WO2024168489A1 - 信息传输方法及装置、通信设备及存储介质 - Google Patents
信息传输方法及装置、通信设备及存储介质 Download PDFInfo
- Publication number
- WO2024168489A1 WO2024168489A1 PCT/CN2023/075758 CN2023075758W WO2024168489A1 WO 2024168489 A1 WO2024168489 A1 WO 2024168489A1 CN 2023075758 W CN2023075758 W CN 2023075758W WO 2024168489 A1 WO2024168489 A1 WO 2024168489A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- receiving beam
- beam directions
- antennas
- reference signal
- measurement
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 62
- 238000004891 communication Methods 0.000 title claims abstract description 41
- 230000005540 biological transmission Effects 0.000 title claims abstract description 38
- 238000005259 measurement Methods 0.000 claims abstract description 287
- 238000012545 processing Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 14
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 13
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 13
- 238000005516 engineering process Methods 0.000 description 12
- 230000000875 corresponding effect Effects 0.000 description 9
- 230000002596 correlated effect Effects 0.000 description 8
- 238000003491 array Methods 0.000 description 6
- 238000010295 mobile communication Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 238000007726 management method Methods 0.000 description 4
- 230000005236 sound signal Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
Definitions
- the present disclosure relates to the field of wireless communication technology but is not limited to the field of wireless communication technology, and in particular to an information transmission method and apparatus, a communication device and a storage medium.
- the user equipment no longer uses omnidirectional antennas like the FR1 low frequency band, but needs to introduce additional receiving beamforming management to use the best receiving beam for reception, achieving a larger uplink coverage range and better transmission rate.
- the spatial dimension is further introduced into the UE transmission, that is, the physical resources at the same time and frequency can be further reused through different beams.
- Embodiments of the present disclosure provide an information transmission method and apparatus, a communication device, and a storage medium.
- a first aspect of an embodiment of the present disclosure provides an information transmission method, which is executed by a user equipment UE and includes:
- the capability information is used for the network device to determine the number n of rounds of reference signal measurement performed by the UE in I receiving beam directions, wherein one round of the reference signal measurement includes the measurement of the reference signal performed by J antennas in X receiving beam directions, wherein the J antennas cover the I receiving beam directions, J is a positive integer greater than 2, X is a positive integer less than or equal to J, and I is a positive integer greater than J.
- the capability information includes: a coverage factor of a receiving beam, which is used to indicate the round number n.
- n represents the number of rounds of the reference signal measurement performed
- m represents the number of overlapping receiving beam directions of the J antennas
- Floor() represents rounding down.
- the method further comprises:
- a measurement configuration sent by a receiving network device wherein the measurement configuration includes: a measurement duration for measuring a reference signal in the I receiving beam directions, wherein a beam scanning coefficient N used to determine the measurement duration is determined based on the capability information.
- the beam scanning coefficient N is equal to the round number n.
- the antenna includes: an antenna panel.
- the J antennas of the UE support simultaneous measurement of reference signals in the same or different receiving beam directions.
- the UE includes J antennas.
- the J antennas of the UE cover a total of I receiving beam directions.
- the J antennas of the UE can simultaneously perform reference signal measurement in the X receiving beam directions.
- a second aspect of the embodiment of the present disclosure provides an information transmission method, which is executed by a network device and includes:
- Receive capability information sent by a user equipment UE wherein the capability information is used to determine the number of rounds n of reference signal measurement performed by the UE in I receive beam directions, wherein one round of the reference signal measurement includes measurements of the reference signal performed by J antennas in X receive beam directions, wherein the J antennas cover the I receive beam directions, J is a positive integer greater than 2, X is a positive integer less than or equal to J, and I is a positive integer greater than J.
- the capability information includes: a coverage factor of a receiving beam, which is used to indicate the round number n.
- the round number n is determined according to the number of receiving beam directions associated with each of the antennas and the number of overlapping receiving beam directions of the J antennas.
- n r-Floor(m/2)
- n represents the number of rounds of the reference signal measurement performed
- m represents the number of overlapping receiving beam directions of the J antennas
- Floor() represents rounding down.
- the method further comprises:
- the measurement duration for the UE to measure the reference signal in the I receiving beam directions is determined according to the beam scanning coefficient N.
- the beam scanning coefficient N is equal to the round number n.
- the method further comprises:
- the measurement configuration at least includes: the measurement duration.
- the antenna includes: an antenna panel.
- the J antennas of the UE support simultaneous measurement of reference signals in the same or different receiving beam directions.
- the UE includes J antennas.
- the J antennas of the UE cover a total of I receiving beam directions.
- the J antennas of the UE can simultaneously perform reference signal measurement in the X receiving beam directions.
- a third aspect of the embodiment of the present disclosure provides an information transmission device, which is arranged in a user equipment UE and includes:
- the transceiver module is configured to send the capability information of the UE to the network device, wherein the capability information is used for the network device to
- the network device determines the number of rounds n of reference signal measurement performed by the UE in I receiving beam directions, wherein one round of the reference signal measurement includes measurement of the reference signal performed by J antennas in X receiving beam directions, wherein the J antennas cover the I receiving beam directions, J is a positive integer greater than 2, X is a positive integer less than or equal to J, and I is a positive integer greater than J.
- the capability information includes: a coverage factor of a receiving beam, which is used to indicate the round number n.
- the round number n is determined according to the number of receiving beam directions associated with each of the antennas and the number of overlapping receiving beam directions of the J antennas.
- n r-Floor(m/2)
- n represents the number of rounds of the reference signal measurement performed
- m represents the number of overlapping receiving beam directions of the J antennas
- Floor() represents rounding down.
- the transceiver module is further configured as:
- a measurement configuration sent by a receiving network device wherein the measurement configuration includes: a measurement duration for measuring a reference signal in the I receiving beam directions, wherein a beam scanning coefficient N used to determine the measurement duration is determined based on the capability information.
- the beam scanning coefficient N is equal to the round number n.
- the antenna includes: an antenna panel.
- the J antennas of the UE support simultaneous measurement of reference signals in the same or different receiving beam directions.
- the UE includes J antennas.
- the J antennas of the UE cover a total of I receiving beam directions.
- the J antennas of the UE can simultaneously perform reference signal measurement in the X receiving beam directions.
- a fourth aspect of the embodiments of the present disclosure provides an information transmission device, which is arranged in a network device and includes:
- a transceiver module is configured to receive capability information sent by a user equipment UE, wherein the capability information is used to determine the number of rounds n of reference signal measurement performed by the UE in I receive beam directions, wherein one round of the reference signal measurement includes measurements of the reference signal performed by J antennas in X receive beam directions, wherein the J antennas cover the I receive beam directions, J is a positive integer greater than 2, X is a positive integer less than or equal to J, and I is a positive integer greater than J.
- the capability information includes: a coverage factor of a receiving beam, which is used to indicate the round number n.
- the round number n is determined according to the number of receiving beam directions associated with each of the antennas and the number of overlapping receiving beam directions of the J antennas.
- n r-Floor(m/2)
- n represents the number of rounds of the reference signal measurement performed
- m represents the number of overlapping receiving beams of the J antennas.
- Floor() means rounding down.
- the apparatus further comprises:
- a processing module configured to determine a beam scanning coefficient N according to the capability information
- the processing module is also configured to determine, based on the beam scanning coefficient N, the measurement duration for the UE to measure the reference signal in the I receiving beam directions.
- the beam scanning coefficient N is equal to the round number n.
- the transceiver module is further configured as:
- the measurement configuration at least includes: the measurement duration.
- the antenna includes: an antenna panel.
- the J antennas of the UE support simultaneous measurement of reference signals in the same or different receiving beam directions.
- the UE includes J antennas.
- the J antennas of the UE cover a total of I receiving beam directions.
- the J antennas of the UE can simultaneously perform reference signal measurements in the X receiving beam directions.
- a fifth aspect of the embodiments of the present disclosure provides a communication device, including a processor, a transceiver, a memory, and an executable program stored in the memory and capable of being run by the processor, wherein the processor executes the information transmission method provided in the first aspect or the second aspect when running the executable program.
- a sixth aspect of the embodiments of the present disclosure provides a computer storage medium, wherein the computer storage medium stores an executable program; after the executable program is executed by a processor, the information transmission method provided in the first aspect or the second aspect can be implemented.
- a UE sends capability information of the UE to a network device, wherein the capability information is used for the network device to determine the number n of reference signal measurement rounds performed by the UE in I receiving beam directions, wherein one round of the reference signal measurement includes the reference signal measurement performed by J antennas in X receiving beam directions, wherein the J antennas cover the I receiving beam directions, J is a positive integer greater than 2, X is a positive integer less than or equal to J, and I is a positive integer greater than J.
- the network device can determine the number of measurement rounds required for the UE to perform reference signal measurement. The deviation in determining the number of measurement rounds of reference signal measurement caused by the network device not being sure of the UE capability is reduced, thereby improving the accuracy of resource configuration of the network device.
- FIG1 is a schematic structural diagram of a wireless communication system according to an exemplary embodiment
- FIG2 is a schematic diagram of beamforming according to an exemplary embodiment
- FIG3 is a schematic diagram of a flow chart showing an information transmission process according to an exemplary embodiment
- FIG4 is a schematic diagram of beamforming according to an exemplary embodiment
- FIG5 is a schematic diagram of a flow chart showing an information transmission process according to an exemplary embodiment
- FIG6 is a schematic diagram of a flow chart showing an information transmission process according to an exemplary embodiment
- FIG7 is a schematic diagram of a flow chart showing an information transmission process according to an exemplary embodiment
- FIG8 is a schematic diagram of a flow chart showing an information transmission process according to an exemplary embodiment
- FIG9 is a schematic structural diagram of an information transmission device according to an exemplary embodiment
- FIG10 is a schematic diagram showing the structure of an information transmission device according to an exemplary embodiment
- FIG11 is a schematic diagram showing the structure of a UE according to an exemplary embodiment
- Fig. 12 is a schematic structural diagram of a communication device according to an exemplary embodiment.
- first, second, third, etc. may be used to describe various information in the disclosed embodiments, these information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
- first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
- word "if” as used herein may be interpreted as "at the time of” or "when” or "in response to determining”.
- Figure 1 shows a schematic diagram of the structure of a wireless communication system provided by an embodiment of the present disclosure.
- the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include: a plurality of UEs 11 and a plurality of network devices 12.
- the wireless communication system may be a 4th generation mobile communication (4G) system, also known as a long term evolution (LTE) system; or, the wireless communication system may be a 5G system, also known as a new radio (NR) system or a 5G NR system. Alternatively, the wireless communication system may be a next generation system of the 5G system.
- the access network in the 5G system may be called NG-RAN (New Generation-Radio Access Network).
- NG-RAN New Generation-Radio Access Network
- MTC Mobility Management Entity
- UE 11 may be a device that provides voice and/or data connectivity to a user. UE 11 may access the wireless network via a radio access network.
- the UE 11 may be an IoT UE, such as a sensor device, a mobile phone (or a "cellular" phone), and a computer with an IoT UE.
- IoT UE such as a sensor device, a mobile phone (or a "cellular" phone), and a computer with an IoT UE.
- it may be a fixed, portable, pocket-sized, handheld, computer-built-in, or vehicle-mounted device.
- a station STA
- a subscriber unit a subscriber station, a mobile station, a mobile station, a mobile station, an access point, a remote UE (remote terminal), an access terminal, a user terminal, a user agent, a user device, or a user UE (user equipment, UE).
- the UE 11 may also be a device of an unmanned aerial vehicle.
- the UE 11 may also be a vehicle-mounted device, such as a driving computer with a wireless communication function, or a wireless communication device external to the driving computer.
- the UE 11 may also be a roadside device, such as a street lamp, a signal lamp, or other roadside device with a wireless communication function.
- the network device 12 may include an access network device.
- the network device 12 may also include a core network device.
- the access network device may be an evolved access device (eNB) adopted in a 4G system.
- eNB evolved access device
- gNB access device adopting a centralized distributed architecture in a 5G system.
- the access network device adopts a centralized distributed architecture it usually includes a centralized unit (CU) and at least two distributed units (DU).
- the centralized unit is provided with a packet data convergence protocol (PDCP) layer, a radio link layer control protocol (RLC) layer, and a media access control (MAC) layer protocol stack;
- the distributed unit is provided with a physical (PHY) layer protocol stack.
- PDCP packet data convergence protocol
- RLC radio link layer control protocol
- MAC media access control
- PHY physical
- a wireless connection can be established between the network device 12 and the UE 11 through a wireless air interface.
- the wireless air interface is a wireless air interface based on the fourth generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, for example, the wireless air interface is a new air interface; or, the wireless air interface can also be a wireless air interface based on the next generation mobile communication network technology standard of 5G.
- the UE uses a receive beam scanning method to achieve better coverage of the receiving angle.
- the UE antenna uses 8 receive beams to cover a 120° range, that is, the UE generates 8 beams through beamforming, each beam points to a beam direction, and achieves 120° beam coverage.
- r1-r8 represents the 8 receive beams generated by the UE through beamforming, where each receive beam corresponds to a receive beam direction.
- simultaneousReceptionDiffTypeD-r16 the UE capability indicated by simultaneousReceptionDiffTypeD-r16 is introduced.
- SimultaneousReceptionDiffTypeD-r16 is used to indicate whether the UE can simultaneously receive two reference signals with different QCL-D relationships.
- the UE can be configured with two antenna panels in FR2, and simultaneously receive through antenna arrays at different positions on the two antenna panels to support the terminal to achieve the capability of simultaneousReceptionDiffTypeD-r16 (i.e., the ability to simultaneously receive two reference signals with different QCL-D relationships).
- each antenna panel basically adopts a scheme of 8 receiving beams covering 120°.
- SimultaneousReceptionDiffTypeD-r16 can only indicate whether the UE can receive in different directions, and the indication of the actual capability of the UE is not clear, which leads to the ambiguity of the corresponding UE receiving capability indication, and the base station cannot accurately judge the actual situation of the terminal's multi-receiving capability.
- the two antenna panels of the actual terminal may have three different situations of non-overlapping, partially overlapping and completely overlapping beams generated by the two antenna panels according to different implementation schemes.
- the current UE reports cannot realize the actual antenna beam overlap, and the base station cannot clearly determine the actual receiving capability of the UE. This causes the base station to not give sufficient consideration to resource scheduling such as UE reference signal measurement, and the base station may configure too much measurement time, resulting in a waste of time domain resources.
- an embodiment of the present disclosure provides an information transmission method, which is executed by a user equipment UE and includes:
- Step 301 Send the capability information of the UE to the network device, wherein the capability information is used for the network device to determine the number n of rounds of reference signal measurement performed by the UE in I receiving beam directions, wherein one round of the reference signal measurement includes the measurement of the reference signal performed by J antennas in X receiving beam directions, wherein the J antennas cover the I receiving beam directions, J is a positive integer greater than 2, X is a positive integer less than or equal to J, and I is a positive integer greater than J.
- the UE includes J antennas.
- J 2, that is, the UE includes two antennas.
- the J antennas of the UE cover a total of I receiving beam directions.
- the UE includes two antennas, the receiving beam of each antenna covers 8 receiving beam directions, and the receiving beams of the two antennas cover 16 receiving beam directions.
- the UE includes two antennas, the receiving beam of each antenna covers 8 receiving beam directions, and the receiving beam directions of one receiving beam of the two antennas overlap, so the receiving beams of the two antennas cover 15 receiving beam directions. And so on, which will not be repeated one by one.
- the J antennas of the UE may simultaneously perform reference signal measurements in X receiving beam directions.
- the antenna includes: an antenna panel.
- An antenna panel includes at least one antenna array, wherein each antenna array includes at least two antenna elements.
- the antenna of the UE may be an antenna panel.
- the antenna panel may be composed of one or more antenna arrays. Different beamforming is implemented by antenna arrays.
- an antenna may form receiving beams in different directions by beamforming.
- the UE may receive the reference signal sent by the network device through multiple receiving beams obtained by beamforming.
- a receiving beam may correspond to a receiving beam direction.
- the network device includes but is not limited to at least one of the following:
- Access network equipment such as base stations
- the core network device may send a reference signal to the UE through the access network device.
- the reference signal includes but is not limited to SSB.
- the reference signal measurement may be L1-RSRP measurement for SSB.
- J antennas can measure the reference signal respectively.
- the UE may have J antennas, each corresponding to K receiving beam directions. Since the receiving beam directions of two antennas may overlap, etc., the number I of receiving beam directions in which the UE can actually receive the reference signal is less than or equal to J*K. It is understandable that if the receiving beam directions of the two antennas of the UE (for example, antenna A and antenna B) overlap, for example, the receiving beam direction of a receiving beam of antenna A is the same as the receiving beam direction of a receiving beam of antenna B, then only one of antenna A or antenna B needs to be measured in the receiving beam direction to determine the measurement result of the reference signal in the receiving beam direction.
- the receiving beam directions overlap, that is, the receiving beams overlap.
- the receiving beam direction overlap may be that the difference in the receiving beam directions is less than a predetermined threshold.
- the UE needs to perform one or more rounds of signal measurement to complete the signal measurement of I receiving beam directions.
- Each round measures X receiving beam directions. Therefore, X is less than or equal to I.
- the UE includes two antennas (antenna 1 and antenna 2, where antenna 1 corresponds to beams r1 to r8, and antenna 2 corresponds to beams R1 to R8), and each antenna corresponds to 8 receiving beam directions.
- the r2 receiving beam of antenna 1 overlaps with the R8 receiving beam direction of antenna 2
- the r1 receiving beam direction of antenna 1 overlaps with the R7 receiving beam direction of antenna 2). Therefore, the number of receiving beam directions I in which the UE can actually receive the reference signal is 14, which is less than the total number of beams of the two antennas, 16.
- the UE is capable of simultaneously receiving multiple reference signals with different QCL-D relationships.
- the UE is not capable of simultaneously receiving multiple reference signals with different QCL-D relations.
- the reference signals of different QCL-D relationships may include reference signals of different receiving beam directions.
- one round of the reference signal measurement includes multiple reference signal measurements performed simultaneously, wherein one reference signal measurement may correspond to one antenna.
- the J antennas of the UE support simultaneous measurement of reference signals in the same or different receiving beam directions.
- one round of the reference signal measurement includes J antennas simultaneously performing measurements of the reference signal in X receiving beam directions.
- the UE may use two antennas to measure reference signals in two receiving beam directions at the same time.
- the UE may use antenna 1 and antenna 2 to simultaneously receive reference signals in the direction of receiving beam r8, and simultaneously receive reference signals in the direction of receiving beam R1.
- the UE may use antenna 1 to receive reference signals in the direction of receiving beam r2, and simultaneously use antenna 2 to receive reference signals in the direction of receiving beam R7.
- factors affecting the number of rounds n of reference signal measurements performed by the UE in one receive beam direction may include but are not limited to at least one of the following:
- the receiving beam overlap may be the receiving beam direction overlap.
- Whether the receiving beam directions overlap may be determined based on the difference in the receiving beam directions. For example, if the difference in the receiving beam directions of two receiving beams is less than a threshold, the two receiving beam directions overlap, otherwise it is determined that the two receiving beam directions do not overlap.
- the number of overlapping receive beams between the J antennas may include at least one of the following: the number of overlapping receive beams between two antennas; the number of overlapping receive beams between more than two antennas.
- the overlap of receiving beam directions may include: overlap of beam coverage.
- the broadcast angles of the receiving beams are the same, so when the receiving beam directions overlap, the beam coverages also overlap.
- the UE may determine the number n of rounds of reference signal measurements performed by the UE in I receiving beam directions based on the above factors.
- the r2 receiving beam of antenna 1 overlaps with the R8 receiving beam direction of antenna 2
- the r1 receiving beam of antenna 1 overlaps with the R7 receiving beam direction of antenna 2
- the UE has the ability to simultaneously receive reference signals of two different QCL-D relationships. Therefore, in one round of reference signal measurement, the UE can measure the reference signals of two receiving beam directions.
- the 14 receiving beam directions shown in FIG4 can be completed by the UE through 7 rounds of reference signal measurement.
- the UE may send capability information to the network device, so that the network device can determine the number n of reference signal measurement rounds to be performed.
- the capability information is used by the network device to indirectly determine the number of reference signal measurement rounds n to be performed.
- the capability information is used to indicate the above-mentioned determination factor, and the network device calculates the number of reference signal measurement rounds n to be performed based on the determination factor.
- the capability information includes: a coverage factor of a receiving beam, which is used to indicate the round number n.
- the coverage factor is associated with the number of receiving beam directions overlapped by the J antennas.
- the coverage factor represents the number of rounds of signal measurement to be performed by the UE to complete the reference signal measurement in one receiving beam direction.
- the name of the coverage factor is not limited.
- the UE can directly indicate the number of rounds n to the network device through the capability information. In this way, the amount of data transmitted can be reduced, the signaling load can be reduced, and the load caused by the network device calculating the number of rounds n by determining the factors can also be reduced.
- the coverage factor may adopt “Beamoverlapscalingfactor”.
- the following example illustrates the coverage factor using the example of a UE with two antennas, one antenna corresponding to eight receiving directions.
- the UE can send the Beamoverlapscalingfactor to the network device.
- the default Beamoverlapscalingfactor 8 means that the terminal needs to complete eight rounds of SSB measurements (one round of SSB measurement is performed on two antennas at the same time) to complete the SSB-based L1-RSRP measurement. This means that the two antenna panels of the UE do not have coverage of the receiving beam (i.e., a total of 16 beam directions need to be measured).
- Beamoverlapscalingfactor 4.
- the eight beams of the two antennas of the terminal completely overlap (i.e., a total of eight beam directions need to be measured), and the UE can complete the SSB-based L1-RSRP measurement of all receiving beams in four rounds of SSB measurement (one round of SSB measurement can be: two antennas simultaneously perform SSB measurements for different receiving beam directions).
- the network device can determine the number of measurement rounds required by the UE to perform reference signal measurements based on the capability information.
- the network device is uncertain about the UE capability, which causes a deviation in determining the number of measurement rounds for reference signal measurement, thereby improving the accuracy of resource configuration of the network device.
- the round number n is determined according to the number of receiving beam directions associated with each of the antennas and the number of overlapping receiving beam directions of the J antennas.
- the round number n is positively correlated with the number of receiving beam directions associated with each antenna.
- the round number n is negatively correlated with the number of overlapping receiving beam directions of the J antennas.
- n r-Floor(m/2) (1)
- n represents the number of rounds n of the reference signal measurement performed (ie, the coverage factor)
- m represents the number of overlapping receiving beam directions of the J antennas
- Floor() represents rounding down.
- the UE has the ability to simultaneously receive reference signals with two different QCL-D relationships, that is, in one round of reference signal measurement, the UE can measure reference signals in two receiving beam directions.
- m may represent the number of reception beams of one antenna that overlap with the reception beam of another antenna.
- m 2
- the UE can complete the 14 receiving beam directions shown in FIG4 through 7 rounds of reference signal measurement.
- the coverage factor may be the number of overlapping receiving beam directions of the J antennas.
- the network device may determine the number of rounds n of reference signal measurements performed by the UE in the I receiving beam directions according to the coverage factor.
- the manner in which the network device determines the number of rounds n may be similar to the manner in which the UE determines the number of rounds n, which will not be described in detail herein.
- an embodiment of the present disclosure provides an information transmission method, which is executed by a user equipment UE and includes:
- Step 501 Receive a measurement configuration sent by a network device, wherein the measurement configuration includes: a measurement duration for measuring a reference signal in the I receiving beam directions, wherein a beam scanning coefficient N used to determine the measurement duration is determined based on the capability information.
- the network device determines the number n of reference signal measurement rounds performed by the UE in I receiving beam directions based on the received capability information.
- the network device may determine the beam scanning coefficient N according to the round number n.
- the beam scanning factor N can be used to calculate the measurement duration.
- the round number n is positively correlated with the beam scanning coefficient N.
- the beam scanning coefficient N is equal to the round number n.
- the beam scanning coefficient N may be a calculation parameter in a calculation rule used to calculate the measurement duration.
- the beam scanning coefficient N is positively correlated with the measurement duration.
- the network device may calculate the measurement duration based on the beam scanning coefficient N.
- the network device determines the number of reference signal measurement rounds n required through capability information, determines the beam scanning coefficient N based on the number of rounds n, and further determines the measurement duration, thereby improving the matching degree between the measurement duration and the reference signal measurement performed by the UE and improving the accuracy of resource configuration.
- the network device may indicate the measurement configuration to the UE, so that the UE can determine the measurement time domain resources for performing reference signal measurement, such as the measurement duration.
- the network device may send a reference signal within the measurement duration for the UE to perform measurements in I receiving beam directions within the measurement duration.
- the UE measures the L1-RSRP of the SSB based on the measurement duration indicated by the network device and reports the measurement result. After the network device obtains the corresponding L1-RSRP measurement result, it can select the best beam for subsequent transmission scheduling.
- an embodiment of the present disclosure provides an information transmission method, which is executed by a network device and includes:
- Step 601 Receive capability information sent by a UE, wherein the capability information is used to determine the number of rounds n of reference signal measurements performed by the user equipment UE in I receiving beam directions, wherein one round of the reference signal measurement includes J antennas in X receiving beam directions.
- the UE includes J antennas.
- J 2, that is, the UE includes two antennas.
- the J antennas of the UE cover a total of I receiving beam directions.
- the UE includes two antennas, the receiving beam of each antenna covers 8 receiving beam directions, and the receiving beams of the two antennas cover 16 receiving beam directions.
- the UE includes two antennas, the receiving beam of each antenna covers 8 receiving beam directions, and the receiving beam directions of one receiving beam of the two antennas overlap, so the receiving beams of the two antennas cover 15 receiving beam directions. And so on, which will not be repeated one by one.
- the J antennas of the UE may simultaneously perform reference signal measurements in X receiving beam directions.
- the antenna comprises: an antenna panel.
- An antenna panel comprises at least one antenna array, wherein each antenna array comprises at least two antenna elements.
- the antenna of the UE may be an antenna panel.
- the antenna panel may be composed of one or more antenna arrays. Different beamforming is achieved through antenna arrays.
- an antenna may form receiving beams in different directions by means of beamforming.
- the UE may receive the reference signal sent by the network device by means of multiple receiving beams obtained by beamforming.
- one reception beam may correspond to one reception beam direction.
- the network device includes but is not limited to at least one of the following:
- Access network equipment such as base stations
- the core network device may send a reference signal to the UE through the access network device.
- the reference signal includes but is not limited to SSB.
- the reference signal measurement may be L1-RSRP measurement for SSB.
- J antennas can measure reference signals respectively.
- the UE may have J antennas, each of which corresponds to K receiving beam directions. Since the receiving beam directions of two antennas may overlap, the number of receiving beam directions I in which the UE can actually receive the reference signal is less than or equal to J*K. That is, it can be understood that if one of the receiving beam directions of two antennas of the UE (for example, antenna A and antenna B) overlaps, for example, the receiving beam direction of a receiving beam of antenna A overlaps with the receiving beam direction of a receiving beam of antenna B. If the receiving beam directions are the same, then only one of antenna A or antenna B needs to perform measurement in the receiving beam direction to determine the measurement result of the reference signal in the receiving beam direction.
- the receiving beam directions overlap, i.e., the receiving beams overlap.
- the receiving beam direction overlap may be that the difference in the receiving beam directions is less than a predetermined threshold.
- the UE needs to perform one or more rounds of signal measurement to complete the signal measurement in I receiving beam directions, wherein each round measures X receiving beam directions. Therefore, X is less than or equal to I.
- the UE includes two antennas (antenna 1 and antenna 2, where antenna 1 corresponds to beams r1 to r8, and antenna 2 corresponds to beams R1 to R8), and each antenna corresponds to 8 receiving beam directions.
- Two antennas have two receiving beam directions that may overlap (the r2 receiving beam of antenna 1 overlaps with the R8 receiving beam direction of antenna 2, and the r1 receiving beam of antenna 1 overlaps with the R7 receiving beam direction of antenna 2). Therefore, the number of receiving beam directions I in which the UE can actually receive the reference signal is 14, which is less than the total number of beams of the two antennas, 16.
- the UE is capable of simultaneously receiving multiple reference signals with different QCL-D relationships.
- the UE is not capable of simultaneously receiving multiple reference signals with different QCL-D relations.
- the reference signals of different QCL-D relationships may include reference signals of different receiving beam directions.
- one round of the reference signal measurement includes multiple reference signal measurements performed simultaneously, wherein one reference signal measurement may correspond to one antenna.
- the J antennas of the UE support simultaneous measurement of reference signals in the same or different receiving beam directions.
- one round of the reference signal measurement includes J antennas simultaneously performing measurements of the reference signal in X receiving beam directions.
- the UE may use two antennas to measure reference signals in two receiving beam directions at the same time.
- the UE may use antenna 1 and antenna 2 to respectively receive the reference signal in the direction of r8 receiving beam, and use antenna 1 and antenna 2 to respectively receive the reference signal in the direction of R1 receiving beam.
- the UE may use antenna 1 to receive the reference signal in the direction of r2 receiving beam, and use antenna 2 and antenna 2 to respectively receive the reference signal in the direction of r2 receiving beam and the reference signal in the direction of R7 receiving beam.
- factors affecting the number of rounds n of reference signal measurements performed by the UE in one receive beam direction may include but are not limited to at least one of the following:
- the receiving beam overlap may be the receiving beam direction overlap.
- Whether the receiving beam directions overlap may be determined based on the difference in the receiving beam directions. For example, if the difference in the receiving beam directions of two receiving beams is less than a threshold, the two receiving beam directions overlap, otherwise it is determined that the two receiving beam directions do not overlap.
- the number of overlapping receive beams between the J antennas may include at least one of the following: the number of overlapping receive beams between two antennas; the number of overlapping receive beams between more than two antennas.
- the overlap of receiving beam directions may include: overlap of beam coverage.
- the broadcast angles of the receiving beams are the same, so when the receiving beam directions overlap, the beam coverages also overlap.
- the UE may determine the number n of reference signal measurement rounds that the UE performs in I receiving beam directions based on the above factors.
- the r2 receiving beam of antenna 1 overlaps with the R8 receiving beam direction of antenna 2
- the r1 receiving beam of antenna 1 overlaps with the R7 receiving beam direction of antenna 2
- the UE has the ability to simultaneously receive reference signals of two different QCL-D relationships. Therefore, in one round of reference signal measurement, the UE can measure the reference signals of two receiving beam directions.
- the 14 receiving beam directions shown in FIG4 can be completed by the UE through 7 rounds of reference signal measurement.
- the UE may send capability information to the network device, so that the network device can determine the number n of reference signal measurement rounds to be performed.
- the capability information is used by the network device to indirectly determine the number of reference signal measurement rounds n to be performed.
- the capability information is used to indicate the above-mentioned determination factor, and the network device calculates the number of reference signal measurement rounds n to be performed based on the determination factor.
- the capability information includes: a coverage factor of a receiving beam, which is used to indicate the round number n; wherein the coverage factor is associated with the number of receiving beam directions that overlap between the J antennas.
- the coverage factor represents the number of rounds of signal measurement to be performed by the UE to complete the reference signal measurement of I receiving beam directions indicated by the UE to the network device.
- the name of the coverage factor is not limited.
- the UE can directly indicate the number of rounds n to the network device through the capability information. In this way, the amount of data transmitted can be reduced, the signaling load can be reduced, and the load caused by the network device calculating the number of rounds n by determining the factors can also be reduced.
- the coverage factor may adopt “Beamoverlapscalingfactor”.
- the following takes the case where the UE has two antennas and one antenna corresponds to eight receiving directions as an example to explain the coverage factor.
- the UE may send the beamoverlapscalingfactor to the network device.
- Beamoverlapscalingfactor 4.
- the eight beams of the two antennas of the terminal completely overlap (i.e., a total of eight beam directions need to be measured), and the UE can complete the SSB-based L1-RSRP measurement of all receiving beams in four rounds of SSB measurement (one round of SSB measurement can be: two antennas simultaneously perform SSB measurements for different receiving beam directions).
- the network device can determine the number of measurement rounds required for the UE to perform reference signal measurement through the capability information, thereby reducing the deviation in determining the number of measurement rounds for reference signal measurement caused by the network device not being sure of the UE capability, thereby improving the accuracy of resource configuration of the network device.
- the round number n is determined according to the number of receiving beam directions associated with each of the antennas and the number of overlapping receiving beam directions of the J antennas.
- the round number n is positively correlated with the number of receiving beam directions associated with each antenna.
- the round number n is negatively correlated with the number of overlapping receiving beam directions of the J antennas.
- the round number n is expressed by expression (1); wherein n represents the round number n of the reference signal measurement performed (i.e., the coverage factor), m represents the number of overlapping receiving beam directions of the J antennas, and Floor() represents rounding down.
- the UE has the ability to simultaneously receive reference signals with two different QCL-D relationships, that is, in one round of reference signal measurement, the UE can measure reference signals in two receiving beam directions.
- m may represent the number of reception beam directions in the reception beam of one antenna that overlap with the reception beam of another antenna.
- m 2
- the UE can complete the 14 receiving beam directions shown in FIG4 through 7 rounds of reference signal measurement.
- the coverage factor may be the number of overlapping receiving beam directions of the J antennas.
- the network device may determine the number of rounds n of reference signal measurements performed by the UE in the I receiving beam directions according to the coverage factor.
- the manner in which the network device determines the number of rounds n may be similar to the manner in which the UE determines the number of rounds n, which will not be described in detail herein.
- an embodiment of the present disclosure provides an information transmission method, which is executed by a network device and includes:
- Step 701 Determine a beam scanning coefficient N according to the capability information
- Step 702 Determine, according to the beam scanning coefficient N, the measurement duration for the UE to measure the reference signal in the I receiving beam directions.
- the network device determines the number n of reference signal measurement rounds performed by the UE in I receiving beam directions based on the received capability information.
- the network device may determine the beam scanning coefficient N according to the round number n.
- the beam scanning factor N can be used to calculate the measurement duration.
- the round number n is positively correlated with the beam scanning coefficient N.
- the beam scanning coefficient N is equal to the round number n.
- the beam scanning coefficient N may be a calculation parameter in a calculation rule used to calculate the measurement duration.
- the beam scanning coefficient N is positively correlated with the measurement duration.
- the network device may calculate the measurement duration based on the beam scanning coefficient N.
- the beam scanning coefficient N is equal to the round number n.
- the network device determines the number of reference signal measurement rounds n required through capability information, determines the beam scanning coefficient N based on the number of rounds n, and further determines the measurement duration, thereby improving the matching degree between the measurement duration and the reference signal measurement performed by the UE and improving the accuracy of resource configuration.
- an embodiment of the present disclosure provides an information transmission method, which is executed by a network device and includes:
- Step 801 Send a measurement configuration to the UE, wherein the measurement configuration at least includes: the measurement duration.
- the network device may indicate the measurement configuration to the UE, so that the UE can determine the measurement time domain resources for performing reference signal measurement, such as the measurement duration.
- the network device may send a reference signal within the measurement duration for the UE to perform measurements in I receiving beam directions within the measurement duration.
- the UE measures the L1-RSRP of the SSB based on the measurement duration indicated by the network device and reports the measurement result. After the network device obtains the corresponding L1-RSRP measurement result, it can select the best beam for subsequent transmission scheduling.
- the terminal reports the coverage factor of its antenna configuration, and the network schedules the terminal for transmission and measurement according to the corresponding capabilities.
- Embodiment 1 is a diagrammatic representation of Embodiment 1:
- the terminal reports the coverage factor Beamoverlapscalingfactor of the receiving beam configured by the antenna according to its own capabilities.
- Beamoverlapscalingfactor is [4,5,6,7,8], corresponding to 4 to 8 terminal SSB measurement times respectively.
- the default Beamoverlapscalingfactor 8, that is, the terminal has no coverage of the receiving beam, and the terminal needs to complete 8 SSB measurements to complete the SSB-based L1-RSRP measurement.
- the two antenna panels of the terminal are fully covered, and the terminal only receives 4 SSB During the measurement, SSB-based L1-RSRP measurement of all receive beams can be completed.
- Embodiment 2 is a diagrammatic representation of Embodiment 1:
- an embodiment of the present disclosure provides an information transmission device 100, which is arranged in a user equipment UE and includes:
- the transceiver module 110 is configured to send capability information, wherein the capability information is used for the network device to determine the number of rounds n of reference signal measurement performed by the UE in I receiving beam directions, wherein one round of the reference signal measurement includes the measurement of the reference signal performed by J antennas in X receiving beam directions, wherein the J antennas cover the I receiving beam directions, J is a positive integer greater than 2, X is a positive integer less than or equal to J, and I is a positive integer greater than J.
- the capability information includes: a coverage factor of a receiving beam, which is used to indicate the round number n.
- n r-Floor(m/2)
- n represents the number of rounds of the reference signal measurement performed
- m represents the number of overlapping receiving beam directions of the J antennas
- Floor() represents rounding down.
- the transceiver module is further configured as:
- a measurement configuration sent by a receiving network device wherein the measurement configuration includes: a measurement duration for measuring a reference signal in the I receiving beam directions, wherein a beam scanning coefficient N used to determine the measurement duration is determined based on the capability information.
- the beam scanning coefficient N is equal to the round number n.
- the antenna includes: an antenna panel.
- the J antennas of the UE support simultaneous measurement of reference signals in the same or different receiving beam directions.
- the UE includes J antennas.
- the J antennas of the UE cover a total of I receiving beam directions.
- the J antennas of the UE may simultaneously perform reference signal measurement in the X receiving beam directions.
- an information transmission device 200 which is disposed in a network device and includes:
- the transceiver module 210 is configured to receive capability information, wherein the capability information is used to determine the number of rounds n of reference signal measurement performed by the user equipment UE in I receive beam directions, wherein one round of the reference signal measurement includes the measurement of the reference signal performed by J antennas in X receive beam directions, wherein the J antennas cover the I receive beam directions, J is a positive integer greater than 2, X is a positive integer less than or equal to J, and I is a positive integer greater than J.
- the capability information includes: a coverage factor of a receiving beam, which is used to indicate the round number n.
- n r-Floor(m/2)
- n represents the number of rounds of the reference signal measurement performed
- m represents the number of overlapping receiving beam directions of the J antennas
- Floor() represents rounding down.
- the apparatus further comprises:
- a processing module 220 configured to determine a beam scanning coefficient N according to the capability information
- the processing module is also configured to determine, based on the beam scanning coefficient N, the measurement duration for the UE to measure the reference signal in the I receiving beam directions.
- the beam scanning coefficient N is equal to the round number n.
- the transceiver module is further configured as:
- the measurement configuration at least includes: the measurement duration.
- the antenna comprises.
- the J antennas of the UE support simultaneous measurement of reference signals in the same or different receiving beam directions.
- the UE includes J antennas.
- the J antennas of the UE cover a total of I receiving beam directions.
- the J antennas of the UE can simultaneously perform reference signal measurement in the X receiving beam directions.
- the present disclosure provides a communication device, including:
- a memory for storing processor-executable instructions
- the processor is configured to execute the information transmission method provided by any of the aforementioned technical solutions.
- the processor may include various types of storage media, which are non-transitory computer storage media that can continue to retain information stored thereon after the communication device loses power.
- the communication device includes: UE or a network element, and the network element can be any one of the first network element to the fourth network element mentioned above.
- the processor may be connected to the memory via a bus or the like, and is used to read an executable program stored in the memory, for example, at least one of the methods shown in FIG. 3 to FIG. 8 .
- FIG11 is a block diagram of a UE 800 according to an exemplary embodiment.
- the UE 800 may be a mobile phone, a computer, a digital broadcast user equipment, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
- UE 800 may include one or more of the following components: a processing component 802 , a memory 804 , a power component 806 , a multimedia component 808 , an audio component 810 , an input/output (I/O) interface 812 , a sensor component 814 , and a communication component 816 .
- the processing component 802 generally controls the overall operation of the UE 800, such as display, phone calls, data communications, camera operation, and recording.
- the processing component 802 may include one or more processors 820 to execute instructions to generate all or part of the steps of the above method.
- the processing component 802 may include one or more modules to facilitate the interaction between the processing component 802 and other components.
- the processing component 802 may include a multimedia module to facilitate the interaction between the multimedia component 808 and the processing component 802.
- the memory 804 is configured to store various types of data to support operations on the UE 800. Examples of such data include instructions for any application or method operating on the UE 800, contact data, phone book data, messages, pictures, videos, etc.
- the memory 804 may be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk, or optical disk.
- SRAM static random access memory
- EEPROM electrically erasable programmable read-only memory
- EPROM erasable programmable read-only memory
- PROM programmable read-only memory
- ROM read-only memory
- magnetic memory flash memory
- flash memory magnetic disk, or optical disk.
- the power component 806 provides power to various components of the UE 800.
- the power component 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the UE 800.
- the multimedia component 808 includes a screen that provides an output interface between the UE800 and the user.
- the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
- the touch panel includes one or more touch sensors to sense touch, slide, and gestures on the touch panel. The touch sensor may not only sense the boundaries of the touch or slide action, but also detect the duration and pressure associated with the touch or slide operation.
- the multimedia component 808 includes a front camera and/or a rear camera. When the UE800 is in an operating mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each front camera and rear camera may be a fixed optical lens system or have a focal length and optical zoom capability.
- the audio component 810 is configured to output and/or input audio signals.
- the audio component 810 includes a microphone (MIC), and when the UE 800 is in an operation mode, such as a call mode, a recording mode, and a speech recognition mode, the microphone is configured to receive an external audio signal.
- the received audio signal can be further stored in the memory 804 or sent via the communication component 816.
- the audio component 810 also includes a speaker for outputting audio signals.
- I/O interface 812 provides an interface between processing component 802 and peripheral interface modules, such as keyboards, click wheels, buttons, etc. These buttons may include but are not limited to: home button, volume button, start button, and lock button.
- the sensor component 814 includes one or more sensors for providing various aspects of status assessment for the UE800.
- the sensor component 814 can detect the open/closed state of the device 800, the relative positioning of the components, such as the display and keypad of the UE800, and the sensor component 814 can also detect the position change of the UE800 or a component of the UE800, the presence or absence of contact between the user and the UE800, the orientation or acceleration/deceleration of the UE800, and the temperature change of the UE800.
- the sensor component 814 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
- the sensor component 814 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
- the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
- the communication component 816 is configured to facilitate wired or wireless communication between the UE 800 and other devices.
- the UE 800 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
- the communication component 816 Receive broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
- the communication component 816 also includes a near field communication (NFC) module to facilitate short-range communication.
- the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
- RFID radio frequency identification
- IrDA infrared data association
- UWB ultra-wideband
- Bluetooth Bluetooth
- UE800 may be implemented by one or more application-specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), controllers, microcontrollers, microprocessors, or other electronic components to perform the above methods.
- ASICs application-specific integrated circuits
- DSPs digital signal processors
- DSPDs digital signal processing devices
- PLDs programmable logic devices
- FPGAs field programmable gate arrays
- controllers microcontrollers, microprocessors, or other electronic components to perform the above methods.
- a non-transitory computer-readable storage medium including instructions is also provided, such as a memory 804 including instructions, and the instructions can be executed by the processor 820 of the UE 800 to generate the above method.
- the non-transitory computer-readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, etc.
- an embodiment of the present disclosure shows a structure of an access device.
- the communication device 900 can be provided as a network device.
- the communication device can be various network elements such as the aforementioned access network element and/or network function.
- the communication device 900 includes a processing component 922, which further includes one or more processors, and a memory resource represented by a memory 932 for storing instructions that can be executed by the processing component 922, such as an application.
- the application stored in the memory 932 may include one or more modules each corresponding to a set of instructions.
- the processing component 922 is configured to execute instructions to perform any method of the aforementioned method applied to the access device, for example, any method shown in any one of Figures 4 to 9.
- the communication device 900 may also include a power supply component 926 configured to perform power management of the communication device 900, a wired or wireless network interface 950 configured to connect the communication device 900 to a network, and an input/output (I/O) interface 958.
- the communication device 900 may operate based on an operating system stored in the memory 932, such as Windows Server TM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM, or the like.
- each step in the above-mentioned embodiment or example can be implemented as an independent embodiment, and the steps can be arbitrarily combined.
- a solution after removing some steps in a certain embodiment or example can also be implemented as an independent embodiment, and the order of the steps in a certain embodiment or example can be arbitrarily exchanged.
- the optional methods or optional examples in a certain embodiment or example can be arbitrarily combined; in addition, the embodiments or examples can be arbitrarily combined.
- part or all of the steps of different embodiments or examples can be arbitrarily combined, and a certain embodiment or example can be arbitrarily combined with the optional methods or optional examples of other embodiments or examples.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本公开实施例提供的信息传输方法、装置、通信设备和存储介质。用户设备(UE)向网络设备发送所述UE的能力信息,其中,所述能力信息,用于供所述网络设备确定所述UE在I个接收波束方向上进行的参考信号测量的轮数n,其中,一轮所述参考信号测量包括J个天线在X个所述接收波束方向进行的所述参考信号的测量,其中,J个所述天线覆盖所述I个接收波束方向,J为大于2的正整数,X小于或等于J的正整数,I为大于J的正整数
Description
本公开涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及一种信息传输方法及装置、通信设备及存储介质。
在第五代(5th Generation)移动通信的演进中,由于在FR2毫米波频段采用了波束赋形的技术,因此用户设备(User Equipment,UE)在接收无线信号的时候,不再像FR1低频段那样采用全向天线时,要额外引入接收波束的赋形管理,以采用最好的接收波束进行接收,达到更大的上行覆盖范围,以及更好的传输速率。同时,由于波束概念的引入,空间上的维度也进一步被引入UE的传输中,也就是在相同时间和频率下的物理资源,可以通过不同的波束来实现进一步的资源复用。
发明内容
本公开实施例提供一种信息传输方法及装置、通信设备及存储介质。
本公开实施例第一方面提供一种信息传输方法,其中,由用户设备UE执行,包括:
向网络设备发送所述UE的能力信息,其中,所述能力信息,用于供所述网络设备确定所述UE在I个接收波束方向上进行的参考信号测量的轮数n,其中,一轮所述参考信号测量包括J个天线在X个所述接收波束方向进行的所述参考信号的测量,其中,J个所述天线覆盖所述I个接收波束方向,J为大于2的正整数,X小于或等于J的正整数,I为大于J的正整数。
在一个实施例中,所述能力信息,包括:接收波束的覆盖因子,用于指示所述轮数n。
在一个实施例中,所述轮数n是根据每个所述天线关联的接收波束方向的数量和J个所述天线具有的重叠的接收波束方向数量确定的。在一个实施例中,当J=2,并且每个天线关联于r个接收波束方向时,所述轮数n采用以下表达式表示:
n=r-Floor(m/2)
n=r-Floor(m/2)
其中,n表示进行的所述参考信号测量的轮数n,m表示J个所述天线具有的重叠的接收波束方向数量,Floor()表示向下取整。
在一个实施例中,所述方法还包括:
接收网络设备发送的测量配置,其中,所述测量配置包括:在所述I个接收波束方向进行参考信号的测量的测量时长,其中,用于确定所述测量时长的波束扫描系数N是基于所述能力信息确定的。
在一个实施例中,波束扫描系数N等于所述轮数n。
在一个实施例中,所述天线包括:天线面板。
在一个实施例中,所述UE的J个所述天线支持同时分别在相同或不同的接收波束方向进行参考信号的测量。
在一个实施例中,所述UE包含有J个所述天线。
在一个实施例中,所述UE的J个所述天线共覆盖I个所述接收波束方向。
在一个实施例中,所述UE的J个所述天线可以在X个所述接收波束方向同时进行参考信号测量。本公开实施例第二方面提供一种信息传输方法,其中,由网络设备执行,包括:
接收用户设备UE发送的能力信息,其中,所述能力信息,用于确定所述UE在I个接收波束方向上进行的参考信号测量的轮数n,其中,一轮所述参考信号测量包括J个天线在X个所述接收波束方向进行的所述参考信号的测量,其中,J个所述天线覆盖所述I个接收波束方向,J为大于2的正整数,X小于或等于J的正整数,I为大于J的正整数。
在一个实施例中,所述能力信息,包括:接收波束的覆盖因子,用于指示所述轮数n。
在一个实施例中,所述轮数n是根据每个所述天线关联的接收波束方向的数量和J个所述天线具有的重叠的接收波束方向数量确定的。
在一个实施例中,当J=2,并且每个天线关联于r个接收波束方向时,所述轮数n采用以下表达式表示:
n=r-Floor(m/2)
n=r-Floor(m/2)
其中,n表示进行的所述参考信号测量的轮数n,m表示J个所述天线具有的重叠的接收波束方向数量,Floor()表示向下取整。
在一个实施例中,所述方法还包括:
根据所述能力信息,确定的波束扫描系数N;
根据波束扫描系数N确定所述UE在所述I个接收波束方向进行参考信号的测量的测量时长。
在一个实施例中,波束扫描系数N等于所述轮数n。
在一个实施例中,所述方法还包括:
向所述UE发送测量配置,其中,所述测量配置至少包括:所述测量时长。
在一个实施例中,所述天线包括:天线面板。
在一个实施例中,所述UE的J个所述天线支持同时分别在相同或不同的接收波束方向进行参考信号的测量。
在一个实施例中,所述UE包含有J个所述天线。
在一个实施例中,所述UE的J个所述天线共覆盖I个所述接收波束方向。
在一个实施例中,所述UE的J个所述天线可以在X个所述接收波束方向同时进行参考信号测量。本公开实施例第三方面提供一种信息传输装置,其中,设置于用户设备UE内,包括:
收发模块,配置为向网络设备发送所述UE的能力信息,其中,所述能力信息,用于供所述网
络设备确定所述UE在I个接收波束方向上进行的参考信号测量的轮数n,其中,一轮所述参考信号测量包括J个天线在X个所述接收波束方向进行的所述参考信号的测量,其中,J个所述天线覆盖所述I个接收波束方向,J为大于2的正整数,X小于或等于J的正整数,I为大于J的正整数。
在一个实施例中,所述能力信息,包括:接收波束的覆盖因子,用于指示所述轮数n。
在一个实施例中,所述轮数n是根据每个所述天线关联的接收波束方向的数量和J个所述天线具有的重叠的接收波束方向数量确定的。
在一个实施例中,当J=2,并且每个天线关联于r个接收波束方向时,所述轮数n采用以下表达式表示:
n=r-Floor(m/2)
n=r-Floor(m/2)
其中,n表示进行的所述参考信号测量的轮数n,m表示J个所述天线具有的重叠的接收波束方向数量,Floor()表示向下取整。
在一个实施例中,所述收发模块,还配置为:
接收网络设备发送的测量配置,其中,所述测量配置包括:在所述I个接收波束方向进行参考信号的测量的测量时长,其中,用于确定所述测量时长的波束扫描系数N是基于所述能力信息确定的。
在一个实施例中,波束扫描系数N等于所述轮数n。
在一个实施例中,所述天线包括:天线面板。
在一个实施例中,所述UE的J个所述天线支持同时分别在相同或不同的接收波束方向进行参考信号的测量。
在一个实施例中,所述UE包含有J个所述天线。
在一个实施例中,所述UE的J个所述天线共覆盖I个所述接收波束方向。
在一个实施例中,所述UE的J个所述天线可以在X个所述接收波束方向同时进行参考信号测量。本公开实施例第四方面提供一种信息传输装置,其中,设置于网络设备内,包括:
收发模块,配置为接收用户设备UE发送的能力信息,其中,所述能力信息,用于确定所述UE在I个接收波束方向上进行的参考信号测量的轮数n,其中,一轮所述参考信号测量包括J个天线在X个所述接收波束方向进行的所述参考信号的测量,其中,J个所述天线覆盖所述I个接收波束方向,J为大于2的正整数,X小于或等于J的正整数,I为大于J的正整数。
在一个实施例中,所述能力信息,包括:接收波束的覆盖因子,用于指示所述轮数n。
在一个实施例中,所述轮数n是根据每个所述天线关联的接收波束方向的数量和J个所述天线具有的重叠的接收波束方向数量确定的。
在一个实施例中,当J=2,并且每个天线关联于r个接收波束方向时,所述轮数n采用以下表达式表示:
n=r-Floor(m/2)
n=r-Floor(m/2)
其中,n表示进行的所述参考信号测量的轮数n,m表示J个所述天线具有的重叠的接收波束方
向数量,Floor()表示向下取整。
在一个实施例中,所述装置还包括:
处理模块,配置为根据所述能力信息,确定的波束扫描系数N;
所述处理模块,还配置为根据波束扫描系数N确定所述UE在所述I个接收波束方向进行参考信号的测量的测量时长。
在一个实施例中,波束扫描系数N等于所述轮数n。
在一个实施例中,所述收发模块,还配置为:
向所述UE发送测量配置,其中,所述测量配置至少包括:所述测量时长。
在一个实施例中,所述天线包括:天线面板。
在一个实施例中,所述UE的J个所述天线支持同时分别在相同或不同的接收波束方向进行参考信号的测量。
在一个实施例中,所述UE包含有J个所述天线。
在一个实施例中,所述UE的J个所述天线共覆盖I个所述接收波束方向。
在一个实施例中,所述UE的J个所述天线可以在X个所述接收波束方向同时进行参考信号测量。本公开实施例第五方面提供一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够由所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行第一方面或第二方面提供的信息传输方法。
本公开实施例第六方面提供一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够实现第一方面或第二方面提供的信息传输方法。
本公开实施例提供的信息传输方法、装置、通信设备和存储介质。UE向网络设备发送所述UE的能力信息,其中,所述能力信息,用于供所述网络设备确定所述UE在I个接收波束方向上进行的参考信号测量的轮数n,其中,一轮所述参考信号测量包括J个天线在X个所述接收波束方向进行的所述参考信号的测量,其中,J个所述天线覆盖所述I个接收波束方向,J为大于2的正整数,X小于或等于J的正整数,I为大于J的正整数。如此,通过能力信息,网络设备可以确定UE进行参考信号测量所需要的测量轮数。减少由于网络设备不确定UE能力,引起的参考信号测量的测量轮数确定偏差,进而能提高网络设备配置资源的准确性。
本公开实施例提供的技术方案,应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图;
图2是根据一示例性实施例示出的一种波束赋形示意图;
图3是根据一示例性实施例示出的一种信息传输的流程示意图;
图4是根据一示例性实施例示出的一种波束赋形示意图;
图5是根据一示例性实施例示出的一种信息传输的流程示意图;
图6是根据一示例性实施例示出的一种信息传输的流程示意图;
图7是根据一示例性实施例示出的一种信息传输的流程示意图;
图8是根据一示例性实施例示出的一种信息传输的流程示意图;
图9是根据一示例性实施例示出的一种信息传输装置的结构示意图;
图10是根据一示例性实施例示出的一种信息传输装置的结构示意图;
图11是根据一示例性实施例示出的一种UE的结构示意图;
图12是根据一示例性实施例示出的一种通信设备的结构示意图。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明实施例相一致的所有实施方式。相反,它们仅是本发明实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个UE 11以及若干个网络设备12。
其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,MTC系统。
其中,UE 11可以是指向用户提供语音和/或数据连通性的设备。UE 11可以经无线接入网(Radio
Access Network,RAN)与一个或多个核心网进行通信,UE 11可以是物联网UE,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网UE的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station)、移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程UE(remote terminal)、接入UE(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户UE(user equipment,UE)。或者,UE 11也可以是无人飞行器的设备。或者,UE 11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,UE 11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
网络设备12可以包括接入网设备。可选的,网络设备12还可以包括核心网设备。其中,接入网设备可以是4G系统中采用的演进型接入设备(eNB)。或者,也可以是5G系统中采用集中分布式架构的接入设备(gNB)。当接入网设备采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对接入网设备的具体实现方式不加以限定。
网络设备12和UE 11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
如图2所示,UE采用接收波束扫描的方式,来实现更好的接收角度的覆盖。目前,在FR2频段UE的天线采用8个接收波束覆盖120°范围的方式,即UE通过波束赋形生成8个波束,每个波束指向一个波束方向,实现120°的波束覆盖。如图2所述,r1-r8表示UE通过波束赋形生成的8个接收波束,其中,每个接收波束对应于一个接收波束方向。
在3GPP标准版本16(Rel-16)中,引入了simultaneousReceptionDiffTypeD-r16指示的UE能力,simultaneousReceptionDiffTypeD-r16用以指示UE是否能够同时接收两个不同QCL-D关系的参考信号的能力。UE可以是在FR2配置两个天线面板,通过两个天线面板上的不同位置的天线阵列的同时接收,以支持终端实现simultaneousReceptionDiffTypeD-r16的能力(即同时接收两个不同QCL-D关系的参考信号的能力)。如图2所示,每一个天线面板基本采用8个接收波束覆盖120°的方案。simultaneousReceptionDiffTypeD-r16只能指示UE能否在不同方向上进行接收,对于UE的实际能力的指示并不明确,这就导致了相应的UE接收能力指示的不明确,基站无法准确的判断出终端多接收能力的实际情况。实际终端的两个天线面板,可能会根据实现的不同方案,两个天线面板生成的波束有不重叠,部分重叠和完全重叠的三种不同情况。
目前的UE上报无法实现实际的天线波束的重叠情况,基站也无法明确判断UE的实际接收能力,
造成基站在UE参考信号测量等资源调度考虑不充分,可能会出现基站配置过多的测量时间,造成时域资源上的浪费的情况。
因此,如何提高基站针对基于波束赋形的UE资源配置的准确程度,提高资源利用效率,是亟待解决的问题。
如图3所示,本公开实施例提供一种信息传输方法,其中,由用户设备UE执行,包括:
步骤301:向网络设备发送所述UE的能力信息,其中,所述能力信息,用于供网络设备确定所述UE在I个接收波束方向上进行的参考信号测量的轮数n,其中,一轮所述参考信号测量包括J个天线在X个所述接收波束方向进行的所述参考信号的测量,其中,J个所述天线覆盖所述I个接收波束方向,J为大于2的正整数,X小于或等于J的正整数,I为大于J的正整数。
在一个实施例中,UE包含有J个天线。
例如,J=2,即UE包含有两个天线。
在一个实施例中,所述UE的J个天线共覆盖I个接收波束方向。
例如,UE包含有两个天线,每个天线的接收波束覆盖8个接收波束方向,两个天线的接收波束覆盖16个接收波束方向。
例如,UE包含有两个天线,每个天线的接收波束覆盖8个接收波束方向,并且两个天线的一个接收波束的接收波束方向重叠,因此两个天线的接收波束覆盖15个接收波束方向。以此类推,不在一一赘述。
在一个实施例中,所述UE的J个天线可以在X个接收波束方向同时进行参考信号测量。
例如,UE包含有两个天线,两个天线可以同时针对同一接收波束方向进行参考信号测量,此时X=1。两个天线可以同时针对不同接收波束方向进行参考信号测量,此时X=2。
在一个示例中,所述天线包括:天线面板。一个天线面板包括至少一个天线阵列,其中每个天线阵列包括至少两个天线阵子(element)。
也就是说,UE的天线可以是天线面板。天线面板可以由一个或多个天线阵列组成。不同的通过天线阵列实现波束赋形。在一个可能的实现方式中,一个天线可以通过波束赋形方式形成不同方向的接收波束。UE可以通过波束赋形得到的多个接收波束接收网络设备发送的参考信号。
示例性的,一个接收波束可以对应于一个接收波束方向。在一个可能的实现方式中,网络设备包括但不限于以下至少一项:
接入网设备(如基站);
核心网设备。
核心网设备可以通过接入网设备向UE发送参考信号。
在一个可能的实现方式中,参考信号包括但不限于SSB。参考信号测量可以是针对SSB的L1-RSRP测量。
在一轮信号测量中,J个天线可以分别进行参考信号的测量。J个天线在一轮信号测量中,接收波束方向可以相同也可以不同。因此,在一轮信号测量中,J个天线能够对X个接收波束方向进行
测量,X大于或等于1,并且小于或等于J。例如,当J个天线在一轮信号测量中,接收波束方向都相同,那么X=1;当J个天线在一轮信号测量中,接收波束方向不相同,那么X=J。
UE可以具有J个天线,每个天线对应于K个接收波束方向。由于两个天线的接收波束方向可能存在重叠等情况,因此,UE实际能接收参考信号的接收波束方向的数量I小于或等于J*K。可以理解的是,如果UE的两个天线(例如天线A和天线B)的接收波束方向存在重叠的情况,例如,天线A的一个接收波束的接收波束方向,与天线B的一个接收波束的接收波束方向相同,那么只需要天线A或天线B中任一个天线在该接收波束方向进行测量,就可以确定参考信号在该接收波束方向的测量结果。这里,接收波束方向重叠,即接收波束重叠。接收波束方向重叠可以是接收波束方向的差异小于预定阈值。
在一些实施例中,UE可以具有J个(例如J=2)天线,每个天线对应于K个(例如K=8)接收波束方向。由于两个天线的接收波束方向可能存在重叠等情况,因此,UE实际能接收参考信号的接收波束方向的数量I小于或等于J*K,例如I=14。
那么,UE完成I个接收波束方向的信号测量,需要进行一轮或多轮信号测量。其中每轮测量X个接收波束方向。因此,X小于或等于I。示例性的,如图4所述,UE包括两个天线(天线1和天线2,其中,天线1对应波束r1~r8,天线2对应波束R1~R8),每个天线对应于8个接收波束方向。两个天线有两个接收波束方向可能存在重叠(天线1的r2接收波束和天线2的R8接收波束方向重叠,天线1的r1接收波束方向和天线2的R7接收波束方向重叠),因此,UE实际能接收参考信号的接收波束方向的数量I为14个,I小于两个天线总的波束数量16。
在一个可能的实现方式中,UE能够同时接收多个不同QCL-D关系的参考信号的能力。
在一个可能的实现方式中,UE不能够同时接收多个不同QCL-D关系的参考信号的能力。
这里,不同QCL-D关系的参考信号可以包括,不同接收波束方向的参考信号。
在一个可能的实现方式中,一轮所述参考信号测量,包括同时进行的多次参考信号测量。其中,一次参考信号测量可以对应于1个天线。
在一个实施例中,所述UE的J个所述天线支持同时分别在相同或不同的接收波束方向进行参考信号的测量。
在一个可能的实现方式中,一轮所述参考信号测量,包括J个天线同时在X个所述接收波束方向进行的所述参考信号的测量。
示例性的,如图4所述,UE可以采用两个天线同时在两个接收波束方向进行参考信号的测量。例如,UE可以采用天线1和天线2同时接收r8接收波束方向的参考信号,以及同时接收R1接收波束方向的参考信号。或者,UE可以采用天线1接收r2接收波束方向的参考信号,并同时采用天线2接收R7接收波束方向的参考信号。
在一些实施例中,影响UE在I个接收波束方向上进行的参考信号测量的轮数n的因素可以包括但不限于以下至少一项:
J个天线之间是否具有重叠的接收波束;其中,重叠的接收波束的接收波束方向存在重叠;
J个天线之间具有的重叠的接收波束的数量;
UE是否支持同时接收不同QCL-D关系的参考信号的能力。
这里,接收波束重叠可以是接收波束方向重叠。可以根据接收波束方向的差异确定接收波束方向是否重叠。例如,两个接收波束的接收波束方向的差异小于阈值,则两个接收波束方向重叠,否则确定两个接收波束方向不重叠。
在一个可能的实现方式中,如果J大于3,那么J个天线之间具有的重叠的接收波束的数量,可以包括以下至少一项:两个天线之间具有的重叠的接收波束的数量;两个以上天线之间具有的重叠的接收波束的数量。
在一个可能的实现方式中,接收波束方向重叠可以包括:波束覆盖范围重叠。
在一个可能的实现方式中,接收波束的广播角度相同,那么当接收波束方向重叠时,波束覆盖范围也重叠。
UE可以基于上述因素确定UE在I个接收波束方向上进行的参考信号测量的轮数n。
示例性的,如图4所述,天线1的r2接收波束和天线2的R8接收波束方向重叠,天线1的r1接收波束和天线2的R7接收波束方向重叠,并且UE具有能够同时接收两个不同QCL-D关系的参考信号的能力。因此,在一轮参考信号测量中,UE可以测量两个接收波束方向的参考信号。图4所示的14个接收波束方向UE可以通过7轮参考信号测量完成。
UE可以向网络设备发送能力信息,供网络设备确定进行的参考信号测量的轮数n。
在一个可能的实现方式中,能力信息供网络设备间接确定进行的参考信号测量的轮数n。例如,能力信息用于指示上述确定因素,由网络设备基于确定因素计算进行的参考信号测量的轮数n
在一个实施例中,所述能力信息,包括:接收波束的覆盖因子,用于指示所述轮数n。其中,覆盖因子关联于J个所述天线之间相互重叠的接收波束方向的数量。
这里,覆盖因子表示UE完成I个接收波束方向的参考信号测量所要进行的信号测量的轮数。在此,对覆盖因子的名称不做限定。
UE可以通过能力信息直接向网络设备指示轮数n。如此,可以减少传输的数据量,降低信令负载。也可以降低网络设备通过确定因素计算轮数n带来的负载。
在一个可能的实现方式中,覆盖因子可以采用“Beamoverlapscalingfactor”。
下面以UE具有两个天线,一个天线对应于8个接收方向为例说明覆盖因子。UE可以向网络设备发送Beamoverlapscalingfactor。示例性的,默认的Beamoverlapscalingfactor=8,表示终端需要完成8轮SSB测量(一轮SSB测量两个天线同时进行),才能完成基于SSB的L1-RSRP的测量。这意味着UE两个天线面板没有接收波束的覆盖(即共需要测量16个波束方向),
示例性的,Beamoverlapscalingfactor=4。终端的两个天线的8个波束完全重叠(即共需要测量8个波束方向),UE可以在4轮SSB测量(一轮SSB测量可以是:两个天线同时针对不同接收波束方向进行SSB的测量,)中,就可以完成全部接收波束的基于SSB的L1-RSRP测量。
如此,通过能力信息,网络设备可以确定UE进行参考信号测量所需要的测量轮数。减少由于
网络设备不确定UE能力,引起的参考信号测量的测量轮数确定偏差,进而能提高网络设备配置资源的准确性。
在一个实施例中,所述轮数n是根据每个所述天线关联的接收波束方向的数量和J个所述天线具有的重叠的接收波束方向数量确定的。
在一个可能的实现方式中,轮数n与每个天线关联的接收波束方向的数量正相关。
每个天线关联的接收波束方向的数量越多,需要测量的轮数n越多。
在一个可能的实现方式中,轮数n与J个天线具有的重叠的接收波束方向数量确定的负相关。
J个天线具有的重叠的接收波束方向数量越多,需要测量的轮数n越少。
在一个实施例中,当J=2,并且每个天线关联于r个接收波束方向时,所述轮数n采用表达式(1)表示:
n=r-Floor(m/2) (1)
n=r-Floor(m/2) (1)
其中,n表示进行的所述参考信号测量的轮数n(即覆盖因子),m表示J个所述天线具有的重叠的接收波束方向数量,Floor()表示向下取整。
这里,UE具有能够同时接收两个不同QCL-D关系的参考信号的能力,也即在一轮参考信号测量中,UE可以测量两个接收波束方向的参考信号。
这里,m可以表示1个天线的接收波束中与另一个天线的接收波束具有重叠关系的接收波束的数量。
在重叠的接收波束方向,只需要任一天线进行参考信号测量就可以确定测量结果。
示例性的,一个天线对应于8个接收波束方向,即r=8。
如果m为2,即如图4所示的1个天线的接收波束方向中与另一个天线的接收波束方向具有重叠关系的接收波束方向的数量为2。图4所示的14个接收波束方向UE可以通过7轮参考信号测量完成。
以此类推:
一个天线的接收波束方向中与另一个天线的接收波束方向具有重叠关系的接收波束方向的数量为1,m=1,那么,UE需要进行8轮参考信号测量就可以确定15个波束方向的测量结果。
一个天线的接收波束方向中与另一个天线的接收波束方向具有重叠关系的接收波束方向的数量为2,m=2,那么,UE需要进行7轮参考信号测量就可以确定14个波束方向的测量结果。
一个天线的接收波束方向中与另一个天线的接收波束方向具有重叠关系的接收波束方向的数量为3,m=3,那么,UE需要进行7轮参考信号测量就可以确定13个波束方向的测量结果。
一个天线的接收波束方向中与另一个天线的接收波束方向具有重叠关系的接收波束方向的数量为4,m=4,那么,UE需要进行6轮参考信号测量就可以确定12个波束方向的测量结果。
一个天线的接收波束方向中与另一个天线的接收波束方向具有重叠关系的接收波束方向的数量为5,m=5,那么,UE需要进行6轮参考信号测量就可以确定11个波束方向的测量结果。
一个天线的接收波束方向中与另一个天线的接收波束方向具有重叠关系的接收波束方向的数量
为6,m=6,那么,UE需要进行5轮参考信号测量就可以确定10个波束方向的测量结果。
一个天线的接收波束方向中与另一个天线的接收波束方向具有重叠关系的接收波束方向的数量为7,m=7,那么,UE需要进行5轮参考信号测量就可以确定9个波束方向的测量结果。
一个天线的接收波束方向中与另一个天线的接收波束方向具有重叠关系的接收波束方向的数量为8,m=8,那么,UE需要进行4轮参考信号测量就可以确定8个波束方向的测量结果。
在一个可能的实现方式中,覆盖因子可以是J个天线具有的重叠的接收波束方向数量。网络设备可以根据覆盖因子,确定UE在I个接收波束方向上进行的参考信号测量的轮数n。网络设备确定轮数n的方式可以与UE确定轮数n的方式相似,在此不再赘述。
如图5所示,本公开实施例提供一种信息传输方法,其中,由用户设备UE执行,包括:
步骤501:接收网络设备发送的测量配置,其中,所述测量配置包括:在所述I个接收波束方向进行参考信号的测量的测量时长,其中,用于确定所述测量时长的波束扫描系数N是基于所述能力信息确定的。
网络设备根据接收到的能力信息,确定UE在I个接收波束方向上进行的参考信号测量的轮数n。
网络设备可以根据轮数n确定波束扫描系数N。
波束扫描系数N可以用于计算测量时长。
在一个可能的实现方式中,轮数n与波束扫描系数N正相关。
在一个实施例中,波束扫描系数N等于所述轮数n。
在一个可能的实现方式中,波束扫描系数N可以是计算测量时长所采用的计算规则中的计算参数。
在一个可能的实现方式中,波束扫描系数N与测量时长正相关。
网络设备可以基于波束扫描系数N计算测量时长。
网络设备通过能力信息确定需要进行的参考信号测量的轮数n,在根据轮数n确定波束扫描系数N,进而确定测量时长,提高了测量时长与UE进行参考信号测量的匹配程度,提高资源配置的准确性。
网络设备可以向UE指示测量配置,供UE确定进行参考信号测量的测量时域资源,如测量时长。
在一个可能的实现方式中,网络设备可以在测量时长内发送参考信号供UE在测量时长内在I个接收波束方向进行测量。
示例性的,网络设备在接收到终端上报的接收波束的覆盖因子后,配置终端基于SSB的L1-RSRP的测量时长所关联的波束扫描系数N=Beamoverlapscalingfactor。
UE基于网络设备指示的测量时长,SSB的L1-RSRP的测量并上报测量结果。网络设备获得相应的L1-RSRP的测量结果之后,能选择最佳波束进行后续的传输调度。
如图6所示,本公开实施例提供一种信息传输方法,其中,由网络设备执行,包括:
步骤601:接收UE发送的能力信息,其中,所述能力信息,用于确定用户设备UE在I个接收波束方向上进行的参考信号测量的轮数n,其中,一轮所述参考信号测量包括J个天线在X个所述
接收波束方向进行的所述参考信号的测量,其中,J个所述天线覆盖所述I个接收波束方向,J为大于2的正整数,X小于或等于J的正整数,I为大于J的正整数。
在一个实施例中,UE包含有J个天线。
例如,J=2,即UE包含有两个天线。
在一个实施例中,所述UE的J个天线共覆盖I个接收波束方向。
例如,UE包含有两个天线,每个天线的接收波束覆盖8个接收波束方向,两个天线的接收波束覆盖16个接收波束方向。
例如,UE包含有两个天线,每个天线的接收波束覆盖8个接收波束方向,并且两个天线的一个接收波束的接收波束方向重叠,因此两个天线的接收波束覆盖15个接收波束方向。以此类推,不在一一赘述。
在一个实施例中,所述UE的J个天线可以在X个接收波束方向同时进行参考信号测量。
例如,UE包含有两个天线,两个天线可以同时针对同一接收波束方向进行参考信号测量,此时X=1。两个天线可以同时针对不同接收波束方向进行参考信号测量,此时X=2。
在一个实施例中,所述天线包括:天线面板。一个天线面板包括至少一个天线阵列,其中每个天线阵列包括至少两个天线阵子(element)。
也就是说,UE的天线可以是天线面板。天线面板可以由一个或多个天线阵列组成。不同的通过天线阵列实现波束赋形。
在一个可能的实现方式中,一个天线可以通过波束赋形方式形成不同方向的接收波束。UE可以通过波束赋形得到的多个接收波束接收网络设备发送的参考信号。
这里,一个接收波束可以对应于一个接收波束方向。
在一个可能的实现方式中,网络设备包括但不限于以下至少一项:
接入网设备(如基站);
核心网设备。
核心网设备可以通过接入网设备向UE发送参考信号。
在一个可能的实现方式中,参考信号包括但不限于SSB。参考信号测量可以是针对SSB的L1-RSRP测量。
在一轮信号测量中,J个天线可以分别进行参考信号的测量。J个天线在一轮信号测量中,接收波束方向可以相同也可以不同。因此,在一轮信号测量中,J个天线能够对X个接收波束方向进行测量,X大于或等于1,并且小于或等于J。例如,当J个天线在一轮信号测量中,接收波束方向都相同,那么X=1;当J个天线在一轮信号测量中,接收波束方向不相同,那么X=J。
UE可以具有J个天线,每个天线对应于K个接收波束方向。由于两个天线的接收波束方向可能存在重叠等情况,因此,UE实际能接收参考信号的接收波束方向的数量I小于或等于J*K。即可以理解的是,针对如果UE的两个天线(例如天线A和天线B)的有一个接收波束方向存在重叠的情况的接收波束方向,例如,天线A的一个接收波束的接收波束方向,与天线B的一个接收波束的
接收波束方向相同,那么只需要天线A或天线B中任一个天线在该接收波束方向进行测量,就可以确定参考信号在该接收波束方向的测量结果。这里,接收波束方向重叠,即接收波束重叠。接收波束方向重叠可以是接收波束方向的差异小于预定阈值。
在一些实施例中,UE可以具有J个(例如J=2)天线,每个天线对应于K个(例如K=8)接收波束方向。由于两个天线的接收波束方向可能存在重叠等情况,因此,UE实际能接收参考信号的接收波束方向的数量I小于或等于J*K,例如I=14。
那么,UE完成I个接收波束方向的信号测量,需要进行一轮或多轮信号测量。其中每轮测量X个接收波束方向。因此,X小于或等于I。
示例性的,如图4所述,UE包括两个天线(天线1和天线2,其中,天线1对应波束r1~r8,天线2对应波束R1~R8),每个天线对应于8个接收波束方向。两个天线有两个接收波束方向可能存在重叠(天线1的r2接收波束和天线2的R8接收波束方向重叠,天线1的r1接收波束和天线2的R7接收波束方向重叠),因此,UE实际能接收参考信号的接收波束方向的数量I为14个,I小于两个天线总的波束数量16。
在一个可能的实现方式中,UE能够同时接收多个不同QCL-D关系的参考信号的能力。
在一个可能的实现方式中,UE不能够同时接收多个不同QCL-D关系的参考信号的能力。
这里,不同QCL-D关系的参考信号可以包括,不同接收波束方向的参考信号。
在一个可能的实现方式中,一轮所述参考信号测量,包括同时进行的多次参考信号测量。其中,一次参考信号测量可以对应于1个天线。
在一个实施例中,所述UE的J个所述天线支持同时分别在相同或不同的接收波束方向进行参考信号的测量。
在一个可能的实现方式中,一轮所述参考信号测量,包括J个天线同时在X个所述接收波束方向进行的所述参考信号的测量。
示例性的,如图4所述,UE可以同时采用两个天线同时在两个接收波束方向进行参考信号的测量。例如,UE可以同时采用天线1和天线2同时分别接收r8接收波束方向的参考信号,以及和同时接收R1接收波束方向的参考信号。或者,UE可以同时采用天线1接收r2接收波束方向的参考信号,并同时采用和天线2分别接收r2接收波束方向的参考信号和R7接收波束方向的参考信号。
在一些实施例中,影响UE在I个接收波束方向上进行的参考信号测量的轮数n的因素可以包括但不限于以下至少一项:
J个天线之间是否具有重叠的接收波束;其中,重叠的接收波束的接收波束方向存在重叠;
J个天线之间具有的重叠的接收波束的数量;
UE是否支持同时接收不同QCL-D关系的参考信号的能力。
这里,接收波束重叠可以是接收波束方向重叠。可以根据接收波束方向的差异确定接收波束方向是否重叠。例如,两个接收波束的接收波束方向的差异小于阈值,则两个接收波束方向重叠,否则确定两个接收波束方向不重叠。
在一个可能的实现方式中,如果J大于3,那么J个天线之间具有的重叠的接收波束的数量,可以包括以下至少一项:两个天线之间具有的重叠的接收波束的数量;两个以上天线之间具有的重叠的接收波束的数量。
在一个可能的实现方式中,接收波束方向重叠可以包括:波束覆盖范围重叠。
在一个可能的实现方式中,接收波束的广播角度相同,那么当接收波束方向重叠时,波束覆盖范围也重叠。
UE可以基于上述因素确定UE在I个接收波束方向上进行的参考信号测量的轮数n。
示例性的,如图4所述,天线1的r2接收波束和天线2的R8接收波束方向重叠,天线1的r1接收波束和天线2的R7接收波束方向重叠,并且UE具有能够同时接收两个不同QCL-D关系的参考信号的能力。因此,在一轮参考信号测量中,UE可以测量两个接收波束方向的参考信号。图4所示的14个接收波束方向UE可以通过7轮参考信号测量完成。
UE可以向网络设备发送能力信息,供网络设备确定进行的参考信号测量的轮数n。
在一个可能的实现方式中,能力信息供网络设备间接确定进行的参考信号测量的轮数n。例如,能力信息用于指示上述确定因素,由网络设备基于确定因素计算进行的参考信号测量的轮数n
在一个实施例中,所述能力信息,包括:接收波束的覆盖因子,用于指示所述轮数n;其中,覆盖因子关联于J个所述天线之间相互重叠的接收波束方向的数量。
这里,覆盖因子表示UE向网络设备指示的UE完成I个接收波束方向的参考信号测量所要进行的信号测量的轮数。在此,对覆盖因子的名称不做限定。
UE可以通过能力信息直接向网络设备指示轮数n。如此,可以减少传输的数据量,降低信令负载。也可以降低网络设备通过确定因素计算轮数n带来的负载。
在一个可能的实现方式中,覆盖因子可以采用“Beamoverlapscalingfactor”。
下面以UE具有两个天线,一个天线对应于8个接收方向为例说明覆盖因子。UE可以向网络设备发送Beamoverlapscalingfactor。
示例性的,Beamoverlapscalingfactor=4。终端的两个天线的8个波束完全重叠(即共需要测量8个波束方向),UE可以在4轮SSB测量(一轮SSB测量可以是:两个天线同时针对不同接收波束方向进行SSB的测量,)中,就可以完成全部接收波束的基于SSB的L1-RSRP测量。
如此,通过能力信息,网络设备可以确定UE进行参考信号测量所需要的测量轮数。减少由于网络设备不确定UE能力,引起的参考信号测量的测量轮数确定偏差,进而能提高网络设备配置资源的准确性。
在一个实施例中,所述轮数n是根据每个所述天线关联的接收波束方向的数量和J个所述天线具有的重叠的接收波束方向数量确定的。
在一个可能的实现方式中,轮数n与每个天线关联的接收波束方向的数量正相关。
每个天线关联的接收波束方向的数量越多,需要测量的轮数n越多。
在一个可能的实现方式中,轮数n与J个天线具有的重叠的接收波束方向数量确定的负相关。
J个天线具有的重叠的接收波束方向数量越多,需要测量的轮数n越少。
在一个实施例中,当J=2,并且每个天线关联于r个接收波束方向时,所述轮数n采用表达式(1)表示;其中,n表示进行的所述参考信号测量的轮数n(即覆盖因子),m表示J个所述天线具有的重叠的接收波束方向数量,Floor()表示向下取整。
这里,UE具有能够同时接收两个不同QCL-D关系的参考信号的能力,也即在一轮参考信号测量中,UE可以测量两个接收波束方向的参考信号。
这里,m可以表示1个天线的接收波束中与另一个天线的接收波束具有重叠关系的接收波束方向的数量。
在重叠的接收波束方向,只需要任一天线进行参考信号测量就可以确定测量结果。
示例性的,一个天线对应于8个接收波束方向,即r=8。
如果m为2,即如图4所示的1个天线的接收波束方向中与另一个天线的接收波束方向具有重叠关系的接收波束方向的数量为2。图4所示的14个接收波束方向UE可以通过7轮参考信号测量完成。
以此类推:
一个天线的接收波束方向中与另一个天线的接收波束方向具有重叠关系的接收波束方向的数量为1,m=1,那么,UE需要进行8轮参考信号测量就可以确定15个波束方向的测量结果。
一个天线的接收波束方向中与另一个天线的接收波束方向具有重叠关系的接收波束方向的数量为2,m=2,那么,UE需要进行7轮参考信号测量就可以确定14个波束方向的测量结果。
一个天线的接收波束方向中与另一个天线的接收波束方向具有重叠关系的接收波束方向的数量为3,m=3,那么,UE需要进行7轮参考信号测量就可以确定13个波束方向的测量结果。
一个天线的接收波束方向中与另一个天线的接收波束方向具有重叠关系的接收波束方向的数量为4,m=4,那么,UE需要进行6轮参考信号测量就可以确定12个波束方向的测量结果。
一个天线的接收波束方向中与另一个天线的接收波束方向具有重叠关系的接收波束方向的数量为5,m=5,那么,UE需要进行6轮参考信号测量就可以确定11个波束方向的测量结果。
一个天线的接收波束方向中与另一个天线的接收波束方向具有重叠关系的接收波束方向的数量为6,m=6,那么,UE需要进行5轮参考信号测量就可以确定10个波束方向的测量结果。
一个天线的接收波束方向中与另一个天线的接收波束方向具有重叠关系的接收波束方向的数量为7,m=7,那么,UE需要进行5轮参考信号测量就可以确定9个波束方向的测量结果。
一个天线的接收波束方向中与另一个天线的接收波束方向具有重叠关系的接收波束方向的数量为8,m=8,那么,UE需要进行4轮参考信号测量就可以确定8个波束方向的测量结果。
在一个可能的实现方式中,覆盖因子可以是J个天线具有的重叠的接收波束方向数量。网络设备可以根据覆盖因子,确定UE在I个接收波束方向上进行的参考信号测量的轮数n。网络设备确定轮数n的方式可以与UE确定轮数n的方式相似,在此不再赘述。
如图7所示,本公开实施例提供一种信息传输方法,其中,由网络设备执行,包括:
步骤701:根据所述能力信息,确定的波束扫描系数N;
步骤702:根据波束扫描系数N确定所述UE在所述I个接收波束方向进行参考信号的测量的测量时长。
网络设备根据接收到的能力信息,确定UE在I个接收波束方向上进行的参考信号测量的轮数n。
网络设备可以根据轮数n确定波束扫描系数N。
波束扫描系数N可以用于计算测量时长。
在一个可能的实现方式中,轮数n与波束扫描系数N正相关。
在一个实施例中,波束扫描系数N等于所述轮数n。
在一个可能的实现方式中,波束扫描系数N可以是计算测量时长所采用的计算规则中的计算参数。
在一个可能的实现方式中,波束扫描系数N与测量时长正相关。
网络设备可以基于波束扫描系数N计算测量时长。
在一个实施例中,波束扫描系数N等于所述轮数n。
网络设备通过能力信息确定需要进行的参考信号测量的轮数n,在根据轮数n确定波束扫描系数N,进而确定测量时长,提高了测量时长与UE进行参考信号测量的匹配程度,提高资源配置的准确性。
如图8所示,本公开实施例提供一种信息传输方法,其中,由网络设备执行,包括:
步骤801:向所述UE发送测量配置,其中,所述测量配置至少包括:所述测量时长。
网络设备可以向UE指示测量配置,供UE确定进行参考信号测量的测量时域资源,如测量时长。
在一个可能的实现方式中,网络设备可以在测量时长内发送参考信号供UE在测量时长内在I个接收波束方向进行测量。
示例性的,网络设备在接收到终端上报的接收波束的覆盖因子后,配置终端基于SSB的L1-RSRP的测量时长所关联的波束扫描系数N=Beamoverlapscalingfactor。
UE基于网络设备指示的测量时长,SSB的L1-RSRP的测量并上报测量结果。网络设备获得相应的L1-RSRP的测量结果之后,能选择最佳波束进行后续的传输调度。
以下结合上述任意实施例提供一个具体示例:
终端上报其天线配置的覆盖因子,网络根据相应能力对终端进行传输和测量的调度。
实施例1:
终端根据自身的能力,上报天线配置的接收波束的覆盖因子Beamoverlapscalingfactor。
Beamoverlapscalingfactor的取值为[4,5,6,7,8],分别对应4到8次的终端SSB测量时间。
默认的Beamoverlapscalingfactor=8,即终端没有接收波束的覆盖,终端需要完成8次的SSB测量,才能完成基于SSB的L1-RSRP的测量。
对于Beamoverlapscalingfactor=4的情况,则终端的两个天线面板完全覆盖,终端仅仅在4次SSB
测量中,就可以完成全部接收波束的基于SSB的L1-RSRP测量。
实施例2:
网络在接收到终端上报的接收波束的覆盖因子后,配置终端基于SSB的L1-RSRP的测量时间的波束扫描系数N=Beamoverlapscalingfactor。在完成L1-RSRP的测量上报之前,网络无法获得终端的L1-RSRP测量结果,必须要在获得相应的L1-RSRP的测量结果之后,才能选择最佳波束进行后续的传输调度。
如图9所示,本公开实施例提供一种信息传输装置100,其中,设置于用户设备UE内,包括:
收发模块110,配置为发送能力信息,其中,所述能力信息,用于供所述网络设备确定所述UE在I个接收波束方向上进行的参考信号测量的轮数n,其中,一轮所述参考信号测量包括J个天线在X个所述接收波束方向进行的所述参考信号的测量,其中,J个所述天线覆盖所述I个接收波束方向,J为大于2的正整数,X小于或等于J的正整数,I为大于J的正整数。
在一个实施例中,所述能力信息,包括:接收波束的覆盖因子,用于指示所述轮数n。
在一个实施例中,当J=2,并且每个天线关联于r个接收波束方向时,所述轮数n采用以下表达式表示:
n=r-Floor(m/2)
n=r-Floor(m/2)
其中,n表示进行的所述参考信号测量的轮数n,m表示J个所述天线具有的重叠的接收波束方向数量,Floor()表示向下取整。
在一个实施例中,所述收发模块,还配置为:
接收网络设备发送的测量配置,其中,所述测量配置包括:在所述I个接收波束方向进行参考信号的测量的测量时长,其中,用于确定所述测量时长的波束扫描系数N是基于所述能力信息确定的。
在一个实施例中,波束扫描系数N等于所述轮数n。
在一个实施例中,所述天线包括:天线面板。
在一个实施例中,所述UE的J个所述天线支持同时分别在相同或不同的接收波束方向进行参考信号的测量。
在一个实施例中,所述UE包含有J个所述天线。
在一个实施例中,所述UE的J个所述天线共覆盖I个所述接收波束方向。
在一个实施例中,所述UE的J个所述天线可以在X个所述接收波束方向同时进行参考信号测量。
如图10所示,本公开实施例提供一种信息传输装置200,其中,设置于网络设备内,包括:
收发模块210,配置为接收能力信息,其中,所述能力信息,用于确定用户设备UE在I个接收波束方向上进行的参考信号测量的轮数n,其中,一轮所述参考信号测量包括J个天线在X个所述接收波束方向进行的所述参考信号的测量,其中,J个所述天线覆盖所述I个接收波束方向,J为大于2的正整数,X小于或等于J的正整数,I为大于J的正整数。
在一个实施例中,所述能力信息,包括:接收波束的覆盖因子,用于指示所述轮数n。
在一个实施例中,当J=2,并且每个天线关联于r个接收波束方向时,所述轮数n采用以下表达式表示:
n=r-Floor(m/2)
n=r-Floor(m/2)
其中,n表示进行的所述参考信号测量的轮数n,m表示J个所述天线具有的重叠的接收波束方向数量,Floor()表示向下取整。
在一个实施例中,所述装置还包括:
处理模块220,配置为根据所述能力信息,确定的波束扫描系数N;
所述处理模块,还配置为根据波束扫描系数N确定所述UE在所述I个接收波束方向进行参考信号的测量的测量时长。
在一个实施例中,波束扫描系数N等于所述轮数n。
在一个实施例中,所述收发模块,还配置为:
向所述UE发送测量配置,其中,所述测量配置至少包括:所述测量时长。
在一个实施例中,所述天线包括。
在一个实施例中,所述UE的J个所述天线支持同时分别在相同或不同的接收波束方向进行参考信号的测量。
在一个实施例中,所述UE包含有J个所述天线。
在一个实施例中,所述UE的J个所述天线共覆盖I个所述接收波束方向。
在一个实施例中,所述UE的J个所述天线可以在X个所述接收波束方向同时进行参考信号测量。本公开实施例提供一种通信设备,包括:
用于存储处理器可执行指令的存储器;
处理器,分别存储器连接;
其中,处理器被配置为执行前述任意技术方案提供的信息传输方法。
处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。
这里,所述通信设备包括:UE或者网元,该网元可为前述第一网元至第四网元中的任意一个。
所述处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序,例如,如图3至图8所示的方法的至少其中之一。
图11是根据一示例性实施例示出的一种UE800的框图。例如,UE 800可以是移动电话,计算机,数字广播用户设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图11,UE800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制UE800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记
录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以生成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在UE800的操作。这些数据的示例包括用于在UE800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为UE800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为UE800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述UE800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当UE800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当UE800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为UE800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如所述组件为UE800的显示器和小键盘,传感器组件814还可以检测UE800或UE800一个组件的位置改变,用户与UE800接触的存在或不存在,UE800方位或加速/减速和UE800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于UE800和其他设备之间有线或无线方式的通信。UE800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816
经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,UE800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由UE800的处理器820执行以生成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图12所示,本公开一实施例示出一种接入设备的结构。例如,通信设备900可以被提供为一网络设备。该通信设备可为前述的接入网元和/或网络功能等各种网元。
参照图12,通信设备900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述应用在所述接入设备的任意方法,例如,如图4至图9任意一个所示方法。
通信设备900还可以包括一个电源组件926被配置为执行通信设备900的电源管理,一个有线或无线网络接口950被配置为将通信设备900连接到网络,和一个输入输出(I/O)接口958。通信设备900可以操作基于存储在存储器932的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
在不矛盾的情况下,上述某一实施方式或实施例中的每个步骤均可以作为独立实施例来实施,且各步骤之间可以任意组合,例如,在某一实施方式或实施例中去除部分步骤后的方案也可以作为独立实施例来实施,且在某一实施方式或实施例中各步骤的顺序可以任意交换,另外,某一实施方式或实施例中的可选方式或可选例可以任意组合;此外,各实施方式或实施例之间可以任意组合,例如,不同实施方式或实施例的部分或全部步骤可以任意组合,某一实施方式或实施例可以与其他实施方式或实施例的可选方式或可选例任意组合。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。
Claims (27)
- 一种信息传输方法,其中,由用户设备UE执行,包括:向网络设备发送所述UE的能力信息,其中,所述能力信息,用于所述网络设备确定所述UE在I个接收波束方向上进行的参考信号测量的轮数n,其中,一轮所述参考信号测量包括J个天线在X个所述接收波束方向进行的所述参考信号的测量,其中,J个所述天线覆盖所述I个接收波束方向,J为大于2的正整数,X小于或等于J的正整数,I为大于J的正整数。
- 根据权利要求1所述的方法,其中,所述能力信息包括:接收波束的覆盖因子,所述接收波束的覆盖因子用于确定所述轮数n。
- 根据权利要求1或2所述的方法,其中,所述轮数n是根据每个所述天线关联的接收波束方向的数量和J个所述天线之间重叠的接收波束方向数量确定的。
- 根据权利要求1-3任一项所述的方法,其中,当J=2,并且每个天线关联于r个接收波束方向时,所述轮数n采用以下表达式表示:
n=r-Floor(m/2)其中,n表示进行的所述参考信号测量的轮数n,m表示J个所述天线具有的重叠的接收波束方向数量,Floor()表示向下取整。 - 根据权利要求1至4任一项所述的方法,其中,所述方法还包括:接收网络设备发送的测量配置,其中,所述测量配置包括:在所述I个接收波束方向进行参考信号的测量的测量时长,其中,用于确定所述测量时长的波束扫描系数N是基于所述能力信息确定的。
- 根据权利要求5所述的方法,其中,波束扫描系数N等于所述轮数n。
- 根据权利要求1至4任一项所述的方法,其中,所述天线包括:天线面板。
- 根据权利要求1至4任一项所述的方法,其中,所述UE的J个所述天线支持同时分别在相同或不同的接收波束方向进行参考信号的测量。
- 根据权利要求1至4任一项所述的方法,其中,所述UE包含有J个所述天线。
- 根据权利要求1至4任一项所述的方法,其中,所述UE的J个所述天线共覆盖I个所述接收波束方向。
- 根据权利要求1至4任一项所述的方法,其中,所述UE的J个所述天线可以在X个所述接收波束方向同时进行参考信号测量。
- 一种信息传输方法,其中,由网络设备执行,包括:接收用户设备UE发送的能力信息,其中,所述能力信息,用于确定所述UE在I个接收波束方向上进行的参考信号测量的轮数n,其中,一轮所述参考信号测量包括J个天线在X个所述接收波 束方向进行的所述参考信号的测量,其中,J个所述天线覆盖所述I个接收波束方向,J为大于2的正整数,X小于或等于J的正整数,I为大于J的正整数。
- 根据权利要求12所述的方法,其中,所述能力信息,包括:接收波束的覆盖因子,用于指示所述轮数n。
- 根据权利要求10或11所述的方法,其中,所述轮数n是根据每个所述天线关联的接收波束方向的数量和J个所述天线具有的重叠的接收波束方向数量确定的。
- 根据权利要求14所述的方法,其中,当J=2,并且每个天线关联于r个接收波束方向时,所述轮数n采用以下表达式表示:
n=r-Floor(m/2)其中,n表示进行的所述参考信号测量的轮数n,m表示J个所述天线具有的重叠的接收波束方向数量,Floor()表示向下取整。 - 根据权利要求12至15任一项所述的方法,其中,所述方法还包括:根据所述能力信息,确定的波束扫描系数N;根据波束扫描系数N确定所述UE在所述I个接收波束方向进行参考信号的测量的测量时长。
- 根据权利要求16所述的方法,其中,波束扫描系数N等于所述轮数n。
- 根据权利要求16或17所述的方法,其中,所述方法还包括:向所述UE发送测量配置,其中,所述测量配置至少包括:所述测量时长。
- 根据权利要求12至15任一项所述的方法,其中,所述天线包括:天线面板。
- 根据权利要求12至15任一项所述的方法,其中,所述UE的J个所述天线支持同时分别在相同或不同的接收波束方向进行参考信号的测量。
- 根据权利要求12至15任一项所述的方法,其中,所述UE包含有J个所述天线。
- 根据权利要求12至15任一项所述的方法,其中,所述UE的J个所述天线共覆盖I个所述接收波束方向。
- 根据权利要求12至15任一项所述的方法,其中,所述UE的J个所述天线可以在X个所述接收波束方向同时进行参考信号测量。
- 一种信息传输装置,其中,设置于用户设备UE内,包括:收发模块,配置为向网络设备发送所述UE的能力信息,其中,所述能力信息,用于供所述网络设备确定所述UE在I个接收波束方向上进行的参考信号测量的轮数n,其中,一轮所述参考信号测量包括J个天线在X个所述接收波束方向进行的所述参考信号的测量,其中,J个所述天线覆盖所述I个接收波束方向,J为大于2的正整数,X小于或等于J的正整数,I为大于J的正整数。
- 一种信息传输装置,其中,设置于网络设备内,包括:收发模块,配置为接收用户设备UE发送的能力信息,其中,所述能力信息,用于确定用户设 备UE在I个接收波束方向上进行的参考信号测量的轮数n,其中,一轮所述参考信号测量包括J个天线在X个所述接收波束方向进行的所述参考信号的测量,其中,J个所述天线覆盖所述I个接收波束方向,J为大于2的正整数,X小于或等于J的正整数,I为大于J的正整数。
- 一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够由所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求1至11、12至23任一项提供的信息传输方法。
- 一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够实现如权利要求1至11、12至23任一项提供的信息传输方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380008211.7A CN116349360A (zh) | 2023-02-13 | 2023-02-13 | 信息传输方法及装置、通信设备及存储介质 |
PCT/CN2023/075758 WO2024168489A1 (zh) | 2023-02-13 | 2023-02-13 | 信息传输方法及装置、通信设备及存储介质 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2023/075758 WO2024168489A1 (zh) | 2023-02-13 | 2023-02-13 | 信息传输方法及装置、通信设备及存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024168489A1 true WO2024168489A1 (zh) | 2024-08-22 |
Family
ID=86893455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/075758 WO2024168489A1 (zh) | 2023-02-13 | 2023-02-13 | 信息传输方法及装置、通信设备及存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116349360A (zh) |
WO (1) | WO2024168489A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109890078A (zh) * | 2017-03-23 | 2019-06-14 | 华为技术有限公司 | 一种资源配置方法及其装置 |
CN111106916A (zh) * | 2019-01-11 | 2020-05-05 | 维沃移动通信有限公司 | 一种信道和干扰测量方法和设备 |
US20210281294A1 (en) * | 2018-08-09 | 2021-09-09 | Sony Corporation | Communication device, communication method, and recording medium |
US20220377758A1 (en) * | 2021-05-20 | 2022-11-24 | Nokia Technologies Oy | User device scheduling |
CN115529667A (zh) * | 2021-06-26 | 2022-12-27 | 华为技术有限公司 | 一种波束管理的方法和装置 |
-
2023
- 2023-02-13 CN CN202380008211.7A patent/CN116349360A/zh active Pending
- 2023-02-13 WO PCT/CN2023/075758 patent/WO2024168489A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109890078A (zh) * | 2017-03-23 | 2019-06-14 | 华为技术有限公司 | 一种资源配置方法及其装置 |
US20210281294A1 (en) * | 2018-08-09 | 2021-09-09 | Sony Corporation | Communication device, communication method, and recording medium |
CN111106916A (zh) * | 2019-01-11 | 2020-05-05 | 维沃移动通信有限公司 | 一种信道和干扰测量方法和设备 |
US20220377758A1 (en) * | 2021-05-20 | 2022-11-24 | Nokia Technologies Oy | User device scheduling |
CN115529667A (zh) * | 2021-06-26 | 2022-12-27 | 华为技术有限公司 | 一种波束管理的方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
CN116349360A (zh) | 2023-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12074814B2 (en) | Measurement configuration method, apparatus, devices, system, and storage medium | |
EP3829212A1 (en) | Transmission configuration method and device | |
WO2021163936A1 (zh) | 通信处理方法、装置及计算机存储介质 | |
CN110771222B (zh) | 寻呼配置方法、装置、通信设备及存储介质 | |
US20220312292A1 (en) | Method and device for cell handover | |
US12082054B2 (en) | Information processing method and apparatus, and computer storage medium | |
US20240007248A1 (en) | Method for information transmission and method for parameter determination, communication device, and non-transitory computer-readable storage medium | |
WO2021114274A1 (zh) | 无线通信方法、装置及存储介质 | |
WO2021046695A1 (zh) | 测量处理方法及装置 | |
US20240172021A1 (en) | Method for measurement gap processing | |
US20240172313A1 (en) | Beam recovery method and apparatus, and user equipment | |
US20240172077A1 (en) | Cell reselection method, cell reselection apparatus, and storage medium | |
US20230300722A1 (en) | Information transmission method and apparatus | |
US20230091685A1 (en) | Communication processing method and device, and computer storage medium | |
WO2024197912A1 (zh) | 信息传输方法及装置、通信设备及存储介质 | |
US12096298B2 (en) | Methods and devices for sending a service request to obtain target information | |
WO2021120204A1 (zh) | 信号测量方法、装置、通信设备及存储介质 | |
US20220287014A1 (en) | Resource allocation methods and apparatuses, message frame processing methods, apparatuses and storage mediums | |
US20230075773A1 (en) | Information transmission method and apparatus, and communication device and storage medium | |
WO2023050039A1 (zh) | 信息传输方法、装置、通信设备和存储介质 | |
WO2024168489A1 (zh) | 信息传输方法及装置、通信设备及存储介质 | |
CN112640559B (zh) | 无线传输的方法、装置、通信设备及存储介质 | |
US20230284059A1 (en) | Measurement feedback method and apparatus, network device, terminal, and storage medium | |
US20210037578A1 (en) | Method, apparatus and system for establishing connection between terminal and core network to be accessed | |
EP4447495A1 (en) | Information processing method and apparatus, communication device and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23921662 Country of ref document: EP Kind code of ref document: A1 |