1022 of the target vehicle end 102 to determine whether the charging gun of the DC charging pile and the on-board charger 1021 of the target
  • the battery management system 1022 can obtain a confirmation message.
  • the confirmation message includes a first confirmation message and a second confirmation message.
  • the first confirmation message is used to indicate whether the charging gun lock is well connected; the second confirmation message is used to indicate the overload capacity of the charging line. That is to say, after the charging gun is well connected to the charging socket of the on-board charger 1021 of the target vehicle end 102, if there is a circuit for detecting the resistance inside the charging gun in the battery management system 1022 of the target vehicle end 102, the battery management system 1022 can determine the overload capacity of the charging line.
  • the switch S is normally not connected to the charging gun. In this case, it leads to low voltage and normal power; when the charging gun is connected normally, the switch S will switch to the charging capacity status output port, at which time the voltage is 9V.
  • the AC charging pile end 101 can output a notification signal, and when the battery management system 1022 receives the notification signal, it can process the battery cell.
  • the battery management system 1022 can also determine the driving capacity of the charging pile.
  • the AC charging pile end 101 can determine that the state of the button K on the charging gun is closed. At this time, the AC charging pile end 101 can send a confirmation message of the charging connection state to the battery management system 1022 of the target vehicle end 102, and accordingly, the battery management system 1022 of the target vehicle end 102 receives the confirmation message of the charging connection state; after the battery management system 1022 of the target vehicle end 102 receives the confirmation message of the charging connection state, it can reduce the charging allowable current, thereby avoiding the disconnection of the charging gun under excessive load, thereby ensuring the safety of the target vehicle.
  • the battery management system can not only confirm the connection status of the charging gun, thereby ensuring the safety of the target vehicle; it can also determine the overcurrent capacity of the charging pile (that is, determine the overload capacity of the charging line and determine the driving capacity of the charging pile), thereby ensuring the adequacy of self-inspection.
  • the vehicle-mounted charging control method provided by the present application is described below.
  • the vehicle-mounted charging control method provided by the embodiments of the present application can be executed by an electric vehicle, or by a battery management system, or by a battery management system in an electric vehicle, which is not limited here.
  • FIG 2 is a flow chart of a vehicle charging control method provided by an embodiment of the present application. As shown in Figure 2, the vehicle charging control method may include but is not limited to the following steps:
  • the battery management system is an important component of the electric vehicle power battery system. On the one hand, it detects, collects and preliminarily calculates the real-time status parameters of the battery, and controls the on-off of the power supply circuit according to the comparison relationship between the detection value and the allowable value; on the other hand, it reports the collected key data to the vehicle controller, receives the instructions of the vehicle controller, and coordinates with other systems on the vehicle.
  • the battery management system usually has the function of measuring the battery voltage, which can prevent or avoid the occurrence of abnormal conditions such as over-discharge, over-charging, and over-temperature of the battery.
  • the battery management system of the target vehicle when the on-board charger and the charging gun of the target vehicle are connected (that is, after the charging gun is plugged in), the battery management system of the target vehicle is in the awakening state.
  • the mode priority of the battery management system is the highest fast charging mode, followed by the slow charging mode, then the normal high-voltage power-on mode, and finally the external discharge mode.
  • the external discharge mode is connected through a discharge gun, which has a special CC connection resistor built in.
  • the difference in CC connection resistance represents an external device with external discharge requirements.
  • the CC connection resistor is a resistor inside the discharge gun.
  • the discharge gun is connected to the circuit in the battery management system 1022 through the CC connection resistor. After the CC connection resistor and the circuit in the battery management system 1022 of the target vehicle end 102 are matched, the battery management system 1022 can obtain a confirmation message.
  • determining whether the charging socket of the on-board charger of the target vehicle is connected to the DC charging pile may include: determining whether a CC2 signal is detected, wherein the CC2 signal is a connection signal from a DC charging pile (or fast charging pile), and the CC2 signal is used to indicate that the charging socket of the on-board charger of the target vehicle is connected to the fast charging gun of the DC charging pile.
  • the battery management system determines whether the charging socket of the on-board charger of the target vehicle is connected to the DC charging pile, that is, whether the CC2 signal in Figure 1 is valid.
  • the charging socket of the on-board charger of the target vehicle is connected to the DC charging pile.
  • step S201 the battery management system of the target vehicle is still in the battery of the target vehicle.
  • the battery management system is in a low-voltage wake-up state, if a high-voltage power-on request is received from the vehicle controller of the target vehicle, a pre-charging high-voltage operation is performed; after the pre-charging high-voltage operation is completed, high-voltage power-on is performed; if the high-voltage power-on is completed within a first preset time period, it is determined that the battery management system of the target vehicle is in a high-voltage state.
  • the method for determining that the battery management system of the target vehicle is in an upper high-voltage state may include: when the battery management system of the target vehicle is in an awake state, obtaining the voltage of the high-voltage connection port in the battery management system of the target vehicle; if the difference between the voltage of the high-voltage connection port and the voltage of the battery pack of the target vehicle is less than a preset threshold, then determining that the battery management system of the target vehicle is in an upper high-voltage state.
  • the preset threshold is 5V, if the voltage of the high-voltage connection port in the battery management system of the target vehicle is 334V, then determining that the battery management system of the target vehicle is in an upper high-voltage state.
  • the preset threshold is 3V, if the voltage of the high-voltage connection port in the battery management system of the target vehicle is 587V, then determining that the battery management system of the target vehicle is in an upper high-voltage state.
  • the battery management system can respond to the fast charging mode.
  • the battery management system of the target vehicle can make a mode priority judgment. If the CC2 signal is valid, it responds to the fast charging mode, that is, controls the on-board charger to enter the DC charging mode; if the CC2 signal is invalid, it does not respond to the fast charging mode.
  • the on-board charger of the target vehicle is controlled to enter the AC charging mode.
  • the second preset time period may be 30 seconds (s).
  • the battery management system of the target vehicle can control the on-board charger to enter the DC charging mode when it is in the upper high-voltage state and the charging socket of the on-board charger is connected to the DC charging pile, thereby increasing the charging speed of the battery pack of the target vehicle.
  • FIG 3 is a flow chart of another on-board charging control method provided by an embodiment of the present application.
  • the difference from the on-board charging control method shown in Figure 2 is that the on-board charging control method shown in Figure 3 also describes the charging control operation of the battery management system of the target vehicle if the on-board charger and the DC charging pile of the target vehicle are not connected, and the handshake process between the battery management system and the charging pile when the battery management system of the target vehicle is not in the upper high voltage state.
  • the on-board charging control method includes but is not limited to the following steps:
  • step S301 Determine whether the battery management system of the target vehicle is in an upper high voltage state. If so, execute step S302a; if not, execute step S302b.
  • determining whether the battery management system of the target vehicle is in an upper high-voltage state may include: when the battery management system of the target vehicle is in an awake state, obtaining the voltage of the high-voltage connection port in the battery management system of the target vehicle; if the difference between the voltage of the high-voltage connection port and the voltage of the battery pack of the target vehicle is less than a preset threshold, determining that the battery management system of the target vehicle is in an upper high-voltage state; if the difference between the voltage of the high-voltage connection port and the voltage of the battery pack of the target vehicle is greater than or equal to the preset threshold, determining that the battery management system of the target vehicle is not in an upper high-voltage state.
  • the battery management system of the target vehicle is in the awake state by determining whether the onboard charger and the charging gun of the target vehicle are connected (i.e., whether the charging gun is plugged in). Optionally, if the onboard charger and the charging gun of the target vehicle are connected (i.e., the charging gun is plugged in), it is determined that the battery management system of the target vehicle is in the awake state.
  • step S302a determine whether the charging socket of the on-board charger of the target vehicle is connected to the DC charging pile, if so, execute step S303a; if not, execute step S303b.
  • step S302a can refer to the relevant description in the aforementioned step S201, which will not be repeated here.
  • step S301 if it is determined that the charging socket of the onboard charger of the target vehicle and the charging gun of the AC charging pile are not connected within the second preset time period, step S301 is executed. That is, if the CC signal in FIG1 is invalid, the battery management system may execute step S301.
  • step S303b the battery management system of the target vehicle further performs the following steps S304 and S305.
  • the notification signal is used to instruct the battery cell to be processed.
  • the preset range can be determined according to actual needs.
  • the preset range can also be a preset plurality of switchable ranges, so that the user can switch to different preset ranges in different situations.
  • the notification signal may be sent by an on-board charger of the target vehicle, and the notification signal may be a pulse width modulation (PWM) wave signal with a duty cycle of a preset value.
  • PWM pulse width modulation
  • the PWM wave signal may be used to indicate the driving force of the charging pile, that is, if the battery management system receives a PWM wave signal with a duty cycle of a preset value, the driving force of the charging pile may be determined.
  • the driving force of the charging pile may be, for example, the output power of the charging pile.
  • the battery management system may process the battery cell according to the temperature value of the battery cell stored in the battery management system of the target vehicle.
  • the third preset time period may be 30 seconds long; the preset value may range from 5% to 95%. That is, if the battery management system receives a PWM wave signal with a duty cycle of 5%-95% within 30 seconds, it indicates that the CP signal in FIG1 is valid. At this time, the battery management system may process the battery cell according to the temperature of the battery cell in the target vehicle.
  • the battery cells are processed according to the temperature of the battery cells in the target vehicle, which may include: if the highest temperature of the battery cells in the target vehicle is greater than a preset first temperature, and the lowest temperature of the battery cells is greater than or equal to a preset second temperature, the battery cells are cooled; if the highest temperature of the battery cells in the target vehicle is less than or equal to the first temperature, and the lowest temperature of the battery cells is less than the second temperature, the battery cells are heated.
  • the aforementioned preset range may be a range between the second temperature and the first temperature, that is, the preset range is greater than or equal to the second temperature, and less than or equal to the first temperature.
  • a notification message is sent to the vehicle controller, which is used to indicate that the battery cell temperature difference is greater than a preset temperature difference value.
  • the battery cell needs to be cooled. If the highest temperature of the battery cell in the battery management system of the target vehicle is 35°C and the lowest temperature is -5°C during a certain period of time, in this case, the battery cell needs to be heated.
  • the battery management system needs to send a notification message to the vehicle controller, which is used to indicate that the battery cell temperature difference is too large.
  • the temperature of the battery cell should be judged. If the temperature difference of the battery cell is too large, the battery cell temperature difference fault message can be reported to the vehicle controller of the target vehicle; if the maximum temperature of the battery cell is too high, the cooling process of the battery cell is triggered; if the minimum temperature of the battery cell is too low, the heating process of the battery cell is triggered.
  • S305 Send the charging permission current and charging permission power to the vehicle controller of the target vehicle.
  • the battery management system processes the battery cells according to the temperature values of the battery cells stored in the battery management system of the target vehicle, it can send the charging permission current and charging permission power to the vehicle controller of the target vehicle according to the charging capacity that its own battery cells can withstand.
  • the vehicle controller of the target vehicle receives the charging permission current and charging permission power.
  • the battery management system can also receive the energy required by the target vehicle reported by the vehicle controller of the target vehicle according to the energy management strategy.
  • the energy required by the target vehicle is determined based on the charging capacity of the battery cell, the energy consumed by the thermal management of the target vehicle, and the low-voltage energy consumed by the target vehicle. In this way, during the charging process, energy management can be implemented from the perspective of the entire vehicle, which facilitates the integration of heating and charging functions.
  • S302b When the battery management system of the target vehicle is in a low-voltage wake-up state, if a high-voltage power-on request is received from the vehicle controller of the target vehicle, a pre-charging high-voltage operation is performed.
  • the battery management system 1022 After the battery management system 1022 receives a low level from an external device through the hard-line wake-up input port, the battery management system is in a low-voltage wake-up state.
  • the vehicle control unit is the core controller of the vehicle control. It controls the battery system, electric drive system, thermal management system, etc. through the controller area network (CAN) bus or local interconnect network (LIN) bus or hard wire. Specifically, it controls the gear position, accelerator pedal, and brake pedal. According to the real-time power battery power, it calculates the torque control that needs to be output, as well as the low-voltage and high-voltage power supply and energy recovery of the whole vehicle.
  • CAN controller area network
  • LIN local interconnect network
  • PACK battery pack
  • the battery management system of the target vehicle may determine whether there is an action fault in the battery management system that prohibits the battery management system from controlling the closing of the high-voltage contactor; if there is no action fault that prohibits the battery management system from controlling the closing of the high-voltage contactor, the pre-charging high voltage operation is performed.
  • the action fault that prohibits the battery management system from controlling the closing of the high-voltage contactor can be a level 4 fault (such as a high-voltage interlock fault) or a level 5 fault (such as a battery pack thermal runaway fault, or a collision fault).
  • a level 4 fault such as a high-voltage interlock fault
  • a level 5 fault such as a battery pack thermal runaway fault, or a collision fault.
  • the battery management system does not need to lower the high voltage immediately, but only needs to complete the delayed lowering of the high voltage.
  • a level 5 fault the battery management system needs to lower the high voltage immediately. It can be seen that the severity of a level 4 fault is relatively low, and the severity of a level 5 fault is relatively high.
  • the battery management system of the target vehicle can send a response message to the vehicle controller of the target vehicle according to the fault level status.
  • the response message is used to indicate whether the battery management system performs a pre-charging high-voltage operation.
  • the battery management system of the target vehicle when the battery management system of the target vehicle is in a low voltage wake-up state, if If the battery management system does not receive a high-voltage power-on request from the vehicle controller of the target vehicle, the battery management system is controlled to enter a low-voltage power-on standby state.
  • the low-voltage power-on standby state is a state in which the battery management system of the target vehicle is in a low-voltage power-on standby state.
  • step S302b the battery management system of the target vehicle further performs the following steps S306 and S307.
  • step S307 If the high voltage power-up is completed within the first preset time period, it is determined that the battery management system of the target vehicle is in a high voltage power-up state, and step S302a is executed.
  • the first preset time period may be 1750 milliseconds (ms).
  • completing high voltage power-on within a first preset time period may include: controlling the closing of a total positive contactor and a total negative contactor within the first preset time period.
  • the battery management system of the target vehicle can determine the state of the battery management system. When it is in the upper high-voltage state and the charging socket of the on-board charger is connected to the DC charging pile, the on-board charger is controlled to enter the DC charging mode to quickly charge the battery pack of the target vehicle; when it is in the upper high-voltage state and the charging socket of the on-board charger is not connected to the DC charging pile but is connected to the AC charging pile, the on-board charger is controlled to enter the AC charging mode.
  • the use of the embodiment of the present application can not only improve the charging speed of the battery pack of the target vehicle, but also, compared with the prior art that needs to identify that the battery management system of the target vehicle is in a high-voltage state under power failure before charging the battery pack, it can determine the state of the battery management system, thereby having a wider range of applications.
  • the embodiment of the present application can better realize the handshake between the battery management system and the charging pile by redefining the control logic between the charging pile and the battery management system of the target vehicle.
  • FIG 4 is a flow chart of another on-board charging control method provided by an embodiment of the present application.
  • the difference from the on-board charging control method shown in Figure 3 is that the on-board charging control method shown in Figure 4 also specifically describes how the battery management system of the target vehicle processes the battery cell according to the temperature value of the battery cell stored in the battery management system.
  • the on-board charging control method may include but is not limited to the following steps:
  • step S401 Determine whether the battery management system of the target vehicle is in an upper high voltage state. If so, execute step S402a; if not, execute step S402b.
  • step S402a determine whether the CC2 signal is valid; if so, execute step S403a; if not, execute step S403b.
  • S403b determine that the high voltage power-up of the battery management system of the target vehicle is completed.
  • step S403b the battery management system of the target vehicle further executes the following steps S404 to S410b.
  • step S404 determining whether the CC signal is valid within the second preset time period; if so, executing step S405; if not, executing step S401.
  • S405 Control the battery management system to enter an AC charging mode.
  • step S406 determining whether the CP signal is valid within a third preset time period; if so, executing step S407a; if not, executing step S407b.
  • step S407a determining whether the maximum temperature of the battery cell in the target vehicle is greater than a preset first temperature, and whether the minimum temperature is less than a preset second temperature; if so, executing step S408a; if not, executing step S408b.
  • S407b Determine that the handshake between the battery management system and the AC charging pile fails.
  • the battery management system of the target vehicle may also control the battery management system to enter a level 2 fault state.
  • a level 2 fault may include, but is not limited to, a slightly too high cell voltage, a slightly too low cell voltage, a slightly too high temperature, a slightly too low temperature, a high voltage interlock fault during driving, a temperature equalization fault, etc.
  • the degree of damage to the battery pack is relatively low, so in this case, the battery pack may continue to be charged with limited power.
  • step S408b determine whether the maximum temperature of the battery cell in the target vehicle is greater than the first temperature, and whether the minimum temperature of the battery cell is greater than or equal to the second temperature; if so, execute step S409a; if not, execute step S409b.
  • step S409b determine whether the maximum temperature of the battery cell in the target vehicle is less than or equal to the first temperature, and whether the minimum temperature of the battery cell is less than the second temperature; if so, execute step S410a; if not, execute step S410b.
  • step S410a heating the battery cell, and executing step S410b.
  • step S402b the battery management system of the target vehicle further executes the following steps S411 to S414.
  • step S411 determine whether a high voltage power-on request is received from the vehicle controller of the target vehicle; if so, execute step S412; if not, execute step S402b.
  • step S413 After the pre-charging high voltage operation is completed, high voltage power-up is performed, and it is determined whether the high voltage power-up is completed within the first preset time period; if so, step S402a is executed; if not, step S414 is executed.
  • step S406 determines whether the CP signal is valid within the third preset time period. If so, step S408b can be executed first; if not, step S407b is executed. S408b, determine whether the highest temperature of the battery cell in the target vehicle is greater than the first temperature, and whether the lowest temperature of the battery cell is greater than or equal to the second temperature; if so, step S409a is executed; if not, step S407a is executed.
  • step S407a determine whether the highest temperature of the battery cell in the target vehicle is greater than the preset first temperature, and whether the lowest temperature is less than the preset second temperature; if so, step S408a is executed; if not, step S409b is executed.
  • step S409b determine whether the highest temperature of the battery cell in the target vehicle is less than or equal to the first temperature, and whether the lowest temperature of the battery cell is less than the second temperature; if so, step S410a is executed; if not, step S410b is executed.
  • the execution order of steps S407a, S408b, and S409b may be S409b, S407a, and S408b; optionally, the execution order of steps S407a, S408b, and S409b may be S408b, S407a, and S409b; optionally, the execution order of steps S407a, S408b, and S409b may be S408b, S409b, and S407a; optionally, the execution order of steps S407a, S408b, and S409b may be S409b, S408b, and S407a; optionally, the execution order of steps S407a, S408b, and S409b may be S409b, S408b, and S407a; optionally, the execution order of steps S407a, S408b, and S409b may be S407a, S409b, and S408b.
  • the battery management system of the target vehicle may be controlled to enter a level 4 fault state, wherein the level 4 fault is, for example, a high voltage interlock fault.
  • the battery management system of the target vehicle can control the on-board charger to enter the DC charging mode when it is in the upper high voltage state and the charging socket of the on-board charger is connected to the DC charging pile, so as to fast charge the battery pack of the target vehicle; when it is in the upper high voltage state and the charging socket of the on-board charger is not connected to the DC charging pile but is connected to the AC charging pile, the on-board charger can be controlled to enter the AC charging mode.
  • the embodiment of the present application further provides a vehicle charging control device, which can execute the vehicle charging control method shown in Figure 2 or Figure 3 or Figure 4.
  • a vehicle charging control device which can execute the vehicle charging control method shown in Figure 2 or Figure 3 or Figure 4.
  • Figure 5 is a schematic diagram of a vehicle charging control device provided by the embodiment of the present application.
  • the vehicle charging control device may include but is not limited to the following units:
  • the judging unit 501 is used to judge whether the charging socket of the on-board charger of the target vehicle is connected to the DC charging pile when the battery management system of the target vehicle is in the upper high voltage state;
  • the processing unit 502 is used to control the on-board charger to enter a DC charging mode if the charging socket of the on-board charger of the target vehicle is connected to a DC charging pile, so as to fast charge the battery pack of the target vehicle.
  • processing unit 502 is further configured to:
  • the battery management system of the target vehicle is in a high voltage power-up state.
  • processing unit 502 when the processing unit 502 is used to determine that the battery management system of the target vehicle is in the upper high voltage state, it is specifically used to:
  • the difference between the voltage of the high-voltage connection port and the voltage of the battery pack of the target vehicle is less than a preset threshold, it is determined that the battery management system of the target vehicle is in an upper high-voltage state.
  • processing unit 502 is further configured to:
  • the on-board charger of the target vehicle is controlled to enter the AC charging mode
  • the on-board charger After the on-board charger enters the AC charging mode, if a notification signal is received within a third preset time period, the battery cells are processed according to the temperature of the battery cells in the target vehicle so that the temperature of the battery cells is maintained within a preset range; the notification signal is used to indicate that the battery cells are processed;
  • processing unit 502 when the processing unit 502 is used to process the battery cell according to the temperature of the battery cell in the target vehicle, it is specifically used to:
  • the highest temperature of the battery cell in the target vehicle is greater than the first temperature, and the lowest temperature of the battery cell is greater than or equal to the second temperature, cooling the battery cell;
  • the battery cells are heated.
  • processing unit 502 when used to process the battery cell according to the temperature of the battery cell in the target vehicle, it is also specifically used to:
  • a notification message is sent to the vehicle controller, where the notification message is used to indicate that the temperature difference of the battery cell is greater than the preset temperature difference value.
  • the vehicle-mounted charging control device also includes a battery management system.
  • the embodiment of the present application also provides an electric vehicle, please refer to Figure 6, which is a structural schematic diagram of an electric vehicle provided by the embodiment of the present application.
  • the electric vehicle includes a vehicle body 601, a charging control module 602 and an energy storage module 603, wherein the energy storage module 603 is used to provide electric energy for the electric vehicle body, and the charging control module 602 controls the charging and/or discharging of the energy storage module 603 by executing the above method.
  • the charging control module 602 includes a battery management system.
  • the charging control module 602 of the embodiment of the present application may perform the following operations:
  • the on-board charger is controlled to enter the DC charging mode to fast charge the battery pack of the target vehicle.
  • the charging control module 602 further executes:
  • the battery management system of the target vehicle is in a high voltage power-up state.
  • the charging control module 602 when determining that the battery management system of the target vehicle is in an upper high voltage state, the charging control module 602 specifically performs:
  • the difference between the voltage of the high-voltage connection port and the voltage of the battery pack of the target vehicle is less than a preset threshold, it is determined that the battery management system of the target vehicle is in an upper high-voltage state.
  • the charging control module 602 is further configured to execute:
  • the on-board charger of the target vehicle is controlled to enter the AC charging mode
  • the on-board charger After the on-board charger enters the AC charging mode, if a notification signal is received within a third preset time period, the battery cells are processed according to the temperature of the battery cells in the target vehicle so that the temperature of the battery cells is maintained within a preset range; the notification signal is used to indicate that the battery cells are processed;
  • the charging control module 602 when used to process the battery cell according to the temperature of the battery cell in the target vehicle, it specifically performs:
  • the highest temperature of the battery cell in the target vehicle is greater than the first temperature, and the lowest temperature of the battery cell is greater than or equal to the second temperature, cooling the battery cell;
  • the battery cells are heated.
  • the charging control module 602 further executes:
  • the vehicle control The device sends a notification message, which is used to indicate that the battery cell temperature difference is greater than the preset temperature difference value.
  • the charging control module 602 described in the embodiment of the present application can execute the implementation method described in the vehicle-mounted charging control method provided in the embodiment of the present application, and can also execute the implementation method described in the vehicle-mounted charging control device provided in the embodiment of the present application, which will not be repeated here.
  • the present application also provides a charging system, please refer to FIG. 7, which is a schematic diagram of the structure of a charging system provided by the present application.
  • the charging system includes an electric vehicle 701 and a charging pile 702, wherein the electric vehicle 701 is the electric vehicle provided by the above embodiment.
  • the electric vehicle obtains electric energy from the charging pile by executing the method provided by the above embodiment.
  • the present application also provides a computer-readable storage medium, on which a computer program is stored.
  • a computer program is stored.
  • the steps in any of the above method embodiments are implemented.
  • the embodiment of the present application also provides a computer program product, which includes computer program code.
  • the computer program code runs on a computer, the computer executes the steps in any of the above method embodiments.
  • An embodiment of the present application also provides a chip, including a memory and a processor, the memory is used to store computer programs, and the processor is used to call and run the computer programs from the memory, so that a device equipped with the chip executes the steps in any of the above method embodiments.
  • the units in the device of the embodiment of the present application can be merged, divided and deleted according to actual needs.
  • the technical solution of the present application can be embodied in the form of a software product, which is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk) as above, and includes a number of instructions for a terminal device (which can be a mobile phone, a computer, a server, a controlled terminal, or a network device, etc.) to execute the method of each embodiment of the present application.
  • a storage medium such as ROM/RAM, magnetic disk, optical disk
  • a terminal device which can be a mobile phone, a computer, a server, a controlled terminal, or a network device, etc.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • Computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • Computer instructions can be transmitted from one website site, computer, server or data center to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line) or wireless (such as infrared, wireless, microwave, etc.).
  • Computer-readable storage medium The medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center that includes one or more available media.
  • the available medium can be a magnetic medium (e.g., a floppy disk, a storage disk, a tape), an optical medium (e.g., a DVD), or a semiconductor medium (e.g., a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种车载充电控制方法,包括:S201、在目标车辆(102)的电池管理系统(1022)处于上高压状态的情况下,判断目标车辆(102)的车载充电器(1021)的充电插座和直流充电桩是否连接;S202、若目标车辆(102)的车载充电器(1021)的充电插座和直流充电桩相连接,则控制车载充电器(1021)进入直流充电模式,以对目标车辆(102)的电池包进行快充。还公开了一种车载充电控制装置、电动汽车、充电系统以及计算机可读存储介质,其中车载充电控制装置包括判断单元(501)和处理单元(502),充电系统包括电动汽车(701)和充电桩(702),电动汽车(701)包括汽车本体(601)、充电控制模块(602)以及储能模块(603)。本方法可提高对目标车辆(102)的电池包的充电速度。

Description

车载充电控制方法、装置、汽车、系统及存储介质
本申请要求于2023年2月17日提交中国专利局、申请号为202310132831.3、申请名称为“车载充电控制方法、装置、汽车、系统及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电动汽车技术领域,尤其涉及一种车载充电控制方法、装置、汽车、系统及存储介质。
背景技术
近些年来,电动汽车日益成为汽车科技发展的新方向。其中,电动汽车的能量来自于电池包所携带的电能,而电池包需要被充电,其中,在对电池包充电的过程中,车载交流充电是较为重要的一个环节。目前,在对电池包进行充电的过程中,需要用户先对电池包进行放电,在放电结束后,当识别出电动汽车的电池管理系统处于断电下高压状态时,才可以进行充电。在充电时,需要通过低压上电到高压上电,再完成对电动汽车的电池包的充电,这样,导致对电动汽车的电池包的充电速度较慢。因此,如何提高对电动汽车的电池包的充电速度成为了一个亟待解决的问题。
发明内容
本申请实施例提供了一种车载充电控制方法、装置、汽车、系统及存储介质,可提高对目标车辆的电池包的充电速度。
第一方面,本申请实施例提供了一种车载充电控制方法,该方法包括:
在目标车辆的电池管理系统处于上高压状态的情况下,判断目标车辆的车载充电器的充电插座和直流充电桩是否连接;
若目标车辆的车载充电器的充电插座和直流充电桩相连接,则控制车载充电器进入直流充电模式,以对目标车辆的电池包进行快充。
在一种可选的实施方式中,该方法还包括:
在目标车辆的电池管理系统处于上低压唤醒状态的情况下,若接收到来自目标车辆的整车控制器的高压上电请求,则执行预充上高压操作;
在预充上高压操作结束后,进行高压上电;
若在第一预设时间段内完成高压上电,则确定目标车辆的电池管理系统处于上高压状态。
在一种可选的实施方式中,在目标车辆的电池管理系统处于低压唤醒状态的情况下,若电池管理系统未接收到来自目标车辆的整车控制器的高压上电请求,则控制电池管理系统进入低压上电待机状态。
在一种可选的实施方式中,在目标车辆的电池管理系统在执行预充上高压操作之前,该方法还包括:
确定电池管理系统中不存在禁止电池管理系统控制高压接触器闭合的动作故障。
在一种可选的实施方式中,目标车辆的电池管理系统处于上高压状态的确定方式,包括:
在目标车辆的电池管理系统处于唤醒状态的情况下,获取目标车辆的电池管理系统中高 压连接端口的电压;
若高压连接端口的电压和目标车辆的电池包的电压之间的差值小于预设阈值,则确定目标车辆的电池管理系统处于上高压状态。
在一种可选的实施方式中,判断目标车辆的车载充电器的充电插座和直流充电桩是否连接,包括:
判断是否检测到CC2信号,其中,CC2信号为来自直流充电桩的连接信号,CC2信号用于指示目标车辆的车载充电器的充电插座和直流充电桩的快充枪相连接。
在一种可选的实施方式中,该方法还包括:
在目标车辆的车载充电器的充电插座和直流充电桩未连接的情况下,若在第二预设时间段内,确定目标车辆的车载充电器的充电插座和交流充电桩的充电枪相连接,则控制目标车辆的车载充电器进入交流充电模式。
在一种可选的实施方式中,第二预设时间段的时长为30秒。
在一种可选的实施方式中,该方法还包括:
在车载充电器进入交流充电模式后,若在第三预设时间段内,接收到通知信号,则根据目标车辆中电芯的温度,对电芯进行处理,以使电芯的温度保持在预设范围内;该通知信号用于指示对电芯进行处理;
向目标车辆的整车控制器发送充电允许电流和充电允许功率。
在一种可选的实施方式中,第三预设时间段的时长为30秒。
在一种可选的实施方式中,通知信号包括占空比为预设值的脉冲宽度调制(Pulse Width Modulation,PWM)波信号。
在一种可选的实施方式中,预设值的范围是5%至95%。
在一种可选的实施方式中,根据目标车辆中电芯的温度,对电芯进行处理,包括:
若目标车辆中电芯的最高温度大于预设的第一温度,且电芯的最低温度大于或等于预设的第二温度,则对电芯进行冷却处理;
若目标车辆中电芯的最高温度小于或等于第一温度,且电芯的最低温度小于第二温度,则对电芯进行加热处理。
在一种可选的实施方式中,预设范围大于或等于第二温度,且小于或等于第一温度。
在一种可选的实施方式中,该方法还包括:
若目标车辆中电芯的最高温度大于第一温度,且最低温度小于第二温度,则向整车控制器发送通知信息,通知信息用于指示电芯温差大于预设值。
第二方面,本申请实施例提供了一种车载充电控制装置,该装置包括:
判断单元,用于在目标车辆的电池管理系统处于上高压状态的情况下,判断目标车辆的车载充电器的充电插座和直流充电桩是否连接;
处理单元,用于若目标车辆的车载充电器的充电插座和直流充电桩相连接,则控制车载充电器进入直流充电模式,以对目标车辆的电池包进行快充。
可选的,该车载充电控制装置执行可选的实施方式以及有益效果可参见上述第一方面的相关内容,此处不再详述。
第三方面,本申请实施例提供了一种电动汽车,该电动汽车包括汽车主体、充电控制模块、以及储能模块,其中,储能模块用于为所述汽车主体提供电能,充电控制模块通过执行第一方面所提供的方法控制储能模块充电和/或放电。
第四方面,本申请实施例提供了一种充电系统,该充电系统包括电动汽车及充电桩,电 动汽车通过执行第一方面所提供的方法从充电桩处获取电能。
第五方面,本申请实施例提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被处理器执行时实现本申请实施例提供的车载充电控制方法。
本申请实施例中,在目标车辆的电池管理系统(Battery Management System,BMS)处于上高压状态的情况下,无需用户先对电池包进行放电,也无需在充电时通过低压上电到高压上电,再完成对电动汽车的电池包的充电,而是直接判断目标车辆的车载充电器的充电插座和直流充电桩是否连接;若目标车辆的车载充电器的充电插座和直流充电桩相连接,则控制车载充电器进入直流充电模式,以对目标车辆的电池包进行快充,从而,可提高对目标车辆的电池包的充电速度。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种充电接口的示意图;
图2是本申请实施例提供的一种车载充电控制方法的流程示意图;
图3是本申请实施例提供的另一种车载充电控制方法的流程示意图;
图4是本申请实施例提供的又一种车载充电控制方法的流程示意图;
图5是本申请实施例提供的一种车载充电控制装置的示意图;
图6是本申请实施例提供的一种电动汽车的结构示意图;
图7是本申请实施例提供的一种充电系统的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素,此外,本申请不同实施例中具有同样命名的部件、特征、要素可能具有相同含义,也可能具有不同含义,其具体含义需以其在该具体实施例中的解释或者进一步结合该具体实施例中上下文进行确定。
应当理解,尽管在本文可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本文范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语"如果"可以被解释成为"在……时"或"当……时"或"响应于确定"。再者,如同在本文中所使用的,单数形式“一”、“一个”和“该”旨在也包括复数形 式,除非上下文中有相反的指示。应当进一步理解,术语“包含”、“包括”表明存在所述的特征、步骤、操作、元件、组件、项目、种类、和/或组,但不排除一个或多个其他特征、步骤、操作、元件、组件、项目、种类、和/或组的存在、出现或添加。本申请使用的术语“或”、“和/或”、“包括以下至少一个”等可被解释为包括性的,或意味着任一个或任何组合。例如,“包括以下至少一个:A、B、C”意味着“以下任一个:A;B;C;A和B;A和C;B和C;A和B和C”,再如,“A、B或C”或者“A、B和/或C”意味着“以下任一个:A;B;C;A和B;A和C;B和C;A和B和C”。仅当元件、功能、步骤或操作的组合在某些方式下内在地互相排斥时,才会出现该定义的例外。
应该理解的是,虽然本申请实施例中的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
取决于语境,如在此所使用的词语“如果”、“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
需要说明的是,在本申请中,采用了诸如S201、S202等步骤代号,其目的是为了更清楚简要地表述相应内容,不构成顺序上的实质性限制,本领域技术人员在具体实施时,可能会先执行S408b后执行S407a,可能会先执行S409b后执行S408a,可能会先执行S409b后执行S407b等,但这些均应在本申请的保护范围之内。
请参见图1,图1是本申请实施例提供的一种充电接口的示意图。如图1所示,交流充电桩端101通过5个充电接口和目标车辆端102的车载充电器1021进行连接。其中,L为火线(Live Wire);N为零线(Neutral wire);PE为地线,或者称为保护接地线(Protecting Earthing);CP信号用于目标车辆端102的电池管理系统1022判断是否接收到通知信号,该通知信号用于指示对电芯进行处理,以使电芯的温度保持在预设范围内;CC信号用于目标车辆端102的电池管理系统1022判断交流充电桩端101中的充电枪与目标车辆端102的车载充电器1021的充电插座之间是否连接完好;CC2连接端口用于目标车辆端102的电池管理系统1022判断直流充电桩的充电枪与目标车辆端102的车载充电器1021是否连接完好;硬线唤醒输入端口用于电池管理系统1022接收来自外部设备的高电平或低电平,以使得电池管理系统1022处于唤醒状态。
其中,交流充电桩端101和目标车辆端102之间通过PE线相连接之后,可实现交流充电桩端101和目标车辆端102之间的信号交互。
其中,充电枪内放置有不同类型的阻值的电阻,这些电阻和目标车辆端102的电池管理系统1022中的电路进行匹配后,电池管理系统1022可获得确认消息。可选的,确认消息包括第一确认消息和第二确认消息,第一确认消息用于指示充电枪锁扣是否连接完好;第二确认消息用于指示充电线的过负载能力。也就是说,在充电枪与目标车辆端102的车载充电器1021的充电插座之间连接完好后,若目标车辆端102的电池管理系统1022中存在检测充电枪内电阻的电路,则电池管理系统1022可确定充电线的过负载能力。
其中,交流充电桩端101中存在一个低压控制开关S,该开关S在正常未连接充电枪的 情况下,导向低压常电;当充电枪正常连接后,开关S会切换到充电能力状态输出端口,此时,电压为9V。可选的,开关S切换到充电能力状态输出端口之后,交流充电桩端101可输出通知信号,当电池管理系统1022接收到该通知信号后,可对电芯进行处理。可选的,电池管理系统1022接收到该通知信号后,还可确定充电桩的驱动能力。
可选的,在目标车辆102的车载充电器1021的充电插座和充电枪连接完好后,且充电枪的锁止按钮为锁紧后松开的情况下,交流充电桩端101可确定充电枪上的按钮K的状态为闭合状态。此时,交流充电桩端101可向目标车辆端102的电池管理系统1022发送充电连接状态的确认消息,相应的,目标车辆端102的电池管理系统1022接收充电连接状态的确认消息;目标车辆端102的电池管理系统1022接收充电连接状态的确认消息之后,可降低充电允许电流,从而避免充电枪在过大负载的情况下断开,进而确保了目标车辆的安全性。
综上所述,采用本申请实施例,电池管理系统不但可以实现对充电枪的连接状态的确认,从而确保目标车辆的安全性;而且还可实现对充电桩的过流能力的确定(即确定充电线的过负载能力以及确定充电桩的驱动能力),从而确保自检的充分性。
为了便于理解本申请实施例,下面对本申请提供的车载充电控制方法进行描述。可选的,本申请实施例提供的车载充电控制方法可通过电动汽车执行,也可通过电池管理系统执行,还可通过电动汽车中的电池管理系统执行,此处不做限定。
请参见图2,图2是本申请实施例提供的一种车载充电控制方法的流程示意图。如图2所示,该车载充电控制方法可包括但不限于如下步骤:
S201、在目标车辆的电池管理系统处于上高压状态的情况下,判断目标车辆的车载充电器的充电插座和直流充电桩是否连接;
电池管理系统(Battery Management System,BMS)是电动汽车动力电池系统的重要组成。它一方面检测收集并初步计算电池实时状态参数,并根据检测值与允许值的比较关系控制供电回路的通断;另一方面,将采集的关键数据上报给整车控制器,并接收整车控制器的指令,与车辆上的其他系统协调工作。电池管理系统通常具有量测电池电压的功能,可防止或避免电池过放电、过充电、过温度等异常状况的出现。在一种可选的实施方式中,当目标车辆的车载充电器和充电枪相连接后(即完成了充电枪插枪后),目标车辆的电池管理系统处于唤醒状态,此时,从目标车辆的角度来看,电池管理系统的模式优先级最高为快充模式,其次是慢充模式,然后是正常高压上电模式,最后是对外放电模式。其中,对外放电模式是通过一个放电枪连接,该放电枪是内置有一个特殊的CC连接电阻,CC连接电阻的不同就代表了是一个具有对外放电需求的外部设备。CC连接电阻是放电枪内部的电阻,放电枪通过CC连接电阻与电池管理系统1022中的电路相连接,CC连接电阻和目标车辆端102的电池管理系统1022中的电路进行匹配后,电池管理系统1022可获得确认消息。
在一种可选的实施方式中,判断目标车辆的车载充电器的充电插座和直流充电桩是否连接,可包括:判断是否检测到CC2信号,其中,CC2信号为来自直流充电桩(或者称为快充桩)的连接信号,CC2信号用于指示目标车辆的车载充电器的充电插座和直流充电桩的快充枪相连接。也就是说,电池管理系统判断目标车辆的车载充电器的充电插座和直流充电桩是否连接,即判断图1中的CC2信号是否有效。
可选的,在利用目标车辆的电池管理系统中的电路对直流充电桩的快充枪中的CC2电阻进行检测无误之后,可判断目标车辆的车载充电器的充电插座和直流充电桩相连接。
在一种可选的实施方式中,步骤S201之前,目标车辆的电池管理系统还在目标车辆的电 池管理系统处于低压唤醒状态的情况下,若接收到来自目标车辆的整车控制器的高压上电请求,则执行预充上高压操作;在预充上高压操作结束后,进行高压上电;若在第一预设时间段内完成高压上电,则确定目标车辆的电池管理系统处于上高压状态。
在一种可选的实施方式中,目标车辆的电池管理系统处于上高压状态的确定方式,可包括:在目标车辆的电池管理系统处于唤醒状态的情况下,获取目标车辆的电池管理系统中高压连接端口的电压;若高压连接端口的电压和目标车辆的电池包的电压之间的差值小于预设阈值,则确定目标车辆的电池管理系统处于上高压状态。例如,假设目标车辆的电池包的电压为336伏特(Volt,V),预设阈值为5V,若目标车辆的电池管理系统中高压连接端口的电压为334V,则确定目标车辆的电池管理系统处于上高压状态。又如,假设目标车辆的电池包的电压为585V,预设阈值为3V,若目标车辆的电池管理系统中高压连接端口的电压为587V,则确定目标车辆的电池管理系统处于上高压状态。
S202、若目标车辆的车载充电器的充电插座和直流充电桩相连接,则控制车载充电器进入直流充电模式,以对目标车辆的电池包进行快充。
可选的,若目标车辆的车载充电器的充电插座和直流充电桩相连接,即目标车辆的车载充电器的充电插座和快充枪相连接,则在CC2信号有效的情况下,电池管理系统可响应快充模式。也就是说,目标车辆的电池管理系统在确定目标车辆的车载充电器的充电插座和快充枪相连接后,可进行模式优先级判断,若CC2信号有效,则响应快充模式,即控制车载充电器进入直流充电模式;若CC2信号无效,则不响应快充模式。
在一种可选的实施方式中,在目标车辆的车载充电器的充电插座和直流充电桩未连接的情况下,若在第二预设时间段内,确定目标车辆的车载充电器的充电插座和交流充电桩的充电枪相连接,则控制目标车辆的车载充电器进入交流充电模式。
该实施方式中,第二预设时间段的时长可以是30秒(s)。
该实施方式中,在第二预设时间段内,确定目标车辆的车载充电器的充电插座和交流充电桩的充电枪相连接,即在第二预设时间段内,确定图1中的CC信号有效。
可见,采用本申请实施例,无需电池管理系统进入下高压状态,目标车辆的电池管理系统可在其处于上高压状态,且车载充电器的充电插座和直流充电桩相连接时,控制车载充电器进入直流充电模式,从而可提高对目标车辆的电池包的充电速度。
请参见图3,图3是本申请实施例提供的另一种车载充电控制方法的流程示意图。与图2所示的车载充电控制方法的不同之处在于,图3所示的车载充电控制方法还描述了若目标车辆的车载充电器和直流充电桩未连接的情况下,目标车辆的电池管理系统的充电控制操作,以及在目标车辆的电池管理系统未处于上高压状态的情况下,电池管理系统和充电桩之间的握手过程。如图3所示,该车载充电控制方法包括但不限于如下步骤:
S301、判断目标车辆的电池管理系统是否处于上高压状态,若是,则执行步骤S302a;若否,则执行步骤S302b。
在一种可选的实施方式中,判断目标车辆的电池管理系统是否处于上高压状态,可包括:在目标车辆的电池管理系统处于唤醒状态的情况下,获取目标车辆的电池管理系统中高压连接端口的电压;若高压连接端口的电压和目标车辆的电池包的电压之间的差值小于预设阈值,则确定目标车辆的电池管理系统处于上高压状态;若高压连接端口的电压和目标车辆的电池包的电压之间的差值大于或等于预设阈值,则确定目标车辆的电池管理系统未处于上高压状态。
该实施方式中,目标车辆的电池管理系统处于唤醒状态是通过目标车辆的车载充电器和充电枪是否连接(即是否完成了充电枪插枪)确定的。可选的,若目标车辆的车载充电器和充电枪相连接(即完成了充电枪插枪),则确定目标车辆的电池管理系统处于唤醒状态。
S302a、判断目标车辆的车载充电器的充电插座和直流充电桩是否连接,若是,则执行步骤S303a;若否,则执行步骤S303b。
在一种可选的实施方式中,步骤S302a的具体实现可参见前述步骤S201中的相关描述,此处不再进行赘述。
S303a、控制车载充电器进入直流充电模式,以对目标车辆的电池包进行快充。
S303b、若在第二预设时间段内,确定目标车辆的车载充电器的充电插座和交流充电桩的充电枪相连接,则控制目标车辆的车载充电器进入交流充电模式。
在一种可选的实施方式中,若在第二预设时间段内,确定目标车辆的车载充电器的充电插座和交流充电桩的充电枪未连接,则执行步骤S301。也就是说,若图1中CC信号无效,则电池管理系统可执行步骤S301。
在一种可选的实施方式中,步骤S303b之后,目标车辆的电池管理系统还执行下述步骤S304和S305。
S304、在车载充电器进入交流充电模式后,若在第三预设时间段内,接收到通知信号,则根据目标车辆中电芯的温度,对电芯进行处理,以使电芯的温度保持在预设范围内。
其中,通知信号用于指示对电芯进行处理。此外,该预设范围可根据实际需要确定在具体实施例中,该预设范围也可以是预设的多个可切换的范围,以使用户可在不同情况下切换为不同的预设范围。
可选的,该通知信号可以是目标车辆的车载充电器发送的,该通知信号可以是占空比为预设值的脉冲宽度调制(Pulse Width Modulation,PWM)波信号。其中,PWM波信号可用于指示充电桩的驱动力,也就是说,若电池管理系统接收到占空比为预设值的PWM波信号,则可确定充电桩的驱动力。可选的,充电桩的驱动力例如是充电桩的输出电源功率,电池管理系统在接收到该PWM信号后,可根据目标车辆的电池管理系统中存储的电芯的温度值,对电芯进行处理。
可选的,第三预设时间段的时长可以是30秒;预设值的范围可以是5%至95%。也就是说,若电池管理系统在30秒内,接收到占空比为5%-95%的PWM波信号,则表明图1中的CP信号有效,此时,电池管理系统可根据目标车辆中电芯的温度,对电芯进行处理。
在一种可选的实施方式中,根据目标车辆中电芯的温度,对电芯进行处理,可包括:若目标车辆中电芯的最高温度大于预设的第一温度,且电芯的最低温度大于或等于预设的第二温度,则对电芯进行冷却处理;若目标车辆中电芯的最高温度小于或等于第一温度,且电芯的最低温度小于第二温度,则对电芯进行加热处理。可选的,前述预设范围可以是第二温度到第一温度之间的范围,即预设范围大于或等于第二温度,且小于或等于第一温度。
在一种可选的实施方式中,若目标车辆中电芯的最高温度大于第一温度,且最低温度小于第二温度,则向整车控制器发送通知信息,该通知信息用于指示电芯温差大于预设温差值。
例如,假设第一温度为40摄氏度(℃),第二温度为0℃,若目标车辆的电池管理系统中电芯在某段时间内的最高温度为45℃,最低温度为5℃,这种情况下,需要对电芯进行冷却处理。若目标车辆的电池管理系统中电芯在某段时间内的最高温度为35℃,最低温度为-5℃,这种情况下,需要对电芯进行加热处理。若目标车辆的电池管理系统中电芯在某段时间内的最高温度为45℃,最低温度为-5℃,预设温差值为40℃,这种情况下,由于电芯温差 (45℃-(-5℃)=50℃)大于预设温差值(40℃),因此,电池管理系统需要向整车控制器发送通知信息,该通知信息用于指示电芯温差过大。
也就是说,当目标车辆的电池管理系统完全了进入交流充电模式后,应对电芯的温度进行判断。若电芯温差过大,则可向目标车辆的整车控制器上报电芯温差过大故障的消息;若电芯的最高温度过高,则触发对电芯的冷却处理;若电芯的最低温度过低,则触发对电芯的加热处理。
在一种可选的实施方式中,若在第三预设时间段内,未接收到通知信号,则确定电池管理系统和交流充电桩的握手失败。也就是说,若图1中的CP信号无效,则确定电池管理系统和交流充电桩的握手失败。
S305、向目标车辆的整车控制器发送充电允许电流和充电允许功率。
也就是说,当电池管理系统根据目标车辆的电池管理系统中存储的电芯的温度值,对电芯进行处理之后,可根据自身的电芯可承受的充电能力,向目标车辆的整车控制器发送充电允许电流和充电允许功率,相应的,目标车辆的整车控制接收器充电允许电流和充电允许功率。
可选的,电池管理系统还可接收目标车辆的整车控制器根据能量管理策略上报的目标车辆所需的能量。可选的,目标车辆所需的能量是基于电芯的充电能力、目标车辆热管理消耗能量以及目标车辆低压消耗能量确定的。这样,在充电过程中,可从整车角度实行能量管理,便于实现加热和充电功能的融合。
S302b、在目标车辆的电池管理系统处于低压唤醒状态的情况下,若接收到来自目标车辆的整车控制器的高压上电请求,则执行预充上高压操作。
其中,电池管理系统1022在通过硬线唤醒输入端口接收来自外部设备的低电平后,电池管理系统处于低压唤醒状态。
整车控制器(Vehicle control unit,VCU)是整车控制的核心控制器,通过控制器局域网络(Controller Area Network,CAN)总线或者局域互联网(Local Interconnect Network,LIN)总线或者硬线,实现对电池系统、电驱系统、热管理系统等的控制,具体包括档位、加速踏板、制动踏板的控制,根据实时的动力电池电量,计算出需要输出的扭矩控制,以及整车的低压、高压的上下电、能量回收等控制。
可选的,预充上高压操作是指:电池管理系统控制预充接触器闭合;在确定电池包负载端电压大于95%的电池包(PACK)电压后,控制总正接触器闭合,且断开预充接触器。
在一种可选的实施方式中,目标车辆的电池管理系统在执行预充上高压操作之前,可判断电池管理系统中是否存在禁止电池管理系统控制高压接触器闭合的动作故障;若不存在禁止电池管理系统控制高压接触器闭合的动作故障,则执行预充上高压操作。
可选的,禁止电池管理系统控制高压接触器闭合的动作故障可以是4级故障(例如是高压互锁故障),也可以是5级故障(例如是电池包热失控故障,或碰撞故障)。在存在4级故障的情况下,电池管理系统可无需立刻下高压,仅需完成延时下高压即可。在存在5级故障的情况下,电池管理系统则需立刻下高压。可见,4级故障的严重度相对较低,5级故障的严重度相对较高。
也就是说,目标车辆的电池管理系统在接收到来自目标车辆的整车控制器的高压上电请求之后,可根据故障等级状态,向目标车辆的整车控制器发送响应消息,该响应消息用于指示电池管理系统是否执行预充上高压操作。
在一种可选的实施方式中,在目标车辆的电池管理系统处于低压唤醒状态的情况下,若 电池管理系统未接收到来自目标车辆的整车控制器的高压上电请求,则控制电池管理系统进入低压上电待机状态。
其中,低压上电待机状态是目标车辆的电池管理系统处于低压上电的待机状态。
在一种可选的实施方式中,步骤S302b之后,目标车辆的电池管理系统还执行下述步骤S306和S307。
S306、在预充上高压操作结束后,进行高压上电。
S307、若在第一预设时间段内完成高压上电,则确定目标车辆的电池管理系统处于上高压状态,并执行步骤S302a。
可选的,第一预设时间段可以是1750毫秒(ms)。
可选的,在第一预设时间段内完成高压上电,可包括:在第一预设时间段内,控制总正接触器和总负接触器的闭合。
本申请实施例中,目标车辆的电池管理系统可判断电池管理系统所处的状态,在其处于上高压状态,且车载充电器的充电插座和直流充电桩相连接时,控制车载充电器进入直流充电模式,以对目标车辆的电池包进行快充;在其处于上高压状态,且车载充电器的充电插座未和直流充电桩相连接,而是和交流充电桩相连接时,控制车载充电器进入交流充电模式。可见,采用本申请实施例,不但可以提高对目标车辆的电池包的充电速度,而且,相比较于现有技术需要识别出目标车辆的电池管理系统处于断电下高压状态下才可对电池包进行充电而言,可判断电池管理系统所处的状态,从而应用范围更广。另外,本申请实施例通过将充电桩和目标车辆的电池管理系统之间的控制逻辑进行重新定义,能够较好的实现电池管理系统和充电桩之间的握手。
请参见图4,图4是本申请实施例提供的又一种车载充电控制方法的流程示意图。与图3所示的车载充电控制方法的不同之处在于,图4所示的车载充电控制方法中还具体描述目标车辆的电池管理系统是如何根据电池管理系统中存储的电芯的温度值,对电芯进行处理的。如图4所示,该车载充电控制方法可包括但不限于如下步骤:
S401、判断目标车辆的电池管理系统是否处于上高压状态,若是,则执行步骤S402a;若否,则执行步骤S402b。
S402a、判断CC2信号是否有效;若是,则执行步骤S403a;若否,则执行步骤S403b。
S403a、控制车载充电器进入直流充电模式,以对目标车辆的电池包进行快充。
S403b、确定目标车辆的电池管理系统高压上电完成。
在一种可选的实施方式中,步骤S403b之后,目标车辆的电池管理系统还执行下述步骤S404至S410b。
S404、判断在第二预设时间段内,CC信号是否有效;若是,则执行步骤S405;若否,则执行步骤S401。
S405、控制电池管理系统进入交流充电模式。
S406、判断在第三预设时间段内,CP信号是否有效;若是,则执行步骤S407a;若否,则执行步骤S407b。
S407a、判断目标车辆中电芯的最高温度是否大于预设的第一温度,且最低温度是否小于预设的第二温度;若是,则执行步骤S408a;若否,则执行步骤S408b。
S407b、确定电池管理系统和交流充电桩的握手失败。
S408a、向整车控制器发送通知信息,该通知信息用于指示电芯温差大于预设温差值。
在一种可选的实施方式中,步骤S408a之后,目标车辆的电池管理系统还可控制电池管理系统进入2级故障状态。可选的,2级故障可包括但不限于电芯电压轻微过高、电芯电压轻微过低、温度轻微过高、温度轻微过低、行驶过程中的高压互锁故障,温度均衡故障等。可选的,2级故障下,对于电池包而言,受损程度相对不高,因此,该情况下,可以继续限功率对电池包进行充电。
S408b、判断目标车辆中电芯的最高温度是否大于第一温度,且电芯的最低温度是否大于或等于第二温度;若是,则执行步骤S409a;若否,则执行步骤S409b。
S409a、对电芯进行冷却处理,并执行步骤S410b。
S409b、判断目标车辆中电芯的最高温度是否小于或等于第一温度,且电芯的最低温度是否小于第二温度;若是,则执行步骤S410a;若否,则执行步骤S410b。
S410a、对电芯进行加热处理,并执行步骤S410b。
S410b、向目标车辆的整车控制器发送充电允许电流和充电允许功率。
S402b、控制电池管理系统处于低压待机状态。
在一种可选的实施方式中,步骤S402b之后,目标车辆的电池管理系统还执行下述步骤S411至S414。
S411、判断是否接收到来自目标车辆的整车控制器的高压上电请求;若是,则执行步骤S412;若否,则执行步骤S402b。
S412、执行预充上高压操作。
S413、在预充上高压操作结束后,进行高压上电,并确定在第一预设时间段内是否完成高压上电;若是,则执行步骤S402a;若否,则执行步骤S414。
S414、确定预充失败。
可选的,本申请实施例对步骤S407a,S408b,S409b的执行顺序不进行限制。在一个实施例中,步骤S406判断在第三预设时间段内,CP信号是否有效,若是,可以先执行步骤S408b;若否,则执行步骤S407b。S408b,判断目标车辆中电芯的最高温度是否大于第一温度,且电芯的最低温度是否大于或等于第二温度;若是,则执行步骤S409a;若否,则执行步骤S407a。S407a、判断目标车辆中电芯的最高温度是否大于预设的第一温度,且最低温度是否小于预设的第二温度;若是,则执行步骤S408a;若否,则执行步骤S409b。S409b、判断目标车辆中电芯的最高温度是否小于或等于第一温度,且电芯的最低温度是否小于第二温度;若是,则执行步骤S410a;若否,则执行步骤S410b。可选的,步骤S407a,S408b,S409b的执行顺序可以按照S409b,S407a,S408b执行;可选的,步骤S407a,S408b,S409b的执行顺序可以按照S408b,S407a,S409b的顺序执行;可选的,步骤S407a,S408b,S409b的执行顺序可以按照S408b,S409b,S407a的顺序执行;可选的,步骤S407a,S408b,S409b的执行顺序可以按照S409b,S408b,S407a的顺序执行;可选的,步骤S407a,S408b,S409b的执行顺序可以按照S407a,S409b,S408b的顺序执行。
在一种可选的实施方式中,目标车辆的电池管理系统确定预充失败后,可控制电池管理系统进入4级故障状态。其中,4级故障例如是高压互锁故障。
本申请实施例中,目标车辆的电池管理系统可在其处于上高压状态,且车载充电器的充电插座和直流充电桩相连接时,控制车载充电器进入直流充电模式,以对目标车辆的电池包进行快充;在其处于上高压状态,且车载充电器的充电插座未和直流充电桩相连接,而是和交流充电桩相连接时,控制车载充电器进入交流充电模式。可见,采用本申请实施例,通过将充电桩和目标车辆的电池管理系统之间的控制逻辑进行重新定义,可充分保证目标车辆的 电池管理系统和充电桩之间的交互,从而在确保目标车辆处于完全安全及自检充分的基础上,较好的实现目标车辆和充电桩之间的握手,便于最大限度的实现电池加热和充电的两部分功能协调。
基于上述车载充电控制方法的相关实施例的描述,本申请实施例还提供了一种车载充电控制装置,该车载充电控制装置可以执行图2或图3或图4所示的车载充电控制方法。请参见图5,图5是本申请实施例提供的一种车载充电控制装置的示意图。如图5所示,该车载充电控制装置可包括但不限于如下单元:
判断单元501,用于在目标车辆的电池管理系统处于上高压状态的情况下,判断目标车辆的车载充电器的充电插座和直流充电桩是否连接;
处理单元502,用于若目标车辆的车载充电器的充电插座和直流充电桩相连接,则控制车载充电器进入直流充电模式,以对目标车辆的电池包进行快充。
在一种可选的实施方式中,处理单元502还用于:
在目标车辆的电池管理系统处于低压唤醒状态的情况下,若接收到来自目标车辆的整车控制器的高压上电请求,则执行预充上高压操作;
在预充上高压操作结束后,进行高压上电;
若在第一预设时间段内完成高压上电,则确定目标车辆的电池管理系统处于上高压状态。
在一种可选的实施方式中,处理单元502在用于确定目标车辆的电池管理系统处于上高压状态时,具体用于:
在目标车辆的电池管理系统处于唤醒状态的情况下,获取目标车辆的电池管理系统中高压连接端口的电压;
若高压连接端口的电压和目标车辆的电池包的电压之间的差值小于预设阈值,则确定目标车辆的电池管理系统处于上高压状态。
在一种可选的实施方式中,处理单元502还用于:
在目标车辆的车载充电器的充电插座和直流充电桩未连接的情况下,若在第二预设时间段内,确定目标车辆的车载充电器的充电插座和交流充电桩的充电枪相连接,则控制目标车辆的车载充电器进入交流充电模式;
在车载充电器进入交流充电模式后,若在第三预设时间段内,接收到通知信号,则根据目标车辆中电芯的温度,对电芯进行处理,以使电芯的温度保持在预设范围内;该通知信号用于指示对电芯进行处理;
向目标车辆的整车控制器发送充电允许电流和充电允许功率。
在一种可选的实施方式中,处理单元502在用于根据目标车辆中电芯的温度,对电芯进行处理时,具体用于:
若目标车辆中电芯的最高温度大于第一温度,且电芯的最低温度大于或等于第二温度,则对电芯进行冷却处理;
若目标车辆中电芯的最高温度小于或等于第一温度,且电芯的最低温度小于第二温度,则对电芯进行加热处理。
在一种可选的实施方式中,处理单元502在用于根据目标车辆中电芯的温度,对电芯进行处理时,还具体用于:
若目标车辆中电芯的最高温度大于第一温度,且最低温度小于第二温度,则向整车控制器发送通知信息,通知信息用于指示电芯温差大于预设温差值。
在一种可选的实施方式中,该车载充电控制装置中还包括电池管理系统。
可以理解的是,本申请实施例提供的车载充电控制装置中各个单元的具体实现以及可以达到的有益效果可参考前述车载充电控制方法实施例的描述,在此不再赘述。
基于上述方法实施例以及装置实施例的描述,本申请实施例还提供一种电动汽车,请参见图6,图6是本申请实施例提供的一种电动汽车的结构示意图。该电动汽车包括汽车主体601、充电控制模块602及储能模块603,其中,储能模块603用于为电动汽车主体提供电能,充电控制模块602通过执行上述的方法控制储能模块603充电和/或放电。可选的,充电控制模块602中包括电池管理系统。
在一种可选的实施方式中,本申请实施例的充电控制模块602可执行如下操作:
在目标车辆的电池管理系统处于上高压状态的情况下,判断目标车辆的车载充电器的充电插座和直流充电桩是否连接;
若目标车辆的车载充电器的充电插座和直流充电桩相连接,则控制车载充电器进入直流充电模式,以对目标车辆的电池包进行快充。
在一种可选的实施方式中,充电控制模块602还执行:
在目标车辆的电池管理系统处于低压唤醒状态的情况下,若接收到来自目标车辆的整车控制器的高压上电请求,则执行预充上高压操作;
在预充上高压操作结束后,进行高压上电;
若在第一预设时间段内完成高压上电,则确定目标车辆的电池管理系统处于上高压状态。
在一种可选的实施方式中,充电控制模块602在执行确定目标车辆的电池管理系统处于上高压状态时,具体执行:
在目标车辆的电池管理系统处于唤醒状态的情况下,获取目标车辆的电池管理系统中高压连接端口的电压;
若高压连接端口的电压和目标车辆的电池包的电压之间的差值小于预设阈值,则确定目标车辆的电池管理系统处于上高压状态。
在一种可选的实施方式中,充电控制模块602还用于执行:
在目标车辆的车载充电器的充电插座和直流充电桩未连接的情况下,若在第二预设时间段内,确定目标车辆的车载充电器的充电插座和交流充电桩的充电枪相连接,则控制目标车辆的车载充电器进入交流充电模式;
在车载充电器进入交流充电模式后,若在第三预设时间段内,接收到通知信号,则根据目标车辆中电芯的温度,对电芯进行处理,以使电芯的温度保持在预设范围内;该通知信号用于指示对电芯进行处理;
向目标车辆的整车控制器发送充电允许电流和充电允许功率。
在一种可选的实施方式中,充电控制模块602在用于执行根据目标车辆中电芯的温度,对电芯进行处理时,具体执行:
若目标车辆中电芯的最高温度大于第一温度,且电芯的最低温度大于或等于第二温度,则对电芯进行冷却处理;
若目标车辆中电芯的最高温度小于或等于第一温度,且电芯的最低温度小于第二温度,则对电芯进行加热处理。
在一种可选的实施方式中,充电控制模块602还执行:
若目标车辆中电芯的最高温度大于第一温度,且最低温度小于第二温度,则向整车控制 器发送通知信息,通知信息用于指示电芯温差大于预设温差值。
具体实现中,本申请实施例中所描述的充电控制模块602可执行本申请实施例提供的车载充电控制方法中所描述的实现方式,也可执行本申请实施例提供的车载充电控制装置中所描述的实现方式,在此不再赘述。
本申请实施例还提供了一种充电系统,请参照图7,图7是本申请实施例提供的一种充电系统的结构示意图。该充电系统包括电动汽车701及充电桩702,其中,电动汽车701为上述实施例提供的电动汽车。该电动汽车通过执行上述实施例提供的方法从充电桩处获取电能。
本申请还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现上述任一方法实施例中的步骤。
本申请实施例还提供一种计算机程序产品,计算机程序产品包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行上述任一方法实施例中的步骤。
本申请实施例还提供一种芯片,包括存储器和处理器,存储器用于存储计算机程序,处理器用于从存储器中调用并运行计算机程序,使得安装有芯片的设备执行上述任一方法实施例中的步骤。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请实施例装置中的单元可以根据实际需要进行合并、划分和删减。
在本申请中,对于相同或相似的术语概念、技术方案和/或应用场景描述,一般只在第一次出现时进行详细描述,后面再重复出现时,为了简洁,一般未再重复阐述,在理解本申请技术方案等内容时,对于在后未详细描述的相同或相似的术语概念、技术方案和/或应用场景描述等,可以参考其之前的相关详细描述。
在本申请中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本申请技术方案的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本申请记载的范围。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,被控终端,或者网络设备等)执行本申请每个实施例的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络,或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介 质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、存储盘、磁带)、光介质(例如,DVD),或者半导体介质(例如固态存储盘Solid State Disk(SSD))等。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (19)

  1. 一种车载充电控制方法,其特征在于,所述方法包括:
    在目标车辆(102)的电池管理系统(1022)处于上高压状态的情况下,判断所述目标车辆(102)的车载充电器(1021)的充电插座和直流充电桩是否连接;
    若所述目标车辆(102)的车载充电器(1021)的充电插座和所述直流充电桩相连接,则控制所述车载充电器(1021)进入直流充电模式,以对所述目标车辆(102)的电池包进行快充。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述目标车辆(102)的电池管理系统(1022)处于低压唤醒状态的情况下,若接收到来自所述目标车辆(102)的整车控制器的高压上电请求,则执行预充上高压操作;
    在所述预充上高压操作结束后,进行高压上电;以及
    若在第一预设时间段内完成高压上电,则确定所述目标车辆(102)的电池管理系统(1022)处于上高压状态。
  3. 根据权利要求2所述的方法,其特征在于,在所述目标车辆(102)的电池管理系统(1022)处于低压唤醒状态的情况下,若所述电池管理系统(1022)未接收到来自所述目标车辆(102)的整车控制器的所述高压上电请求,则控制所述电池管理系统(1022)进入低压上电待机状态。
  4. 根据权利要求2或3所述的方法,其特征在于,在所述目标车辆(102)的电池管理系统(1022)在执行所述预充上高压操作之前,所述方法还包括:
    确定所述电池管理系统(1022)中不存在禁止所述电池管理系统(1022)控制高压接触器闭合的动作故障。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述目标车辆(102)的电池管理系统(1022)处于上高压状态的确定方式,包括:
    在所述目标车辆(102)的电池管理系统(1022)处于唤醒状态的情况下,获取所述目标车辆(102)的电池管理系统(1022)中高压连接端口的电压;
    若所述高压连接端口的电压和所述目标车辆(102)的电池包的电压之间的差值小于预设阈值,则确定所述目标车辆(102)的电池管理系统(1022)处于上高压状态。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,判断所述目标车辆(102)的车载充电器(1021)的充电插座和所述直流充电桩是否连接,包括:
    判断是否检测到CC2信号,其中,所述CC2信号为来自所述直流充电桩的连接信号,所述CC2信号用于指示所述目标车辆(102)的车载充电器(1021)的充电插座和所述直流充电桩的快充枪相连接。
  7. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述目标车辆(102)的车载充电器(1021)的充电插座和所述直流充电桩未连接的情 况下,若在第二预设时间段内,确定所述目标车辆(102)的车载充电器(1021)的充电插座和交流充电桩的充电枪相连接(S404),则控制所述目标车辆(102)的车载充电器(1021)进入交流充电模式。
  8. 根据权利要求7所述的方法,其特征在于,所述第二预设时间段的时长为30秒。
  9. 根据权利要求7或8所述的方法,其特征在于,所述方法还包括:
    在所述车载充电器(1021)进入交流充电模式后,若在第三预设时间段内,接收到通知信号,则根据所述目标车辆(102)的电池管理系统(1022)中电芯的温度,对所述电芯进行处理,以使所述电芯的温度保持在预设范围内,所述通知信号用于指示对所述电芯进行处理;
    向所述目标车辆(102)的整车控制器发送充电允许电流和充电允许功率。
  10. 根据权利要求9所述的方法,其特征在于,所述第三预设时间段的时长为30秒。
  11. 根据权利要求9或10所述的方法,其特征在于,所述通知信号包括占空比为预设值的脉冲宽度调制PWM波信号。
  12. 根据权利要求11所述的方法,其特征在于,所述预设值的范围是5%至95%。
  13. 根据权利要求9-12中任一项所述的方法,其特征在于,所述根据所述目标车辆(102)中电芯的温度,对所述电芯进行处理,包括:
    若所述目标车辆(102)中电芯的最高温度大于预设的第一温度,且所述电芯的最低温度大于或等于预设的第二温度,则对所述电芯进行冷却处理;
    若所述目标车辆(102)中电芯的最高温度小于或等于所述第一温度,且电芯的最低温度小于所述第二温度,则对所述电芯进行加热处理。
  14. 根据权利要求13所述的方法,其特征在于,所述预设范围大于或等于所述第二温度,且小于或等于所述第一温度。
  15. 根据权利要求13或14所述的方法,其特征在于,所述方法还包括:
    若所述目标车辆(102)中电芯的最高温度大于所述第一温度,且最低温度小于所述第二温度,则向所述整车控制器发送通知信息,所述通知信息用于指示所述电芯温差大于预设温差值。
  16. 一种车载充电控制装置,其特征在于,所述装置包括:
    判断单元(501),用于在目标车辆(102)的电池管理系统(1022)处于上高压状态的情况下,判断所述目标车辆(102)的车载充电器(1021)的充电插座和直流充电桩是否连接;
    处理单元(502),用于若所述目标车辆(102)的车载充电器(1021)的充电插座和所述直流充电桩相连接,则控制所述车载充电器(1021)进入直流充电模式,以对所述目标车辆(102)的电池包进行快充。
  17. 一种电动汽车(701),其特征在于,所述电动汽车(701)包括:
    汽车主体(601);
    充电控制模块(602);以及
    储能模块(603),所述储能模块(603)用于为所述电动汽车主体(601)提供电能,所述充电控制模块(602)通过如权利要求1-15中任一项所述的方法控制所述储能模块(603)充电和/或放电。
  18. 一种充电系统,其特征在于,所述充电系统包括电动汽车(701)及充电桩(702),所述电动汽车(701)通过如权利要求1-15中任一项所述的方法从所述充电桩(702)处获取电能。
  19. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-15中任一项所述的方法。
PCT/CN2024/074349 2023-02-17 2024-01-27 车载充电控制方法、装置、汽车、系统及存储介质 WO2024169570A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310132831.3A CN118514544A (zh) 2023-02-17 2023-02-17 车载充电控制方法、装置、汽车、系统及存储介质
CN202310132831.3 2023-02-17

Publications (1)

Publication Number Publication Date
WO2024169570A1 true WO2024169570A1 (zh) 2024-08-22

Family

ID=92280165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/074349 WO2024169570A1 (zh) 2023-02-17 2024-01-27 车载充电控制方法、装置、汽车、系统及存储介质

Country Status (2)

Country Link
CN (1) CN118514544A (zh)
WO (1) WO2024169570A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102361342A (zh) * 2011-10-25 2012-02-22 重庆长安汽车股份有限公司 一种电动汽车充电系统及电动汽车充电方法
US20130127418A1 (en) * 2010-08-02 2013-05-23 Won Jin Oh Electric vehicle and charging control method for battery thereof
CN104410138A (zh) * 2014-11-24 2015-03-11 重庆长安汽车股份有限公司 一种汽车充放电控制系统及方法
KR20160060912A (ko) * 2014-11-21 2016-05-31 주식회사 엘지화학 직접 충전이 가능한 중대형 전지팩 및 상기 중대형 전지팩이 접속되는 충전 스테이션
CN107487212A (zh) * 2017-06-19 2017-12-19 宝沃汽车(中国)有限公司 电动汽车的充电方法、充电装置及电动汽车
CN112224079A (zh) * 2020-09-15 2021-01-15 东风汽车集团有限公司 一种纯电动汽车的充电管理方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130127418A1 (en) * 2010-08-02 2013-05-23 Won Jin Oh Electric vehicle and charging control method for battery thereof
CN102361342A (zh) * 2011-10-25 2012-02-22 重庆长安汽车股份有限公司 一种电动汽车充电系统及电动汽车充电方法
KR20160060912A (ko) * 2014-11-21 2016-05-31 주식회사 엘지화학 직접 충전이 가능한 중대형 전지팩 및 상기 중대형 전지팩이 접속되는 충전 스테이션
CN104410138A (zh) * 2014-11-24 2015-03-11 重庆长安汽车股份有限公司 一种汽车充放电控制系统及方法
CN107487212A (zh) * 2017-06-19 2017-12-19 宝沃汽车(中国)有限公司 电动汽车的充电方法、充电装置及电动汽车
CN112224079A (zh) * 2020-09-15 2021-01-15 东风汽车集团有限公司 一种纯电动汽车的充电管理方法及系统

Also Published As

Publication number Publication date
CN118514544A (zh) 2024-08-20

Similar Documents

Publication Publication Date Title
US20230307905A1 (en) Electric system and method for energizing the electric system
CN106696744B (zh) 一种电动汽车动力电池充电加热系统及加热方法
KR101673822B1 (ko) 친환경 차량의 릴레이 융착 검출 장치 및 그 방법
CN104136262A (zh) 电动车
US11535151B2 (en) Vehicle and method of notifying charging information of vehicle
CN102959790B (zh) 一种用于监控蓄电池的充电过程的方法
CN104620466A (zh) 二次电池组和认证方法
KR20150076843A (ko) 전기 자동차용 배터리 보호 회로 및 방법
CN111301220A (zh) 电动汽车充电控制方法及系统
CN110571888A (zh) 一种电池包控制方法、装置、及电器设备
US20150214767A1 (en) Safety Concept for Batteries
WO2024169570A1 (zh) 车载充电控制方法、装置、汽车、系统及存储介质
KR101866059B1 (ko) 차량 배터리 충전 시스템 및 방법
CN114714950A (zh) 一种电动汽车充电预加热的控制方法及系统
US20140049103A1 (en) Method for Transferring Batteries to a Discharged State, Battery Management System, Inverter, System for Generating an AC Voltage, Charging Current Source and Motor Vehicle
CN110962605B (zh) 接线盒控制装置
CN111146769A (zh) 电源电路保护装置
JP6668210B2 (ja) 電源制御装置及び電源システム
CN104716290A (zh) 电池组件和包括电池组件的混合电动车辆
CN115042671A (zh) 车辆电池加热方法、装置、介质和车辆
CN115832525A (zh) 一种加热系统、加热方法及装置、用电设备
CN113922443A (zh) 电动汽车充电控制电路、方法、装置及设备
JP3367289B2 (ja) 電気自動車の充電装置
CN213199521U (zh) 电动车辆的电池模块、充电系统及电动车辆
CN105946585B (zh) 一种车辆电源管理系统及电动车辆