WO2024166512A1 - Companion determination device - Google Patents
Companion determination device Download PDFInfo
- Publication number
- WO2024166512A1 WO2024166512A1 PCT/JP2023/043544 JP2023043544W WO2024166512A1 WO 2024166512 A1 WO2024166512 A1 WO 2024166512A1 JP 2023043544 W JP2023043544 W JP 2023043544W WO 2024166512 A1 WO2024166512 A1 WO 2024166512A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- accompanying
- mesh
- unit
- distribution information
- Prior art date
Links
- 238000009826 distribution Methods 0.000 claims abstract description 50
- 238000004364 calculation method Methods 0.000 claims abstract description 21
- 238000004458 analytical method Methods 0.000 claims description 25
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 238000010586 diagram Methods 0.000 description 25
- 238000000034 method Methods 0.000 description 18
- 238000004891 communication Methods 0.000 description 12
- 238000000605 extraction Methods 0.000 description 11
- 230000006399 behavior Effects 0.000 description 10
- 238000012545 processing Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 230000011664 signaling Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 239000000284 extract Substances 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000012850 discrimination method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0201—Market modelling; Market analysis; Collecting market data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
Definitions
- the present invention relates to an accompaniment determination device that determines whether users are accompanying each other.
- Patent Document 1 describes a method for determining whether multiple users are accompanying each other by looking at the positional relationship with each other's positional information.
- the location information handled in Patent Document 1 is, for example, latitude and longitude measurement data obtained by GPS or base station positioning, but there are times when the time at which data is acquired varies depending on the device, and some data may be missing, making it difficult to match the data between the two, and in some cases making it impossible to correctly identify accompanying persons.
- the present invention aims to solve these problems by providing an accompanying person identification device that can accurately identify accompanying persons.
- the accompanying determination device of the present invention includes a location information acquisition unit that acquires multiple pieces of location information for each of multiple terminals, a distribution information acquisition unit that acquires location distribution information for each of the multiple terminals based on the number of pieces of location information for each specified area, a calculation unit that calculates the similarity between the location distribution information for each of the multiple terminals, and a determination unit that determines that multiple users having each of the terminals are accompanying each other based on the similarity.
- This invention makes it possible to accurately identify accompanying persons.
- FIG. 1 is a diagram illustrating the background of the present disclosure.
- FIG. 13 is a diagram showing an overview of an accompanying discrimination process in the present disclosure.
- 1 is a diagram showing a system configuration for performing accompanying determination between users in an accompanying determination device 100 according to the present disclosure.
- FIG. 2 is a diagram illustrating a functional configuration of the accompanying person discrimination device 100 according to the first embodiment of the present disclosure.
- 4 is a flowchart showing the operation of the accompanying person discrimination device 100.
- FIG. 11 is a diagram illustrating a detailed process of step S103.
- FIG. 11 is a diagram showing similarity and its transition over time.
- FIG. 11 is a block diagram showing a functional configuration of an accompanying person discrimination device 100a according to a second embodiment of the present disclosure.
- FIG. 13 is an explanatory diagram of generating a probability distribution.
- FIG. 13 is an explanatory diagram showing each weight when a user is in each mesh.
- FIG. 13 is a diagram showing histograms when a user is present in each mesh.
- 4 is a flowchart showing the operation of the accompanying person discrimination device 100a.
- FIG. 1 is a diagram illustrating an example of a hardware configuration of an accompanying person discrimination device 100 and 100a according to an embodiment of the present disclosure.
- FIG. 1 is a diagram explaining the background of this disclosure.
- FIG. 1(a) shows a user U visiting a store T alone.
- customer analysis was performed based on who was doing what and when.
- Figure 1(b) shows user U visiting store T together with users U1 and U2. It is known that the presence of accompanying persons can greatly affect a user's behavior, such as their willingness to purchase, and by designing a service that takes into account accompanying person information, it is possible to design a more valuable UX (User Experience). As shown in Figure 1(b), when user A is visiting together with users B and C, user A's behavior may be significantly different compared to when users B, etc. are not present.
- the purpose of this disclosure is to determine whether user A is acting together with user B, etc.
- FIG. 2 is a diagram showing an overview of the accompanying determination process in the present disclosure.
- FIG. 2(a) shows that user A through user C are targets for acquiring location information.
- FIG. 2(b) shows a schematic diagram of a storage unit that associates location information for each user with the time of acquisition.
- FIG. 2(b) further shows that the log information is divided for each analysis section.
- Figure 2(c) shows the user's movement route in mesh code units.
- a mesh refers to a regional mesh defined as a longitude and latitude grid on a map in order to obtain various statistical information by digitizing information on the map, and each mesh is assigned code information (mesh code).
- This mesh code is assigned by the Ministry of Internal Affairs and Communications and is an identifier that indicates a predetermined rectangular area. In this disclosure, it is determined which mesh the location information is contained in, and the location information is converted into a mesh code. In Figure 2(c), the mesh code can be used to determine the user's approximate location and movement route.
- Figure 2(d) shows a histogram for each mesh code. In other words, it shows the frequency with which a user stayed for each mesh code. Because the area indicated by a mesh code has a certain width, it is possible to determine that a user is in the same area (mesh) even if the user moves. On the other hand, even if part of the user's location information is missing, this can be absorbed overall and the area in which the user stayed can be determined.
- FIG. 3 is a diagram showing a system configuration for performing accompaniment discrimination between users in the accompaniment discrimination device 100 of the present disclosure.
- This system includes the accompaniment discrimination device 100, multiple mobile terminals 200, and a location management server 300.
- the mobile terminals 200 are mobile phones and are devices that can communicate by connecting to a mobile communication network. When the mobile terminals 200 move within a coverage area, and also periodically, they register their own coverage area and the time they are within the coverage area with the location management server 300.
- the location management server 300 stores the location information obtained by base station positioning in the mobile terminal 200.
- the mobile terminal 200 registers the location information obtained by base station positioning in the location management server 300.
- the location management server 300 stores the location information obtained by the mobile terminal 200 using base station positioning, but this is not limited to this.
- the location information stored may be location information obtained by GPS in the mobile terminal 200, or may be the location information of a base station registered by location registration, or the center position of a sector, or a position calculated based on these.
- the accompaniment determination device 100 uses the location information stored in this location management server 300 to determine whether the target user to be determined is acting together with other users (accompanying candidates).
- the target user is designated in advance by the operator of the accompaniment determination device 100 or other service providers that provide services to the target user.
- the other users may be all users, or may be users who are in the same area as the target user or in a nearby area. They may also be designated in advance by the operator, etc.
- FIG. 4 is a diagram showing the functional configuration of the accompaniment discrimination device 100 in the first embodiment of the present disclosure.
- the accompaniment discrimination device 100 includes a radio connection history acquisition unit 101, a position estimation unit 102, a mesh code conversion unit 103, an analysis interval extraction unit 104, a histogram creation unit 105, a similarity calculation unit 106, and an accompaniment discrimination unit 107.
- the radio wave connection history acquisition unit 101 is a part that acquires and stores radio wave connection history information from the location management server 300.
- This radio wave connection history information includes location information (information obtained by base station positioning) and the acquisition time of the target user and accompanying candidates for accompanying determination.
- the target user is designated in advance by an operator of the accompanying determination device 100, etc.
- Accompanying candidates are selected from other users who are in a specified area during the same time period based on the location information of the target user, but may be all other users.
- the location estimation unit 102 is a part that extracts the location information of the target user and accompanying candidates based on base station positioning and the acquisition time of the location information from the radio wave connection history information.
- the mesh code conversion unit 103 is the part that converts the location information into a mesh code.
- the analysis interval extraction unit 104 is a part that extracts a certain time window (analysis interval) from the location information for a specified period (for example, one day).
- the analysis interval extraction unit 104 shifts the target for generating the histogram by shifting this window (by a width smaller than the above-mentioned certain time).
- the histogram creation unit 105 is a part that creates a histogram from the distribution of mesh codes in the window.
- the similarity calculation unit 106 is a part that calculates the similarity based on the histogram. For example, the similarity calculation unit 106 calculates the similarity using KL divergence or JS divergence.
- KL divergence is a measure that indicates the degree to which two probability distributions are similar, and it can be determined that the smaller the value, the more similar the distributions are.
- JS divergence is also a method for determining the similarity.
- the similarity calculation unit 106 may use a method other than KL divergence or JS divergence.
- the similarity calculated here indicates the similarity in the window (analysis interval) extracted by the analysis interval extraction unit 104.
- the similarity calculation unit 106 calculates the similarity in one window
- the analysis interval extraction unit 104 shifts the window slightly (while partially overlapping with the previous one window) and further creates a histogram and calculates the similarity.
- the accompanying discrimination unit 107 is a part that discriminates accompanying based on the degree of similarity.
- the accompanying discrimination unit 107 discriminates accompanying based on a threshold from the score series calculated for each window, and discriminates the section in which accompanying occurred.
- the accompanying discrimination unit 107 may discriminate a section as an accompanying section (in which accompanying occurs) when the accompanying score is equal to or less than the threshold for a predetermined number of consecutive times. This threshold and the predetermined number of times may be determined in advance by machine learning, etc., or may be determined in advance based on past data or empirical rules, etc.
- FIG. 5 is a flowchart showing the operation of the accompanying discrimination device 100.
- the radio wave connection history acquisition unit 101 acquires the radio wave connection history
- the position estimation unit 102 acquires the position information of each user and the acquisition time thereof (S101).
- the mesh code conversion unit 103 converts the position information into a mesh code (S102).
- the analysis interval extraction unit 104 divides the location information for a specified period into windows of fixed time.
- the histogram creation unit 105 creates a histogram based on the mesh codes (corresponding to the location information) in the windows (S103).
- the similarity calculation unit 106 calculates the similarity of the histograms using KL divergence or the like (S104).
- the accompaniment discrimination unit 107 then extracts accompanying candidates and their sections whose similarity is below a threshold, and discriminates them as accompanying persons and accompanying sections (S105).
- FIG. 6 is a diagram showing a schematic diagram of the detailed processing of process S103.
- a correspondence table of time, location information, and mesh codes is stored in a memory unit (not shown).
- a window w1 is extracted by dividing the mesh codes of the target user by a certain time (e.g., from t1 to t3), and a histogram is created based on the window w1.
- the mesh codes of window w2 are then extracted after a slight delay of the certain time (e.g., from t2 to t4), and a histogram is created.
- the mesh codes of window w2 are then extracted after a further slight delay of a certain time (e.g., from t3 to t5), and a histogram is created.
- the above processing is also performed for accompanying candidates.
- histograms for similarity determination are created with a certain degree of width.
- the similarity between histograms for the same time period is then calculated.
- Figure 7 shows the detailed process of calculating similarity.
- Figure 7(a) shows the user's movement route for each mesh of the target user A and its histogram. It shows the frequency of stay in each mesh, such as mesh mc1 being 4, mesh mc2 being 3, etc. This frequency of stay indicates the number of location information included in the mesh.
- Figure 7(b) shows the movement route of User B, a potential accompaniment candidate, for each mesh and its histogram.
- Figure 7(c) shows the movement route of User C, a potential accompaniment candidate, for each mesh and its histogram. Note that for ease of explanation, some of the mesh codes indicating the meshes have been omitted. All meshes are assigned mesh codes.
- the KL score is calculated from the histogram for each mesh in a certain time period using the following formula. This formula calculates the well-known KL divergence score.
- x is the mesh code
- p(x) is the proportion of frequency when the target user was at x compared to the total
- q(x) is the proportion of frequency when the accompanying candidate was at x compared to the total.
- the frequency of mesh codes between the target user and the accompanying candidate is Target user ⁇ mc1:n1, mc2:n2, mc3:n3 ⁇ Accompanying candidate ⁇ mc1:n4, mc2:n5, mc3:n6 ⁇
- FIG. 8 is a graph showing similarity and its time progression. As shown in the figure, the vertical axis is the score indicating similarity (KL divergence), and the horizontal axis is time. The lower the score based on KL divergence, the higher the similarity.
- a time period with a KL score below a predetermined threshold is determined to be when the target user and accompanying person are traveling together.
- the threshold is set to 0.1, and a time period below this value is determined to be an accompanying period. In the present disclosure, a period from approximately 9:00 to just after 21:00 is determined to be an accompanying period.
- start time of the window in Figure 6 is associated with each time of the KL score in Figure 8, but this is not limited to this, and it may be determined in advance, such as the end time of the window or an intermediate time.
- FIG. 9 is a block diagram showing the functional configuration of an accompaniment discrimination device 100a in the second embodiment of the present disclosure.
- the accompaniment discrimination device 100a includes a radio connection history acquisition unit 101, a position estimation unit 102, a mesh code conversion unit 103, an analysis interval extraction unit 104, a probability distribution creation unit 104a, a histogram creation unit 105, a similarity calculation unit 106, and an accompaniment discrimination unit 107. It differs from the accompaniment discrimination device 100 in that a probability distribution creation unit 104a and a weight information storage unit 104b have been added.
- the probability distribution creation unit 104a is a part that weights adjacent meshes and creates their probability distribution.
- the histogram creation unit 105 creates a histogram for each mesh, taking into account the weights.
- the weight information storage unit 104b is a part that stores the weight coefficient for each mesh. This weight information storage unit 104b stores the weight coefficients of adjacent meshes, centering on the mesh where the user is staying. However, this is not limited to this, and the weight information storage unit 104b may store different weight coefficients for each mesh and weight coefficients for its adjacent meshes. In this case, weight coefficients are set for each mesh and for each adjacent mesh, allowing for accurate similarity determination. It is preferable that the weight coefficient is set to a value that takes into account errors for each mesh, and therefore it is good to calculate the accuracy of the error in advance. For example, it is good to calculate in advance the probability that a user is actually in a certain mesh and the estimated result is estimated in another mesh, and to take this probability into account as well.
- Figure 10 is an explanatory diagram of how this probability distribution is created.
- Figure 10(a) shows a diagram that defines the weights of the mesh in which the object is staying and the meshes adjacent to it. As shown in the figure, when the weight of the mesh in which the object is staying is set to 1, the weight of the adjacent meshes is set to 0.5. This makes it possible to reduce the impact of deviations in the estimated position.
- the weights may be predetermined values, or may be calculated and set in advance based on the accuracy of the error. For example, the probability that the user is actually in mesh code B2 and the estimation result is estimated to be mesh B1 or mesh C2 may be calculated in advance, and the weights may be defined taking this probability into account.
- Figure 10(b) shows a diagram in which weights are defined for the meshes adjacent to adjacent meshes. As shown in the figure, a smaller weight, such as 0.1, is defined for the adjacent mesh codes.
- weights of adjacent and nearby meshes are represented by fixed values, but this is not limited thereto, and as described above, the weights may be changed for each mesh.
- the histogram creation unit 105 uses this weight to generate a histogram. For example, if the user is in mesh B2 and the user's frequency of visit to that mesh B2 is 1, the histogram creation unit 105 creates a histogram of 1 for that mesh B2. Also, for meshes adjacent to mesh B2, such as mesh A1, a histogram of 0.5 is created even if it is not estimated that the user was actually in that mesh.
- Figure 11 is an explanatory diagram showing the user's movement route and the weights when the user is in each mesh.
- Figure 11(a) shows the user's movement route in a mesh.
- FIG. 11(b) shows the weights when the user is in mesh a4.
- the weight of mesh a4 is 1, and the weights of meshes a3, b3, and b4 are 0.5.
- FIG. 11(c) shows the weights of each mesh when the user is in mesh b4.
- the weight of mesh b4 is 1, and the weights of the other adjacent meshes such as a4 are 0.5.
- FIG. 11(d) shows the weights of each mesh when the user is in mesh b3.
- the weight of the mesh in which the user is staying is 1, and the weight of the adjacent mesh is 0.5, but this is not limited to this.
- the weights may be defined differently for each mesh or depending on the adjacent direction.
- the positioning error may differ between adjacent meshes adjacent in a diagonal direction and adjacent meshes adjacent in the vertical direction, so the weight may be changed in that direction.
- the weight information storage unit 104b Such rules for defining the weights are stored in the weight information storage unit 104b.
- Figure 12 shows histograms when a user is present in each mesh in Figure 11.
- Figure 12(a) shows a histogram when the user is in mesh a4.
- Meshes a3, b3, b4, c3, and c4, which are adjacent to mesh a4, are assigned a weight of 0.5, and the value reflected in the histogram is the product of this weight multiplied by the frequency of visits to mesh a4 (for example, 1).
- Figure 12(b) shows the histogram when the user is in mesh b4.
- a weight of 0.5 is defined for meshes a3, a4, b3, c3, and c4, which are adjacent meshes to mesh b4, and the value obtained by multiplying this weight by the frequency of visits to mesh a4 is reflected in the histogram.
- Figure 12(c) is a histogram when the user is in mesh b3. The same process as above is carried out. Histograms are similarly created for other destinations, although they are not shown. For ease of explanation, the frequency of visits in each mesh is set to 1, but depending on the user's behavior, the frequency of visits may be 2 or more.
- FIG. 12(d) is a histogram summing up the frequency of stays reflecting the above weighting in each mesh when moving through each mesh including the mesh mentioned above.
- FIG. 12(d) shows the histogram for that window.
- a histogram is created for each window of each user (target user and accompanying candidate), and this is used to calculate the similarity for each window and determine whether or not they are accompanying each other.
- FIG. 13 is a flowchart showing the operation of the accompanying discrimination device 100a.
- the radio connection history acquisition unit 101 and the position estimation unit 102 acquire position information (S101), and the mesh code conversion unit 103 converts the position information into a mesh code (S102).
- the analysis interval extraction unit 104 extracts the mesh code for a certain period of time, and the probability distribution creation unit 104a creates a probability distribution for the mesh in which the user is located and the adjacent meshes (102a). This is based on the method described in Figure 11 above.
- the histogram creation unit 105 creates a histogram for each mesh where the user stayed according to the probability distribution created by the probability distribution creation unit 104a, and adds them up to create a histogram of the user's movements over a certain period of time (S103). Histograms are created for the target user and accompanying candidates.
- the similarity calculation unit 106 calculates the similarity between the histograms of the target user and other accompanying candidates (S104), and the accompanying discrimination unit 107 performs accompanying discrimination (S105).
- a histogram based on the probability distribution can be created, and accompanying discrimination can be performed while taking into account positioning errors.
- the position estimation unit 102 estimates and acquires multiple pieces of position information for each of the multiple mobile terminals 200.
- the histogram creation unit 105 acquires a histogram (position distribution information) for each mesh (area) of the multiple mobile terminals 200 based on the number of pieces of position information for each predetermined area for each of the multiple mobile terminals 200.
- the similarity calculation unit 106 calculates the similarity between the histograms (position distribution information) of each of the multiple mobile terminals 200.
- the accompanying determination unit 107 determines that the multiple users having the mobile terminals 200 are accompanying each other based on the similarity.
- position information can be aggregated into meshes (predetermined regions), and a histogram can be created for each mesh based on the number of meshes, and entrainment discrimination can be performed based on the histogram. Therefore, even if some of the position information is missing, the error can be absorbed, enabling accurate entrainment discrimination.
- the mesh code conversion unit 103 converts the location information into a mesh code (identifier for a specific area), and the histogram creation unit 105 creates a histogram (location distribution information) for each mesh based on the mesh code (identifier).
- the mesh in the present disclosure refers to a regional mesh defined as a longitude and latitude grid on a map in order to digitize information on the map and collect various statistical information, and each mesh is assigned code information (numerical information). Mesh codes are assigned by the Ministry of Internal Affairs and Communications.
- the histogram indicates the frequency of visits of the mobile terminal 200 in each mesh based on the number of pieces of location information. This frequency of visits indicates the user's behavior.
- the histogram creation unit 105 acquires the number of pieces of location information of the mobile device 200 for each mesh (predetermined area) for each predetermined window (analysis section) and creates a histogram based on the information.
- the similarity calculation unit 106 calculates the similarity based on the histogram in the window (analysis section).
- a window indicates a time period, and the similarity of user behavior in a certain time period is calculated.
- the histogram creation unit 105 shifts the window (analysis interval) extracted by the analysis interval extraction unit 104 and creates a histogram for each mesh in that interval.
- the accompanying discrimination device 100a of the present disclosure further includes a weight information storage unit 104b that stores a weight coefficient (weight information) according to the distance from the position of the mobile terminal 200.
- the histogram creation unit 105 then creates a histogram for each mesh in a certain window based on the weight coefficient.
- This weight information storage unit 104b stores the weight coefficients of adjacent or nearby meshes adjacent to a mesh (predetermined area) for each mesh code (identifier) assigned to each mesh (predetermined area). It is preferable that these weight coefficients be set based on the positioning error of the location information.
- the impact of errors or missing information in the location information logs between accompanying people can be reduced, making it possible to robustly determine whether or not someone is accompanying someone and extract the section in which they were accompanying someone, even when using data with large errors, such as latitude and longitude positioning data obtained by base station positioning.
- GPS data requires a dedicated app to obtain it, and the quality of the data that can be obtained varies depending on the user's control. In addition, because it places a load on the mobile terminal 200 (battery, etc.), it is necessary to take into consideration the positioning interval.
- the accompaniment determination device 100 disclosed herein can obtain sufficient accuracy not only with GPS data, but also with latitude and longitude positioning data obtained by base station positioning, making it possible to expand the range of people who can be estimated as accompaniments.
- the location information handled is not limited to base station positioning, and may of course include GPS data.
- the accompanying discrimination device 100, 100a disclosed herein has the following configuration.
- a location information acquisition unit that acquires a plurality of pieces of location information of a plurality of terminals; a distribution information acquisition unit that acquires location distribution information of the plurality of terminals based on the number of pieces of location information for each of the plurality of terminals in a predetermined area; A calculation unit that calculates a similarity between location distribution information of each of the plurality of terminals; a determination unit that determines that a plurality of users each having the terminals are traveling together based on the similarity;
- An accompanying discrimination device comprising:
- a conversion unit converts the location information into an identifier of the predetermined area
- the distribution information acquisition unit acquires the location distribution information based on the identifier.
- the accompanying discrimination device according to [1].
- the location distribution information includes a frequency of stay of the terminal based on the number of pieces of location information.
- the accompanying discrimination device according to [2].
- the distribution information acquisition unit The number of the plurality of pieces of position information for each of the predetermined regions is acquired for each predetermined analysis section to acquire position distribution information;
- the calculation unit calculates a similarity based on position distribution information in the analysis section.
- the accompanying discrimination device according to any one of [1] to [4].
- a weight information storage unit that stores weight information according to a distance from the position of the terminal, the distribution information acquisition unit acquires the position distribution information based on the weight information.
- the accompanying discrimination device according to any one of [1] to [4].
- the weight information storage unit storing weight information of an area adjacent to or near the predetermined area for each identifier assigned to the predetermined area;
- the accompanying discrimination device according to [6].
- the weight information is set based on an error in the position information.
- the accompanying discrimination device according to [6] or [7].
- each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and connected directly or indirectly (e.g., using wires, wirelessly, etc.) and these multiple devices.
- the functional blocks may be realized by combining the one device or the multiple devices with software.
- Functions include, but are not limited to, judgement, determination, discrimination, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, regarding, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment.
- a functional block (component) that performs the transmission function is called a transmitting unit or transmitter.
- the accompaniment discrimination devices 100 and 100a in one embodiment of the present disclosure may function as a computer that performs processing of the accompaniment discrimination method of the present disclosure.
- FIG. 14 is a diagram showing an example of the hardware configuration of the accompaniment discrimination devices 100 and 100a in one embodiment of the present disclosure.
- the above-mentioned accompaniment discrimination devices 100 and 100a may be physically configured as a computer device including a processor 1001, memory 1002, storage 1003, communication device 1004, input device 1005, output device 1006, bus 1007, etc.
- the word "apparatus” can be interpreted as a circuit, device, unit, etc.
- the hardware configuration of the accompaniment discrimination apparatus 100 and 100a may be configured to include one or more of the devices shown in the figure, or may be configured to exclude some of the devices.
- the functions of the accompanying discrimination devices 100 and 100a are realized by loading specific software (programs) onto hardware such as the processor 1001 and memory 1002, causing the processor 1001 to perform calculations, control communications via the communication device 1004, and control at least one of the reading and writing of data in the memory 1002 and storage 1003.
- the processor 1001 for example, operates an operating system to control the entire computer.
- the processor 1001 may be configured with a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, etc.
- CPU central processing unit
- the mesh code conversion unit 103 described above may be realized by the processor 1001.
- the processor 1001 also reads out programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
- the programs used are those that cause a computer to execute at least a part of the operations described in the above-mentioned embodiment.
- the position estimation unit 102, the mesh code conversion unit 103, the analysis interval extraction unit 104, the histogram creation unit 105, the similarity calculation unit 106, and the accompanying determination unit 107 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and other functional blocks may be similarly realized.
- the processor 1001 may be implemented by one or more chips.
- the programs may be transmitted from a network via a telecommunication line.
- Memory 1002 is a computer-readable recording medium, and may be composed of at least one of, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. Memory 1002 may also be called a register, cache, main memory (primary storage device), etc. Memory 1002 can store executable programs (program codes), software modules, etc. for implementing the accompanying discrimination method according to one embodiment of the present disclosure.
- ROM Read Only Memory
- EPROM Erasable Programmable ROM
- EEPROM Electrical Erasable Programmable ROM
- RAM Random Access Memory
- Memory 1002 may also be called a register, cache, main memory (primary storage device), etc.
- Memory 1002 can store executable programs (program codes), software modules, etc. for implementing the accompanying discrimination method according to one embodiment of the present disclosure.
- Storage 1003 is a computer-readable recording medium, and may be, for example, at least one of an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (e.g., a compact disk, a digital versatile disk, a Blu-ray (registered trademark) disk), a smart card, a flash memory (e.g., a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, etc.
- Storage 1003 may also be referred to as an auxiliary storage device.
- the above-mentioned storage medium may be, for example, a database, a server, or other suitable medium including at least one of memory 1002 and storage 1003.
- the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, or a communication module.
- the communication device 1004 may be configured to include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., to realize at least one of, for example, Frequency Division Duplex (FDD) and Time Division Duplex (TDD).
- FDD Frequency Division Duplex
- TDD Time Division Duplex
- the above-mentioned radio wave connection history acquisition unit 101 may be realized by the communication device 1004.
- This communication device 1004 may be implemented with a transmitting unit and a receiving unit that are physically or logically separated.
- the input device 1005 is an input device (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
- the output device 1006 is an output device (e.g., a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may be integrated into one structure (e.g., a touch panel).
- each device such as the processor 1001 and memory 1002 is connected by a bus 1007 for communicating information.
- the bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
- the accompanying discrimination devices 100 and 100a may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized by the hardware.
- the processor 1001 may be implemented using at least one of these pieces of hardware.
- the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
- the notification of information may be performed by physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, broadcast information (MIB (Master Information Block), SIB (System Information Block))), other signals, or a combination of these.
- the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc.
- the input and output information may be stored in a specific location (e.g., memory) or may be managed using a management table.
- the input and output information may be overwritten, updated, or added to.
- the output information may be deleted.
- the input information may be sent to another device.
- the determination may be made based on a value represented by one bit (0 or 1), a Boolean value (true or false), or a numerical comparison (e.g., a comparison with a predetermined value).
- notification of specific information is not limited to being done explicitly, but may be done implicitly (e.g., not notifying the specific information).
- Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
- Software, instructions, information, etc. may also be transmitted and received via a transmission medium.
- a transmission medium For example, if the software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
- wired technologies such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)
- wireless technologies such as infrared, microwave, etc.
- the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
- the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
- At least one of the channel and the symbol may be a signal (signaling).
- the signal may be a message.
- a component carrier (CC) may be called a carrier frequency, a cell, a frequency carrier, etc.
- a radio resource may be indicated by an index.
- the names used for the parameters described above are not intended to be limiting in any way. Furthermore, the formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure.
- the various channels (e.g., PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and the various names assigned to these various channels and information elements are not intended to be limiting in any way.
- MS Mobile Station
- UE User Equipment
- a mobile station may also be referred to by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
- determining may encompass a wide variety of actions.
- Determining and “determining” may include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., searching in a table, database, or other data structure), and considering ascertaining as “judging” or “determining.”
- determining and “determining” may include receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in memory), and considering ascertaining as “judging” or “determining.”
- judgment” and “decision” can include considering resolving, selecting, choosing, establishing, comparing, etc., to have been “judged” or “decided.” In other words, “judgment” and “decision” can include considering some action to have been “judged” or “decided.” Additionally, “judgment (decision)” can be interpreted as “assuming,” “ex
- connection refers to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to one another.
- the coupling or connection between elements may be physical, logical, or a combination thereof.
- “connected” may be read as "access.”
- two elements may be considered to be “connected” or “coupled” to one another using at least one of one or more wires, cables, and printed electrical connections, as well as electromagnetic energy having wavelengths in the radio frequency range, microwave range, and optical (both visible and invisible) range, as some non-limiting and non-exhaustive examples.
- the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
- any reference to an element using a designation such as "first,” “second,” etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and a second element does not imply that only two elements may be employed or that the first element must precede the second element in some way.
- a and B are different may mean “A and B are different from each other.”
- the term may also mean “A and B are each different from C.”
- Terms such as “separate” and “combined” may also be interpreted in the same way as “different.”
- 100...accompanying discrimination device 200...mobile terminal, 300...location management server, 101...radio wave connection history acquisition unit, 102...location estimation unit, 103...mesh code conversion unit, 104...analysis section extraction unit, 105...histogram creation unit, 106...similarity calculation unit, 107...accompanying discrimination unit.
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Strategic Management (AREA)
- Accounting & Taxation (AREA)
- Finance (AREA)
- Development Economics (AREA)
- Marketing (AREA)
- Entrepreneurship & Innovation (AREA)
- Economics (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Tourism & Hospitality (AREA)
- Theoretical Computer Science (AREA)
- Human Resources & Organizations (AREA)
- Data Mining & Analysis (AREA)
- Primary Health Care (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Game Theory and Decision Science (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
The purpose of the present invention is to provide a companion determination device that can accurately determine companions. In a companion determination device 100 according to the present disclosure, a position estimation unit 102 estimates and acquires a plurality of items of position information for a plurality of mobile terminals 200. A histogram creation unit 105 then acquires histograms (position distribution information) in meshes (regions) for the plurality of mobile terminals 200 on the basis of the number of plurality of items of position information per prescribed region for each of the plurality of mobile terminals 200. A degree-of-similarity calculation unit 106 calculates degrees of similarity between the respective histograms (position distribution information) of the plurality of mobile terminals 200. A companion determination unit 107 determines that a plurality of users who each have a mobile terminal 200 are companions on the basis of the degrees of similarity.
Description
本発明は、ユーザ同士の同行判別を行う同行判別装置に関する。
The present invention relates to an accompaniment determination device that determines whether users are accompanying each other.
同行者の存在によって、ユーザの購入意欲などの感覚は大きく影響を与え得ることが知られており、同行者情報を加味したサービスを設計することで、より高いユーザ向けサービスをデザインできる。同行者の有無を判別する技術として、特許文献1に記載の発明が挙げられる。特許文献1には、互いの位置情報との位置関係をみることにより、複数のユーザが同行しているか否かを判別することが記載されている。
It is known that the presence of a companion can greatly affect a user's feelings, such as their willingness to purchase, and by designing a service that takes companion information into account, it is possible to design a more user-friendly service. An example of a technology for determining whether or not a companion is present is the invention described in Patent Document 1. Patent Document 1 describes a method for determining whether multiple users are accompanying each other by looking at the positional relationship with each other's positional information.
特許文献1において扱っている位置情報は、例えば、GPS、基地局測位による緯度経度の測位データであるが、端末によってデータの取得時間にずれがあること、またデータが一部欠損することもあり、二者間のデータの対応付けが難しく、正しく同行者を判別することができない場合がある。
The location information handled in Patent Document 1 is, for example, latitude and longitude measurement data obtained by GPS or base station positioning, but there are times when the time at which data is acquired varies depending on the device, and some data may be missing, making it difficult to match the data between the two, and in some cases making it impossible to correctly identify accompanying persons.
そこで、本発明は、これら課題を解決するために、同行者を正確に判別することができる同行判別装置を提供することを目的とする。
The present invention aims to solve these problems by providing an accompanying person identification device that can accurately identify accompanying persons.
本発明の同行判別装置は、複数の端末それぞれの複数の位置情報を取得する位置情報取得部と、前記複数の端末ごとに、所定領域ごとの前記複数の位置情報数に基づいて、前記複数の端末の位置分布情報を取得する分布情報取得部と、前記複数の端末それぞれの位置分布情報同士の類似度を算出する算出部と、前記類似度に基づいて、前記端末のそれぞれを有する複数のユーザ同士は同行していると判別する判別部と、を備える。
The accompanying determination device of the present invention includes a location information acquisition unit that acquires multiple pieces of location information for each of multiple terminals, a distribution information acquisition unit that acquires location distribution information for each of the multiple terminals based on the number of pieces of location information for each specified area, a calculation unit that calculates the similarity between the location distribution information for each of the multiple terminals, and a determination unit that determines that multiple users having each of the terminals are accompanying each other based on the similarity.
本発明によると、同行者を正確に判別することができる。
This invention makes it possible to accurately identify accompanying persons.
添付図面を参照しながら本開示の実施形態を説明する。可能な場合には、同一の部分には同一の符号を付して、重複する説明を省略する。
The embodiments of the present disclosure will be described with reference to the attached drawings. Where possible, identical parts will be designated by the same reference numerals, and duplicate explanations will be omitted.
図1は、本開示における背景を説明する図である。図1(a)は、ユーザUが単独で店舗Tを訪問している様子を示す。本開示の背景においては、いつ誰が何をしていたかに基づいて顧客分析がなされていた。
FIG. 1 is a diagram explaining the background of this disclosure. FIG. 1(a) shows a user U visiting a store T alone. In the background of this disclosure, customer analysis was performed based on who was doing what and when.
図1(b)は、ユーザUがユーザU1およびユーザU2とともに、店舗Tを訪問している様子を示す。ユーザの行動は、同行者の存在によって購入意欲等に大きく影響を与え得ることが知られており、同行者情報を加味したサービスを設計することで、より価値の高いUX(User Experience)をデザインできる。図1(b)に示されるように、ユーザAが、ユーザBおよびユーザCと一緒に行動していた場合、ユーザAの行動は、それらユーザB等がいない場合と比較してその行動は大きく変わる場合がある。
Figure 1(b) shows user U visiting store T together with users U1 and U2. It is known that the presence of accompanying persons can greatly affect a user's behavior, such as their willingness to purchase, and by designing a service that takes into account accompanying person information, it is possible to design a more valuable UX (User Experience). As shown in Figure 1(b), when user A is visiting together with users B and C, user A's behavior may be significantly different compared to when users B, etc. are not present.
本開示においては、ユーザAがユーザB等と一緒に行動しているか否かを判別することを目的とする。
The purpose of this disclosure is to determine whether user A is acting together with user B, etc.
図2は、本開示における同行判別処理の概要を示す図である。図2(a)は、ユーザAからユーザCを位置情報の取得対象とすることを示す。図2(b)は、ユーザごとの位置情報と、その取得時間とを対応付けた記憶部の模式図を示す。図2(b)では、さらに分析区間ごとにそのログ情報を分割することを示す。
FIG. 2 is a diagram showing an overview of the accompanying determination process in the present disclosure. FIG. 2(a) shows that user A through user C are targets for acquiring location information. FIG. 2(b) shows a schematic diagram of a storage unit that associates location information for each user with the time of acquisition. FIG. 2(b) further shows that the log information is divided for each analysis section.
図2(c)は、メッシュコード単位におけるユーザの移動経路を示す。本開示のメッシュは、地図上の情報をデジタル化した各種統計情報をとるために地図上の経緯度方眼として定められた地域メッシュのことであり、各メッシュにはコード情報(メッシュコード)が付与されている。このメッシュコードは、総務省により割り振られており、予め定められた矩形の領域を示す識別子である。本開示においては、位置情報が、どのメッシュに含まれるかが判別され、位置情報がメッシュコードに変換される。図2(c)においては、そのメッシュコードを用いてユーザの大まかな位置および移動経路を把握することができる。
Figure 2(c) shows the user's movement route in mesh code units. In this disclosure, a mesh refers to a regional mesh defined as a longitude and latitude grid on a map in order to obtain various statistical information by digitizing information on the map, and each mesh is assigned code information (mesh code). This mesh code is assigned by the Ministry of Internal Affairs and Communications and is an identifier that indicates a predetermined rectangular area. In this disclosure, it is determined which mesh the location information is contained in, and the location information is converted into a mesh code. In Figure 2(c), the mesh code can be used to determine the user's approximate location and movement route.
本開示において、メッシュコードの大きさの制限はないが、5次メッシュのように細かいメッシュを用いた方がより同行の判別および同行していた区間の抽出精度が上がる。
In this disclosure, there is no limit to the size of the mesh code, but using a finer mesh such as a 5th order mesh will improve the accuracy of identifying accompanying and extracting the accompanying section.
図2(d)は、メッシュコード単位にヒストグラムを示す図である。すなわち、メッシュコード単位に、ユーザが滞在した頻度を示している。メッシュコードで示される領域はある程度幅を持っているため、移動していたとしても、ユーザは同じ領域(メッシュ)にいると判別することができる。一方で、ユーザの位置情報が一部欠落したとしても、全体的にその欠落を吸収して、ユーザの滞在領域を判別することができる。
Figure 2(d) shows a histogram for each mesh code. In other words, it shows the frequency with which a user stayed for each mesh code. Because the area indicated by a mesh code has a certain width, it is possible to determine that a user is in the same area (mesh) even if the user moves. On the other hand, even if part of the user's location information is missing, this can be absorbed overall and the area in which the user stayed can be determined.
本開示においては、上記の処理を行うことにより、ユーザごとに、ユーザ行動におけるヒスグラムを作成し、その比較することにより、ユーザ間の行動の類似度を算出することができる。
In this disclosure, by performing the above processing, a hisgram of user behavior is created for each user, and by comparing these, the similarity of behavior between users can be calculated.
図3は、本開示の同行判別装置100におけるユーザ間の同行判別を行うためのシステム構成を示す図である。このシステムは、同行判別装置100、複数の携帯端末200、および位置管理サーバ300を含む。携帯端末200は、携帯電話であって、移動体通信網に通信接続して、通信を行うことができる装置である。その際、携帯端末200は、在圏領域を移動したとき、そのほか定期的に、自分の在圏領域およびその在圏時間を位置管理サーバ300に登録する。
FIG. 3 is a diagram showing a system configuration for performing accompaniment discrimination between users in the accompaniment discrimination device 100 of the present disclosure. This system includes the accompaniment discrimination device 100, multiple mobile terminals 200, and a location management server 300. The mobile terminals 200 are mobile phones and are devices that can communicate by connecting to a mobile communication network. When the mobile terminals 200 move within a coverage area, and also periodically, they register their own coverage area and the time they are within the coverage area with the location management server 300.
位置管理サーバ300は、携帯端末200において基地局測位により得た位置情報を記憶する。携帯端末200は、基地局測位により得た位置情報を位置管理サーバ300に登録する。なお、位置管理サーバ300は、携帯端末200が基地局測位した位置情報を記憶しているが、それに限るものではない。携帯端末200においてGPSにより測位した位置情報を記憶してもよいし、また、位置登録により登録された基地局の位置情報またはセクタの中心位置またはこれらに基づいた算出された位置としてもよい。
The location management server 300 stores the location information obtained by base station positioning in the mobile terminal 200. The mobile terminal 200 registers the location information obtained by base station positioning in the location management server 300. Note that the location management server 300 stores the location information obtained by the mobile terminal 200 using base station positioning, but this is not limited to this. The location information stored may be location information obtained by GPS in the mobile terminal 200, or may be the location information of a base station registered by location registration, or the center position of a sector, or a position calculated based on these.
同行判別装置100は、この位置管理サーバ300に記憶されている位置情報を用いて、判別対象となる対象ユーザが、他のユーザ(同行候補者)と一緒に行動しているか、その同行判別を行う。本開示においては、対象ユーザは、同行判別装置100のオペレータ、そのほか対象ユーザに対してサービス提供するサービス提供者により予め指定されるものとする。他のユーザは、全ユーザを対象としてもよいし、対象ユーザと同じエリアまたは近隣にいるエリアにいるユーザとしてもよい。また、予めオペレータ等により指定されてもよい。
The accompaniment determination device 100 uses the location information stored in this location management server 300 to determine whether the target user to be determined is acting together with other users (accompanying candidates). In the present disclosure, the target user is designated in advance by the operator of the accompaniment determination device 100 or other service providers that provide services to the target user. The other users may be all users, or may be users who are in the same area as the target user or in a nearby area. They may also be designated in advance by the operator, etc.
図4は、本開示の第1の実施形態における同行判別装置100の機能構成を示す図である。図に示されるとおり、同行判別装置100は、電波接続履歴取得部101、位置推定部102、メッシュコード変換部103、分析区間抽出部104、ヒストグラム作成部105、類似度算出部106、および同行判別部107を含んで構成されている。
FIG. 4 is a diagram showing the functional configuration of the accompaniment discrimination device 100 in the first embodiment of the present disclosure. As shown in the figure, the accompaniment discrimination device 100 includes a radio connection history acquisition unit 101, a position estimation unit 102, a mesh code conversion unit 103, an analysis interval extraction unit 104, a histogram creation unit 105, a similarity calculation unit 106, and an accompaniment discrimination unit 107.
電波接続履歴取得部101は、位置管理サーバ300から、電波接続履歴情報を取得して記憶する部分である。この電波接続履歴情報は、同行判別の対象ユーザおよび同行候補者の位置情報(基地局測位による情報)およびその取得時間を含む。対象ユーザは、同行判別装置100のオペレータ等により予め指定される。同行候補者は、対象ユーザの位置情報に基づいて、同じ時間帯に所定領域内にいる他のユーザから選択されるが、全ての他のユーザとしてもよい。
The radio wave connection history acquisition unit 101 is a part that acquires and stores radio wave connection history information from the location management server 300. This radio wave connection history information includes location information (information obtained by base station positioning) and the acquisition time of the target user and accompanying candidates for accompanying determination. The target user is designated in advance by an operator of the accompanying determination device 100, etc. Accompanying candidates are selected from other users who are in a specified area during the same time period based on the location information of the target user, but may be all other users.
位置推定部102は、電波接続履歴情報から、対象ユーザおよび同行候補者の基地局測位による位置情報と、その位置情報の取得時間とを抽出する部分である。
The location estimation unit 102 is a part that extracts the location information of the target user and accompanying candidates based on base station positioning and the acquisition time of the location information from the radio wave connection history information.
メッシュコード変換部103は、位置情報をメッシュコードに変換する部分である。
The mesh code conversion unit 103 is the part that converts the location information into a mesh code.
分析区間抽出部104は、所定期間(例えば1日)の位置情報から一定時間のウィンドウ(分析区間)を抽出する部分である。分析区間抽出部104は、このウィンドウを(上記一定時間より小さい幅)ずらしながらヒストグラムの生成対象をずらしていく。
The analysis interval extraction unit 104 is a part that extracts a certain time window (analysis interval) from the location information for a specified period (for example, one day). The analysis interval extraction unit 104 shifts the target for generating the histogram by shifting this window (by a width smaller than the above-mentioned certain time).
ヒストグラム作成部105は、ウィンドウにあるメッシュコードの分布からヒストグラムを作成する部分である。
The histogram creation unit 105 is a part that creates a histogram from the distribution of mesh codes in the window.
類似度算出部106は、ヒストグラムに基づいて類似度を算出する部分である。例えば、類似度算出部106は、KLダイバージェンスまたはJSダイバージェンスを用いて類似度を算出する。例えば、KLダイバージェンスは、2つの確率分布がどの程度似ているかを表す尺度であり、その値が小さいほど似ていると判別することができる。JSダイバージェンスも同様にその類似度を求めるための手法である。類似度算出部106は、KlダイバージェンスまたはJSダイバージェンス以外の手法を用いてもよい。
The similarity calculation unit 106 is a part that calculates the similarity based on the histogram. For example, the similarity calculation unit 106 calculates the similarity using KL divergence or JS divergence. For example, KL divergence is a measure that indicates the degree to which two probability distributions are similar, and it can be determined that the smaller the value, the more similar the distributions are. JS divergence is also a method for determining the similarity. The similarity calculation unit 106 may use a method other than KL divergence or JS divergence.
ここで算出された類似度は、分析区間抽出部104により抽出されたウィンドウ(分析区間)における類似度を示す。分析区間抽出部104は、類似度算出部106が一のウィンドウにおける類似度を算出すると、そのウィンドウを少しずらして(前回の一のウィンドウと一部重複しながら)、さらにヒストグラム作成および類似度算出が行われる。
The similarity calculated here indicates the similarity in the window (analysis interval) extracted by the analysis interval extraction unit 104. When the similarity calculation unit 106 calculates the similarity in one window, the analysis interval extraction unit 104 shifts the window slightly (while partially overlapping with the previous one window) and further creates a histogram and calculates the similarity.
同行判別部107は、類似度に基づいて、同行を判別する部分である。同行判別部107は、ウィンドウごとに算出されたスコア系列から閾値に基づいて同行の判別、および同行していた区間を判別する。また、同行判別部107は、所定回数連続して同行スコアが閾値以下である場合に、その区間を同行区間である(同行している)と判別してもよい。この閾値および所定回数は、予め機械学習等により定められてもよいし、過去のデータまたは経験則などに基づいて予め決定しておいてもよい。
The accompanying discrimination unit 107 is a part that discriminates accompanying based on the degree of similarity. The accompanying discrimination unit 107 discriminates accompanying based on a threshold from the score series calculated for each window, and discriminates the section in which accompanying occurred. In addition, the accompanying discrimination unit 107 may discriminate a section as an accompanying section (in which accompanying occurs) when the accompanying score is equal to or less than the threshold for a predetermined number of consecutive times. This threshold and the predetermined number of times may be determined in advance by machine learning, etc., or may be determined in advance based on past data or empirical rules, etc.
図5は、同行判別装置100の動作を示すフローチャートである。電波接続履歴取得部101が電波接続履歴を取得し、位置推定部102が各ユーザの位置情報およびその取得時間を取得する(S101)。メッシュコード変換部103は、位置情報をメッシュコードに変換する(S102)。
FIG. 5 is a flowchart showing the operation of the accompanying discrimination device 100. The radio wave connection history acquisition unit 101 acquires the radio wave connection history, and the position estimation unit 102 acquires the position information of each user and the acquisition time thereof (S101). The mesh code conversion unit 103 converts the position information into a mesh code (S102).
分析区間抽出部104は、所定期間における位置情報を一定の時間のウィンドウに分ける。ヒストグラム作成部105は、そのウィンドウにあるメッシュコード(位置情報に対応)に基づいてヒストグラムを作成する(S103)。
The analysis interval extraction unit 104 divides the location information for a specified period into windows of fixed time. The histogram creation unit 105 creates a histogram based on the mesh codes (corresponding to the location information) in the windows (S103).
類似度算出部106は、KLダイバージェンス等を用いて、ヒストグラムの類似度を算出する(S104)。そして、同行判別部107は、類似度が閾値以下の同行候補者およびその区間を抽出し、それを同行者および同行区間と判別する(S105)。
The similarity calculation unit 106 calculates the similarity of the histograms using KL divergence or the like (S104). The accompaniment discrimination unit 107 then extracts accompanying candidates and their sections whose similarity is below a threshold, and discriminates them as accompanying persons and accompanying sections (S105).
図6は、処理S103の詳細処理を模式的に示した図である。時間、位置情報およびメッシュコードの対応表は、図示しない記憶部に記憶されている。図6(a)に示される通り、対象ユーザのメッシュコードを一定時間(例えばt1からt3)で区切ったウィンドウw1が取り出され、それに基づいてヒストグラムが作成される。図6(b)に示される通り、その後、その一定時間を少しずらして(例えばt2からt4)、ウィンドウw2のメッシュコードが取り出され、ヒストグラムが作成される。図6(c)に示される通り、その後、さらに一定時間(例えばt3からt5)を少しずらして、ウィンドウw2のメッシュコードが取り出され、ヒストグラムが作成される。上記の処理を同行候補者に対しても行う。
FIG. 6 is a diagram showing a schematic diagram of the detailed processing of process S103. A correspondence table of time, location information, and mesh codes is stored in a memory unit (not shown). As shown in FIG. 6(a), a window w1 is extracted by dividing the mesh codes of the target user by a certain time (e.g., from t1 to t3), and a histogram is created based on the window w1. As shown in FIG. 6(b), the mesh codes of window w2 are then extracted after a slight delay of the certain time (e.g., from t2 to t4), and a histogram is created. As shown in FIG. 6(c), the mesh codes of window w2 are then extracted after a further slight delay of a certain time (e.g., from t3 to t5), and a histogram is created. The above processing is also performed for accompanying candidates.
このように、類似判別のためのヒストグラムはある程度幅を持たせて作成される。そして、同じ時間帯のヒストグラム同士の類似度を算出する。
In this way, histograms for similarity determination are created with a certain degree of width. The similarity between histograms for the same time period is then calculated.
図7は、類似度算出の詳細処理を示す図である。図7(a)は、対象ユーザAのメッシュごとのユーザの移動経路およびそのヒストグラムを示す。メッシュmc1は4、メッシュmc2は3など、各メッシュの滞在頻度を示す。この滞在頻度は、メッシュに含まれる位置情報の数を示す。
Figure 7 shows the detailed process of calculating similarity. Figure 7(a) shows the user's movement route for each mesh of the target user A and its histogram. It shows the frequency of stay in each mesh, such as mesh mc1 being 4, mesh mc2 being 3, etc. This frequency of stay indicates the number of location information included in the mesh.
図7(b)は、同行候補者であるユーザBのメッシュごとの移動経路およびそのヒストグラムを示す。また、同様に図7(c)は、同行候補者であるユーザCのメッシュごとの移動経路およびそのヒストグラムを示す。なお、説明の便宜上メッシュを示すメッシュコードは一部省略して表記している。全てのメッシュにはメッシュコードが付与されている。
Figure 7(b) shows the movement route of User B, a potential accompaniment candidate, for each mesh and its histogram. Similarly, Figure 7(c) shows the movement route of User C, a potential accompaniment candidate, for each mesh and its histogram. Note that for ease of explanation, some of the mesh codes indicating the meshes have been omitted. All meshes are assigned mesh codes.
ある時間帯におけるメッシュごとのヒストグラムから以下の式を用いてKLスコアを算出する。この数式は公知のKLダイバージェンスのスコアを算出するものである。
The KL score is calculated from the histogram for each mesh in a certain time period using the following formula. This formula calculates the well-known KL divergence score.
例えば、対象ユーザと同行候補者とのメッシュコードの頻度がそれぞれ
対象ユーザ{mc1:n1, mc2:n2, mc3:n3}
同行候補者{mc1:n4, mc2:n5, mc3:n6}
だったとき、
メッシュ1aの頻度の割合p(1a)=n1/(n1+n2+n3)
メッシュ1bの頻度の割合p(1b)=n2/(n1+n2+n3)
メッシュ1cの頻度の割合p(1c)=n3/(n1+n2+n3)
メッシュ2aの頻度の割合p(2a)=n4/(n4+n5+n6)
メッシュ2bの頻度の割合p(2b)=n5/(n4+n5+n6)
メッシュ2cの頻度の割合p(2c)=n6/(n4+n5+n6)
が算出される。 For example, the frequency of mesh codes between the target user and the accompanying candidate is Target user {mc1:n1, mc2:n2, mc3:n3}
Accompanying candidate {mc1:n4, mc2:n5, mc3:n6}
When I was
The frequency ratio of mesh 1a is p(1a)=n1/(n1+n2+n3)
The frequency ratio of mesh 1b is p(1b)=n2/(n1+n2+n3)
The frequency ratio of mesh 1c is p(1c)=n3/(n1+n2+n3)
The frequency ratio of mesh 2a is p(2a)=n4/(n4+n5+n6)
The frequency ratio of mesh 2b is p(2b)=n5/(n4+n5+n6)
The frequency ratio of mesh 2c is p(2c)=n6/(n4+n5+n6)
is calculated.
対象ユーザ{mc1:n1, mc2:n2, mc3:n3}
同行候補者{mc1:n4, mc2:n5, mc3:n6}
だったとき、
メッシュ1aの頻度の割合p(1a)=n1/(n1+n2+n3)
メッシュ1bの頻度の割合p(1b)=n2/(n1+n2+n3)
メッシュ1cの頻度の割合p(1c)=n3/(n1+n2+n3)
メッシュ2aの頻度の割合p(2a)=n4/(n4+n5+n6)
メッシュ2bの頻度の割合p(2b)=n5/(n4+n5+n6)
メッシュ2cの頻度の割合p(2c)=n6/(n4+n5+n6)
が算出される。 For example, the frequency of mesh codes between the target user and the accompanying candidate is Target user {mc1:n1, mc2:n2, mc3:n3}
Accompanying candidate {mc1:n4, mc2:n5, mc3:n6}
When I was
The frequency ratio of mesh 1a is p(1a)=n1/(n1+n2+n3)
The frequency ratio of mesh 1b is p(1b)=n2/(n1+n2+n3)
The frequency ratio of mesh 1c is p(1c)=n3/(n1+n2+n3)
The frequency ratio of mesh 2a is p(2a)=n4/(n4+n5+n6)
The frequency ratio of mesh 2b is p(2b)=n5/(n4+n5+n6)
The frequency ratio of mesh 2c is p(2c)=n6/(n4+n5+n6)
is calculated.
そして、KLダイバージェンスによるスコアは、p(1a)*log(p(1a)/p(2a))+p(1b)*log(p(1b)/p(2b))+p(1c)*log(p(1c)/p(2c))で計算される。
Then, the score using KL divergence is calculated as p(1a)*log(p(1a)/p(2a))+p(1b)*log(p(1b)/p(2b))+p(1c)*log(p(1c)/p(2c)).
なお、上記は割合を用いてKLスコアを求めているが、各メッシュにおける頻度を用いてもよい。
Note that the above uses a percentage to calculate the KL score, but the frequency in each mesh can also be used.
上記の通り、図7においては、メッシュコードの表記を一部省略しているが、上記式には、省略されているメッシュにおいて頻度は0として扱われる。
As mentioned above, some mesh code notations are omitted in Figure 7, but in the above formula, the frequency of the omitted meshes is treated as 0.
図8は、類似度とその時間推移を示したグラフである。図に示されるとおり、縦軸が類似度を示すスコア(KLダイバージェンス)であり、横軸が時間である。KLダイバージェンスによるスコアはその値が低いほど類似度が高いことを示す。本開示においては、所定の閾値以下のKLスコアである時間帯が、対象ユーザと同行補者とが同行していると判別される。図8においては、閾値として0.1とし、その値以下の時間帯を同行区間として判別される。本開示においては、大体9時から21時過ぎまで、同行区間として判別される。
FIG. 8 is a graph showing similarity and its time progression. As shown in the figure, the vertical axis is the score indicating similarity (KL divergence), and the horizontal axis is time. The lower the score based on KL divergence, the higher the similarity. In the present disclosure, a time period with a KL score below a predetermined threshold is determined to be when the target user and accompanying person are traveling together. In FIG. 8, the threshold is set to 0.1, and a time period below this value is determined to be an accompanying period. In the present disclosure, a period from approximately 9:00 to just after 21:00 is determined to be an accompanying period.
なお、図6におけるウィンドウの開始時間をこの図8におけるKLスコアの各時間に対応付けることにするが、それに限るものはなく、ウィンドウの終了時点またはその中間時点など、予め定めておいてもよい。
Note that the start time of the window in Figure 6 is associated with each time of the KL score in Figure 8, but this is not limited to this, and it may be determined in advance, such as the end time of the window or an intermediate time.
このようにして、位置情報に基づいて、ユーザ同士が同じ移動をしているかを判別することができる。特に、メッシュなどのある程度の大きさを持った領域を位置情報として扱うことにより、位置情報の欠落等があっても、その不備を吸収することができる。
In this way, it is possible to determine whether users are moving in the same direction based on location information. In particular, by treating an area of a certain size, such as a mesh, as location information, even if there is a loss of location information, this can be absorbed.
つぎに、第2の実施形態について説明する。図9は、本開示の第2の実施形態における同行判別装置100aの機能構成を示すブロック図である。図に示されるとおり、同行判別装置100aは、電波接続履歴取得部101、位置推定部102、メッシュコード変換部103、分析区間抽出部104、確率分布作成部104a、ヒストグラム作成部105、類似度算出部106、および同行判別部107を含んで構成されている。同行判別装置100と比べて、確率分布作成部104aおよび重み情報記憶部104bが追加されている点で相違する。
Next, the second embodiment will be described. FIG. 9 is a block diagram showing the functional configuration of an accompaniment discrimination device 100a in the second embodiment of the present disclosure. As shown in the figure, the accompaniment discrimination device 100a includes a radio connection history acquisition unit 101, a position estimation unit 102, a mesh code conversion unit 103, an analysis interval extraction unit 104, a probability distribution creation unit 104a, a histogram creation unit 105, a similarity calculation unit 106, and an accompaniment discrimination unit 107. It differs from the accompaniment discrimination device 100 in that a probability distribution creation unit 104a and a weight information storage unit 104b have been added.
確率分布作成部104aは、隣り合うメッシュに重み付けを行って、その確率分布を作成する部分である。ヒストグラム作成部105は、その重みを考慮して、メッシュごとのヒストグラムを作成する。
The probability distribution creation unit 104a is a part that weights adjacent meshes and creates their probability distribution. The histogram creation unit 105 creates a histogram for each mesh, taking into account the weights.
重み情報記憶部104bは、メッシュごとの重み係数を記憶する部分である。この重み情報記憶部104bは、ユーザが滞在しているメッシュを中心に、その隣接メッシュの重み係数を記憶する。なお、それに限らず、重み情報記憶部104bは、メッシュごとに、そのメッシュの重み係数およびその隣接メッシュの重み係数をかえて記憶してもよい。この場合、メッシュごとおよび隣接メッシュごとに重み係数が設定されており、精度のよく類似度判別を行うことができる。なお、重み係数は、そのメッシュごとに誤差を考慮した値に設定されることが好ましく、そのため、事前に誤差の精度は計算されておくことがよい。例えば、実際はあるメッシュにユーザがいて、推定結果が他のメッシュに推定されてしまう確率をあらかじめ算出し、その確率も考慮しておくことがよい。
The weight information storage unit 104b is a part that stores the weight coefficient for each mesh. This weight information storage unit 104b stores the weight coefficients of adjacent meshes, centering on the mesh where the user is staying. However, this is not limited to this, and the weight information storage unit 104b may store different weight coefficients for each mesh and weight coefficients for its adjacent meshes. In this case, weight coefficients are set for each mesh and for each adjacent mesh, allowing for accurate similarity determination. It is preferable that the weight coefficient is set to a value that takes into account errors for each mesh, and therefore it is good to calculate the accuracy of the error in advance. For example, it is good to calculate in advance the probability that a user is actually in a certain mesh and the estimated result is estimated in another mesh, and to take this probability into account as well.
図10は、その確率分布作成の説明図である。図10(a)は、滞在しているメッシュおよびそこに隣接しているメッシュの重みを定義した図を示す。図に示されるとおり、滞在しているメッシュの重みを1とした場合におけるその隣接するメッシュの重みを0.5としている。これにより、推定した位置がずれたとしてもその影響を小さくすることができる。
Figure 10 is an explanatory diagram of how this probability distribution is created. Figure 10(a) shows a diagram that defines the weights of the mesh in which the object is staying and the meshes adjacent to it. As shown in the figure, when the weight of the mesh in which the object is staying is set to 1, the weight of the adjacent meshes is set to 0.5. This makes it possible to reduce the impact of deviations in the estimated position.
本開示においては、重みは、予め定めた値としてもよいし、事前に誤差の精度に基づいて計算されて設定されてもよい。例えば、実際はメッシュコードB2にユーザがいて、推定結果がメッシュB1またはメッシュC2に推定されてしまう確率をあらかじめ算出し、その確率も考慮して重みを定義づけてもよい。
In the present disclosure, the weights may be predetermined values, or may be calculated and set in advance based on the accuracy of the error. For example, the probability that the user is actually in mesh code B2 and the estimation result is estimated to be mesh B1 or mesh C2 may be calculated in advance, and the weights may be defined taking this probability into account.
図10(b)は、隣接したメッシュのさらに隣接するメッシュに重みを定義した図を示す。図に示されるとおり、さらに隣接したメッシュコードには、0.1など、より小さい重みが定義づけられる。
Figure 10(b) shows a diagram in which weights are defined for the meshes adjacent to adjacent meshes. As shown in the figure, a smaller weight, such as 0.1, is defined for the adjacent mesh codes.
図10においては、隣接メッシュおよび近隣メッシュの重みは固定値で表されているが、これに限らず、上記したとおり、メッシュごとに、その重みは変えてもよい。
In Figure 10, the weights of adjacent and nearby meshes are represented by fixed values, but this is not limited thereto, and as described above, the weights may be changed for each mesh.
ヒストグラム作成部105は、この重みを使ってヒストグラムを生成する。例えば、ヒストグラム作成部105は、ユーザがメッシュB2にいた場合で、そのメッシュB2にユーザの滞在頻度が1であった場合、そのメッシュB2は1のヒストグラムが作成される。また、メッシュA1等のメッシュB2に隣接するメッシュについては、実際にそのメッシュにいたと推定されていなくても、0.5のヒストグラムが作成される。
The histogram creation unit 105 uses this weight to generate a histogram. For example, if the user is in mesh B2 and the user's frequency of visit to that mesh B2 is 1, the histogram creation unit 105 creates a histogram of 1 for that mesh B2. Also, for meshes adjacent to mesh B2, such as mesh A1, a histogram of 0.5 is created even if it is not estimated that the user was actually in that mesh.
より詳細にその説明をする。図11は、ユーザの移動経路および各メッシュにいた場合の各重みを示す説明図である。図11(a)は、メッシュにおけるユーザの移動経路を示している。
This will be explained in more detail. Figure 11 is an explanatory diagram showing the user's movement route and the weights when the user is in each mesh. Figure 11(a) shows the user's movement route in a mesh.
図11(b)は、ユーザがメッシュa4にいた場合における重みを示す。この場合、メッシュa4の重みは1であり、メッシュa3、b3、b4のそれぞれの重みは0.5である。図11(c)は、ユーザがメッシュb4にいた場合の各メッシュの重みを示す。同様に、メッシュb4の重み1であり、ほか隣接するメッシュa4等の重みは0.5である。図11(d)は、ユーザがメッシュb3にいた場合の各メッシュにおける重みを示す。図11においては、滞在しているメッシュの重みが1、隣接しているメッシュの重みが0.5としているが、これに限るものではない。メッシュごとに、または隣接方向によっては、重みを変えて定義してもよい。例えば、斜め方向に隣接する隣接メッシュと上下方向に隣接する隣接メッシュとは、測位誤差が異なる場合もあるため、その方向に重みを変えてもよい。左右方向についても同様である。このような重みの定義付けのルールは、重み情報記憶部104bに記憶される。
11(b) shows the weights when the user is in mesh a4. In this case, the weight of mesh a4 is 1, and the weights of meshes a3, b3, and b4 are 0.5. FIG. 11(c) shows the weights of each mesh when the user is in mesh b4. Similarly, the weight of mesh b4 is 1, and the weights of the other adjacent meshes such as a4 are 0.5. FIG. 11(d) shows the weights of each mesh when the user is in mesh b3. In FIG. 11, the weight of the mesh in which the user is staying is 1, and the weight of the adjacent mesh is 0.5, but this is not limited to this. The weights may be defined differently for each mesh or depending on the adjacent direction. For example, the positioning error may differ between adjacent meshes adjacent in a diagonal direction and adjacent meshes adjacent in the vertical direction, so the weight may be changed in that direction. The same applies to the left and right direction. Such rules for defining the weights are stored in the weight information storage unit 104b.
図12は、図11におけるそれぞれのメッシュにユーザがいた場合のヒストグラムを示す図である。
Figure 12 shows histograms when a user is present in each mesh in Figure 11.
図12(a)は、ユーザがメッシュa4にいた場合のヒストグラムである。メッシュa4の隣接メッシュであるメッシュa3、b3、b4、c3、およびc4には、重み0.5が定義づけられており、この重みに、メッシュa4における滞在頻度(例えば1とする)を乗算した値がヒストグラムに反映される。
Figure 12(a) shows a histogram when the user is in mesh a4. Meshes a3, b3, b4, c3, and c4, which are adjacent to mesh a4, are assigned a weight of 0.5, and the value reflected in the histogram is the product of this weight multiplied by the frequency of visits to mesh a4 (for example, 1).
図12(b)は、ユーザがメッシュb4にいた場合のヒストグラムである。上記と同様に、メッシュb4の隣接メッシュであるメッシュa3、a4、b3、c3、c4には、重み0.5が定義づけられており、この重みに、メッシュa4における滞在頻度を乗算した値がヒストグラムに反映される。
Figure 12(b) shows the histogram when the user is in mesh b4. As above, a weight of 0.5 is defined for meshes a3, a4, b3, c3, and c4, which are adjacent meshes to mesh b4, and the value obtained by multiplying this weight by the frequency of visits to mesh a4 is reflected in the histogram.
図12(c)は、ユーザがメッシュb3にいた場合のヒストグラムである。上記と同様の処理をする。ほか図示は省略するが、ほかの移動先も同様にヒストグラムを作成する。なお、説明の便宜上、それぞれの各メッシュにおける滞在頻度を1とするが、ユーザの行動によっては、滞在頻度が2以上となる場合もある。
Figure 12(c) is a histogram when the user is in mesh b3. The same process as above is carried out. Histograms are similarly created for other destinations, although they are not shown. For ease of explanation, the frequency of visits in each mesh is set to 1, but depending on the user's behavior, the frequency of visits may be 2 or more.
図12(d)は、上記メッシュを含む各メッシュを移動したときの各メッシュにおける上記重みを反映した滞在頻度を合算したヒストグラムである。本開示においては、一定時間のウィンドウにおいて、図11におけるメッシュa4からメッシュd1に移動したとしており、図12(d)は、そのウィンドウにおけるヒストグラムを示す。
FIG. 12(d) is a histogram summing up the frequency of stays reflecting the above weighting in each mesh when moving through each mesh including the mesh mentioned above. In this disclosure, it is assumed that the user moved from mesh a4 in FIG. 11 to mesh d1 in a certain time window, and FIG. 12(d) shows the histogram for that window.
このようにして、各ユーザ(対象ユーザおよび同行候補者)の各ウィンドウのヒストグラムを作成し、これを用いてウィンドウごとの類似度算出および同行判別を行う。
In this way, a histogram is created for each window of each user (target user and accompanying candidate), and this is used to calculate the similarity for each window and determine whether or not they are accompanying each other.
図13は、同行判別装置100aの動作を示すフローチャートである。同行判別装置100と同様に、電波接続履歴取得部101および位置推定部102が位置情報を取得し(S101)、メッシュコード変換部103が位置情報をメッシュコードに変換する(S102)。
FIG. 13 is a flowchart showing the operation of the accompanying discrimination device 100a. As with the accompanying discrimination device 100, the radio connection history acquisition unit 101 and the position estimation unit 102 acquire position information (S101), and the mesh code conversion unit 103 converts the position information into a mesh code (S102).
分析区間抽出部104は、一定時間のメッシュコードを抽出し、確率分布作成部104aは、ユーザが在圏しているメッシュおよび隣接メッシュの確率分布を作成する(102a)。これは上記図11において説明した手法に基づくものである。
The analysis interval extraction unit 104 extracts the mesh code for a certain period of time, and the probability distribution creation unit 104a creates a probability distribution for the mesh in which the user is located and the adjacent meshes (102a). This is based on the method described in Figure 11 above.
ヒストグラム作成部105は、確率分布作成部104aにより作成された確率分布に従って、ユーザが滞在した各メッシュのヒストグラムを作成し、それを合算することで、ユーザの一定時間における移動のヒストグラムを作成する(S103)。対象ユーザおよび同行候補者のヒストグラムが作成される。
The histogram creation unit 105 creates a histogram for each mesh where the user stayed according to the probability distribution created by the probability distribution creation unit 104a, and adds them up to create a histogram of the user's movements over a certain period of time (S103). Histograms are created for the target user and accompanying candidates.
そして、類似度算出部106は、対象ユーザと他の同行候補者のヒストグラムの類似度を算出し(S104)、同行判別部107が同行判別を行う(S105)。
Then, the similarity calculation unit 106 calculates the similarity between the histograms of the target user and other accompanying candidates (S104), and the accompanying discrimination unit 107 performs accompanying discrimination (S105).
これに基づいて、確率分布に基づいたヒストグラムを作成することができ、測位誤差を考慮した同行判別を行うことができる。
Based on this, a histogram based on the probability distribution can be created, and accompanying discrimination can be performed while taking into account positioning errors.
つぎに、本開示の同行判別装置100および同行判別装置100aの作用効果について説明する。本開示の同行判別装置100において、位置推定部102は、複数の携帯端末200のそれぞれの複数の位置情報を推定して、取得する。そして、ヒストグラム作成部105は、複数の携帯端末200ごとに、所定領域ごとの複数の位置情報数に基づいて、複数の携帯端末200の各メッシュ(領域)におけるヒストグラム(位置分布情報)を取得する。
Next, the effects of the accompaniment discrimination device 100 and accompaniment discrimination device 100a of the present disclosure will be described. In the accompaniment discrimination device 100 of the present disclosure, the position estimation unit 102 estimates and acquires multiple pieces of position information for each of the multiple mobile terminals 200. Then, the histogram creation unit 105 acquires a histogram (position distribution information) for each mesh (area) of the multiple mobile terminals 200 based on the number of pieces of position information for each predetermined area for each of the multiple mobile terminals 200.
そして、類似度算出部106は、複数の携帯端末200それぞれのヒストグラム(位置分布情報)同士の類似度を算出する。同行判別部107は、その類似度に基づいて、携帯端末200を有する複数のユーザ同士は、同行していると判別する。
Then, the similarity calculation unit 106 calculates the similarity between the histograms (position distribution information) of each of the multiple mobile terminals 200. The accompanying determination unit 107 determines that the multiple users having the mobile terminals 200 are accompanying each other based on the similarity.
この構成によれば、位置情報をメッシュ(所定領域)に集約して、その数に基づいて各メッシュにおけるヒストグラムを作成することができ、そのヒストグラムに基づいた同行判別を行うことができる。よって、位置情報のいくつから欠落したとしても、その誤差を吸収でき、正確な同行判別を可能にする。
With this configuration, position information can be aggregated into meshes (predetermined regions), and a histogram can be created for each mesh based on the number of meshes, and entrainment discrimination can be performed based on the histogram. Therefore, even if some of the position information is missing, the error can be absorbed, enabling accurate entrainment discrimination.
本開示において、メッシュコード変換部103が、位置情報をメッシュコード(所定領域の識別子)に変換し、ヒストグラム作成部105は、そのメッシュコード(識別子)に基づいて、メッシュごとのヒストグラム(位置分布情報)を作成する。本開示のメッシュは、地図上の情報をデジタル化したり各種統計情報をとるために地図上の経緯度方眼として定められた地域メッシュのことであり、各メッシュにはコード情報(数値情報)が付与されている。メッシュコードは総務省により割り振られている。
In the present disclosure, the mesh code conversion unit 103 converts the location information into a mesh code (identifier for a specific area), and the histogram creation unit 105 creates a histogram (location distribution information) for each mesh based on the mesh code (identifier). The mesh in the present disclosure refers to a regional mesh defined as a longitude and latitude grid on a map in order to digitize information on the map and collect various statistical information, and each mesh is assigned code information (numerical information). Mesh codes are assigned by the Ministry of Internal Affairs and Communications.
本開示において、ヒストグラム(位置分布情報)は、各メッシュにおける、位置情報数に基づいた携帯端末200の滞在頻度を示す。この滞在頻度はユーザの行動を示している。
In this disclosure, the histogram (location distribution information) indicates the frequency of visits of the mobile terminal 200 in each mesh based on the number of pieces of location information. This frequency of visits indicates the user's behavior.
ヒストグラム作成部105は、メッシュ(所定領域)ごとの携帯端末200の複数の位置情報数を、所定のウィンドウ(分析区間)ごとに取得して、それに基づいてヒストグラムを作成する。類似度算出部106は、ウィンドウ(分析区間)におけるヒストグラムに基づいて、類似度を算出する。
The histogram creation unit 105 acquires the number of pieces of location information of the mobile device 200 for each mesh (predetermined area) for each predetermined window (analysis section) and creates a histogram based on the information. The similarity calculation unit 106 calculates the similarity based on the histogram in the window (analysis section).
これにより、あるウィンドウ(分析区間)におけるユーザの行動の類似度を算出することができる。ウィンドウは、時間帯を示しており、ある時間帯におけるユーザ行動の類似度を求めることになる。
This makes it possible to calculate the similarity of user behavior in a certain window (analysis period). A window indicates a time period, and the similarity of user behavior in a certain time period is calculated.
本開示において、ヒストグラム作成部105は、分析区間抽出部104により抽出されたウィンドウ(分析区間)をずらしながら、その区間におけるメッシュごとのヒストグラムを作成する。
In this disclosure, the histogram creation unit 105 shifts the window (analysis interval) extracted by the analysis interval extraction unit 104 and creates a histogram for each mesh in that interval.
これにより、ウィンドウをずらしながら、ヒストグラムを作成し、そのヒストグラムに基づいてユーザ行動の類似度を求めることができる。
This allows us to create a histogram while shifting the window, and then calculate the similarity of user behavior based on that histogram.
また、本開示の同行判別装置100aは、携帯端末200の位置からの距離に応じた重み係数(重み情報)を記憶する重み情報記憶部104bをさらに備える。そして、ヒストグラム作成部105は、その重み係数に基づいて、あるウィンドウにおけるメッシュごとのヒストグラムを作成する。
The accompanying discrimination device 100a of the present disclosure further includes a weight information storage unit 104b that stores a weight coefficient (weight information) according to the distance from the position of the mobile terminal 200. The histogram creation unit 105 then creates a histogram for each mesh in a certain window based on the weight coefficient.
これにより、携帯端末200における測位誤差を吸収することができ、精度のよい類似度判別および同行判別を行うことができる。
This makes it possible to absorb positioning errors in the mobile terminal 200, enabling accurate similarity determination and accompanying determination.
この重み情報記憶部104bは、メッシュごと(所定領域ごと)に付与されたメッシュコード(識別子)ごとに、メッシュ(所定領域)に隣接する隣接メッシュまたは近傍メッシュの重み係数を記憶する。この重み係数は、位置情報の測位誤差に基づいて、設定されるのがよい。
This weight information storage unit 104b stores the weight coefficients of adjacent or nearby meshes adjacent to a mesh (predetermined area) for each mesh code (identifier) assigned to each mesh (predetermined area). It is preferable that these weight coefficients be set based on the positioning error of the location information.
これにより、メッシュにおける事情(測位誤差など)を考慮した重み係数を設定することができる。
This allows you to set weighting coefficients that take into account the circumstances of the mesh (such as positioning errors).
本開示の同行判別装置100および100aにおける全体の効果について説明する。
The overall effect of the accompanying discrimination devices 100 and 100a disclosed herein will be explained.
本開示においては、同行者間の位置情報ログの誤差または欠損の影響を小さくできるため、基地局測位による緯度経度の測位データのような誤差が大きいデータでもロバストな同行の判別、および同行していた区間の抽出が可能になる。
In this disclosure, the impact of errors or missing information in the location information logs between accompanying people can be reduced, making it possible to robustly determine whether or not someone is accompanying someone and extract the section in which they were accompanying someone, even when using data with large errors, such as latitude and longitude positioning data obtained by base station positioning.
GPSデータは、取得に専用のアプリが必要であったり、ユーザ側の制御によって取得できるデータの質が異なる。また、携帯端末200に負荷(バッテリーなど)がかかるため測位間隔に配慮する必要がある。
GPS data requires a dedicated app to obtain it, and the quality of the data that can be obtained varies depending on the user's control. In addition, because it places a load on the mobile terminal 200 (battery, etc.), it is necessary to take into consideration the positioning interval.
基地局測位による緯度経度の測位データは、ネットワークに接続するだけで取得できるためユーザ側の制御に依存しにくく、データ取得のためのユーザ側のコストも低い。また、位置測位として追加で携帯端末200に負荷がかかるわけではなく、測位間隔をGPSよりも狭めることが容易で、よりユーザの行動を追跡しやすい。本開示の同行判別装置100はGPSデータだけでなく、基地局測位による緯度経度の測位データでも十分な精度が得られ、同行推定の対象者を広げられる。
Since latitude and longitude positioning data obtained by base station positioning can be obtained simply by connecting to a network, it is less dependent on user control, and the cost to the user for obtaining the data is low. In addition, positioning does not impose an additional load on the mobile terminal 200, and it is easier to narrow the positioning interval compared to GPS, making it easier to track user behavior. The accompaniment determination device 100 disclosed herein can obtain sufficient accuracy not only with GPS data, but also with latitude and longitude positioning data obtained by base station positioning, making it possible to expand the range of people who can be estimated as accompaniments.
よって、同行推定が可能になることで、同行者の情報を加味して情報配信のタイミングを出し分けたり、同行相手の情報も加味して情報の内容を選択したりできるようになる。
Therefore, by making it possible to estimate whether someone is accompanying someone, it will be possible to differentiate the timing of information distribution by taking into account information about the person accompanying the person, and to select the content of the information by taking into account information about the person accompanying the person.
なお、本開示においては、扱われる位置情報は、基地局測位に限られるものではなく、GPSデータを含んでも当然によいが。
Note that in this disclosure, the location information handled is not limited to base station positioning, and may of course include GPS data.
本開示の同行判別装置100、100aは、以下の構成を有する。
The accompanying discrimination device 100, 100a disclosed herein has the following configuration.
[1]
複数の端末それぞれの複数の位置情報を取得する位置情報取得部と、
前記複数の端末ごとに、所定領域ごとの前記複数の位置情報数に基づいて、前記複数の端末の位置分布情報を取得する分布情報取得部と、
前記複数の端末それぞれの位置分布情報同士の類似度を算出する算出部と、
前記類似度に基づいて、前記端末のそれぞれを有する複数のユーザ同士は同行していると判別する判別部と、
を備える同行判別装置。 [1]
A location information acquisition unit that acquires a plurality of pieces of location information of a plurality of terminals;
a distribution information acquisition unit that acquires location distribution information of the plurality of terminals based on the number of pieces of location information for each of the plurality of terminals in a predetermined area;
A calculation unit that calculates a similarity between location distribution information of each of the plurality of terminals;
a determination unit that determines that a plurality of users each having the terminals are traveling together based on the similarity;
An accompanying discrimination device comprising:
複数の端末それぞれの複数の位置情報を取得する位置情報取得部と、
前記複数の端末ごとに、所定領域ごとの前記複数の位置情報数に基づいて、前記複数の端末の位置分布情報を取得する分布情報取得部と、
前記複数の端末それぞれの位置分布情報同士の類似度を算出する算出部と、
前記類似度に基づいて、前記端末のそれぞれを有する複数のユーザ同士は同行していると判別する判別部と、
を備える同行判別装置。 [1]
A location information acquisition unit that acquires a plurality of pieces of location information of a plurality of terminals;
a distribution information acquisition unit that acquires location distribution information of the plurality of terminals based on the number of pieces of location information for each of the plurality of terminals in a predetermined area;
A calculation unit that calculates a similarity between location distribution information of each of the plurality of terminals;
a determination unit that determines that a plurality of users each having the terminals are traveling together based on the similarity;
An accompanying discrimination device comprising:
[2]
前記位置情報を前記所定領域の識別子に変換する変換部をさらに備え、
前記分布情報取得部は、前記識別子に基づいて、前記位置分布情報を取得する、
[1]に記載の同行判別装置。 [2]
A conversion unit converts the location information into an identifier of the predetermined area,
The distribution information acquisition unit acquires the location distribution information based on the identifier.
The accompanying discrimination device according to [1].
前記位置情報を前記所定領域の識別子に変換する変換部をさらに備え、
前記分布情報取得部は、前記識別子に基づいて、前記位置分布情報を取得する、
[1]に記載の同行判別装置。 [2]
A conversion unit converts the location information into an identifier of the predetermined area,
The distribution information acquisition unit acquires the location distribution information based on the identifier.
The accompanying discrimination device according to [1].
[3]
前記位置分布情報は、前記位置情報数に基づいた前記端末の滞在頻度を含む、
[2]に記載の同行判別装置。 [3]
The location distribution information includes a frequency of stay of the terminal based on the number of pieces of location information.
The accompanying discrimination device according to [2].
前記位置分布情報は、前記位置情報数に基づいた前記端末の滞在頻度を含む、
[2]に記載の同行判別装置。 [3]
The location distribution information includes a frequency of stay of the terminal based on the number of pieces of location information.
The accompanying discrimination device according to [2].
[4]
前記分布情報取得部は、
前記所定領域ごとの前記複数の位置情報数を、所定の分析区間ごとに取得して位置分布情報を取得し、
前記算出部は、前記分析区間における位置分布情報に基づいて、類似度を算出する、
[1]から[4]のいずれか一に記載の同行判別装置。 [4]
The distribution information acquisition unit
The number of the plurality of pieces of position information for each of the predetermined regions is acquired for each predetermined analysis section to acquire position distribution information;
The calculation unit calculates a similarity based on position distribution information in the analysis section.
The accompanying discrimination device according to any one of [1] to [4].
前記分布情報取得部は、
前記所定領域ごとの前記複数の位置情報数を、所定の分析区間ごとに取得して位置分布情報を取得し、
前記算出部は、前記分析区間における位置分布情報に基づいて、類似度を算出する、
[1]から[4]のいずれか一に記載の同行判別装置。 [4]
The distribution information acquisition unit
The number of the plurality of pieces of position information for each of the predetermined regions is acquired for each predetermined analysis section to acquire position distribution information;
The calculation unit calculates a similarity based on position distribution information in the analysis section.
The accompanying discrimination device according to any one of [1] to [4].
[5]
前記分布情報取得部は、
前記分析区間をずらしながら、前記位置分布情報を取得する、
[4]に記載の同行判別装置。 [5]
The distribution information acquisition unit
acquiring the position distribution information while shifting the analysis section;
The accompanying discrimination device according to [4].
前記分布情報取得部は、
前記分析区間をずらしながら、前記位置分布情報を取得する、
[4]に記載の同行判別装置。 [5]
The distribution information acquisition unit
acquiring the position distribution information while shifting the analysis section;
The accompanying discrimination device according to [4].
[6]
前記端末の位置からの距離に応じた重み情報を記憶する重み情報記憶部をさらに備え、
前記分布情報取得部は、前記重み情報に基づいて前記位置分布情報を取得する、
[1]から[4]のいずれか一に記載の同行判別装置。 [6]
A weight information storage unit that stores weight information according to a distance from the position of the terminal,
the distribution information acquisition unit acquires the position distribution information based on the weight information.
The accompanying discrimination device according to any one of [1] to [4].
前記端末の位置からの距離に応じた重み情報を記憶する重み情報記憶部をさらに備え、
前記分布情報取得部は、前記重み情報に基づいて前記位置分布情報を取得する、
[1]から[4]のいずれか一に記載の同行判別装置。 [6]
A weight information storage unit that stores weight information according to a distance from the position of the terminal,
the distribution information acquisition unit acquires the position distribution information based on the weight information.
The accompanying discrimination device according to any one of [1] to [4].
[7]
前記重み情報記憶部は、
前記所定領域ごとに付与された識別子ごとに、所定領域に隣接する領域または近傍の領域の重み情報を記憶する、
[6]に記載の同行判別装置。 [7]
The weight information storage unit
storing weight information of an area adjacent to or near the predetermined area for each identifier assigned to the predetermined area;
The accompanying discrimination device according to [6].
前記重み情報記憶部は、
前記所定領域ごとに付与された識別子ごとに、所定領域に隣接する領域または近傍の領域の重み情報を記憶する、
[6]に記載の同行判別装置。 [7]
The weight information storage unit
storing weight information of an area adjacent to or near the predetermined area for each identifier assigned to the predetermined area;
The accompanying discrimination device according to [6].
[8]
前記重み情報は、前記位置情報の誤差に基づいて、設定されている、
[6]または[7]に記載の同行判別装置。 [8]
The weight information is set based on an error in the position information.
The accompanying discrimination device according to [6] or [7].
前記重み情報は、前記位置情報の誤差に基づいて、設定されている、
[6]または[7]に記載の同行判別装置。 [8]
The weight information is set based on an error in the position information.
The accompanying discrimination device according to [6] or [7].
上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェアおよびソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
The block diagrams used to explain the above embodiments show functional blocks. These functional blocks (components) are realized by any combination of at least one of hardware and software. Furthermore, there are no particular limitations on the method of realizing each functional block. That is, each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and connected directly or indirectly (e.g., using wires, wirelessly, etc.) and these multiple devices. The functional blocks may be realized by combining the one device or the multiple devices with software.
機能には、判断、決定、判別、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
Functions include, but are not limited to, judgement, determination, discrimination, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, regarding, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment. For example, a functional block (component) that performs the transmission function is called a transmitting unit or transmitter. As mentioned above, there are no particular limitations on the method of realization for either of these.
例えば、本開示の一実施の形態における同行判別装置100および100aは、本開示の同行判別方法の処理を行うコンピュータとして機能してもよい。図14は、本開示の一実施の形態に係る同行判別装置100および100aのハードウェア構成の一例を示す図である。上述の同行判別装置100および100aは、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
For example, the accompaniment discrimination devices 100 and 100a in one embodiment of the present disclosure may function as a computer that performs processing of the accompaniment discrimination method of the present disclosure. FIG. 14 is a diagram showing an example of the hardware configuration of the accompaniment discrimination devices 100 and 100a in one embodiment of the present disclosure. The above-mentioned accompaniment discrimination devices 100 and 100a may be physically configured as a computer device including a processor 1001, memory 1002, storage 1003, communication device 1004, input device 1005, output device 1006, bus 1007, etc.
なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。同行判別装置100および100aのハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
In the following description, the word "apparatus" can be interpreted as a circuit, device, unit, etc. The hardware configuration of the accompaniment discrimination apparatus 100 and 100a may be configured to include one or more of the devices shown in the figure, or may be configured to exclude some of the devices.
同行判別装置100および100aにおける各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002およびストレージ1003におけるデータの読み出しおよび書き込みの少なくとも一方を制御したりすることによって実現される。
The functions of the accompanying discrimination devices 100 and 100a are realized by loading specific software (programs) onto hardware such as the processor 1001 and memory 1002, causing the processor 1001 to perform calculations, control communications via the communication device 1004, and control at least one of the reading and writing of data in the memory 1002 and storage 1003.
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のメッシュコード変換部103等は、プロセッサ1001によって実現されてもよい。
The processor 1001, for example, operates an operating system to control the entire computer. The processor 1001 may be configured with a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, etc. For example, the mesh code conversion unit 103 described above may be realized by the processor 1001.
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003および通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、位置推定部102、メッシュコード変換部103、分析区間抽出部104、ヒストグラム作成部105、類似度算出部106、同行判別部107は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。
The processor 1001 also reads out programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. The programs used are those that cause a computer to execute at least a part of the operations described in the above-mentioned embodiment. For example, the position estimation unit 102, the mesh code conversion unit 103, the analysis interval extraction unit 104, the histogram creation unit 105, the similarity calculation unit 106, and the accompanying determination unit 107 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and other functional blocks may be similarly realized. Although the above-mentioned various processes have been described as being executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001. The processor 1001 may be implemented by one or more chips. The programs may be transmitted from a network via a telecommunication line.
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施の形態に係る同行判別方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
Memory 1002 is a computer-readable recording medium, and may be composed of at least one of, for example, ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. Memory 1002 may also be called a register, cache, main memory (primary storage device), etc. Memory 1002 can store executable programs (program codes), software modules, etc. for implementing the accompanying discrimination method according to one embodiment of the present disclosure.
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002およびストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
Storage 1003 is a computer-readable recording medium, and may be, for example, at least one of an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (e.g., a compact disk, a digital versatile disk, a Blu-ray (registered trademark) disk), a smart card, a flash memory (e.g., a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, etc. Storage 1003 may also be referred to as an auxiliary storage device. The above-mentioned storage medium may be, for example, a database, a server, or other suitable medium including at least one of memory 1002 and storage 1003.
通信装置1004は、有線ネットワークおよび無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)および時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の電波接続履歴取得部101は、通信装置1004によって実現されてもよい。この通信装置1004は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。
The communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, or a communication module. The communication device 1004 may be configured to include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., to realize at least one of, for example, Frequency Division Duplex (FDD) and Time Division Duplex (TDD). For example, the above-mentioned radio wave connection history acquisition unit 101 may be realized by the communication device 1004. This communication device 1004 may be implemented with a transmitting unit and a receiving unit that are physically or logically separated.
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005および出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
The input device 1005 is an input device (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (e.g., a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may be integrated into one structure (e.g., a touch panel).
また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
Furthermore, each device such as the processor 1001 and memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
また、同行判別装置100および100aは、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
Furthermore, the accompanying discrimination devices 100 and 100a may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized by the hardware. For example, the processor 1001 may be implemented using at least one of these pieces of hardware.
情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
The notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. For example, the notification of information may be performed by physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), higher layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, broadcast information (MIB (Master Information Block), SIB (System Information Block))), other signals, or a combination of these. In addition, the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc.
本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
The processing steps, sequences, flow charts, etc. of each aspect/embodiment described in this disclosure may be reordered unless inconsistent. For example, the methods described in this disclosure present elements of various steps using an example order and are not limited to the particular order presented.
入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、または追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
The input and output information may be stored in a specific location (e.g., memory) or may be managed using a management table. The input and output information may be overwritten, updated, or added to. The output information may be deleted. The input information may be sent to another device.
判別は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
The determination may be made based on a value represented by one bit (0 or 1), a Boolean value (true or false), or a numerical comparison (e.g., a comparison with a predetermined value).
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
Each aspect/embodiment described in this disclosure may be used alone, in combination, or switched depending on the execution. In addition, notification of specific information (e.g., notification that "X is the case") is not limited to being done explicitly, but may be done implicitly (e.g., not notifying the specific information).
以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨および範囲を逸脱することなく修正および変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described herein. The present disclosure can be implemented in modified and altered forms without departing from the spirit and scope of the present disclosure as defined by the claims. Therefore, the description of the present disclosure is intended as an illustrative example and does not have any limiting meaning with respect to the present disclosure.
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)および無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術および無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
Software, instructions, information, etc. may also be transmitted and received via a transmission medium. For example, if the software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。
The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
なお、本開示において説明した用語および本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネルおよびシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
Note that the terms explained in this disclosure and the terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, at least one of the channel and the symbol may be a signal (signaling). Also, the signal may be a message. Also, a component carrier (CC) may be called a carrier frequency, a cell, a frequency carrier, etc.
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
In addition, the information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information. For example, a radio resource may be indicated by an index.
上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)および情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネルおよび情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
The names used for the parameters described above are not intended to be limiting in any way. Furthermore, the formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure. The various channels (e.g., PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and the various names assigned to these various channels and information elements are not intended to be limiting in any way.
本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
In this disclosure, terms such as "Mobile Station (MS)," "user terminal," "User Equipment (UE)," and "terminal" may be used interchangeably.
移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。
A mobile station may also be referred to by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判別(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
As used in this disclosure, the terms "determining" and "determining" may encompass a wide variety of actions. "Determining" and "determining" may include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., searching in a table, database, or other data structure), and considering ascertaining as "judging" or "determining." Also, "determining" and "determining" may include receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in memory), and considering ascertaining as "judging" or "determining." Additionally, "judgment" and "decision" can include considering resolving, selecting, choosing, establishing, comparing, etc., to have been "judged" or "decided." In other words, "judgment" and "decision" can include considering some action to have been "judged" or "decided." Additionally, "judgment (decision)" can be interpreted as "assuming," "expecting," "considering," etc.
「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブルおよびプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域および光(可視および不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。
The terms "connected," "coupled," or any variation thereof, refer to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are "connected" or "coupled" to one another. The coupling or connection between elements may be physical, logical, or a combination thereof. For example, "connected" may be read as "access." As used in this disclosure, two elements may be considered to be "connected" or "coupled" to one another using at least one of one or more wires, cables, and printed electrical connections, as well as electromagnetic energy having wavelengths in the radio frequency range, microwave range, and optical (both visible and invisible) range, as some non-limiting and non-exhaustive examples.
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
As used in this disclosure, the phrase "based on" does not mean "based only on," unless expressly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1および第2の要素への参照は、2つの要素のみが採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
Any reference to an element using a designation such as "first," "second," etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and a second element does not imply that only two elements may be employed or that the first element must precede the second element in some way.
本開示において、「含む(include)」、「含んでいる(including)」およびそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
When the terms "include," "including," and variations thereof are used in this disclosure, these terms are intended to be inclusive, similar to the term "comprising." Additionally, the term "or," as used in this disclosure, is not intended to be an exclusive or.
本開示において、例えば、英語でのa, anおよびtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
In this disclosure, where articles have been added through translation, such as a, an, and the in English, this disclosure may include that the nouns following these articles are in the plural form.
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
In this disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean "A and B are each different from C." Terms such as "separate" and "combined" may also be interpreted in the same way as "different."
100…同行判別装置、200…携帯端末、300…位置管理サーバ、101…電波接続履歴取得部、102…位置推定部、103…メッシュコード変換部、104…分析区間抽出部、105…ヒストグラム作成部、106…類似度算出部、107…同行判別部。
100...accompanying discrimination device, 200...mobile terminal, 300...location management server, 101...radio wave connection history acquisition unit, 102...location estimation unit, 103...mesh code conversion unit, 104...analysis section extraction unit, 105...histogram creation unit, 106...similarity calculation unit, 107...accompanying discrimination unit.
100...accompanying discrimination device, 200...mobile terminal, 300...location management server, 101...radio wave connection history acquisition unit, 102...location estimation unit, 103...mesh code conversion unit, 104...analysis section extraction unit, 105...histogram creation unit, 106...similarity calculation unit, 107...accompanying discrimination unit.
Claims (8)
- 複数の端末それぞれの複数の位置情報を取得する位置情報取得部と、
前記複数の端末ごとに、所定領域ごとの位置情報数に基づいて、前記複数の端末の位置分布情報を取得する分布情報取得部と、
前記複数の端末それぞれの位置分布情報同士の類似度を算出する算出部と、
前記類似度に基づいて、前記端末のそれぞれを有する複数のユーザ同士は同行していると判別する判別部と、
を備える同行判別装置。 A location information acquisition unit that acquires a plurality of pieces of location information of a plurality of terminals;
a distribution information acquisition unit that acquires location distribution information of the plurality of terminals based on a number of pieces of location information for each predetermined area for each of the plurality of terminals;
A calculation unit that calculates a similarity between location distribution information of each of the plurality of terminals;
a determination unit that determines that a plurality of users each having the terminals are traveling together based on the similarity;
An accompanying discrimination device comprising: - 前記位置情報を前記所定領域の識別子に変換する変換部をさらに備え、
前記分布情報取得部は、前記識別子に基づいて、前記位置分布情報を取得する、
請求項1に記載の同行判別装置。 A conversion unit converts the location information into an identifier of the predetermined area,
The distribution information acquisition unit acquires the location distribution information based on the identifier.
The accompanying discrimination device according to claim 1 . - 前記位置分布情報は、前記位置情報数に基づいた前記端末の滞在頻度を含む、
請求項2に記載の同行判別装置。 The location distribution information includes a frequency of stay of the terminal based on the number of pieces of location information.
The accompanying discrimination device according to claim 2. - 前記分布情報取得部は、
前記所定領域ごとの前記複数の位置情報数を、所定の分析区間ごとに取得して位置分布情報を取得し、
前記算出部は、前記分析区間における位置分布情報に基づいて、類似度を算出する、
請求項1に記載の同行判別装置。 The distribution information acquisition unit
The number of the plurality of pieces of position information for each of the predetermined regions is acquired for each predetermined analysis section to acquire position distribution information;
The calculation unit calculates a similarity based on position distribution information in the analysis section.
The accompanying discrimination device according to claim 1 . - 前記分布情報取得部は、
前記分析区間をずらしながら、前記位置分布情報を取得する、
請求項4に記載の同行判別装置。 The distribution information acquisition unit
acquiring the position distribution information while shifting the analysis section;
The accompanying discrimination device according to claim 4. - 前記端末の位置からの距離に応じた重み情報を記憶する重み情報記憶部をさらに備え、
前記分布情報取得部は、前記重み情報に基づいて前記位置分布情報を取得する、
請求項1に記載の同行判別装置。 A weight information storage unit that stores weight information according to a distance from the position of the terminal,
the distribution information acquisition unit acquires the position distribution information based on the weight information.
The accompanying discrimination device according to claim 1 . - 前記重み情報記憶部は、
前記所定領域ごとに付与された識別子ごとに、所定領域に隣接する領域または近傍の領域の重み情報を記憶する、
請求項6に記載の同行判別装置。 The weight information storage unit
storing weight information of an area adjacent to or near the predetermined area for each identifier assigned to the predetermined area;
The accompanying discrimination device according to claim 6. - 前記重み情報は、前記位置情報の誤差に基づいて、設定されている、
請求項6に記載の同行判別装置。
The weight information is set based on an error in the position information.
The accompanying discrimination device according to claim 6.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023-019335 | 2023-02-10 | ||
JP2023019335 | 2023-02-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024166512A1 true WO2024166512A1 (en) | 2024-08-15 |
Family
ID=92262876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/043544 WO2024166512A1 (en) | 2023-02-10 | 2023-12-05 | Companion determination device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024166512A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011154484A (en) * | 2010-01-26 | 2011-08-11 | Nippon Telegr & Teleph Corp <Ntt> | Method, device and program for deciding behavioral situation |
JP2012014357A (en) * | 2010-06-30 | 2012-01-19 | Nippon Telegr & Teleph Corp <Ntt> | Mobile body feature description device, mobile body feature description method, mobile body feature description program and recording medium |
JP2015011107A (en) * | 2013-06-27 | 2015-01-19 | 株式会社Nttドコモ | Population change decision device, and population change decision method |
JP2015049681A (en) * | 2013-08-30 | 2015-03-16 | Kddi株式会社 | Device, program and method for retrieving user taking similar moving route |
JP2018073043A (en) * | 2016-10-27 | 2018-05-10 | Kddi株式会社 | Device, program and method for estimating traffic amount on the basis of movement start and end information |
JP2021012697A (en) * | 2019-07-08 | 2021-02-04 | ライン プラス コーポレーションLINE Plus Corporation | Method and system for analyzing interest of user by using positional information of user and event information according to event places and computer program stored in non-temporal computer-readable storage medium |
JP2022145450A (en) * | 2021-03-19 | 2022-10-04 | 株式会社ピース企画 | Cluster generation device, cluster generation method and cluster generation program |
-
2023
- 2023-12-05 WO PCT/JP2023/043544 patent/WO2024166512A1/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011154484A (en) * | 2010-01-26 | 2011-08-11 | Nippon Telegr & Teleph Corp <Ntt> | Method, device and program for deciding behavioral situation |
JP2012014357A (en) * | 2010-06-30 | 2012-01-19 | Nippon Telegr & Teleph Corp <Ntt> | Mobile body feature description device, mobile body feature description method, mobile body feature description program and recording medium |
JP2015011107A (en) * | 2013-06-27 | 2015-01-19 | 株式会社Nttドコモ | Population change decision device, and population change decision method |
JP2015049681A (en) * | 2013-08-30 | 2015-03-16 | Kddi株式会社 | Device, program and method for retrieving user taking similar moving route |
JP2018073043A (en) * | 2016-10-27 | 2018-05-10 | Kddi株式会社 | Device, program and method for estimating traffic amount on the basis of movement start and end information |
JP2021012697A (en) * | 2019-07-08 | 2021-02-04 | ライン プラス コーポレーションLINE Plus Corporation | Method and system for analyzing interest of user by using positional information of user and event information according to event places and computer program stored in non-temporal computer-readable storage medium |
JP2022145450A (en) * | 2021-03-19 | 2022-10-04 | 株式会社ピース企画 | Cluster generation device, cluster generation method and cluster generation program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020215783A1 (en) | Locating method and apparatus, and storage medium | |
CN112261570B (en) | Method, device, server and storage medium for associating interest point with wireless network | |
US11805393B2 (en) | Method for aggregation and calculation of a population distribution of devices over a predetermined geographic area | |
WO2024166512A1 (en) | Companion determination device | |
CN113055901B (en) | Terminal positioning method and device | |
CN108376157A (en) | Target user's querying method, system and device | |
US11748424B2 (en) | Visiting destination prediction device and visiting destination prediction method | |
WO2019216046A1 (en) | Information processing device | |
CN111930891A (en) | Retrieval text expansion method based on knowledge graph and related device | |
US11895559B2 (en) | Moving means determination device | |
JP7430733B2 (en) | Authorization device | |
JP7366767B2 (en) | Information provision device | |
JP7397738B2 (en) | Aggregation device | |
JP2024114000A (en) | Accompanying discrimination device | |
CN105722216B (en) | Distance detection method, terminal device and storage medium | |
WO2020075364A1 (en) | Check-in determination device | |
JP7548912B2 (en) | Reranking Equipment | |
WO2024166487A1 (en) | Movement assessment device | |
WO2023195264A1 (en) | User state determination device | |
CN110909288A (en) | Service data processing method, device, platform, service end, system and medium | |
US11627432B2 (en) | Method and apparatus for improving positioning performance by analyzing signals transmitted via different sub-channels | |
US20240249200A1 (en) | Time-series data processing device | |
JP7514727B2 (en) | Judging device | |
CN113194426B (en) | Fingerprint database updating method, device, equipment and computer storage medium | |
WO2024150513A1 (en) | Youthfulness degree output device and youthfulness degree output method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23921332 Country of ref document: EP Kind code of ref document: A1 |