WO2024164223A1 - Molded polyester articles with improved aesthetic chemical resistance - Google Patents

Molded polyester articles with improved aesthetic chemical resistance Download PDF

Info

Publication number
WO2024164223A1
WO2024164223A1 PCT/CN2023/075155 CN2023075155W WO2024164223A1 WO 2024164223 A1 WO2024164223 A1 WO 2024164223A1 CN 2023075155 W CN2023075155 W CN 2023075155W WO 2024164223 A1 WO2024164223 A1 WO 2024164223A1
Authority
WO
WIPO (PCT)
Prior art keywords
mole
polyester
residues
dicarboxylic acid
articles
Prior art date
Application number
PCT/CN2023/075155
Other languages
French (fr)
Inventor
William Curtis ANDERSON
Huamin HU
Margaret GOAD
Pearl MCCUISTION
Heather Michelle CROWE
Original Assignee
Eastman Chemical (China) Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Chemical (China) Co., Ltd. filed Critical Eastman Chemical (China) Co., Ltd.
Priority to PCT/CN2023/075155 priority Critical patent/WO2024164223A1/en
Priority to PCT/CN2024/075402 priority patent/WO2024164940A1/en
Publication of WO2024164223A1 publication Critical patent/WO2024164223A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/199Acids or hydroxy compounds containing cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • This invention belongs to the field of polymer-based resins useful for forming articles or components of articles intended for contact with chemical compositions that may cause degradation of polymer properties.
  • the articles/components are intended for contact with such chemical compositions that are intended for body contact.
  • Plastic articles or components for such articles made using these resin compositions such as wearable articles, packaging or dispensing devices for cosmetics of personal care products, medical articles for use with body contact substances, or high touch articles that may contact sun protection or tanning products, e.g., sunscreens, are also provided.
  • Plastics are a preferred material for making articles/devices that are wearable, intended for high touch, that contain chemical compositions intended for contact with the body, e.g., packaging or delivery devices for such chemical compositions, or that are otherwise likely to come into contact with chemicals that may cause polymer degradation, based on the relative efficiency of molding parts and articles of various shapes and designs.
  • wearable articles and food or beverage articles that will likely come into contact with such chemical compositions, such as wearable electronics or other high touch articles/devices, are often manufactured by molding plastic parts that form an assembly to produce the device or article.
  • devices used to deliver/store chemical compositions such as compositions intended for body contact, e.g., skin contact, such as jars, tubes, bags, or dispensing devices, are also manufactured by molding plastic into various shaped articles of component parts.
  • plastics when plastics are used in applications where contact with chemicals will occur, there is the potential for degradation (e.g., cracking, crazing, softening, optical distortion, etc. ) of the plastic induced by the chemical environment.
  • Some especially aggressive classes of chemicals include ingredients found in products intended for body contact, such as sunscreens, tanning oils, cosmetics, personal care products, aggressive food ingredients.
  • Aggressive chemicals, such as sunscreens can result in optical distortion of a plastic article, e.g., fingerprints leaving permanent distortion on the plastic surface due to the presence of sunscreen.
  • plastic materials that have resistance to such chemicals, are easily formed into articles, and maintain acceptable physical properties.
  • articles molded from certain copolyester plastics have exceptional resistance to aggressive chemical compositions, such as chemicals intended for body contact, e.g., sunscreen, that can cause optical distortion to transparent/clear articles.
  • such articles can be useful as containers and/or other components in articles or devices that will have significant contact with chemical compositions intended for body contact in use, or high touch articles that may be contacted with aggressive chemicals.
  • articles intended for body contact can be made from compositions of copolyesters that can be prepared having excellent chemical resistance to such chemical compositions and a glass transition temperature (Tg) exceeding 95°C, or 100°C, or 105°C.
  • shaped articles configured to receive (or configured to accommodate contact with) a chemical composition comprising a degradation chemical, e.g., chemical compositions intended for body contact or a chemical composition used on high touch articles, can be prepared from copolyester plastic materials that have resistance to the chemical composition and have physical properties similar to or better than molded articles produced from other typically used oil-based engineering thermoplastics. More specifically, these shaped articles are produced from a copolyester composition that retains its physical properties and/or optical appearance better than the other plastics after exposure to the chemical composition.
  • a degradation chemical e.g., chemical compositions intended for body contact or a chemical composition used on high touch articles
  • the transparent article configured to accommodate contact with a chemical composition that is intended for body contact and that comprises one or more degradation chemicals.
  • the transparent article is formed from a copolyester composition comprising at least one copolyester that comprises:
  • the total mole %of the dicarboxylic acid component is 100 mole %, and the total mole %of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.60 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25°C; and wherein the polyester has a Tg of 95°C to 120°C, or 95°C to 115°C, and has an average haze below 5 or below 3 after exposure to sunscreen (as tested according to the examples) .
  • the cyclic diol is 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol (TMCD) and the glycol component comprises greater than 15 and up to 33, or up to 30, or up to 25, or up to 22 mole %TMCD residues.
  • the cyclic diol is isosorbide and the glycol component comprises 5 to 33, or 5 to 30, or 5 to 25, or 5 to 22, or 5 to 18, or 5 to 16 mole %of isosorbide resides.
  • the polyester has a transmittance greater than 90%after exposure to sunscreen (as tested according to the examples) .
  • the copolyester composition has a Tg in the range from 100°C to 115°C. In embodiments, the copolyester composition has an inherent viscosity is 0.70 to 1.0 dL/g, or 0.75 to 0.95 dL/g.
  • the glycol component comprises:
  • the dicarboxylic acid component comprises:
  • the dicarboxylic acid component comprises:
  • the dicarboxylic acid component comprises 100 mole%terephthalic acid residues.
  • the copolyester composition has a crystallization half time from 30 seconds to 10 minutes, or 30 seconds to 5 minutes.
  • the article is chosen from wearable articles, high touch articles, food or beverage containers, or packaging articles.
  • the chemical composition intended for body contact is a sunscreen.
  • the at least one copolyester has a total transmittance of at least 90%and a haze of less than 1%measured according to ASTM D1003.
  • the shaped article configured to receive (or configured to accommodate contact with) a chemical composition that comprises one or more degradation chemicals.
  • the shaped article comprises a copolyester composition, wherein the copolyester composition has a Tg of at least 95°C, or at least 100°C, or at least 105°C, and good resistance to optical distortion after exposure to sunscreen, e.g., has a sunscreen score of 2 or less, or 1.5 or less (as measured using the sunscreen test described herein) .
  • the shaped article has an average haze below 5 or below 3 after exposure to sunscreen (as measured herein) and/or a transmittance greater than 88, or greater than 90, after exposure to sunscreen (as measured herein) .
  • the copolyester composition also has at least one of the following properties chosen from: tensile modulus of greater than 1400 MPa as measured according to ASTM D638 using a 3.2 mm thick bar that has been subjected to 50%relative humidity for 40 hours at 23°C; a notched izod impact strength of greater than 600, or 700, or 800, or 900, or 1000 J/m as measured according to ASTM D256 at 23C using a 3.2 mm thick bar that has been subjected to 50%relative humidity for 40 hours at 23°C; a tensile stress at yield of at least 40 MPa, measured according to ASTM D638; a transmission of at least 70 measured according to ASTM D1003 using a 3.2 mm plaque after injection molding at a barrel set point of 249°C and a mold temperature of 80°C; or an L*color of at least 85, measured according to ASTM E1348 using a 3.2 mm plaque after injection molding with a barrel temperature of 249°C
  • the shaped articles or components thereof can be chosen from injection molded articles, extrusion molded articles, rotational molded articles, compression molded articles, blow molded articles, injection blow molded articles, injection stretch blow molded articles, extrusion blow molded articles, sheet or film extrusion articles, profile extrusion articles, gas assist molding articles, structural foam molded articles, or thermoformed articles.
  • the shaped article is chosen from transparent articles, see-through articles, thin-walled articles, technical articles (e.g., articles having a complex design) , articles having high design specifications, intricate design articles, containers for holding a chemical composition intended for body contact, or other shaped articles configured to receive (or contact) a chemical composition intended for body contact (or a chemical composition used on high touch articles) .
  • the shaped article is a transparent or see-through article configured to receive (or contact) a chemical composition intended for body contact (or a chemical composition used on high touch articles) .
  • the technical articles, articles having high design specifications, and intricate design articles can be chosen from articles that include electrical/electronic components, perfume or cosmetic containers, medical contact devices or containers, or components thereof.
  • the copolyester composition further comprises at least one property chosen from: tensile modulus of greater than 1400 MPa as measured according to ASTM D638 using a 3.2 mm thick bar that has been subjected to 50%relative humidity for 40 hours at 23°C; a notched izod impact strength of greater than 600, or 700, or 800, or 900, or 1000 J/m as measured according to ASTM D256 at 23C using a 3.2 mm thick bar that has been subjected to 50%relative humidity for 40 hours at 23°C; a tensile stress at yield of at least 40 MPa, measured according to ASTM D638; a transmission of at least 70 measured according to ASTM D1003 using a 3.2 mm plaque after injection molding at a barrel set point of 249°C and a mold temperature of 80°C; a ⁇ E value of less than 25, using a 3.2 mm plaque after injection molding with a barrel temperature of 249°C and a mold temperature of
  • the copolyester composition comprises at least one copolyester which comprises:
  • mole %of cyclic diol residues having a 2 to 5 member cyclic structure or 5 to 33, or 8 to 16, mole %of cyclic diol resides having a bicyclic structure with each individual ring in the bicyclic structure having 2 to 5 members;
  • the copolyester composition comprises a copolyester which comprises a glycol component chosen from: (1) 5 to 20 mole %of the cyclic diol residues and 55 to 95 mole %of the 1, 4-cyclohexanedimethanol residues; or (2) 8 to 20 mole %of the cyclic diol residues and 55 to 92 mole %of the 1, 4-cyclohexanedimethanol residues; or (3) 10 to 20 mole %of the cyclic diol residues and 55 to 90 mole %of the 1, 4-cyclohexanedimethanol residues.
  • a glycol component chosen from: (1) 5 to 20 mole %of the cyclic diol residues and 55 to 95 mole %of the 1, 4-cyclohexanedimethanol residues; or (2) 8 to 20 mole %of the cyclic diol residues and 55 to 92 mole %of the 1, 4-cyclohexanedimethanol residues; or (3) 10 to
  • the copolyester composition comprises a copolyester which comprises a glycol component chosen from: (1) 10 to 22 mole %of the cyclic diol residues and 55 to 90 mole %of the 1, 4-cyclohexanedimethanol residues; or (2) 15 to 22 mole %of the cyclic diol residues and 55 to 85 mole %of the 1, 4-cyclohexanedimethanol residues; or (3) greater than 15 and up to 22 mole %of the cyclic diol residues and 55 to less than 85 mole %of the 1, 4-cyclohexanedimethanol residues.
  • a glycol component chosen from: (1) 10 to 22 mole %of the cyclic diol residues and 55 to 90 mole %of the 1, 4-cyclohexanedimethanol residues; or (2) 15 to 22 mole %of the cyclic diol residues and 55 to 85 mole %of the 1, 4-cyclohexanedimethanol residues;
  • the copolyester has an inherent viscosity is 0.55 to 1.0 dL/g, or 0.55 to 0.8 dL/g, or 0.55 to 0.7 dL/g, as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25°C.
  • the copolyester has a Tg of 95°C to 115°C, or 100°C to 115°C, or 105°C to 115°C.
  • the dicarboxylic acid component comprises:
  • IPA isophthalic acid
  • the dicarboxylic acid component comprises 100 mole %of terephthalic acid (TPA) residues.
  • the cyclic diol can be an aliphatic cyclic diol or an aromatic cyclic diol. In embodiments, the cyclic diol can be an alicyclic diol. In embodiments, the cyclic diol is a cyclobutane diol, isosorbide, or combinations thereof. In one embodiment, the cyclic diol is a cyclobutane diol. In one embodiment, the cyclobutane diol is 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol (TMCD) . In one embodiment, the alicyclic diol is isosorbide.
  • the dicarboxylic acid component comprises residues as follows: greater than 95 to 100 mole%TPA and 0 to less than 5 mole%IPA; 96 to 100 mole%TPA and 0 to 4 mole%IPA; 96.5 to 100 mole%TPA and 0 to 3.5 mole%IPA; 97 to 100 mole%TPA and 0 to 3 mole%IPA; 98 to 100 mole%TPA and 0 to 2 mole%IPA; 98.5 to 100 mole%TPA and 0 to 1.5 mole%IPA; 95 to 98.5 mole%TPA and 1.5 to 5 mole%IPA; greater than 95 to 98.5 mole%TPA and 1.5 to less than 5 mole%IPA; 96 to 98.5 mole%TPA and 1.5 to 4 mole%IPA; 96.5 to 98.5 mole%TPA and 1.5 to 3.5 mole%IPA; 97 to 98.5 mole%TPA and 1.5 to 3 mole%IPA; 97.5 to 98.5 mole%TPA and 1.5 to 2.5 mole%IPA; 95 to
  • the glycol component comprises:
  • the glycol component comprises residues as follows: greater than 15 and up to 21 mole%TMCD and 79 and up to less than 85 mole%CHDM; greater than 15 and up to 20 mole%TMCD and 80 and up to less than 85 mole%CHDM; greater than 15 and up to 19 mole%TMCD and 81 and up to less than 85 mole%CHDM; greater than 15 and up to 18 mole%TMCD and 82 and up to less than 85 mole%CHDM; 16 to 22 mole%TMCD and 78 to 84 mole%CHDM; 16 to 21 mole%TMCD and 79 to 84 mole%CHDM; 16 to 20 mole%TMCD and 80 to 84 mole%CHDM; 16 to 19 mole%TMCD and 81 to 84 mole%CHDM; 16 to 18 mole%TMCD and 82 to 84 mole%CHDM; 17 to 22 mole%TMCD and 78 to 83 mole%CHDM; 17 to 21 mole%TMCD and 79 to 83 mole%CH
  • the copolyester composition comprises at least one copolyester which comprises:
  • the total mole %of the dicarboxylic acid component is 100 mole %, and the total mole %of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.70 to 1.0 dL/g, or 0.75 to 0.95 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25°C; and wherein the polyester has a Tg of 100°C to 115°C.
  • the at least one copolyester is a melt blended copolyester having an IV of 0.70 to 0.90 dL/g, or 0.75 to 0.85 dL/g, or 0.79 to 0.82 dL/g.
  • the melt blended copolyester is solid stated to increase the IV.
  • the solid stated copolyester has an IV from 0.80 to 1.0 dL/g, or 0.85 to 1.0 dL/g, or 0.87 to 0.97 dL/g, or 0.90 to 0.95 dL/g.
  • the dicarboxylic acid component is 100 mole%terephthalic acid residues.
  • the copolyester composition is amorphous. In other embodiments, the copolyester composition is semi-crystalline.
  • the at least one copolyester is a reactor grade polyester prepared by a process that includes a transesterification reaction of reaction mixture that includes all the monomers for the intended (monomeric) residues to be included in the copolyester.
  • a copolyester intended to include residues of TPA, CHDM and TMCD is prepared by a transesterification reaction that includes each of these monomers.
  • the reactor grade polyester is amorphous.
  • the at least one copolyester is a melt blend polyester prepared by a process that includes melt blending at least two different starting polyesters to provide a final copolyester that includes the monomeric residues contained in starting polyesters.
  • a PCTA copolyester containing residues of TPA, IPA and CHDM is melt blended with a PCTM copolyester containing residues of TPA, CHDM and TMCD to provide a final copolyester having residues of TPA, IPA, CHDM and TMCD.
  • a PCT copolyester containing residues of TPA and CHDM is melt blended with a PCTM copolyester containing residues of TPA, CHDM and TMCD to provide a final copolyester having residues of TPA, CHDM and TMCD (where the TMCD is in an amount less than the starting PCTM copolyester) .
  • the melt blended copolyester has residues in (net) amounts according to any of the embodiments for the copolyester (as described herein) .
  • the melt blended copolyester is subjected to solid stating to increase the inherent viscosity (IV) of the copolyester.
  • the solid stated copolyester has an IV according to any of the embodiments for the copolyester (as described herein) .
  • a method for improving aesthetic chemical resistance to degradation chemicals of a high Tg and high impact resistant polyester comprising:
  • Polyester A that comprises:
  • Polyester B is included in an amount sufficient to improve the aesthetic chemical resistance to degradation chemicals of the combination of Polyesters A and B compared to that of Polyester A, wherein Polyester B comprises:
  • the blended polyester composition comprises:
  • Polyester A comprises:
  • Polyester A comprises:
  • Polyester B comprises:
  • Polyester B is included in an amount to provide a weight ratio of Polyester A: B in a range from 90: 10 to 50: 50, or 90: 10 to 60: 40, or 90: 10 to 65: 35, or 85: 15 to 50: 50, or 85: 15 to 60: 40, or 85: 15 to 65: 35, or 80: 20 to 50: 50, or 80: 20 to 60: 40, or 80: 20 to 65: 35, or 80: 20 to 70: 30.
  • blending step (3) comprise melt blending Polyester A and Polyester B.
  • the blended polyester composition has a higher transmittance %and a lower haze %compared to Polyester A, after exposure to sunscreen (as tested according to the examples) .
  • the blended polyester composition has haze %that is at least 50%lower compared to Polyester A, after exposure to sunscreen (as tested according to the examples)
  • a method for improving aesthetic chemical resistance to degradation chemicals of a high Tg and high impact resistant polyester comprising:
  • Polyester A that comprises:
  • cyclic diol has a 2 to 5 member cyclic structure, or a bicyclic structure with each individual ring in the bicyclic structure having 2 to 5 members;
  • Polyester B is included in an amount sufficient to improve the aesthetic chemical resistance to degradation chemicals of the combination compared to that of Polyester A, wherein Polyester B comprises:
  • Polyester A comprises:
  • Polyester A comprises:
  • Polyester B comprises:
  • Polyester B is included in an amount to provide a weight ratio of Polyester A: B in a range from 90: 10 to 50: 50, or 90: 10 to 60: 40, or 90: 10 to 65: 35, or 85: 15 to 50: 50, or 85: 15 to 60: 40, or 85: 15 to 65: 35, or 80: 20 to 50: 50, or 80: 20 to 60: 40, or 80: 20 to 65: 35, or 80: 20 to 70: 30.
  • blending step (3) comprise melt blending Polyester A and Polyester B.
  • the shaped article configured to receive (or configured to accommodate contact with) a chemical composition that comprises one or more degradation chemicals is a transparent or see-through article made from the polyester composition and the chemical composition is intended for body contact.
  • the chemical composition intended for body contact is in the form of a liquid, gel, lotion, paste, mouse, emulsion and/or a dispersion.
  • the chemical composition intended for body contact can be in the form of a spray, e.g., aerosol or pump spray, such as spray on tanning oils or sunscreens.
  • the chemical composition intended for body contact comprises a degradation chemical that is present in an amount of at least 1 wt%, or at least 5 wt%, based on the total weight of the chemical composition intended for body contact.
  • Figure 1 is representative photographs of sunscreen fingerprints on plaques.
  • Figure 2 is representative photographs of plaques corresponding to different ratings of visual assessments of fingerprints.
  • a shaped article configured to receive a chemical composition that comprises one or more degradation chemicals, the article comprising a copolyester composition, wherein the copolyester composition has a Tg of at least 95°C, or at least 100°C, or at least 105°C, comprises a copolyester (as described herein) , and good resistance to optical distortion after exposure to sunscreen, e.g., has a sunscreen score of 2 or less, or 1.5 or less (as measured using the sunscreen test described herein) .
  • the shaped article also has an average haze below 5 or below 3 after exposure to sunscreen (as measured herein) and/or a transmittance greater than 88, or 89, or 90, after exposure to sunscreen (as measured herein) .
  • the copolyester composition also has at least one of the following properties chosen from: tensile modulus of greater than 1400 MPa as measured according to ASTM D638 using a 3.2 mm thick bar that has been subjected to 50%relative humidity for 40 hours at 23°C; a notched izod impact strength of greater than 700, or 800, or 900, or 1000 J/m as measured according to ASTM D256 at 23C using a 3.2 mm thick bar that has been subjected to 50%relative humidity for 40 hours at 23°C; a tensile stress at yield of at least 40 MPa, measured according to ASTM D638; a transmission of at least 88 measured according to ASTM D1003 using a 3.2 mm plaque after injection molding at a barrel set point of 249°C and a mold temperature of 80°C; a ⁇ E value of less than 25, using a 3.2 mm plaque after injection molding with a barrel temperature of 249°C and a mold temperature of 80°C;
  • a shaped article configured to accommodate contact with a chemical composition intended for body contact (or a chemical composition used on high touch articles) and comprising such a copolyester composition.
  • Such articles can include wearable articles that will likely or inevitably contact one or more chemical compositions intended for skin contact, such as sunscreens.
  • Such articles can include, for example watches, fitness trackers, wrist bands or bracelets, sunglasses, earbuds, or various clothing articles.
  • Such articles can also include high touch articles that will likely or inevitably contact one or more aggressive chemical compositions, such as sunscreens, e.g., drinkware and barware articles.
  • polystyrene resin as used herein, is intended to include “copolyesters” and is understood to mean a synthetic polymer prepared by the reaction of one or more difunctional carboxylic acids and/or multifunctional carboxylic acids with one or more difunctional hydroxyl compounds and/or multifunctional hydroxyl compounds.
  • the difunctional carboxylic acid can be a dicarboxylic acid and the difunctional hydroxyl compound can be a dihydric alcohol such as, for example, glycols and diols.
  • glycocol as used in this application includes, but is not limited to, diols, glycols, and/or multifunctional hydroxyl compounds, for example, branching agents.
  • the difunctional carboxylic acid may be a hydroxy carboxylic acid such as, for example, p-hydroxybenzoic acid
  • the difunctional hydroxyl compound may be an aromatic nucleus bearing 2 hydroxyl substituents such as, for example, hydroquinone.
  • reduce means any organic structure incorporated into a polymer through a polycondensation and/or an esterification reaction from the corresponding monomer.
  • peating unit, ” as used herein, means an organic structure having a dicarboxylic acid residue and a diol residue bonded through a carbonyloxy group.
  • the dicarboxylic acid residues may be derived from a dicarboxylic acid monomer or its associated acid halides, esters, salts, anhydrides, or mixtures thereof.
  • dicarboxylic acid is intended to include dicarboxylic acids and any derivative of a dicarboxylic acid, including its associated acid halides, esters, half-esters, salts, half-salts, anhydrides, mixed anhydrides, or mixtures thereof, useful in a reaction process with a diol to make polyester.
  • the term "diacid” includes multifunctional acids, for example, branching agents.
  • terephthalic acid is intended to include terephthalic acid itself and residues thereof as well as any derivative of terephthalic acid, including its associated acid halides, esters, half-esters, salts, half-salts, anhydrides, mixed anhydrides, or mixtures thereof or residues thereof useful in a reaction process with a diol to make polyester.
  • terephthalic acid may be used as the starting material.
  • dimethyl terephthalate may be used as the starting material.
  • mixtures of terephthalic acid and dimethyl terephthalate may be used as the starting material and/or as an intermediate material.
  • at least a portion of the terephthalic acid or dimethyl terephthalate used as a starting material has recycle content derived directly or indirectly from recycle waste.
  • the recycle content can be obtained from waste plastic that contains terephthalic acid residues, e.g., recovered monomers obtained through a solvolysis (e.g., methanolysis) process.
  • the terephthalic acid residues present in the polyester contains at least 50 mole%, or at least 75 mole%, or 100 mole%recycle content.
  • the dicarboxylic acid component of the polyester comprises monomer residues having at least 50 mole%recycle content, or at least 75 mole%recycle content, or 100 mole%recycle content.
  • the polyester includes a diol component that comprises CHDM and/or TMCD and/or EG residues.
  • at least a portion of the CHDM and/or TMCD and/or EG used as a starting material has recycle content derived directly or indirectly from recycle waste.
  • the recycle content can be obtained from waste plastic that contains CHDM and/or TMCD and/or EG residues, e.g., recovered monomers obtained through a solvolysis (e.g., methanolysis) process.
  • the CHDM and/or TMCD and/or EG residues present in the Polyester contains at least 50 mole%, or at least 75 mole%, or 100 mole%recycle content.
  • the glycol component of the Polyester comprises monomer residues having at least 50 mole%recycle content, or at least 75 mole%recycle content, or 100 mole%recycle content.
  • the polyester (as described herein) can have (or include) a recycle content that is provided by chemical recycling where waste material is broken down into small molecules that are then used to make the polyester, e.g., a waste stream (e.g., containing waste plastic) is gasified to produce syngas and the syngas is then utilized in one or more reaction schemes to produce the polyester.
  • a waste stream e.g., containing waste plastic
  • a recycle content polyester can also be provided that has (or includes) recycle content using a mass balance approach.
  • a recycle content value is determined and then applied or associated with the polyester.
  • a “recycle content value” is a unit of measure representative of a quantity of material having its origin in recycled waste, e.g., recycled plastic. The particular recycle content value can be determined by a mass balance approach or a mass ratio or percentage or any other unit of measure and can be determined according to any system for tracking, allocating, and/or crediting recycle content among various compositions.
  • a recycle content value can be deducted from a recycle content inventory and applied to a product or composition (e. g., the polyester) to attribute recycle content to the product or composition (e.g., the polyester) .
  • a recycle content value can come from waste material (e.g., mixed waste plastic) and can be applied to the polyester based on a mass balance approach that takes into account the stoichiometry and efficiencies of the processes used to make the polyester.
  • the recycled content in the polyester can be at least partially derived from recycled polyester of the same type, providing a circular recycling solution.
  • the circular recycling solution can include determining recycle content value (or credits) for waste polyester of the same type and applying at least a portion of such recycle value or credit to the new polyester (e.g., by a mass balance approach) , or can be a closed loop process for providing a recycle polyester where at least a portion of the feedstock utilized in the process/reaction scheme to make the polyester is obtained from the same polyester type.
  • the closed loop process is based on chemical recycling and not mechanical recycling.
  • the closed loop can include end of life vapor delivery articles being used as feedstock to provide recycle content to renewed vapor delivery articles containing recycle content polyester compositions (as described herein) .
  • a closed loop process is differentiated from an open loop process in that the renewed articles made in an open loop process are different from the end of life articles recycled as a feedstock material.
  • the match between recycled articles and renewed material made in a closed loop system does not have to be compositionally identical, e.g., the recycled articles can have a different polymer formulation but have a similar based polyester with the same types of monomer residues.
  • the process to provide recycle content can be operated as a closed loop process and an open loop process simultaneously.
  • the polyester composition used to make the articles contains at least 10, or at least 15, or at least 20, or at least 25, or at least 30, or at least 40, or at least 50, or at least 55, or at least 60, or at least 65, or at least 70, or at least 75, or at least 80, or at least 85, or at least 90, or at least 95, or 100 wt%recycle content, by any of the methods (or combinations of methods) for providing recycle content described herein.
  • the polyester composition can include content sourced from renewable sources, such as bio-based materials.
  • the bio-based material is isosorbide.
  • the polyester contains both recycle content and bio-based (or other renewable source) content.
  • the polyester has at least 5, or at least 10, or at least 15, or at least 20 wt%renewable source content, and optionally also recycle content as described above.
  • the polyesters used in the present invention typically can be prepared from dicarboxylic acids and diols which react in substantially equal proportions and are incorporated into the polyester polymer as their corresponding residues.
  • the polyesters of the present invention therefore, can contain substantially equal molar proportions of acid residues (100 mole%) and diol (and/or multifunctional hydroxyl compounds) residues (100 mole%) such that the total moles of repeating units is equal to 100 mole%.
  • the mole percentages provided in the present disclosure therefore, may be based on the total moles of acid residues, the total moles of diol residues, or the total moles of repeating units.
  • a polyester containing 4 mole%isophthalic acid means the polyester contains 4 mole%isophthalic acid residues out of a total of 100 mole%acid residues. Thus, there are 4 moles of isophthalic acid residues among every 100 moles of acid residues.
  • a polyester containing 15 mole%2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol means the polyester contains 15 mole%2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol residues out of a total of 100 mole%diol residues. Thus, there are 15 moles of 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol residues among every 100 moles of diol residues.
  • the Tg of the polyesters useful in the invention can be at least one of the following ranges: 95 to 115°C; 95 to 110°C; 95 to 105°C; 95 to 100°C; 100 to 115°C; 100 to 110°C; 100 to 105°C; 105 to 115°C; 105 to 110°C; and 110 to 115°C.
  • the copolyester composition comprises at least one copolyester which comprises:
  • the copolyester composition comprises a copolyester which comprises a glycol component chosen from: (1) 5 to 20 mole %of the cyclic diol residues and 55 to 95 mole %of the 1, 4-cyclohexanedimethanol residues; or (2) 8 to 20 mole %of the cyclic diol residues and 55 to 92 mole %of the 1, 4-cyclohexanedimethanol residues; or (3) 10 to 20 mole %of the cyclic diol residues and 55 to 90 mole %of the 1, 4-cyclohexanedimethanol residues.
  • a glycol component chosen from: (1) 5 to 20 mole %of the cyclic diol residues and 55 to 95 mole %of the 1, 4-cyclohexanedimethanol residues; or (2) 8 to 20 mole %of the cyclic diol residues and 55 to 92 mole %of the 1, 4-cyclohexanedimethanol residues; or (3) 10 to
  • the copolyester composition comprises a copolyester which comprises a glycol component chosen from: (1) 10 to 22 mole %of the cyclic diol residues and 55 to 90 mole %of the 1, 4-cyclohexanedimethanol residues; or (2) 15 to 22 mole %of the cyclic diol residues and 55 to 85 mole %of the 1, 4-cyclohexanedimethanol residues; or (3) greater than 15 to 22 mole %of the cyclic diol residues and 55 to less than 85 mole %of the 1, 4-cyclohexanedimethanol residues.
  • a glycol component chosen from: (1) 10 to 22 mole %of the cyclic diol residues and 55 to 90 mole %of the 1, 4-cyclohexanedimethanol residues; or (2) 15 to 22 mole %of the cyclic diol residues and 55 to 85 mole %of the 1, 4-cyclohexanedimethanol residues; or (3)
  • the cyclic diol can be an aliphatic cyclic diol or an aromatic cyclic diol. In embodiments, the cyclic diol can be an alicyclic diol. In embodiments, the cyclic diol is a cyclobutane diol, isosorbide, or combinations thereof. In one embodiment, the cyclic diol is a cyclobutane diol. In one embodiment, the cyclobutane diol is 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol (TMCD) . In one embodiment, the alicyclic diol is isosorbide.
  • the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following combinations of ranges: 9 to 16 mole %isosorbide and 70 to 91 mole %1, 4-cyclohexanedimethanol; 9 to 15 mole %isosorbide and 71 to 91 mole %1, 4-cyclohexanedimethanol; 9 to 14 mole %isosorbide and 72 to 91 mole %1, 4-cyclohexanedimethanol; 9 to 13 mole %isosorbide and 73 to 91 mole %1, 4-cyclohexanedimethanol; 9 to 12 mole %isosorbide and 74 to 91 mole %1, 4-cyclohexanedimethanol; 9 to 11 mole %isosorbide and 75 to 91 mole %1, 4-cyclohexanedimethanol; 10 to 16 mole %isosorbide and 70 to 90 mole %1, 4-cyclohexane
  • the glycol component comprises residues as follows: greater than 15 and up to 21 mole%TMCD and 79 and up to less than 85 mole%CHDM; greater than 15 and up to 20 mole%TMCD and 80 and up to less than 85 mole%CHDM; greater than 15 and up to 19 mole%TMCD and 81 and up to less than 85 mole%CHDM; greater than 15 and up to 18 mole%TMCD and 82 and up to less than 85 mole%CHDM; 16 to 22 mole%TMCD and 78 to 84 mole%CHDM; 16 to 21 mole%TMCD and 79 to 84 mole%CHDM; 16 to 20 mole%TMCD and 80 to 84 mole%CHDM; 16 to 19 mole%TMCD and 81 to 84 mole%CHDM; 16 to 18 mole%TMCD and 82 to 84 mole%CHDM; 17 to 22 mole%TMCD and 78 to 83 mole%CHDM; 17 to 21 mole%TMCD and 79 to 83 mole%CH
  • the polyesters useful in the invention may exhibit at least one of the following inherent viscosities as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25°C: 0.60 to 1.2 dL/g; 0.60 to 1.1 dL/g; 0.60 to 1 dL/g; 0.60 to less than 1 dL/g; 0.60 to 0.98 dL/g; 0.60 to 0.95 dL/g; 0.60 to 0.90 dL/g; 0.60 to 0.85 dL/g; 0.60 to 0.80 dL/g; 0.60 to 0.75 dL/g; 0.60 to less than 0.75 dL/g; 0.60 to 0.72 dL/g; 0.60 to 0.70 dL/g; 0.60 to less than 0.70 dL/g; 0.60 to 0.68 dL/g; 0.60 to less than 0.68 dL/g; 0.60 to less than 0.68
  • polyester compositions of the invention can possess at least one of the inherent viscosity ranges described herein and at least one of the monomer ranges for the compositions described herein unless otherwise stated. It is also contemplated that the polyester compositions of the invention can possess at least one of the Tg ranges described herein and at least one of the monomer ranges for the compositions described herein unless otherwise stated. It is also contemplated that the polyester compositions of the invention can possess at least one of the Tg ranges described herein, at least one of the inherent viscosity ranges described herein, and at least one of the monomer ranges for the compositions described herein unless otherwise stated.
  • the molar ratio of cis/trans 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol can vary from the pure form of each or mixtures thereof.
  • the molar percentages for cis and/or trans 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol are greater than 50 mole %cis and less than 50 mole %trans; or greater than 55 mole %cis and less than 45 mole %trans; or 30 to 70 mole %cis and 70 to 30 %trans; or 40 to 60 mole %cis and 60 to 40 mole %trans; or 50 to 70 mole %trans and 50 to 30 mole %cis; or 50 to 70 mole %cis and 50 to 30 %trans or 60 to 70 mole %cis and 30 to 40 mole %trans; or greater than 70 mole %cis and less than 30 mole %trans; wherein the total sum of the mole percentages for
  • the molar ratio of cis/trans 1, 4-cyclohexandimethanol can vary within the range of 50/50 to 0/100, for example, between 40/60 to 20/80.
  • the cis/trans ratio of the compositions can determined by proton nuclear magnetic resonance (NMR) spectroscopy.
  • terephthalic acid, or an ester thereof makes up most or all of the dicarboxylic acid component used to form the polyesters useful in the invention.
  • terephthalic acid residues can make up a portion or all of the dicarboxylic acid component used to form the present polyester at a concentration of at least 70 mole %, such as at least 80 mole %, at least 90 mole%, at least 95 mole%, at least 99 mole%, or, in one preferred embodiment (e.g., reactor grade) , 100 mole %.
  • polyesters with higher amounts of terephthalic acid can be used in order to produce higher impact strength properties.
  • terephthalic acid and "dimethyl terephthalate are used interchangeably herein.
  • dimethyl terephthalate is part or all of the dicarboxylic acid component used to make the polyesters useful in the present invention. In all embodiments, ranges of from 70 to 100 mole %; or 80 to 100 mole %; or 90 to 100 mole %; or 99 to 100 mole %; or 100 mole %terephthalic acid and/or dimethyl terephthalate and/or mixtures thereof may be used.
  • the dicarboxylic acid component of the polyesters useful in the invention can comprise up to 30 mole %, up to 20 mole %, up to 10 mole %, up to 5 mole %, or less than 5 mole%, or up to 3 mole%, or up to 2 mole%, or up to 1 mole %of one or more modifying aromatic dicarboxylic acids.
  • the polyester contains 0 mole %modifying aromatic dicarboxylic acids.
  • the amount of one or more modifying aromatic dicarboxylic acids can range from any of these preceding endpoint values including, for example, from 0.01 to 30 mole %, from 0.01 to 20 mole %, from 0.01 to 10 mole %, from 0.01 to 5 mole %, from 0.01 to less than 5 mole %, from 0.01 to 4 mole %, from 0.01 to 3 mole %, from 0.01 to 2 mole %, or from 0.01 to 1 mole %of one or more modifying aromatic dicarboxylic acids.
  • the amount of one or more modifying aromatic dicarboxylic acids can range from 1 to 5 mole %, from 1 to less than 5 mole %, from 1 to 4 mole %, from 1 to 3 mole %, from 1 to 2 mole %, or from 1.5 to 5 mole %, from 1.5 to less than 5 mole %, from 1.5 to 4 mole %, from 1.5 to 3.5 mole %, from 1.5 to 3 mole %, from 1.5 to 2.5 mole %, from 1.5 to 2 mole %, or from 2 to 5 mole %, from 2 to less than 5 mole %, from 2 to 4 mole %, from 2 to 3.5 mole %, from 2 to 3 mole %, from 2 to 2.5 mole %, or from 2.5 to 5 mole %, from 2.5 to less than 5 mole %, from 2.5 to 4 mole %, from 2.5 to 3.5 mole %, from 2.5 to 3 mole %, from 3 to 5 mole %, from 3 to 5 mole
  • modifying aromatic dicarboxylic acids that may be used in the present invention include but are not limited to those having up to 20 carbon atoms, and that can be linear, para-oriented, or symmetrical.
  • modifying aromatic dicarboxylic acids which may be used in this invention include, but are not limited to, isophthalic acid, 4, 4'-biphenyldicarboxylic acid, 1, 4-, 1, 5-, 2, 6-, 2, 7-naphthalenedicarboxylic acid, and trans-4, 4'-stilbenedicarboxylic acid, and esters thereof.
  • isophthalic acid is the modifying aromatic dicarboxylic acid.
  • the preferred embodiment of the invention is for 100%of the dicarboxylic acid component based on terephthalic acid residues.
  • the carboxylic acid component of the polyesters useful in the invention can be further modified with up to 10 mole %, such as up to 5 mole %or up to 1 mole %of one or more aliphatic dicarboxylic acids containing 2-16 carbon atoms, such as, for example, malonic, succinic, glutaric, adipic, pimelic, suberic, azelaic and dodecanedioic dicarboxylic acids. Certain embodiments can also comprise 0.01 or more mole %, such as 0.1 or more mole %, 1 or more mole %, 5 or more mole %, or 10 or more mole %of one or more modifying aliphatic dicarboxylic acids.
  • the polyester contains 0 mole %modifying aliphatic dicarboxylic acids.
  • the amount of one or more modifying aliphatic dicarboxylic acids can range from any of these preceding endpoint values including, for example, from 0.01 to 10 mole %and from 0.1 to 10 mole %.
  • the total mole %of the dicarboxylic acid component is 100 mole %.
  • esters of terephthalic acid and the other modifying dicarboxylic acids or their corresponding esters and/or salts may be used instead of the dicarboxylic acids.
  • Suitable examples of dicarboxylic acid esters include, but are not limited to, the dimethyl, diethyl, dipropyl, diisopropyl, dibutyl, and diphenyl esters.
  • the esters are chosen from at least one of the following: methyl, ethyl, propyl, isopropyl, and phenyl esters.
  • the 1, 4-cyclohexanedimethanol may be cis, trans, or a mixture thereof, for example, a cis/trans ratio of 60: 40 to 40: 60.
  • the trans-1, 4-cyclohexanedimethanol can be present in the amount of 60 to 80 mole %.
  • the glycol component of the polyester portion of the polyester compositions useful in the invention can contain 14 mole %or less of one or more modifying glycols which are not 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol or 1, 4-cyclohexanedimethanol; in another embodiment, the polyesters useful in the invention can contain 10 mole %or less of one or more modifying glycols. In another embodiment, the polyesters useful in the invention can contain 5 mole %or less of one or more modifying glycols. In another embodiment, the polyesters useful in the invention can contain 3 mole %or less of one or more modifying glycols.
  • the polyesters useful in the invention may contain 0 mole %modifying glycols. Certain embodiments can also contain 0.01 or more mole %, such as 0.1 or more mole %, 1 or more mole %, 5 or more mole %, or 10 or more mole %of one or more modifying glycols. Thus, if present, it is contemplated that the amount of one or more modifying glycols can range from any of these preceding endpoint values including, for example, from 0.1 to 10 mole %.
  • modifying glycols useful in the polyesters useful in the invention refer to diols other than 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol and 1, 4-cyclohexanedimethanol and may contain 2 to 16 carbon atoms.
  • suitable modifying glycols include, but are not limited to, ethylene glycol, diethylene glycol, 1, 2-propanediol, 1, 3-propanediol, neopentyl glycol, 1, 4-butanediol, 1, 5-pentanediol, 1, 6-hexanediol, p-xylene glycol or mixtures thereof.
  • the modifying glycol is ethylene glycol.
  • the modifying glycols include but are not limited to 1, 3-propanediol and/or 1, 4-butanediol.
  • ethylene glycol is excluded as a modifying diol.
  • 1, 3-propanediol and 1, 4-butanediol are excluded as modifying diols.
  • 2, 2-dimethyl-1, 3-propanediol is excluded as a modifying diol.
  • the polyesters useful the invention can comprise from 0 to 10 mole percent, for example, from 0.01 to 5 mole percent, from 0.01 to 1 mole percent, from 0.05 to 5 mole percent, from 0.05 to 1 mole percent, or from 0.1 to 0.7 mole percent, or 0.1 to 0.5 mole percent, based the total mole percentages of either the diol or diacid residues; respectively, of one or more residues of a branching monomer, also referred to herein as a branching agent, having 3 or more carboxyl substituents, hydroxyl substituents, or a combination thereof.
  • the branching monomer or agent may be added prior to and/or during and/or after the polymerization of the polyester.
  • the polyester (s) useful in the invention can thus be linear or branched.
  • the branching monomer or agent may be added prior to and/or during and/or after the polymerization.
  • branching monomers include, but are not limited to, multifunctional acids or multifunctional alcohols such as trimellitic acid, trimellitic anhydride, pyromellitic dianhydride, trimethylolpropane, glycerol, pentaerythritol, citric acid, tartaric acid, 3-hydroxyglutaric acid and the like.
  • the branching monomer residues can comprise 0.1 to 0.7 mole percent of one or more residues chosen from at least one of the following: trimellitic anhydride, pyromellitic dianhydride, glycerol, sorbitol, 1, 2, 6-hexanetriol, pentaerythritol, trimethylolethane, and/or trimesic acid.
  • the branching monomer may be added to the polyester reaction mixture or blended with the polyester in the form of a concentrate as described, for example, in U.S. Patent Nos. 5, 654, 347 and 5, 696, 176, whose disclosure regarding branching monomers is incorporated herein by reference.
  • the polyesters useful in the invention can be made by processes known from the literature such as, for example, by processes in homogenous solution, by transesterification processes in the melt, and by two phase interfacial processes. Suitable methods include, but are not limited to, the steps of reacting one or more dicarboxylic acids with one or more glycols at a temperature of 100°C to 315°C at a pressure of 0.1 to 760 mm Hg for a time sufficient to form a polyester. See U.S. Patent No. 3,772,405 for methods of producing polyesters, the disclosure regarding such methods is hereby incorporated herein by reference.
  • the polyesters useful in this invention can also be prepared by reactive melt blending and extrusion of two polyesters.
  • 4-cyclohexanedimethanol can be prepared by reactive melt blending and extrusion of equal amounts of a polyester containing 100 mole%terephthalic residues and 100%1, 4-cyclohexanedimethanol with another polyester containing 100 mole%terephthalic residues; 80 mole %1, 4-cyclohexanedimethanol residues, and 20 mole%2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol residues.
  • the at least one copolyester is a melt blend polyester prepared by a process that includes melt blending at least two different starting polyesters to provide a final copolyester that includes the monomeric residues contained in starting polyesters.
  • a PCTA copolyester containing residues of TPA, IPA and CHDM is melt blended with a PCTM copolyester containing residues of TPA, CHDM and TMCD to provide a final copolyester having residues of TPA, IPA, CHDM and TMCD.
  • a PCT copolyester containing residues of TPA and CHDM is melt blended with a PCTM copolyester containing residues of TPA, CHDM and TMCD to provide a final copolyester having residues of TPA, CHDM and TMCD (where the TMCD is in an amount less than the starting PCTM copolyester) .
  • a PCT copolyester containing residues of TPA and CHDM is melt blended with an Isosorbide copolyester containing residues of TPA, CHDM, Isosorbide and EG to provide a final copolyester having residues of TPA, CHDM, Isosorbide and EG (where the Isosorbide and EG are in amounts less than the starting Isosorbide copolyester) .
  • the melt blended copolyester has residues in (net) amounts according to any of the embodiments for the copolyester (as described herein)
  • the polyesters of this invention prepared in a reactor or by melt blending/extrusion, can subsequently be crystallized if needed and solid stated by techniques known in the art to further increase the IV.
  • a method for improving aesthetic chemical resistance to degradation chemicals of a high Tg and high impact resistant polyester comprising:
  • Polyester A that comprises:
  • Polyester B is included in an amount sufficient to improve the aesthetic chemical resistance to degradation chemicals of the combination compared to that of Polyester A, wherein Polyester B comprises:
  • Polyester A comprises:
  • Polyester A comprises:
  • Polyester B comprises:
  • Polyester B is included in an amount to provide a weight ratio of Polyester A: B in a range from 90: 10 to 50: 50, or 90: 10 to 60: 40, or 90: 10 to 65: 35, or 85: 15 to 50: 50, or 85: 15 to 60: 40, or 85: 15 to 65: 35, or 80: 20 to 50: 50, or 80: 20 to 60: 40, or 80: 20 to 65: 35, or 80: 20 to 70: 30.
  • blending step (3) comprise melt blending Polyester A and Polyester B.
  • the article made from copolyester composition can be amorphous.
  • amorphous means a crystallinity or less than 1%.
  • the article made from copolyester composition can be semi-crystalline, e.g., by crystallizing with heat.
  • the article of the invention has a crystallinity of from 1 to 40%, or 1 to 35%, or 1 to 30%, or 5 to 40%, or 5 to 35%, or 5 to 30%, or 10 to 40%, or 10 to 35%, or 10 to 30%.
  • the article made from the copolyester composition can have strain induced crystallinity.
  • Strain induced crystallization refers to a phenomenon in which an initially amorphous solid material undergoes a phase transformation in which some amorphous domains are converted to crystalline domains due to the application of strain. This phenomenon has important effects in strength and fatigue properties.
  • the article of the invention has a strain induced crystallinity of from 1 to 40%, or 1 to 35%, or 1 to 30%, or 5 to 40%, or 5 to 35%, or 5 to 30%, or 10 to 40%, or 10 to 35%, or 10 to 30%, when stretched at a temperature above the Tg of the polyester, e.g., during molding or forming processes, such as stretch blow molding.
  • the article is a clear semi-crystalline article comprising a copolyester that has a crystallization half-time of less than 10 minutes but greater than about 30 seconds.
  • the copolyester has a crystallization half-time from 30 seconds to 5 minutes, or 30 seconds to 3 minutes, or 30 seconds to 2 minutes, or 30 seconds to 1.5 minutes.
  • the article of the invention can comprise the polyester of the invention having a melting temperature (Tm) from 260°C to 300°C.
  • the polyester useful in this invention may also contain from 0.01 to 25%by weight or 0.01 to 20%by weight or 0.01 to 15%by weight or 0.01 to 10%by weight or 0.01 to 5%by weight of the total weight of the polyester composition of common additives such as colorants, dyes, mold release agents, reheat additives, flame retardants, plasticizers, stabilizers, including but not limited to, UV stabilizers, thermal stabilizers and/or reaction products thereof, fillers, and impact modifiers.
  • common additives such as colorants, dyes, mold release agents, reheat additives, flame retardants, plasticizers, stabilizers, including but not limited to, UV stabilizers, thermal stabilizers and/or reaction products thereof, fillers, and impact modifiers.
  • Examples of typical commercially available impact modifiers well known in the art and useful in this invention include, but are not limited to, ethylene/propylene terpolymers; functionalized polyolefins, such as those containing methyl acrylate and/or glycidyl methacrylate; styrene-based block copolymeric impact modifiers; and various acrylic core/shell type impact modifiers.
  • UV additives can be incorporated into articles of manufacture through addition to the bulk, through application of a hard coat, or through coextrusion of a cap layer. Residues of such additives are also contemplated as part of the polyester composition.
  • the polyesters useful in the invention can comprise at least one chain extender.
  • Suitable chain extenders include, but are not limited to, multifunctional (including, but not limited to, bifunctional) isocyanates, multifunctional epoxides, including for example, epoxylated novolacs, and phenoxy resins.
  • chain extenders may be added at the end of the polymerization process or after the polymerization process. If added after the polymerization process, chain extenders can be incorporated by compounding or by addition during conversion processes such as injection molding or extrusion.
  • the amount of chain extender used can vary depending on the specific monomer composition used and the physical properties desired but is generally about 0.1 percent by weight to about 10 percent by weight, preferably about 0.1 to about 5 percent by weight, based on the total weight of the polyester.
  • Thermal stabilizers are compounds that stabilize polyesters during polyester manufacture and/or post polymerization including, but not limited to, phosphorous compounds including but not limited to phosphoric acid, phosphorous acid, phosphonic acid, phosphinic acid, phosphonous acid, and various esters and salts thereof. These can be present in the polyester compositions useful in the invention.
  • the esters can be alkyl, branched alkyl, substituted alkyl, difunctional alkyl, alkyl ethers, aryl, and substituted aryl.
  • the number of ester groups present in the particular phosphorous compound can vary from zero up to the maximum allowable based on the number of hydroxyl groups present on the thermal stabilizer used.
  • thermal stabilizer is intended to include the reaction products thereof.
  • reaction product as used in connection with the thermal stabilizers of the invention refers to any product of a polycondensation or esterification reaction between the thermal stabilizer and any of the monomers used in making the polyester as well as the product of a polycondensation or esterification reaction between the catalyst and any other type of additive.
  • Reinforcing materials may be useful in the compositions of this invention.
  • the reinforcing materials may include, but are not limited to, carbon filaments, silicates, mica, clay, talc, titanium dioxide, Wollastonite, glass flakes, glass beads and fibers, and polymeric fibers and combinations thereof.
  • the reinforcing materials are glass, such as, fibrous glass filaments, mixtures of glass and talc, glass and mica, and glass and polymeric fibers.
  • the articles can include, but are not limited to, injection blow molded articles, injection stretch blow molded articles, extrusion blow molded articles, extrusion stretch blow molded articles, calendered articles, compression molded articles, and solution casted articles.
  • Methods of making the articles of manufacture include, but are not limited to, extrusion blow molding, extrusion stretch blow molding, injection blow molding, injection stretch blow molding, calendering, compression molding, and solution casting.
  • the articles can include film (s) and/or sheet (s) comprising the polyester compositions that are formed into the articles of the invention.
  • film (s) and/or sheet (s) comprising the polyester compositions that are formed into the articles of the invention.
  • the methods of forming the polyesters into film (s) and/or sheet (s) are well known in the art.
  • film (s) and/or sheet (s) of the invention including but not limited to extruded film (s) and/or sheet (s) , calendered film (s) and/or sheet (s) , compression molded film (s) and/or sheet (s) , solution casted film (s) and/or sheet (s) .
  • Methods of making film and/or sheet include but are not limited to extrusion, calendering, compression molding, and solution casting.
  • the copolyester composition has a notched izod impact strength of at least 800 J/m, or at least 900 J/m, as measured according to ASTM D256 using a 3.2 mm thick bar hat has been subjected to 50%relative humidity for 48 hours at 23°C.
  • the polymer-based resin has a notched izod impact strength of at least 1000 J/m, or at least 1050 J/m, as measured according to ASTM D256 using a 3.2 mm thick bar that has been subjected to 50%relative humidity for 48 hours at 23°C.
  • the polymer-based resin has a ⁇ E value of less than 25, or less than 20, or less than 15, or less than 14, or less than 13, or less than 12, or less than 11, or less than 10, or less than 9, or less than 8, or less than 7, or less than 6, or less than 5, using a 3.2 mm plaque after injection molding with a barrel temperature of 249°C and a mold temperature of 80°C, wherein ⁇ E is determined by the following equation: ( (L*-100) 2 + (a*-0) 2 + (b*-0) 2 ) 1/2 , where the L*, a*, and b*color components were measured according to ASTM E1348.
  • the polymer-based resin has a ⁇ E value in the range from 2 to 25, or from 2 to 20, or from 2 to 15, or from 2 to 14, or from 2 to 13, or from 2 to 12, or from 2 to 11, or from 2 to 10, or from 2 to 9, or from 2 to 8, or from 2 to 7, or from 2 to 6, or from 2 to 5, using a 3.2 mm plaque after injection molding with a barrel temperature of 249°C and a mold temperature of 80°C, wherein ⁇ E is determined by the following equation: ( (L*-100) 2 + (a*-0) 2 + (b*-0) 2 ) 1/2 , where the L*, a*, and b*color components were measured according to ASTM E1348.
  • the polymer-based resin has an L*color of at least 85, or at least 86, or at least 87, or at least 88, or at least 89, or at least 90, or at least 91, or at least 92, or at least 93, or at least 94, or at least 95, measured according to ASTM E1348 using a 3.2 mm plaque after injection molding with a barrel temperature of 249°C and a mold temperature of 80°C.
  • the polymer-based resin has an L*color in the range from 85 to 98, or from 85 to 97, or from 85 to 96, or from 85 to 95, measured according to ASTM E1348 using a 3.2 mm plaque after injection molding with a barrel temperature of 249°C and a mold temperature of 80°C.
  • the polymer-based resin has a b*value is less than 15, or less than 12, or less than 10, or less than 9, or less than 8, or less than 7, or less than 6, or less than 5, or less than 4, measured according to ASTM E1348 using a 3.2 mm plaque after injection molding with a barrel temperature of 249°C and a mold temperature of 80°C.
  • the polymer-based resin has a b*color in the range from 0 to 15, or from 0 to 10, or from 0 to 8, or from 0 to 5, measured according to ASTM E1348 using a 3.2 mm plaque after injection molding with a barrel temperature of 249°C and a mold temperature of 80°C.
  • the shaped articles are not continuously extruded films that are infinite (or continuous) in one direction and fixed in width and thickness in the other two directions, as would be the case in a rolled film.
  • a film or sheet can be converted into a shaped article, e.g., by thermoforming into a three-dimensional object, such as a cup or bowl.
  • the shaped article is not a film or is not a sheet.
  • the shaped articles can be chosen from injection molded articles, extrusion molded articles, rotational molded articles, compression molded articles, blow molded articles, injection blow molded articles, injection stretch blow molded articles, extrusion blow molded articles, sheet or film extrusion articles, profile extrusion articles, gas assist molding articles, structural foam molded articles, or thermoformed articles.
  • the shaped article is chosen from transparent articles, see-through articles, thin-walled articles, technical articles (e.g., articles having a complex design) , articles having high design specifications, intricate design articles, containers, wearable articles, household articles, general consumer products, packaging articles, medical articles, high touch articles, or components thereof, where the article is configure to receive or accommodate contact with a chemical composition intended for body contact, or a chemical composition likely to contact high touch articles.
  • technical articles e.g., articles having a complex design
  • articles having high design specifications intricate design articles
  • containers wearable articles
  • household articles general consumer products
  • packaging articles e.g., medical articles, high touch articles, or components thereof
  • the article is configure to receive or accommodate contact with a chemical composition intended for body contact, or a chemical composition likely to contact high touch articles.
  • the article is a wearable article or device that will likely contact with chemical compositions intended for body contact that include one or more degradation chemicals.
  • wearable articles or devices include fitness trackers, headphones, earbuds, (smart) watches, AR/VR headsets, medical delivery devices, sporting goods (such as sunglasses, helmets, and scuba gear) , and cameras.
  • the article is a high touch article or device that will likely contact chemical compositions used on such articles or devices (e.g., disinfectants) that include one or more degradation chemicals, such a sunscreen.
  • high touch articles or devices include toys, protective cases, portable devices (e.g., smartphones, laptops, tablets) , barware and drinkware.
  • the polyester composition can be primary molded into forms such as pellets, plates, or parisons, and can then be secondary molded into articles, e.g., conduits, tubes, thin-wall vessels, or thick-wall vessels, configured to receive a chemical composition intended for body contact or a chemical composition used on high touch articles.
  • articles e.g., conduits, tubes, thin-wall vessels, or thick-wall vessels, configured to receive a chemical composition intended for body contact or a chemical composition used on high touch articles.
  • the methods of forming the polyester compositions into films, molded articles, and sheeting can be according to methods known in the art.
  • the polyester composition can be over molded onto itself or a different polyester composition and retain an interface bond (or weld line) strength that will not separate (or delaminate) when an article (having such an over mold interface) is used for its intended purpose.
  • an article or device comprising a molded component that will likely contact with chemical compositions used on high touch articles/devices, where the molded component is formed of a plastic composition comprising a copolyester composition and having a Tg of at least 95°C.
  • an article comprising a molded component configured to receive a chemical composition intended for body contact, where the molded component is formed of a plastic composition comprising a copolyester composition and having a Tg of at least 95°C.
  • the chemical composition intended for body contact or used on high touch articles contains one or more degradation chemicals in an amount of at least 1 wt%, or at least 5 wt%, or at least 10 wt%, or at least 15 wt%or at least 20 wt%, or at least 25 wt%.
  • Degradation chemical means a chemical that degrades the performance of one or more copolyesters, e.g., CHDM or TMCD containing copolyesters, where the degradation in performance is indicated by optical or light transmission reduction, when tested according to the methods disclosed herein.
  • the chemical composition intended for body contact contains at least 0.01, or at least 0.05, or at least 0.1, or at least 0.5, or at least 1, or at least 5, or at least 10 wt%of total degradation chemicals.
  • the degradation chemical is chosen from sunscreen components, insect repellant components, cosmetic components, perfume components, alcohols, glycols, oils, fats, waxes, plant-based oils or extracts, food ingredients, cleaners, disinfectants, detergents, or combinations thereof.
  • sunscreen components can include UV absorbers/blockers, such as, for example oxybenzone, avobenzone, octisalate, octocrylene, homosalate, octinoxate, zinc oxide, titanium dioxide, or combinations thereof.
  • insect repellant components can include repellant actives, such as N, N-diethyl-meta-toluamide (DEET) , citronella, picardin, plant oils or extracts having repellant properties, or combinations thereof.
  • cosmetic components can include alcohols, glycols, amines, hydroxy acids, oils, fats, waxes, glycerine, colorants, fragrances, or combinations thereof.
  • perfume components can include solvents, alcohols, glycols, hydroxy acids, oils, fragrances, or combinations thereof.
  • the copolyester composition forming the articles is chosen from any of the copolyester compositions discussed herein.
  • the copolyester composition forming the articles, e.g., injection molded article comprises at least one copolyester that comprises:
  • the total mole %of the dicarboxylic acid component is 100 mole %, and the total mole %of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.70 to 1.0 dL/g, or 0.75 to 0.95 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25°C; and wherein the polyester has a Tg of 100°C to 115°C.
  • the copolyester composition forming the articles comprises at least one copolyester that comprises:
  • the total mole %of the dicarboxylic acid component is 100 mole %, and the total mole %of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.70 to 1.0 dL/g, or 0.75 to 0.95 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25°C; and wherein the polyester has a Tg of 95°C to 115°C.
  • the dicarboxylic acid is 100 mole%terephthalic acid residues.
  • the glycol component further comprises 5 to 10, or 5 to 9, or 6 to 10, or 6 to 9 mole%ethylene glycol.
  • the inherent viscosity of the polyesters was determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25°C(according to ASTM D4603) .
  • the glycol content was determined by proton nuclear magnetic resonance (NMR) spectroscopy. All NMR spectra were recorded on a JEOL Eclipse Plus 600MHz nuclear magnetic resonance spectrometer using either chloroform-trifluoroacetic acid (70-30 volume/volume) . Peak assignments for 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol resonances were made by comparison to model mono-and dibenzoate esters of 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol. These model compounds closely approximate the resonance positions found in the polymers.
  • the crystallization half-time, t 1/2 was determined by measuring the light transmission of a sample via a laser and photo detector as a function of time on a temperature controlled hot stage. This measurement was done by exposing the polymers to a temperature, T max , and then cooling it to the desired temperature. The sample was then held at the desired temperature by a hot stage while transmission measurements were made as a function of time. Initially, the sample was visually clear with high light transmission and became opaque as the sample crystallized. The crystallization half-time was recorded as the time at which the light transmission was halfway between the initial transmission and the final transmission. T max is defined as the temperature required to melt the crystalline domains of the sample (if crystalline domains are present) .
  • the T max reported in the examples below represents the temperature at which each sample was heated to condition the sample prior to crystallization half time measurement.
  • the T max temperature is dependent on composition and is typically different for each polyester. For example, PCT may need to be heated to some temperature greater than 290°C to melt the crystalline domains.
  • DSC Differential scanning calorimetry
  • T m is the melting point measured during the 2 nd heating scan.
  • H ch1 (cal/g) is the heat of crystallization measured during the 1 st heating scan.
  • H m1 (cal/g) is the heat of melting measured during the 1 st heating scan.
  • the percent crystallinity formed during cooling is calculated by equation (1) , assuming a specific heat of fusion of 29 cal/g (based on unmodified PCT) .
  • T cc The peak temperature in the crystallization exotherm
  • the percentage of strain induced crystallinity (c) was determined by equation (2) from the first heating scan of films evaluated in a DSC.
  • compositions of matter of the invention can be made and evaluated, and are intended to be purely exemplary of the invention and are not intended to limit the scope thereof. Unless indicated otherwise, parts are parts by weight, temperature is in degrees C or is at room temperature, and pressure is at or near atmospheric.
  • melt blend copolyester compositions were prepared by mixing an amorphous polyester resin 1 with an amorphous or semicrystalline polyester resin 2 or 3.
  • the composition of the resins are shown below in Table 1.
  • the blends of the resins are shown in Tables 2 and 3.
  • Pellets of each material from Examples 1 –10 were injection molded to form standard test plaques 4 inch x 4 inch x 0.125 inch thick (10.2 cm x 10.2 cm x 0.3 cm) .
  • the pellets were molded in A 110 Ton Toyo injection molding machine with barrel capacity 3.4 oz.
  • the copolyester material was injection molded at 1 in/sec injection speed into four test bars per shot with barrel temperature nominally of about 249°C (480°F) and mold temperature of about 80°C.
  • 5 –Print is defined/ridges may be visible, print is translucent instead of transparent.
  • 6/7 -Print is defined/ridges are visible without needing any special angle/lighting; print has increasing opacity.
  • 9/10 -Print is visible from any angle and very well-defined, totally opaque.
  • Haze and Transmittance data was measure using a Gardner Haze-gard plus, using ASTM D1003 as a method.
  • the results of the haze and transmittance testing is listed below in tables 6 and 7.
  • Examples 2 and 3 showed an improvement (less whitening) compared to Resin 1 plaques and examples 7 and 8 showed additional improvement over examples 2 and 3.
  • Additional melt blend copolyester compositions were prepared by mixing polyester resin 4 with resin 5.
  • the composition of the resins are shown below in Table 8.
  • the blends of the resins are shown in Table 9.
  • Example 11 and 12 resulted in lower sunscreen ratings and haze values with increasing amounts of resin 5 and Example 12 had lower ratings and haze values than Example 11.
  • Examples 11 and 12 had higher transmission %than comparative example1, and example 12 had higher transmission than Example 11.
  • Comparative Example 1 and Examples 11 and 12 had similar whitening results, with little whitening, while comparative example 2 had significant whitening.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A shaped article configured to accommodate contact with a chemical composition that is intended for body contact and that comprises one or more degradation chemicals, where the article is formed of a copolyester composition having high chemical resistance to the degradation chemicals and having a Tg of at least 95℃ and a method for improving aesthetic chemical resistance to degradation chemicals of a high Tg and high impact resistant polyester.

Description

MOLDED POLYESTER ARTICLES WITH IMPROVED AESTHETIC CHEMICAL RESISTANCE FIELD OF THE INVENTION
This invention belongs to the field of polymer-based resins useful for forming articles or components of articles intended for contact with chemical compositions that may cause degradation of polymer properties. In one aspect, the articles/components are intended for contact with such chemical compositions that are intended for body contact. Plastic articles or components for such articles made using these resin compositions, such as wearable articles, packaging or dispensing devices for cosmetics of personal care products, medical articles for use with body contact substances, or high touch articles that may contact sun protection or tanning products, e.g., sunscreens, are also provided.
BACKGROUND OF THE INVENTION
Plastics are a preferred material for making articles/devices that are wearable, intended for high touch, that contain chemical compositions intended for contact with the body, e.g., packaging or delivery devices for such chemical compositions, or that are otherwise likely to come into contact with chemicals that may cause polymer degradation, based on the relative efficiency of molding parts and articles of various shapes and designs. For example, wearable articles and food or beverage articles that will likely come into contact with such chemical compositions, such as wearable electronics or other high touch articles/devices, are often manufactured by molding plastic parts that form an assembly to produce the device or article. Similarly, devices used to deliver/store chemical compositions such as compositions intended for body contact, e.g., skin contact, such as jars, tubes, bags, or dispensing devices, are also manufactured by molding plastic into various shaped articles of component parts.
However, when plastics are used in applications where contact with chemicals will occur, there is the potential for degradation (e.g., cracking, crazing, softening, optical distortion, etc. ) of the plastic induced by the chemical environment. Some especially aggressive classes of chemicals include ingredients found in products intended for body contact, such as sunscreens, tanning oils, cosmetics, personal care products, aggressive food ingredients. Aggressive chemicals, such as sunscreens, can result in optical distortion of a plastic article, e.g., fingerprints leaving permanent distortion on the plastic surface due to the presence of sunscreen. Thus, there is a need for plastic materials that have resistance to such chemicals, are easily formed into articles, and maintain acceptable physical properties.
It would be beneficial to be able to provide polymer-based resins that can be melt processed and articles made from such compositions that do not have such drawbacks.
SUMMARY OF THE INVENTION
Surprisingly, it had been discovered that articles molded from certain copolyester plastics have exceptional resistance to aggressive chemical compositions, such as chemicals intended for body contact, e.g., sunscreen, that can cause optical distortion to transparent/clear articles. In embodiments, such articles can be useful as containers and/or other components in articles or devices that will have significant contact with chemical compositions intended for body contact in use, or high touch articles that may be contacted with aggressive chemicals. In one aspect, articles intended for body contact can be made from compositions of copolyesters that can be prepared having excellent chemical resistance to such chemical compositions and a glass transition temperature (Tg) exceeding 95℃, or 100℃, or 105℃.
It has been discovered that shaped articles configured to receive (or configured to accommodate contact with) a chemical composition comprising a degradation chemical, e.g., chemical compositions intended for body contact or a chemical composition used on high touch articles, can be prepared from copolyester plastic materials that have resistance to the chemical composition and have physical properties similar to or better than molded articles produced from other typically used oil-based engineering thermoplastics. More specifically, these shaped articles are produced from a copolyester composition that retains its physical properties and/or optical appearance better than the other plastics after exposure to the chemical composition.
In a first aspect of the invention, it is directed to a transparent article configured to accommodate contact with a chemical composition that is intended for body contact and that comprises one or more degradation chemicals. In embodiments, the transparent article is formed from a copolyester composition comprising at least one copolyester that comprises:
(a) a dicarboxylic acid component comprising:
i) 70 to 100 mole %of terephthalic acid residues;
(b) a glycol component comprising:
i) greater than 15 and up to 33 mole %of cyclic diol residues having a 2 to 5 member cyclic structure or 5 to 33 mole %of cyclic diol resides having a bicyclic structure with each individual ring in the bicyclic structure having 2 to 5 members; and
ii) 55 to 95 mole %of 1, 4-cyclohexanedimethanol residues,
wherein the total mole %of the dicarboxylic acid component is 100 mole %, and the total mole %of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.60 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25℃; and wherein the polyester has a Tg of 95℃ to 120℃, or 95℃ to 115℃, and has an average haze below 5 or below 3 after exposure to sunscreen (as tested according to the examples) . In embodiments, the cyclic diol is 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol (TMCD) and the glycol component comprises greater than 15 and up to 33, or up to 30, or up to 25, or up to 22 mole %TMCD residues. In other embodiments, the cyclic diol is isosorbide and the glycol component comprises 5 to 33, or 5 to 30, or 5 to 25, or 5 to 22, or 5 to 18, or 5 to 16 mole %of isosorbide resides. In embodiments, the polyester has a transmittance greater than 90%after exposure to sunscreen (as tested according to the examples) .
In embodiments, the copolyester composition has a Tg in the range from 100℃ to 115℃. In embodiments, the copolyester composition has an inherent viscosity is 0.70 to 1.0 dL/g, or 0.75 to 0.95 dL/g.
In embodiments, the glycol component comprises:
i) greater than 15 and up to 22 mole%of 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol (TMCD) residues; and
ii) 78 and up to less than 85 mole%of 1, 4-cyclohexanedimethanol (CHDM) residues.
In embodiments, the dicarboxylic acid component comprises:
i) 95 to 100 mole%of terephthalic acid residues; and
ii) 0 to 5 mole%of isophthalic acid residues.
In other embodiments, the dicarboxylic acid component comprises:
i) 98 to 100 mole%of terephthalic acid residues; and
ii) 0 to 2 mole%of isophthalic acid residues
In other embodiments, the dicarboxylic acid component comprises 100 mole%terephthalic acid residues.
In embodiments, the copolyester composition has a crystallization half time from 30 seconds to 10 minutes, or 30 seconds to 5 minutes.
In embodiments, the article is chosen from wearable articles, high touch articles, food or beverage containers, or packaging articles. In embodiments, the chemical composition intended for body contact is a sunscreen. In embodiments, the at least one copolyester has a total transmittance of at least 90%and a haze of less than 1%measured according to ASTM D1003.
In a second aspect of the invention, it is directed to a shaped article configured to receive (or configured to accommodate contact with) a chemical composition that comprises one or more degradation chemicals. In embodiments, the shaped article comprises a copolyester composition, wherein the copolyester composition has a Tg of at least 95℃, or at least 100℃, or at least 105℃, and good resistance to optical distortion after exposure to sunscreen, e.g., has a sunscreen score of 2 or less, or 1.5 or less (as measured using the sunscreen test described herein) . In embodiments, the shaped article has an average haze below 5 or below 3 after exposure to sunscreen (as measured herein) and/or a transmittance greater than 88, or greater than 90, after exposure to sunscreen (as measured herein) .
In certain embodiments, the copolyester composition also has at least one of the following properties chosen from: tensile modulus of greater than 1400 MPa as measured according to ASTM D638 using a 3.2 mm thick bar that has been subjected to 50%relative humidity for 40 hours at 23℃; a notched izod impact strength of greater than 600, or 700, or 800, or 900, or 1000 J/m as measured according to ASTM D256 at 23C using a 3.2 mm thick bar that has been subjected to 50%relative humidity for 40 hours at 23℃; a tensile stress at yield of at least 40 MPa, measured according to ASTM D638; a transmission of at least 70 measured according to ASTM D1003 using a 3.2 mm plaque after injection molding at a barrel set point of 249℃ and a mold temperature of 80℃; or an L*color of at least 85, measured according to ASTM E1348 using a 3.2 mm plaque after injection molding with a barrel temperature of 249℃ and a mold temperature of 80℃. In embodiments, the copolyester composition has at least 2, or at least 3 of the listed properties. In embodiments, the chemical composition is intended for body contact or is a chemical composition used on high touch articles.
In embodiments of the invention, the shaped articles or components thereof can be chosen from injection molded articles, extrusion molded articles, rotational molded articles, compression molded articles, blow molded articles, injection blow molded articles, injection stretch blow molded articles, extrusion blow molded articles, sheet or film extrusion articles, profile extrusion articles, gas assist molding articles, structural foam molded articles, or thermoformed articles.
In embodiments of the invention, the shaped article is chosen from transparent articles, see-through articles, thin-walled articles, technical articles (e.g., articles having a complex design) , articles having high design specifications, intricate design articles, containers for holding a chemical composition intended for body contact, or other shaped articles configured to receive (or contact) a chemical composition intended for body contact (or a chemical composition used on high touch articles) . In certain embodiments, the shaped article is a transparent or see-through article configured to receive (or contact) a chemical composition intended for body contact (or a chemical composition used on high touch articles) .
In embodiments, the technical articles, articles having high design specifications, and intricate design articles can be chosen from articles that include electrical/electronic components, perfume or cosmetic containers, medical contact devices or containers, or components thereof.
In one embodiment of the injection molded article, the copolyester composition further comprises at least one property chosen from: tensile modulus of greater than 1400 MPa as measured according to ASTM D638 using a 3.2 mm thick bar that has been subjected to 50%relative humidity for 40 hours at 23℃; a notched izod impact strength of greater than 600, or 700, or 800, or 900, or 1000 J/m as measured according to ASTM D256 at 23C using a 3.2 mm thick bar that has been subjected to 50%relative humidity for 40 hours at 23℃; a tensile stress at yield of at least 40 MPa, measured according to ASTM D638; a transmission of at least 70 measured according to ASTM D1003 using a 3.2 mm plaque after injection molding at a barrel set point of 249℃ and a mold temperature of 80℃; a ΔE value of less than 25, using a 3.2 mm plaque after injection molding with a barrel temperature of 249℃ and a mold temperature of 80℃; or an L*color of at least 85, measured according to ASTM E1348 using a 3.2 mm plaque after injection molding with a barrel temperature of 249℃ and a mold temperature of 80℃. In embodiments, the polymer-based resin comprises at least 2, or at least 3 of the listed properties.
In embodiments in accordance with the various aspects of the invention disclosed herein, the copolyester composition comprises at least one copolyester which comprises:
(a) a dicarboxylic acid component comprising:
i) 70 to 100 mole %of terephthalic acid residues;
(b) a glycol component comprising:
i) greater than 15 and up to 33, or up to 22, mole %of cyclic diol residues having a 2 to 5 member cyclic structure or 5 to 33, or 8 to 16, mole %of cyclic diol resides having a bicyclic structure with each individual ring in the bicyclic structure having 2 to 5 members;
and
ii) 55 to 95 mole %of 1, 4-cyclohexanedimethanol residues, wherein the total mole %of the dicarboxylic acid component is 100 mole %, and the total mole %of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.55 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25℃; and wherein the polyester has a Tg of 95℃ to 115℃.
In certain embodiments, the copolyester composition comprises a copolyester which comprises a glycol component chosen from: (1) 5 to 20 mole %of the cyclic diol residues and 55 to 95 mole %of the 1, 4-cyclohexanedimethanol residues; or (2) 8 to 20 mole %of the cyclic diol residues and 55 to 92 mole %of the 1, 4-cyclohexanedimethanol residues; or (3) 10 to 20 mole %of the cyclic diol residues and 55 to 90 mole %of the 1, 4-cyclohexanedimethanol residues.
In embodiments, the copolyester composition comprises a copolyester which comprises a glycol component chosen from: (1) 10 to 22 mole %of the cyclic diol residues and 55 to 90 mole %of the 1, 4-cyclohexanedimethanol residues; or (2) 15 to 22 mole %of the cyclic diol residues and 55 to 85 mole %of the 1, 4-cyclohexanedimethanol residues; or (3) greater than 15 and up to 22 mole %of the cyclic diol residues and 55 to less than 85 mole %of the 1, 4-cyclohexanedimethanol residues.
In embodiments, the copolyester has an inherent viscosity is 0.55 to 1.0 dL/g, or 0.55 to 0.8 dL/g, or 0.55 to 0.7 dL/g, as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25℃.
In embodiments, the copolyester has a Tg of 95℃ to 115℃, or 100℃ to 115℃, or 105℃ to 115℃.
In embodiments, the dicarboxylic acid component comprises:
i) 95 to 100 mole %of terephthalic acid (TPA) residues; and
ii) 0 to 5 mole%of isophthalic acid (IPA) residues.
In embodiments, the dicarboxylic acid component comprises 100 mole %of terephthalic acid (TPA) residues.
In embodiments, the cyclic diol can be an aliphatic cyclic diol or an aromatic cyclic diol. In embodiments, the cyclic diol can be an alicyclic diol. In embodiments, the cyclic diol is a cyclobutane diol, isosorbide, or combinations thereof. In one embodiment, the cyclic diol is a cyclobutane diol. In one embodiment, the cyclobutane diol is 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol (TMCD) . In one embodiment, the alicyclic diol is isosorbide.
In embodiments, the dicarboxylic acid component comprises residues as follows: greater than 95 to 100 mole%TPA and 0 to less than 5 mole%IPA; 96 to 100 mole%TPA and 0 to 4 mole%IPA; 96.5 to 100 mole%TPA and 0 to 3.5 mole%IPA; 97 to 100 mole%TPA and 0 to 3 mole%IPA; 98 to 100 mole%TPA and 0 to 2 mole%IPA; 98.5 to 100 mole%TPA and 0 to 1.5 mole%IPA; 95 to 98.5 mole%TPA and 1.5 to 5 mole%IPA; greater than 95 to 98.5 mole%TPA and 1.5 to less than 5 mole%IPA; 96 to 98.5 mole%TPA and 1.5 to 4 mole%IPA; 96.5 to 98.5 mole%TPA and 1.5 to 3.5 mole%IPA; 97 to 98.5 mole%TPA and 1.5 to 3 mole%IPA; 97.5 to 98.5 mole%TPA and 1.5 to 2.5 mole%IPA; 95 to 98 mole%TPA and 2 to 5 mole%IPA; greater than 95 to 98 mole%TPA and 2 to less than 5 mole%IPA; 96 to 98 mole%TPA and 2 to 4 mole%IPA; 96.5 to 98 mole%TPA and 2 to 3.5 mole%IPA; or 97 to 98 mole%TPA and 2 to 3 mole%IPA.
In embodiments, the glycol component comprises:
i) greater than 15 and up to 22 mole%of 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol (TMCD) residues; and
ii) 78 and up to less than 85 mole%of 1, 4-cyclohexanedimethanol (CHDM) residues.
In embodiments, the glycol component comprises residues as follows: greater than 15 and up to 21 mole%TMCD and 79 and up to less than 85 mole%CHDM; greater than 15 and up to 20 mole%TMCD and 80 and up to less than 85 mole%CHDM; greater than 15 and up to 19 mole%TMCD and 81 and up to less than 85 mole%CHDM; greater than 15 and up to 18 mole%TMCD and 82 and up to less than 85 mole%CHDM; 16 to 22 mole%TMCD and 78 to 84 mole%CHDM; 16 to 21 mole%TMCD and 79 to 84 mole%CHDM; 16 to 20 mole%TMCD and 80 to 84 mole%CHDM; 16 to 19 mole%TMCD and 81 to 84 mole%CHDM; 16 to 18 mole%TMCD and 82 to 84 mole%CHDM; 17 to 22 mole%TMCD and 78 to 83 mole%CHDM; 17 to 21 mole%TMCD and 79 to 83 mole%CHDM; 17 to 20 mole%TMCD and 80 to 83 mole%CHDM; 17 to 19 mole%TMCD and 81 to 83 mole%CHDM; 18 to 22 mole%TMCD and 78 to 82 mole%CHDM; or 18 to 21 mole%TMCD and 79 to 82 mole%CHDM; or 18 to 20 mole%TMCD and 80 to 82 mole%CHDM; or 19 to 22 mole%TMCD and 78 to 81 mole%CHDM; or 19 to 21 mole%TMCD and 79 to 81 mole%CHDM; or 20 to 22 mole%TMCD and 78 to 80 mole%CHDM.
In embodiments, the copolyester composition comprises at least one copolyester which comprises:
(a) a dicarboxylic acid component comprising:
i) greater than 98.5 and up to 100 mole%, or 99 to 100 mole%, of terephthalic acid residues; and
ii) 0 and up to less than 1.5 mole%, or 0 to 1 mole%, of isophthalic acid residues;
(b) a glycol component comprising:
i) greater than 15 and up to 21 mole%, or greater than 15 and up to 19 mole%, of 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol residues; and
ii) 79 and up to less than 85 mole %, or 81 and up to less than 85 mole%, of 1, 4-cyclohexanedimethanol residues,
wherein the total mole %of the dicarboxylic acid component is 100 mole %, and the total mole %of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.70 to 1.0 dL/g, or 0.75 to 0.95 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25℃; and wherein the polyester has a Tg of 100℃ to 115℃. In embodiments, the at least one copolyester is a melt blended copolyester having an IV of 0.70 to 0.90 dL/g, or 0.75 to 0.85 dL/g, or 0.79 to 0.82 dL/g. In embodiments, the melt blended copolyester is solid stated to increase the IV. In embodiments, the solid stated copolyester has an IV from 0.80 to 1.0 dL/g, or 0.85 to 1.0 dL/g, or 0.87 to 0.97 dL/g, or 0.90 to 0.95 dL/g. In one embodiment, the dicarboxylic acid component is 100 mole%terephthalic acid residues.
In embodiments, the copolyester composition is amorphous. In other embodiments, the copolyester composition is semi-crystalline.
In embodiments, the at least one copolyester is a reactor grade polyester prepared by a process that includes a transesterification reaction of reaction mixture that includes all the monomers for the intended (monomeric) residues to be included in the copolyester. For example, a copolyester intended to include residues of TPA, CHDM and TMCD is prepared by a transesterification reaction that includes each of these monomers. In an embodiment, the reactor grade polyester is amorphous.
In embodiments, the at least one copolyester is a melt blend polyester prepared by a process that includes melt blending at least two different starting polyesters to provide a final copolyester that includes the monomeric residues contained in starting polyesters. For example, a PCTA copolyester containing residues of TPA, IPA and CHDM is melt blended with a PCTM copolyester containing residues of TPA, CHDM and TMCD to provide a final copolyester having residues of TPA, IPA, CHDM and TMCD. In another example, a PCT copolyester containing residues of TPA and CHDM is melt blended with a PCTM copolyester containing residues of TPA, CHDM and TMCD to provide a final copolyester having residues of TPA, CHDM and TMCD (where the TMCD is in an amount less than the starting PCTM copolyester) . In embodiments, the melt blended copolyester has residues in (net) amounts according to any of the embodiments for the copolyester (as described herein) .
In embodiments, the melt blended copolyester is subjected to solid stating to increase the inherent viscosity (IV) of the copolyester. In embodiments, the solid stated copolyester has an IV according to any of the embodiments for the copolyester (as described herein) .
In a third aspect, a method for improving aesthetic chemical resistance to degradation chemicals of a high Tg and high impact resistant polyester (Polyester A) is provided, the method comprising:
(1) providing Polyester A that comprises:
(a) a dicarboxylic acid component comprising:
i) 70 to 100 mole %of terephthalic acid residues;
(b) a glycol component comprising:
i) greater than 15 and up to 40 mole %of cyclic diol residues having a 2 to 5 member cyclic structure or 5 to 40 mole %of cyclic diol resides having a bicyclic structure with each individual ring in the bicyclic structure having 2 to 5 members; and
ii) 50 to 85 mole %of 1, 4-cyclohexanedimethanol residues, wherein the total mole %of the dicarboxylic acid component is 100 mole %, and the total mole %of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.55 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25℃; and wherein the polyester has a Tg of at least 95℃ and a notched Izod impact strength of greater than 500 J/m as measured according to ASTM D256 at 23C using a 3.2 mm thick bar that has been subjected to 50%relative humidity for 40 hours at 23℃;
(2) combining Polyester A with Polyester B, wherein Polyester B is included in an amount sufficient to improve the aesthetic chemical resistance to degradation chemicals of the combination of Polyesters A and B compared to that of Polyester A, wherein Polyester B comprises:
(a) a dicarboxylic acid component comprising:
i) 95 to 100 mole %of terephthalic acid residues; and
ii) 0 to 5 mole%of isophthalic acid residues; and
(b) a glycol component comprising:
i) 95 to 100 mole %of 1, 4-cyclohexanedimethanol residues, wherein the total mole %of the dicarboxylic acid component is 100 mole %, and the total mole %of the glycol component is 100 mole %;
(3) blending Polyester A and Polyester B to provide a blended polyester composition.
In embodiments of the third aspect, the blended polyester composition comprises:
(a) a dicarboxylic acid component comprising:
i) 70 to 100 net mole %of terephthalic acid residues;
(b) a glycol component comprising:
i) greater than 15 and up to 22 net mole %of cyclic diol residues having a 2 to 5 member cyclic structure or 5 to 22, or 8 to 16 net mole %of cyclic diol resides having a bicyclic structure with each individual ring in the bicyclic structure having 2 to 5 members; and 
ii) 55 to 95 net mole %of 1, 4-cyclohexanedimethanol residues, wherein the total net mole %of the dicarboxylic acid component is 100 mole %, and the total net mole %of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.60 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25℃; and wherein the polyester has a Tg of 95℃ to 115℃, and has an average haze below 5 or below 3 after exposure to sunscreen and/or a transmittance greater than 90 after exposure to sunscreen (as tested according to the examples) .
In embodiments of the third aspect, Polyester A comprises:
(a) a dicarboxylic acid component comprising:
i) 100 mole %of terephthalic acid residues;
(b) a glycol component comprising:
i) 20 to 25 mole %, or 30 to 40 mole %, of 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol residues resides; and
ii) 75 to 80 mole %, or 60 to 70 mole %, of 1, 4-cyclohexanedimethanol residues.
In other embodiments of the third aspect, Polyester A comprises:
(a) a dicarboxylic acid component comprising:
i) 100 mole %of terephthalic acid residues;
(b) a glycol component comprising:
i) 10 to 35 mole %, or 15 to 35 mole %, or 15 to 25 mole %, of isosorbide resides;
ii) 40 to 80 mole %, or 50 to 75 mole %, 60 to 75 mole%, of 1, 4-cyclohexanedimethanol residues; and
iii) 5 to 30 mole %, or 7 to 25 mole %, or 8 to 16 mole%, of ethylene glycol residues.
In embodiments of the third aspect, Polyester B comprises:
(a) a dicarboxylic acid component comprising:
i) 100 mole %of terephthalic acid residues; and
(b) a glycol component comprising:
i) 100 mole %of 1, 4-cyclohexanedimethanol residues.
In embodiments of the third aspect, Polyester B is included in an amount to provide a weight ratio of Polyester A: B in a range from 90: 10 to 50: 50, or 90: 10 to 60: 40, or 90: 10 to 65: 35, or 85: 15 to 50: 50, or 85: 15 to 60: 40, or 85: 15 to 65: 35, or 80: 20 to 50: 50, or 80: 20 to 60: 40, or 80: 20 to 65: 35, or 80: 20 to 70: 30.
In embodiments of the third aspect, blending step (3) comprise melt blending Polyester A and Polyester B. In embodiments, the blended polyester composition has a higher transmittance %and a lower haze %compared to Polyester A, after exposure to sunscreen (as tested according to the examples) . In embodiments, the blended polyester composition has haze %that is at least 50%lower compared to Polyester A, after exposure to sunscreen (as tested according to the examples)
In another aspect, a method for improving aesthetic chemical resistance to degradation chemicals of a high Tg and high impact resistant polyester (Polyester A) is provided, the method comprising:
(1) providing Polyester A that comprises:
(a) a dicarboxylic acid component comprising:
i) 70 to 100 mole %of terephthalic acid residues;
(b) a glycol component comprising:
i) 15 to 40 mole %of cyclic diol resides, wherein the cyclic diol has a 2 to 5 member cyclic structure, or a bicyclic structure with each individual ring in the bicyclic structure having 2 to 5 members;
and
ii) 50 to 85 mole %of 1, 4-cyclohexanedimethanol residues, wherein the total mole %of the dicarboxylic acid component is 100 mole %, and the total mole %of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.55 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25℃; and wherein the polyester has a Tg of at least 100℃ and a notched Izod impact strength of greater than 500 J/m as measured according to ASTM D256 at 23C using a 3.2 mm thick bar that has been subjected to 50%relative humidity for 40 hours at 23℃;
(2) combining Polyester A with Polyester B, where Polyester B is included in an amount sufficient to improve the aesthetic chemical resistance to degradation chemicals of the combination compared to that of Polyester A, wherein Polyester B comprises:
(a) a dicarboxylic acid component comprising:
i) 95 to 100 mole %of terephthalic acid residues; and
ii) 0 to 5 mole%of isophthalic acid residues; and
(b) a glycol component comprising:
i) 95 to 100 mole %of 1, 4-cyclohexanedimethanol residues, wherein the total mole %of the dicarboxylic acid component is 100 mole %, and the total mole %of the glycol component is 100 mole %;
(3) blending Polyester A and Polyester B to provide a combined polyester composition.
In embodiments, Polyester A comprises:
(a) a dicarboxylic acid component comprising:
i) 100 mole %of terephthalic acid residues;
(b) a glycol component comprising:
i) 20 to 25 mole %, or 30 to 40 mole %, of 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol residues resides; and
ii) 75 to 80 mole %, or 60 to 70 mole %, of 1, 4-cyclohexanedimethanol residues.
In embodiments, Polyester A comprises:
(a) a dicarboxylic acid component comprising:
i) 100 mole %of terephthalic acid residues;
(b) a glycol component comprising:
i) 10 to 25 mole %, or 15 to 25 mole %, of isosorbide resides;
ii) 50 to 80 mole %, or 60 to 75 mole %, of 1, 4-cyclohexanedimethanol residues; and
iii) 5 to 25 mole %, or 7 to 17 mole %of ethylene glycol residues.
In embodiments, Polyester B comprises:
(a) a dicarboxylic acid component comprising:
i) 100 mole %of terephthalic acid residues; and
(b) a glycol component comprising:
i) 100 mole %of 1, 4-cyclohexanedimethanol residues.
In embodiments, Polyester B is included in an amount to provide a weight ratio of Polyester A: B in a range from 90: 10 to 50: 50, or 90: 10 to 60: 40, or 90: 10 to 65: 35, or 85: 15 to 50: 50, or 85: 15 to 60: 40, or 85: 15 to 65: 35, or 80: 20 to 50: 50, or 80: 20 to 60: 40, or 80: 20 to 65: 35, or 80: 20 to 70: 30.
In embodiments, blending step (3) comprise melt blending Polyester A and Polyester B.
In embodiments, the shaped article configured to receive (or configured to accommodate contact with) a chemical composition that comprises one or more degradation chemicals is a transparent or see-through article made from the polyester composition and the chemical composition is intended for body contact.
In embodiments, the chemical composition intended for body contact is in the form of a liquid, gel, lotion, paste, mouse, emulsion and/or a dispersion. In embodiments, the chemical composition intended for body contact can be in the form of a spray, e.g., aerosol or pump spray, such as spray on tanning oils or sunscreens.
In embodiments, the chemical composition intended for body contact comprises a degradation chemical that is present in an amount of at least 1 wt%, or at least 5 wt%, based on the total weight of the chemical composition intended for body contact.
BRIEF DESCRIPTION OF THE DRAWINGS
[Rectified under Rule 91, 22.03.2023]
Figure 1 is representative photographs of sunscreen fingerprints on plaques.
[Rectified under Rule 91, 22.03.2023]
Figure 2 is representative photographs of plaques corresponding to different ratings of visual assessments of fingerprints.
DETAILED DESCRIPTION
In one aspect of the invention, it is directed to a shaped article configured to receive a chemical composition that comprises one or more degradation chemicals, the article comprising a copolyester composition, wherein the copolyester composition has a Tg of at least 95℃, or at least 100℃, or at least 105℃, comprises a copolyester (as described herein) , and good resistance to optical distortion after exposure to sunscreen, e.g., has a sunscreen score of 2 or less, or 1.5 or less (as measured using the sunscreen test described herein) . In embodiments, the shaped article also has an average haze below 5 or below 3 after exposure to sunscreen (as measured herein) and/or a transmittance greater than 88, or 89, or 90, after exposure to sunscreen (as measured herein) .
In certain embodiments, the copolyester composition also has at least one of the following properties chosen from: tensile modulus of greater than 1400 MPa as measured according to ASTM D638 using a 3.2 mm thick bar that has been subjected to 50%relative humidity for 40 hours at 23℃; a notched izod impact strength of greater than 700, or 800, or 900, or 1000 J/m as measured according to ASTM D256 at 23C using a 3.2 mm thick bar that has been subjected to 50%relative humidity for 40 hours at 23℃; a tensile stress at yield of at least 40 MPa, measured according to ASTM D638; a transmission of at least 88 measured according to ASTM D1003 using a 3.2 mm plaque after injection molding at a barrel set point of 249℃ and a mold temperature of 80℃; a ΔE value of less than 25, using a 3.2 mm plaque after injection molding with a barrel temperature of 249℃ and a mold temperature of 80℃; or an L*color of at least 85, measured according to ASTM E1348 using a 3.2 mm plaque after injection molding with a barrel temperature of 249℃ and a mold temperature of 80℃. In embodiments, the polymer-based resin has at least 2, or at least 3 of the listed properties. In one embodiment, the chemical composition is intended for body contact.
In another aspect of the invention, it is directed to a shaped article configured to accommodate contact with a chemical composition intended for body contact (or a chemical composition used on high touch articles) and comprising such a copolyester composition. Such articles can include wearable articles that will likely or inevitably contact one or more chemical compositions intended for skin contact, such as sunscreens. Such articles can include, for example watches, fitness trackers, wrist bands or bracelets, sunglasses, earbuds, or various clothing articles. Such articles can also include high touch articles that will likely or inevitably contact one or more aggressive chemical compositions, such as sunscreens, e.g., drinkware and barware articles.
The term “polyester, ” as used herein, is intended to include “copolyesters” and is understood to mean a synthetic polymer prepared by the reaction of one or more difunctional carboxylic acids and/or multifunctional carboxylic acids with one or more difunctional hydroxyl compounds and/or multifunctional hydroxyl compounds. Typically, the difunctional carboxylic acid can be a dicarboxylic acid and the difunctional hydroxyl compound can be a dihydric alcohol such as, for example, glycols and diols. The term "glycol" as used in this application includes, but is not limited to, diols, glycols, and/or multifunctional hydroxyl compounds, for example, branching agents. Alternatively, the difunctional carboxylic acid may be a hydroxy carboxylic acid such as, for example, p-hydroxybenzoic acid, and the difunctional hydroxyl compound may be an aromatic nucleus bearing 2 hydroxyl substituents such as, for example, hydroquinone. The term “residue, ” as used herein, means any organic structure incorporated into a polymer through a polycondensation and/or an esterification reaction from the corresponding monomer. The term “repeating unit, ” as used herein, means an organic structure having a dicarboxylic acid residue and a diol residue bonded through a carbonyloxy group. Thus, for example, the dicarboxylic acid residues may be derived from a dicarboxylic acid monomer or its associated acid halides, esters, salts, anhydrides, or mixtures thereof. As used herein, therefore, the term dicarboxylic acid is intended to include dicarboxylic acids and any derivative of a dicarboxylic acid, including its associated acid halides, esters, half-esters, salts, half-salts, anhydrides, mixed anhydrides, or mixtures thereof, useful in a reaction process with a diol to make polyester. Furthermore, as used in this application, the term "diacid" includes multifunctional acids, for example, branching agents. As used herein, the term "terephthalic acid" is intended to include terephthalic acid itself and residues thereof as well as any derivative of terephthalic acid, including its associated acid halides, esters, half-esters, salts, half-salts, anhydrides, mixed anhydrides, or mixtures thereof or residues thereof useful in a reaction process with a diol to make polyester.
In one embodiment, terephthalic acid may be used as the starting material. In another embodiment, dimethyl terephthalate may be used as the starting material. In yet another embodiment, mixtures of terephthalic acid and dimethyl terephthalate may be used as the starting material and/or as an intermediate material. In embodiments, at least a portion of the terephthalic acid or dimethyl terephthalate used as a starting material has recycle content derived directly or indirectly from recycle waste. In embodiments, the recycle content can be obtained from waste plastic that contains terephthalic acid residues, e.g., recovered monomers obtained through a solvolysis (e.g., methanolysis) process. In embodiments, the terephthalic acid residues present in the polyester (according to any of the embodiments herein) contains at least 50 mole%, or at least 75 mole%, or 100 mole%recycle content. In embodiments, the dicarboxylic acid component of the polyester comprises monomer residues having at least 50 mole%recycle content, or at least 75 mole%recycle content, or 100 mole%recycle content.
In embodiments, the polyester includes a diol component that comprises CHDM and/or TMCD and/or EG residues. In embodiments, at least a portion of the CHDM and/or TMCD and/or EG used as a starting material has recycle content derived directly or indirectly from recycle waste. In embodiments, the recycle content can be obtained from waste plastic that contains CHDM and/or TMCD and/or EG residues, e.g., recovered monomers obtained through a solvolysis (e.g., methanolysis) process. In embodiments, the CHDM and/or TMCD and/or EG residues present in the Polyester (according to any of the embodiments herein) contains at least 50 mole%, or at least 75 mole%, or 100 mole%recycle content. In embodiments, the glycol component of the Polyester comprises monomer residues having at least 50 mole%recycle content, or at least 75 mole%recycle content, or 100 mole%recycle content.
The polyester (as described herein) can have (or include) a recycle content that is provided by chemical recycling where waste material is broken down into small molecules that are then used to make the polyester, e.g., a waste stream (e.g., containing waste plastic) is gasified to produce syngas and the syngas is then utilized in one or more reaction schemes to produce the polyester.
A recycle content polyester can also be provided that has (or includes) recycle content using a mass balance approach. In a mass balance approach, a recycle content value is determined and then applied or associated with the polyester. A “recycle content value” is a unit of measure representative of a quantity of material having its origin in recycled waste, e.g., recycled plastic. The particular recycle content value can be determined by a mass balance approach or a mass ratio or percentage or any other unit of measure and can be determined according to any system for tracking, allocating, and/or crediting recycle content among various compositions. A recycle content value can be deducted from a recycle content inventory and applied to a product or composition (e. g., the polyester) to attribute recycle content to the product or composition (e.g., the polyester) . A recycle content value can come from waste material (e.g., mixed waste plastic) and can be applied to the polyester based on a mass balance approach that takes into account the stoichiometry and efficiencies of the processes used to make the polyester.
The recycled content in the polyester can be at least partially derived from recycled polyester of the same type, providing a circular recycling solution. The circular recycling solution can include determining recycle content value (or credits) for waste polyester of the same type and applying at least a portion of such recycle value or credit to the new polyester (e.g., by a mass balance approach) , or can be a closed loop process for providing a recycle polyester where at least a portion of the feedstock utilized in the process/reaction scheme to make the polyester is obtained from the same polyester type. In one aspect, the closed loop process is based on chemical recycling and not mechanical recycling.
In certain aspects, the closed loop can include end of life vapor delivery articles being used as feedstock to provide recycle content to renewed vapor delivery articles containing recycle content polyester compositions (as described herein) . A closed loop process is differentiated from an open loop process in that the renewed articles made in an open loop process are different from the end of life articles recycled as a feedstock material. The match between recycled articles and renewed material made in a closed loop system does not have to be compositionally identical, e.g., the recycled articles can have a different polymer formulation but have a similar based polyester with the same types of monomer residues. The process to provide recycle content can be operated as a closed loop process and an open loop process simultaneously.
In various aspects, the polyester composition used to make the articles (as described herein) contains at least 10, or at least 15, or at least 20, or at least 25, or at least 30, or at least 40, or at least 50, or at least 55, or at least 60, or at least 65, or at least 70, or at least 75, or at least 80, or at least 85, or at least 90, or at least 95, or 100 wt%recycle content, by any of the methods (or combinations of methods) for providing recycle content described herein. In certain embodiments, the polyester composition can include content sourced from renewable sources, such as bio-based materials. In one embodiment, the bio-based material is isosorbide. In embodiments, the polyester contains both recycle content and bio-based (or other renewable source) content. In one embodiment, the polyester has at least 5, or at least 10, or at least 15, or at least 20 wt%renewable source content, and optionally also recycle content as described above.
The polyesters used in the present invention typically can be prepared from dicarboxylic acids and diols which react in substantially equal proportions and are incorporated into the polyester polymer as their corresponding residues. The polyesters of the present invention, therefore, can contain substantially equal molar proportions of acid residues (100 mole%) and diol (and/or multifunctional hydroxyl compounds) residues (100 mole%) such that the total moles of repeating units is equal to 100 mole%. The mole percentages provided in the present disclosure, therefore, may be based on the total moles of acid residues, the total moles of diol residues, or the total moles of repeating units. For example, a polyester containing 4 mole%isophthalic acid, based on the total acid residues, means the polyester contains 4 mole%isophthalic acid residues out of a total of 100 mole%acid residues. Thus, there are 4 moles of isophthalic acid residues among every 100 moles of acid residues. In another example, a polyester containing 15 mole%2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol, based on the total diol residues, means the polyester contains 15 mole%2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol residues out of a total of 100 mole%diol residues. Thus, there are 15 moles of 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol residues among every 100 moles of diol residues.
In other aspects of the invention, the Tg of the polyesters useful in the invention can be at least one of the following ranges: 95 to 115℃; 95 to 110℃; 95 to 105℃; 95 to 100℃; 100 to 115℃; 100 to 110℃; 100 to 105℃; 105 to 115℃; 105 to 110℃; and 110 to 115℃.
In embodiments, the copolyester composition comprises at least one copolyester which comprises:
(a) a dicarboxylic acid component comprising:
i) 70 to 100 mole %of terephthalic acid residues;
(b) a glycol component comprising:
i) greater than 15 and up to 33 mole %of cyclic diol residues having a 2 to 5 member cyclic structure or 5 to 33 mole %of cyclic diol resides having a bicyclic structure with each individual ring in the bicyclic structure having 2 to 5 members; and
ii) 55 to 95 mole %of 1, 4-cyclohexanedimethanol residues, wherein the total mole %of the dicarboxylic acid component is 100 mole %, and the total mole %of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.55 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25℃; and wherein the polyester has a Tg of 95℃ to 115℃.
In embodiments, the copolyester composition comprises a copolyester which comprises a glycol component chosen from: (1) 5 to 20 mole %of the cyclic diol residues and 55 to 95 mole %of the 1, 4-cyclohexanedimethanol residues; or (2) 8 to 20 mole %of the cyclic diol residues and 55 to 92 mole %of the 1, 4-cyclohexanedimethanol residues; or (3) 10 to 20 mole %of the cyclic diol residues and 55 to 90 mole %of the 1, 4-cyclohexanedimethanol residues.
In embodiments, the copolyester composition comprises a copolyester which comprises a glycol component chosen from: (1) 10 to 22 mole %of the cyclic diol residues and 55 to 90 mole %of the 1, 4-cyclohexanedimethanol residues; or (2) 15 to 22 mole %of the cyclic diol residues and 55 to 85 mole %of the 1, 4-cyclohexanedimethanol residues; or (3) greater than 15 to 22 mole %of the cyclic diol residues and 55 to less than 85 mole %of the 1, 4-cyclohexanedimethanol residues. In embodiments, the cyclic diol can be an aliphatic cyclic diol or an aromatic cyclic diol. In embodiments, the cyclic diol can be an alicyclic diol. In embodiments, the cyclic diol is a cyclobutane diol, isosorbide, or combinations thereof. In one embodiment, the cyclic diol is a cyclobutane diol. In one embodiment, the cyclobutane diol is 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol (TMCD) . In one embodiment, the alicyclic diol is isosorbide.
In embodiments, the glycol component for the polyesters useful in the invention include but are not limited to at least one of the following combinations of ranges: 9 to 16 mole %isosorbide and 70 to 91 mole %1, 4-cyclohexanedimethanol; 9 to 15 mole %isosorbide and 71 to 91 mole %1, 4-cyclohexanedimethanol; 9 to 14 mole %isosorbide and 72 to 91 mole %1, 4-cyclohexanedimethanol; 9 to 13 mole %isosorbide and 73 to 91 mole %1, 4-cyclohexanedimethanol; 9 to 12 mole %isosorbide and 74 to 91 mole %1, 4-cyclohexanedimethanol; 9 to 11 mole %isosorbide and 75 to 91 mole %1, 4-cyclohexanedimethanol; 10 to 16 mole %isosorbide and 70 to 90 mole %1, 4-cyclohexanedimethanol; 10 to 15 mole %isosorbide and 71 to 90 mole %1, 4-cyclohexanedimethanol; 10 to 14 mole %isosorbide and 72 to 90 mole %1, 4-cyclohexanedimethanol; 10 to 13 mole %isosorbide and 73 to 90 mole %1, 4-cyclohexanedimethanol; 10 to 12 mole %isosorbide and 74 to 90 mole %1, 4-cyclohexanedimethanol; 11 to 16 mole %isosorbide and 70 to 89 mole %1, 4-cyclohexanedimethanol; 11 to 15 mole %isosorbide and 71 to 89 mole %1, 4-cyclohexanedimethanol; 11 to 14 mole %isosorbide and 72 to 89 mole %1, 4-cyclohexanedimethanol; 11 to 13 mole %isosorbide and 73 to 89 mole %1, 4-cyclohexanedimethanol; 12 to 16 mole %isosorbide and 70 to 88 mole %1, 4-cyclohexanedimethanol; 12 to 15 mole %isosorbide and 71 to 88 mole %1, 4-cyclohexanedimethanol; 12 to 14 mole %isosorbide and 72 to 88 mole %1, 4-cyclohexanedimethanol; 13 to 16 mole %isosorbide and 70 to 87 mole %1, 4-cyclohexanedimethanol; 13 to 15 mole %isosorbide and 71 to 87 mole %1, 4-cyclohexanedimethanol; 14 to 16 mole %isosorbide and 70 to 86 mole %1, 4-cyclohexanedimethanol.
In embodiments, the glycol component comprises residues as follows: greater than 15 and up to 21 mole%TMCD and 79 and up to less than 85 mole%CHDM; greater than 15 and up to 20 mole%TMCD and 80 and up to less than 85 mole%CHDM; greater than 15 and up to 19 mole%TMCD and 81 and up to less than 85 mole%CHDM; greater than 15 and up to 18 mole%TMCD and 82 and up to less than 85 mole%CHDM; 16 to 22 mole%TMCD and 78 to 84 mole%CHDM; 16 to 21 mole%TMCD and 79 to 84 mole%CHDM; 16 to 20 mole%TMCD and 80 to 84 mole%CHDM; 16 to 19 mole%TMCD and 81 to 84 mole%CHDM; 16 to 18 mole%TMCD and 82 to 84 mole%CHDM; 17 to 22 mole%TMCD and 78 to 83 mole%CHDM; 17 to 21 mole%TMCD and 79 to 83 mole%CHDM; 17 to 20 mole%TMCD and 80 to 83 mole%CHDM; 17 to 19 mole%TMCD and 81 to 83 mole%CHDM; 18 to 22 mole%TMCD and 78 to 82 mole%CHDM; or 18 to 21 mole%TMCD and 79 to 82 mole%CHDM; or 18 to 20 mole%TMCD and 80 to 82 mole%CHDM; or 19 to 22 mole%TMCD and 78 to 81 mole%CHDM; or 19 to 21 mole%TMCD and 79 to 81 mole%CHDM; or 20 to 22 mole%TMCD and 78 to 80 mole%CHDM.
For certain embodiments of the invention, the polyesters useful in the invention may exhibit at least one of the following inherent viscosities as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25℃: 0.60 to 1.2 dL/g; 0.60 to 1.1 dL/g; 0.60 to 1 dL/g; 0.60 to less than 1 dL/g; 0.60 to 0.98 dL/g; 0.60 to 0.95 dL/g; 0.60 to 0.90 dL/g; 0.60 to 0.85 dL/g; 0.60 to 0.80 dL/g; 0.60 to 0.75 dL/g; 0.60 to less than 0.75 dL/g; 0.60 to 0.72 dL/g; 0.60 to 0.70 dL/g; 0.60 to less than 0.70 dL/g; 0.60 to 0.68 dL/g; 0.60 to less than 0.68 dL/g; 0.60 to 0.65 dL/g; 0.65 to 1.2 dL/g; 0.65 to 1.1 dL/g; 0.65 to 1 dL/g; 0.65 to less than 1 dL/g; 0.65 to 0.98 dL/g; 0.65 to 0.95 dL/g; 0.65 to 0.90 dL/g; 0.65 to 0.85 dL/g; 0.65 to 0.80 dL/g; 0.65 to 0.75 dL/g; 0.65 to less than 0.75 dL/g; 0.65 to 0.72 dL/g; 0.65 to 0.70 dL/g; or 0.65 to less than 0.70 dL/g; 0.70 to 1.2 dL/g; 0.70 to 1.1 dL/g; 0.70 to 1 dL/g; 0.70 to less than 1 dL/g; 0.70 to 0.98 dL/g; 0.70 to 0.95 dL/g; 0.70 to 0.90 dL/g; 0.70 to 0.85 dL/g; 0.70 to 0.80 dL/g; 0.70 to 0.75 dL/g; 0.70 to less than 0.75 dL/g; 0.75 to 1.2 dL/g; 0.75 to 1.1 dL/g; 0.75 to 1 dL/g; 0.75 to less than 1 dL/g; 0.75 to 0.98 dL/g; 0.75 to 0.95 dL/g; 0.75 to 0.90 dL/g; 0.75 to 0.85 dL/g; 0.75 to 0.80 dL/g; 0.75 to less than 0.80 dL/g; 0.80 to 1.2 dL/g; 0.80 to 1.1 dL/g; 0.80 to 1 dL/g; 0.80 to less than 1 dL/g; 0.80 to 0.98 dL/g; 0.80 to 0.95 dL/g; 0.80 to 0.90 dL/g; 0.80 to 0.85 dL/g; 0.80 to less than 0.85 dL/g; 0.85 to 1.2 dL/g; 0.85 to 1.1 dL/g; 0.85 to 1 dL/g; 0.85 to less than 1 dL/g; 0.85 to 0.98 dL/g; 0.85 to 0.95 dL/g; 0.85 to 0.90 dL/g; 0.85 to less than 0.90 dL/g; 0.90 to 1.2 dL/g; 0.90 to 1.1 dL/g; 0.90 to 1 dL/g; 0.90 to less than 1 dL/g; 0.90 to 0.98 dL/g; 0.90 to 0.95 dL/g; or 0.90 to less than 0.95 dL/g. It is contemplated that the polyester compositions of the invention can possess at least one of the inherent viscosity ranges described herein and at least one of the monomer ranges for the compositions described herein unless otherwise stated. It is also contemplated that the polyester compositions of the invention can possess at least one of the Tg ranges described herein and at least one of the monomer ranges for the compositions described herein unless otherwise stated. It is also contemplated that the polyester compositions of the invention can possess at least one of the Tg ranges described herein, at least one of the inherent viscosity ranges described herein, and at least one of the monomer ranges for the compositions described herein unless otherwise stated.
For the desired polyester, the molar ratio of cis/trans 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol can vary from the pure form of each or mixtures thereof. In certain embodiments, the molar percentages for cis and/or trans 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol are greater than 50 mole %cis and less than 50 mole %trans; or greater than 55 mole %cis and less than 45 mole %trans; or 30 to 70 mole %cis and 70 to 30 %trans; or 40 to 60 mole %cis and 60 to 40 mole %trans; or 50 to 70 mole %trans and 50 to 30 mole %cis; or 50 to 70 mole %cis and 50 to 30 %trans or 60 to 70 mole %cis and 30 to 40 mole %trans; or greater than 70 mole %cis and less than 30 mole %trans; wherein the total sum of the mole percentages for cis-and trans-2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol is equal to 100 mole %. The molar ratio of cis/trans 1, 4-cyclohexandimethanol can vary within the range of 50/50 to 0/100, for example, between 40/60 to 20/80. The cis/trans ratio of the compositions can determined by proton nuclear magnetic resonance (NMR) spectroscopy.
In certain embodiments, terephthalic acid, or an ester thereof, such as, for example, dimethyl terephthalate, or a mixture of terephthalic acid and an ester thereof, makes up most or all of the dicarboxylic acid component used to form the polyesters useful in the invention. In certain embodiments, terephthalic acid residues can make up a portion or all of the dicarboxylic acid component used to form the present polyester at a concentration of at least 70 mole %, such as at least 80 mole %, at least 90 mole%, at least 95 mole%, at least 99 mole%, or, in one preferred embodiment (e.g., reactor grade) , 100 mole %. In certain embodiments, polyesters with higher amounts of terephthalic acid can be used in order to produce higher impact strength properties. For purposes of this disclosure, the terms "terephthalic acid" and "dimethyl terephthalate are used interchangeably herein. In one embodiment, dimethyl terephthalate is part or all of the dicarboxylic acid component used to make the polyesters useful in the present invention. In all embodiments, ranges of from 70 to 100 mole %; or 80 to 100 mole %; or 90 to 100 mole %; or 99 to 100 mole %; or 100 mole %terephthalic acid and/or dimethyl terephthalate and/or mixtures thereof may be used.
In certain embodiments, in addition to terephthalic acid residues, the dicarboxylic acid component of the polyesters useful in the invention can comprise up to 30 mole %, up to 20 mole %, up to 10 mole %, up to 5 mole %, or less than 5 mole%, or up to 3 mole%, or up to 2 mole%, or up to 1 mole %of one or more modifying aromatic dicarboxylic acids. In one preferred embodiment, the polyester contains 0 mole %modifying aromatic dicarboxylic acids. Thus, if present, it is contemplated that the amount of one or more modifying aromatic dicarboxylic acids can range from any of these preceding endpoint values including, for example, from 0.01 to 30 mole %, from 0.01 to 20 mole %, from 0.01 to 10 mole %, from 0.01 to 5 mole %, from 0.01 to less than 5 mole %, from 0.01 to 4 mole %, from 0.01 to 3 mole %, from 0.01 to 2 mole %, or from 0.01 to 1 mole %of one or more modifying aromatic dicarboxylic acids. In certain embodiments, the amount of one or more modifying aromatic dicarboxylic acids can range from 1 to 5 mole %, from 1 to less than 5 mole %, from 1 to 4 mole %, from 1 to 3 mole %, from 1 to 2 mole %, or from 1.5 to 5 mole %, from 1.5 to less than 5 mole %, from 1.5 to 4 mole %, from 1.5 to 3.5 mole %, from 1.5 to 3 mole %, from 1.5 to 2.5 mole %, from 1.5 to 2 mole %, or from 2 to 5 mole %, from 2 to less than 5 mole %, from 2 to 4 mole %, from 2 to 3.5 mole %, from 2 to 3 mole %, from 2 to 2.5 mole %, or from 2.5 to 5 mole %, from 2.5 to less than 5 mole %, from 2.5 to 4 mole %, from 2.5 to 3.5 mole %, from 2.5 to 3 mole %, or from 3 to 5 mole %, from 3 to less than 5 mole %, from 3 to 4 mole %, from 3 to 3.5 mole %, or from 3.5 to 5 mole %, from 3.5 to less than 5 mole %, from 3.5 to 4 mole %, from 4 to 5 mole %, from 4 to less than 5 mole %, of one or more modifying aromatic dicarboxylic acids.
In one embodiment, modifying aromatic dicarboxylic acids that may be used in the present invention include but are not limited to those having up to 20 carbon atoms, and that can be linear, para-oriented, or symmetrical. Examples of modifying aromatic dicarboxylic acids which may be used in this invention include, but are not limited to, isophthalic acid, 4, 4'-biphenyldicarboxylic acid, 1, 4-, 1, 5-, 2, 6-, 2, 7-naphthalenedicarboxylic acid, and trans-4, 4'-stilbenedicarboxylic acid, and esters thereof. In one embodiment, isophthalic acid is the modifying aromatic dicarboxylic acid. The preferred embodiment of the invention is for 100%of the dicarboxylic acid component based on terephthalic acid residues.
The carboxylic acid component of the polyesters useful in the invention can be further modified with up to 10 mole %, such as up to 5 mole %or up to 1 mole %of one or more aliphatic dicarboxylic acids containing 2-16 carbon atoms, such as, for example, malonic, succinic, glutaric, adipic, pimelic, suberic, azelaic and dodecanedioic dicarboxylic acids. Certain embodiments can also comprise 0.01 or more mole %, such as 0.1 or more mole %, 1 or more mole %, 5 or more mole %, or 10 or more mole %of one or more modifying aliphatic dicarboxylic acids. In one preferred embodiment, the polyester contains 0 mole %modifying aliphatic dicarboxylic acids. Thus, if present, it is contemplated that the amount of one or more modifying aliphatic dicarboxylic acids can range from any of these preceding endpoint values including, for example, from 0.01 to 10 mole %and from 0.1 to 10 mole %. The total mole %of the dicarboxylic acid component is 100 mole %.
Esters of terephthalic acid and the other modifying dicarboxylic acids or their corresponding esters and/or salts may be used instead of the dicarboxylic acids. Suitable examples of dicarboxylic acid esters include, but are not limited to, the dimethyl, diethyl, dipropyl, diisopropyl, dibutyl, and diphenyl esters. In one embodiment, the esters are chosen from at least one of the following: methyl, ethyl, propyl, isopropyl, and phenyl esters.
The 1, 4-cyclohexanedimethanol may be cis, trans, or a mixture thereof, for example, a cis/trans ratio of 60: 40 to 40: 60. In another embodiment, the trans-1, 4-cyclohexanedimethanol can be present in the amount of 60 to 80 mole %.
In embodiments where the cyclic diol is TMCD, the glycol component of the polyester portion of the polyester compositions useful in the invention can contain 14 mole %or less of one or more modifying glycols which are not 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol or 1, 4-cyclohexanedimethanol; in another embodiment, the polyesters useful in the invention can contain 10 mole %or less of one or more modifying glycols. In another embodiment, the polyesters useful in the invention can contain 5 mole %or less of one or more modifying glycols. In another embodiment, the polyesters useful in the invention can contain 3 mole %or less of one or more modifying glycols. In the preferred embodiment, the polyesters useful in the invention may contain 0 mole %modifying glycols. Certain embodiments can also contain 0.01 or more mole %, such as 0.1 or more mole %, 1 or more mole %, 5 or more mole %, or 10 or more mole %of one or more modifying glycols. Thus, if present, it is contemplated that the amount of one or more modifying glycols can range from any of these preceding endpoint values including, for example, from 0.1 to 10 mole %.
In embodiments where the cyclic diol is TMCD, modifying glycols useful in the polyesters useful in the invention refer to diols other than 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol and 1, 4-cyclohexanedimethanol and may contain 2 to 16 carbon atoms. Examples of suitable modifying glycols include, but are not limited to, ethylene glycol, diethylene glycol, 1, 2-propanediol, 1, 3-propanediol, neopentyl glycol, 1, 4-butanediol, 1, 5-pentanediol, 1, 6-hexanediol, p-xylene glycol or mixtures thereof. In one embodiment, the modifying glycol is ethylene glycol. In another embodiment, the modifying glycols include but are not limited to 1, 3-propanediol and/or 1, 4-butanediol. In another embodiment, ethylene glycol is excluded as a modifying diol. In another embodiment, 1, 3-propanediol and 1, 4-butanediol are excluded as modifying diols. In another embodiment, 2, 2-dimethyl-1, 3-propanediol is excluded as a modifying diol. The polyesters useful the invention can comprise from 0 to 10 mole percent, for example, from 0.01 to 5 mole percent, from 0.01 to 1 mole percent, from 0.05 to 5 mole percent, from 0.05 to 1 mole percent, or from 0.1 to 0.7 mole percent, or 0.1 to 0.5 mole percent, based the total mole percentages of either the diol or diacid residues; respectively, of one or more residues of a branching monomer, also referred to herein as a branching agent, having 3 or more carboxyl substituents, hydroxyl substituents, or a combination thereof. In certain embodiments, the branching monomer or agent may be added prior to and/or during and/or after the polymerization of the polyester. The polyester (s) useful in the invention can thus be linear or branched. In certain embodiments, the branching monomer or agent may be added prior to and/or during and/or after the polymerization.
Examples of branching monomers include, but are not limited to, multifunctional acids or multifunctional alcohols such as trimellitic acid, trimellitic anhydride, pyromellitic dianhydride, trimethylolpropane, glycerol, pentaerythritol, citric acid, tartaric acid, 3-hydroxyglutaric acid and the like. In one embodiment, the branching monomer residues can comprise 0.1 to 0.7 mole percent of one or more residues chosen from at least one of the following: trimellitic anhydride, pyromellitic dianhydride, glycerol, sorbitol, 1, 2, 6-hexanetriol, pentaerythritol, trimethylolethane, and/or trimesic acid. The branching monomer may be added to the polyester reaction mixture or blended with the polyester in the form of a concentrate as described, for example, in U.S. Patent Nos. 5, 654, 347 and 5, 696, 176, whose disclosure regarding branching monomers is incorporated herein by reference.
The polyesters useful in the invention can be made by processes known from the literature such as, for example, by processes in homogenous solution, by transesterification processes in the melt, and by two phase interfacial processes. Suitable methods include, but are not limited to, the steps of reacting one or more dicarboxylic acids with one or more glycols at a temperature of 100℃ to 315℃ at a pressure of 0.1 to 760 mm Hg for a time sufficient to form a polyester. See U.S. Patent No. 3,772,405 for methods of producing polyesters, the disclosure regarding such methods is hereby incorporated herein by reference.
The polyesters useful in this invention can also be prepared by reactive melt blending and extrusion of two polyesters. For example: a polyester containing 100%terephthalic acid residues; 10 mole%2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol residues, and 90 mole%1, 4-cyclohexanedimethanol can be prepared by reactive melt blending and extrusion of equal amounts of a polyester containing 100 mole%terephthalic residues and 100%1, 4-cyclohexanedimethanol with another polyester containing 100 mole%terephthalic residues; 80 mole %1, 4-cyclohexanedimethanol residues, and 20 mole%2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol residues.
In embodiments, the at least one copolyester is a melt blend polyester prepared by a process that includes melt blending at least two different starting polyesters to provide a final copolyester that includes the monomeric residues contained in starting polyesters. For example, a PCTA copolyester containing residues of TPA, IPA and CHDM is melt blended with a PCTM copolyester containing residues of TPA, CHDM and TMCD to provide a final copolyester having residues of TPA, IPA, CHDM and TMCD. In another example, a PCT copolyester containing residues of TPA and CHDM is melt blended with a PCTM copolyester containing residues of TPA, CHDM and TMCD to provide a final copolyester having residues of TPA, CHDM and TMCD (where the TMCD is in an amount less than the starting PCTM copolyester) . In another example, a PCT copolyester containing residues of TPA and CHDM is melt blended with an Isosorbide copolyester containing residues of TPA, CHDM, Isosorbide and EG to provide a final copolyester having residues of TPA, CHDM, Isosorbide and EG (where the Isosorbide and EG are in amounts less than the starting Isosorbide copolyester) . In embodiments, the melt blended copolyester has residues in (net) amounts according to any of the embodiments for the copolyester (as described herein)
In embodiments, the polyesters of this invention, prepared in a reactor or by melt blending/extrusion, can subsequently be crystallized if needed and solid stated by techniques known in the art to further increase the IV.
In another aspect, a method for improving aesthetic chemical resistance to degradation chemicals of a high Tg and high impact resistant polyester (Polyester A) is provided, the method comprising:
(1) providing Polyester A that comprises:
(a) a dicarboxylic acid component comprising:
i) 70 to 100 mole %of terephthalic acid residues;
(b) a glycol component comprising:
i) greater than 15 and up to 40 mole %of cyclic diol residues having a 2 to 5 member cyclic structure or 5 to 40 mole %of cyclic diol resides having a bicyclic structure with each individual ring in the bicyclic structure having 2 to 5 members; and
ii) 50 to 85 mole %of 1, 4-cyclohexanedimethanol residues, wherein the total mole %of the dicarboxylic acid component is 100 mole %, and the total mole %of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.55 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25℃; and wherein the polyester has a Tg of at least 100℃ and a notched Izod impact strength of greater than 500 J/m as measured according to ASTM D256 at 23C using a 3.2 mm thick bar that has been subjected to 50%relative humidity for 40 hours at 23℃;
(2) combining Polyester A with Polyester B, where Polyester B is included in an amount sufficient to improve the aesthetic chemical resistance to degradation chemicals of the combination compared to that of Polyester A, wherein Polyester B comprises:
(a) a dicarboxylic acid component comprising:
i) 95 to 100 mole %of terephthalic acid residues; and
ii) 0 to 5 mole%of isophthalic acid residues; and
(b) a glycol component comprising:
i) 95 to 100 mole %of 1, 4-cyclohexanedimethanol residues, wherein the total mole %of the dicarboxylic acid component is 100 mole %, and the total mole %of the glycol component is 100 mole %;
(3) blending Polyester A and Polyester B to provide a combined polyester composition.
In embodiments, Polyester A comprises:
(a) a dicarboxylic acid component comprising:
i) 100 mole %of terephthalic acid residues;
(b) a glycol component comprising:
i) 20 to 25 mole %, or 30 to 40 mole %, of 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol residues resides; and
ii) 75 to 80 mole %, or 60 to 70 mole %, of 1, 4-cyclohexanedimethanol residues.
In embodiments, Polyester A comprises:
(a) a dicarboxylic acid component comprising:
i) 100 mole %of terephthalic acid residues;
(b) a glycol component comprising:
i) 10 to 35 mole %, or 15 to 35 mole %, or 15 to 25 mole %,
of isosorbide resides;
ii) 40 to 80 mole %, or 50 to 75 mole %, 60 to 75 mole%, of 1, 4-cyclohexanedimethanol residues; and
iii) 5 to 30 mole %, or 7 to 25 mole %, or 8 to 16 mole%, of ethylene glycol residues.
In embodiments, Polyester B comprises:
(a) a dicarboxylic acid component comprising:
i) 100 mole %of terephthalic acid residues; and
(b) a glycol component comprising:
i) 100 mole %of 1, 4-cyclohexanedimethanol residues.
In embodiments, Polyester B is included in an amount to provide a weight ratio of Polyester A: B in a range from 90: 10 to 50: 50, or 90: 10 to 60: 40, or 90: 10 to 65: 35, or 85: 15 to 50: 50, or 85: 15 to 60: 40, or 85: 15 to 65: 35, or 80: 20 to 50: 50, or 80: 20 to 60: 40, or 80: 20 to 65: 35, or 80: 20 to 70: 30.
In embodiments, blending step (3) comprise melt blending Polyester A and Polyester B.
In embodiments, the article made from copolyester composition can be amorphous. For purposes of this disclosure, amorphous means a crystallinity or less than 1%. In other embodiments, the article made from copolyester composition can be semi-crystalline, e.g., by crystallizing with heat. In embodiments, the article of the invention has a crystallinity of from 1 to 40%, or 1 to 35%, or 1 to 30%, or 5 to 40%, or 5 to 35%, or 5 to 30%, or 10 to 40%, or 10 to 35%, or 10 to 30%.
In other embodiments, the article made from the copolyester composition can have strain induced crystallinity. Strain induced crystallization refers to a phenomenon in which an initially amorphous solid material undergoes a phase transformation in which some amorphous domains are converted to crystalline domains due to the application of strain. This phenomenon has important effects in strength and fatigue properties.
In embodiments, the article of the invention has a strain induced crystallinity of from 1 to 40%, or 1 to 35%, or 1 to 30%, or 5 to 40%, or 5 to 35%, or 5 to 30%, or 10 to 40%, or 10 to 35%, or 10 to 30%, when stretched at a temperature above the Tg of the polyester, e.g., during molding or forming processes, such as stretch blow molding.
In embodiments, the article is a clear semi-crystalline article comprising a copolyester that has a crystallization half-time of less than 10 minutes but greater than about 30 seconds. In embodiments, the copolyester has a crystallization half-time from 30 seconds to 5 minutes, or 30 seconds to 3 minutes, or 30 seconds to 2 minutes, or 30 seconds to 1.5 minutes.
In embodiments, the article of the invention can comprise the polyester of the invention having a melting temperature (Tm) from 260℃ to 300℃.
In addition, the polyester useful in this invention may also contain from 0.01 to 25%by weight or 0.01 to 20%by weight or 0.01 to 15%by weight or 0.01 to 10%by weight or 0.01 to 5%by weight of the total weight of the polyester composition of common additives such as colorants, dyes, mold release agents, reheat additives, flame retardants, plasticizers, stabilizers, including but not limited to, UV stabilizers, thermal stabilizers and/or reaction products thereof, fillers, and impact modifiers. Examples of typical commercially available impact modifiers well known in the art and useful in this invention include, but are not limited to, ethylene/propylene terpolymers; functionalized polyolefins, such as those containing methyl acrylate and/or glycidyl methacrylate; styrene-based block copolymeric impact modifiers; and various acrylic core/shell type impact modifiers. For example, UV additives can be incorporated into articles of manufacture through addition to the bulk, through application of a hard coat, or through coextrusion of a cap layer. Residues of such additives are also contemplated as part of the polyester composition.
The polyesters useful in the invention can comprise at least one chain extender. Suitable chain extenders include, but are not limited to, multifunctional (including, but not limited to, bifunctional) isocyanates, multifunctional epoxides, including for example, epoxylated novolacs, and phenoxy resins. In certain embodiments, chain extenders may be added at the end of the polymerization process or after the polymerization process. If added after the polymerization process, chain extenders can be incorporated by compounding or by addition during conversion processes such as injection molding or extrusion. The amount of chain extender used can vary depending on the specific monomer composition used and the physical properties desired but is generally about 0.1 percent by weight to about 10 percent by weight, preferably about 0.1 to about 5 percent by weight, based on the total weight of the polyester.
Thermal stabilizers are compounds that stabilize polyesters during polyester manufacture and/or post polymerization including, but not limited to, phosphorous compounds including but not limited to phosphoric acid, phosphorous acid, phosphonic acid, phosphinic acid, phosphonous acid, and various esters and salts thereof. These can be present in the polyester compositions useful in the invention. The esters can be alkyl, branched alkyl, substituted alkyl, difunctional alkyl, alkyl ethers, aryl, and substituted aryl. In one embodiment, the number of ester groups present in the particular phosphorous compound can vary from zero up to the maximum allowable based on the number of hydroxyl groups present on the thermal stabilizer used. The term "thermal stabilizer" is intended to include the reaction products thereof. The term "reaction product" as used in connection with the thermal stabilizers of the invention refers to any product of a polycondensation or esterification reaction between the thermal stabilizer and any of the monomers used in making the polyester as well as the product of a polycondensation or esterification reaction between the catalyst and any other type of additive.
Reinforcing materials may be useful in the compositions of this invention. The reinforcing materials may include, but are not limited to, carbon filaments, silicates, mica, clay, talc, titanium dioxide, Wollastonite, glass flakes, glass beads and fibers, and polymeric fibers and combinations thereof. In one embodiment, the reinforcing materials are glass, such as, fibrous glass filaments, mixtures of glass and talc, glass and mica, and glass and polymeric fibers.
In embodiments, the articles (configured to receive or to accommodate contact with a chemical composition intended for body contact, or a chemical composition used on high touch articles) can include, but are not limited to, injection blow molded articles, injection stretch blow molded articles, extrusion blow molded articles, extrusion stretch blow molded articles, calendered articles, compression molded articles, and solution casted articles. Methods of making the articles of manufacture, include, but are not limited to, extrusion blow molding, extrusion stretch blow molding, injection blow molding, injection stretch blow molding, calendering, compression molding, and solution casting.
In embodiments, the articles (e.g., configured to receive or to accommodate contact with a chemical composition intended for body contact, or a chemical composition used on high touch articles) can include film (s) and/or sheet (s) comprising the polyester compositions that are formed into the articles of the invention. The methods of forming the polyesters into film (s) and/or sheet (s) are well known in the art. Examples of film (s) and/or sheet (s) of the invention including but not limited to extruded film (s) and/or sheet (s) , calendered film (s) and/or sheet (s) , compression molded film (s) and/or sheet (s) , solution casted film (s) and/or sheet (s) . Methods of making film and/or sheet include but are not limited to extrusion, calendering, compression molding, and solution casting.
In embodiments of the invention, the copolyester composition has a notched izod impact strength of at least 800 J/m, or at least 900 J/m, as measured according to ASTM D256 using a 3.2 mm thick bar hat has been subjected to 50%relative humidity for 48 hours at 23℃. In certain embodiments, the polymer-based resin has a notched izod impact strength of at least 1000 J/m, or at least 1050 J/m, as measured according to ASTM D256 using a 3.2 mm thick bar that has been subjected to 50%relative humidity for 48 hours at 23℃.
In embodiments of the invention, the polymer-based resin has a ΔE value of less than 25, or less than 20, or less than 15, or less than 14, or less than 13, or less than 12, or less than 11, or less than 10, or less than 9, or less than 8, or less than 7, or less than 6, or less than 5, using a 3.2 mm plaque after injection molding with a barrel temperature of 249℃ and a mold temperature of 80℃, wherein ΔE is determined by the following equation: ( (L*-100) 2 + (a*-0) 2 + (b*-0) 21/2, where the L*, a*, and b*color components were measured according to ASTM E1348. In certain embodiments, the polymer-based resin has a ΔE value in the range from 2 to 25, or from 2 to 20, or from 2 to 15, or from 2 to 14, or from 2 to 13, or from 2 to 12, or from 2 to 11, or from 2 to 10, or from 2 to 9, or from 2 to 8, or from 2 to 7, or from 2 to 6, or from 2 to 5, using a 3.2 mm plaque after injection molding with a barrel temperature of 249℃ and a mold temperature of 80℃, wherein ΔE is determined by the following equation: ( (L*-100) 2 + (a*-0) 2 + (b*-0) 21/2, where the L*, a*, and b*color components were measured according to ASTM E1348.
In embodiments of the invention, the polymer-based resin has an L*color of at least 85, or at least 86, or at least 87, or at least 88, or at least 89, or at least 90, or at least 91, or at least 92, or at least 93, or at least 94, or at least 95, measured according to ASTM E1348 using a 3.2 mm plaque after injection molding with a barrel temperature of 249℃ and a mold temperature of 80℃. In certain embodiments, the polymer-based resin has an L*color in the range from 85 to 98, or from 85 to 97, or from 85 to 96, or from 85 to 95, measured according to ASTM E1348 using a 3.2 mm plaque after injection molding with a barrel temperature of 249℃ and a mold temperature of 80℃.
In embodiments of the invention, the polymer-based resin has a b*value is less than 15, or less than 12, or less than 10, or less than 9, or less than 8, or less than 7, or less than 6, or less than 5, or less than 4, measured according to ASTM E1348 using a 3.2 mm plaque after injection molding with a barrel temperature of 249℃ and a mold temperature of 80℃. In certain embodiments, the polymer-based resin has a b*color in the range from 0 to 15, or from 0 to 10, or from 0 to 8, or from 0 to 5, measured according to ASTM E1348 using a 3.2 mm plaque after injection molding with a barrel temperature of 249℃ and a mold temperature of 80℃.
In aspects of this invention, it is directed to shaped articles. In certain embodiments, the shaped articles are not continuously extruded films that are infinite (or continuous) in one direction and fixed in width and thickness in the other two directions, as would be the case in a rolled film. In certain embodiments, a film or sheet can be converted into a shaped article, e.g., by thermoforming into a three-dimensional object, such as a cup or bowl. In embodiments of the invention, the shaped article is not a film or is not a sheet. In embodiments of the invention, the shaped articles can be chosen from injection molded articles, extrusion molded articles, rotational molded articles, compression molded articles, blow molded articles, injection blow molded articles, injection stretch blow molded articles, extrusion blow molded articles, sheet or film extrusion articles, profile extrusion articles, gas assist molding articles, structural foam molded articles, or thermoformed articles.
In embodiments of the invention, the shaped article is chosen from transparent articles, see-through articles, thin-walled articles, technical articles (e.g., articles having a complex design) , articles having high design specifications, intricate design articles, containers, wearable articles, household articles, general consumer products, packaging articles, medical articles, high touch articles, or components thereof, where the article is configure to receive or accommodate contact with a chemical composition intended for body contact, or a chemical composition likely to contact high touch articles.
In embodiments, the article is a wearable article or device that will likely contact with chemical compositions intended for body contact that include one or more degradation chemicals. Examples of such wearable articles or devices include fitness trackers, headphones, earbuds, (smart) watches, AR/VR headsets, medical delivery devices, sporting goods (such as sunglasses, helmets, and scuba gear) , and cameras.
In embodiments, the article is a high touch article or device that will likely contact chemical compositions used on such articles or devices (e.g., disinfectants) that include one or more degradation chemicals, such a sunscreen. Examples of such high touch articles or devices include toys, protective cases, portable devices (e.g., smartphones, laptops, tablets) , barware and drinkware.
In certain embodiments, the polyester composition can be primary molded into forms such as pellets, plates, or parisons, and can then be secondary molded into articles, e.g., conduits, tubes, thin-wall vessels, or thick-wall vessels, configured to receive a chemical composition intended for body contact or a chemical composition used on high touch articles.
The methods of forming the polyester compositions into films, molded articles, and sheeting can be according to methods known in the art. In embodiments, the polyester composition can be over molded onto itself or a different polyester composition and retain an interface bond (or weld line) strength that will not separate (or delaminate) when an article (having such an over mold interface) is used for its intended purpose.
In one aspect, an article or device is provided that comprises a molded component that will likely contact with chemical compositions used on high touch articles/devices, where the molded component is formed of a plastic composition comprising a copolyester composition and having a Tg of at least 95℃.
In one aspect, an article is provided that comprises a molded component configured to receive a chemical composition intended for body contact, where the molded component is formed of a plastic composition comprising a copolyester composition and having a Tg of at least 95℃.
The chemical composition intended for body contact or used on high touch articles contains one or more degradation chemicals in an amount of at least 1 wt%, or at least 5 wt%, or at least 10 wt%, or at least 15 wt%or at least 20 wt%, or at least 25 wt%. Degradation chemical means a chemical that degrades the performance of one or more copolyesters, e.g., CHDM or TMCD containing copolyesters, where the degradation in performance is indicated by optical or light transmission reduction, when tested according to the methods disclosed herein. In embodiments, the chemical composition intended for body contact contains at least 0.01, or at least 0.05, or at least 0.1, or at least 0.5, or at least 1, or at least 5, or at least 10 wt%of total degradation chemicals.
In embodiments, the degradation chemical is chosen from sunscreen components, insect repellant components, cosmetic components, perfume components, alcohols, glycols, oils, fats, waxes, plant-based oils or extracts, food ingredients, cleaners, disinfectants, detergents, or combinations thereof. In embodiments, sunscreen components can include UV absorbers/blockers, such as, for example oxybenzone, avobenzone, octisalate, octocrylene, homosalate, octinoxate, zinc oxide, titanium dioxide, or combinations thereof. In embodiments, insect repellant components can include repellant actives, such as N, N-diethyl-meta-toluamide (DEET) , citronella, picardin, plant oils or extracts having repellant properties, or combinations thereof. In embodiments, cosmetic components can include alcohols, glycols, amines, hydroxy acids, oils, fats, waxes, glycerine, colorants, fragrances, or combinations thereof. In embodiments, perfume components can include solvents, alcohols, glycols, hydroxy acids, oils, fragrances, or combinations thereof.
In embodiments, the copolyester composition forming the articles, e.g., injection molded article, is chosen from any of the copolyester compositions discussed herein. In one embodiment, the copolyester composition forming the articles, e.g., injection molded article, comprises at least one copolyester that comprises:
(a) a dicarboxylic acid component comprising:
i) 92 to 100 mole%of terephthalic acid residues; and
ii) 0 to 2 mole%of isophthalic acid residues;
(b) a glycol component comprising:
i) greater than 15 to 21 mole %of 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol residues; and
ii) 85 to 89 mole %of 1, 4-cyclohexanedimethanol residues,
wherein the total mole %of the dicarboxylic acid component is 100 mole %, and the total mole %of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.70 to 1.0 dL/g, or 0.75 to 0.95 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25℃; and wherein the polyester has a Tg of 100℃ to 115℃.
In one embodiment, the copolyester composition forming the articles, e.g., injection molded article, comprises at least one copolyester that comprises:
(a) a dicarboxylic acid component comprising:
i) 92 to 100 mole%of terephthalic acid residues; and
ii) 0 to 2 mole%of isophthalic acid residues;
(b) a glycol component comprising:
i) 9 to 16 mole %isosorbide; and
ii) 70 to 91 mole %of 1, 4-cyclohexanedimethanol residues,
wherein the total mole %of the dicarboxylic acid component is 100 mole %, and the total mole %of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.70 to 1.0 dL/g, or 0.75 to 0.95 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25℃; and wherein the polyester has a Tg of 95℃ to 115℃. In one embodiment, the dicarboxylic acid is 100 mole%terephthalic acid residues. In one embodiment, the glycol component further comprises 5 to 10, or 5 to 9, or 6 to 10, or 6 to 9 mole%ethylene glycol.
Properties disclosed herein requiring a test method can be determined as follows:
Test Methods
Properties disclosed throughout this application can be determined according to the test methods described herein. Samples were (or can be) evaluated using standard ASTM test methods with any special conditions noted below.
Test Methods
The inherent viscosity of the polyesters was determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25℃(according to ASTM D4603) .
The glycol content was determined by proton nuclear magnetic resonance (NMR) spectroscopy. All NMR spectra were recorded on a JEOL Eclipse Plus 600MHz nuclear magnetic resonance spectrometer using either chloroform-trifluoroacetic acid (70-30 volume/volume) . Peak assignments for 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol resonances were made by comparison to model mono-and dibenzoate esters of 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol. These model compounds closely approximate the resonance positions found in the polymers.
The crystallization half-time, t1/2, was determined by measuring the light transmission of a sample via a laser and photo detector as a function of time on a temperature controlled hot stage. This measurement was done by exposing the polymers to a temperature, Tmax, and then cooling it to the desired temperature. The sample was then held at the desired temperature by a hot stage while transmission measurements were made as a function of time. Initially, the sample was visually clear with high light transmission and became opaque as the sample crystallized. The crystallization half-time was recorded as the time at which the light transmission was halfway between the initial transmission and the final transmission. Tmax is defined as the temperature required to melt the crystalline domains of the sample (if crystalline domains are present) . The Tmax reported in the examples below represents the temperature at which each sample was heated to condition the sample prior to crystallization half time measurement. The Tmax temperature is dependent on composition and is typically different for each polyester. For example, PCT may need to be heated to some temperature greater than 290℃ to melt the crystalline domains.
Differential scanning calorimetry (DSC) was performed using TA Instruments Model 2920 with a liquid nitrogen cooling accessory. The sample weight, in the range of 8 to 12 mg, was measured and recorded. Samples were first heated (1st heating scan) from 0 to 320 ℃ at 20 ℃/min, followed by cooling to 0 ℃ at 20 ℃/min (cooling scan) , and then heated again from 0 to 320 ℃ at 20 ℃ min. Various thermal parameters were measured and recorded. Hcc (cal/g) is the heat of crystallization measured from the cooling scan. Tcc is the crystallization peak temperature on the cooling scan. Tg is the glass transition temperature measured from 2nd heating scan. Tm is the melting point measured during the 2nd heating scan. Hch1 (cal/g) is the heat of crystallization measured during the 1st heating scan. Hm1 (cal/g) is the heat of melting measured during the 1st heating scan.
The percent crystallinity formed during cooling is calculated by equation (1) , assuming a specific heat of fusion of 29 cal/g (based on unmodified PCT) .
The peak temperature in the crystallization exotherm (Tcc) occurs at 227℃ for unmodified PCT.
The percentage of strain induced crystallinity (c) was determined by equation (2) from the first heating scan of films evaluated in a DSC.
As used herein, the abbreviation "wt" means "weight" .
The following examples further illustrate how the compositions of matter of the invention can be made and evaluated, and are intended to be purely exemplary of the invention and are not intended to limit the scope thereof. Unless indicated otherwise, parts are parts by weight, temperature is in degrees C or is at room temperature, and pressure is at or near atmospheric.
EXAMPLES
Example A
Melt blend copolyester compositions were prepared by mixing an amorphous polyester resin 1 with an amorphous or semicrystalline polyester resin 2 or 3. The composition of the resins are shown below in Table 1. The blends of the resins are shown in Tables 2 and 3.
Table 1. Resin used in making the blends
Table 2. Blends with Resin 2
Table 3. Blends with Resin 3
Physical properties of the resin blends according to the examples are shown below in Table 4.
Table 4 –General Properties for Example 1 –10 Resins
Sunscreen Testing
Pellets of each material from Examples 1 –10 were injection molded to form standard test plaques 4 inch x 4 inch x 0.125 inch thick (10.2 cm x 10.2 cm x 0.3 cm) . The pellets were molded in A 110 Ton Toyo injection molding machine with barrel capacity 3.4 oz. The copolyester material was injection molded at 1 in/sec injection speed into four test bars per shot with barrel temperature nominally of about 249℃ (480°F) and mold temperature of about 80℃.
Sunscreen was applied on the hands and rubbed in with the opposite hand to evenly distribute the sunscreen. Plaques of each material were then touched with fingers that rubbed in the sunscreen to show fingerprints of the sunscreen on the surface. Each plaques was divided into 4 quadrants and each quadrant was touched with a different sunscreen product. Quadrant 1 used Coppertone Kids Sport Pray spf 50, quadrant 2 used Coppertone Sport lotion Spf 50 (4-in-1 performance) , quadrant 3 used equate sport sunscreen spf 50, and quadrant 4 used Banana Boat sport ultra spf 100. The plaques were then placed in a 50C oven for 5 minutes. Parts were then washed with Dawn detergent and water, wiped with a Kimwipe and photographs were taken of each plaque to determine sunscreen residue/whitening. 3-4 individuals then ranked the whitening based on the scale developed on the next slide.
Representative photographs of sunscreen fingerprints on plaques are shown in Figure 1. Visual Assessment was ranked according to the following scale:
0 –Totally transparent; no sign of thumbprint from any angle.
1 –Outline of thumbprint partially visible in the right light, still transparent.
2/3 -Outline of thumbprint totally visible in the right light, still has transparent.
4 –Details of thumbprint are starting to become visible, print becoming more translucent.
5 –Print is defined/ridges may be visible, print is translucent instead of transparent.
6/7 -Print is defined/ridges are visible without needing any special angle/lighting; print has increasing opacity.
8 –Print is very defined; visible without needing any special lighting, increasing opacity.
9/10 -Print is visible from any angle and very well-defined, totally opaque.
Representative photographs of plaques corresponding to different ratings are shown in Figure 2.
An average score for all 4 quadrants was determined for each plaque. The results of the average sunscreen rating test are listed in Table 5 below.
Table 5 –Sunscreen Rating for Example 1 –10 Resins
Haze and Transmittance (%)
Haze and Transmittance data was measure using a Gardner Haze-gard plus, using ASTM D1003 as a method. The results of the haze and transmittance testing is listed below in tables 6 and 7.
Table 6 –Haze Values After Sunscreen Test by Quadrant
Table 7 –Transmittance (%) After Sunscreen Test by Quadrant
A review of Tables 6 and 7 reveals that blending resin 2 or 3 into resin 1 resulted in lower haze values with increasing amounts of resin 2 or 3 and blending with resin 3 decreased haze values more than blending with resin 2. Blending resin 2 or 3 into resin 1 resulted in higher transmission %with examples 2 and 3, and examples 7 and 8, having the highest transmission, respectively, for the resin 2 and resin 3 blends.
Whitening Test
To induce whitening, 1” x1” plaques were placed in canola oil for 24 hours at 90 ℃, and then removed and wiped with a Kim wipe until no oil was visible on the part. Each sample was washed in Dawn dish detergent solution to remove any residual oil. Parts were placed in sealed containers with Solid Power XL (SPXL) dish detergent solution (2g powder/1 Liter DI water) for 24 hours at 90 ℃. Samples were then removed from SPXL solution and rinsed with DI water. Visual observations were made to determine the severity of whitening.
Examples 2 and 3 showed an improvement (less whitening) compared to Resin 1 plaques and examples 7 and 8 showed additional improvement over examples 2 and 3.
Example B
Additional melt blend copolyester compositions were prepared by mixing polyester resin 4 with resin 5. The composition of the resins are shown below in Table 8. The blends of the resins are shown in Table 9.
Table 8. Resin used in making the blends A
Table 9. Blends with Resins 4 and 5
Physical properties of the resin blends according to Table 9 are shown below in Table 10.
Table 10. Properties for Comp Example 1, 2 and Example 11 and 12 Resins
Sunscreen rating, haze, transmission %and whitening tests similar to example A above was repeated for Comparative examples 1 and 2 and examples 11 and 12. The results for sunscreen rating, haze and transmission are shown below in tables 11 to 13.
Table 11. Sunscreen Rating for Comp 1 and 2, Ex 11 and 12
Table 12. Haze Values for Comp 1 and 2, Ex 11 and 12
Table 13. Transmission %for Comp 1 and 2, Ex 11 and 12
A review of Tables 11 and 12 reveals that Examples 11 and 12 resulted in lower sunscreen ratings and haze values with increasing amounts of resin 5 and Example 12 had lower ratings and haze values than Example 11. Examples 11 and 12 had higher transmission %than comparative example1, and example 12 had higher transmission than Example 11.
Also, Comparative Example 1 and Examples 11 and 12 had similar whitening results, with little whitening, while comparative example 2 had significant whitening.
Other embodiments will be apparent to those skilled in the art from consideration of the specification and practice of the embodiments disclosed herein. It will be understood that variations and modifications can be affected within the spirit and scope of the disclosed embodiments. It is further intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the disclosed embodiments being indicated by the following claims.

Claims (20)

  1. A transparent article configured to accommodate contact with a chemical composition that is intended for body contact and that comprises one or more degradation chemicals, wherein said transparent article is formed from a copolyester composition comprising at least one copolyester that comprises:
    (a) a dicarboxylic acid component comprising:
    i) 70 to 100 mole %of terephthalic acid residues;
    (b) a glycol component comprising:
    i) greater than 15 and up to 33 mole %of cyclic diol residues having a 2 to 5 member cyclic structure or 5 to 33 mole %of cyclic diol resides having a bicyclic structure with each individual ring in the bicyclic structure having 2 to 5 members; and
    ii) 55 to 95 mole %of 1, 4-cyclohexanedimethanol residues,
    wherein the total mole %of the dicarboxylic acid component is 100 mole %, and the total mole %of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.60 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25℃; and wherein the polyester has a Tg of 95℃ to 115℃, and has an average haze below 5 or below 3 after exposure to sunscreen (as tested according to the examples) .
  2. The article according to claim 1, wherein the copolyester composition has a Tg in the range from 100℃ to 115℃.
  3. The article according to claim 2, wherein the copolyester composition has an inherent viscosity is 0.70 to 1.0 dL/g, or 0.75 to 0.95 dL/g.
  4. The article according to any one of claims 1 to 3, wherein the glycol component comprises:
    i) greater than 15 and up to 22 mole%of 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol (TMCD) residues; and
    ii) 78 to less than 85 mole%of 1, 4-cyclohexanedimethanol (CHDM) residues.
  5. The article according to any one of claims 1 to 4, wherein the dicarboxylic acid component comprises 100 mole%terephthalic acid residues.
  6. The article according to any one of claims 1 to 4, wherein the dicarboxylic acid component comprises:
    iii) 95 to 100 mole%of terephthalic acid residues; and
    iv) 0 to 5 mole%of isophthalic acid residues.
  7. The article according to claim 6, wherein the dicarboxylic acid component comprises:
    i) 98 to 100 mole%of terephthalic acid residues; and
    ii) 0 to 2 mole%of isophthalic acid residues.
  8. The article according to any one of claims 1 to 7, wherein the copolyester composition has a crystallization half time from 30 seconds to 5 minutes.
  9. The article according to any one of claims 1 to 8, wherein the article is chosen from wearable articles, high touch articles, food or beverage containers, or packaging articles.
  10. The article according to any one of claims 1 to 9, wherein the chemical composition intended for body contact is a sunscreen.
  11. The article according to any one of claims 1 to 10, wherein the at least one copolyester has a total transmittance of at least 90%and a haze of less than 1%measured according to ASTM D1003.
  12. A method for improving aesthetic chemical resistance to degradation chemicals of a high Tg and high impact resistant polyester (Polyester A) , said method comprising:
    (1) providing Polyester A that comprises:
    (a) a dicarboxylic acid component comprising:
    i) 70 to 100 mole %of terephthalic acid residues;
    (b) a glycol component comprising:
    i) greater than 15 and up to 40 mole %of cyclic diol residues having a 2 to 5 member cyclic structure or 5 to 40 mole %of cyclic diol resides having a bicyclic structure with each individual ring in the bicyclic structure having 2 to 5 members; and
    ii) 40 to 85 mole %of 1, 4-cyclohexanedimethanol residues, wherein the total mole %of the dicarboxylic acid component is 100 mole %, and the total mole %of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.55 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25℃; and wherein the polyester has a Tg of at least 95℃ and a notched Izod impact strength of greater than 500 J/m as measured according to ASTM D256 at 23C using a 3.2 mm thick bar that has been subjected to 50%relative humidity for 40 hours at 23℃;
    (2) combining Polyester A with Polyester B, wherein Polyester B is included in an amount sufficient to improve the aesthetic chemical resistance to degradation chemicals of the combination of Polyesters A and B compared to that of Polyester A, wherein Polyester B comprises:
    (a) a dicarboxylic acid component comprising:
    i) 95 to 100 mole %of terephthalic acid residues; and
    ii) 0 to 5 mole%of isophthalic acid residues; and
    (b) a glycol component comprising:
    i) 95 to 100 mole %of 1, 4-cyclohexanedimethanol residues, wherein the total mole %of the dicarboxylic acid component is 100 mole %, and the total mole %of the glycol component is 100 mole %;
    (3) blending Polyester A and Polyester B to provide a blended polyester composition.
  13. The method according to claim 12, wherein the blended polyester composition comprises:
    (a) a dicarboxylic acid component comprising:
    i) 70 to 100 net mole %of terephthalic acid residues;
    (b) a glycol component comprising:
    i) greater than 15 and up to 22 mole %of cyclic diol residues having a 2 to 5 member cyclic structure or 5 to 22 mole %of cyclic diol resides having a bicyclic structure with each individual ring in the bicyclic structure having 2 to 5 members; and
    ii) 55 to 95 net mole %of 1, 4-cyclohexanedimethanol residues,
    wherein the total net mole %of the dicarboxylic acid component is 100 mole %, and the total net mole %of the glycol component is 100 mole %; and wherein the inherent viscosity is 0.60 to 1.2 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25℃; and wherein the polyester has a Tg of 95℃ to 115℃, and has an average haze below 5 or below 3 after exposure to sunscreen (as tested according to the examples) .
  14. [Rectified under Rule 91, 22.03.2023]
    The method according to claim 12 or 13, wherein Polyester A comprises:
    (a) a dicarboxylic acid component comprising:
    i) 100 mole %of terephthalic acid residues;
    (b) a glycol component comprising:
    i) 20 to 25 mole %, or 30 to 40 mole %, of 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol residues resides; and
    ii) 75 to 80 mole %, or 60 to 70 mole %, of 1, 4-cyclohexanedimethanol residues.
  15. The method according to claim 12 or 13, wherein Polyester A comprises:
    (a) a dicarboxylic acid component comprising:
    i) 100 mole %of terephthalic acid residues;
    (b) a glycol component comprising:
    i) 10 to 25 mole %, or 15 to 25 mole %, of isosorbide resides;
    ii) 50 to 80 mole %, or 60 to 75 mole %, of 1, 4-cyclohexanedimethanol residues; and
    iii) 5 to 25 mole %, or 7 to 17 mole %of ethylene glycol residues.
  16. The method according to any one of claims 12 to 15, wherein Polyester B comprises:
    (a) a dicarboxylic acid component comprising:
    i) 100 mole %of terephthalic acid residues; and
    (b) a glycol component comprising:
    i) 100 mole %of 1, 4-cyclohexanedimethanol residues.
  17. The method according to any one of claims 12 to 16, wherein Polyester B is included in an amount to provide a weight ratio of Polyester A: B in a range from 90: 10 to 50: 50, or 90: 10 to 60: 40, or 90: 10 to 65: 35, or 85: 15 to 50: 50, or 85: 15 to 60: 40, or 85: 15 to 65: 35, or 80: 20 to 50: 50, or 80: 20 to 60: 40, or 80: 20 to 65: 35, or 80: 20 to 70: 30.
  18. The method according to any one of claims 12 to 17, wherein blending step (3) comprise melt blending Polyester A and Polyester B.
  19. The method according to any one of claims 12 to 18, wherein the blended polyester composition has a higher transmittance %and a lower haze %compared to Polyester A, after exposure to sunscreen (as tested according to the examples) .
  20. The method according to claim 19, wherein the blended polyester composition has haze %that is at least 50%lower compared to Polyester A, after exposure to sunscreen (as tested according to the examples) .
PCT/CN2023/075155 2023-02-09 2023-02-09 Molded polyester articles with improved aesthetic chemical resistance WO2024164223A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2023/075155 WO2024164223A1 (en) 2023-02-09 2023-02-09 Molded polyester articles with improved aesthetic chemical resistance
PCT/CN2024/075402 WO2024164940A1 (en) 2023-02-09 2024-02-02 Molded polyester articles with improved aesthetic chemical resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/075155 WO2024164223A1 (en) 2023-02-09 2023-02-09 Molded polyester articles with improved aesthetic chemical resistance

Publications (1)

Publication Number Publication Date
WO2024164223A1 true WO2024164223A1 (en) 2024-08-15

Family

ID=92261943

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2023/075155 WO2024164223A1 (en) 2023-02-09 2023-02-09 Molded polyester articles with improved aesthetic chemical resistance
PCT/CN2024/075402 WO2024164940A1 (en) 2023-02-09 2024-02-02 Molded polyester articles with improved aesthetic chemical resistance

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/075402 WO2024164940A1 (en) 2023-02-09 2024-02-02 Molded polyester articles with improved aesthetic chemical resistance

Country Status (1)

Country Link
WO (2) WO2024164223A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060286328A1 (en) * 2005-06-17 2006-12-21 Crawford Emmett D Food service products comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
CN101193946A (en) * 2005-06-17 2008-06-04 伊士曼化工公司 Film(s) and/or sheet(s) comprising polyester compositions which comprise cyclobutanediol
CN104411766A (en) * 2012-07-09 2015-03-11 伊士曼化工公司 Ternary blends of terephthalate or isophthalate polyesters containing eg, chdm, and tmcd
CN110437429A (en) * 2018-05-02 2019-11-12 中国石油化工股份有限公司 A kind of preparation method of modified poly ester and preparation method thereof and its film
CN115087699A (en) * 2020-02-10 2022-09-20 伊士曼化工公司 Non-halogenated flame retardant copolyester composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200819496A (en) * 2006-10-27 2008-05-01 Eastman Chem Co Polyester compositions which comprise cyclobutanediol, ethylene glycol, titanium, and phosphorus with improved color and manufacturing processes therefor
US20100159176A1 (en) * 2008-12-18 2010-06-24 Eastman Chemical Company Miscible blends of terephthalate polyesters containing 1,4-cyclohexanedimethanol and 2,2,4,4-tetramethylcyclobutane-1,3-diol
EP4103644A1 (en) * 2020-02-10 2022-12-21 Eastman Chemical Company Flame retardant copolyester compositions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060286328A1 (en) * 2005-06-17 2006-12-21 Crawford Emmett D Food service products comprising polyester compositions formed from 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
CN101193946A (en) * 2005-06-17 2008-06-04 伊士曼化工公司 Film(s) and/or sheet(s) comprising polyester compositions which comprise cyclobutanediol
CN104411766A (en) * 2012-07-09 2015-03-11 伊士曼化工公司 Ternary blends of terephthalate or isophthalate polyesters containing eg, chdm, and tmcd
CN110437429A (en) * 2018-05-02 2019-11-12 中国石油化工股份有限公司 A kind of preparation method of modified poly ester and preparation method thereof and its film
CN115087699A (en) * 2020-02-10 2022-09-20 伊士曼化工公司 Non-halogenated flame retardant copolyester composition

Also Published As

Publication number Publication date
WO2024164940A1 (en) 2024-08-15

Similar Documents

Publication Publication Date Title
US9982125B2 (en) Clear semi-crystalline articles with improved heat resistance
JP6475121B2 (en) Polyester resin and method for producing the same
KR101851013B1 (en) Polyester compositions which comprise spiro-glycol, cyclohexanedimethanol, and terephthalic acid
EP3966266A1 (en) Recyclable molded articles from blends of copolyesters and recycled pet
KR20170037588A (en) Polyester resin copolymerized with isosorbide and 1,4- cyclohexane dimethanol and preparing method thereof
US10144801B2 (en) Polyester resin, injection-molded article, polyester sheet and polyester container
JP5609117B2 (en) Polyester resin and optical lens
WO2024164223A1 (en) Molded polyester articles with improved aesthetic chemical resistance
US20130217835A1 (en) Polyester/polycarbonate blend having excellent thermal stability and color stability
US20230407002A1 (en) Molded articles for use with terpene containing oils
JP2004107559A (en) Modified polyester resin and molded product composed of the same resin
EP4384564A1 (en) Molded articles for use with degredation chemicals
KR20220006608A (en) Recyclable Extrusion Blow Molded Articles from Blends of Copolyester and Recycled PET
WO2023130372A1 (en) Plastic molded articles for use as vapor/suspension delivery devices
JP3350646B2 (en) Molded product made of polyester resin
WO2023225844A1 (en) Plastic molded articles for use as vapor/suspension delivery devices
CN120202238A (en) Recyclable hot melt adhesive copolyester composition
WO2024054767A1 (en) Copolyester blow molded articles with a transparent view stripe
WO2024220454A1 (en) Copolyester compositions for recyclable heavy gauge sheet articles
WO2024220458A1 (en) Copolyester compositions for recyclable heavy gauge sheet articles
KR940007321B1 (en) Process for preparation of polyester copolymer
JP2024523581A (en) Polyester copolymers containing recycled monomers
JP2015030808A (en) Polyester resin composition
HK1176955A (en) Polyester resin and optical lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23920431

Country of ref document: EP

Kind code of ref document: A1