WO2024162733A1 - Method and system for estimating stride length by using plantar pressure data - Google Patents
Method and system for estimating stride length by using plantar pressure data Download PDFInfo
- Publication number
- WO2024162733A1 WO2024162733A1 PCT/KR2024/001386 KR2024001386W WO2024162733A1 WO 2024162733 A1 WO2024162733 A1 WO 2024162733A1 KR 2024001386 W KR2024001386 W KR 2024001386W WO 2024162733 A1 WO2024162733 A1 WO 2024162733A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- plantar pressure
- stride
- pressure
- region
- Prior art date
Links
- 238000000034 method Methods 0.000 title description 15
- 230000005021 gait Effects 0.000 claims abstract description 47
- 238000004458 analytical method Methods 0.000 claims abstract description 32
- 239000011159 matrix material Substances 0.000 claims abstract description 30
- 238000013473 artificial intelligence Methods 0.000 claims abstract description 19
- 238000007781 pre-processing Methods 0.000 claims abstract description 8
- 238000004891 communication Methods 0.000 claims description 28
- 210000002683 foot Anatomy 0.000 claims description 27
- 210000003141 lower extremity Anatomy 0.000 claims description 15
- 238000013527 convolutional neural network Methods 0.000 claims description 9
- 210000001872 metatarsal bone Anatomy 0.000 claims description 5
- 210000000452 mid-foot Anatomy 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 16
- 238000012545 processing Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 210000003127 knee Anatomy 0.000 description 3
- 210000003423 ankle Anatomy 0.000 description 2
- 230000002354 daily effect Effects 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 210000000629 knee joint Anatomy 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 230000035606 childbirth Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 210000001503 joint Anatomy 0.000 description 1
- 210000002414 leg Anatomy 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000007723 transport mechanism Effects 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
- A61B5/112—Gait analysis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/1036—Measuring load distribution, e.g. podologic studies
- A61B5/1038—Measuring plantar pressure during gait
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
- A61B5/1121—Determining geometric values, e.g. centre of rotation or angular range of movement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6802—Sensor mounted on worn items
- A61B5/6804—Garments; Clothes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6802—Sensor mounted on worn items
- A61B5/6804—Garments; Clothes
- A61B5/6807—Footwear
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient ; user input means
- A61B5/742—Details of notification to user or communication with user or patient ; user input means using visual displays
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
Definitions
- the following description relates to a method and system for estimating stride length using plantar pressure data, and more specifically, to a method and system for estimating stride length based on plantar pressure data and gait information derived from the data using artificial intelligence.
- Walking is the most basic means of human movement and is an act that occurs through complex and organic movements of joints, muscles, and nerves throughout the body. Analyzing walking can help determine the user's motor skills, the possibility of developing specific diseases, and walking health levels.
- dynamic indicators such as walking speed and knee joint angle must be analyzed together with the pressure acting under the foot (plantar pressure) and the power or balance-related indicators that evaluate its balance.
- both the balance and dynamic indicators of walking can be precisely evaluated using force plates that can measure foot pressure, along with observations by experts, motion capture equipment, and cameras.
- IMU Intelligent Measurement Unit
- a technology is required that can predict dynamic indicators such as knee joint angle, stride length, and walking speed using only plantar pressure data.
- the present invention aims to provide a method and system for accurately estimating stride length based on vector data derived from plantar pressure data and image data of a two-dimensional matrix by utilizing an artificial intelligence learning model.
- a first aspect of the present invention can provide a gait analysis method including a step of measuring plantar pressure data for each region of a foot by a plurality of sensors, a step of preprocessing the plantar pressure data, a step of deriving vector data of center of pressure velocity for each region of the foot based on the preprocessed data, a step of generating a two-dimensional matrix of plantar pressure images based on the preprocessed data, a step of estimating a stride from the vector data of center of pressure velocity for each region and the two-dimensional matrix of plantar pressure images using an artificial intelligence model, and a step of displaying the estimated stride and a gait analysis result.
- the method may further include a step of estimating a lower extremity joint angle from vector data of a pressure center point velocity by region and a plantar pressure image of the two-dimensional matrix using an artificial intelligence model.
- the preprocessed data may include heel strike information and toe off information.
- the foot region may include the phalanges region, the metatarsals region, the mid-foot region, and the heel region.
- the method may include a step of inputting vector data of the velocity of the center of pressure point by region into a convolutional neural network (CNN), and inputting the plantar pressure image of the two-dimensional matrix into a feed-forward neural network (FNN) to output a lower limb joint angle.
- CNN convolutional neural network
- FNN feed-forward neural network
- the method may further include a step of inputting a two-dimensional matrix of plantar pressure images into the CNN, obtaining features, and inputting the lower extremity joint angles into the FNN to output a stride.
- the method may include a step of displaying at least one of average stride, walking speed, walking distance, walking cycle, walking count, center of pressure, and plantar pressure distribution information.
- a second aspect of the present invention can provide a wearable device including a sensing unit that measures plantar pressure data for each area of the foot, and a communication unit that transmits the plantar pressure data to a server for gait analysis.
- a third aspect of the present invention comprises a communication unit which receives plantar pressure data from a wearable device, and a control unit which preprocesses the plantar pressure data, derives vector data of center of pressure velocity for each region of the foot based on the preprocessed data, generates plantar pressure image data of a two-dimensional matrix based on the preprocessed data, and estimates a stride from the vector data of center of pressure velocity for each region and the plantar pressure image of the two-dimensional matrix using an artificial intelligence model, wherein the communication unit can provide a server which transmits the estimated stride and gait analysis results to a mobile device.
- a fourth aspect of the present invention can provide a mobile device including a communication unit that receives stride and gait analysis results from a server, and a display unit that displays stride and gait analysis results.
- the present invention has a technical effect of more accurately estimating an individual's stride and analyzing walking using only plantar pressure data without an IMU sensor by utilizing artificial intelligence. Based on this, the stride information obtained easily can be utilized in areas such as providing health information in daily life, health monitoring systems, and diagnosing and predicting diseases related to walking.
- FIG. 1 is a diagram illustrating an example of a stride estimation system using plantar pressure data according to one embodiment.
- FIG. 2 is a flowchart illustrating a method for estimating stride length using plantar pressure data according to one embodiment.
- FIG. 3 is a diagram showing an example of preprocessing plantar pressure data according to one embodiment.
- FIGS. 4 and 5 are diagrams showing examples of generating a two-dimensional matrix of plantar pressure images from preprocessed data according to one embodiment.
- Figure 6 is a diagram showing an example of deriving vector data of the velocity of the center of pressure point by region of the foot according to one embodiment.
- FIG. 7 is a diagram illustrating an example of an artificial intelligence model for estimating stride according to one embodiment.
- FIG. 8 is a block diagram illustrating a configuration of a wearable device according to one embodiment.
- FIG. 9 is a block diagram illustrating the configuration of a server according to one embodiment.
- FIG. 10 is a block diagram illustrating a configuration of a mobile device according to one embodiment.
- first, second, A, B, etc. may be used to describe various components, but the components should not be limited by the terms. The terms are only used to distinguish one component from another.
- the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
- the term and/or includes any combination of a plurality of related described items or any item among a plurality of related described items.
- the present embodiments relate to a method and system for estimating stride length using plantar pressure data. Details that are widely known to those skilled in the art to which the embodiments pertain will be omitted. The present invention will be described in detail below with reference to the attached drawings.
- FIG. 1 is a diagram illustrating an example of a stride estimation system using plantar pressure data according to one embodiment.
- a stride estimation system may include a wearable device (100) that senses plantar pressure of a user's foot, a server (200) that estimates stride based on plantar pressure data, and a mobile device (300) that displays stride and gait analysis results received from the server.
- the wearable device (100) may be a wearable type worn on the sole of the user's foot in the form of an insole or a sock, but is not limited thereto, and may include all types of devices that can sense the user's plantar pressure and transmit plantar pressure data to the server.
- the wearable device (100) and the server (200) may be connected wirelessly or by wire through communication units (110, 210) to transmit and receive data.
- the server (200) is a computer equipped with a data processing function to estimate stride length from plantar pressure data using artificial intelligence, and is widely known to those skilled in the art, so a detailed description thereof will be omitted.
- the server (200) may communicate with a wearable device (100) and a mobile device (300) through a predetermined network to use information necessary for estimating stride length and to display stride and gait analysis results.
- the network includes a Local Area Network (LAN), a Wide Area Network (WAN), a Value Added Network (VAN), a mobile radio communication network, a satellite communication network, and a combination thereof, and is a comprehensive data communication network that allows each network component to communicate smoothly with each other, and may include wired Internet, wireless Internet, and mobile radio communication networks.
- Wireless communications may include, but are not limited to, wireless LAN (Wi-Fi), Bluetooth, Bluetooth low energy, Zigbee, WFD (Wi-Fi Direct), UWB (ultra wideband), infrared communication (IrDA, infrared Data Association), NFC (Near Field Communication), etc.
- FIG. 2 is a flowchart illustrating a method for estimating stride length using plantar pressure data according to one embodiment.
- a plurality of sensors may measure plantar pressure data for each region of the foot.
- the wearable device (100) may measure plantar pressure data for each region of the foot using a plurality of pressure sensors.
- the wearable device (100) may be in the form of an insole or a sock, and the plurality of pressure sensors may be arranged in each of the phalanges region, the metatarsal region, the midfoot region, and the heel region of the foot, thereby allowing plantar pressure to be measured more accurately.
- step S220 plantar pressure data can be preprocessed.
- a server (200) receiving plantar pressure data from a wearable device (100) and preprocessing the plantar pressure data will be described later with reference to FIG. 3.
- step S230 vector data of center of pressure velocity can be derived for each region based on the preprocessed data.
- the preprocessed data can include heel strike information and toe off information.
- An example of the server (200) deriving vector data of center of pressure velocity for each region of the foot will be described later with reference to FIG. 6.
- a step length can be estimated from vector data of the pressure center point velocity by region and a two-dimensional matrix of plantar pressure images using an artificial intelligence model.
- the step length can be a step length, which is a distance from one heel to the opposite heel, or a stride length, which is a distance from one heel to the same heel.
- the artificial intelligence model can be used to estimate the lower extremity joint angle from the vector data of the pressure center point velocity by region and the plantar pressure image of the two-dimensional matrix.
- the lower extremity joint angle can include the hip angle, the knee angle, and the ankle angle.
- step S260 the estimated stride and gait analysis results can be displayed.
- the mobile device (300) may receive and display stride and gait analysis results from the server (200). Additionally, the mobile device (300) may display at least one of average stride, walking speed, walking distance, walking cycle, number of walking steps, center of pressure, and plantar pressure distribution information.
- the mobile device (300) can display gait information, gait cycle information, gait index information, etc. derived from the results of estimating stride length and lower extremity joint angle by the server (200).
- the gait information derived from the results of estimating stride length and lower extremity joint angle can include stride length, step length, average stride distance, average step distance, gait velocity, hip angle, knee angle, ankle angle, etc.
- Gait cycle information may include stride time, step time, stance phase, swing phase, double support time, single support time, and stance/swing ratio.
- Gait parameters may include step count, cadence, gait asymmetry, phase coordination index (PCI), coefficient of variance (CV), plantar pressure difference (PPD), center of pressure (COP), and ratio of plantar pressure distribution.
- PCI phase coordination index
- CV coefficient of variance
- PPD plantar pressure difference
- COP center of pressure
- FIG. 3 is a diagram showing an example of preprocessing plantar pressure data according to one embodiment.
- the server (200) can preprocess the plantar pressure data received from the wearable device (100) so that the plantar pressure data obtained can be used for estimating the stride.
- the server (200) can normalize the data to remove an offset and facilitate signal processing.
- the server (200) can remove an outlier element to remove saturated data.
- the server (200) can use a derivative filter to obtain slope information and amplify the data and perform Data Squared.
- the point where the pressure rises can be determined as a heel strike through the slope information, and the peak point can be determined as a toe off through the peak detection algorithm.
- FIGS. 4 and 5 are diagrams showing examples of generating a two-dimensional matrix of plantar pressure images from preprocessed data according to one embodiment.
- Fig. 4 shows preprocessed plantar pressure data, heel strike information and toe-off information acquired in the data preprocessing process, and gait cycle phases.
- Fig. 5 shows a plantar pressure image of a two-dimensional matrix generated by converting the preprocessed plantar pressure data of Fig. 4 and a gait cycle phase.
- the plantar pressure image of the two-dimensional matrix is an image that intuitively displays the location where pressure is applied to the sole of the foot according to the gait cycle phase.
- This plantar pressure image of the two-dimensional matrix can be used as an input for an artificial intelligence model, which will be described later with reference to Fig. 7.
- a square in the plantar pressure image of the two-dimensional matrix indicates the location of the pressure, and a lower brightness of the square means a greater magnitude of the applied pressure.
- Figure 6 is a diagram showing an example of the center of pressure point velocity by region of the foot according to one embodiment.
- the vector data of the center of pressure velocity by foot area is different for each individual depending on body type, weight, leg length, foot structure, etc., and even for the same person, it is different depending on changes in body type such as before and after childbirth. Therefore, by separating the foot area and obtaining the vector data of the center of pressure velocity to estimate the stride, it is possible to more accurately analyze the walking habits according to the individual's body type.
- the vector data of the velocity of the center of pressure is expressed in x-coordinates and y-coordinates, and the method of obtaining the x-coordinates and y-coordinates of the center of pressure velocity is shown in the mathematical expression 2.
- FIG. 7 is a diagram illustrating an example of an artificial intelligence model for estimating stride according to one embodiment.
- the inputs to the AI model are plantar pressure data, vector data of the center of pressure point velocity by region of the foot derived from the data, and a two-dimensional matrix of plantar pressure images, and the outputs of the AI model are lower extremity joint angles and stride length.
- the network that outputs the lower extremity joint angles and the network that outputs the stride length can be used separately, but in order to improve accuracy, the two networks will be used together.
- the plantar pressure data and the vector data of the velocity of the pressure center point by region are input into the FC layer (fully-connected layer) to extract features, and the two-dimensional matrix of the plantar pressure image is input into the CNN (convolutional neural network) to extract features and combine them to derive the lower extremity joint angle.
- FC layer fully-connected layer
- CNN convolutional neural network
- the two-dimensional matrix of plantar pressure images from above can be input into CNN to extract features and also the lower limb joint angle derived from above can be input into another FNN to estimate stride length.
- the results output through the artificial intelligence model can be stored in the memory of the server (200) and can also be transmitted to a mobile device (300) for display to the user.
- FIG. 8 is a block diagram illustrating a configuration of a wearable device according to one embodiment.
- a wearable device (100) may include a communication unit (110) and a sensing unit (120). However, not all of the components illustrated in FIG. 8 are essential components of the wearable device (100). The wearable device (100) may be implemented with more components than the components illustrated in FIG. 8, or may be implemented with fewer components than the components illustrated in FIG. 8.
- the communication unit (110) may include one or more components that allow the wearable device (100) to communicate with another device (not shown) and a server (200).
- the other device (not shown) may be a computing device such as the server (200) or a display device, but is not limited thereto.
- the communication unit (110) may transmit and receive information necessary for estimating plantar pressure data and stride length with another device (not shown) and a server (200).
- the other device may be another device of the user of the wearable device (100), and the other device of the user may be a mobile device for outputting the user's walking status.
- the sensing unit (120) may include, but is not limited to, a plurality of pressure sensors.
- the plurality of pressure sensors may be piezoresistive and/or capacitive pressure sensors, and at least one pressure sensor may be positioned in each of the phalanges region, the metatarsal region, the midfoot region, and the heel region of the foot. This has the advantage that plantar pressure data can be measured more accurately in each region.
- FIG. 9 is a block diagram illustrating the configuration of a server according to one embodiment.
- a server (200) may include a communication unit (210), a memory (220), and a control unit (230). However, not all of the components illustrated in FIG. 9 are essential components of the server (200).
- the server (200) may be implemented with more components than the components illustrated in FIG. 9, or may be implemented with fewer components than the components illustrated in FIG. 9. The above components will be described in turn below.
- the communication unit (110) may include one or more components that allow the wearable device (100) to communicate with another device (not shown) and a server (200).
- the other device (not shown) may be a computing device such as the server (200) or a display device, but is not limited thereto.
- the communication unit (210) can transmit and receive information necessary for estimating stride length to and from the wearable device (100), and can transmit and receive stride and gait analysis results to and from the mobile device (300).
- the memory (220) can store a program for processing and controlling the control unit (230), and can also store data input to or output from the server (200).
- the memory (220) may include at least one type of storage medium among a flash memory type, a hard disk type, a multimedia card micro type, a card type memory (for example, an SD or XD memory, etc.), a RAM (Random Access Memory), a SRAM (Static Random Access Memory), a ROM (Read-Only Memory), an EEPROM (Electrically Erasable Programmable Read-Only Memory), a PROM (Programmable Read-Only Memory), a magnetic memory, a magnetic disk, and an optical disk.
- a flash memory type for example, an SD or XD memory, etc.
- RAM Random Access Memory
- SRAM Static Random Access Memory
- ROM Read-Only Memory
- EEPROM Electrically Erasable Programmable Read-Only Memory
- PROM Program Memory
- the control unit (230) typically controls the overall operation of the server (200).
- the control unit (230) may have at least one processor.
- the control unit (230) may include a plurality of processors or may include one processor in an integrated form.
- the processor may mainly mean a central processing unit (CPU), an application processor (AP), a graphics processing unit (GPU), etc.
- the CPU, AP, or GPU may include one or more cores therein, and the CPU, AP, or GPU may operate using an operating voltage and a clock signal.
- the CPU or AP may be composed of several cores optimized for serial processing
- the GPU may be composed of thousands of smaller and more efficient cores designed for parallel processing.
- control unit (230) can control the user input unit (not shown), the output unit (not shown), the sensing unit (not shown), the communication unit (not shown), the A/V input unit (not shown), etc., in general, by executing the programs stored in the memory (220).
- control unit (230) can cause the server (200) to estimate the stride length and derive the gait analysis result by analyzing the plantar pressure data.
- control unit (230) according to one embodiment can learn the criteria for determining how to estimate the stride length by analyzing the plantar pressure data.
- FIG. 10 is a block diagram illustrating a configuration of a mobile device according to one embodiment.
- a mobile device (300) may include a communication unit (310) and a display unit (320). However, not all of the components illustrated in FIG. 10 are essential components of the mobile device (300). The mobile device (300) may be implemented with more components than the components illustrated in FIG. 10, or the mobile device (300) may be implemented with fewer components than the components illustrated in FIG. 10.
- the communication unit (310) may include one or more components that allow the mobile device (300) to communicate with another device (not shown) and the server (200).
- the other device (not shown) may be a computing device such as the server (200) or a sensing device, but is not limited thereto.
- the communication unit (310) may transmit and receive stride and gait analysis results to and from the server (200).
- the display unit (320) displays and outputs information received from the mobile device (300).
- the display unit (320) can display stride and gait analysis results received from the server (200).
- each component may be integrated, added, or omitted depending on the specifications of the wearable device (100), the server (200), and the mobile device (300) being implemented. That is, two or more components may be combined into one component, or one component may be divided into two or more components and configured.
- the functions performed by each component (or module) are for explaining examples, and the specific operations or devices thereof do not limit the scope of the present invention.
- Computer-readable media can be any available media that can be accessed by a computer and includes both volatile and nonvolatile media, removable and non-removable media. Additionally, computer-readable media can include both computer storage media and communication media.
- Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information, such as computer-readable instructions, data structures, program modules, or other data.
- Communication media typically includes computer-readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave, or other transport mechanism, and includes any information delivery media.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dentistry (AREA)
- Physiology (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Geometry (AREA)
- Computer Networks & Wireless Communication (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Disclosed is a gait analysis method comprising the steps of: measuring plantar pressure data for each area of a foot by a plurality of sensors; preprocessing the plantar pressure data; deriving vector data of a pressure center point velocity for each area on the basis of the preprocessed data; generating a plantar pressure image in a two-dimensional matrix on the basis of the preprocessed data; estimating a stride length from the vector data of the pressure center point velocity for each area and the plantar pressure image in the two-dimensional matrix by using an artificial intelligence model; and displaying the estimated stride length and a gait analysis result.
Description
아래의 설명은 족저압 데이터를 이용한 보폭 추정 방법 및 시스템에 관한 것이고, 보다 구체적으로는 인공지능을 이용하여 족저압 데이터 및 이를 이용해 도출되는 보행 정보를 기초로 보폭을 추정하는 방법 및 시스템에 관한 것이다.The following description relates to a method and system for estimating stride length using plantar pressure data, and more specifically, to a method and system for estimating stride length based on plantar pressure data and gait information derived from the data using artificial intelligence.
보행은 인간의 가장 기본적인 이동수단이면서 전신의 관절, 근육, 신경 등이 복합적이고 유기적인 움직임을 통해 나타나는 행위로서 보행을 분석하면 사용자의 운동능력, 특정 질환의 발병 가능성, 보행 건강 수준 등을 파악할 수 있다. 보행에 대해 복합적으로 분석하기 위해서는 발 밑에 작용하는 압력(족저압)과 그 균형을 평가하는 힘 또는 균형 관련 지표와 더불어 보행 속도와 무릎관절 각도 등의 동적 지표를 함께 분석해야 한다. 병원이나 연구소와 같은 보행 전문 분석 기관에서는 발의 압력을 측정할 수 있는 포스플레이트와 함께 전문가의 관찰, 모션 캡쳐 장비, 카메라 등을 이용하여 보행의 균형 및 동적 지표를 모두 정밀하게 평가할 수 있지만 대상자가 전문 기관을 방문해야하는 불편함이 있으며, 실생활 중에 측정된 데이터가 아닌 측정환경에서의 데이터가 획득된다는 단점도 있다. 이러한 문제를 해결하기 위해 웨어러블 센서를 통하여 비대면으로, 일상 속의 보행 데이터를 수집하고 평가하는 것을 목표로 하는 기술들이 개발되어 왔다.Walking is the most basic means of human movement and is an act that occurs through complex and organic movements of joints, muscles, and nerves throughout the body. Analyzing walking can help determine the user's motor skills, the possibility of developing specific diseases, and walking health levels. In order to comprehensively analyze walking, dynamic indicators such as walking speed and knee joint angle must be analyzed together with the pressure acting under the foot (plantar pressure) and the power or balance-related indicators that evaluate its balance. In specialized walking analysis institutions such as hospitals and research institutes, both the balance and dynamic indicators of walking can be precisely evaluated using force plates that can measure foot pressure, along with observations by experts, motion capture equipment, and cameras. However, there is the inconvenience of the subject having to visit a specialized institution, and there is also the disadvantage that data is acquired in the measurement environment rather than data measured during real life. To solve these problems, technologies have been developed that aim to collect and evaluate walking data in everyday life non-face-to-face through wearable sensors.
종래의 웨어러블 보행 분석 기술들은 인솔 형태의 족저압 센서와 가속도 등의 데이터를 측정할 수 있는 IMU(Inertrial Measurement Unit)를 함께 사용하여 균형 지표와 동적 지표를 복합적으로 평가한다. 그러나 IMU는 충격에 민감하여 인솔에 내장하는 것에 제약이 있으며 보행을 평가하기에 최적의 IMU 측정 위치에 대한 컨센서스 또는 기준이 존재하지 않기 때문에 측정 위치를 선정하는 것에 어려움이 있다. 또한, 사용자의 무릎, 종아리, 대퇴부 등에 IMU를 착용하는 방식은 사용자의 편의성 및 순응도를 크게 떨어뜨려 장기적으로 일상 속의 보행을 모니터링하는데 적합하지 않다.Conventional wearable gait analysis technologies use an insole-type plantar pressure sensor and an IMU (Inertrial Measurement Unit) that can measure data such as acceleration to comprehensively evaluate balance and dynamic indices. However, IMUs are sensitive to shock, so there are restrictions on embedding them in insoles. In addition, there is no consensus or standard for the optimal IMU measurement location for evaluating gait, making it difficult to select a measurement location. In addition, the method of wearing IMUs on the user's knees, calves, thighs, etc. significantly reduces user convenience and compliance, making it unsuitable for monitoring daily gait in the long term.
이에 족저압 데이터만을 사용하여 무릎 관절각도와 보폭(stride length, step length), 보행 속도 등의 동적 지표를 예측할 수 있는 기술이 요구되고 있다.Accordingly, a technology is required that can predict dynamic indicators such as knee joint angle, stride length, and walking speed using only plantar pressure data.
본 발명은 인공지능 학습 모델을 활용하여 족저압 데이터로부터 도출한 벡터 데이터와 2차원 행렬의 이미지 데이터를 기초해 보폭을 정확하게 추정하는 방법 및 시스템을 제공하고자 한다.The present invention aims to provide a method and system for accurately estimating stride length based on vector data derived from plantar pressure data and image data of a two-dimensional matrix by utilizing an artificial intelligence learning model.
상술한 과제를 달성하기 위한 기술적 수단으로서 본 발명의 제1측면은, 복수의 센서들이 발의 영역별로 족저압 데이터를 측정하는 단계, 족저압 데이터를 전처리하는 단계, 전처리된 데이터에 기초하여 발의 영역별로 압력중심점 속도의 벡터 데이터를 도출하는 단계, 전처리된 데이터에 기초하여 2차원 행렬의 족저압 이미지를 생성하는 단계, 인공지능 모델을 사용하여 영역별 압력중심점 속도의 벡터 데이터 및 2차원 행렬의 족저압 이미지로부터 보폭을 추정하는 단계, 및 추정된 보폭 및 보행 분석 결과를 디스플레이하는 단계를 포함하는, 보행 분석 방법을 제공할 수 있다.As a technical means for achieving the above-described task, a first aspect of the present invention can provide a gait analysis method including a step of measuring plantar pressure data for each region of a foot by a plurality of sensors, a step of preprocessing the plantar pressure data, a step of deriving vector data of center of pressure velocity for each region of the foot based on the preprocessed data, a step of generating a two-dimensional matrix of plantar pressure images based on the preprocessed data, a step of estimating a stride from the vector data of center of pressure velocity for each region and the two-dimensional matrix of plantar pressure images using an artificial intelligence model, and a step of displaying the estimated stride and a gait analysis result.
또한 방법은, 인공지능 모델을 사용하여 영역별 압력중심점 속도의 벡터 데이터 및 상기 2차원 행렬의 족저압 이미지로부터 하지관절각도를 추정하는 단계를 더 포함할 수 있다.Additionally, the method may further include a step of estimating a lower extremity joint angle from vector data of a pressure center point velocity by region and a plantar pressure image of the two-dimensional matrix using an artificial intelligence model.
또한 전처리된 데이터는 힐 스트라이크(heel strike) 정보 및 토 오프(toe off) 정보를 포함할 수 있다.Additionally, the preprocessed data may include heel strike information and toe off information.
또한 발의 영역은 지골(phalanges) 영역, 중족골(metatarsal) 영역, 중족부(mid-foot) 영역 및 뒤꿈치(heel) 영역을 포함할 수 있다.Additionally, the foot region may include the phalanges region, the metatarsals region, the mid-foot region, and the heel region.
또한 방법은, 영역별 압력중심점 속도의 벡터 데이터를 CNN(convolutional neural network)에 입력하고, 상기 2차원 행렬의 족저압 이미지를 FNN(Feed-forward Neural Network)에 입력하여 하지관절각도를 출력하는 단계를 포함할 수 있다.Additionally, the method may include a step of inputting vector data of the velocity of the center of pressure point by region into a convolutional neural network (CNN), and inputting the plantar pressure image of the two-dimensional matrix into a feed-forward neural network (FNN) to output a lower limb joint angle.
또한 방법은, 2차원 행렬의 족저압 이미지를 상기 CNN에 입력하여 획득된 특징들, 및 상기 하지관절각도를 FNN에 입력함으로써 보폭을 출력하는 단계를 더 포함할 수 있다.Additionally, the method may further include a step of inputting a two-dimensional matrix of plantar pressure images into the CNN, obtaining features, and inputting the lower extremity joint angles into the FNN to output a stride.
또한 방법은, 평균 보폭, 보행 속도, 보행 거리, 보행 주기, 보행 횟수, 압력 중심점, 및 족저압 분포 정보 중 적어도 하나를 디스플레이하는 단계를 포함할 수 있다.Additionally, the method may include a step of displaying at least one of average stride, walking speed, walking distance, walking cycle, walking count, center of pressure, and plantar pressure distribution information.
본 발명의 제2측면은 발의 영역별로 족저압 데이터를 측정하는 센싱부,및 보행 분석을 위하여 상기 족저압 데이터를 서버로 전송하는 통신부를 포함하는, 웨어러블 디바이스를 제공할 수 있다.A second aspect of the present invention can provide a wearable device including a sensing unit that measures plantar pressure data for each area of the foot, and a communication unit that transmits the plantar pressure data to a server for gait analysis.
본 발명의 제3측면은 웨어러블 디바이스로부터 족저압 데이터를 수신하는 통신부, 및 상기 족저압 데이터를 전처리하고, 상기 전처리된 데이터에 기초하여, 발의 영역별로 압력중심점 속도의 벡터 데이터를 도출하고, 상기 전처리된 데이터에 기초하여, 2차원 행렬의 족저압 이미지 데이터를 생성하고, 그리고 인공지능 모델을 사용하여, 상기 영역별 압력중심점 속도의 벡터 데이터 및 상기 2차원 행렬의 족저압 이미지로부터 보폭을 추정하는 제어부를 포함하고, 통신부는 상기 추정된 보폭 및 보행 분석 결과를 모바일 디바이스로 전송하는, 서버를 제공할 수 있다.A third aspect of the present invention comprises a communication unit which receives plantar pressure data from a wearable device, and a control unit which preprocesses the plantar pressure data, derives vector data of center of pressure velocity for each region of the foot based on the preprocessed data, generates plantar pressure image data of a two-dimensional matrix based on the preprocessed data, and estimates a stride from the vector data of center of pressure velocity for each region and the plantar pressure image of the two-dimensional matrix using an artificial intelligence model, wherein the communication unit can provide a server which transmits the estimated stride and gait analysis results to a mobile device.
본 발명의 제4측면은 서버로부터 보폭 및 보행 분석 결과를 수신하는 통신부, 및 보폭 및 보행 분석 결과를 디스플레이하는 디스플레이부를 포함하는, 모바일 디바이스를 제공할 수 있다.A fourth aspect of the present invention can provide a mobile device including a communication unit that receives stride and gait analysis results from a server, and a display unit that displays stride and gait analysis results.
본 발명은 인공지능을 활용함으로써, IMU센서 없이 족저압 데이터만으로도 보다 정확하게 개인의 보폭을 추정하고 보행을 분석할 수 있는 기술적 효과가 있다. 이를 통해 간편하게 획득한 보폭 정보를 기반으로 일상생활 속 건강정보 제공 및 건강 모니터링 시스템, 보행과 관련된 질환 진단 및 예측 등의 분야에 활용될 수 있다.The present invention has a technical effect of more accurately estimating an individual's stride and analyzing walking using only plantar pressure data without an IMU sensor by utilizing artificial intelligence. Based on this, the stride information obtained easily can be utilized in areas such as providing health information in daily life, health monitoring systems, and diagnosing and predicting diseases related to walking.
도 1은 일 실시예에 따라 족저압 데이터를 이용한 보폭 추정 시스템을 제공하는 예시를 나타내는 도면이다.FIG. 1 is a diagram illustrating an example of a stride estimation system using plantar pressure data according to one embodiment.
도 2는 일 실시예에 따른 족저압 데이터를 이용한 보폭 추정 방법을 설명하기 위한 흐름도이다.FIG. 2 is a flowchart illustrating a method for estimating stride length using plantar pressure data according to one embodiment.
도 3은 일 실시예에 따라 족저압 데이터를 전처리하는 예시를 나타내는 도면이다.FIG. 3 is a diagram showing an example of preprocessing plantar pressure data according to one embodiment.
도 4 및 도 5는 일 실시예에 따라 전처리된 데이터로부터 2차원 행렬의 족저압 이미지를 생성하는 예시를 나타내는 도면이다.FIGS. 4 and 5 are diagrams showing examples of generating a two-dimensional matrix of plantar pressure images from preprocessed data according to one embodiment.
도 6은 일 실시예에 따른 발의 영역별 압력중심점 속도의 벡터 데이터 도출 예시를 나타내는 도면이다.Figure 6 is a diagram showing an example of deriving vector data of the velocity of the center of pressure point by region of the foot according to one embodiment.
도 7은 일 실시예에 따라 보폭을 추정하기 위한 인공지능 모델의 예시를 나타내는 도면이다.FIG. 7 is a diagram illustrating an example of an artificial intelligence model for estimating stride according to one embodiment.
도 8은 일 실시예에 따른 웨어러블 디바이스의 구성을 도시한 블록도이다.FIG. 8 is a block diagram illustrating a configuration of a wearable device according to one embodiment.
도 9는 일 실시예에 따른 서버의 구성을 도시한 블록도이다.FIG. 9 is a block diagram illustrating the configuration of a server according to one embodiment.
도 10은 일 실시예에 따른 모바일 디바이스의 구성을 도시한 블록도이다.FIG. 10 is a block diagram illustrating a configuration of a mobile device according to one embodiment.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 한정하려는 것이 아니며, 본 발명의 사 상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설 명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. The present invention can be modified in various ways and has various embodiments, and specific embodiments are illustrated in the drawings and described in detail. However, this is not intended to limit the present invention to specific embodiments, but should be understood to include all modifications, equivalents, or substitutes included in the spirit and technical scope of the present invention. In describing each drawing, similar reference numerals are used for similar components.
제1, 제2, A, B 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어 들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수개의 관련된 기재된 항목들의 조합 또는 복수개의 관련된 기재된 항목들 중의 어느 항목을 포함한다. The terms first, second, A, B, etc. may be used to describe various components, but the components should not be limited by the terms. The terms are only used to distinguish one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component. The term and/or includes any combination of a plurality of related described items or any item among a plurality of related described items.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. When it is said that a component is "connected" or "connected" to another component, it should be understood that it may be directly connected or connected to that other component, but that there may be other components in between. On the other hand, when it is said that a component is "directly connected" or "directly connected" to another component, it should be understood that there are no other components in between.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수개의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. The terminology used in this application is only used to describe specific embodiments and is not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly indicates otherwise. In this application, the terms "comprises" or "has" and the like are intended to specify the presence of a feature, number, step, operation, component, part or combination thereof described in the specification, but should be understood to not exclude in advance the possibility of the presence or addition of one or more other features, numbers, steps, operations, components, parts or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일 반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms defined in commonly used dictionaries should be interpreted as having a meaning consistent with their meaning in the context of the relevant art, and will not be interpreted in an idealized or overly formal sense unless expressly defined in this application.
본 실시예들은 족저압 데이터를 이용한 보폭 추정 방법 및 시스템에 관한 것으로서 이하의 실시예들이 속하는 기술 분야에서 통상의 지식을 가진 자에게 널리 알려져 있는 사항들에 관해서는 자세한 설명을 생략한다. 이하 첨부된 도면을 참조하여 본 발명을 상세히 설명하기로 한다.The present embodiments relate to a method and system for estimating stride length using plantar pressure data. Details that are widely known to those skilled in the art to which the embodiments pertain will be omitted. The present invention will be described in detail below with reference to the attached drawings.
도 1은 일 실시예에 따라 족저압 데이터를 이용한 보폭 추정 시스템을 제공하는 예시를 나타내는 도면이다.FIG. 1 is a diagram illustrating an example of a stride estimation system using plantar pressure data according to one embodiment.
도 1을 참조하면, 일 실시예에 따른 보폭 추정 시스템은 사용자의 발의 족저압을 센싱하는 웨어러블 디바이스(100), 족저압 데이터를 기반으로 보폭을 추정하는 서버(200), 서버로부터 수신한 보폭 및 보행 분석 결과를 디스플레이하는 모바일 디바이스(300)를 포함할 수 있다. 예를 들어, 웨어러블 디바이스(100)는 인솔 또는 양말 형태로서 사용자의 발바닥 부위에 착용하는 웨어러블(wearable)한 형태일 수 있으나 이에 제한되지 않으며, 사용자의 족저압을 센싱, 족저압 데이터를 서버에게 전송할 수 있는 모든 종류의 기기를 포함할 수 있다. 일 실시예에서, 웨어러블 디바이스(100)와 서버(200)는 통신부들(110, 210)을 통해 무선 또는 유선으로 연결되어 데이터를 송수신할 수 있다.Referring to FIG. 1, a stride estimation system according to one embodiment may include a wearable device (100) that senses plantar pressure of a user's foot, a server (200) that estimates stride based on plantar pressure data, and a mobile device (300) that displays stride and gait analysis results received from the server. For example, the wearable device (100) may be a wearable type worn on the sole of the user's foot in the form of an insole or a sock, but is not limited thereto, and may include all types of devices that can sense the user's plantar pressure and transmit plantar pressure data to the server. In one embodiment, the wearable device (100) and the server (200) may be connected wirelessly or by wire through communication units (110, 210) to transmit and receive data.
서버(200)는 인공지능을 통해 족저압 데이터로부터 보폭을 추정할 수 있도록 데이터 프로세싱 기능을 구비한 컴퓨터이며, 당업자에게 널리 알려져 있으므로 자세한 설명은 생략한다. 또한, 서버(200)는 보폭을 추정하기 위해 필요한 정보를 이용하고, 보폭 및 보행 분석 결과를 표시하기 위하여, 소정의 네트워크를 통하여 웨어러블 디바이스(100) 및 모바일 디바이스(300) 와 통신할 수 있다. 이 경우, 네트워크는 근거리 통신망(Local Area Network; LAN), 광역 통신망(Wide Area Network; WAN), 부가가치 통신망(Value Added Network; VAN), 이동 통신망(mobile radio communication network), 위성 통신망 및 이들의 상호 조합을 포함하며, 각 네트워크 구성 주체가 서로 원활하게 통신을 할 수 있도록 하는 포괄적인 의미의 데이터 통신망이며, 유선 인터넷, 무선 인터넷 및 모바일 무선 통신망을 포함할 수 있다. 무선 통신은 예를 들어, 무선 랜(Wi-Fi), 블루투스, 블루투스 저 에너지(Bluetooth low energy), 지그비, WFD(Wi-Fi Direct), UWB(ultra wideband), 적외선 통신(IrDA, infrared Data Association), NFC(Near Field Communication) 등이 있을 수 있으나, 이에 한정되는 것은 아니다.The server (200) is a computer equipped with a data processing function to estimate stride length from plantar pressure data using artificial intelligence, and is widely known to those skilled in the art, so a detailed description thereof will be omitted. In addition, the server (200) may communicate with a wearable device (100) and a mobile device (300) through a predetermined network to use information necessary for estimating stride length and to display stride and gait analysis results. In this case, the network includes a Local Area Network (LAN), a Wide Area Network (WAN), a Value Added Network (VAN), a mobile radio communication network, a satellite communication network, and a combination thereof, and is a comprehensive data communication network that allows each network component to communicate smoothly with each other, and may include wired Internet, wireless Internet, and mobile radio communication networks. Wireless communications may include, but are not limited to, wireless LAN (Wi-Fi), Bluetooth, Bluetooth low energy, Zigbee, WFD (Wi-Fi Direct), UWB (ultra wideband), infrared communication (IrDA, infrared Data Association), NFC (Near Field Communication), etc.
모바일 디바이스(300)는, 스마트폰, 태블릿 PC, PC, 스마트 TV, 휴대폰, PDA(personal digital assistant), 랩톱, 미디어 플레이어, GPS(global positioning system) 장치, 전자책 단말기, 디지털방송용 단말기, 네비게이션, 키오스크, MP3 플레이어, 디지털 카메라, 가전기기 및 기타 모바일 또는 비모바일 컴퓨팅 장치일 수 있다. 그러나, 이에 제한되지 않으며, 모바일 디바이스(300)는 서버로부터의 보폭 및 보행 분석 결과를 수신, 및 이를 디스플레이할 수 있는 모든 종류의 기기를 포함할 수 있다.The mobile device (300) may be a smart phone, a tablet PC, a PC, a smart TV, a mobile phone, a PDA (personal digital assistant), a laptop, a media player, a GPS (global positioning system) device, an e-book reader, a digital broadcasting terminal, a navigation device, a kiosk, an MP3 player, a digital camera, a home appliance, or any other mobile or non-mobile computing device. However, the mobile device (300) is not limited thereto, and may include any type of device capable of receiving stride and gait analysis results from a server and displaying the same.
도 2는 일 실시예에 따른 족저압 데이터를 이용한 보폭 추정 방법을 설명하기 위한 흐름도이다.FIG. 2 is a flowchart illustrating a method for estimating stride length using plantar pressure data according to one embodiment.
단계 S210에서, 복수의 센서들은 발의 영역별로 족저압 데이터를 측정할 수 있다. 일 실시예에서 웨어러블 디바이스(100)는 복수의 압력 센서들을 사용하여 발의 영역별로 족저압 데이터를 측정할 수 있다. 예를 들어, 웨어러블 디바이스(100)는 인솔 또는 양말 형태일 수 있으며, 복수의 압력 센서들은 발의 지골(phalanges) 영역, 중족골(metatarsal) 영역, 중족부(mid-foot) 영역 및 뒤꿈치(heel) 영역마다 배치되어 있을 수 있어, 이를 통해 보다 정확하게 족저압을 측정할 수 있다.In step S210, a plurality of sensors may measure plantar pressure data for each region of the foot. In one embodiment, the wearable device (100) may measure plantar pressure data for each region of the foot using a plurality of pressure sensors. For example, the wearable device (100) may be in the form of an insole or a sock, and the plurality of pressure sensors may be arranged in each of the phalanges region, the metatarsal region, the midfoot region, and the heel region of the foot, thereby allowing plantar pressure to be measured more accurately.
단계 S220에서, 족저압 데이터를 전처리할 수 있다. 서버(200)가 웨어러블 디바이스(100)로부터 족저압 데이터를 수신하여, 족저압 데이터를 전처리하는 예시에 대해서는 도 3를 참조하여 후술하기로 한다. In step S220, plantar pressure data can be preprocessed. An example of a server (200) receiving plantar pressure data from a wearable device (100) and preprocessing the plantar pressure data will be described later with reference to FIG. 3.
단계 S230에서, 전처리된 데이터에 기초하여 영역별로 압력중심점 속도(center of pressure velocity)의 벡터 데이터를 도출할 수 있다. 일 실시예에서 전처리된 데이터는 힐 스트라이크(heel strike) 정보 및 토 오프(toe off) 정보를 포함할 수 있다. 서버(200)가 발의 영역별로 압력중심점 속도의 벡터 데이터를 도출하는 예시에 대해서는 도 6을 참조하여 후술하기로 한다.In step S230, vector data of center of pressure velocity can be derived for each region based on the preprocessed data. In one embodiment, the preprocessed data can include heel strike information and toe off information. An example of the server (200) deriving vector data of center of pressure velocity for each region of the foot will be described later with reference to FIG. 6.
단계 S240에서, 전처리된 데이터에 기초하여 2차원 행렬의 족저압 이미지를 생성할 수 있다. 서버(200)가 2차원 행렬의 족저압 이미지를 생성하는 예시에 대해서는 도 5를 참조하여 후술하기로 한다.In step S240, a two-dimensional matrix of plantar pressure images can be generated based on the preprocessed data. An example of a server (200) generating a two-dimensional matrix of plantar pressure images will be described later with reference to FIG. 5.
단계 S250에서, 인공지능 모델을 사용하여 영역별 압력중심점 속도의 벡터 데이터 및 2차원 행렬의 족저압 이미지로부터 보폭을 추정할 수 있다. 여기서 보폭은 한쪽 발 뒤꿈치에서 반대편 발 뒤꿈치의 거리인 스텝 거리(step length)이거나, 한쪽 발 뒤꿈치에서 같은발 뒤꿈치까지의 거리인 스트라이드 거리(stride length)일 수 있다.In step S250, a step length can be estimated from vector data of the pressure center point velocity by region and a two-dimensional matrix of plantar pressure images using an artificial intelligence model. Here, the step length can be a step length, which is a distance from one heel to the opposite heel, or a stride length, which is a distance from one heel to the same heel.
또한, 인공지능 모델을 사용하여, 영역별 압력중심점 속도의 벡터 데이터 및 2차원 행렬의 족저압 이미지로부터 하지관절각도를 추정할 수도 있다. 하지관절각도는 고관절 각도(hip angle), 무릎 각도(knee angle) 및 발목 각도(ankle angle)를 포함할 수 있다. 서버(200)가 인공지능 모델을 사용하여 보폭을 추정하는 예시에 대해서는 도 7을 참조하여 후술하기로 한다.In addition, the artificial intelligence model can be used to estimate the lower extremity joint angle from the vector data of the pressure center point velocity by region and the plantar pressure image of the two-dimensional matrix. The lower extremity joint angle can include the hip angle, the knee angle, and the ankle angle. An example of the server (200) estimating the stride using the artificial intelligence model will be described later with reference to FIG. 7.
단계 S260에서, 추정된 보폭 및 보행 분석 결과를 디스플레이할 수 있다.In step S260, the estimated stride and gait analysis results can be displayed.
일 실시예에서 모바일 디바이스(300)는 서버(200)로부터 보폭 및 보행 분석 결과를 수신하여 디스플레이할 수 있다. 또한, 모바일 디바이스(300)는 평균 보폭, 보행 속도, 보행 거리, 보행 주기, 보행 횟수, 압력 중심점, 및 족저압 분포 정보 중 적어도 하나를 디스플레이할 수 있다.In one embodiment, the mobile device (300) may receive and display stride and gait analysis results from the server (200). Additionally, the mobile device (300) may display at least one of average stride, walking speed, walking distance, walking cycle, number of walking steps, center of pressure, and plantar pressure distribution information.
예를 들어, 모바일 디바이스(300)는 서버(200)가 보폭 및 하지관절각도를 추정한 결과 파생된 보행 정보, 보행 주기 정보, 보행 지표 정보 등을 디스플레이할 수 있다. 이때, 보폭 및 하지관절각도를 추정한 결과 파생된 보행 정보는 스트라이드 거리(stride length), 스텝 거리(step length), 평균 스트라이드 거리, 평균 스텝 거리, 걸음거리 속도(gait velocity), 고관절 각도(hip angle), 무릎 각도(knee angle) 및 발목 각도(ankle angle) 등을 포함할 수 있다.For example, the mobile device (300) can display gait information, gait cycle information, gait index information, etc. derived from the results of estimating stride length and lower extremity joint angle by the server (200). At this time, the gait information derived from the results of estimating stride length and lower extremity joint angle can include stride length, step length, average stride distance, average step distance, gait velocity, hip angle, knee angle, ankle angle, etc.
보행 주기 정보는 스트라이드 시간(sride time), 스텝 시간(step time), 입각기(stance phase), 유각기(swing phase), 양다리 지지 시간(Double support time), 한다리 지지 시간(single support time) 및 입각기와 유각기 비율(Stance/swing ratio) 등을 포함할 수 있다.Gait cycle information may include stride time, step time, stance phase, swing phase, double support time, single support time, and stance/swing ratio.
보행 지표 정보는 스텝 횟수(step count), 케이던스(cadence), 걸음거리 비대칭(gait asymmetry), 상태 좌표 인덱스(phase coordination index, PCI), 변동계수(coefficient of variance, CV), 족저압 차이(plantar pressure difference, PPD), 압력중심점(center of pressure, COP) 및 족저압 차이 비율(ratio of plantar pressure distribution) 등을 포함할 수 있다.Gait parameters may include step count, cadence, gait asymmetry, phase coordination index (PCI), coefficient of variance (CV), plantar pressure difference (PPD), center of pressure (COP), and ratio of plantar pressure distribution.
도 3은 일 실시예에 따라 족저압 데이터를 전처리하는 예시를 나타내는 도면이다.FIG. 3 is a diagram showing an example of preprocessing plantar pressure data according to one embodiment.
서버(200)는 보폭의 추정을 위하여 획득된 족저압 데이터가 이용될 수 있도록 웨어러블 디바이스(100)로부터 수신된 족저압 데이터를 전처리할 수 있다. 먼저, 서버(200)가 웨어러블 디바이스(100)로부터 가공되지 않은 로우 데이터 (raw data)를 수신하면, 오프셋(offset)을 제거하고 신호처리를 용이하게 수행할 수있도록 정규화(normalization)할 수 있다. 또한, 서버(200)는 포화된 데이터를 제거하도록 아웃라이어 요소(outlier element)를 없앨 수 있다. 이후 서버(200)는 온전한 보행 데이터 확보를 위하여 고주파 데이터를 필터링 처리하도록 저대역 필터(4th butter-worth, cut-off frequency = 3 Hz)에 데이터를 통과시킬 수 있다. 또한 서버(200)는 기울기 정보를 획득하고 데이터를 증폭시키도록 미분 필터(derivative filter)를 사용하고Data Squared를 수행할 수 있다.The server (200) can preprocess the plantar pressure data received from the wearable device (100) so that the plantar pressure data obtained can be used for estimating the stride. First, when the server (200) receives raw data from the wearable device (100), it can normalize the data to remove an offset and facilitate signal processing. In addition, the server (200) can remove an outlier element to remove saturated data. Thereafter, the server (200) can pass the data through a low-pass filter (4th butter-worth, cut-off frequency = 3 Hz) to filter high-frequency data to secure complete gait data. In addition, the server (200) can use a derivative filter to obtain slope information and amplify the data and perform Data Squared.
이러한 전처리를 수행함으로써, 기울기 정보를 통해 압력이 상승하는 지점을 힐 스트라이크(heel strike)로 판단하고, 피크 검출 알고리즘을 통해 피크 지점을 토 오프(toe off)로 판단할 수 있게 된다.By performing this preprocessing, the point where the pressure rises can be determined as a heel strike through the slope information, and the peak point can be determined as a toe off through the peak detection algorithm.
도 4 및 도 5는 일 실시예에 따라 전처리된 데이터로부터 2차원 행렬의 족저압 이미지를 생성하는 예시를 나타내는 도면이다.FIGS. 4 and 5 are diagrams showing examples of generating a two-dimensional matrix of plantar pressure images from preprocessed data according to one embodiment.
도 4는 전처리된 족저압 데이터, 데이터 전처리과정에서 획득한 힐 스트라이크 정보와 토 오프 정보, 및 보행 주기 단계를 나타낸다. 도 5는 도 4의 전처리된 족저압 데이터를 변환하여 생성된 2차원 행렬의 족저압 이미지 및 보행 주기 단계를 나타낸다. 도 5를 참조하면, 2차원 행렬의 족저압 이미지는 보행 주기 단계에 따라 발바닥에 압력이 작용하는 위치를 직관적으로 알 수 있도록 표시한 이미지이다. 이러한 2차원 행렬의 족저압 이미지는 인공지능 모델의 입력으로 사용될 수 있으며 이는 도 7을 참조하여 후술하기로 한다. 2차원 행렬의 족저압 이미지에서의 사각형은 압력의 위치를 나타내며, 사각형의 명도가 낮을수록 작용하는 압력의 크기가 크다는 것을 의미한다.Fig. 4 shows preprocessed plantar pressure data, heel strike information and toe-off information acquired in the data preprocessing process, and gait cycle phases. Fig. 5 shows a plantar pressure image of a two-dimensional matrix generated by converting the preprocessed plantar pressure data of Fig. 4 and a gait cycle phase. Referring to Fig. 5, the plantar pressure image of the two-dimensional matrix is an image that intuitively displays the location where pressure is applied to the sole of the foot according to the gait cycle phase. This plantar pressure image of the two-dimensional matrix can be used as an input for an artificial intelligence model, which will be described later with reference to Fig. 7. A square in the plantar pressure image of the two-dimensional matrix indicates the location of the pressure, and a lower brightness of the square means a greater magnitude of the applied pressure.
도 6은 일 실시예에 따른 발의 영역별 압력중심점 속도의 예시를 나타내는 도면이다.Figure 6 is a diagram showing an example of the center of pressure point velocity by region of the foot according to one embodiment.
도 6을 참조하면, 발의 지골(phalanges) 영역, 중족골(metatarsal) 영역, 중족부(mid-foot) 영역 및 뒤꿈치(heel) 영역의 각 영역 별로 압력중심점(COP) 속도가 빨간색 화살표로 도시된다. Referring to Figure 6, the center of pressure (COP) velocity for each region of the phalanges region, metatarsal region, mid-foot region, and heel region of the foot is depicted by red arrows.
발의 영역별 압력중심점 속도의 벡터 데이터는 개인 별 체형, 몸무게, 다리 길이, 발의 구조 등에 따라 개개인 마다 상이하며, 동일인이라도 출산 전후 등의 체형의 변화에 따라 상이하게 된다. 따라서 발의 영역을 분리하여 압력중심점 속도의 벡터 데이터를 구해 보폭을 추정하면 보다 개인의 체형에 따른 보행 습관을 정확하게 분석할 수 있게 된다.The vector data of the center of pressure velocity by foot area is different for each individual depending on body type, weight, leg length, foot structure, etc., and even for the same person, it is different depending on changes in body type such as before and after childbirth. Therefore, by separating the foot area and obtaining the vector data of the center of pressure velocity to estimate the stride, it is possible to more accurately analyze the walking habits according to the individual's body type.
아래의 수학식 1을 참조하면, 압력중심점 속도의 벡터 데이터는 x좌표와 y좌표로 표시되며, 압력중심점 속도의 x좌표와 y좌표를 구하는 방법은 수학식 2에 나타나있다.Referring to the mathematical expression 1 below, the vector data of the velocity of the center of pressure is expressed in x-coordinates and y-coordinates, and the method of obtaining the x-coordinates and y-coordinates of the center of pressure velocity is shown in the mathematical expression 2.
[수학식 1][Mathematical formula 1]
[수학식 2][Mathematical formula 2]
수학식 2에서 족저압 데이터를 획득하는 샘플링 주기(sampling rate)가 100Hz라고 가정하면 1초에 100개의 족저압 데이터를 획득하게 되므로, 분모에 0.01을 사용하였고 분자는 압력중심점의 이동거리(현재 위치와 이전 위치에 대한 좌표 차이)가 된다. 이러한 발의 영역별 압력중심점 속도의 벡터 데이터는 인공지능 모델의 입력으로 사용될 수 있으며 이는 도 7을 참조하여 후술하기로 한다.Assuming that the sampling rate for acquiring plantar pressure data in mathematical expression 2 is 100 Hz, 100 plantar pressure data are acquired per second, so 0.01 is used in the denominator, and the numerator is the movement distance of the center of pressure (the difference in coordinates between the current location and the previous location). This vector data of the center of pressure velocity for each area of the foot can be used as an input for an artificial intelligence model, which will be described later with reference to Fig. 7.
도 7은 일 실시예에 따라 보폭을 추정하기 위한 인공지능 모델의 예시를 나타내는 도면이다.FIG. 7 is a diagram illustrating an example of an artificial intelligence model for estimating stride according to one embodiment.
도 7을 살펴보면, 인공지능 모델에의 입력으로는 족저압 데이터 및 이를 통해 도출한 발의 영역별 압력중심점 속도의 벡터 데이터와 2차원 행렬의 족저압 이미지가 입력되고, 인공지능 모델의 출력으로는 하지관절각도 및 보폭이 출력된다. 이때 하지관절각도를 출력하는 네트워크와 보폭을 출력하는 네트워크를 나누어서 사용할 수도 있지만, 보다 정확도를 향상시키기 위해 두 네트워크를 함께 사용하는 것으로 설명하겠다. Looking at Figure 7, the inputs to the AI model are plantar pressure data, vector data of the center of pressure point velocity by region of the foot derived from the data, and a two-dimensional matrix of plantar pressure images, and the outputs of the AI model are lower extremity joint angles and stride length. At this time, the network that outputs the lower extremity joint angles and the network that outputs the stride length can be used separately, but in order to improve accuracy, the two networks will be used together.
먼저, 족저압 데이터 및 영역별 압력중심점 속도의 벡터 데이터를 FC layer(fully-connected layer)에 입력하여 특징을 추출하고, 2차원 행렬의 족저압 이미지를 CNN(convolutional neural network) 에 입력하여 특징을 추출하여 합하면 하지관절각도를 도출해낼 수 있다.First, the plantar pressure data and the vector data of the velocity of the pressure center point by region are input into the FC layer (fully-connected layer) to extract features, and the two-dimensional matrix of the plantar pressure image is input into the CNN (convolutional neural network) to extract features and combine them to derive the lower extremity joint angle.
이후, 위에서 2차원 행렬의 족저압 이미지를 CNN에 입력하여 추출된 특징들과 또한 위에서 도출된 하지관절각도를 또다른 FNN에 입력하여 보폭을 추정할 수 있다. 인공지능 모델을 통해 출력된 결과는 서버(200)의 메모리에 저장될 수 있으며, 또한 사용자에의 디스플레이를 위해 모바일 디바이스(300)로 전송될 수 있다.Afterwards, the two-dimensional matrix of plantar pressure images from above can be input into CNN to extract features and also the lower limb joint angle derived from above can be input into another FNN to estimate stride length. The results output through the artificial intelligence model can be stored in the memory of the server (200) and can also be transmitted to a mobile device (300) for display to the user.
도 8은 일 실시예에 따른 웨어러블 디바이스의 구성을 도시한 블록도이다.FIG. 8 is a block diagram illustrating a configuration of a wearable device according to one embodiment.
도 8에 도시된 바와 같이, 일 실시예에 따른 웨어러블 디바이스(100)는 통신부(110) 및 센싱부(120)를 포함할 수 있다. 그러나, 도 8에 도시된 구성 요소 모두가 웨어러블 디바이스(100)의 필수 구성 요소인 것은 아니다. 도 8에 도시된 구성 요소보다 많은 구성 요소에 의해 웨어러블 디바이스(100)가 구현될 수도 있고, 도 8에 도시된 구성 요소보다 적은 구성 요소에 의해 웨어러블 디바이스(100)가 구현될 수도 있다.As illustrated in FIG. 8, a wearable device (100) according to one embodiment may include a communication unit (110) and a sensing unit (120). However, not all of the components illustrated in FIG. 8 are essential components of the wearable device (100). The wearable device (100) may be implemented with more components than the components illustrated in FIG. 8, or may be implemented with fewer components than the components illustrated in FIG. 8.
통신부(110)는, 웨어러블 디바이스(100)가 다른 디바이스(미도시) 및 서버(200)와 통신을 하게 하는 하나 이상의 구성요소를 포함할 수 있다. 다른 디바이스(미도시)는 서버(200)와 같은 컴퓨팅 장치이거나, 표시 장치일 수 있으나, 이에 제한되지 않는다. The communication unit (110) may include one or more components that allow the wearable device (100) to communicate with another device (not shown) and a server (200). The other device (not shown) may be a computing device such as the server (200) or a display device, but is not limited thereto.
일 실시예에서, 통신부(110)는, 족저압 데이터 및 보폭을 추정하기 위해 필요한 정보를, 다른 디바이스(미도시) 및 서버(200)와 송수신할 수 있다. 예를 들어, 다른 디바이스는 웨어러블 디바이스(100)의 사용자의 다른 디바이스일 수 있고, 사용자의 다른 디바이스는 사용자의 보행 상태를 출력하기 위한 모바일 기기일 수 있다.In one embodiment, the communication unit (110) may transmit and receive information necessary for estimating plantar pressure data and stride length with another device (not shown) and a server (200). For example, the other device may be another device of the user of the wearable device (100), and the other device of the user may be a mobile device for outputting the user's walking status.
센싱부(120)는, 복수의 압력 센서를 포함할 수 있으나 이에 제한되지 않는다. 일 실시예에서 복수의 압력 센서는 압저항형(Piezoresistive) 및/또는 정전용량형(Capacitive) 방식의 압력 센서일 수 있으며, 발의 지골(phalanges) 영역, 중족골(metatarsal) 영역, 중족부(mid-foot) 영역 및 뒤꿈치(heel) 영역마다 적어도 하나의 압력 센서가 위치할 수 있다. 이를 통해 각 영역마다 족저압 데이터가 보다 정확하게 측정될 수 있는 장점이 있다.The sensing unit (120) may include, but is not limited to, a plurality of pressure sensors. In one embodiment, the plurality of pressure sensors may be piezoresistive and/or capacitive pressure sensors, and at least one pressure sensor may be positioned in each of the phalanges region, the metatarsal region, the midfoot region, and the heel region of the foot. This has the advantage that plantar pressure data can be measured more accurately in each region.
도 9는 일 실시예에 따른 서버의 구성을 도시한 블록도이다.FIG. 9 is a block diagram illustrating the configuration of a server according to one embodiment.
도 9에 도시된 바와 같이, 일 실시예에 따른 서버(200)는 통신부(210), 메모리(220) 및 제어부(230)를 포함할 수 있다. 그러나, 도 9에 도시된 구성 요소 모두가 서버(200)의 필수 구성 요소인 것은 아니다. 도 9에 도시된 구성 요소보다 많은 구성 요소에 의해 서버(200)가 구현될 수도 있고, 도 9에 도시된 구성 요소보다 적은 구성 요소에 의해 서버(200)가 구현될 수도 있다. 이하 상기 구성요소들에 대해 차례로 살펴본다.As illustrated in FIG. 9, a server (200) according to one embodiment may include a communication unit (210), a memory (220), and a control unit (230). However, not all of the components illustrated in FIG. 9 are essential components of the server (200). The server (200) may be implemented with more components than the components illustrated in FIG. 9, or may be implemented with fewer components than the components illustrated in FIG. 9. The above components will be described in turn below.
통신부(110)는, 웨어러블 디바이스(100)가 다른 디바이스(미도시) 및 서버(200)와 통신을 하게 하는 하나 이상의 구성요소를 포함할 수 있다. 다른 디바이스(미도시)는 서버(200)와 같은 컴퓨팅 장치이거나, 표시 장치일 수 있으나, 이에 제한되지 않는다. The communication unit (110) may include one or more components that allow the wearable device (100) to communicate with another device (not shown) and a server (200). The other device (not shown) may be a computing device such as the server (200) or a display device, but is not limited thereto.
일 실시예에서, 통신부(210)는, 보폭을 추정하기 위해 필요한 정보를 웨어러블 디바이스(100)와 송수신할 수 있으며, 보폭 및 보행 분석 결과를 모바일 디바이스(300)와 송수신할 수 있다.In one embodiment, the communication unit (210) can transmit and receive information necessary for estimating stride length to and from the wearable device (100), and can transmit and receive stride and gait analysis results to and from the mobile device (300).
메모리(220)는, 제어부(230)의 처리 및 제어를 위한 프로그램을 저장할 수 있고, 서버(200)로 입력되거나 서버(200)로부터 출력되는 데이터를 저장할 수도 있다. The memory (220) can store a program for processing and controlling the control unit (230), and can also store data input to or output from the server (200).
메모리(220)는 플래시 메모리 타입(flash memory type), 하드디스크 타입(hard disk type), 멀티미디어 카드 마이크로 타입(multimedia card micro type), 카드 타입의 메모리(예를 들어 SD 또는 XD 메모리 등), 램(RAM, Random Access Memory) SRAM(Static Random Access Memory), 롬(ROM, Read-Only Memory), EEPROM(Electrically Erasable Programmable Read-Only Memory), PROM(Programmable Read-Only Memory), 자기 메모리, 자기 디스크, 광디스크 중 적어도 하나의 타입의 저장매체를 포함할 수 있다.The memory (220) may include at least one type of storage medium among a flash memory type, a hard disk type, a multimedia card micro type, a card type memory (for example, an SD or XD memory, etc.), a RAM (Random Access Memory), a SRAM (Static Random Access Memory), a ROM (Read-Only Memory), an EEPROM (Electrically Erasable Programmable Read-Only Memory), a PROM (Programmable Read-Only Memory), a magnetic memory, a magnetic disk, and an optical disk.
제어부(230)는, 통상적으로 서버(200)의 전반적인 동작을 제어한다. 제어부(230)는 적어도 하나의 프로세서를 구비할 수 있다. 제어부(230)는 그 기능 및 역할에 따라, 복수의 프로세서들을 포함하거나, 통합된 형태의 하나의 프로세서를 포함할 수 있다. 프로세서는 주로, 중앙 연산 장치(CPU), 어플리케이션 프로세서(AP), 그래픽스 처리 장치(GPU) 등을 의미할 수 있다. 또한, CPU, AP 또는 GPU는 그 내부에 하나 또는 그 이상의 코어들을 포함할 수 있으며, CPU, AP 또는 GPU는 작동 전압과 클락 신호를 이용하여 작동할 수 있다. 다만, CPU 또는 AP는 직렬 처리에 최적화된 몇 개의 코어로 구성된 반면, GPU는 병렬 처리용으로 설계된 수 천 개의 보다 소형이고 효율적인 코어로 구성될 수 있다.The control unit (230) typically controls the overall operation of the server (200). The control unit (230) may have at least one processor. Depending on its function and role, the control unit (230) may include a plurality of processors or may include one processor in an integrated form. The processor may mainly mean a central processing unit (CPU), an application processor (AP), a graphics processing unit (GPU), etc. In addition, the CPU, AP, or GPU may include one or more cores therein, and the CPU, AP, or GPU may operate using an operating voltage and a clock signal. However, while the CPU or AP may be composed of several cores optimized for serial processing, the GPU may be composed of thousands of smaller and more efficient cores designed for parallel processing.
예를 들어, 제어부(230)는, 메모리(220)에 저장된 프로그램들을 실행함으로써, 사용자 입력부(미도시), 출력부(미도시), 센싱부(미도시), 통신부(미도시), A/V 입력부(미도시) 등을 전반적으로 제어할 수 있다. 또한, 제어부(230)는 서버(200)가 족저압 데이터를 분석함으로써 보폭을 추정하고 보행 분석 결과를 도출하도록 할 수 있다. 또한, 일 실시예에 따른 제어부(230)는 족저압 데이터를 분석하여 보폭을 어떻게 추정할지를 판단하는 기준을 학습할 수 있다.For example, the control unit (230) can control the user input unit (not shown), the output unit (not shown), the sensing unit (not shown), the communication unit (not shown), the A/V input unit (not shown), etc., in general, by executing the programs stored in the memory (220). In addition, the control unit (230) can cause the server (200) to estimate the stride length and derive the gait analysis result by analyzing the plantar pressure data. In addition, the control unit (230) according to one embodiment can learn the criteria for determining how to estimate the stride length by analyzing the plantar pressure data.
도 10은 일 실시예에 따른 모바일 디바이스의 구성을 도시한 블록도이다.FIG. 10 is a block diagram illustrating a configuration of a mobile device according to one embodiment.
도 10에 도시된 바와 같이, 일 실시예에 따른 모바일 디바이스(300)는 통신부(310) 및 디스플레이부(320)를 포함할 수 있다. 그러나, 도 10에 도시된 구성 요소 모두가 모바일 디바이스(300)의 필수 구성 요소인 것은 아니다. 도 10에 도시된 구성 요소보다 많은 구성 요소에 의해 모바일 디바이스(300)가 구현될 수도 있고, 도 10에 도시된 구성 요소보다 적은 구성 요소에 의해 모바일 디바이스(300)가 구현될 수도 있다.As illustrated in FIG. 10, a mobile device (300) according to one embodiment may include a communication unit (310) and a display unit (320). However, not all of the components illustrated in FIG. 10 are essential components of the mobile device (300). The mobile device (300) may be implemented with more components than the components illustrated in FIG. 10, or the mobile device (300) may be implemented with fewer components than the components illustrated in FIG. 10.
통신부(310)는, 모바일 디바이스(300)가 다른 디바이스(미도시) 및 서버(200)와 통신을 하게 하는 하나 이상의 구성요소를 포함할 수 있다. 다른 디바이스(미도시)는 서버(200)와 같은 컴퓨팅 장치이거나, 센싱 장치일 수 있으나, 이에 제한되지 않는다. 일 실시예에서, 통신부(310)는, 보폭 및 보행 분석 결과를 서버(200)와 송수신할 수 있다. The communication unit (310) may include one or more components that allow the mobile device (300) to communicate with another device (not shown) and the server (200). The other device (not shown) may be a computing device such as the server (200) or a sensing device, but is not limited thereto. In one embodiment, the communication unit (310) may transmit and receive stride and gait analysis results to and from the server (200).
디스플레이부(320)는 모바일 디바이스(300)에서 수신한 정보를 표시 출력한다. 예를 들어, 디스플레이부(320)는, 서버(200)로부터 전송받은 보폭 및 보행 분석 결과를 디스플레이할 수 있다.The display unit (320) displays and outputs information received from the mobile device (300). For example, the display unit (320) can display stride and gait analysis results received from the server (200).
한편, 도 8 내지 도 10에 도시된 웨어러블 디바이스(100), 서버(200), 및모바일 디바이스(300)의 구성은 일 실시예이며, 각 구성요소는 구현되는 웨어러블 디바이스(100), 서버(200), 및모바일 디바이스(300)의 사양에 따라 통합, 추가, 또는 생략될 수 있다. 즉, 필요에 따라 2 이상의 구성요소가 하나의 구성요소로 합쳐지거나, 혹은 하나의 구성요소가 2 이상의 구성요소로 세분되어 구성될 수 있다. 또한, 각 구성(또는, 모듈)에서 수행하는 기능은 실시예들을 설명하기 위한 것이며, 그 구체적인 동작이나 장치는 본 발명의 권리범위를 제한하지 아니한다.Meanwhile, the configurations of the wearable device (100), the server (200), and the mobile device (300) illustrated in FIGS. 8 to 10 are only examples, and each component may be integrated, added, or omitted depending on the specifications of the wearable device (100), the server (200), and the mobile device (300) being implemented. That is, two or more components may be combined into one component, or one component may be divided into two or more components and configured. In addition, the functions performed by each component (or module) are for explaining examples, and the specific operations or devices thereof do not limit the scope of the present invention.
일 실시예는 컴퓨터에 의해 실행되는 프로그램 모듈과 같은 컴퓨터에 의해 실행가능한 명령어를 포함하는 기록 매체의 형태로도 구현될 수 있다. 컴퓨터 판독 가능 매체는 컴퓨터에 의해 액세스될 수 있는 임의의 가용 매체일 수 있고, 휘발성 및 비휘발성 매체, 분리형 및 비분리형 매체를 모두 포함한다. 또한, 컴퓨터 판독가능 매체는 컴퓨터 저장 매체 및 통신 매체를 모두 포함할 수 있다. 컴퓨터 저장 매체는 컴퓨터 판독가능 명령어, 데이터 구조, 프로그램 모듈 또는 기타 데이터와 같은 정보의 저장을 위한 임의의 방법 또는 기술로 구현된 휘발성 및 비휘발성, 분리형 및 비분리형 매체를 모두 포함한다. 통신 매체는 전형적으로 컴퓨터 판독가능 명령어, 데이터 구조, 프로그램 모듈, 또는 반송파와 같은 변조된 데이터 신호의 기타 데이터, 또는 기타 전송 메커니즘을 포함하며, 임의의 정보 전달 매체를 포함한다. An embodiment may also be implemented in the form of a recording medium containing computer-executable instructions, such as program modules, that are executed by a computer. Computer-readable media can be any available media that can be accessed by a computer and includes both volatile and nonvolatile media, removable and non-removable media. Additionally, computer-readable media can include both computer storage media and communication media. Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information, such as computer-readable instructions, data structures, program modules, or other data. Communication media typically includes computer-readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave, or other transport mechanism, and includes any information delivery media.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The above description of the present invention is for illustrative purposes, and those skilled in the art will understand that the present invention can be easily modified into other specific forms without changing the technical idea or essential characteristics of the present invention. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single component may be implemented in a distributed manner, and likewise, components described as distributed may be implemented in a combined manner.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the claims described below rather than the detailed description above, and all changes or modifications derived from the meaning and scope of the claims and their equivalent concepts should be interpreted as being included in the scope of the present invention.
Claims (10)
- 복수의 센서들이 발의 영역별로 족저압 데이터를 측정하는 단계;A step in which multiple sensors measure plantar pressure data for each area of the foot;상기 측정된 족저압 데이터를 전처리하는 단계;A step of preprocessing the measured plantar pressure data;상기 전처리된 데이터에 기초하여, 상기 영역별로 압력중심점 속도의 벡터 데이터를 도출하는 단계;A step of deriving vector data of the pressure center velocity for each region based on the above preprocessed data;상기 전처리된 데이터에 기초하여, 2차원 행렬의 족저압 이미지를 생성하는 단계;A step of generating a two-dimensional matrix of plantar pressure images based on the above preprocessed data;인공지능 모델을 사용하여, 상기 영역별 압력중심점 속도의 벡터 데이터 및 상기 2차원 행렬의 족저압 이미지로부터 보폭을 추정하는 단계; 및A step of estimating a stride from vector data of the pressure center point velocity by region and the plantar pressure image of the two-dimensional matrix using an artificial intelligence model; and상기 추정된 보폭 및 보행 분석 결과를 디스플레이하는 단계;A step of displaying the estimated stride and gait analysis results;를 포함하는, 보행 분석 방법.A gait analysis method comprising:
- 제1항에 있어서,In the first paragraph,인공지능 모델을 사용하여, 상기 영역별 압력중심점 속도의 벡터 데이터 및 상기 2차원 행렬의 족저압 이미지로부터 하지관절각도를 추정하는 단계;A step of estimating the lower extremity joint angle from the vector data of the pressure center point velocity by region and the plantar pressure image of the two-dimensional matrix using an artificial intelligence model;를 더 포함하는, 보행 분석 방법.A gait analysis method further comprising:
- 제1항에 있어서,In the first paragraph,상기 전처리된 데이터는 힐 스트라이크(heel strike) 정보 및 토 오프(toe off) 정보를 포함하는, 보행 분석 방법.A gait analysis method, wherein the above preprocessed data includes heel strike information and toe off information.
- 제1항에 있어서,In the first paragraph,상기 발의 영역은 지골(phalanges) 영역, 중족골(metatarsal) 영역, 중족부(mid-foot) 영역 및 뒤꿈치(heel) 영역을 포함하는, 보행 분석 방법.A gait analysis method, wherein the above foot region includes the phalanges region, the metatarsal region, the mid-foot region, and the heel region.
- 제2항에 있어서,In the second paragraph,상기 하지관절각도를 추정하는 단계는, The step of estimating the above lower limb joint angle is:상기 영역별 압력중심점 속도의 벡터 데이터를 FC(fully-connected layer)에 입력하고, 상기 2차원 행렬의 족저압 이미지를 CNN(convolutional neural network)에 입력하여 상기 하지관절각도를 출력하는 단계;A step of inputting vector data of the velocity of the center of pressure point for each region into an FC (fully-connected layer), and inputting the plantar pressure image of the two-dimensional matrix into a CNN (convolutional neural network) to output the lower extremity joint angle;를 포함하는, 보행 분석 방법.A gait analysis method comprising:
- 제5항에 있어서,In paragraph 5,상기 보폭을 추정하는 단계는, The step of estimating the above stride is:상기 2차원 행렬의 족저압 이미지를 상기 CNN에 입력하여 획득된 특징들, 및 상기 하지관절각도를 FNN에 입력함으로써 상기 보폭을 출력하는 단계;A step of inputting the plantar pressure image of the above two-dimensional matrix into the CNN, obtaining features, and inputting the lower limb joint angle into the FNN to output the stride;를 포함하는, 보행 분석 방법.A gait analysis method comprising:
- 제1항에 있어서,In the first paragraph,상기 추정된 보폭 및 보행 분석 결과를 디스플레이하는 단계는,The step of displaying the above estimated stride and gait analysis results is:평균 보폭, 보행 속도, 보행 거리, 보행 주기, 보행 횟수, 압력 중심점, 및 족저압 분포 정보를 디스플레이하는 단계를 포함하는, 보행 분석 방법.A gait analysis method, comprising the steps of displaying average stride length, walking speed, walking distance, gait cycle, number of steps, center of pressure, and plantar pressure distribution information.
- 발의 영역별로 족저압 데이터를 측정하는 센싱부; 및A sensing unit that measures plantar pressure data for each area of the foot; and보행 분석을 위하여 상기 족저압 데이터를 서버로 전송하는 통신부;A communication unit that transmits the plantar pressure data to a server for gait analysis;를 포함하는, 웨어러블 디바이스.A wearable device comprising:
- 웨어러블 디바이스로부터 족저압 데이터를 수신하는 통신부; 및A communication unit for receiving plantar pressure data from a wearable device; and상기 족저압 데이터를 전처리하고,Preprocess the above plantar pressure data,상기 전처리된 데이터에 기초하여, 발의 영역별로 압력중심점 속도의 벡터 데이터를 도출하고,Based on the above preprocessed data, vector data of the pressure center velocity is derived for each foot region,상기 전처리된 데이터에 기초하여, 2차원 행렬의 족저압 이미지를 생성하고, 그리고Based on the above preprocessed data, a two-dimensional matrix of plantar pressure images is generated, and인공지능 모델을 사용하여, 상기 영역별 압력중심점 속도의 벡터 데이터 및 상기 2차원 행렬의 족저압 이미지로부터 보폭을 추정하는 제어부;A control unit for estimating a stride from vector data of the velocity of the center of pressure point for each region and a plantar pressure image of the two-dimensional matrix using an artificial intelligence model;를 포함하고,Including,상기 통신부는 상기 추정된 보폭 및 보행 분석 결과를 모바일 디바이스로 전송하는, 서버.The above communication unit is a server that transmits the estimated stride and gait analysis results to a mobile device.
- 서버로부터 보폭 및 보행 분석 결과를 수신하는 통신부; 및A communication unit for receiving stride and gait analysis results from a server; and상기 보폭 및 보행 분석 결과를 디스플레이하는 디스플레이부;A display section for displaying the above stride and gait analysis results;를 포함하는, 모바일 디바이스.A mobile device, including:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2023-0015197 | 2023-02-03 | ||
KR1020230015197A KR20240122252A (en) | 2023-02-03 | 2023-02-03 | Step length estimating method and system using plantar pressure data |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024162733A1 true WO2024162733A1 (en) | 2024-08-08 |
Family
ID=92147169
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2024/001386 WO2024162733A1 (en) | 2023-02-03 | 2024-01-30 | Method and system for estimating stride length by using plantar pressure data |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20240122252A (en) |
WO (1) | WO2024162733A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170027512A1 (en) * | 2015-07-31 | 2017-02-02 | Wiivv Wearables Inc. | Electronic sensor system for use with footwear |
US20170188950A1 (en) * | 2015-12-30 | 2017-07-06 | Motion Metrix Corporation | Shoe insert for monitoring of biomechanics and motion |
KR20180003377A (en) * | 2016-06-30 | 2018-01-09 | 국민대학교산학협력단 | Device and system for measuring distance traveled |
KR20210011097A (en) * | 2019-07-22 | 2021-02-01 | 단국대학교 산학협력단 | Apparatus and method for classification of gait type by performing neural network analysis for various detection information |
KR20220085363A (en) * | 2020-12-15 | 2022-06-22 | 송민호 | Gait rehabilitation training program for the disabled using artificial intelligence |
-
2023
- 2023-02-03 KR KR1020230015197A patent/KR20240122252A/en unknown
-
2024
- 2024-01-30 WO PCT/KR2024/001386 patent/WO2024162733A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170027512A1 (en) * | 2015-07-31 | 2017-02-02 | Wiivv Wearables Inc. | Electronic sensor system for use with footwear |
US20170188950A1 (en) * | 2015-12-30 | 2017-07-06 | Motion Metrix Corporation | Shoe insert for monitoring of biomechanics and motion |
KR20180003377A (en) * | 2016-06-30 | 2018-01-09 | 국민대학교산학협력단 | Device and system for measuring distance traveled |
KR20210011097A (en) * | 2019-07-22 | 2021-02-01 | 단국대학교 산학협력단 | Apparatus and method for classification of gait type by performing neural network analysis for various detection information |
KR20220085363A (en) * | 2020-12-15 | 2022-06-22 | 송민호 | Gait rehabilitation training program for the disabled using artificial intelligence |
Also Published As
Publication number | Publication date |
---|---|
KR20240122252A (en) | 2024-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104146712B (en) | Wearable plantar pressure detection device and plantar pressure detection and attitude prediction method | |
WO2014081154A1 (en) | Shoe insole, shoes including same, and gait correction system | |
Chen et al. | Kinematic analysis of human gait based on wearable sensor system for gait rehabilitation | |
Majumder et al. | A multi-sensor approach for fall risk prediction and prevention in elderly | |
Salchow-Hömmen et al. | Emerging portable technologies for gait analysis in neurological disorders | |
Zhong et al. | Are cost-effective technologies feasible to measure gait in older adults? A systematic review of evidence-based literature | |
CN110974242B (en) | Gait abnormal degree evaluation method for wearable device and wearable device | |
Xie et al. | Wearable multisource quantitative gait analysis of Parkinson's diseases | |
Duncan et al. | Accuracy of a novel multi-sensor board for measuring physical activity and energy expenditure | |
Huang et al. | Feature Selection, Construction, and Validation of a Lightweight Model for Foot Function Assessment During Gait With In-Shoe Motion Sensors | |
CN115644858B (en) | Wearable intelligent gait analyzer based on multi-sensor data fusion technology | |
CN112107290B (en) | System, method and software application for predicting KAM for multiple gait cycles of a subject | |
WO2024162733A1 (en) | Method and system for estimating stride length by using plantar pressure data | |
CN108567431A (en) | A kind of intelligent sensing boots for measuring body gait and leg speed | |
Wang et al. | Estimation of spatial-temporal gait parameters based on the fusion of inertial and film-pressure signals | |
Julian et al. | An iot based wearable device for healthcare monitoring | |
Ippisch et al. | mVEGAS–mobile smartphone-based spatiotemporal gait analysis in healthy and ataxic gait disorders | |
Mei et al. | Recognition of pes cavus foot using smart insole: A pilot study | |
Celik et al. | Gait on the edge: A proposed wearable for continuous real-time monitoring beyond the lab | |
Ershadi et al. | GAIToe: Gait Analysis Utilizing an IMU for Toe Walking Detection and Intervention | |
Fan et al. | Development of a Novel Plantar Pressure Insole and Inertial Sensor System for Daily Activity Classification and Fall Detection | |
Kawsar et al. | Remote monitoring using smartphone based plantar pressure sensors: Unimodal and multimodal activity detection | |
WO2024063227A1 (en) | Wearable gait disturbance analysis apparatus | |
WO2023149651A1 (en) | Method for extracting posture on basis of video and sole pressure by using artificial intelligence | |
Chhoeum et al. | Joint Angles Estimation Based on Center of Force With Artificial Neural Network and Convolutional Neural Network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24750531 Country of ref document: EP Kind code of ref document: A1 |