WO2024162294A1 - Modified sulfide solid electrolyte producing method, said modified sulfide solid electrolyte, and electrode mixture and lithium-ion battery containing said modified sulfide solid electrolyte - Google Patents

Modified sulfide solid electrolyte producing method, said modified sulfide solid electrolyte, and electrode mixture and lithium-ion battery containing said modified sulfide solid electrolyte Download PDF

Info

Publication number
WO2024162294A1
WO2024162294A1 PCT/JP2024/002743 JP2024002743W WO2024162294A1 WO 2024162294 A1 WO2024162294 A1 WO 2024162294A1 JP 2024002743 W JP2024002743 W JP 2024002743W WO 2024162294 A1 WO2024162294 A1 WO 2024162294A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
sulfide solid
modified
oxide
modified sulfide
Prior art date
Application number
PCT/JP2024/002743
Other languages
French (fr)
Japanese (ja)
Inventor
祥悟 門田
淳 佐藤
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2024162294A1 publication Critical patent/WO2024162294A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/14Sulfur, selenium, or tellurium compounds of phosphorus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a modified sulfide solid electrolyte, a modified sulfide solid electrolyte, an electrode mixture, and a lithium ion battery.
  • batteries used for such purposes used electrolytes containing flammable organic solvents, but by making the battery fully solid-state, flammable organic solvents are not used in the battery, safety devices can be simplified, and manufacturing costs and productivity are excellent, so batteries in which the electrolyte is replaced with a solid electrolyte layer are being developed.
  • Sulfide solid electrolytes have been known for some time as solid electrolytes used in solid electrolyte layers. Although sulfide solid electrolytes have high ionic conductivity, they can be affected by moisture in the atmosphere and generate hydrogen sulfide. Therefore, there is a need to develop a sulfide solid electrolyte that suppresses the generation of hydrogen sulfide while maintaining ionic conductivity.
  • Patent Document 1 discloses a method of adding oxides such as Al 2 O 3 and SiO 2 to glass ceramics and incorporating them into the crystal structure to increase the crystallinity of the high lithium ion conductive phase and improve the ion conductivity.
  • Patent Document 2 discloses that SiO 2 is incorporated into the crystal structure of a sulfide solid electrolyte to form an amorphous-like crystal, improving the state of the crystal interface and reducing grain boundary resistance.
  • Patent Document 3 discloses that inexpensive ⁇ -alumina is incorporated into an inorganic solid electrolyte to obtain an inexpensive solid electrolyte while maintaining ionic conductivity.
  • Patent Document 4 discloses that by incorporating alumina into the crystal structure of a sulfide solid electrolyte, aggregation of particles of a lithium ion conductive material is less likely to occur and the dispersibility of the particles is improved, resulting in the formation of uniform ion conductivity paths in all directions and improved ion conductivity.
  • Patent Document 5 studies the improvement of lithium ion conductivity in a sulfide solid electrolyte having an argyrodite-type crystal structure
  • Patent Document 6 studies the fact that a sulfide solid electrolyte having an argyrodite-type crystal structure remains stable without decomposition even when subjected to heat treatment at high temperatures.
  • the present invention has been made in consideration of these circumstances, and aims to provide a method for producing a modified sulfide solid electrolyte that can obtain a modified sulfide solid electrolyte in which hydrogen sulfide generation is suppressed while maintaining the ionic conductivity of the sulfide solid electrolyte, to provide the modified sulfide solid electrolyte, and to provide an electrode mixture and a lithium ion battery that include the modified sulfide solid electrolyte.
  • the method for producing a modified sulfide solid electrolyte according to the present invention includes heating a sulfide solid electrolyte having an argyrodite-type crystal structure and an oxide at 300° C. or more and 600° C. or less.
  • the modified sulfide solid electrolyte according to the present invention includes a sulfide solid electrolyte having an argyrodite-type crystal structure containing lithium atoms, sulfur atoms, phosphorus atoms, and halogen atoms, and an oxide represented by the general formula M m O n (wherein M represents an atom selected from Mg, Al, Si, Ca, Ti, V, Fe, Zn, Ga, Sr, Y, Zr, Nb, Mo, Sn, Sb, Ba, Ta, W, and Bi, and m and n each independently represent an integer of 1 to 5), and satisfies the following (i) to (iii).
  • At least one oxide in which M in the general formula M m O n is Al is included.
  • the ratio (M M /M P ) of the total number of moles of M in all oxides contained in the modified sulfide solid electrolyte (M M ) to the total number of moles of phosphorus atoms in the sulfide solid electrolyte ( M P ) is greater than 0.010.
  • Only one peak is observed within the range of 29.7 ⁇ 0.5 deg. in an X-ray diffraction spectrum (XRD pattern), or when two or more peaks are observed, I2 / I1 is less than 1.0, where I1 is the intensity of the highest peak and I2 is the intensity of the second highest peak.
  • the electrode mixture according to the present invention is an electrode mixture comprising the modified sulfide solid electrolyte and an electrode active material.
  • the lithium ion battery according to the present invention is a lithium ion battery including at least one of the modified sulfide solid electrolyte and the electrode mixture.
  • the present invention provides a method for producing a modified sulfide solid electrolyte that can obtain a modified sulfide solid electrolyte in which hydrogen sulfide generation is suppressed while maintaining the ionic conductivity of the sulfide solid electrolyte, provides the modified sulfide solid electrolyte, and provides an electrode mixture and a lithium ion battery that include the modified sulfide solid electrolyte.
  • FIG. 2 is a flow diagram illustrating an example of a preferred embodiment of the method for producing a modified sulfide solid electrolyte according to the present embodiment.
  • 1 is an example of a device for measuring the amount of hydrogen sulfide generated.
  • 1 is a graph showing the change over time in the integrated generation amount and instantaneous generation amount of hydrogen sulfide for the modified sulfide solid electrolyte (5), the modified sulfide solid electrolyte (C6), and the modified sulfide solid electrolyte (C8).
  • 1 shows XRD patterns of modified sulfide solid electrolyte (5), modified sulfide solid electrolyte (C6) and modified sulfide solid electrolyte (C8).
  • this embodiment an embodiment of the present invention (hereinafter, sometimes referred to as “this embodiment") will be described.
  • the upper and lower limit values of the numerical ranges "greater than or equal to,” “less than or equal to,” and “to” are values that can be combined in any way, and the numerical values in the examples can also be used as the upper and lower limit values.
  • provisions that are considered to be preferred can be adopted in any way. In other words, one provision that is considered to be preferred can be adopted in combination with one or more other provisions that are considered to be preferred. It can be said that a combination of preferred things is more preferable.
  • Patent Documents 1 to 3 do not relate to a sulfide solid electrolyte having an argyrodite-type crystal structure, and do not consider suppressing the generation of hydrogen sulfide from a sulfide solid electrolyte.
  • the sulfide solid electrolyte and the oxide are not treated at a sufficient temperature. For this reason, it is considered that the sulfide solid electrolyte and the oxide are not contained in the modified sulfide solid electrolyte of the present invention, as described below.
  • Patent Document 4 examines a sulfide solid electrolyte with an argyrodite-type crystal structure, but this differs from the present invention in that the sulfide solid electrolyte is modified. Furthermore, since the sulfide solid electrolyte and oxide are not treated at a sufficient temperature, it is believed that the sulfide solid electrolyte does not contain the sulfide solid electrolyte and oxide as described below, as in the modified sulfide solid electrolyte of the present invention.
  • Patent Documents 5 and 6 discuss a sulfide solid electrolyte having an argyrodite crystal structure.
  • the sulfide solid electrolyte and an oxide are treated at a high temperature of 650° C., so that, for example, in SiO 2 , all four oxygen atoms bonded to Si become non-bridging oxygen atoms, and become oxide anions of a Q0 structure in the form of silicate ions SiO 4 4- , and are completely incorporated into the argyrodite crystal structure.
  • the present invention which includes a sulfide solid electrolyte and an oxide as described below.
  • Patent Documents 5 and 6 do not discuss at all the suppression of hydrogen sulfide generation.
  • Patent Document 6 adds an oxide so that the sulfide solid electrolyte can withstand high-temperature treatment in order to effectively reduce grain boundary resistance by sintering, and the problem to be solved is significantly different from that of the present invention.
  • the composition of the sulfide solid electrolyte itself changes and the average particle size of the sulfide solid electrolyte also increases by treating the sulfide solid electrolyte at a high temperature of 650° C.
  • the method for producing a modified sulfide solid electrolyte of the present invention is a method for producing a modified sulfide solid electrolyte that includes heating the sulfide solid electrolyte described below and the oxide described below as described below.
  • This makes it possible to provide a method for producing a modified sulfide solid electrolyte that can obtain a modified sulfide solid electrolyte in which hydrogen sulfide generation is suppressed while maintaining the ionic conductivity of the sulfide solid electrolyte, to provide the modified sulfide solid electrolyte, and to provide an electrode mixture and a lithium ion battery that include the modified sulfide solid electrolyte.
  • the present inventors have found that it is possible to provide a method for producing a modified sulfide solid electrolyte, which can obtain a modified sulfide solid electrolyte in which generation of hydrogen sulfide is suppressed while maintaining the ionic conductivity of the sulfide solid electrolyte, by heating a sulfide solid electrolyte having an argyrodite-type crystal structure and an oxide within a specific temperature range.
  • D 50 median diameter
  • the sulfide solid electrolyte can be used in the positive electrode, negative electrode, and solid electrolyte layer of an all-solid-state battery, and in the electrode (positive electrode, negative electrode), the sulfide solid electrolyte is used in combination with an electrode active material (positive electrode active material, negative electrode active material). Since the sulfide solid electrolyte and the electrode active material are both solid electrolytes, if the median diameter (D 50 ) of the sulfide solid electrolyte can be reduced, it becomes easier to form a contact interface between the electrode active material and the sulfide solid electrolyte, and the paths of ionic conduction and electronic conduction become good. As a result, excellent battery performance can be obtained.
  • D 50 median diameter
  • the present inventors have arrived at the following manufacturing method of this embodiment, the modified sulfide solid electrolyte, and the configuration of an electrode mixture and a lithium ion battery containing the modified sulfide solid electrolyte.
  • the manufacturing method of the present invention can be carried out using conventional manufacturing equipment and can be said to be excellent in productivity.
  • a “solid electrolyte” refers to an electrolyte that maintains a solid state under a nitrogen atmosphere at 25° C.
  • a “sulfide solid electrolyte” in the present disclosure is a solid electrolyte that contains lithium atoms, sulfur atoms, phosphorus atoms, and halogen atoms and has ionic conductivity due to lithium atoms.
  • the term "modified sulfide solid electrolyte” refers to a modified sulfide solid electrolyte obtained by the production method of the present embodiment, as described below.
  • modification refers to a state in which a sulfide solid electrolyte having an argyrodite-type crystal structure and an oxide are contained by a manufacturing method including heating the sulfide solid electrolyte having an argyrodite-type crystal structure and an oxide at 300°C or more and 600°C or less.
  • Constaining may mean that an oxide is present on the surface of a particulate sulfide solid electrolyte, and is a concept including that an oxide is attached to and bonded to the surface of the sulfide solid electrolyte.
  • the modified sulfide solid electrolyte is a sulfide solid electrolyte that has been modified by containing an oxide.
  • Attachment includes physical adsorption, and “bonding” includes chemical bonding and coordinate bonding.
  • bonding includes chemical bonding and coordinate bonding.
  • oxide refers to an oxide containing a specific element, as described in detail below.
  • the method for producing a modified sulfide solid electrolyte according to the first aspect of the present embodiment includes the steps of:
  • a method for producing a modified sulfide solid electrolyte includes heating a sulfide solid electrolyte having an argyrodite-type crystal structure and an oxide at 300° C. or more and 600° C. or less.
  • FIG. 1 shows a flow diagram illustrating a preferred embodiment of the method for producing the modified sulfide solid electrolyte of this embodiment.
  • the production method of this embodiment is useful because it is possible to obtain a modified sulfide solid electrolyte in which hydrogen sulfide generation is suppressed while suppressing an increase in the median diameter (D 50 ) and maintaining the ionic conductivity of the sulfide solid electrolyte by heating a sulfide solid electrolyte having an argyrodite-type crystal structure and an easily available oxide within a specific temperature range.
  • the obtained modified sulfide solid electrolyte has high ionic conductivity, so that a lithium ion battery with excellent battery performance can be obtained by using this modified sulfide solid electrolyte.
  • the method for producing a modified sulfide solid electrolyte according to a second aspect of the present embodiment is the same as the first aspect,
  • the sulfide solid electrolyte contains lithium atoms, sulfur atoms, phosphorus atoms, and halogen atoms.
  • the sulfide solid electrolyte contains the above-mentioned atoms, since this makes it possible to produce a modified sulfide solid electrolyte with high ionic conductivity.
  • the method for producing a modified sulfide solid electrolyte according to a third aspect of the present embodiment is the same as the method for producing a modified sulfide solid electrolyte according to the second aspect,
  • the method for producing a modified sulfide solid electrolyte includes, as the halogen atom, at least one selected from a chlorine atom and a bromine atom.
  • the modified sulfide solid electrolyte is preferred because it has a stable argyrodite-type crystal structure due to the inclusion of at least one selected from chlorine atoms and bromine atoms.
  • the modified sulfide solid electrolyte having the argyrodite-type crystal structure is preferred because it maintains the ionic conductivity of the sulfide solid electrolyte, inhibits an increase in the median diameter ( D50 ), and inhibits the generation of hydrogen sulfide.
  • the method for producing a modified sulfide solid electrolyte according to a fourth aspect of the present embodiment is any one of the first to third aspects,
  • the method for producing a modified sulfide solid electrolyte includes the oxide containing a compound represented by the general formula M m O n (wherein M represents an atom selected from Mg, Al, Si, Ca, Ti, V, Fe, Zn, Ga, Sr, Y, Zr, Nb, Mo, Sn, Sb, Ba, Ta, W, and Bi, and m and n each independently represent an integer of 1 to 5).
  • the oxide contains a compound represented by the general formula M m O n described later, because this makes it possible to obtain a modified sulfide solid electrolyte in which the ionic conductivity of the sulfide solid electrolyte is maintained, an increase in the median diameter (D 50 ) is suppressed, and generation of hydrogen sulfide is suppressed.
  • the M may be an atom selected from Mg, Al, Si, Ca, Ti, V, Fe, Zn, Ga, Sr, Y, Zr, Nb, Mo, Sn, Sb, Ba, Ta, W, and Bi, and when m in the formula is 2 or more, it may contain two or more of the same atom (for example , Al2O3 ) or may contain two or more different types of atoms (for example, CaTiO3 ).
  • the method for producing a modified sulfide solid electrolyte according to a fifth aspect of the present embodiment is the same as the method for producing a modified sulfide solid electrolyte according to the fourth aspect,
  • the present invention relates to a method for producing a modified sulfide solid electrolyte comprising an oxide in which M in the general formula M m O n is Al.
  • the oxide preferably contains aluminum oxide (Al 2 O 3 ), since the ionic conductivity of the modified sulfide solid electrolyte is increased and the generation of hydrogen sulfide is further suppressed while suppressing an increase in the median diameter (D 50 ).
  • a method for producing a modified sulfide solid electrolyte according to a sixth aspect of the present embodiment comprises the steps of:
  • the method for producing a modified sulfide solid electrolyte is characterized in that a ratio (M M /M P ) of the total number of moles of M in the oxide (M M ) to the total number of moles of phosphorus atoms in the sulfide solid electrolyte (M P ) is greater than 0.010.
  • M M /M P is greater than 0.010 because the effect of containing the oxide is increased.
  • M M and M P can be calculated from the amounts of the sulfide solid electrolyte and oxide used in the production of the modified sulfide solid electrolyte.
  • a method for producing a modified sulfide solid electrolyte according to a seventh aspect of the present embodiment is any one of the first to sixth aspects, The heating is carried out for one hour or more in this method for producing a modified sulfide solid electrolyte.
  • heating is performed at 650° C., and the oxide is completely incorporated into the argyrodite-type crystal structure.
  • heating is performed at 300° C. or more and 600° C. or less, so that the oxide modifies the sulfide solid electrolyte, but the decrease in ion conductivity and the increase in median diameter (D 50 ) are suppressed.
  • the inclusion of the oxide which will be described later, is preferable because it suppresses the generation of hydrogen sulfide.
  • the method for producing a modified sulfide solid electrolyte according to an eighth aspect of the present embodiment is any one of the first to seventh aspects, and mixing the resulting mixture.
  • the method for producing the modified sulfide solid electrolyte of the present embodiment requires heating, but further includes mixing, which is preferable because it makes the sulfide solid electrolyte and oxide contained in the modified sulfide solid electrolyte uniform. Such uniform inclusion of the sulfide solid electrolyte and oxide can further suppress an increase in the median diameter ( D50 ) and the generation of hydrogen sulfide.
  • the mixing may be performed while heating, before heating, or a combination of these. However, mixing before heating is preferable because the oxide is uniformly attached to the surface of the sulfide solid electrolyte, and when this is heated, it is uniformly contained on the surface of the sulfide solid electrolyte.
  • a method for producing a modified sulfide solid electrolyte according to a ninth aspect of the present embodiment is any one of the first to eighth aspects, In the method for producing a modified sulfide solid electrolyte, the heating is performed by simultaneously heating the sulfide solid electrolyte and the oxide with one heater.
  • the oxide adheres uniformly to the surface of the sulfide solid electrolyte, and when this is heated, it is preferably uniformly contained on the surface of the sulfide solid electrolyte. By being uniformly contained in this way, the generation of hydrogen sulfide is further suppressed.
  • a method for producing a modified sulfide solid electrolyte according to a tenth aspect of the present embodiment is any one of the first to ninth aspects, In the method for producing a modified sulfide solid electrolyte, the median diameter (D 50 ) of the oxide attached to or bonded to the surface of a primary particle of the modified sulfide solid electrolyte is less than 100.0 ⁇ m.
  • the median diameter (D 50 ) of the oxide is less than 100.0 ⁇ m, a contact interface between the electrode active material and the modified sulfide solid electrolyte is easily formed, and paths for ionic conduction and electronic conduction are favorable, which is preferable.
  • the modified sulfide solid electrolyte according to the eleventh aspect of this embodiment is a sulfide solid electrolyte having an argyrodite-type crystal structure containing lithium atoms, sulfur atoms, phosphorus atoms, and halogen atoms; and an oxide represented by the general formula M m O n (wherein M represents an atom selected from Mg, Al, Si, Ca, Ti, V, Fe, Zn, Ga, Sr, Y, Zr, Nb, Mo, Sn, Sb, Ba, Ta, W and Bi, and m and n each independently represent an integer of 1 to 5),
  • M represents an atom selected from Mg, Al, Si, Ca, Ti, V, Fe, Zn, Ga, Sr, Y, Zr, Nb, Mo, Sn, Sb, Ba, Ta, W and Bi, and m and n each independently represent an integer of 1 to 5
  • the modified sulfide solid electrolyte satisfies the following
  • the modified sulfide solid electrolyte of the present embodiment is a modified sulfide solid electrolyte that can obtain a modified sulfide solid electrolyte in which the generation of hydrogen sulfide is suppressed while maintaining the ionic conductivity of the sulfide solid electrolyte.
  • the above (iii) means that the modified sulfide solid electrolyte has an argyrodite-type crystal structure as a main structure.
  • the modified sulfide solid electrolyte has high ionic conductivity.
  • the modified sulfide solid electrolyte according to a twelfth aspect of the present embodiment is the modified sulfide solid electrolyte according to the eleventh aspect,
  • the modified sulfide solid electrolyte has an intensity ratio (peak intensity derived from oxide/peak intensity derived from Argyrodite-type crystal structure) of less than 0.1 between a peak intensity derived from the oxide and a peak intensity of 29.7 ⁇ 0.5 deg. derived from the Argyrodite-type crystal structure (the peak intensity of 29.7 ⁇ 0.5 deg. derived from the Argyrodite-type crystal structure is referred to as the peak intensity derived from the Argyrodite-type crystal structure in the explanation of the intensity ratio) in an X-ray diffraction spectrum (XRD pattern).
  • XRD pattern X-ray diffraction spectrum
  • the intensity ratio is less than 0.1
  • the generation of hydrogen sulfide can be further suppressed while maintaining the ionic conductivity of the sulfide solid electrolyte, which is preferable.
  • the oxide is not incorporated into the crystal structure of the sulfide solid electrolyte, or even if an oxide is incorporated, the Argyrodite crystal structure is maintained, so that the peak intensity of 29.7 ⁇ 0.5 deg. maintains the strength of the sulfide solid electrolyte.
  • the intensity ratio (peak intensity derived from oxide/peak intensity derived from Argyrodite crystal structure) between the peak intensity derived from the oxide and the peak intensity of 29.7 ⁇ 0.5 deg. derived from the Argyrodite crystal structure (peak intensity derived from Argyrodite crystal structure) is within a specific range, so that even if an oxide is present in the modified sulfide solid electrolyte, the oxide particles are small (hereinafter also referred to as nanoparticles. Nanoparticles mean that the particle diameter of the particles is on the nano order), and the crystallites are small enough to be undetectable by XRD.
  • the oxide When the oxide is present as nanoparticles and the intensity ratio is less than 0.1, the formation of the contact interface by the oxide is not inhibited, the path of electronic conduction is improved, and further, the generation of hydrogen sulfide in the modified sulfide solid electrolyte is suppressed, which is preferable.
  • the oxide adheres to the surface of the primary particle of the sulfide solid electrolyte, the formation of secondary particles of the modified sulfide solid electrolyte is suppressed, which is preferable because an increase in the median diameter ( D50 ) is unlikely to occur.
  • the modified sulfide solid electrolyte according to a thirteenth aspect of the present embodiment is the modified sulfide solid electrolyte according to the eleventh or twelfth aspect,
  • the modified sulfide solid electrolyte contains at least one halogen atom selected from a chlorine atom and a bromine atom.
  • the modified sulfide solid electrolyte is preferred because it has a stable argyrodite-type crystal structure due to the inclusion of at least one selected from chlorine atoms and bromine atoms.
  • the modified sulfide solid electrolyte having the argyrodite-type crystal structure is preferred because it maintains the ionic conductivity of the sulfide solid electrolyte, inhibits an increase in the median diameter ( D50 ), and inhibits the generation of hydrogen sulfide.
  • the modified sulfide solid electrolyte according to a fourteenth aspect of the present embodiment is any one of the eleventh to thirteenth aspects,
  • the oxide is attached or bonded to the surface of the primary particles, forming a modified sulfide solid electrolyte.
  • the modified sulfide solid electrolyte of the present embodiment is required to contain the sulfide solid electrolyte and the oxide, and the oxide is preferably contained in the modified sulfide solid electrolyte in a state of being bound to the surface of the primary particles of the sulfide solid electrolyte. "Attached" and “bound” have the same meanings as described above.
  • the modified sulfide solid electrolyte in which the oxide is attached or bonded to the surface of the primary particles of the sulfide solid electrolyte is preferable because the oxide is not easily detached and the modified sulfide solid electrolyte is easy to maintain a stable composition and shape because the oxide is attached or bonded to the surface of the primary particles of the sulfide solid electrolyte.
  • the oxide is attached or bonded to the surface of the primary particles of the sulfide solid electrolyte, which suppresses the formation of secondary particles in which primary particles are bonded to each other, thereby suppressing the increase in the median diameter (D 50 ).
  • the opportunity for contact of the sulfide solid electrolyte with water in the atmosphere can be reduced, which is preferable because the generation of hydrogen sulfide can be suppressed.
  • the modified sulfide solid electrolyte according to a fifteenth aspect of the present embodiment is any one of the eleventh to fourteenth aspects,
  • the modified sulfide solid electrolyte has a median diameter (D 50 ) of less than 150 ⁇ m.
  • the median diameter ( D50 ) of the modified sulfide solid electrolyte is small, a contact interface between the electrode active material and the sulfide solid electrolyte is easily formed, and the paths for ionic conduction and electronic conduction are improved. Therefore, the use of this modified sulfide solid electrolyte is preferable because it allows a lithium ion battery with excellent battery performance to be obtained.
  • the median diameter ( D50 ) of the powder of the solid electrolyte such as the modified sulfide solid electrolyte and the sulfide solid electrolyte can be measured or calculated, for example, by the method described in the Examples.
  • the particle size distribution of the solid electrolyte can be confirmed by measuring D50 .
  • a small particle size distribution is preferable because it makes it easier to manufacture the electrode mixture described below and also improves the paths of ion conduction and electron conduction.
  • the modified sulfide solid electrolyte according to a sixteenth aspect of the present embodiment is the same as the modified sulfide solid electrolyte according to the fourteenth or fifteenth aspect,
  • the modified sulfide solid electrolyte has a median diameter (D 50 ) of the oxide attached to or bonded to the surface of the primary particles of less than 100.0 ⁇ m.
  • the electrode mixture containing the modified sulfide solid electrolyte and the electrode active material is likely to form a contact interface between the electrode active material and the sulfide solid electrolyte, and the paths for ion conduction and electron conduction are improved, and the use of this modified sulfide solid electrolyte is preferable because a lithium ion battery with excellent battery performance can be obtained.
  • the embodiment in which the twelfth embodiment and this embodiment are combined is preferable because the oxide is not incorporated into the crystal structure of the sulfide solid electrolyte but is present in a state of being bonded to the surface of the primary particles of the sulfide solid electrolyte, and therefore the effect of suppressing the generation of hydrogen sulfide can be obtained while maintaining the ionic conductivity of the sulfide solid electrolyte.
  • this embodiment is preferable because the increase in the median diameter ( D50 ) of the modified sulfide solid electrolyte is suppressed.
  • the modified sulfide solid electrolyte according to a seventeenth aspect of the present embodiment is any one of the eleventh to sixteenth aspects,
  • the modified sulfide solid electrolyte includes an oxide in which M in the general formula M m O n is Si.
  • the modified sulfide solid electrolyte of the present embodiment is required to contain at least one oxide in which M is Al in the general formula MmOn .
  • the modified sulfide solid electrolyte according to an eighteenth aspect of the present embodiment is any one of the eleventh to seventeenth aspects,
  • the modified sulfide solid electrolyte does not include an oxide in which M in the general formula M m O n is Ti.
  • the modified sulfide solid electrolyte of the present embodiment does not contain an oxide in which M in the general formula MmOn is Ti, which is preferable because it can further suppress the generation of hydrogen sulfide while maintaining the ionic conductivity of the sulfide solid electrolyte.
  • the electrode mixture according to the nineteenth aspect of this embodiment is An electrode mixture comprising the modified sulfide solid electrolyte of any one of the eleventh to eighteenth aspects and an electrode active material.
  • the modified sulfide solid electrolyte makes it easier to form a contact interface between the electrode active material and the sulfide solid electrolyte, improving the paths for ionic and electronic conduction.
  • a lithium ion battery according to a twentieth aspect of this embodiment is A lithium ion battery comprising at least one of the modified sulfide solid electrolyte of any one of the eleventh to eighteenth aspects and the electrode mixture of the nineteenth aspect.
  • modified sulfide solid electrolyte and the electrode mixture have excellent properties as described above, lithium ion batteries using them have excellent battery properties.
  • the method for producing a modified sulfide solid electrolyte of the present embodiment includes heating a sulfide solid electrolyte having an argyrodite-type crystal structure and an oxide at 300° C. or more and 600° C. or less.
  • a method for producing a modified sulfide solid electrolyte will be described, and then the sulfide solid electrolyte having an argyrodite-type crystal structure, the oxide, and the modified sulfide solid electrolyte will be described in detail.
  • the method for producing the modified sulfide solid electrolyte of the present embodiment is required to include heating a sulfide solid electrolyte having an argyrodite-type crystal structure described below and an oxide described below at 300° C. or more and 600° C. or less.
  • the heating temperature is less than 300° C., the oxide does not adhere or bond to the surface of the primary particles of the sulfide solid electrolyte, as described below, and the effect of containing the oxide is not exhibited. If the heating temperature is higher than 600° C., the oxide is taken up into the sulfide solid electrolyte, or the argyrodite-type crystal structure is decomposed due to an interaction with the oxide, resulting in a significant decrease in ionic conductivity.
  • the heating temperature is preferably 350°C or higher and 580°C or lower, more preferably 400°C or higher and 560°C or lower, even more preferably 450°C or higher and 540°C or lower, and even more preferably 480°C or higher and 520°C or lower.
  • the heating is preferably carried out for one hour or more in order to obtain a modified sulfide solid electrolyte in which the generation of hydrogen sulfide is suppressed while maintaining the ionic conductivity of the sulfide solid electrolyte and suppressing an increase in the median diameter (D 50 ), as described below.
  • the heating time is preferably 1 hour 30 minutes or more, more preferably 1 hour 40 minutes or more, and even more preferably 1 hour 50 minutes or more, in order to cause the oxide to adhere to or bond to the surfaces of the primary particles of the sulfide solid electrolyte.
  • the upper limit is preferably 10 hours or less, more preferably 5 hours or less, and even more preferably 3 hours or less. That is, the heating time is preferably from 1 hour to 10 hours, more preferably from 1 hour 30 minutes to 5 hours, and even more preferably from 1 hour 40 minutes to 3 hours.
  • the heating is preferably performed in an inert gas atmosphere (e.g., nitrogen atmosphere, argon atmosphere) or a reduced pressure atmosphere (particularly in vacuum).
  • an inert gas atmosphere containing a certain concentration of hydrogen may be used. This is because deterioration (e.g., oxidation) of the crystalline sulfide solid electrolyte can be prevented.
  • the heating method is not particularly limited by the heater, and examples thereof include a method using a hot plate, a vacuum heating device, an argon gas atmosphere furnace, a baking furnace, etc.
  • a horizontal dryer having a heating means and a feeding mechanism, a horizontal vibration fluidized dryer, etc. may be used, and may be selected according to the amount of processing to be heated.
  • the heating is not particularly limited as long as the sulfide solid electrolyte and oxide are heated to 300°C or higher and 600°C or lower, but an oxide may be added to the heated sulfide solid electrolyte and further heated, or a sulfide solid electrolyte may be added to the heated oxide and further heated, or a mixture of the sulfide solid electrolyte and oxide may be heated.
  • the sulfide solid electrolyte and oxide may be mixed as described below and then heated, or heating and mixing as described below may be performed simultaneously.
  • the heating is preferably performed by simultaneously heating the sulfide solid electrolyte and the oxide with a single heater. This is because a modified sulfide solid electrolyte containing the sulfide solid electrolyte and the oxide can be produced.
  • the method for producing the modified sulfide solid electrolyte of the present embodiment preferably further includes mixing.
  • the mixing may be performed before the heating, or may be performed simultaneously with the heating, or a combination of these. Mixing before and/or simultaneously with the heating is preferable because the sulfide solid electrolyte is heated in a state in which the oxide is uniformly present on the surface thereof, and therefore a modified sulfide solid electrolyte in which the oxide is attached or bonded to the surfaces of the primary particles of the sulfide solid electrolyte is produced.
  • a pulverizer to mix the sulfide solid electrolyte, as described below, since this allows the oxide to be present on the surface of the sulfide solid electrolyte while adjusting the median diameter (D 50 ) of the sulfide solid electrolyte.
  • the method for producing the modified sulfide solid electrolyte of this embodiment may further include pulverizing the sulfide solid electrolyte and/or the modified sulfide solid electrolyte.
  • the method for producing the modified sulfide solid electrolyte of this embodiment can suppress an increase in the median diameter (D 50 ) of the sulfide solid electrolyte, it is preferable to heat the sulfide solid electrolyte so that the median diameter (D 50 ) is a required size, and not pulverize the modified sulfide solid electrolyte after heating.
  • the pulverizer used for pulverizing the sulfide solid electrolyte is not particularly limited as long as it can pulverize particles, and for example, a media-type pulverizer using a pulverizing medium can be used.
  • a media-type pulverizer a dry type pulverizer or a wet type pulverizer is preferable.
  • a dry grinding machine a dry media type grinding machine such as a dry bead mill, a dry ball mill, or a dry vibration mill, or a dry non-media type grinding machine such as a jet mill can be used.
  • a wet grinding machine a wet bead mill, a wet ball mill, a wet vibration mill, or the like can be used.
  • a grinder used to grind the sulfide solid electrolyte and/or modified sulfide solid electrolyte a machine capable of grinding an object using ultrasonic waves, such as a machine called an ultrasonic grinder, ultrasonic homogenizer, probe ultrasonic grinder, etc., can also be used.
  • the median diameter (D 50 ) of the sulfide solid electrolyte and/or modified sulfide solid electrolyte obtained by pulverization is appropriately determined as desired, but is usually 0.01 ⁇ m or more and 50 ⁇ m or less, preferably 0.03 ⁇ m or more and 5 ⁇ m or less, and more preferably 0.05 ⁇ m or more and 3 ⁇ m or less.
  • the modified sulfide solid electrolyte of the present embodiment is obtained by a production method including heating a sulfide solid electrolyte having an argyrodite-type crystal structure and an oxide at 300° C. or more and 600° C.
  • M represents an atom selected from Mg, Al, Si, Ca, Ti, V, Fe, Zn, Ga, Sr, Y, Zr, Nb, Mo, Sn, Sb, Ba, Ta, W, and Bi, and m and n each independently represent an integer of 1 to 5
  • M represents an atom selected from Mg, Al, Si, Ca, Ti, V, Fe, Zn, Ga, Sr, Y, Zr, Nb, Mo, Sn, Sb, Ba, Ta, W, and Bi
  • m and n each independently represent an integer of 1 to 5
  • At least one oxide in which M in the general formula M m O n is Al is included.
  • the modified sulfide solid electrolyte of the present embodiment is a modified sulfide solid electrolyte that suppresses the generation of hydrogen sulfide while maintaining the ionic conductivity of the sulfide solid electrolyte. Because of such properties, it is useful as a material for an electrode mixture and a lithium ion battery, which will be described later. In addition, since the modified sulfide solid electrolyte contains an oxide, it is possible to suppress an increase in the median diameter (D 50 ) of the modified sulfide solid electrolyte in particular.
  • the median diameter (D 50 ) of the sulfide solid electrolyte can be reduced, it is preferable because it is easy to form a contact interface between the electrode active material and the sulfide solid electrolyte, and the paths for ionic conduction and electronic conduction are improved.
  • the modified sulfide solid electrolyte of the present embodiment is preferably a modified sulfide solid electrolyte in which the intensity ratio (peak intensity derived from oxide/peak intensity derived from argyrodite-type crystal structure) of the peak intensity derived from the oxide to the peak intensity of 29.7 ⁇ 0.5 deg. derived from the argyrodite-type crystal structure (peak intensity derived from argyrodite-type crystal structure) in an X-ray diffraction spectrum (XRD pattern) is less than 0.1.
  • the intensity ratio is less than 0.1, the ionic conductivity of the sulfide solid electrolyte is maintained, an increase in the median diameter (D 50 ) is suppressed, and generation of hydrogen sulfide can be further suppressed, which is preferable.
  • the intensity ratio of less than 0.1 may be considered to mean that the oxide is not present in the modified sulfide solid electrolyte.
  • the intensity ratio of less than 0.1 is considered to mean that the oxide itself is present in the modified sulfide solid electrolyte in a manner that is not observed in the XRD pattern.
  • the peak intensity of the XRD pattern originating from the oxide is small because the oxide is nanoparticles as described above, and the intensity ratio is small.
  • the formation of the contact interface between the electrode active material and the modified sulfide solid electrolyte is inhibited by the oxide, but if the intensity ratio is less than 0.1, the formation of the contact interface is not inhibited and the path of electronic conduction is improved.
  • the modified sulfide solid electrolyte of the present embodiment is required to contain the sulfide solid electrolyte and the oxide, and preferably has the oxide attached or bonded to the surfaces of the primary particles of the sulfide solid electrolyte. The attachment and bonding are as described above.
  • the above (i) specifies that at least one oxide in which M is Al in the general formula MmOn is contained. This is preferable because it is possible to obtain a modified sulfide solid electrolyte in which the generation of hydrogen sulfide is suppressed while suppressing an increase in the median diameter ( D50 ). Details will be described later.
  • the modified sulfide solid electrolyte of this embodiment requires that the ratio (M M /M P ) of the total number of moles of M in all oxides contained in the modified sulfide solid electrolyte (M M ) to the total number of moles of phosphorus atoms in the sulfide solid electrolyte (M P ) is greater than 0.010.
  • the content ratio of an oxide, described below, and a sulfide solid electrolyte, described below, contained in the modified sulfide solid electrolyte can be roughly calculated from the above-mentioned M M /M P.
  • M M and M P may be obtained from the oxide and sulfide solid electrolyte used in producing the modified sulfide solid electrolyte, or may be calculated by measuring the total content of M and the content of phosphorus atoms contained in the modified sulfide solid electrolyte by ICP atomic emission spectrometry or the like. If the M M /M P is 0.010 or less, the effect of containing an oxide is not fully exhibited, and it is not possible to obtain a modified sulfide solid electrolyte in which the generation of hydrogen sulfide is suppressed while suppressing an increase in the median diameter (D 50 ).
  • the M M /M P is preferably 0.02 or more, more preferably 0.04 or more, and even more preferably 0.4 or more.
  • the upper limit is not particularly limited, and can be appropriately adjusted in order to maintain the ionic conductivity of the modified sulfide solid electrolyte.
  • the median diameter ( D50 ) is less than 150 ⁇ m, it is easy to form a contact interface between the electrode active material and the sulfide solid electrolyte, and the paths of ion conduction and electron conduction are improved, and by using this modified sulfide solid electrolyte, a lithium ion battery with excellent battery performance can be obtained, which is preferable.
  • the median diameter ( D50 ) is more preferably 100 ⁇ m or less, and even more preferably 80 ⁇ m or less.
  • the lower limit is not particularly limited, but is preferably 10 ⁇ m or more.
  • the sulfide solid electrolyte used in this embodiment is required to have an argyrodite-type crystal structure. Since the sulfide solid electrolyte has a high ionic conductivity due to the argyrodite-type crystal structure, the modified sulfide solid electrolyte also has a high ionic conductivity.
  • the modified sulfide solid electrolyte of the present embodiment has properties equivalent to those of the sulfide solid electrolyte used in its production in terms of composition and properties.
  • the modified sulfide solid electrolyte of this embodiment which is manufactured while retaining this argyrodite-type crystal structure, also has an argyrodite-type crystal structure. It will be held.
  • the sulfide solid electrolyte used in this embodiment is a crystalline solid electrolyte having an argyrodite-type crystal structure.
  • crystalline solid electrolyte refers to a solid electrolyte in which a peak derived from the solid electrolyte is observed in an X-ray diffraction pattern in an X-ray diffraction measurement, and the peak derived from the raw material of the solid electrolyte is
  • a crystalline solid electrolyte includes a crystal structure derived from a solid electrolyte, and even if a part of the crystal structure is derived from the solid electrolyte, the whole of the crystal structure is derived from the solid electrolyte.
  • the crystalline solid electrolyte may have a crystal structure derived from the amorphous solid electrolyte, if the crystalline solid electrolyte has the X-ray diffraction pattern as described above. It is a good thing.
  • the contents of lithium atoms, phosphorus atoms, and sulfur atoms in the sulfide solid electrolyte can be determined, for example, by measurement using an inductively coupled plasma (ICP) emission spectrometer.
  • ICP inductively coupled plasma
  • the sulfide solid electrolyte used in this embodiment, and the modified sulfide solid electrolyte containing the sulfide solid electrolyte, have an argyrodite-type crystal structure.
  • the formula of the argyrodite crystal structure is Li 7-x-2y PS 6-x-y Cl x (0.8 ⁇ x ⁇ 1.7, 0 ⁇ y ⁇ 0.25x+0.5).
  • composition formula of the argyrodite-type crystal structure is Li7 - xPS6 -xHax ( Ha is Cl and/or Br, and x is preferably 0.2 to 1.8).
  • the sulfide solid electrolyte used in this embodiment and the modified sulfide solid electrolyte containing this sulfide solid electrolyte, preferably contain lithium atoms, phosphorus atoms, sulfur atoms, and halogen atoms, and when atoms other than chlorine atoms are used as halogen atoms, it may not be expressed by the composition formula of "Li 7-x-2y PS 6-x-y Cl x (0.8 ⁇ x ⁇ 1.7, 0 ⁇ y ⁇ -0.25x+0.5)".
  • the sulfide solid electrolyte used in this embodiment and the modified sulfide solid electrolyte containing this sulfide solid electrolyte, preferably have an Argyrodite-type crystal structure formed by lithium atoms, phosphorus atoms, sulfur atoms, and halogen atoms.
  • the sulfide solid electrolyte used in this embodiment and the modified sulfide solid electrolyte containing the sulfide solid electrolyte preferably contain lithium atoms, sulfur atoms, phosphorus atoms and halogen atoms.
  • Li 2 S-P 2 S 5 Li 2 S-P 2 S 5 , Li 2 S-P 2 S 5 -LiI, Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5 -LiBr, Li 2 S-P 2 S 5 -LiI, Li 2 S-P 2 S 5 -LiCl-LiBr, Li 2 S- P 2 S 5 -LiI -LiBr, Li 2 S- P 2 S 5 Preferred examples of the sulfide solid electrolyte include a sulfide solid electrolyte composed of lithium sulfide, phosphorus sulfide, and a lithium halide, such as Li2S - P2S5 -LiI, Li2S- P2S5 -LiCl, Li2S - P2S5 - LiBr, and Li2S- P2S5 -LiI-LiBr.
  • a sulfide solid electrolyte composed of lithium sulfide, phosphorus sulfide, and a lithium halide such as Li2S -P2S5-LiI, Li2S - P2S5 -LiCl, Li2S- P2S5 -LiBr, and Li2S- P2S5 -LiI-LiBr, is preferred.
  • the halogen atom contains at least one type selected from a chlorine atom and a bromine atom in order to stabilize the argyrodite type crystal structure.
  • the halogen atom preferably contains a chlorine atom, more preferably contains a bromine atom, and more preferably contains both a chlorine atom and a bromine atom.
  • the composition ratio (molar ratio) of lithium atoms, phosphorus atoms, sulfur atoms, and halogen atoms is preferably 1.0 to 1.8: 0.1 to 0.8: 1.0 to 2.0: 0.01 to 0.6, more preferably 1.1 to 1.7: 0.2 to 0.6: 1.2 to 1.8: 0.05 to 0.5, and even more preferably 1.2 to 1.6: 0.25 to 0.5: 1.3 to 1.7: 0.08 to 0.4.
  • the composition ratio (molar ratio) of lithium atoms, phosphorus atoms, sulfur atoms, bromine, and chlorine is preferably 1.0 to 1.8: 0.1 to 0.8: 1.0 to 2.0: 0.01 to 0.3: 0.01 to 0.3, more preferably 1.1 to 1.7: 0.2 to 0.6: 1.2 to 1.8: 0.02 to 0.25: 0.02 to 0.25, even more preferably 1.2 to 1.6: 0.25 to 0.5: 1.3 to 1.7: 0.03 to 0.2: 0.03 to 0.2, and still more preferably 1.35 to 1.45: 0.3 to 0.45: 1.4 to 1.7: 0.04 to 0.18: 0.04 to 0.18.
  • the above (iii) specifies that when only one peak is observed within the range of 29.7 ⁇ 0.5 deg. in an X-ray diffraction spectrum (XRD pattern), or when two or more peaks are observed, I2 / I1 is less than 1.0, where I1 is the intensity of the highest peak and I2 is the intensity of the second highest peak.
  • the peak at 29.7 ⁇ 0.5 deg. characterizes the presence of an argyrodite-type crystal structure, and when only one peak is observed within this range, the observed peak is a peak derived from the argyrodite-type crystal structure, and when two or more peaks are observed, the highest peak is a peak derived from the argyrodite-type crystal structure (a peak with an intensity of I1 ).
  • peaks other than those derived from the Argyrodite-type crystal structure within the range of 29.7 ⁇ 0.5 deg. is considered to mean that a crystal structure similar to the Argyrodite-type crystal structure is contained in the modified sulfide solid electrolyte, and it is possible that an oxide has been incorporated into the Argyrodite-type crystal structure to change the crystal type, or that the crystalline substance has changed to something different.
  • the sulfide solid electrolyte used in the present embodiment is not particularly limited in its manufacturing method as long as it is a sulfide solid electrolyte having an argyrodite-type crystal structure containing lithium atoms, sulfur atoms, phosphorus atoms, and halogen atoms.
  • the raw material components described below may be mixed, if necessary, with a solvent, and then, if necessary, dried, heated and/or pulverized to produce the toner.
  • a compound containing at least one of lithium atom, sulfur atom, and phosphorus atom can be used, and may contain halogen atom as necessary. More specifically, lithium sulfide; phosphorus sulfide such as diphosphorus trisulfide (P 2 S 3 ) and diphosphorus pentasulfide (P 2 S 5 ); and solid electrolytes such as amorphous Li 3 PS 4 or crystalline Li 3 PS 4 obtained from lithium sulfide and phosphorus sulfide and having a PS 4 structure as a molecular structure can be mentioned.
  • Examples of compounds containing halogen atoms include: lithium halides such as lithium fluoride, lithium chloride, lithium bromide, and lithium iodide; phosphorus halides such as various phosphorus fluorides ( PF3 , PF5 ), various phosphorus chlorides ( PCl3 , PCl5 , P2Cl4 ), various phosphorus bromides ( PBr3 , PBr5 ), and various phosphorus iodides ( PI3 , P2I4 ); thiophosphoryl halides such as thiophosphoryl fluoride ( PSF3 ), thiophosphoryl chloride ( PSCl3 ), thiophosphoryl bromide ( PSBr3 ), thiophosphoryl iodide ( PSI3 ), thiophosphoryl dichloride fluoride ( PSCl2F ), and thiophosphoryl dibromide fluoride ( PSBr2F ); and raw materials consisting of at least two atoms
  • the raw material contents are preferably lithium sulfide and phosphorus sulfide, and the raw material containing halogen atoms more preferably contains at least one selected from lithium halide, phosphorus halide, and halogen molecules.
  • the use of at least one selected from lithium sulfide, phosphorus sulfide, lithium halide, phosphorus halide, and halogen molecules is preferred because it allows for the production of a sulfide solid electrolyte having high ionic conductivity.
  • the use of lithium halide together with a complexing agent described below for the introduction of halogen atoms into the sulfide solid electrolyte is preferred because it allows for the production of a sulfide solid electrolyte having high ionic conductivity without separation of halogen atoms during removal of the solvent, etc., described below.
  • the halogen atom is preferably at least one selected from a chlorine atom and a bromine atom, more preferably contains a chlorine atom, more preferably contains a bromine atom, and more preferably contains both a chlorine atom and a bromine atom.
  • phosphorus sulfides such as lithium sulfide, diphosphorus trisulfide (P 2 S 3 ), diphosphorus pentasulfide (P 2 S 5 ) are preferred as the raw material, and further, when a raw material containing a halogen atom is used, a halogen element (halogen molecule) such as fluorine (F 2 ), chlorine (Cl 2 ), bromine (Br 2 ), iodine (I 2 ), or a lithium halide such as lithium fluoride, lithium chloride, lithium bromide, or lithium iodide is preferred.
  • Preferred combinations of raw materials include, for example, a combination of lithium sulfide, diphosphorus pentasulfide, and a lithium halide, and a combination of lithium sulfide, diphosphorus pentasulfide, and a halogen element, and lithium bromide and lithium chloride are preferred as the lithium halide, and bromine and chlorine are preferred as the halogen element.
  • the lithium sulfide used in this embodiment is preferably in the form of particles.
  • the median diameter (D 50 ) of the lithium sulfide particles is preferably 10 ⁇ m or more and 2000 ⁇ m or less, more preferably 30 ⁇ m or more and 1500 ⁇ m or less, and even more preferably 50 ⁇ m or more and 1000 ⁇ m or less.
  • the median diameter (D 50 ) is the particle diameter at which the particle diameter reaches 50% of the whole when the particle diameter distribution cumulative curve is drawn by sequentially accumulating from the smallest particle diameter, and the volume distribution is, for example, the median diameter that can be measured using a laser diffraction/scattering type particle diameter distribution measuring device.
  • the solid raw materials have a median diameter of the same extent as the lithium sulfide particles. That is, it is preferable that the solid raw materials are within the same range as the median diameter of the lithium sulfide particles.
  • the mixing in the production of the sulfide solid electrolyte may involve applying mechanical stress to the raw material contents to react while mixing, or may involve pulverization while mixing.
  • applying mechanical stress means mechanically applying shear force, impact force, etc.
  • means for applying mechanical stress include pulverizers such as planetary ball mills, vibration mills, rolling mills, and bead mills, and kneaders such as single-shaft kneaders and multi-shaft kneaders.
  • the mixing may be carried out in the presence of a solvent (wet mixing) or without the use of a solvent (dry mixing).
  • the conditions for pulverizing and mixing are, for example, when a planetary ball mill is used as the pulverizer, a rotation speed of several tens to several hundreds of revolutions per minute and processing time of 0.5 to 100 hours.
  • balls serving as grinding media are used, for example, zirconia balls, their diameter is preferably 0.2 to 20 mm.
  • an organic solvent can be used, and preferably a non-polar solvent, a polar solvent, or a mixture thereof can be used.
  • a non-polar solvent or a solvent mainly composed of a non-polar solvent, for example, 95% by mass or more of the total organic solvent is preferably a non-polar solvent.
  • the non-polar solvent is preferably a hydrocarbon solvent, and the hydrocarbon solvent may be a saturated hydrocarbon, an unsaturated hydrocarbon, or an aromatic hydrocarbon. Examples of saturated hydrocarbons include hexane, pentane, 2-ethylhexane, heptane, decane, tridecane, and cyclohexane.
  • Examples of unsaturated hydrocarbons include hexene, heptene, and cyclohexene.
  • Examples of aromatic hydrocarbons include toluene, xylene, ethylbenzene, decalin, and 1,2,3,4-tetrahydronaphthalene. Of these, toluene or xylene is preferred.
  • the hydrocarbon solvent is preferably dehydrated in advance.
  • the water content is preferably 100 ppm by mass or less, and more preferably 30 ppm by mass or less.
  • the organic solvent preferably contains at least one of a nitrile compound and an ether compound.
  • the ether compound include tetrahydrofuran and diethyl ether.
  • the nitrile compound is preferably a nitrile compound represented by R(CN) n , where R is an alkyl group having 1 to 10 carbon atoms or a group having an aromatic ring having 6 to 18 ring carbon atoms, and n is 1 or 2.
  • nitrile examples include acetonitrile, propionitrile, 3-chloropropionitrile, benzonitrile, 4-fluorobenzonitrile, tertiary butyronitrile, isobutyronitrile, cyclohexylnitrile, capronitrile, isocapronitrile, malononitrile, and fumaronitrile.
  • Preferred are propionitrile, isocapronitrile, and isobutyronitrile.
  • nitrile compounds are preferred because they form an azeotrope with toluene and are therefore easily removed from the treated product together with toluene during drying.
  • the amount of the nitrile compound and the ether compound contained in the organic solvent is preferably from 0.01 to 5% by mass, more preferably from 0.1 to 3% by mass, and particularly preferably from 0.3 to 1% by mass.
  • the ground particle size of each raw material can be made smaller, which shortens the diffusion path of each element and makes each element more likely to be used to generate an argyrodite -type crystal structure, which is thought to suppress the generation of a different phase such as a Li3PS4 crystal structure.
  • the mixture of raw materials obtained by removing the solvent from the processed material after wet mixing using a bead mill is mainly composed of fine crystals. By mixing and grinding the raw materials, the raw materials are atomized, and a mixture of fine crystals of each raw material is obtained.
  • the method for producing the sulfide solid electrolyte used in the modified sulfide solid electrolyte of the present embodiment preferably further includes heating after the mixing step in the production of the sulfide solid electrolyte. It is preferable to include heating the complex to decomplex it, and heating the crystalline or amorphous sulfide solid electrolyte to obtain a crystalline solid electrolyte or a more crystallized crystalline sulfide solid electrolyte.
  • an amorphous sulfide solid electrolyte and/or a crystalline sulfide solid electrolyte containing lithium atoms, sulfur atoms, phosphorus atoms, and halogen atoms is obtained.
  • the heating may be carried out in stages, such as calcination and firing.
  • the mixture of raw material contents is subjected to removal of the solvent to obtain a raw material mixture, which is then calcined to obtain a powdered calcined product.
  • the heating temperature and time in the calcination can be appropriately adjusted in consideration of the composition of the calcined product, etc.
  • the heating temperature is preferably 150°C to 300°C, more preferably 160°C to 280°C, and particularly preferably 170°C to 250°C.
  • the heating time is preferably 0.1 to 8 hours, more preferably 0.2 to 6 hours, and particularly preferably 0.25 to 4 hours.
  • the heating device used in the calcination is not particularly limited.
  • the above-mentioned non-polar solvent, polar solvent, or a mixture thereof can be used as the solvent used for calcination.
  • the mixture is dispersed in the solvent to form a slurry, which is then heated.
  • the solvent used for calcination may be the same as or different from the solvent used for mixing the raw materials. When the same solvent is used, it is preferable because it is not necessary to remove the solvent.
  • the heating temperature and time in the calcination can be appropriately adjusted taking into consideration the composition of the raw materials, etc.
  • the heating time is preferably from 10 minutes to 6 hours, more preferably from 10 minutes to 3 hours, and particularly preferably from 30 minutes to 2 hours.
  • the heating device used in the calcination there are no particular limitations on the heating device used in the calcination, but when the heating temperature exceeds the boiling point of the solvent used, it is preferable to use an autoclave.
  • the solvent is removed from the slurry used in the calcination to recover the calcined product.
  • the method for removing the solvent is not particularly limited, but the solvent can be distilled off under normal pressure or reduced pressure. In order to further increase productivity, filtration can also be used in combination.
  • the mixture or the calcined product obtained by mixing is fired to obtain a solid electrolyte.
  • the heating temperature and time can be appropriately adjusted in consideration of the composition of the mixture and the calcined product.
  • the heating temperature is preferably 300°C to 470°C, more preferably more than 300°C to 460°C or less, more preferably 320°C to 450°C, further preferably 350°C to 440°C, and particularly preferably 380°C to 430°C.
  • the heating time is preferably from 1 to 360 minutes, more preferably from 5 to 120 minutes, and particularly preferably from 10 to 60 minutes.
  • the atmosphere during firing is not particularly limited, but is preferably an inert gas atmosphere such as nitrogen, argon, etc., rather than a hydrogen sulfide gas flow.
  • a firing furnace such as a stationary hearth kiln or a rotary kiln can be used.
  • the above-mentioned non-polar solvent, polar solvent, or a mixture thereof can be used as the solvent used for heating. Heating is performed on the slurry in which the calcined product is dispersed in the solvent.
  • the solvent used for heating may be the same as or different from the solvent used in the calcination. When the same solvent is used, it is preferable because it is not necessary to replace or remove the solvent before heating.
  • the heating temperature exceeds the boiling point of the solvent used.
  • the removal of the complexing agent from the complex is supported by the fact that it is clear from the results of X-ray diffraction patterns and gas chromatography analysis that the complexing agent forms a co-crystal with the raw material contents, etc., and that the sulfide solid electrolyte obtained by removing the complexing agent by heating the complex has the same X-ray diffraction pattern as the sulfide solid electrolyte obtained by the conventional method without using a complexing agent.
  • the sulfide solid electrolyte When the sulfide solid electrolyte is obtained by removing the complexing agent from the complex by heating the complex, the less complexing agent in the sulfide solid electrolyte, the better, but the complexing agent may be contained to an extent that does not impair the performance of the sulfide solid electrolyte.
  • the content of the complexing agent in the sulfide solid electrolyte is usually 10 mass% or less, preferably 5 mass% or less, more preferably 3 mass% or less, and even more preferably 1 mass% or less.
  • the lower limit is not particularly limited, since the lower the content, the better.
  • the heating temperature cannot be generally defined because it varies depending on the structure of the resulting crystalline sulfide solid electrolyte, but is usually preferably 250°C or less, more preferably 220°C or less, and even more preferably 200°C or less. There is no particular lower limit, but it is preferably 90°C or more, more preferably 100°C or more, and even more preferably 110°C or more.
  • the heating is preferably carried out under reduced pressure, preferably 0.1 Pa or more from the viewpoint of the apparatus, more preferably 1.0 Pa or more, and even more preferably 5.0 Pa or more, and from the viewpoint of obtaining a solid electrolyte with high ionic conductivity, preferably 100.0 Pa or less, more preferably 50.0 Pa or less, and even more preferably 20.0 Pa or less.
  • the method for producing the modified sulfide solid electrolyte of the present embodiment may further include pulverizing the sulfide solid electrolyte.
  • the pulverization is as described above. It is preferable to pulverize the sulfide solid electrolyte to reduce the median diameter (D 50 ), since this also reduces the median diameter (D 50 ) of the modified sulfide solid electrolyte of the present embodiment.
  • the oxide used in the embodiment of the present application is required to contain a compound represented by the general formula M m O n (wherein M represents an atom selected from Mg, Al, Si, Ca, Ti, V, Fe, Zn, Ga, Sr, Y, Zr, Nb, Mo, Sn, Sb, Ba, Ta, W and Bi, and m and n each independently represent an integer of 1 to 5), and is used in the method for producing a modified sulfide solid electrolyte of the present embodiment.
  • M represents an atom selected from Mg, Al, Si, Ca, Ti, V, Fe, Zn, Ga, Sr, Y, Zr, Nb, Mo, Sn, Sb, Ba, Ta, W and Bi
  • m and n each independently represent an integer of 1 to 5
  • m and n are numbers appropriately determined depending on the valence of M.
  • M may be one type of atom or two or more types of atoms, but in consideration of availability, it is preferably one type of atom.
  • M in order to suppress a decrease in the ionic conductivity of the sulfide solid electrolyte without affecting the argyrodite-type crystal structure, Mg, Al, Si, Ca, V, Fe, Zn, Ga, Sr, Y, Zr, Nb, Mo, Sn, Sb, Ba, Ta, W, and Bi are preferable.
  • Mg, Al, Si, Ti, Fe, Zn, Y, Zr, Nb, Mo, Sn, Ta, and W are more preferable, Al, Si, Ti, Zr, Nb, and Mo are even more preferable, and Al and Si are even more preferable.
  • the oxide contains an oxide (Al 2 O 3 ) in which M in the general formula M m O n is Al, and by heating together with the sulfide solid electrolyte at 300° C. to 600° C., a modified sulfide solid electrolyte in which Al 2 O 3 is adsorbed or bonded to the surfaces of the primary particles of the sulfide solid electrolyte can be obtained.
  • Al 2 O 3 oxide in which M in the general formula M m O n is Al
  • the oxide is Al 2 O 3 , it does not react with the sulfide solid electrolyte and the argyrodite crystal structure is maintained, so that the decrease in ion conductivity is suppressed even as a modified sulfide solid electrolyte, and it is preferable that the adsorption or bonding of Al 2 O 3 to the surfaces of the primary particles of the sulfide solid electrolyte can suppress an increase in the median diameter (D 50 ) and a modified sulfide solid electrolyte in which hydrogen sulfide generation is suppressed can be obtained.
  • D 50 median diameter
  • the oxide contains an oxide ( TiO4 ) in which M in the general formula MmOn is Ti, the argyrodite crystal structure changes, and the decrease in ionic conductivity becomes greater than when Al2O3 is contained.
  • this is preferable because the generation of hydrogen sulfide is significantly suppressed while the increase in the median diameter ( D50 ) is suppressed.
  • TiO4 is used as the oxide, it has been confirmed that a new peak appears at 35.4 ⁇ 0.5 deg. in the XRD chart of the modified sulfide solid electrolyte, although it is extremely weak compared to the peak intensity of 29.7 ⁇ 0.5 deg. due to the structure.
  • the oxide may be only one type, or two or more types may be combined. When two or more types are combined, it is preferable to include an oxide (SiO 2 ) in which M in the general formula M m O n is Si.
  • SiO 2 oxide in which M in the general formula M m O n is Si.
  • SiO 2 it is preferable to be able to suppress the generation of hydrogen sulfide even if the amount of other oxides used is reduced.
  • SiO 2 can suppress the decrease in ion conductivity and suppress the generation of hydrogen sulfide.
  • Al 2 O 3 and SiO 2 are used in combination, the amount of Al 2 O 3 used can be reduced, so it is preferable to suppress the decrease in ion conductivity and suppress the generation of hydrogen sulfide.
  • the oxide may contain an oxide other than the general formula MmOn , but in order to suppress the generation of hydrogen sulfide while maintaining the ionic conductivity of the sulfide solid electrolyte and suppressing an increase in the median diameter ( D50 ), the total content of the general formula MmOn in the oxide is preferably 80 mass% or more, more preferably 90 mass% or more, even more preferably 95 mass% or more, and even more preferably substantially only the general formula MmOn . In the present disclosure, "substantially” means that it is not intentionally contained.
  • the modified sulfide solid electrolyte is preferably in a state in which the oxide is attached or bonded to the surfaces of primary particles of the sulfide solid electrolyte, and the median diameter (D 50 ) of the attached or bonded oxide is preferably less than 100.0 ⁇ m. If the median diameter ( D50 ) of the attached or bonded oxide is less than 100.0 ⁇ m, it becomes difficult for the oxide to come into contact with moisture in the atmosphere, and the generation of hydrogen sulfide is suppressed. This is also preferable because it suppresses the decrease in the ionic conductivity of the modified sulfide solid electrolyte and the increase in the median diameter ( D50 ).
  • the median diameter (D 50 ) of the attached or bonded oxide is more preferably 50.0 ⁇ m or less, and even more preferably 30.0 ⁇ m or less.
  • the median diameter (D 50 ) of the attached or bonded oxide corresponds to the median diameter (D 50 ) of the oxide used in the method for producing the modified sulfide solid electrolyte of this embodiment.
  • the intensity ratio (peak intensity from oxide/peak intensity from argyrodite crystal structure) between the peak intensity from the oxide and the peak intensity of 29.7 ⁇ 0.5 deg. from the argyrodite crystal structure (peak intensity from argyrodite crystal structure) is preferably less than 0.1, and most preferably is not substantially observable (less than the lower limit of the measuring device).
  • the positions of the peaks derived from oxides vary depending on the type of oxide, but as peaks that do not overlap with peaks derived from the argyrodite-type crystal structure and peaks derived from raw material contents, for example, they appear at 33.0 ⁇ 0.5 deg. and 37.0 ⁇ 0.5 deg. in alumina (Al 2 O 3 ), 38.0 ⁇ 0.5 deg. and 48.0 ⁇ 0.5 deg. in silica (SiO 2 ), and 20.8 ⁇ 0.5 deg. and 26.5 ⁇ 0.5 deg. in titania (TiO 2 ) .
  • the electrode mixture of the present embodiment is an electrode mixture containing the modified sulfide solid electrolyte of the present embodiment described above and an electrode active material.
  • an electrode active material As the electrode active material, a positive electrode active material or a negative electrode active material is adopted depending on whether the electrode mixture is used for a positive electrode or a negative electrode.
  • the positive electrode active material can be any material that can promote a battery chemical reaction involving the movement of lithium ions resulting from atoms that are used to exhibit ionic conductivity in relation to the negative electrode active material, preferably lithium atoms, and is not particularly limited.
  • positive electrode active materials that can insert and remove lithium ions include oxide-based positive electrode active materials and sulfide-based positive electrode active materials.
  • LMO lithium manganese oxide
  • LCO lithium cobalt oxide
  • NMC lithium nickel manganese cobalt oxide
  • NCA lithium nickel cobalt aluminate
  • LNCO lithium nickel cobalt oxide
  • sulfide-based positive electrode active materials include titanium sulfide (TiS 2 ), molybdenum sulfide (MoS 2 ), iron sulfide (FeS, FeS 2 ), copper sulfide (CuS), and nickel sulfide (Ni 3 S 2 ).
  • TiS 2 titanium sulfide
  • MoS 2 molybdenum sulfide
  • FeS, FeS 2 iron sulfide
  • CuS copper sulfide
  • Ni 3 S 2 nickel sulfide
  • the positive electrode active material may be used alone or in combination of two or more kinds.
  • the negative electrode active material can be used without any particular limitation as long as it can promote a battery chemical reaction accompanied by the movement of lithium ions caused by lithium atoms, such as an atom that is used as an atom that exhibits ion conductivity, preferably a metal that can form an alloy with lithium atoms, an oxide thereof, an alloy of the metal with lithium atoms, etc.
  • a negative electrode active material capable of inserting and removing lithium ions any material known in the battery field as a negative electrode active material can be used without any limitation. Examples of such negative electrode active materials include metallic lithium, metallic indium, metallic aluminum, metallic silicon, metallic tin, and other metallic lithium or metals capable of forming alloys with metallic lithium, oxides of these metals, and alloys of these metals with metallic lithium.
  • the electrode active material used in this embodiment may have a coating layer on its surface.
  • Materials for forming the coating layer include ion conductors such as nitrides, oxides, and composites of atoms, preferably lithium atoms, that exhibit ion conductivity in the sulfide solid electrolyte.
  • conductors having a lysicone-type crystal structure such as Li 4-2x Zn x GeO 4 , which has a main structure of lithium nitride (Li 3 N) and Li 4 GeO 4
  • conductors having a thiolysicone-type crystal structure such as Li 4-x Ge 1-x P x S 4 , which has a Li 3 PO 4 type skeleton structure
  • conductors having a perovskite-type crystal structure such as La 2/3-x Li 3x TiO 3
  • conductors having a NASICON-type crystal structure such as LiTi 2 (PO 4 ) 3 .
  • lithium titanates such as Li y Ti 3-y O 4 (0 ⁇ y ⁇ 3) and Li 4 Ti 5 O 12 (LTO)
  • lithium metal oxides of metals belonging to Group 5 of the periodic table such as LiNbO 3 and LiTaO 3
  • oxide-based conductors such as Li 2 O—B 2 O 3 —P 2 O 5 , Li 2 O—B 2 O 3 —ZnO, and Li 2 O—Al 2 O 3 —SiO 2 —P 2 O 5 —TiO 2 .
  • An electrode active material having a coating layer can be obtained, for example, by applying a solution containing various atoms constituting the material forming the coating layer to the surface of an electrode active material, and then baking the electrode active material after application at a temperature of preferably 200° C. or higher and 400° C. or lower.
  • the solution containing various atoms may be a solution containing alkoxides of various metals such as lithium ethoxide, titanium isopropoxide, niobium isopropoxide, tantalum isopropoxide, etc.
  • the solvent may be an alcohol solvent such as ethanol or butanol, an aliphatic hydrocarbon solvent such as hexane, heptane, or octane, or an aromatic hydrocarbon solvent such as benzene, toluene, or xylene.
  • the above attachment may be performed by immersion, spray coating, or the like.
  • the firing temperature is preferably 200°C or higher and 400°C or lower, and more preferably 250°C or higher and 390°C or lower, and the firing time is usually about 1 minute to 10 hours, and preferably 10 minutes to 4 hours.
  • the coverage of the coating layer is preferably 90% or more, more preferably 95% or more, and even more preferably 100% based on the surface area of the electrode active material, that is, the entire surface is preferably covered.
  • the thickness of the coating layer is preferably 1 nm or more, more preferably 2 nm or more, and the upper limit is preferably 30 nm or less, more preferably 25 nm or less.
  • the thickness of the coating layer can be measured by cross-sectional observation using a transmission electron microscope (TEM), and the coverage rate can be calculated from the thickness of the coating layer, elemental analysis values, and BET specific surface area.
  • TEM transmission electron microscope
  • the electrode mixture of this embodiment may contain other components such as a conductive material, a binder, etc. in addition to the modified sulfide solid electrolyte and the electrode active material. That is, the electrode mixture of this embodiment may contain other components such as a conductive material, a binder, etc. in addition to the modified sulfide solid electrolyte and the electrode active material. The other components such as a conductive material, a binder, etc. may be further added to and mixed with the modified sulfide solid electrolyte and the electrode active material when the modified sulfide solid electrolyte and the electrode active material are mixed together.
  • Examples of the conductive material from the viewpoint of improving battery performance by improving electronic conductivity, include carbon-based materials such as artificial graphite, graphite carbon fiber, resin-calcined carbon, pyrolytic vapor-grown carbon, coke, mesocarbon microbeads, furfuryl alcohol resin-calcined carbon, polyacene, pitch-based carbon fiber, vapor-grown carbon fiber, natural graphite, and non-graphitizable carbon.
  • carbon-based materials such as artificial graphite, graphite carbon fiber, resin-calcined carbon, pyrolytic vapor-grown carbon, coke, mesocarbon microbeads, furfuryl alcohol resin-calcined carbon, polyacene, pitch-based carbon fiber, vapor-grown carbon fiber, natural graphite, and non-graphitizable carbon.
  • the binder is not particularly limited as long as it can impart functions such as binding property and flexibility, and examples thereof include fluorine-based polymers such as polytetrafluoroethylene and polyvinylidene fluoride, thermoplastic elastomers such as butylene rubber and styrene-butadiene rubber, and various resins such as acrylic resins, acrylic polyol resins, polyvinyl acetal resins, polyvinyl butyral resins, and silicone resins.
  • fluorine-based polymers such as polytetrafluoroethylene and polyvinylidene fluoride
  • thermoplastic elastomers such as butylene rubber and styrene-butadiene rubber
  • various resins such as acrylic resins, acrylic polyol resins, polyvinyl acetal resins, polyvinyl butyral resins, and silicone resins.
  • the compounding ratio (mass ratio) of the electrode active material to the modified sulfide solid electrolyte in the electrode mixture is preferably 99.5:0.5 to 40:60, more preferably 99:1 to 50:50, and even more preferably 98:2 to 60:40, in order to improve battery performance and take into consideration manufacturing efficiency.
  • the content of the conductive material in the electrode mixture is not particularly limited, but in consideration of improving battery performance and production efficiency, the content is preferably 0.5 mass% or more, more preferably 1 mass% or more, and even more preferably 1.5 mass% or more, and the upper limit is preferably 10 mass% or less, preferably 8 mass% or less, and even more preferably 5 mass% or less.
  • the content of the binder in the electrode mixture is not particularly limited, but in consideration of improving battery performance and production efficiency, the content is preferably 1 mass % or more, more preferably 3 mass % or more, and even more preferably 5 mass % or more, and the upper limit is preferably 20 mass % or less, preferably 15 mass % or less, and even more preferably 10 mass % or less.
  • the lithium ion battery of this embodiment is required to contain at least one selected from the modified sulfide solid electrolyte of this embodiment and the electrode mixture.
  • the lithium ion battery of this embodiment is not particularly limited in its configuration as long as it contains either the modified sulfide solid electrolyte of this embodiment or an electrode composite material containing the same, and it may have the configuration of a commonly used lithium ion battery.
  • the lithium ion battery of this embodiment preferably includes, for example, a positive electrode layer, a negative electrode layer, an electrolyte layer, and a current collector.
  • the positive electrode layer and the negative electrode layer preferably use the electrode mixture of this embodiment, and the electrolyte layer preferably uses the modified sulfide solid electrolyte of this embodiment.
  • the current collector may be any known material.
  • a layer of a material that reacts with the solid electrolyte such as Au, Pt, Al, Ti, or Cu, coated with Au or the like can be used.
  • the measurement of ion conductivity was carried out as follows. A circular pellet with a diameter of 10 mm (cross-sectional area S: 0.785 cm 2 ) and a height (L) of 0.1 to 0.3 cm was molded from the solid electrolyte to prepare a sample. Electrode terminals were attached to the top and bottom of the sample, and measurements were made at 25°C by an AC impedance method (frequency range: 1 MHz to 100 Hz, amplitude: 10 mV) to obtain a Cole-Cole plot.
  • AC impedance method frequency range: 1 MHz to 100 Hz, amplitude: 10 mV
  • the exposure test apparatus 1 mainly comprises a flask 10 for humidifying nitrogen, a static mixer 20 for mixing humidified nitrogen and non-humidified nitrogen, a dew point meter 30 (M170/DMT152 manufactured by VAISALA) for measuring the moisture content of the mixed nitrogen, a double reaction tube 40 in which a measurement sample is placed, a dew point meter 50 for measuring the moisture content of the nitrogen discharged from the double reaction tube 40, and a hydrogen sulfide meter 60 (Model 3000RS manufactured by AMI) for measuring the hydrogen sulfide concentration contained in the discharged nitrogen, and is configured to be connected by pipes (not shown).
  • a test apparatus (exposure test apparatus 1) used in the exposure test will be described with reference to FIG.
  • the exposure test apparatus 1 mainly comprises a flask 10 for humidifying nitrogen, a static mixer 20 for mixing humidified nitrogen and non-humidified nitrogen, a dew point meter 30 (M170/DMT152 manufactured by VAISALA) for measuring the moisture content of
  • the temperature of the flask 10 is set to 10° C. by a cooling tank 11.
  • the components were connected to each other using Teflon tubes with a diameter of 6 mm. In this figure, the tubes are omitted, and instead the flow of nitrogen is indicated by arrows.
  • the evaluation procedure was as follows. In a nitrogen glove box with a dew point of ⁇ 80° C., about 1.5 g of the powder sample 41 obtained in the examples and comparative examples was weighed out, placed in a reaction tube 40 so as to be sandwiched between quartz wool 42, and sealed. The evaluation was carried out at room temperature (20° C.). Nitrogen was supplied from a nitrogen source (not shown) at 0.02 MPa into the apparatus 1. The supplied nitrogen passed through a bifurcated branch pipe BP, and a portion of the nitrogen was supplied to the flask 10 and humidified. The remaining portion was supplied directly to the static mixer 20 as unhumidified nitrogen. The amount of nitrogen supplied to the flask 10 was adjusted by a needle valve V.
  • non-humidified nitrogen and humidified nitrogen were adjusted with a flow meter FM equipped with a needle valve to control the dew point.
  • non-humidified nitrogen was supplied to the static mixer 20 at a flow rate of 800 mL/min
  • humidified nitrogen was supplied to the static mixer 20 at a flow rate of 10 to 30 mL/min, and mixed.
  • the dew point of the mixed gas was confirmed with a dew point meter 30.
  • the three-way cock 43 was rotated to circulate the mixed gas inside the reaction tube 40 for 2 hours.
  • the amount of hydrogen sulfide contained in the mixed gas that passed through the sample 41 was measured with a hydrogen sulfide meter 60.
  • the amount of hydrogen sulfide was recorded at 15-second intervals.
  • the dew point of the mixed gas after exposure was also measured with a dew point meter 50.
  • the amounts of hydrogen sulfide ( H2S ) generated (cumulative) for 60 minutes and 120 minutes from the start of measurement are shown in Table 1.
  • the nitrogen was passed through an alkali trap 70.
  • the powder of the modified sulfide solid electrolyte obtained in the examples and comparative examples was filled into a groove having a diameter of 20 mm and a depth of 0.2 mm, and the groove was leveled with glass to prepare a sample.
  • the sample was sealed with a Kapton film for XRD and measured under the following conditions without exposing it to air.
  • the intensity ratio (peak intensity derived from the oxide/peak intensity derived from the argyrodite crystal structure) between the peak intensity derived from the oxide and the peak intensity at 29.7 ⁇ 0.5 deg. derived from the argyrodite crystal structure (peak intensity derived from the argyrodite crystal structure) was calculated.
  • the dispersion medium 50 ml of the dispersion medium was injected into the flow cell of the device and circulated, after which the measurement target was introduced and subjected to ultrasonic treatment, and the particle size distribution was measured.
  • the amount of the measurement target introduced was adjusted so that the red light transmittance (R) corresponding to the particle concentration was within 80 to 90% and the blue light transmittance (B) was within 70 to 90% on the measurement screen specified by the device.
  • R red light transmittance
  • B blue light transmittance
  • 2.16 was used as the refractive index value of the measurement target
  • 1.49 was used as the refractive index value of the dispersion medium, respectively, for the calculation conditions.
  • the number of repetitions was fixed at 15, particle size calculation was performed, and the median diameter (D 50 ) of the sulfide solid electrolyte and oxide was obtained.
  • the total amount was dispersed in a mixed solvent of 1140 mL of dehydrated toluene (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and 7 mL of dehydrated isobutyronitrile (manufactured by Kishida Chemical Co., Ltd.) under a nitrogen atmosphere to obtain a slurry of about 10% by weight.
  • the slurry was mixed and pulverized using a bead mill (LMZ015, manufactured by Ashizawa Finetech Co., Ltd.) while maintaining the nitrogen atmosphere.
  • ethylbenzene manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • (D) Firing step The calcined product obtained in (C) was heated in an electric furnace (F-1404-A, manufactured by Tokyo Glass Machinery Co., Ltd.) in a glove box under a nitrogen atmosphere. Specifically, an Al 2 O 3 sagger (999-60S, manufactured by Tokyo Glass Machinery Co., Ltd.) was placed in the electric furnace, and the temperature was raised from room temperature (20°C) to 380°C in 1 hour and maintained at 380°C for 1 hour or more. Thereafter, the door of the electric furnace was opened, and the calcined product was quickly poured into the sagger, after which the door was immediately closed and heated for 1 hour. Thereafter, the sagger was removed from the electric furnace and slowly cooled to obtain a sulfide solid electrolyte.
  • an electric furnace F-1404-A, manufactured by Tokyo Glass Machinery Co., Ltd.
  • an Al 2 O 3 sagger 999-60S, manufactured by Tokyo Glass Machinery Co., Ltd.
  • a rolling mill small ball mill AV type, manufactured by Asahi Rika Seisakusho Co., Ltd.
  • sulfide solid electrolyte C2
  • (G) Secondary Firing Step The sulfide solid electrolyte (C2) obtained in (F) was heated in an electric furnace (manufactured by AS ONE Corporation) in a glove box. Specifically, an Al 2 O 3 crucible (manufactured by Nikkato Corporation) was placed in the electric furnace, and the temperature was raised from room temperature (20° C.) to 500° C. at a rate of 6° C./min and held at 500° C. for 2 hours or more. The crucible was then removed from the electric furnace and slowly cooled to produce a sulfide solid electrolyte having an argyrodite-type crystal structure (modified sulfide solid electrolyte (1)).
  • Example 2 Modified sulfide solid electrolytes (2) to (5) were obtained in the same manner as in Example 1, except that the types and amounts of oxides used were those shown in Table 1.
  • the ionic conductivity, amount of hydrogen sulfide generated, XRD pattern, and median diameter (D 50 ) are shown in Table 2.
  • oxide 1 means the first oxide used, and the amount of oxide 1 added is recorded as added amount 1, and when a second oxide was used, it is recorded as oxide 2, and the amount of oxide 1 added is recorded as added amount 2.
  • Comparative Example 1 The sulfide solid electrolyte (C1) was used as the sulfide solid electrolyte of Comparative Example 1.
  • Table 2 shows the ionic conductivity, the amount of hydrogen sulfide generated, the XRD pattern, and the median diameter (D 50 ).
  • Comparative Example 2 The sulfide solid electrolyte (C2) was used as the sulfide solid electrolyte of Comparative Example 2.
  • the sulfide solid electrolyte of Comparative Example 2 corresponds to the modified sulfide solid electrolyte of Example 1 before heating.
  • the ionic conductivity, amount of hydrogen sulfide generated, XRD pattern, and median diameter (D 50 ) are shown in Table 2.
  • Comparative Example 7 The sulfide solid electrolyte (C4) was heated at 650° C. for 2 hours under a nitrogen atmosphere.
  • the sulfide solid electrolyte of Comparative Example 7 corresponds to the sulfide solid electrolytes described in Patent Documents 5 and 6.
  • the ionic conductivity, hydrogen sulfide generation amount, XRD pattern, and median diameter (D 50 ) of the obtained modified sulfide solid electrolyte (modified sulfide solid electrolyte (C7)) were measured. The results are shown in Table 2.
  • Comparative Example 8 The sulfide solid electrolyte (C5) was heated at 650° C. for 2 hours under a nitrogen atmosphere.
  • the sulfide solid electrolyte of Comparative Example 8 corresponds to the sulfide solid electrolyte described in Patent Documents 5 and 6.
  • the ionic conductivity, hydrogen sulfide generation amount, XRD pattern, and median diameter (D 50 ) of the obtained modified sulfide solid electrolyte (modified sulfide solid electrolyte (C8)) were measured. The results are shown in Table 2.
  • M M /M P represents the ratio of the total number of moles of M in all oxides contained in the modified sulfide solid electrolyte (M M ) to the total number of moles of phosphorus atoms in the sulfide solid electrolyte (M P ), and the intensity ratio represents the intensity ratio (peak intensity derived from oxide/peak intensity derived from argyrodite-type crystal structure) between the peak intensity derived from the oxide in an X-ray diffraction spectrum (XRD pattern) and the peak intensity of 29.7 ⁇ 0.5 deg. derived from the argyrodite-type crystal structure (peak intensity derived from argyrodite-type crystal structure).
  • the median diameter (D 50 ) of the oxides used in the examples and comparative examples is 13 ⁇ m for aluminum oxide (alumina, Al 2 O 3 ), 20 ⁇ m for silicon oxide (silica, SiO 2 ), and 14 ⁇ m for titanium oxide (titania, TiO 2 ).
  • I1 means the peak intensity when only one peak is observed within the range of 29.7 ⁇ 0.5 deg., and means the intensity of the highest peak when two or more peaks are observed within the range of 29.7 ⁇ 0.5 deg.
  • I2 means the intensity of the second highest peak when two or more peaks are observed within the range of 29.7 ⁇ 0.5 deg.
  • N/A means that no peaks corresponding to oxide-derived peaks were observed.
  • modified sulfide solid electrolyte (1), modified sulfide solid electrolyte (2), modified sulfide solid electrolyte (4) and modified sulfide solid electrolyte (5) were found to be modified sulfide solid electrolytes in which the generation of hydrogen sulfide was suppressed while maintaining the ionic conductivity of the sulfide solid electrolyte and suppressing an increase in the median diameter ( D50 ).
  • Comparative Example 1 show that the modified sulfide solid electrolyte of the present embodiment can suppress the generation of hydrogen sulfide.
  • Comparative Examples 2 to 6 show that the generation of hydrogen sulfide cannot be suppressed by simply mixing an oxide with a sulfide solid electrolyte, and that heating is necessary.
  • Comparative Examples 7 and 8 it was found that when the heating temperature was set to a high temperature such as 650° C. as in the methods for producing a sulfide solid electrolyte described in Patent Documents 5 and 6, the ionic conductivity was significantly reduced and the median diameter (D 50 ) was also increased.
  • FIG. 3 is a graph showing the change over time in the cumulative generation amount and instantaneous generation amount of hydrogen sulfide.
  • solid line 1 shows the cumulative generation amount (cumulative) from 0 minutes into the gas flow time of hydrogen sulfide (H 2 S) for the modified sulfide solid electrolyte (5)
  • solid line 2 shows the cumulative generation amount (cumulative) for each time from 0 minutes into the gas flow time of the modified sulfide solid electrolyte (C6)
  • solid line 3 shows the cumulative generation amount (cumulative) for each time from 0 minutes into the gas flow time of the modified sulfide solid electrolyte (C8).
  • dashed line 4 shows the instantaneous generation amount of hydrogen sulfide (H 2 S) for the modified sulfide solid electrolyte (5)
  • dashed line 5 shows the instantaneous generation amount of hydrogen sulfide (H 2 S) for each gas flow time for the modified sulfide solid electrolyte (C6)
  • dashed line 6 shows the instantaneous generation amount of hydrogen sulfide (H 2 S) for each gas flow time for the modified sulfide solid electrolyte (C8).
  • Comparative Example 6 The sulfide solid electrolytes of Example 5, Comparative Example 6, and Comparative Example 8 all use 2.7 mass% Al2O3 as an oxide. However, Comparative Example 6 was not heated, Example 5 was heated at 500°C, and Comparative Example 8 was heated at 650°C. From Fig. 3, Comparative Example 6 always has a high instantaneous generation amount and a large cumulative generation amount. In contrast, when comparing Example 5 and Comparative Example 8, it can be seen that although Comparative Example 8 has a lower initial instantaneous generation amount, the difference between the two disappears after about 60 minutes.
  • FIG. 4 shows XRD patterns of the sulfide solid electrolytes obtained in Example 5, Comparative Example 6, and Comparative Example 8. From the XRD patterns of Example 5 and Comparative Example 6, it can be seen that the argyrodite-type crystal structure is maintained even when heated at 500°C. In contrast, in Comparative Example 8, it can be seen that new peaks appear before and after the peaks that showed strong peak intensities in the XRD patterns of Example 5 and Comparative Example 6. This is thought to be because, in the manufacturing method of Comparative Example 8, the sulfide solid electrolyte is heated at a high temperature together with the oxide, and the oxide is incorporated into the crystal structure of the sulfide solid electrolyte.
  • the sulfide solid electrolyte of Comparative Example 8 suppresses the generation of hydrogen sulfide by incorporating the oxide into the crystal structure and modifying it.
  • the sulfide solid electrolyte is modified in this way, it can be seen that the ionic conductivity of the sulfide solid electrolyte of Comparative Example 8 is greatly reduced, as shown in Table 2.
  • the median diameter (D 50 ) of the sulfide solid electrolyte of Comparative Example 8 is greatly increased by heating at a high temperature, so that it becomes necessary to crush it afterwards.
  • the present embodiment it is possible to provide a method for producing a modified sulfide solid electrolyte that can obtain a modified sulfide solid electrolyte in which the generation of hydrogen sulfide is suppressed while suppressing an increase in the median diameter (D 50 ) and maintaining the ionic conductivity of the sulfide solid electrolyte; it is also possible to provide the modified sulfide solid electrolyte; and it is also possible to provide an electrode mixture and a lithium ion battery that include the modified sulfide solid electrolyte.
  • the modified sulfide solid electrolyte obtained by the production method of this embodiment is suitable for use in lithium ion batteries, particularly lithium ion batteries used in information-related devices and communication devices such as personal computers, video cameras, and mobile phones.
  • Reference Signs List 1 Exposure test apparatus 10 Flask 11 Cooling tank 20 Static mixer 30 Dew point meter 40 Double reaction tube 41 Sample 42 Quartz wool 43 Three-way cock 50 Dew point meter 60 Hydrogen sulfide measuring instrument 70 Alkaline trap BP Bifurcated branch pipe V Needle valve FM Flow meter with needle valve

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

Provided are: a modified sulfide solid electrolyte producing method that includes heating an oxide and a sulfide solid electrolyte having an argyrodite crystal structure at 300-600°C; said modified sulfide solid electrolyte; and an electrode mixture and a lithium-ion battery which contain said modified sulfide solid electrolyte.

Description

改質硫化物固体電解質の製造方法、前記改質硫化物固体電解質、並びに前記改質硫化物固体電解質を含む電極合材及びリチウムイオン電池Method for producing modified sulfide solid electrolyte, modified sulfide solid electrolyte, and electrode mixture and lithium ion battery containing modified sulfide solid electrolyte
 本発明は、改質硫化物固体電解質の製造方法、改質硫化物固体電解質、電極合材及びリチウムイオン電池に関する。 The present invention relates to a method for producing a modified sulfide solid electrolyte, a modified sulfide solid electrolyte, an electrode mixture, and a lithium ion battery.
 近年におけるパソコン、ビデオカメラ、及び携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される電池の開発が重要視されている。従来、このような用途に用いられる電池において可燃性の有機溶媒を含む電解液が用いられていたが、電池を全固体化することで、電池内に可燃性の有機溶媒を用いず、安全装置の簡素化が図れ、製造コスト、生産性に優れることから、電解液を固体電解質層に換えた電池の開発が行われている。 In recent years, with the rapid spread of information-related devices and communication devices such as personal computers, video cameras, and mobile phones, the development of batteries to be used as power sources for these devices has become important. Traditionally, batteries used for such purposes used electrolytes containing flammable organic solvents, but by making the battery fully solid-state, flammable organic solvents are not used in the battery, safety devices can be simplified, and manufacturing costs and productivity are excellent, so batteries in which the electrolyte is replaced with a solid electrolyte layer are being developed.
 固体電解質層に用いられる固体電解質として、従来から硫化物固体電解質が知られている。硫化物固体電解質は、高いイオン伝導度を有するものの、雰囲気中の水分により影響を受け、硫化水素が発生することがあり、イオン伝導度を保ちつつ、硫化水素の発生を抑制する硫化物固体電解質の開発が望まれている。  Sulfide solid electrolytes have been known for some time as solid electrolytes used in solid electrolyte layers. Although sulfide solid electrolytes have high ionic conductivity, they can be affected by moisture in the atmosphere and generate hydrogen sulfide. Therefore, there is a need to develop a sulfide solid electrolyte that suppresses the generation of hydrogen sulfide while maintaining ionic conductivity.
 硫化物固体電解質に、酸化物を添加することが知られている。
 例えば、特許文献1には、ガラスセラミックスにAlやSiO等の酸化物を添加し、その結晶構造中に取り込むことで、高リチウムイオン伝導相の結晶性を高くし、イオン伝導度を改善する方法が開示されている。
It is known to add an oxide to a sulfide solid electrolyte.
For example, Patent Document 1 discloses a method of adding oxides such as Al 2 O 3 and SiO 2 to glass ceramics and incorporating them into the crystal structure to increase the crystallinity of the high lithium ion conductive phase and improve the ion conductivity.
 特許文献2には、SiOを硫化物固体電解質の結晶構造に取り込むことでアモルファスライクな結晶とし、結晶の界面の状態を良好なものとして、粒界抵抗を下げることが開示されている。
 特許文献3では、無機固体電解質に安価なα-アルミナを取り込み、イオン伝導度を保ちながら、安価な固体電解質を得ることが開示されている。
Patent Document 2 discloses that SiO 2 is incorporated into the crystal structure of a sulfide solid electrolyte to form an amorphous-like crystal, improving the state of the crystal interface and reducing grain boundary resistance.
Patent Document 3 discloses that inexpensive α-alumina is incorporated into an inorganic solid electrolyte to obtain an inexpensive solid electrolyte while maintaining ionic conductivity.
 特許文献4では、アルミナを硫化物固体電解質の結晶構造に取り込むことで、リチウムイオン伝導材料の粒子の凝集が起こりにくくなり、粒子の分散性が向上し、結果として全方向にわたって均一なイオン伝導度パスが形成され、イオン伝導度が向上されることが開示されている。
 特許文献5では、アルジロダイト型結晶構造を持つ硫化物固体電解質についてリチウムイオン伝導率の向上、特許文献6では、アルジロダイト型結晶構造を持つ硫化物固体電解質について高温での熱処理によっても分解せずに安定して存在することを検討している。
Patent Document 4 discloses that by incorporating alumina into the crystal structure of a sulfide solid electrolyte, aggregation of particles of a lithium ion conductive material is less likely to occur and the dispersibility of the particles is improved, resulting in the formation of uniform ion conductivity paths in all directions and improved ion conductivity.
Patent Document 5 studies the improvement of lithium ion conductivity in a sulfide solid electrolyte having an argyrodite-type crystal structure, and Patent Document 6 studies the fact that a sulfide solid electrolyte having an argyrodite-type crystal structure remains stable without decomposition even when subjected to heat treatment at high temperatures.
特開2015-076316号公報JP 2015-076316 A 特開2012-022801号公報JP 2012-022801 A 特開2012-190553号公報JP 2012-190553 A WO2020/105604号パンフレットWO2020/105604 Brochure WO2022/009934号パンフレットWO2022/009934 Brochure WO2022/009935号パンフレットWO2022/009935 Brochure
 本発明は、このような実情に鑑みてなされたものであり、硫化物固体電解質のイオン伝導度を保ちつつ、硫化水素の発生が抑制した改質硫化物固体電解質を得ることができる改質硫化物固体電解質の製造方法を提供すること、前記改質硫化物固体電解質を提供すること、並びに前記改質硫化物固体電解質を含む電極合材及びリチウムイオン電池を提供することを目的とする。 The present invention has been made in consideration of these circumstances, and aims to provide a method for producing a modified sulfide solid electrolyte that can obtain a modified sulfide solid electrolyte in which hydrogen sulfide generation is suppressed while maintaining the ionic conductivity of the sulfide solid electrolyte, to provide the modified sulfide solid electrolyte, and to provide an electrode mixture and a lithium ion battery that include the modified sulfide solid electrolyte.
 本発明に係る改質硫化物固体電解質の製造方法は、アルジロダイト型結晶構造を有する硫化物固体電解質と、酸化物と、を300℃以上600℃以下で加熱すること、を含む、改質硫化物固体電解質の製造方法である。
 本発明に係る改質硫化物固体電解質は、リチウム原子、硫黄原子、リン原子及びハロゲン原子を含むアルジロダイト型結晶構造を有する硫化物固体電解質と、一般式M(式中、Mは、Mg、Al、Si、Ca、Ti、V、Fe、Zn、Ga、Sr、Y、Zr、Nb、Mo、Sn、Sb、Ba、Ta、W及びBiから選ばれる原子を表し、m及びnはそれぞれ独立して1~5の整数を表す。)で表される酸化物と、を含み、下記(i)~(iii)を満たす、改質硫化物固体電解質である。
(i) 前記一般式MにおけるMがAlである酸化物を少なくとも1種含む。
(ii) 前記改質硫化物固体電解質に含まれる全酸化物中の前記Mの合計のモル数(M)と、前記硫化物固体電解質中のリン原子の合計のモル数(M)との比の値(M/M)が、0.010より大きい。
(iii) X線回折スペクトル(XRDパターン)による、29.7±0.5deg.の範囲内にピークが1本しか観測されないか、2本以上観測される場合には、最も高いピークの強度をIとし2番目に高いピークの強度をIとした時、I/Iが1.0未満である。
 本発明に係る電極合材は、前記改質硫化物固体電解質と、電極活物質と、を含む、電極合材である。
 本発明に係るリチウムイオン電池は、前記改質硫化物固体電解質及び前記電極合材の少なくとも一方を含む、リチウムイオン電池である。
The method for producing a modified sulfide solid electrolyte according to the present invention includes heating a sulfide solid electrolyte having an argyrodite-type crystal structure and an oxide at 300° C. or more and 600° C. or less.
The modified sulfide solid electrolyte according to the present invention includes a sulfide solid electrolyte having an argyrodite-type crystal structure containing lithium atoms, sulfur atoms, phosphorus atoms, and halogen atoms, and an oxide represented by the general formula M m O n (wherein M represents an atom selected from Mg, Al, Si, Ca, Ti, V, Fe, Zn, Ga, Sr, Y, Zr, Nb, Mo, Sn, Sb, Ba, Ta, W, and Bi, and m and n each independently represent an integer of 1 to 5), and satisfies the following (i) to (iii).
(i) At least one oxide in which M in the general formula M m O n is Al is included.
(ii) the ratio (M M /M P ) of the total number of moles of M in all oxides contained in the modified sulfide solid electrolyte (M M ) to the total number of moles of phosphorus atoms in the sulfide solid electrolyte ( M P ) is greater than 0.010.
(iii) Only one peak is observed within the range of 29.7±0.5 deg. in an X-ray diffraction spectrum (XRD pattern), or when two or more peaks are observed, I2 / I1 is less than 1.0, where I1 is the intensity of the highest peak and I2 is the intensity of the second highest peak.
The electrode mixture according to the present invention is an electrode mixture comprising the modified sulfide solid electrolyte and an electrode active material.
The lithium ion battery according to the present invention is a lithium ion battery including at least one of the modified sulfide solid electrolyte and the electrode mixture.
 本発明によれば、硫化物固体電解質のイオン伝導度を保ちつつ、硫化水素の発生が抑制した改質硫化物固体電解質を得ることができる改質硫化物固体電解質の製造方法を提供すること、前記改質硫化物固体電解質を提供すること、並びに前記改質硫化物固体電解質を含む電極合材及びリチウムイオン電池を提供することができる。 The present invention provides a method for producing a modified sulfide solid electrolyte that can obtain a modified sulfide solid electrolyte in which hydrogen sulfide generation is suppressed while maintaining the ionic conductivity of the sulfide solid electrolyte, provides the modified sulfide solid electrolyte, and provides an electrode mixture and a lithium ion battery that include the modified sulfide solid electrolyte.
本実施形態の改質硫化物固体電解質の製造方法の好ましい形態の一例を説明するフロー図である。FIG. 2 is a flow diagram illustrating an example of a preferred embodiment of the method for producing a modified sulfide solid electrolyte according to the present embodiment. 硫化水素発生量の測定装置の例である。1 is an example of a device for measuring the amount of hydrogen sulfide generated. 改質硫化物固体電解質(5)、改質硫化物固体電解質(C6)及び改質硫化物固体電解質(C8)の硫化水素の積算の発生量と瞬間発生量の経時変化を表すグラフである。1 is a graph showing the change over time in the integrated generation amount and instantaneous generation amount of hydrogen sulfide for the modified sulfide solid electrolyte (5), the modified sulfide solid electrolyte (C6), and the modified sulfide solid electrolyte (C8). 改質硫化物固体電解質(5)、改質硫化物固体電解質(C6)及び改質硫化物固体電解質(C8)のXRDパターンである。1 shows XRD patterns of modified sulfide solid electrolyte (5), modified sulfide solid electrolyte (C6) and modified sulfide solid electrolyte (C8).
 以下、本発明の実施形態(以下、「本実施形態」と称することがある。)について説明する。なお、本開示において、「以上」、「以下」、「~」の数値範囲に係る上限及び下限の数値は任意に組み合わせできる数値であり、また実施例の数値を上限及び下限の数値として用いることもできる。また、好ましいとされている規定は任意に採用することができる。即ち、好ましいとされている一の規定を、好ましいとされている他の一又は複数の規定と組み合わせて採用することができる。好ましいもの同士の組み合わせはより好ましいといえる。 Below, an embodiment of the present invention (hereinafter, sometimes referred to as "this embodiment") will be described. Note that in this disclosure, the upper and lower limit values of the numerical ranges "greater than or equal to," "less than or equal to," and "to" are values that can be combined in any way, and the numerical values in the examples can also be used as the upper and lower limit values. Furthermore, provisions that are considered to be preferred can be adopted in any way. In other words, one provision that is considered to be preferred can be adopted in combination with one or more other provisions that are considered to be preferred. It can be said that a combination of preferred things is more preferable.
(本発明に至るために本発明者が得た知見)
 本発明者は、前記の課題を解決するべく鋭意検討した結果、下記の事項を見出し、本発明を完成するに至った。
 前記特許文献1~3に記載の発明は、アルジロダイト型結晶構造を持つ硫化物固体電解質に関するものではなく、また、硫化物固体電解質の硫化水素の発生を抑制することは、一切検討していない。また、硫化物固体電解質を改質することを目的にしていないため、硫化物固体電解質と酸化物を十分な温度で処理していない。このため、本発明の改質硫化物固体電解質のように、硫化物固体電解質と酸化物とを後記する含む状態となっていないと考えられる。
(Findings the inventor has acquired to arrive at the present invention)
As a result of intensive research aimed at solving the above problems, the present inventors have discovered the following and have completed the present invention.
The inventions described in the above Patent Documents 1 to 3 do not relate to a sulfide solid electrolyte having an argyrodite-type crystal structure, and do not consider suppressing the generation of hydrogen sulfide from a sulfide solid electrolyte. In addition, since the purpose is not to modify the sulfide solid electrolyte, the sulfide solid electrolyte and the oxide are not treated at a sufficient temperature. For this reason, it is considered that the sulfide solid electrolyte and the oxide are not contained in the modified sulfide solid electrolyte of the present invention, as described below.
 特許文献4では、アルジロダイト型結晶構造を持つ硫化物固体電解質について検討しているが、硫化物固体電解質を改質する本発明とは異なる。更に、硫化物固体電解質と酸化物を十分な温度で処理していないため、本発明の改質硫化物固体電解質のように硫化物固体電解質と酸化物とを後記する含む状態となっていないと考えられる。 Patent Document 4 examines a sulfide solid electrolyte with an argyrodite-type crystal structure, but this differs from the present invention in that the sulfide solid electrolyte is modified. Furthermore, since the sulfide solid electrolyte and oxide are not treated at a sufficient temperature, it is believed that the sulfide solid electrolyte does not contain the sulfide solid electrolyte and oxide as described below, as in the modified sulfide solid electrolyte of the present invention.
 特許文献5及び6では、アルジロダイト型結晶構造を持つ硫化物固体電解質について検討している。しかし、特許文献5及び6に記載の発明は、硫化物固体電解質と酸化物を650℃という高温で処理しているため、例えばSiOでは、Siに結合している4つの酸素すべてが非架橋酸素となり、ケイ酸塩イオンSiO 4-の形のQ0構造の酸化アニオンとなり、完全にアルジロダイト型結晶構造内に取り込まれる。このため、硫化物固体電解質と酸化物とを後記する含む状態とする本発明とは異なる。また、特許文献5及び6では、硫化水素の発生を抑制することは、一切検討していない。特に特許文献6では、焼結により粒界抵抗の低減を効果的に行うため、高温での処理に硫化物固体電解質が耐えうるよう酸化物を加えるものであり、本発明とはその解決課題が大きく異なる。このように特許文献5及び6では、硫化物固体電解質を650℃という高温で処理することで、硫化物固体電解質の組成自体も変化し、また硫化物固体電解質の平均粒子径も増大してしまう。 Patent Documents 5 and 6 discuss a sulfide solid electrolyte having an argyrodite crystal structure. However, in the inventions described in Patent Documents 5 and 6, the sulfide solid electrolyte and an oxide are treated at a high temperature of 650° C., so that, for example, in SiO 2 , all four oxygen atoms bonded to Si become non-bridging oxygen atoms, and become oxide anions of a Q0 structure in the form of silicate ions SiO 4 4- , and are completely incorporated into the argyrodite crystal structure. For this reason, it is different from the present invention, which includes a sulfide solid electrolyte and an oxide as described below. Furthermore, Patent Documents 5 and 6 do not discuss at all the suppression of hydrogen sulfide generation. In particular, Patent Document 6 adds an oxide so that the sulfide solid electrolyte can withstand high-temperature treatment in order to effectively reduce grain boundary resistance by sintering, and the problem to be solved is significantly different from that of the present invention. Thus, in Patent Documents 5 and 6, the composition of the sulfide solid electrolyte itself changes and the average particle size of the sulfide solid electrolyte also increases by treating the sulfide solid electrolyte at a high temperature of 650° C.
 これに対して本発明の改質硫化物固体電解質の製造方法は、後記の硫化物固体電解質と後記の酸化物とを、後記の加熱すること、を含む改質硫化物固体電解質の製造方法である。これにより、硫化物固体電解質のイオン伝導度を保ちつつ、硫化水素の発生が抑制した改質硫化物固体電解質を得ることができる改質硫化物固体電解質の製造方法を提供すること、前記改質硫化物固体電解質を提供すること、並びに前記改質硫化物固体電解質を含む電極合材及びリチウムイオン電池を提供することができる。 In contrast, the method for producing a modified sulfide solid electrolyte of the present invention is a method for producing a modified sulfide solid electrolyte that includes heating the sulfide solid electrolyte described below and the oxide described below as described below. This makes it possible to provide a method for producing a modified sulfide solid electrolyte that can obtain a modified sulfide solid electrolyte in which hydrogen sulfide generation is suppressed while maintaining the ionic conductivity of the sulfide solid electrolyte, to provide the modified sulfide solid electrolyte, and to provide an electrode mixture and a lithium ion battery that include the modified sulfide solid electrolyte.
 本発明者らは、アルジロダイト型結晶構造を有する硫化物固体電解質と、酸化物と、を特定の温度範囲で加熱することにより、硫化物固体電解質のイオン伝導度を保ちつつ、硫化水素の発生が抑制した改質硫化物固体電解質を得ることができる改質硫化物固体電解質の製造方法を提供することができることを見出した。
 硫化物固体電解質には高いイオン伝導を示すことに加えて、その用途に応じて、硫化物固体電解質のメジアン径(D50)を小さくすることが望まれている。硫化物固体電解質は、全固体電池の正極、負極及び固体電解質層に用いることができ、電極(正極、負極)においては、硫化物固体電解質と電極活物質(正極活物質、負極活物質)と組み合わせて用いられる。硫化物固体電解質、電極活物質はいずれも固体電解質であることから、硫化物固体電解質のメジアン径(D50)を小さくできると、電極活物質と硫化物固体電解質との接触界面を形成しやすくなり、イオン伝導と電子伝導のパスが良好になる。その結果として優れた電池性能が得られる。本発明者らは、このような知見に基づいて、以下の本実施形態の製造方法、前記改質硫化物固体電解質、並びに前記改質硫化物固体電解質を含む電極合材及びリチウムイオン電池の構成に至った。
 本発明の製造方法は、従来の製造装置により実施可能であり、生産性に優れたものであるといえる。
The present inventors have found that it is possible to provide a method for producing a modified sulfide solid electrolyte, which can obtain a modified sulfide solid electrolyte in which generation of hydrogen sulfide is suppressed while maintaining the ionic conductivity of the sulfide solid electrolyte, by heating a sulfide solid electrolyte having an argyrodite-type crystal structure and an oxide within a specific temperature range.
In addition to the sulfide solid electrolyte exhibiting high ionic conductivity, it is desired to reduce the median diameter (D 50 ) of the sulfide solid electrolyte depending on the application. The sulfide solid electrolyte can be used in the positive electrode, negative electrode, and solid electrolyte layer of an all-solid-state battery, and in the electrode (positive electrode, negative electrode), the sulfide solid electrolyte is used in combination with an electrode active material (positive electrode active material, negative electrode active material). Since the sulfide solid electrolyte and the electrode active material are both solid electrolytes, if the median diameter (D 50 ) of the sulfide solid electrolyte can be reduced, it becomes easier to form a contact interface between the electrode active material and the sulfide solid electrolyte, and the paths of ionic conduction and electronic conduction become good. As a result, excellent battery performance can be obtained. Based on such knowledge, the present inventors have arrived at the following manufacturing method of this embodiment, the modified sulfide solid electrolyte, and the configuration of an electrode mixture and a lithium ion battery containing the modified sulfide solid electrolyte.
The manufacturing method of the present invention can be carried out using conventional manufacturing equipment and can be said to be excellent in productivity.
(用語の定義)
 本開示において「固体電解質」とは、窒素雰囲気下25℃で固体を維持する電解質を意味する。本開示における「硫化物固体電解質」は、リチウム原子、硫黄原子、リン原子及びハロゲン原子を含み、リチウム原子に起因するイオン伝導度を有する固体電解質である。
 本開示において「改質硫化物固体電解質」とは、後記するように本実施形態の製造方法により得られる改質された硫化物固体電解質を意味する。
 本開示において「改質」とは、アルジロダイト型結晶構造を有する硫化物固体電解質と、酸化物と、を300℃以上600℃以下で加熱すること、を含む製造方法により前記硫化物固体電解質と、前記酸化物と、を含む状態とすることである。「含む」は、粒子状の硫化物固体電解質の表面に酸化物が存在することであってもよく、硫化物固体電解質の表面に酸化物が付着すること及び結合することを含む概念である。つまり、改質硫化物固体電解質は、硫化物固体電解質が酸化物を含むことで改質されたものである。「付着」には、物理吸着が含まれ、「結合」には、化学結合、配位結合が含まれる。
 本開示において「酸化物」とは、特定の元素を含む酸化物を意味する。詳細は後記する。
(Definition of terms)
In the present disclosure, a "solid electrolyte" refers to an electrolyte that maintains a solid state under a nitrogen atmosphere at 25° C. A "sulfide solid electrolyte" in the present disclosure is a solid electrolyte that contains lithium atoms, sulfur atoms, phosphorus atoms, and halogen atoms and has ionic conductivity due to lithium atoms.
In the present disclosure, the term "modified sulfide solid electrolyte" refers to a modified sulfide solid electrolyte obtained by the production method of the present embodiment, as described below.
In the present disclosure, "modification" refers to a state in which a sulfide solid electrolyte having an argyrodite-type crystal structure and an oxide are contained by a manufacturing method including heating the sulfide solid electrolyte having an argyrodite-type crystal structure and an oxide at 300°C or more and 600°C or less. "Containing" may mean that an oxide is present on the surface of a particulate sulfide solid electrolyte, and is a concept including that an oxide is attached to and bonded to the surface of the sulfide solid electrolyte. In other words, the modified sulfide solid electrolyte is a sulfide solid electrolyte that has been modified by containing an oxide. "Attachment" includes physical adsorption, and "bonding" includes chemical bonding and coordinate bonding.
In the present disclosure, the term "oxide" refers to an oxide containing a specific element, as described in detail below.
(本実施形態の各種形態について)
 以下に本実施形態の第一の態様から第十の態様に係る改質硫化物固体電解質の製造方法、第十一の態様から第十八の態様に係る改質硫化物固体電解質、第十九の態様に係る電極合材及び第二十の態様に係るリチウムイオン電池について述べる。
 本実施形態の第一の態様に係る改質硫化物固体電解質の製造方法は、
 アルジロダイト型結晶構造を有する硫化物固体電解質と、酸化物と、を300℃以上600℃以下で加熱すること、を含む、改質硫化物固体電解質の製造方法である。
(Various aspects of the present embodiment)
The following describes the manufacturing methods for modified sulfide solid electrolytes according to the first to tenth aspects of this embodiment, the modified sulfide solid electrolytes according to the eleventh to eighteenth aspects, the electrode composite according to the nineteenth aspect, and the lithium ion battery according to the twentieth aspect.
The method for producing a modified sulfide solid electrolyte according to the first aspect of the present embodiment includes the steps of:
A method for producing a modified sulfide solid electrolyte includes heating a sulfide solid electrolyte having an argyrodite-type crystal structure and an oxide at 300° C. or more and 600° C. or less.
 図1に本実施形態の改質硫化物固体電解質の製造方法の好ましい形態を説明するフロー図を示す。本実施形態の製造方法は、アルジロダイト型結晶構造を有する硫化物固体電解質と入手容易な酸化物を、特定の温度範囲で加熱することで、硫化物固体電解質のイオン伝導度を保ちつつ、メジアン径(D50)の増大を抑制しながら、硫化水素の発生が抑制した改質硫化物固体電解質を得ることができるため有用である。得られた改質硫化物固体電解質はイオン伝導度が高いため、この改質硫化物固体電解質を用いることで優れた電池性能を持つリチウムイオン電池が得られる。 1 shows a flow diagram illustrating a preferred embodiment of the method for producing the modified sulfide solid electrolyte of this embodiment. The production method of this embodiment is useful because it is possible to obtain a modified sulfide solid electrolyte in which hydrogen sulfide generation is suppressed while suppressing an increase in the median diameter (D 50 ) and maintaining the ionic conductivity of the sulfide solid electrolyte by heating a sulfide solid electrolyte having an argyrodite-type crystal structure and an easily available oxide within a specific temperature range. The obtained modified sulfide solid electrolyte has high ionic conductivity, so that a lithium ion battery with excellent battery performance can be obtained by using this modified sulfide solid electrolyte.
 本実施形態の第二の態様に係る改質硫化物固体電解質の製造方法は、前記の第一の態様において、
 前記硫化物固体電解質が、リチウム原子、硫黄原子、リン原子及びハロゲン原子を含む、改質硫化物固体電解質の製造方法である。
The method for producing a modified sulfide solid electrolyte according to a second aspect of the present embodiment is the same as the first aspect,
The sulfide solid electrolyte contains lithium atoms, sulfur atoms, phosphorus atoms, and halogen atoms.
 硫化物固体電解質が前記原子を含むことで、高いイオン伝導度を有する改質硫化物固体電解質の製造ができるため好ましい。 It is preferable that the sulfide solid electrolyte contains the above-mentioned atoms, since this makes it possible to produce a modified sulfide solid electrolyte with high ionic conductivity.
 本実施形態の第三の態様に係る改質硫化物固体電解質の製造方法は、前記の第二の態様において、
 前記ハロゲン原子として、塩素原子及び臭素原子から選ばれる少なくとも1種を含む、改質硫化物固体電解質の製造方法である。
The method for producing a modified sulfide solid electrolyte according to a third aspect of the present embodiment is the same as the method for producing a modified sulfide solid electrolyte according to the second aspect,
The method for producing a modified sulfide solid electrolyte includes, as the halogen atom, at least one selected from a chlorine atom and a bromine atom.
 前記改質硫化物固体電解質が、塩素原子及び臭素原子から選ばれる少なくとも1種を含むことで安定したアルジロダイト型結晶構造を有するため好ましい。アルジロダイト型結晶構造を有する改質硫化物固体電解質は、硫化物固体電解質のイオン伝導度を保ちつつ、メジアン径(D50)の増大を抑制しながら、硫化水素の発生が抑制されるため好ましい。 The modified sulfide solid electrolyte is preferred because it has a stable argyrodite-type crystal structure due to the inclusion of at least one selected from chlorine atoms and bromine atoms. The modified sulfide solid electrolyte having the argyrodite-type crystal structure is preferred because it maintains the ionic conductivity of the sulfide solid electrolyte, inhibits an increase in the median diameter ( D50 ), and inhibits the generation of hydrogen sulfide.
 本実施形態の第四の態様に係る改質硫化物固体電解質の製造方法は、前記の第一~三のいずれかの態様において、
 前記酸化物が、一般式M(式中、Mは、Mg、Al、Si、Ca、Ti、V、Fe、Zn、Ga、Sr、Y、Zr、Nb、Mo、Sn、Sb、Ba、Ta、W及びBiから選ばれる原子を表し、m及びnはそれぞれ独立して1~5の整数を表す。)で表される化合物を含む、改質硫化物固体電解質の製造方法である。
The method for producing a modified sulfide solid electrolyte according to a fourth aspect of the present embodiment is any one of the first to third aspects,
The method for producing a modified sulfide solid electrolyte includes the oxide containing a compound represented by the general formula M m O n (wherein M represents an atom selected from Mg, Al, Si, Ca, Ti, V, Fe, Zn, Ga, Sr, Y, Zr, Nb, Mo, Sn, Sb, Ba, Ta, W, and Bi, and m and n each independently represent an integer of 1 to 5).
 前記酸化物が、後記する一般式Mで表される化合物を含むことで、硫化物固体電解質のイオン伝導度を保ちつつ、メジアン径(D50)の増大を抑制しながら、硫化水素の発生が抑制した改質硫化物固体電解質が得られるため好ましい。
 前記Mは、Mg、Al、Si、Ca、Ti、V、Fe、Zn、Ga、Sr、Y、Zr、Nb、Mo、Sn、Sb、Ba、Ta、W及びBiから選ばれる原子であればよいが、式中mが2以上の場合には、同一の原子を2個以上含んでいてもよく(例えばAlを挙げることができる。)、異なる2種以上の原子を含んでいてもよい(例えばCaTiOを挙げることができる。)。
It is preferable that the oxide contains a compound represented by the general formula M m O n described later, because this makes it possible to obtain a modified sulfide solid electrolyte in which the ionic conductivity of the sulfide solid electrolyte is maintained, an increase in the median diameter (D 50 ) is suppressed, and generation of hydrogen sulfide is suppressed.
The M may be an atom selected from Mg, Al, Si, Ca, Ti, V, Fe, Zn, Ga, Sr, Y, Zr, Nb, Mo, Sn, Sb, Ba, Ta, W, and Bi, and when m in the formula is 2 or more, it may contain two or more of the same atom (for example , Al2O3 ) or may contain two or more different types of atoms (for example, CaTiO3 ).
 本実施形態の第五の態様に係る改質硫化物固体電解質の製造方法は、前記の第四の態様において、
 前記一般式MにおけるMがAlである酸化物を含む、改質硫化物固体電解質の製造方法である。
The method for producing a modified sulfide solid electrolyte according to a fifth aspect of the present embodiment is the same as the method for producing a modified sulfide solid electrolyte according to the fourth aspect,
The present invention relates to a method for producing a modified sulfide solid electrolyte comprising an oxide in which M in the general formula M m O n is Al.
 前記酸化物が、酸化アルミニウム(Al)を含むことで、改質硫化物固体電解質のイオン伝導度は高くなり、メジアン径(D50)の増大を抑制しながら、硫化水素の発生がより抑制されるため好ましい。 The oxide preferably contains aluminum oxide (Al 2 O 3 ), since the ionic conductivity of the modified sulfide solid electrolyte is increased and the generation of hydrogen sulfide is further suppressed while suppressing an increase in the median diameter (D 50 ).
 本実施形態の第六の態様に係る改質硫化物固体電解質の製造方法は、前記の第五の態様において、
 前記酸化物中の前記Mの合計のモル数(M)と、前記硫化物固体電解質中のリン原子の合計のモル数(M)との比の値(M/M)が、0.010より大きい、改質硫化物固体電解質の製造方法である。
A method for producing a modified sulfide solid electrolyte according to a sixth aspect of the present embodiment comprises the steps of:
The method for producing a modified sulfide solid electrolyte is characterized in that a ratio (M M /M P ) of the total number of moles of M in the oxide (M M ) to the total number of moles of phosphorus atoms in the sulfide solid electrolyte (M P ) is greater than 0.010.
 前記M/Mが、0.010より大きいと、前記酸化物を含む効果が大きくなるため好ましい。M及びMは、改質硫化物固体電解質の製造に用いた硫化物固体電解質及び酸化物の使用量から算出することができる。 It is preferable that the M M /M P is greater than 0.010 because the effect of containing the oxide is increased. M M and M P can be calculated from the amounts of the sulfide solid electrolyte and oxide used in the production of the modified sulfide solid electrolyte.
 本実施形態の第七の態様に係る改質硫化物固体電解質の製造方法は、前記の第一~六のいずれかの態様において、
 前記加熱を1時間以上行う、改質硫化物固体電解質の製造方法である。
A method for producing a modified sulfide solid electrolyte according to a seventh aspect of the present embodiment is any one of the first to sixth aspects,
The heating is carried out for one hour or more in this method for producing a modified sulfide solid electrolyte.
 特許文献5及び6に記載の製造方法では、650℃で加熱し、酸化物が完全にアルジロダイト型結晶構造内に取り込まれる。これに対し、本態様の製造方法では、300℃以上600℃以下で加熱するため、酸化物は硫化物固体電解質を改質するが、イオン伝導度の低下及びメジアン径(D50)の増大は抑制される。更に酸化物が後記する含まれることにより硫化水素の発生が抑制されるため好ましい。 In the manufacturing methods described in Patent Documents 5 and 6, heating is performed at 650° C., and the oxide is completely incorporated into the argyrodite-type crystal structure. In contrast, in the manufacturing method of the present embodiment, heating is performed at 300° C. or more and 600° C. or less, so that the oxide modifies the sulfide solid electrolyte, but the decrease in ion conductivity and the increase in median diameter (D 50 ) are suppressed. Furthermore, the inclusion of the oxide, which will be described later, is preferable because it suppresses the generation of hydrogen sulfide.
 本実施形態の第八の態様に係る改質硫化物固体電解質の製造方法は、前記の第一~七のいずれかの態様において、
 更に混合することを含む、改質硫化物固体電解質の製造方法である。
The method for producing a modified sulfide solid electrolyte according to an eighth aspect of the present embodiment is any one of the first to seventh aspects,
and mixing the resulting mixture.
 本実施形態の改質硫化物固体電解質の製造方法は、加熱することを要するが、更に混合することを含むことで、改質硫化物固体電解質に含まれる硫化物固体電解質及び酸化物が均一になるため好ましい。このように均一に含まれることで、メジアン径(D50)の増大及び硫化水素の発生がより抑制されることとなる。
 前記混合は、加熱しながら混合しても、加熱前に混合しても、それらを組み合わせてもよいが、加熱前に混合することで、硫化物固体電解質の表面に酸化物が均一に付着し、これを加熱すると硫化物固体電解質の表面に均一に含まれることとなるため好ましい。
The method for producing the modified sulfide solid electrolyte of the present embodiment requires heating, but further includes mixing, which is preferable because it makes the sulfide solid electrolyte and oxide contained in the modified sulfide solid electrolyte uniform. Such uniform inclusion of the sulfide solid electrolyte and oxide can further suppress an increase in the median diameter ( D50 ) and the generation of hydrogen sulfide.
The mixing may be performed while heating, before heating, or a combination of these. However, mixing before heating is preferable because the oxide is uniformly attached to the surface of the sulfide solid electrolyte, and when this is heated, it is uniformly contained on the surface of the sulfide solid electrolyte.
 本実施形態の第九の態様に係る改質硫化物固体電解質の製造方法は、前記の第一~八のいずれかの態様において、
 前記加熱することが、前記硫化物固体電解質と、前記酸化物と、を一の加熱器で同時に加熱して行われる、改質硫化物固体電解質の製造方法である。
A method for producing a modified sulfide solid electrolyte according to a ninth aspect of the present embodiment is any one of the first to eighth aspects,
In the method for producing a modified sulfide solid electrolyte, the heating is performed by simultaneously heating the sulfide solid electrolyte and the oxide with one heater.
 前記硫化物固体電解質と、前記酸化物と、を一の加熱器で同時に加熱することで、硫化物固体電解質の表面に酸化物が均一に付着し、これを加熱すると硫化物固体電解質の表面に均一に含まれることとなるため好ましい。このように均一に含まれることで、硫化水素の発生がより抑制されることとなる。 By simultaneously heating the sulfide solid electrolyte and the oxide with one heater, the oxide adheres uniformly to the surface of the sulfide solid electrolyte, and when this is heated, it is preferably uniformly contained on the surface of the sulfide solid electrolyte. By being uniformly contained in this way, the generation of hydrogen sulfide is further suppressed.
 本実施形態の第十の態様に係る改質硫化物固体電解質の製造方法は、前記の第一~九のいずれかの態様において、
 前記改質硫化物固体電解質の1次粒子の表面に付着又は結合した前記酸化物のメジアン径(D50)が、100.0μm未満である、改質硫化物固体電解質の製造方法である。
A method for producing a modified sulfide solid electrolyte according to a tenth aspect of the present embodiment is any one of the first to ninth aspects,
In the method for producing a modified sulfide solid electrolyte, the median diameter (D 50 ) of the oxide attached to or bonded to the surface of a primary particle of the modified sulfide solid electrolyte is less than 100.0 μm.
 前記酸化物のメジアン径(D50)が、100.0μm未満であると、電極活物質と改質硫化物固体電解質との接触界面を形成しやすくなり、イオン伝導と電子伝導のパスが良好になるため好ましい。 When the median diameter (D 50 ) of the oxide is less than 100.0 μm, a contact interface between the electrode active material and the modified sulfide solid electrolyte is easily formed, and paths for ionic conduction and electronic conduction are favorable, which is preferable.
 本実施形態の第十一の態様に係る改質硫化物固体電解質は、
 リチウム原子、硫黄原子、リン原子及びハロゲン原子を含むアルジロダイト型結晶構造を有する硫化物固体電解質と、
 一般式M(式中、Mは、Mg、Al、Si、Ca、Ti、V、Fe、Zn、Ga、Sr、Y、Zr、Nb、Mo、Sn、Sb、Ba、Ta、W及びBiから選ばれる原子を表し、m及びnはそれぞれ独立して1~5の整数を表す。)で表される酸化物と、を含み、
 下記(i)~(iii)を満たす、改質硫化物固体電解質である。
(i) 前記一般式MにおけるMがAlである酸化物を少なくとも1種含む。
(ii) 前記改質硫化物固体電解質に含まれる全酸化物中の前記Mの合計のモル数(M)と、前記硫化物固体電解質中のリン原子の合計のモル数(M)との比の値(M/M)が、0.010より大きい。
(iii) X線回折スペクトル(XRDパターン)による、29.7±0.5deg.の範囲内にピークが1本しか観測されないか、2本以上観測される場合には、最も高いピークの強度をIとし2番目に高いピークの強度をIとした時、I/Iが1.0未満である。
The modified sulfide solid electrolyte according to the eleventh aspect of this embodiment is
a sulfide solid electrolyte having an argyrodite-type crystal structure containing lithium atoms, sulfur atoms, phosphorus atoms, and halogen atoms;
and an oxide represented by the general formula M m O n (wherein M represents an atom selected from Mg, Al, Si, Ca, Ti, V, Fe, Zn, Ga, Sr, Y, Zr, Nb, Mo, Sn, Sb, Ba, Ta, W and Bi, and m and n each independently represent an integer of 1 to 5),
The modified sulfide solid electrolyte satisfies the following (i) to (iii):
(i) At least one oxide in which M in the general formula M m O n is Al is included.
(ii) the ratio (M M /M P ) of the total number of moles of M in all oxides contained in the modified sulfide solid electrolyte (M M ) to the total number of moles of phosphorus atoms in the sulfide solid electrolyte ( M P ) is greater than 0.010.
(iii) Only one peak is observed within the range of 29.7±0.5 deg. in an X-ray diffraction spectrum (XRD pattern), or when two or more peaks are observed, I2 / I1 is less than 1.0, where I1 is the intensity of the highest peak and I2 is the intensity of the second highest peak.
 前記の(i)を満たすことは、改質硫化物固体電解質が酸化物を含むことを意味し、(ii)を満たすことは、酸化物の含有量の下限値をM/Mにより特定するものである。これら(i)及び(ii)を満たすことで、本実施形態の改質硫化物固体電解質が、硫化物固体電解質のイオン伝導度を保ちつつ、硫化水素の発生が抑制した改質硫化物固体電解質を得ることができる改質硫化物固体電解質となる。更に前記の(iii)は、前記の改質硫化物固体電解質がアルジロダイト型結晶構造を主構造として有していることを意味するものである。より具体的には、アルジロダイト型結晶が(i)と(ii)で特定される酸化物と相互反応することによって分解されることなく、その構造を維持していることを意味すると考えられる。これにより、改質硫化物固体電解質は高いイオン伝導度を有することとなる。 Satisfying the above (i) means that the modified sulfide solid electrolyte contains an oxide, and satisfying (ii) means that the lower limit of the oxide content is specified by M M /M P. By satisfying these (i) and (ii), the modified sulfide solid electrolyte of the present embodiment is a modified sulfide solid electrolyte that can obtain a modified sulfide solid electrolyte in which the generation of hydrogen sulfide is suppressed while maintaining the ionic conductivity of the sulfide solid electrolyte. Furthermore, the above (iii) means that the modified sulfide solid electrolyte has an argyrodite-type crystal structure as a main structure. More specifically, it is considered to mean that the argyrodite-type crystal maintains its structure without being decomposed by mutual reaction with the oxide specified by (i) and (ii). As a result, the modified sulfide solid electrolyte has high ionic conductivity.
 本実施形態の第十二の態様に係る改質硫化物固体電解質は、前記の第十一の態様において、
 X線回折スペクトル(XRDパターン)による、前記酸化物由来のピーク強度と、前記アルジロダイト型結晶構造に由来する29.7±0.5deg.のピーク強度(アルジロダイト型結晶構造に由来する29.7±0.5deg.のピーク強度について、強度比の説明ではアルジロダイト型結晶構造由来のピーク強度と記載する。)と、の強度比(酸化物由来のピーク強度/アルジロダイト型結晶構造由来のピーク強度)が0.1未満である、改質硫化物固体電解質である。
The modified sulfide solid electrolyte according to a twelfth aspect of the present embodiment is the modified sulfide solid electrolyte according to the eleventh aspect,
The modified sulfide solid electrolyte has an intensity ratio (peak intensity derived from oxide/peak intensity derived from Argyrodite-type crystal structure) of less than 0.1 between a peak intensity derived from the oxide and a peak intensity of 29.7±0.5 deg. derived from the Argyrodite-type crystal structure (the peak intensity of 29.7±0.5 deg. derived from the Argyrodite-type crystal structure is referred to as the peak intensity derived from the Argyrodite-type crystal structure in the explanation of the intensity ratio) in an X-ray diffraction spectrum (XRD pattern).
 前記の第十一の態様に加えて、前記強度比が0.1未満であると、前記硫化物固体電解質のイオン伝導度を保ちつつ、硫化水素の発生を更に抑制することができるため好ましい。
 本実施形態の第十一の態様に係る改質硫化物固体電解質は、前記の(iii)を満たすことにより、前記硫化物固体電解質の結晶構造中に酸化物が取り込まれていないか、取り込まれていてもアルジロダイト型結晶構造が保たれているため、29.7±0.5deg.のピーク強度が前記硫化物固体電解質の強度を保っている。前記酸化物由来のピーク強度と、前記アルジロダイト型結晶構造に由来する29.7±0.5deg.のピーク強度(アルジロダイト型結晶構造由来のピーク強度)と、の強度比(酸化物由来のピーク強度/アルジロダイト型結晶構造由来のピーク強度)が特定の範囲であることで、酸化物は改質硫化物固体電解質中に存在していても、酸化物の粒子が小さく(以下ナノ粒子とも記載する。ナノ粒子とは、粒子の粒径がナノオーダーであることを意味する。)、結晶子もXRDで検出されない程度に小さいことが考えられる。酸化物がナノ粒子として存在し、前記強度比が0.1未満であると酸化物による接触界面の形成が阻害されず、電子伝導のパスが良好になり、更に改質硫化物固体電解質の硫化水素の発生が抑制されるため好ましい。また、特に硫化物固体電解質の1次粒子の表面に酸化物が付着すると、改質硫化物固体電解質の2次粒子の形成が抑えられ、メジアン径(D50)の増大が生じにくくなるため好ましい。
In addition to the eleventh aspect, when the intensity ratio is less than 0.1, the generation of hydrogen sulfide can be further suppressed while maintaining the ionic conductivity of the sulfide solid electrolyte, which is preferable.
In the modified sulfide solid electrolyte according to the eleventh aspect of the present embodiment, by satisfying the above (iii), the oxide is not incorporated into the crystal structure of the sulfide solid electrolyte, or even if an oxide is incorporated, the Argyrodite crystal structure is maintained, so that the peak intensity of 29.7 ± 0.5 deg. maintains the strength of the sulfide solid electrolyte. The intensity ratio (peak intensity derived from oxide/peak intensity derived from Argyrodite crystal structure) between the peak intensity derived from the oxide and the peak intensity of 29.7 ± 0.5 deg. derived from the Argyrodite crystal structure (peak intensity derived from Argyrodite crystal structure) is within a specific range, so that even if an oxide is present in the modified sulfide solid electrolyte, the oxide particles are small (hereinafter also referred to as nanoparticles. Nanoparticles mean that the particle diameter of the particles is on the nano order), and the crystallites are small enough to be undetectable by XRD. When the oxide is present as nanoparticles and the intensity ratio is less than 0.1, the formation of the contact interface by the oxide is not inhibited, the path of electronic conduction is improved, and further, the generation of hydrogen sulfide in the modified sulfide solid electrolyte is suppressed, which is preferable. In particular, when the oxide adheres to the surface of the primary particle of the sulfide solid electrolyte, the formation of secondary particles of the modified sulfide solid electrolyte is suppressed, which is preferable because an increase in the median diameter ( D50 ) is unlikely to occur.
 本実施形態の第十三の態様に係る改質硫化物固体電解質は、前記の第十一又は十二の態様において、
 前記ハロゲン原子として、塩素原子及び臭素原子から選ばれる少なくとも1種を含む、改質硫化物固体電解質である。
The modified sulfide solid electrolyte according to a thirteenth aspect of the present embodiment is the modified sulfide solid electrolyte according to the eleventh or twelfth aspect,
The modified sulfide solid electrolyte contains at least one halogen atom selected from a chlorine atom and a bromine atom.
 前記改質硫化物固体電解質が、塩素原子及び臭素原子から選ばれる少なくとも1種を含むことで安定したアルジロダイト型結晶構造を有するため好ましい。アルジロダイト型結晶構造を有する改質硫化物固体電解質は、硫化物固体電解質のイオン伝導度を保ちつつ、メジアン径(D50)の増大を抑制しながら、硫化水素の発生が抑制されるため好ましい。 The modified sulfide solid electrolyte is preferred because it has a stable argyrodite-type crystal structure due to the inclusion of at least one selected from chlorine atoms and bromine atoms. The modified sulfide solid electrolyte having the argyrodite-type crystal structure is preferred because it maintains the ionic conductivity of the sulfide solid electrolyte, inhibits an increase in the median diameter ( D50 ), and inhibits the generation of hydrogen sulfide.
 本実施形態の第十四の態様に係る改質硫化物固体電解質は、前記の第十一~十三のいずれかの態様において、
 1次粒子の表面に前記酸化物が付着又は結合した、改質硫化物固体電解質である。
The modified sulfide solid electrolyte according to a fourteenth aspect of the present embodiment is any one of the eleventh to thirteenth aspects,
The oxide is attached or bonded to the surface of the primary particles, forming a modified sulfide solid electrolyte.
 本実施形態の改質硫化物固体電解質は、前記硫化物固体電解質と前記酸化物を含むことを要するが、前記酸化物は、前記硫化物固体電解質の1次粒子の表面に結合した状態で改質硫化物固体電解質に含まれることが好ましい。「付着」及び「結合」は、前記記載したものを意味する。
 酸化物が、硫化物固体電解質の1次粒子の表面に付着又は結合した改質硫化物固体電解質は、硫化物固体電解質の1次粒子の表面に酸化物が付着又は結合して存在するため、酸化物が脱離しにくく、改質硫化物固体電解質は安定した組成及び形状を保ちやすいため好ましい。また硫化物固体電解質の1次粒子の表面に酸化物が付着又は結合して存在することで、1次粒子同士が結合した2次粒子の形成が抑制されるため、メジアン径(D50)の増大が抑制され、加えて雰囲気中の水等と硫化物固体電解質の接触機会を減少させることができるため、硫化水素の発生も抑制することができるため好ましい。これらの効果を発現するためには、硫化物固体電解質の1次粒子の表面に酸化物が結合して存在することがより好ましい。
The modified sulfide solid electrolyte of the present embodiment is required to contain the sulfide solid electrolyte and the oxide, and the oxide is preferably contained in the modified sulfide solid electrolyte in a state of being bound to the surface of the primary particles of the sulfide solid electrolyte. "Attached" and "bound" have the same meanings as described above.
The modified sulfide solid electrolyte in which the oxide is attached or bonded to the surface of the primary particles of the sulfide solid electrolyte is preferable because the oxide is not easily detached and the modified sulfide solid electrolyte is easy to maintain a stable composition and shape because the oxide is attached or bonded to the surface of the primary particles of the sulfide solid electrolyte. In addition, the oxide is attached or bonded to the surface of the primary particles of the sulfide solid electrolyte, which suppresses the formation of secondary particles in which primary particles are bonded to each other, thereby suppressing the increase in the median diameter (D 50 ). In addition, the opportunity for contact of the sulfide solid electrolyte with water in the atmosphere can be reduced, which is preferable because the generation of hydrogen sulfide can be suppressed. In order to achieve these effects, it is more preferable that the oxide is bonded to the surface of the primary particles of the sulfide solid electrolyte.
 本実施形態の第十五の態様に係る改質硫化物固体電解質は、前記の第十一~十四のいずれかの態様において、
 メジアン径(D50)が、150μm未満である、改質硫化物固体電解質である。
The modified sulfide solid electrolyte according to a fifteenth aspect of the present embodiment is any one of the eleventh to fourteenth aspects,
The modified sulfide solid electrolyte has a median diameter (D 50 ) of less than 150 μm.
 改質硫化物固体電解質のメジアン径(D50)が小さいと、電極活物質と硫化物固体電解質との接触界面を形成しやすくなり、イオン伝導と電子伝導のパスが良好になり、この改質硫化物固体電解質を用いることで優れた電池性能を持つリチウムイオン電池が得られるため好ましい。
 改質硫化物固体電解質及び硫化物固体電解質等の固体電解質の粉体のメジアン径(D50)は、例えば実施例に記載の方法により測定又は算出することができる。また、D50の測定では、固体電解質の粒度分布を確認することができる。粒度分布が小さいと後記する電極合材の製造が容易になり、更にイオン伝導と電子伝導のパスが良好になるため好ましい。
When the median diameter ( D50 ) of the modified sulfide solid electrolyte is small, a contact interface between the electrode active material and the sulfide solid electrolyte is easily formed, and the paths for ionic conduction and electronic conduction are improved. Therefore, the use of this modified sulfide solid electrolyte is preferable because it allows a lithium ion battery with excellent battery performance to be obtained.
The median diameter ( D50 ) of the powder of the solid electrolyte such as the modified sulfide solid electrolyte and the sulfide solid electrolyte can be measured or calculated, for example, by the method described in the Examples. In addition, the particle size distribution of the solid electrolyte can be confirmed by measuring D50 . A small particle size distribution is preferable because it makes it easier to manufacture the electrode mixture described below and also improves the paths of ion conduction and electron conduction.
 本実施形態の第十六の態様に係る改質硫化物固体電解質は、前記の第十四又は十五の態様において、
 1次粒子の表面に付着又は結合した前記酸化物のメジアン径(D50)が、100.0μm未満である、改質硫化物固体電解質である。
The modified sulfide solid electrolyte according to a sixteenth aspect of the present embodiment is the same as the modified sulfide solid electrolyte according to the fourteenth or fifteenth aspect,
The modified sulfide solid electrolyte has a median diameter (D 50 ) of the oxide attached to or bonded to the surface of the primary particles of less than 100.0 μm.
 本実施形態の改質硫化物固体電解質において、前記硫化物固体電解質の1次粒子の表面に付着又は結合した前記酸化物のメジアン径(D50)が、100.0μm未満であると、改質硫化物固体電解質と電極活物質を含む電極合材は、電極活物質と硫化物固体電解質との接触界面を形成しやすくなり、イオン伝導と電子伝導のパスが良好になり、この改質硫化物固体電解質を用いることで優れた電池性能を持つリチウムイオン電池が得られるため好ましい。
 特に前記の第十二の態様と本態様を組み合わせた態様は、酸化物が、硫化物固体電解質の結晶構造内に取り込まれるのではなく、硫化物固体電解質の1次粒子の表面に結合した状態で存在するため、前記硫化物固体電解質のイオン伝導度を保ちつつ、硫化水素の発生抑制効果が得られるため好ましい。また前記したように改質硫化物固体電解質のメジアン径(D50)の増大が抑制されるため好ましい。
In the modified sulfide solid electrolyte of this embodiment, when the median diameter ( D50 ) of the oxide attached or bonded to the surface of the primary particle of the sulfide solid electrolyte is less than 100.0 μm, the electrode mixture containing the modified sulfide solid electrolyte and the electrode active material is likely to form a contact interface between the electrode active material and the sulfide solid electrolyte, and the paths for ion conduction and electron conduction are improved, and the use of this modified sulfide solid electrolyte is preferable because a lithium ion battery with excellent battery performance can be obtained.
In particular, the embodiment in which the twelfth embodiment and this embodiment are combined is preferable because the oxide is not incorporated into the crystal structure of the sulfide solid electrolyte but is present in a state of being bonded to the surface of the primary particles of the sulfide solid electrolyte, and therefore the effect of suppressing the generation of hydrogen sulfide can be obtained while maintaining the ionic conductivity of the sulfide solid electrolyte. Also, as described above, this embodiment is preferable because the increase in the median diameter ( D50 ) of the modified sulfide solid electrolyte is suppressed.
 本実施形態の第十七の態様に係る改質硫化物固体電解質は、前記の第十一~十六のいずれかの態様において、
 前記一般式MにおけるMがSiである酸化物を含む、改質硫化物固体電解質である。
The modified sulfide solid electrolyte according to a seventeenth aspect of the present embodiment is any one of the eleventh to sixteenth aspects,
The modified sulfide solid electrolyte includes an oxide in which M in the general formula M m O n is Si.
 本実施形態の改質硫化物固体電解質は、前記一般式MにおけるMがAlである酸化物を少なくとも1種含むことを要するが、更にMがSiである酸化物を含むとMがAlである酸化物の含有量を減少させてもイオン伝導度を保ちつつ、硫化水素の発生が抑制されるため好ましい。 The modified sulfide solid electrolyte of the present embodiment is required to contain at least one oxide in which M is Al in the general formula MmOn . However, it is preferable to further contain an oxide in which M is Si, because even if the content of the oxide in which M is Al is reduced, the generation of hydrogen sulfide is suppressed while maintaining ionic conductivity.
 本実施形態の第十八の態様に係る改質硫化物固体電解質は、前記の第十一~十七のいずれかの態様において、
 前記一般式MにおけるMがTiである酸化物を含まない、改質硫化物固体電解質である。
The modified sulfide solid electrolyte according to an eighteenth aspect of the present embodiment is any one of the eleventh to seventeenth aspects,
The modified sulfide solid electrolyte does not include an oxide in which M in the general formula M m O n is Ti.
 本実施形態の改質硫化物固体電解質が、前記一般式MにおけるMがTiである酸化物を含まないことで、硫化物固体電解質のイオン伝導度を保ちつつ、より硫化水素の発生が抑制できるため好ましい。 The modified sulfide solid electrolyte of the present embodiment does not contain an oxide in which M in the general formula MmOn is Ti, which is preferable because it can further suppress the generation of hydrogen sulfide while maintaining the ionic conductivity of the sulfide solid electrolyte.
 本実施形態の第十九の態様に係る電極合材は、
 前記の第十一~十八のいずれかの態様の改質硫化物固体電解質と、電極活物質と、を含む、電極合材である。
The electrode mixture according to the nineteenth aspect of this embodiment is
An electrode mixture comprising the modified sulfide solid electrolyte of any one of the eleventh to eighteenth aspects and an electrode active material.
 前記改質硫化物固体電解質は、電極活物質と硫化物固体電解質との接触界面を形成しやすくなり、イオン伝導と電子伝導のパスが良好になる。 The modified sulfide solid electrolyte makes it easier to form a contact interface between the electrode active material and the sulfide solid electrolyte, improving the paths for ionic and electronic conduction.
 本実施形態の第二十の態様に係るリチウムイオン電池は、
 前記の第十一~十八のいずれかの態様の改質硫化物固体電解質及び前記の第十九の態様の電極合材の少なくとも一方を含む、リチウムイオン電池である。
A lithium ion battery according to a twentieth aspect of this embodiment is
A lithium ion battery comprising at least one of the modified sulfide solid electrolyte of any one of the eleventh to eighteenth aspects and the electrode mixture of the nineteenth aspect.
 前記改質硫化物固体電解質及び前記電極合材は、前記のように優れた特性を有するため、これを用いたリチウムイオン電池は、電池特性が優れたものとなる。 Because the modified sulfide solid electrolyte and the electrode mixture have excellent properties as described above, lithium ion batteries using them have excellent battery properties.
 以下、本実施形態の改質硫化物固体電解質の製造方法、改質硫化物固体電解質、電極合材及びリチウムイオン電池について、前記の実施態様に即しながら、より詳細に説明する。 The manufacturing method of the modified sulfide solid electrolyte, the modified sulfide solid electrolyte, the electrode mixture, and the lithium ion battery of this embodiment will be described in more detail below in accordance with the above-mentioned embodiment.
〔改質硫化物固体電解質の製造方法〕
 本実施形態の改質硫化物固体電解質の製造方法は、アルジロダイト型結晶構造を有する硫化物固体電解質と、酸化物と、を300℃以上600℃以下で加熱すること、を含む、改質硫化物固体電解質の製造方法である。
 以下、改質硫化物固体電解質の製造方法を説明した後、アルジロダイト型結晶構造を有する硫化物固体電解質、酸化物及び改質硫化物固体電解質等の詳細について説明する。
[Method for producing modified sulfide solid electrolyte]
The method for producing a modified sulfide solid electrolyte of the present embodiment includes heating a sulfide solid electrolyte having an argyrodite-type crystal structure and an oxide at 300° C. or more and 600° C. or less.
Hereinafter, a method for producing a modified sulfide solid electrolyte will be described, and then the sulfide solid electrolyte having an argyrodite-type crystal structure, the oxide, and the modified sulfide solid electrolyte will be described in detail.
<加熱すること>
 本実施形態の改質硫化物固体電解質の製造方法は、後記するアルジロダイト型結晶構造を有する硫化物固体電解質と、後記する酸化物と、を300℃以上600℃以下で加熱すること、を含むことを要する。
 前記加熱温度が300℃未満であると後記するように硫化物固体電解質の1次粒子の表面に前記酸化物が付着又は結合した状態にはならず、酸化物を含む効果が発揮されない。600℃より高いと酸化物が硫化物固体電解質に取り込まれ、又は酸化物との相互反応によりアルジロダイト型結晶構造が分解されてしまい、イオン伝導度が大幅に低下してしまう。
 加熱の温度としては、350℃以上580℃以下であることが好ましく、400℃以上560℃以下であることがより好ましく、450℃以上540℃以下であることが更に好ましく、480℃以上520℃以下であることがより更に好ましい。
<Heating>
The method for producing the modified sulfide solid electrolyte of the present embodiment is required to include heating a sulfide solid electrolyte having an argyrodite-type crystal structure described below and an oxide described below at 300° C. or more and 600° C. or less.
If the heating temperature is less than 300° C., the oxide does not adhere or bond to the surface of the primary particles of the sulfide solid electrolyte, as described below, and the effect of containing the oxide is not exhibited.If the heating temperature is higher than 600° C., the oxide is taken up into the sulfide solid electrolyte, or the argyrodite-type crystal structure is decomposed due to an interaction with the oxide, resulting in a significant decrease in ionic conductivity.
The heating temperature is preferably 350°C or higher and 580°C or lower, more preferably 400°C or higher and 560°C or lower, even more preferably 450°C or higher and 540°C or lower, and even more preferably 480°C or higher and 520°C or lower.
 前記加熱は、後記する、硫化物固体電解質のイオン伝導度を保ちつつ、メジアン径(D50)の増大を抑制しながら、硫化水素の発生が抑制した改質硫化物固体電解質を得るために、1時間以上行うことが好ましい。
 加熱時間は、硫化物固体電解質の1次粒子の表面に前記酸化物が付着又は結合した状態とするため、1時間30分以上とすることがより好ましく、1時間40分以上とすることが更に好ましく、1時間50分以上とすることがより更に好ましい。
 上限値は特に限定はないが、硫化物固体電解質のアルジロダイト型結晶構造を保持するためには、10時間以下とすることが好ましく、5時間以下とすることがより好ましく、3時間以下とすることが更に好ましい。
 つまり加熱時間は、1時間以上10時間以下とすることが好ましく、1時間30分以上5時間以下とすることがより好ましく、1時間40分以上3時間以下とすることが更に好ましい。
The heating is preferably carried out for one hour or more in order to obtain a modified sulfide solid electrolyte in which the generation of hydrogen sulfide is suppressed while maintaining the ionic conductivity of the sulfide solid electrolyte and suppressing an increase in the median diameter (D 50 ), as described below.
The heating time is preferably 1 hour 30 minutes or more, more preferably 1 hour 40 minutes or more, and even more preferably 1 hour 50 minutes or more, in order to cause the oxide to adhere to or bond to the surfaces of the primary particles of the sulfide solid electrolyte.
There is no particular upper limit, but in order to maintain the argyrodite crystal structure of the sulfide solid electrolyte, the upper limit is preferably 10 hours or less, more preferably 5 hours or less, and even more preferably 3 hours or less.
That is, the heating time is preferably from 1 hour to 10 hours, more preferably from 1 hour 30 minutes to 5 hours, and even more preferably from 1 hour 40 minutes to 3 hours.
 前記加熱は、不活性ガス雰囲気(例えば、窒素雰囲気、アルゴン雰囲気)、又は減圧雰囲気(特に真空中)で行なうことが好ましい。例えば一定濃度の水素を含む不活性ガス雰囲気でもよい。結晶性の硫化物固体電解質の劣化(例えば、酸化)を防止できるからである。
 加熱の方法は、特に加熱器が制限されるものではないが、例えば、ホットプレート、真空加熱装置、アルゴンガス雰囲気炉、焼成炉を用いる方法等を挙げることができる。また、工業的には、加熱手段と送り機構を有する横型乾燥機、横型振動流動乾燥機等を用いることもでき、加熱する処理量に応じて選択すればよい。
The heating is preferably performed in an inert gas atmosphere (e.g., nitrogen atmosphere, argon atmosphere) or a reduced pressure atmosphere (particularly in vacuum). For example, an inert gas atmosphere containing a certain concentration of hydrogen may be used. This is because deterioration (e.g., oxidation) of the crystalline sulfide solid electrolyte can be prevented.
The heating method is not particularly limited by the heater, and examples thereof include a method using a hot plate, a vacuum heating device, an argon gas atmosphere furnace, a baking furnace, etc. Also, for industrial purposes, a horizontal dryer having a heating means and a feeding mechanism, a horizontal vibration fluidized dryer, etc. may be used, and may be selected according to the amount of processing to be heated.
 前記加熱は、前記硫化物固体電解質と酸化物とを300℃以上600℃以下で加熱するものであれば、特に制限はないが、加熱した硫化物固体電解質に酸化物を加え更に加熱しても、加熱した酸化物に硫化物固体電解質を加え更に加熱しても、硫化物固体電解質及び酸化物の混合物を加熱してもよい。硫化物固体電解質及び酸化物の混合物を得るため、硫化物固体電解質及び酸化物を後記する混合した後に加熱しても、加熱及び後記する混合を同時に行ってもよい。 The heating is not particularly limited as long as the sulfide solid electrolyte and oxide are heated to 300°C or higher and 600°C or lower, but an oxide may be added to the heated sulfide solid electrolyte and further heated, or a sulfide solid electrolyte may be added to the heated oxide and further heated, or a mixture of the sulfide solid electrolyte and oxide may be heated. To obtain a mixture of the sulfide solid electrolyte and oxide, the sulfide solid electrolyte and oxide may be mixed as described below and then heated, or heating and mixing as described below may be performed simultaneously.
 前記加熱は、前記硫化物固体電解質と、前記酸化物と、を一の加熱器で同時に加熱して行われることが好ましい。これにより、前記硫化物固体電解質と、前記酸化物とを含む改質硫化物固体電解質を製造することができるからである。 The heating is preferably performed by simultaneously heating the sulfide solid electrolyte and the oxide with a single heater. This is because a modified sulfide solid electrolyte containing the sulfide solid electrolyte and the oxide can be produced.
(混合すること)
 本実施形態の改質硫化物固体電解質の製造方法は、更に混合することを含むことが好ましい。
 混合することは、前記の加熱することの前に行ってもよいし、前記の加熱することと同時に行ってもよいし、これらを組み合わせて行ってもよい。加熱することの前及び/又は加熱することと同時に混合することで、前記硫化物固体電解質の表面に前記酸化物が均一に存在する状態で加熱されることとなるため、前記硫化物固体電解質の1次粒子の表面に前記酸化物が付着又は結合した改質硫化物固体電解質が製造されるため好ましい。
 混合することは後記する粉砕機を用いて行うと、硫化物固体電解質のメジアン径(D50)を調整しつつ、前記硫化物固体電解質の表面に前記酸化物が存在する状態とできるため好ましい。
(Mixing)
The method for producing the modified sulfide solid electrolyte of the present embodiment preferably further includes mixing.
The mixing may be performed before the heating, or may be performed simultaneously with the heating, or a combination of these. Mixing before and/or simultaneously with the heating is preferable because the sulfide solid electrolyte is heated in a state in which the oxide is uniformly present on the surface thereof, and therefore a modified sulfide solid electrolyte in which the oxide is attached or bonded to the surfaces of the primary particles of the sulfide solid electrolyte is produced.
It is preferable to use a pulverizer to mix the sulfide solid electrolyte, as described below, since this allows the oxide to be present on the surface of the sulfide solid electrolyte while adjusting the median diameter (D 50 ) of the sulfide solid electrolyte.
(粉砕すること)
 本実施形態の改質硫化物固体電解質の製造方法は、更に硫化物固体電解質及び/又は改質硫化物固体電解質を粉砕することを含んでいてもよいが、本実施形態の改質硫化物固体電解質の製造方法は、硫化物固体電解質のメジアン径(D50)の増大を抑制することができるため、硫化物固体電解質のメジアン径(D50)を必要とされる大きさとして、加熱することを行い、加熱することの後に改質硫化物固体電解質を粉砕することを行わないことが好ましい。加熱後に粉砕すると酸化物が付着等していない改質硫化物固体電解質の表面が生成するからである。他方加熱により改質硫化物固体電解質のメジアン径(D50)が増大した場合には、1次粒子を粉砕するのではなく、2次粒子を解砕することを目的として粉砕することも好ましい。
(Crushing)
The method for producing the modified sulfide solid electrolyte of this embodiment may further include pulverizing the sulfide solid electrolyte and/or the modified sulfide solid electrolyte. However, since the method for producing the modified sulfide solid electrolyte of this embodiment can suppress an increase in the median diameter (D 50 ) of the sulfide solid electrolyte, it is preferable to heat the sulfide solid electrolyte so that the median diameter (D 50 ) is a required size, and not pulverize the modified sulfide solid electrolyte after heating. This is because pulverization after heating produces a surface of the modified sulfide solid electrolyte that is not adhered with oxides. On the other hand, when the median diameter (D 50 ) of the modified sulfide solid electrolyte increases due to heating, it is also preferable to pulverize the modified sulfide solid electrolyte for the purpose of crushing the secondary particles, rather than pulverizing the primary particles.
 硫化物固体電解質の粉砕に用いる粉砕機としては、粒子を粉砕できるものであれば特に制限なく、例えば、粉砕媒体を用いた媒体式粉砕機を用いることができる。媒体式粉砕機としては、乾式粉砕機又は湿式粉砕機が好ましい。
 乾式粉砕機としては、乾式ビーズミル、乾式ボールミル、乾式振動ミル等の乾式媒体式粉砕機、ジェットミル等の乾式非媒体粉砕機等の乾式粉砕機を用いることもできる。
 湿式粉砕機としては、湿式ビーズミル、湿式ボールミル、湿式振動ミル等を用いることができる。
The pulverizer used for pulverizing the sulfide solid electrolyte is not particularly limited as long as it can pulverize particles, and for example, a media-type pulverizer using a pulverizing medium can be used. As the media-type pulverizer, a dry type pulverizer or a wet type pulverizer is preferable.
As the dry grinding machine, a dry media type grinding machine such as a dry bead mill, a dry ball mill, or a dry vibration mill, or a dry non-media type grinding machine such as a jet mill can be used.
As the wet grinding machine, a wet bead mill, a wet ball mill, a wet vibration mill, or the like can be used.
 また、硫化物固体電解質及び/又は改質硫化物固体電解質の粉砕に用いる粉砕機としては、超音波を用いて対象物を粉砕し得る機械、例えば超音波粉砕機、超音波ホモジナイザー、プローブ超音波粉砕機等と称される機械を用いることもできる。 In addition, as a grinder used to grind the sulfide solid electrolyte and/or modified sulfide solid electrolyte, a machine capable of grinding an object using ultrasonic waves, such as a machine called an ultrasonic grinder, ultrasonic homogenizer, probe ultrasonic grinder, etc., can also be used.
 粉砕することにより得られる硫化物固体電解質及び/又は改質硫化物固体電解質のメジアン径(D50)は、所望に応じて適宜決定されるものであるが、通常0.01μm以上50μm以下であり、好ましくは0.03μm以上5μm以下、より好ましくは0.05μm以上3μm以下である。 The median diameter (D 50 ) of the sulfide solid electrolyte and/or modified sulfide solid electrolyte obtained by pulverization is appropriately determined as desired, but is usually 0.01 μm or more and 50 μm or less, preferably 0.03 μm or more and 5 μm or less, and more preferably 0.05 μm or more and 3 μm or less.
〔改質硫化物固体電解質〕
 本実施形態の改質硫化物固体電解質は、アルジロダイト型結晶構造を有する硫化物固体電解質と、酸化物と、を300℃以上600℃以下で加熱すること、を含む、製造方法により得られるものであり、リチウム原子、硫黄原子、リン原子及びハロゲン原子を含むアルジロダイト型結晶構造を有する硫化物固体電解質と、一般式M(式中、Mは、Mg、Al、Si、Ca、Ti、V、Fe、Zn、Ga、Sr、Y、Zr、Nb、Mo、Sn、Sb、Ba、Ta、W及びBiから選ばれる原子を表し、m及びnはそれぞれ独立して1~5の整数を表す。)で表される酸化物と、を含み、下記(i)~(iii)を満たす、改質硫化物固体電解質である。
(i) 前記一般式MにおけるMがAlである酸化物を少なくとも1種含む。
(ii) 前記改質硫化物固体電解質に含まれる全酸化物中の前記Mの合計のモル数(M)と、前記硫化物固体電解質中のリン原子の合計のモル数(M)との比の値(M/M)が、0.010より大きい。
(iii) X線回折スペクトル(XRDパターン)による、29.7±0.5deg.の範囲内にピークが1本しか観測されないか、2本以上観測される場合には、最も高いピークの強度をIとし2番目に高いピークの強度をIとした時、I/Iが1.0未満である。
[Modified sulfide solid electrolyte]
The modified sulfide solid electrolyte of the present embodiment is obtained by a production method including heating a sulfide solid electrolyte having an argyrodite-type crystal structure and an oxide at 300° C. or more and 600° C. or less, and includes a sulfide solid electrolyte having an argyrodite-type crystal structure containing lithium atoms, sulfur atoms, phosphorus atoms, and halogen atoms, and an oxide represented by the general formula M m O n (wherein M represents an atom selected from Mg, Al, Si, Ca, Ti, V, Fe, Zn, Ga, Sr, Y, Zr, Nb, Mo, Sn, Sb, Ba, Ta, W, and Bi, and m and n each independently represent an integer of 1 to 5), and satisfies the following (i) to (iii).
(i) At least one oxide in which M in the general formula M m O n is Al is included.
(ii) the ratio (M M /M P ) of the total number of moles of M in all oxides contained in the modified sulfide solid electrolyte (M M ) to the total number of moles of phosphorus atoms in the sulfide solid electrolyte ( M P ) is greater than 0.010.
(iii) Only one peak is observed within the range of 29.7±0.5 deg. in an X-ray diffraction spectrum (XRD pattern), or when two or more peaks are observed, I2 / I1 is less than 1.0, where I1 is the intensity of the highest peak and I2 is the intensity of the second highest peak.
 本実施形態の改質硫化物固体電解質は、硫化物固体電解質のイオン伝導度を保ちつつ、硫化水素の発生が抑制した改質硫化物固体電解質である。このような性質を備えるため、後記する電極合材及びリチウムイオン電池の材料として有用である。また、改質硫化物固体電解質は、酸化物を含むため、特に改質硫化物固体電解質のメジアン径(D50)の増大を抑制することができ、硫化物固体電解質のメジアン径(D50)を小さくできると、電極活物質と硫化物固体電解質との接触界面を形成しやすくなり、イオン伝導と電子伝導のパスが良好になるため好ましい。 The modified sulfide solid electrolyte of the present embodiment is a modified sulfide solid electrolyte that suppresses the generation of hydrogen sulfide while maintaining the ionic conductivity of the sulfide solid electrolyte. Because of such properties, it is useful as a material for an electrode mixture and a lithium ion battery, which will be described later. In addition, since the modified sulfide solid electrolyte contains an oxide, it is possible to suppress an increase in the median diameter (D 50 ) of the modified sulfide solid electrolyte in particular. If the median diameter (D 50 ) of the sulfide solid electrolyte can be reduced, it is preferable because it is easy to form a contact interface between the electrode active material and the sulfide solid electrolyte, and the paths for ionic conduction and electronic conduction are improved.
 本実施形態の改質硫化物固体電解質は、X線回折スペクトル(XRDパターン)による、前記酸化物由来のピーク強度と、前記アルジロダイト型結晶構造に由来する29.7±0.5deg.のピーク強度(アルジロダイト型結晶構造由来のピーク強度)と、の強度比(酸化物由来のピーク強度/アルジロダイト型結晶構造由来のピーク強度)が0.1未満である、改質硫化物固体電解質であることが好ましい。
 前記のように、前記強度比が0.1未満であると、前記硫化物固体電解質のイオン伝導度を保ちつつ、メジアン径(D50)の増大を抑制しながら、硫化水素の発生を更に抑制することができるため好ましい。
The modified sulfide solid electrolyte of the present embodiment is preferably a modified sulfide solid electrolyte in which the intensity ratio (peak intensity derived from oxide/peak intensity derived from argyrodite-type crystal structure) of the peak intensity derived from the oxide to the peak intensity of 29.7±0.5 deg. derived from the argyrodite-type crystal structure (peak intensity derived from argyrodite-type crystal structure) in an X-ray diffraction spectrum (XRD pattern) is less than 0.1.
As described above, when the intensity ratio is less than 0.1, the ionic conductivity of the sulfide solid electrolyte is maintained, an increase in the median diameter (D 50 ) is suppressed, and generation of hydrogen sulfide can be further suppressed, which is preferable.
 前記強度比が0.1未満であることは、一見すると改質硫化物固体電解質中には前記酸化物が存在しないことを意味するとも考えられる。しかしながら、(i)(ii)の通り規定量以上の酸化物が添加されているにもかかわらず、それらが(iii)の通りアルジロダイト型結晶構造と相互反応せずに(アルジロダイト型結晶構造の分解反応に寄与することなく)残存している筈であることを鑑みると、当該強度比が0.1未満であることは、XRDパターンには観測されないような態様により酸化物そのものが改質硫化物固体電解質中に存在していることを意味すると考えられる。具体的には、酸化物が前記のようにナノ粒子であることで、酸化物に由来するXRDパターンのピーク強度は小さくなり、前記強度比は小さくなっていると推察する。電極活物質と改質硫化物固体電解質との接触界面の形成が酸化物により阻害されるが、前記強度比が0.1未満であれば、接触界面の形成が阻害されず、電子伝導のパスが良好になることが考えられる。
 本実施形態の改質硫化物固体電解質は、前記硫化物固体電解質と、前記酸化物と、を含むことを要するが、前記硫化物固体電解質の1次粒子の表面に前記酸化物が付着又は結合したものであることが好ましい。付着及び結合は、前記のとおりである。
At first glance, the intensity ratio of less than 0.1 may be considered to mean that the oxide is not present in the modified sulfide solid electrolyte. However, considering that the oxide is added in a specified amount or more as in (i) and (ii) and should remain without interacting with the Argyrodite-type crystal structure (without contributing to the decomposition reaction of the Argyrodite-type crystal structure) as in (iii), the intensity ratio of less than 0.1 is considered to mean that the oxide itself is present in the modified sulfide solid electrolyte in a manner that is not observed in the XRD pattern. Specifically, it is presumed that the peak intensity of the XRD pattern originating from the oxide is small because the oxide is nanoparticles as described above, and the intensity ratio is small. The formation of the contact interface between the electrode active material and the modified sulfide solid electrolyte is inhibited by the oxide, but if the intensity ratio is less than 0.1, the formation of the contact interface is not inhibited and the path of electronic conduction is improved.
The modified sulfide solid electrolyte of the present embodiment is required to contain the sulfide solid electrolyte and the oxide, and preferably has the oxide attached or bonded to the surfaces of the primary particles of the sulfide solid electrolyte. The attachment and bonding are as described above.
 前記(i)は、一般式MにおけるMがAlである酸化物を少なくとも1種含むことを規定する。これにより、メジアン径(D50)の増大を抑制しながら、硫化水素の発生が抑制した改質硫化物固体電解質を得ることができるため好ましい。詳細は後記する。 The above (i) specifies that at least one oxide in which M is Al in the general formula MmOn is contained. This is preferable because it is possible to obtain a modified sulfide solid electrolyte in which the generation of hydrogen sulfide is suppressed while suppressing an increase in the median diameter ( D50 ). Details will be described later.
 本実施形態の改質硫化物固体電解質は、前記(ii)で規定するように、前記改質硫化物固体電解質に含まれる全酸化物中の前記Mの合計のモル数(M)と、前記硫化物固体電解質中のリン原子の合計のモル数(M)との比の値(M/M)が、0.010より大きいことを要する。
 改質硫化物固体電解質に含まれる、後記する酸化物と後記する硫化物固体電解質の含有量比は前記のM/Mにより概算できる。M及びMは改質硫化物固体電解質を製造する際に使用した酸化物と硫化物固体電解質から求めてもよいし、改質硫化物固体電解質に含まれる前記Mの合計の含有量及びリン原子の含有量をICP発光分光分析法等により測定して計算してもよい。
 前記M/Mが、0.010以下であると酸化物を含む効果が十分に発揮されず、メジアン径(D50)の増大を抑制しながら、硫化水素の発生が抑制した改質硫化物固体電解質を得ることができない。前記M/Mは、0.02以上であることが好ましく、0.04以上であることがより好ましく、0.4以上であることが更に好ましい。
 上限値としては、特に限定されず、前記改質硫化物固体電解質のイオン伝導度を保つため、適宜調整することができる。
As defined in (ii) above, the modified sulfide solid electrolyte of this embodiment requires that the ratio (M M /M P ) of the total number of moles of M in all oxides contained in the modified sulfide solid electrolyte (M M ) to the total number of moles of phosphorus atoms in the sulfide solid electrolyte (M P ) is greater than 0.010.
The content ratio of an oxide, described below, and a sulfide solid electrolyte, described below, contained in the modified sulfide solid electrolyte can be roughly calculated from the above-mentioned M M /M P. M M and M P may be obtained from the oxide and sulfide solid electrolyte used in producing the modified sulfide solid electrolyte, or may be calculated by measuring the total content of M and the content of phosphorus atoms contained in the modified sulfide solid electrolyte by ICP atomic emission spectrometry or the like.
If the M M /M P is 0.010 or less, the effect of containing an oxide is not fully exhibited, and it is not possible to obtain a modified sulfide solid electrolyte in which the generation of hydrogen sulfide is suppressed while suppressing an increase in the median diameter (D 50 ). The M M /M P is preferably 0.02 or more, more preferably 0.04 or more, and even more preferably 0.4 or more.
The upper limit is not particularly limited, and can be appropriately adjusted in order to maintain the ionic conductivity of the modified sulfide solid electrolyte.
 本実施形態の改質硫化物固体電解質は、メジアン径(D50)が、150μm未満であると、電極活物質と硫化物固体電解質との接触界面を形成しやすくなり、イオン伝導と電子伝導のパスが良好になり、この改質硫化物固体電解質を用いることで優れた電池性能を持つリチウムイオン電池が得られるため好ましい。前記メジアン径(D50)は、100μm以下がより好ましく、80μm以下が更に好ましい。下限値は特に限定されないが10μm以上であることが好ましい。 In the modified sulfide solid electrolyte of this embodiment, if the median diameter ( D50 ) is less than 150 μm, it is easy to form a contact interface between the electrode active material and the sulfide solid electrolyte, and the paths of ion conduction and electron conduction are improved, and by using this modified sulfide solid electrolyte, a lithium ion battery with excellent battery performance can be obtained, which is preferable. The median diameter ( D50 ) is more preferably 100 μm or less, and even more preferably 80 μm or less. The lower limit is not particularly limited, but is preferably 10 μm or more.
<硫化物固体電解質>
 本実施形態で用いられる硫化物固体電解質は、アルジロダイト型結晶構造を有することを要する。アルジロダイト型結晶構造を有することで硫化物固体電解質は高いイオン伝導度を示すため、改質硫化物固体電解質も高いイオン伝導度を示すこととなる。本実施形態の改質硫化物固体電解質は、その製造に使用される硫化物固体電解質の組成及び性状に準じた特性を有している。
 本実施形態で用いられる硫化物固体電解質がアルジロダイト型結晶構造を有するため、このアルジロダイト型結晶構造を残したまま製造される本実施形態の改質硫化物固体電解質も、同様にアルジロダイト型結晶構造を有することとなる。
 本実施形態で用いられる硫化物固体電解質は、アルジロダイト型結晶構造を有する結晶性固体電解質である。
 本開示において、「結晶性固体電解質」とは、X線回折測定においてX線回折パターンに、固体電解質由来のピークが観測される固体電解質であって、これらにおいての固体電解質の原料由来のピークの有無は問わない材料である。すなわち、結晶性固体電解質は、固体電解質に由来する結晶構造を含み、その一部が該固体電解質に由来する結晶構造であっても、その全部が該固体電解質に由来する結晶構造であってもよい、ものである。そして、結晶性固体電解質は、前記のようなX線回折パターンを有していれば、その一部に非晶質固体電解質が含まれていてもよいものである。
 硫化物固体電解質中のリチウム原子、リン原子及び硫黄原子の含有量は、例えば誘導結合プラズマ(ICP)発光分光分析装置による測定から決定できる。
<Sulfide solid electrolyte>
The sulfide solid electrolyte used in this embodiment is required to have an argyrodite-type crystal structure. Since the sulfide solid electrolyte has a high ionic conductivity due to the argyrodite-type crystal structure, the modified sulfide solid electrolyte also has a high ionic conductivity. The modified sulfide solid electrolyte of the present embodiment has properties equivalent to those of the sulfide solid electrolyte used in its production in terms of composition and properties.
Since the sulfide solid electrolyte used in this embodiment has an argyrodite-type crystal structure, the modified sulfide solid electrolyte of this embodiment, which is manufactured while retaining this argyrodite-type crystal structure, also has an argyrodite-type crystal structure. It will be held.
The sulfide solid electrolyte used in this embodiment is a crystalline solid electrolyte having an argyrodite-type crystal structure.
In the present disclosure, the term "crystalline solid electrolyte" refers to a solid electrolyte in which a peak derived from the solid electrolyte is observed in an X-ray diffraction pattern in an X-ray diffraction measurement, and the peak derived from the raw material of the solid electrolyte is In other words, a crystalline solid electrolyte includes a crystal structure derived from a solid electrolyte, and even if a part of the crystal structure is derived from the solid electrolyte, the whole of the crystal structure is derived from the solid electrolyte. The crystalline solid electrolyte may have a crystal structure derived from the amorphous solid electrolyte, if the crystalline solid electrolyte has the X-ray diffraction pattern as described above. It is a good thing.
The contents of lithium atoms, phosphorus atoms, and sulfur atoms in the sulfide solid electrolyte can be determined, for example, by measurement using an inductively coupled plasma (ICP) emission spectrometer.
(結晶性固体電解質)
 本実施形態で用いられる硫化物固体電解質、また当該硫化物固体電解質を含む改質硫化物固体電解質は、アルジロダイト型結晶構造を有するものである。
 アルジロダイト型結晶構造の組成式としては、組成式Li7-x-2yPS6-x-yCl(0.8≦x≦1.7、0<y≦-0.25x+0.5)が挙げられる。この組成式で示されるアルジロダイト型結晶構造は、好ましくは立方晶で、CuKα線を用いたX線回折測定において、主に2θ=15.5°、18.0°、25.0°、29.7°、31.4°、45.3°、47.0°、及び52.0°の位置に現れるピークを有する。
(crystalline solid electrolyte)
The sulfide solid electrolyte used in this embodiment, and the modified sulfide solid electrolyte containing the sulfide solid electrolyte, have an argyrodite-type crystal structure.
The formula of the argyrodite crystal structure is Li 7-x-2y PS 6-x-y Cl x (0.8≦x≦1.7, 0<y≦−0.25x+0.5). The argyrodite-type crystal structure represented by this composition formula is preferably a cubic crystal, and in X-ray diffraction measurement using CuKα radiation, the crystal structure has mainly 2θ=15.5°, 18.0°, 25.0°, It has peaks appearing at positions of 29.7°, 31.4°, 45.3°, 47.0°, and 52.0°.
 また、アルジロダイト型結晶構造の組成式としては、組成式Li7-xPS6-xHa(HaはCl及び/又はBr、xが好ましくは0.2~1.8)も挙げられる。この組成式で示されるアルジロダイト型結晶構造は、好ましくは立方晶で、CuKα線を用いたX線回折測定において、主に2θ=15.5°、18.0°、25.0°、29.7°、31.4°、45.3°、47.0°、及び52.0°の位置に現れるピークを有する。
 なお、これらのピーク位置については、±0.5°の範囲内で前後していてもよい。
Another example of the composition formula of the argyrodite-type crystal structure is Li7 - xPS6 -xHax ( Ha is Cl and/or Br, and x is preferably 0.2 to 1.8). The argyrodite-type crystal structure represented by this composition formula is preferably a cubic crystal, and has peaks that appear mainly at 2θ=15.5°, 18.0°, 25.0°, 29.7°, 31.4°, 45.3°, 47.0°, and 52.0° in X-ray diffraction measurement using CuKα radiation.
The positions of these peaks may vary within a range of ±0.5°.
 ここで、本実施形態で用いられる硫化物固体電解質、また当該硫化物固体電解質を含む改質硫化物固体電解質は、好ましくはリチウム原子、リン原子、硫黄原子及びハロゲン原子を含むものであり、ハロゲン原子として塩素原子以外の原子を用いる場合は「Li7-x-2yPS6-x-yCl(0.8≦x≦1.7、0<y≦-0.25x+0.5)」の組成式では示せない場合がある。しかし、上記「アルジロダイト型結晶構造」が有する回折ピークとして記載した回折ピークと同じ回折ピークを有する場合、本実施形態で用いられる硫化物固体電解質、また当該硫化物固体電解質を含む改質硫化物固体電解質は、好ましくはリチウム原子、リン原子、硫黄原子及びハロゲン原子により形成されたアルジロダイト型結晶構造を有するものであるといえる。 Here, the sulfide solid electrolyte used in this embodiment, and the modified sulfide solid electrolyte containing this sulfide solid electrolyte, preferably contain lithium atoms, phosphorus atoms, sulfur atoms, and halogen atoms, and when atoms other than chlorine atoms are used as halogen atoms, it may not be expressed by the composition formula of "Li 7-x-2y PS 6-x-y Cl x (0.8≦x≦1.7, 0<y≦-0.25x+0.5)". However, when it has the same diffraction peak as the diffraction peak described as the diffraction peak of the above "Argyrodite-type crystal structure", the sulfide solid electrolyte used in this embodiment, and the modified sulfide solid electrolyte containing this sulfide solid electrolyte, preferably have an Argyrodite-type crystal structure formed by lithium atoms, phosphorus atoms, sulfur atoms, and halogen atoms.
 本実施形態で用いられる硫化物固体電解質、また当該硫化物固体電解質を含む改質硫化物固体電解質としては、リチウム原子、硫黄原子、リン原子及びハロゲン原子を含んでいることが好ましく、代表的なものとしては、例えば、LiS-P、LiS-P-LiI、LiS-P-LiCl、LiS-P-LiBr、LiS-P-LiI、LiS-P-LiCl-LiBr、LiS-P-LiI-LiBr、LiS-P-LiCl-LiBr-LiI等の、硫化リチウムと硫化リンとハロゲン化リチウムとから構成される硫化物固体電解質が好ましく挙げられる。より高いイオン伝導度を得る観点から、LiS-P-LiI、LiS-P-LiCl、LiS-P-LiBr、LiS-P-LiI-LiBr等の、硫化リチウムと硫化リンとハロゲン化リチウムとから構成される硫化物固体電解質が好ましい。
 ハロゲン原子として、塩素原子及び臭素原子から選ばれる少なくとも1種を含むことが、アルジロダイト型結晶構造を安定化させるため好ましい。
 ハロゲン原子としては、塩素原子を含むことが好ましく、臭素原子を含むことが好ましく、塩素原子及び臭素原子を共に含むことがより好ましい。
The sulfide solid electrolyte used in this embodiment and the modified sulfide solid electrolyte containing the sulfide solid electrolyte preferably contain lithium atoms, sulfur atoms, phosphorus atoms and halogen atoms. Representative examples include Li 2 S-P 2 S 5 , Li 2 S-P 2 S 5 -LiI, Li 2 S-P 2 S 5 -LiCl, Li 2 S-P 2 S 5 -LiBr, Li 2 S-P 2 S 5 -LiI, Li 2 S-P 2 S 5 -LiCl-LiBr, Li 2 S- P 2 S 5 -LiI -LiBr, Li 2 S- P 2 S 5 Preferred examples of the sulfide solid electrolyte include a sulfide solid electrolyte composed of lithium sulfide, phosphorus sulfide, and a lithium halide, such as Li2S - P2S5 -LiI, Li2S- P2S5 -LiCl, Li2S - P2S5 - LiBr, and Li2S- P2S5 -LiI-LiBr. From the viewpoint of obtaining higher ionic conductivity, a sulfide solid electrolyte composed of lithium sulfide, phosphorus sulfide, and a lithium halide, such as Li2S -P2S5-LiI, Li2S - P2S5 -LiCl, Li2S- P2S5 -LiBr, and Li2S- P2S5 -LiI-LiBr, is preferred.
It is preferable that the halogen atom contains at least one type selected from a chlorine atom and a bromine atom in order to stabilize the argyrodite type crystal structure.
The halogen atom preferably contains a chlorine atom, more preferably contains a bromine atom, and more preferably contains both a chlorine atom and a bromine atom.
 本実施形態で用いられる硫化物固体電解質、また当該硫化物固体電解質を含む改質硫化物固体電解質において、リチウム原子、リン原子、硫黄原子及びハロゲン原子の組成比(モル比)は、好ましくは1.0~1.8:0.1~0.8:1.0~2.0:0.01~0.6、より好ましくは1.1~1.7:0.2~0.6:1.2~1.8:0.05~0.5、さらに好ましくは1.2~1.6:0.25~0.5:1.3~1.7:0.08~0.4である。
 また、ハロゲン原子として、臭素及び塩素を併用する場合、リチウム原子、リン原子、硫黄原子、臭素、及び塩素の組成比(モル比)は、好ましくは1.0~1.8:0.1~0.8:1.0~2.0:0.01~0.3:0.01~0.3、より好ましくは1.1~1.7:0.2~0.6:1.2~1.8:0.02~0.25:0.02~0.25、さらに好ましくは1.2~1.6:0.25~0.5:1.3~1.7:0.03~0.2:0.03~0.2、よりさらに好ましくは1.35~1.45:0.3~0.45:1.4~1.7:0.04~0.18:0.04~0.18である。
In the sulfide solid electrolyte used in this embodiment, and in the modified sulfide solid electrolyte containing the sulfide solid electrolyte, the composition ratio (molar ratio) of lithium atoms, phosphorus atoms, sulfur atoms, and halogen atoms is preferably 1.0 to 1.8: 0.1 to 0.8: 1.0 to 2.0: 0.01 to 0.6, more preferably 1.1 to 1.7: 0.2 to 0.6: 1.2 to 1.8: 0.05 to 0.5, and even more preferably 1.2 to 1.6: 0.25 to 0.5: 1.3 to 1.7: 0.08 to 0.4.
In addition, when bromine and chlorine are used in combination as halogen atoms, the composition ratio (molar ratio) of lithium atoms, phosphorus atoms, sulfur atoms, bromine, and chlorine is preferably 1.0 to 1.8: 0.1 to 0.8: 1.0 to 2.0: 0.01 to 0.3: 0.01 to 0.3, more preferably 1.1 to 1.7: 0.2 to 0.6: 1.2 to 1.8: 0.02 to 0.25: 0.02 to 0.25, even more preferably 1.2 to 1.6: 0.25 to 0.5: 1.3 to 1.7: 0.03 to 0.2: 0.03 to 0.2, and still more preferably 1.35 to 1.45: 0.3 to 0.45: 1.4 to 1.7: 0.04 to 0.18: 0.04 to 0.18.
 前記(iii)は、X線回折スペクトル(XRDパターン)による、29.7±0.5deg.の範囲内にピークが1本しか観測されないか、2本以上観測される場合には、最も高いピークの強度をIとし2番目に高いピークの強度をIとした時、I/Iが1.0未満であることを規定する。29.7±0.5deg.のピークは、アルジロダイト型結晶構造を有することを特徴付けるものであり、この範囲にピークが1本しか観測されない場合には、観測されたピークがアルジロダイト型結晶構造に由来するピークであり、2本以上観測される場合には、最も高いピークがアルジロダイト型結晶構造に由来するピーク(強度がIであるピーク)となる。29.7±0.5deg.の範囲内にアルジロダイト型結晶構造に由来するピーク以外のピークがあるということは、アルジロダイト型結晶構造に類似する結晶構造等が改質硫化物固体電解質に含まれることを意味すると考えられ、アルジロダイト型結晶構造に酸化物が取り込まれ結晶型が変化しているか、結晶性物質として異なるものに変化している可能性がある。このため、29.7±0.5deg.の範囲内にアルジロダイト型結晶構造に由来するピーク以外のピークが観測されないか、されたとしても前記I/Iが1.0未満であることで、硫化物固体電解質のイオン伝導度を保ちつつ、硫化水素の発生が抑制した改質硫化物固体電解質を得ることができるため好ましい。 The above (iii) specifies that when only one peak is observed within the range of 29.7±0.5 deg. in an X-ray diffraction spectrum (XRD pattern), or when two or more peaks are observed, I2 / I1 is less than 1.0, where I1 is the intensity of the highest peak and I2 is the intensity of the second highest peak. The peak at 29.7±0.5 deg. characterizes the presence of an argyrodite-type crystal structure, and when only one peak is observed within this range, the observed peak is a peak derived from the argyrodite-type crystal structure, and when two or more peaks are observed, the highest peak is a peak derived from the argyrodite-type crystal structure (a peak with an intensity of I1 ). The presence of peaks other than those derived from the Argyrodite-type crystal structure within the range of 29.7±0.5 deg. is considered to mean that a crystal structure similar to the Argyrodite-type crystal structure is contained in the modified sulfide solid electrolyte, and it is possible that an oxide has been incorporated into the Argyrodite-type crystal structure to change the crystal type, or that the crystalline substance has changed to something different. For this reason, it is preferable that no peaks other than those derived from the Argyrodite-type crystal structure are observed within the range of 29.7±0.5 deg., or even if they are observed, that the I2 / I1 is less than 1.0, since this makes it possible to obtain a modified sulfide solid electrolyte in which hydrogen sulfide generation is suppressed while maintaining the ionic conductivity of the sulfide solid electrolyte.
(硫化物固体電解質の製造方法)
 本実施形態で用いられる硫化物固体電解質は、リチウム原子、硫黄原子、リン原子及びハロゲン原子を含むアルジロダイト型結晶構造を有する硫化物固体電解質であれば、その製造方法は特に制限されるものではない。
 例えば、後記する原料含有物を必要に応じ溶媒とともに混合して、更に必要に応じて乾燥、加熱及び/又は粉砕して製造すればよい。
(Method for producing sulfide solid electrolyte)
The sulfide solid electrolyte used in the present embodiment is not particularly limited in its manufacturing method as long as it is a sulfide solid electrolyte having an argyrodite-type crystal structure containing lithium atoms, sulfur atoms, phosphorus atoms, and halogen atoms.
For example, the raw material components described below may be mixed, if necessary, with a solvent, and then, if necessary, dried, heated and/or pulverized to produce the toner.
(原料含有物)
 原料含有物に含まれる原料として、例えばリチウム原子、硫黄原子及びリン原子の少なくとも一種を含む化合物を用いることができ、必要に応じてハロゲン原子を含んでいてもよい。より具体的には、硫化リチウム;三硫化二リン(P)、五硫化二リン(P)等の硫化リン;硫化リチウム及び硫化リンから得られ、分子構造としてPS構造を有する非晶性LiPS又は結晶性LiPS等の固体電解質が挙げられる。ハロゲン原子を含む化合物としては、フッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム等のハロゲン化リチウム;各種フッ化リン(PF、PF)、各種塩化リン(PCl、PCl、PCl)、各種臭化リン(PBr、PBr)、各種ヨウ化リン(PI、P)等のハロゲン化リン;フッ化チオホスホリル(PSF)、塩化チオホスホリル(PSCl)、臭化チオホスホリル(PSBr)、ヨウ化チオホスホリル(PSI)、二塩化フッ化チオホスホリル(PSClF)、二臭化フッ化チオホスホリル(PSBrF)等のハロゲン化チオホスホリル;などの前記四種の原子から選ばれる少なくとも二種の原子からなる原料、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)等のハロゲン単体、好ましくは塩素(Cl)、臭素(Br)、ヨウ素(I)が挙げられ、更に好ましくは臭素(Br)、ヨウ素(I)が挙げられる。
(Raw material contents)
As the raw material contained in the raw material content, for example, a compound containing at least one of lithium atom, sulfur atom, and phosphorus atom can be used, and may contain halogen atom as necessary. More specifically, lithium sulfide; phosphorus sulfide such as diphosphorus trisulfide (P 2 S 3 ) and diphosphorus pentasulfide (P 2 S 5 ); and solid electrolytes such as amorphous Li 3 PS 4 or crystalline Li 3 PS 4 obtained from lithium sulfide and phosphorus sulfide and having a PS 4 structure as a molecular structure can be mentioned. Examples of compounds containing halogen atoms include: lithium halides such as lithium fluoride, lithium chloride, lithium bromide, and lithium iodide; phosphorus halides such as various phosphorus fluorides ( PF3 , PF5 ), various phosphorus chlorides ( PCl3 , PCl5 , P2Cl4 ), various phosphorus bromides ( PBr3 , PBr5 ), and various phosphorus iodides ( PI3 , P2I4 ); thiophosphoryl halides such as thiophosphoryl fluoride ( PSF3 ), thiophosphoryl chloride ( PSCl3 ), thiophosphoryl bromide ( PSBr3 ), thiophosphoryl iodide ( PSI3 ), thiophosphoryl dichloride fluoride ( PSCl2F ), and thiophosphoryl dibromide fluoride ( PSBr2F ); and raw materials consisting of at least two atoms selected from the above four types of atoms, such as fluorine ( F2 ), chlorine ( Cl2 ), bromine ( Br2F ), and the like. and iodine (I 2 ). Preferred are chlorine (Cl 2 ), bromine (Br 2 ), and iodine (I 2 ), and more preferred are bromine (Br 2 ) and iodine (I 2 ).
 前記原料含有物として、硫化リチウム及び硫化リンが好ましく、ハロゲン原子を含む原料としては、ハロゲン化リチウム、ハロゲン化リン及びハロゲン分子から選ばれる少なくとも1種を含有することが更に好ましい。
 硫化リチウム、硫化リン、ハロゲン化リチウム、ハロゲン化リン及びハロゲン分子から選ばれる少なくとも1種を用いることによって、高いイオン伝導度を有する硫化物固体電解質が得られるため好ましく、硫化物固定電解質のハロゲン原子の導入にハロゲン化リチウムを後記する錯化剤とともに用いると、後記する溶媒等を除去することにおいてハロゲン原子の分離が生じず高いイオン伝導度を有する硫化物固体電解質が得られるため好ましい。
 ハロゲン原子としては、塩素原子及び臭素原子から選ばれる少なくとも1種が好ましく、塩素原子を含むことが好ましく、臭素原子を含むことが好ましく、塩素原子及び臭素原子を共に含むことがより好ましい。
The raw material contents are preferably lithium sulfide and phosphorus sulfide, and the raw material containing halogen atoms more preferably contains at least one selected from lithium halide, phosphorus halide, and halogen molecules.
The use of at least one selected from lithium sulfide, phosphorus sulfide, lithium halide, phosphorus halide, and halogen molecules is preferred because it allows for the production of a sulfide solid electrolyte having high ionic conductivity. The use of lithium halide together with a complexing agent described below for the introduction of halogen atoms into the sulfide solid electrolyte is preferred because it allows for the production of a sulfide solid electrolyte having high ionic conductivity without separation of halogen atoms during removal of the solvent, etc., described below.
The halogen atom is preferably at least one selected from a chlorine atom and a bromine atom, more preferably contains a chlorine atom, more preferably contains a bromine atom, and more preferably contains both a chlorine atom and a bromine atom.
 より容易に高いイオン伝導度を有する硫化物固体電解質を得る観点から、原料としては、前記の中でも、硫化リチウム、三硫化二リン(P)、五硫化二リン(P)等の硫化リンが好ましく、更に、ハロゲン原子を含む原料を用いる場合には、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)等のハロゲン単体(ハロゲン分子)、フッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム等のハロゲン化リチウムが好ましい。原料の組み合わせとしては、例えば、硫化リチウム、五硫化二リン及びハロゲン化リチウムの組み合わせ、硫化リチウム、五硫化二リン及びハロゲン単体の組み合わせが好ましく挙げられ、ハロゲン化リチウムとしては臭化リチウム、塩化リチウムが好ましく、ハロゲン単体としては臭素及び塩素が好ましい。 From the viewpoint of more easily obtaining a sulfide solid electrolyte having high ionic conductivity, among the above, phosphorus sulfides such as lithium sulfide, diphosphorus trisulfide (P 2 S 3 ), diphosphorus pentasulfide (P 2 S 5 ) are preferred as the raw material, and further, when a raw material containing a halogen atom is used, a halogen element (halogen molecule) such as fluorine (F 2 ), chlorine (Cl 2 ), bromine (Br 2 ), iodine (I 2 ), or a lithium halide such as lithium fluoride, lithium chloride, lithium bromide, or lithium iodide is preferred. Preferred combinations of raw materials include, for example, a combination of lithium sulfide, diphosphorus pentasulfide, and a lithium halide, and a combination of lithium sulfide, diphosphorus pentasulfide, and a halogen element, and lithium bromide and lithium chloride are preferred as the lithium halide, and bromine and chlorine are preferred as the halogen element.
 本実施形態で用いられる硫化リチウムは、粒子であることが好ましい。
 硫化リチウム粒子のメジアン径(D50)は、10μm以上2000μm以下であることが好ましく、30μm以上1500μm以下であることがより好ましく、50μm以上1000μm以下であることがさらに好ましい。本開示において、メジアン径(D50)は、粒子径分布積算曲線を描いた時に粒子径の最も小さい粒子から順次積算して全体の50%に達するところの粒子径であり、体積分布は、例えば、レーザー回折/散乱式粒子径分布測定装置を用いて測定することができるメジアン径のことである。また、前記の原料として例示したもののうち固体の原料については、前記硫化リチウム粒子と同じ程度のメジアン径を有するものが好ましい。すなわち前記硫化リチウム粒子のメジアン径と同じ範囲内にあるものが好ましい。
The lithium sulfide used in this embodiment is preferably in the form of particles.
The median diameter (D 50 ) of the lithium sulfide particles is preferably 10 μm or more and 2000 μm or less, more preferably 30 μm or more and 1500 μm or less, and even more preferably 50 μm or more and 1000 μm or less. In the present disclosure, the median diameter (D 50 ) is the particle diameter at which the particle diameter reaches 50% of the whole when the particle diameter distribution cumulative curve is drawn by sequentially accumulating from the smallest particle diameter, and the volume distribution is, for example, the median diameter that can be measured using a laser diffraction/scattering type particle diameter distribution measuring device. In addition, among the examples of the raw materials, it is preferable that the solid raw materials have a median diameter of the same extent as the lithium sulfide particles. That is, it is preferable that the solid raw materials are within the same range as the median diameter of the lithium sulfide particles.
(混合すること)
 硫化物固体電解質の製造における混合することは、前記の原料含有物に機械的応力を加えて、混合すると同時に反応させてもよく、また、混合とともに粉砕してもよい。ここで、「機械的応力を加える」とは、機械的にせん断力や衝撃力等を加えることである。機械的応力を加える手段としては、例えば、遊星ボールミル、振動ミル、転動ミル、ビーズミル等の粉砕機や、一軸混錬機、多軸混錬機等の混練機を挙げることができる。
 混合することは、溶媒の存在下で実施してもよく(湿式混合)、また、溶媒を使用せずに実施してもよい(乾式混合)。
 乾式混合の場合、粉砕混合の条件としては、例えば、粉砕機として遊星ボールミルを使用した場合、回転速度を数十~数百回転/分とし、0.5時間~100時間処理すればよい。
 粉砕メディアであるボールは、例えば、ジルコニア製ボールを使用した場合、その直径は0.2~20mmが好ましい。
(Mixing)
The mixing in the production of the sulfide solid electrolyte may involve applying mechanical stress to the raw material contents to react while mixing, or may involve pulverization while mixing. Here, "applying mechanical stress" means mechanically applying shear force, impact force, etc. Examples of means for applying mechanical stress include pulverizers such as planetary ball mills, vibration mills, rolling mills, and bead mills, and kneaders such as single-shaft kneaders and multi-shaft kneaders.
The mixing may be carried out in the presence of a solvent (wet mixing) or without the use of a solvent (dry mixing).
In the case of dry mixing, the conditions for pulverizing and mixing are, for example, when a planetary ball mill is used as the pulverizer, a rotation speed of several tens to several hundreds of revolutions per minute and processing time of 0.5 to 100 hours.
When balls serving as grinding media are used, for example, zirconia balls, their diameter is preferably 0.2 to 20 mm.
 本実施形態では、β-LiPSの生成を抑制できる可能性があるため、湿式混合が好ましい。
 溶媒としては、有機溶媒を用いることができ、好ましくは非極性溶媒、極性溶媒又はこれらの混合溶媒が使用できる。非極性溶媒、又は、非極性溶媒を主成分とする溶媒、例えば、有機溶媒全体の95質量%以上が非極性溶媒であることが好ましい。
 非極性溶媒としては、炭化水素系溶媒が好ましい。炭化水素系溶媒としては、飽和炭化水素、不飽和炭化水素又は芳香族炭化水素が使用できる。
 飽和炭化水素としては、ヘキサン、ペンタン、2-エチルヘキサン、ヘプタン、デカン、トリデカン、シクロヘキサン等が挙げられる。
In this embodiment, wet mixing is preferred since it may be possible to suppress the production of β-Li 3 PS 4 .
As the solvent, an organic solvent can be used, and preferably a non-polar solvent, a polar solvent, or a mixture thereof can be used. A non-polar solvent or a solvent mainly composed of a non-polar solvent, for example, 95% by mass or more of the total organic solvent is preferably a non-polar solvent.
The non-polar solvent is preferably a hydrocarbon solvent, and the hydrocarbon solvent may be a saturated hydrocarbon, an unsaturated hydrocarbon, or an aromatic hydrocarbon.
Examples of saturated hydrocarbons include hexane, pentane, 2-ethylhexane, heptane, decane, tridecane, and cyclohexane.
 不飽和炭化水素としては、ヘキセン、ヘプテン、シクロヘキセン等が挙げられる。
 芳香族炭化水素としては、トルエン、キシレン、エチルベンゼン、デカリン、1,2,3,4-テトラヒドロナフタレン等が挙げられる。
 これらのうち、トルエン又はキシレンが好ましい。
Examples of unsaturated hydrocarbons include hexene, heptene, and cyclohexene.
Examples of aromatic hydrocarbons include toluene, xylene, ethylbenzene, decalin, and 1,2,3,4-tetrahydronaphthalene.
Of these, toluene or xylene is preferred.
 炭化水素系溶媒は、あらかじめ脱水されていることが好ましい。具体的には、水分含有量として100質量ppm以下が好ましく、特に30質量ppm以下であることが好ましい。
 本実施形態では、有機溶媒がニトリル化合物及びエーテル化合物の少なくとも一方を含むことが好ましい。
 エーテル化合物としては、テトラヒドロフラン、ジエチルエーテル等が挙げられる。
 ニトリル化合物としては、R(CN)で表されるニトリル化合物が好ましい。式中、Rは、炭素数が1以上10以下のアルキル基、又は環形成炭素数が6以上18以下の芳香環を有する基である。nは、1又は2である。
The hydrocarbon solvent is preferably dehydrated in advance. Specifically, the water content is preferably 100 ppm by mass or less, and more preferably 30 ppm by mass or less.
In this embodiment, the organic solvent preferably contains at least one of a nitrile compound and an ether compound.
Examples of the ether compound include tetrahydrofuran and diethyl ether.
The nitrile compound is preferably a nitrile compound represented by R(CN) n , where R is an alkyl group having 1 to 10 carbon atoms or a group having an aromatic ring having 6 to 18 ring carbon atoms, and n is 1 or 2.
 例えば、アセトニトリル、プロピオニトリル、3-クロロプロピオニトリル、ベンゾニトリル、4-フルオロベンゾニトリル、ターシャリーブチロニトリル、イソブチロニトリル、シクロヘキシルニトリル、カプロニトリル、イソカプロニトリル、マロノニトリル、フマルニトリルが挙げられる。好ましくはプロピオニトリル、イソカプロニトリル、イソブチロニトリルである。
 例えば、ニトリル化合物はトルエンと共沸するため、乾燥時にトルエンとともに処理物から除去しやすいため好ましい。
 有機溶媒に含まれるニトリル化合物及びエーテル化合物の量は、0.01~5質量%であることが好ましく、さらに、0.1~3質量%であることが好ましく、特に0.3~1質量%であることが好ましい。
Examples of the nitrile include acetonitrile, propionitrile, 3-chloropropionitrile, benzonitrile, 4-fluorobenzonitrile, tertiary butyronitrile, isobutyronitrile, cyclohexylnitrile, capronitrile, isocapronitrile, malononitrile, and fumaronitrile. Preferred are propionitrile, isocapronitrile, and isobutyronitrile.
For example, nitrile compounds are preferred because they form an azeotrope with toluene and are therefore easily removed from the treated product together with toluene during drying.
The amount of the nitrile compound and the ether compound contained in the organic solvent is preferably from 0.01 to 5% by mass, more preferably from 0.1 to 3% by mass, and particularly preferably from 0.3 to 1% by mass.
 湿式混合ではビーズミルを使用することが好ましい。ビーズミルで混合粉砕することにより、各原料の粉砕粒径をより小さくできるため、各元素の拡散経路が縮まり、各元素がアルジロダイト型結晶構造を生成するために使用されやすくなり、その結果、LiPS結晶構造等の異相の生成が抑制されると考えられる。
 ビーズミルを使用した湿式混合後の処理物から、溶媒を除去して得られる原料の混合物は、主に微粒結晶により形成されている。原料を混合粉砕することにより、原料の微粒化が進行し、各原料の微粒結晶からなる混合物が得られる。
In the wet mixing, it is preferable to use a bead mill. By mixing and grinding with a bead mill, the ground particle size of each raw material can be made smaller, which shortens the diffusion path of each element and makes each element more likely to be used to generate an argyrodite -type crystal structure, which is thought to suppress the generation of a different phase such as a Li3PS4 crystal structure.
The mixture of raw materials obtained by removing the solvent from the processed material after wet mixing using a bead mill is mainly composed of fine crystals. By mixing and grinding the raw materials, the raw materials are atomized, and a mixture of fine crystals of each raw material is obtained.
(加熱すること)
 本実施形態の改質硫化物固体電解質に用いられる硫化物固体電解質の製造方法は、硫化物固体電解質の製造における混合することの後に、加熱することを更に含むことも好ましい。錯体を加熱して脱錯すること、また結晶性又は非晶質硫化物固体電解質を加熱することで、結晶性固体電解質を得ること、又はより結晶化が進んだ結晶性硫化物固体電解質を得ることを含むことが好ましい。
 錯体を加熱することを含むことで、錯体中の錯化剤及び溶媒等が除去され、リチウム原子、硫黄原子、リン原子及びハロゲン原子を含む非晶質硫化物固体電解質及び/又は結晶性硫化物固体電解質が得られる。
(Heating)
The method for producing the sulfide solid electrolyte used in the modified sulfide solid electrolyte of the present embodiment preferably further includes heating after the mixing step in the production of the sulfide solid electrolyte. It is preferable to include heating the complex to decomplex it, and heating the crystalline or amorphous sulfide solid electrolyte to obtain a crystalline solid electrolyte or a more crystallized crystalline sulfide solid electrolyte.
By including heating the complex, the complexing agent, the solvent, and the like in the complex are removed, and an amorphous sulfide solid electrolyte and/or a crystalline sulfide solid electrolyte containing lithium atoms, sulfur atoms, phosphorus atoms, and halogen atoms is obtained.
 加熱することは、仮焼及び焼成のように段階的に行ってもよい。
 原料含有物の混合物は、溶媒を除去して原料の混合物を得て、仮焼することで、粉体状の仮焼物が得られる。仮焼における加熱温度及び時間は、仮焼物の組成等を考慮して、適宜調整することができる。例えば、加熱温度は150℃~300℃が好ましく、さらに160℃~280℃が好ましく、特に170℃~250℃が好ましい。加熱時間は0.1~8時間が好ましく、さらに、0.2~6時間が好ましく、特に0.25~4時間が好ましい。
 仮焼で使用する加熱装置は特に限定はない。例えば、FMミキサ、ナウタミキサ等の剪断式の乾燥機、ハースキルン等の静置式の炉、ロータリーキルン等の回転式の炉が挙げられる。なお、仮焼前に乾燥を行ってもよく、乾燥と仮焼を同時に行ってもよい。仮焼の雰囲気は特に限定しないが、窒素、アルゴン等の不活性ガス雰囲気下が好ましい。
The heating may be carried out in stages, such as calcination and firing.
The mixture of raw material contents is subjected to removal of the solvent to obtain a raw material mixture, which is then calcined to obtain a powdered calcined product. The heating temperature and time in the calcination can be appropriately adjusted in consideration of the composition of the calcined product, etc. For example, the heating temperature is preferably 150°C to 300°C, more preferably 160°C to 280°C, and particularly preferably 170°C to 250°C. The heating time is preferably 0.1 to 8 hours, more preferably 0.2 to 6 hours, and particularly preferably 0.25 to 4 hours.
The heating device used in the calcination is not particularly limited. For example, a shear type dryer such as an FM mixer or a Nauta mixer, a stationary furnace such as a hearth kiln, or a rotary furnace such as a rotary kiln may be used. Drying may be performed before calcination, or drying and calcination may be performed simultaneously. The atmosphere for calcination is not particularly limited, but an inert gas atmosphere such as nitrogen or argon is preferable.
 原料含有物の混合物を溶媒中で仮焼する場合、仮焼に用いる溶媒としては、上述した非極性溶媒、極性溶媒又はこれらの混合溶媒が使用できる。混合物が溶媒に分散されたスラリーに対して加熱を行う。仮焼に用いる溶媒としては、原料の混合等で用いた溶媒と、同じものを用いてもよく、また、異なるものを用いてもよい。同じものを用いる場合は、溶媒を除去することが不要であるため好ましい。
 仮焼における加熱温度及び時間は、原料の組成等を考慮して、適宜調整することができる。例えば、加熱温度は150℃~300℃が好ましく、160℃~280℃がより好ましく、さらに170℃~270℃が好ましく、特に180℃~260℃が好ましい。上記の温度範囲とすることにより、PS構造が形成され、ハロゲンがアルジロダイト型結晶構造中に取り込まれやすくなる。微粒結晶の原料混合物を溶液中で仮焼することから、比較的低温でPS構造を含む結晶を形成することが可能となる。
When the mixture of raw material contents is calcined in a solvent, the above-mentioned non-polar solvent, polar solvent, or a mixture thereof can be used as the solvent used for calcination. The mixture is dispersed in the solvent to form a slurry, which is then heated. The solvent used for calcination may be the same as or different from the solvent used for mixing the raw materials. When the same solvent is used, it is preferable because it is not necessary to remove the solvent.
The heating temperature and time in the calcination can be appropriately adjusted taking into consideration the composition of the raw materials, etc. For example, the heating temperature is preferably 150°C to 300°C, more preferably 160°C to 280°C, further preferably 170°C to 270°C, and particularly preferably 180°C to 260°C. By setting the temperature within the above range, the PS4 structure is formed, and halogen is easily incorporated into the argyrodite-type crystal structure. Since the raw material mixture of fine crystals is calcined in a solution, it is possible to form crystals containing the PS4 structure at a relatively low temperature.
 加熱時間は10分~6時間が好ましく、さらに、10分~3時間が好ましく、特に30分~2時間が好ましい。
 仮焼で使用する加熱装置は特に限定はないが、加熱温度が使用する溶媒の沸点を超える場合は、オートクレーブを使用することが好ましい。
 仮焼に用いたスラリーから溶媒を除去して仮焼物を回収する。溶媒除去の方法は特に限定されないが、常圧下又は減圧下にて溶媒を留去することができる。また、より生産性を上げるために、ろ過を併用することも可能である。
The heating time is preferably from 10 minutes to 6 hours, more preferably from 10 minutes to 3 hours, and particularly preferably from 30 minutes to 2 hours.
There are no particular limitations on the heating device used in the calcination, but when the heating temperature exceeds the boiling point of the solvent used, it is preferable to use an autoclave.
The solvent is removed from the slurry used in the calcination to recover the calcined product. The method for removing the solvent is not particularly limited, but the solvent can be distilled off under normal pressure or reduced pressure. In order to further increase productivity, filtration can also be used in combination.
 混合することで得た混合物又は仮焼物を焼成することで、固体電解質が得られる。加熱温度及び時間は、混合物及び仮焼物の組成等を考慮して、適宜調整することができる。例えば、加熱温度は300℃~470℃が好ましく、300℃を超えて460℃以下がより好ましく、より320℃~450℃が好ましく、さらに350℃~440℃が好ましく、特に380℃~430℃が好ましい。
 加熱時間は1~360分が好ましく、さらに、5~120分が好ましく、特に10~60分が好ましい。
The mixture or the calcined product obtained by mixing is fired to obtain a solid electrolyte. The heating temperature and time can be appropriately adjusted in consideration of the composition of the mixture and the calcined product. For example, the heating temperature is preferably 300°C to 470°C, more preferably more than 300°C to 460°C or less, more preferably 320°C to 450°C, further preferably 350°C to 440°C, and particularly preferably 380°C to 430°C.
The heating time is preferably from 1 to 360 minutes, more preferably from 5 to 120 minutes, and particularly preferably from 10 to 60 minutes.
 焼成時の雰囲気は特に限定しないが、好ましくは硫化水素気流下ではなく、窒素、アルゴン等の不活性ガス雰囲気下である。加熱することには、静置式のハースキルン、回転式のロータリーキルン等の焼成炉を用いることができる。
 仮焼物を焼成する場合、加熱に用いる溶媒としては、前記の上述した非極性溶媒、極性溶媒又はこれらの混合溶媒が使用できる。仮焼物が溶媒に分散されたスラリーに対して加熱を行う。加熱に用いる溶媒としては、仮焼等で用いた溶媒と、同じものを用いてもよく、また、異なるものを用いてもよい。同じものを用いる場合は、加熱前に溶媒の置換や除去を行うことが不要であるため好ましい。また、仮焼と同様に、加熱温度が使用する溶媒の沸点を超える場合は、オートクレーブを使用することが好ましい。
 また、結晶性硫化物固体電解質を加熱することで、前記アルジロダイト型結晶構造の格子定数を好ましい範囲とすることも、イオン伝導度を高くできるため好ましい。
The atmosphere during firing is not particularly limited, but is preferably an inert gas atmosphere such as nitrogen, argon, etc., rather than a hydrogen sulfide gas flow. For heating, a firing furnace such as a stationary hearth kiln or a rotary kiln can be used.
When the calcined product is fired, the above-mentioned non-polar solvent, polar solvent, or a mixture thereof can be used as the solvent used for heating. Heating is performed on the slurry in which the calcined product is dispersed in the solvent. The solvent used for heating may be the same as or different from the solvent used in the calcination. When the same solvent is used, it is preferable because it is not necessary to replace or remove the solvent before heating. In addition, as with the calcination, it is preferable to use an autoclave when the heating temperature exceeds the boiling point of the solvent used.
In addition, it is also preferable to heat the crystalline sulfide solid electrolyte so that the lattice constant of the argyrodite-type crystal structure can be adjusted to a preferred range, since this can increase the ionic conductivity.
 ここで、錯体中の錯化剤が除去されることについては、X線回折パターン、ガスクロマトグラフィー分析等の結果から錯化剤が原料含有物等との共結晶を構成していることが明らかであることに加え、錯体を加熱することで錯化剤を除去して得られた硫化物固体電解質が、錯化剤を用いずに従来の方法により得られた硫化物固体電解質とX線回折パターンが同じであることにより裏づけされる。 The removal of the complexing agent from the complex is supported by the fact that it is clear from the results of X-ray diffraction patterns and gas chromatography analysis that the complexing agent forms a co-crystal with the raw material contents, etc., and that the sulfide solid electrolyte obtained by removing the complexing agent by heating the complex has the same X-ray diffraction pattern as the sulfide solid electrolyte obtained by the conventional method without using a complexing agent.
 前記硫化物固体電解質は、錯体を加熱することにより、該錯体中の錯化剤を除去して得られる場合には、硫化物固体電解質中の錯化剤は少ないほど好ましいものであるが、硫化物固体電解質の性能を害さない程度に錯化剤が含まれていてもよい。硫化物固体電解質中の錯化剤の含有量は、通常10質量%以下となっていればよく、好ましくは5質量%以下、より好ましくは3質量%以下、更に好ましくは1質量%以下である。含有量は少ないほど好ましいので、下限値は特に限定されない。 When the sulfide solid electrolyte is obtained by removing the complexing agent from the complex by heating the complex, the less complexing agent in the sulfide solid electrolyte, the better, but the complexing agent may be contained to an extent that does not impair the performance of the sulfide solid electrolyte. The content of the complexing agent in the sulfide solid electrolyte is usually 10 mass% or less, preferably 5 mass% or less, more preferably 3 mass% or less, and even more preferably 1 mass% or less. The lower limit is not particularly limited, since the lower the content, the better.
 加熱温度としては、得られる結晶性硫化物固体電解質の構造に応じてかわるため一概に規定することはできないが、通常、250℃以下が好ましく、220℃以下がより好ましく、200℃以下が更に好ましく、下限としては特に制限はないが、好ましくは90℃以上、より好ましくは100℃以上、更に好ましくは110℃以上である。 The heating temperature cannot be generally defined because it varies depending on the structure of the resulting crystalline sulfide solid electrolyte, but is usually preferably 250°C or less, more preferably 220°C or less, and even more preferably 200°C or less. There is no particular lower limit, but it is preferably 90°C or more, more preferably 100°C or more, and even more preferably 110°C or more.
 また、加熱は減圧下で行うことが好ましく、装置上の観点から0.1Pa以上であることが好ましく、1.0Pa以上であることがより好ましく、5.0Pa以上であることが更に好ましく、イオン伝導度が高い固体電解質を得る観点から100.0Pa以下であることが好ましく、50.0Pa以下であることがより好ましく、20.0Pa以下であることが更に好ましい。 The heating is preferably carried out under reduced pressure, preferably 0.1 Pa or more from the viewpoint of the apparatus, more preferably 1.0 Pa or more, and even more preferably 5.0 Pa or more, and from the viewpoint of obtaining a solid electrolyte with high ionic conductivity, preferably 100.0 Pa or less, more preferably 50.0 Pa or less, and even more preferably 20.0 Pa or less.
(粉砕すること)
 本実施形態の改質硫化物固体電解質の製造方法は、更に硫化物固体電解質を粉砕することを含んでいてもよい。粉砕は前記したとおりである。硫化物固体電解質を粉砕してメジアン径(D50)を小さくすることで、本実施形態の改質硫化物固体電解質のメジアン径(D50)も小さくできるため好ましい。
(Crushing)
The method for producing the modified sulfide solid electrolyte of the present embodiment may further include pulverizing the sulfide solid electrolyte. The pulverization is as described above. It is preferable to pulverize the sulfide solid electrolyte to reduce the median diameter (D 50 ), since this also reduces the median diameter (D 50 ) of the modified sulfide solid electrolyte of the present embodiment.
<酸化物>
 本願実施形態で用いる酸化物は、一般式M(式中、Mは、Mg、Al、Si、Ca、Ti、V、Fe、Zn、Ga、Sr、Y、Zr、Nb、Mo、Sn、Sb、Ba、Ta、W及びBiから選ばれる原子を表し、m及びnはそれぞれ独立して1~5の整数を表す。)で表される化合物を含むことを要し、本実施形態の改質硫化物固体電解質の製造方法で使用されるものである。
 式中、m及びnはMの価数によって適宜決まる数である。
<Oxide>
The oxide used in the embodiment of the present application is required to contain a compound represented by the general formula M m O n (wherein M represents an atom selected from Mg, Al, Si, Ca, Ti, V, Fe, Zn, Ga, Sr, Y, Zr, Nb, Mo, Sn, Sb, Ba, Ta, W and Bi, and m and n each independently represent an integer of 1 to 5), and is used in the method for producing a modified sulfide solid electrolyte of the present embodiment.
In the formula, m and n are numbers appropriately determined depending on the valence of M.
 前記一般式MにおけるMは一種の原子でもよいし、二種以上の原子である場合も含むが、入手容易性を考慮すると、一種の原子であることが好ましい。
 前記Mとしては、アルジロダイト型結晶構造に影響を与えず、硫化物固体電解質のイオン伝導度の低下を抑制するためには、Mg、Al、Si、Ca、V、Fe、Zn、Ga、Sr、Y、Zr、Nb、Mo、Sn、Sb、Ba、Ta、W及びBiが好ましく、入手が容易であり、硫化物固体電解質のイオン伝導度を保ちつつ、硫化水素の発生が抑制した改質硫化物固体電解質を得るためには、Mg、Al、Si、Ti、Fe、Zn、Y、Zr、Nb、Mo、Sn、Ta及びWがより好ましく、Al、Si、Ti、Zr、Nb及びMoが更に好ましく、Al及びSiがより更に好ましい。
In the general formula M m O n , M may be one type of atom or two or more types of atoms, but in consideration of availability, it is preferably one type of atom.
As the M, in order to suppress a decrease in the ionic conductivity of the sulfide solid electrolyte without affecting the argyrodite-type crystal structure, Mg, Al, Si, Ca, V, Fe, Zn, Ga, Sr, Y, Zr, Nb, Mo, Sn, Sb, Ba, Ta, W, and Bi are preferable. In order to obtain a modified sulfide solid electrolyte that is easy to obtain and suppresses the generation of hydrogen sulfide while maintaining the ionic conductivity of the sulfide solid electrolyte, Mg, Al, Si, Ti, Fe, Zn, Y, Zr, Nb, Mo, Sn, Ta, and W are more preferable, Al, Si, Ti, Zr, Nb, and Mo are even more preferable, and Al and Si are even more preferable.
 前記酸化物が、前記一般式MにおけるMがAlである酸化物(Al)を含むことで、硫化物固体電解質とともに300℃以上600℃以下で加熱することにより、硫化物固体電解質の1次粒子の表面にAlが吸着又は結合した改質硫化物固体電界質が得られるため好ましい。更に酸化物がAlであると硫化物固体電解質と反応することがなく、アルジロダイト型結晶構造が保たれるため、改質硫化物固体電解質としてもイオン伝導度の低下が抑えられ、硫化物固体電解質の1次粒子の表面にAlが吸着又は結合することで、メジアン径(D50)の増大を抑制しながら、硫化水素の発生が抑制した改質硫化物固体電解質を得ることができるため好ましい。 It is preferable that the oxide contains an oxide (Al 2 O 3 ) in which M in the general formula M m O n is Al, and by heating together with the sulfide solid electrolyte at 300° C. to 600° C., a modified sulfide solid electrolyte in which Al 2 O 3 is adsorbed or bonded to the surfaces of the primary particles of the sulfide solid electrolyte can be obtained. Furthermore, when the oxide is Al 2 O 3 , it does not react with the sulfide solid electrolyte and the argyrodite crystal structure is maintained, so that the decrease in ion conductivity is suppressed even as a modified sulfide solid electrolyte, and it is preferable that the adsorption or bonding of Al 2 O 3 to the surfaces of the primary particles of the sulfide solid electrolyte can suppress an increase in the median diameter (D 50 ) and a modified sulfide solid electrolyte in which hydrogen sulfide generation is suppressed can be obtained.
 前記酸化物が、前記一般式MにおけるMがTiである酸化物(TiO)を含むと、アルジロダイト型結晶構造が変化するため、イオン伝導度の低下がAlを含む場合と比較すると大きくなるものの、メジアン径(D50)の増大を抑制しながら、硫化水素の発生は大幅に抑制されるため好ましい。
 特に酸化物としてTiOを用いた場合には、改質硫化物固体電解質にXRDチャートにおいて、構造に由来する29.7±0.5deg.のピーク強度と比べて極めて弱いものの、35.4±0.5deg.に新たなピークが現れることが確認された。これはTiOを用いたことで、新たな結晶相が生じることが分かり、硫化物固体電解質のイオン伝導度を保ちつつ、硫化水素の発生が抑制した改質硫化物固体電解質を得ることができるため好ましい。しかし、イオン伝導度に着目した場合には、前記一般式MにおけるMがTiである酸化物を含まないことが好ましい。
When the oxide contains an oxide ( TiO4 ) in which M in the general formula MmOn is Ti, the argyrodite crystal structure changes, and the decrease in ionic conductivity becomes greater than when Al2O3 is contained. However, this is preferable because the generation of hydrogen sulfide is significantly suppressed while the increase in the median diameter ( D50 ) is suppressed.
In particular, when TiO4 is used as the oxide, it has been confirmed that a new peak appears at 35.4±0.5 deg. in the XRD chart of the modified sulfide solid electrolyte, although it is extremely weak compared to the peak intensity of 29.7±0.5 deg. due to the structure. This is preferable because it is found that a new crystal phase is generated by using TiO4 , and it is possible to obtain a modified sulfide solid electrolyte in which the generation of hydrogen sulfide is suppressed while maintaining the ionic conductivity of the sulfide solid electrolyte. However, when focusing on ionic conductivity, it is preferable not to include an oxide in which M in the general formula MmOn is Ti.
 前記酸化物は、1種のみとしてもよいが、2種以上を組み合わせてもよい。2種以上を組み合わせる場合には、前記一般式MにおけるMがSiである酸化物(SiO)を含むことが好ましい。SiOを用いることで、他の酸化物の使用量を減少させても硫化水素の発生を抑制することができ好ましい。SiOはイオン伝導度の低下を抑制し、硫化水素の発生を抑制することができ、例えばAl及びSiOを組み合わせて使用する場合には、Alの使用量を減少させることができるため、イオン伝導度の低下を抑制し、硫化水素の発生を抑制出来るため好ましい。 The oxide may be only one type, or two or more types may be combined. When two or more types are combined, it is preferable to include an oxide (SiO 2 ) in which M in the general formula M m O n is Si. By using SiO 2 , it is preferable to be able to suppress the generation of hydrogen sulfide even if the amount of other oxides used is reduced. SiO 2 can suppress the decrease in ion conductivity and suppress the generation of hydrogen sulfide. For example, when Al 2 O 3 and SiO 2 are used in combination, the amount of Al 2 O 3 used can be reduced, so it is preferable to suppress the decrease in ion conductivity and suppress the generation of hydrogen sulfide.
 前記酸化物は、前記一般式M以外の酸化物を含んでいてもよいが、硫化物固体電解質のイオン伝導度を保ちつつ、メジアン径(D50)の増大を抑制しながら、硫化水素の発生を抑制するためには、前記酸化物中の前記一般式Mの合計の含有量は、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることが更に好ましく、実質的に前記一般式Mのみであることがより更に好ましい。本開示において「実質的に」とは、意図して含有させていないということを意味する。 The oxide may contain an oxide other than the general formula MmOn , but in order to suppress the generation of hydrogen sulfide while maintaining the ionic conductivity of the sulfide solid electrolyte and suppressing an increase in the median diameter ( D50 ), the total content of the general formula MmOn in the oxide is preferably 80 mass% or more, more preferably 90 mass% or more, even more preferably 95 mass% or more, and even more preferably substantially only the general formula MmOn . In the present disclosure, "substantially" means that it is not intentionally contained.
 前記改質硫化物固体電解質は、硫化物固体電解質の1次粒子の表面に前記酸化物が付着又は結合した状態であることが好ましいが、付着又は結合した前記酸化物のメジアン径(D50)が、100.0μm未満であることが好ましい。
 付着又は結合した前記酸化物のメジアン径(D50)が100.0μm未満であると、雰囲気中の水分と接触しにくくなり、硫化水素の発生が抑制され、更に改質硫化物固体電解質のイオン伝導度の低下を抑制し、且つメジアン径(D50)の増大を抑制するため好ましい。
The modified sulfide solid electrolyte is preferably in a state in which the oxide is attached or bonded to the surfaces of primary particles of the sulfide solid electrolyte, and the median diameter (D 50 ) of the attached or bonded oxide is preferably less than 100.0 μm.
If the median diameter ( D50 ) of the attached or bonded oxide is less than 100.0 μm, it becomes difficult for the oxide to come into contact with moisture in the atmosphere, and the generation of hydrogen sulfide is suppressed. This is also preferable because it suppresses the decrease in the ionic conductivity of the modified sulfide solid electrolyte and the increase in the median diameter ( D50 ).
 付着又は結合した前記酸化物のメジアン径(D50)は、50.0μm以下であることがより好ましく、30.0μm以下であることが更に好ましい。
 付着又は結合した前記酸化物のメジアン径(D50)は、本実施態様の改質硫化物固体電解質の製造方法において使用する酸化物のメジアン径(D50)に対応するものとなる。
The median diameter (D 50 ) of the attached or bonded oxide is more preferably 50.0 μm or less, and even more preferably 30.0 μm or less.
The median diameter (D 50 ) of the attached or bonded oxide corresponds to the median diameter (D 50 ) of the oxide used in the method for producing the modified sulfide solid electrolyte of this embodiment.
 前記したように、前記改質硫化物固体電解質のXRDパターンでは、前記酸化物由来のピーク強度と、前記アルジロダイト型結晶構造に由来する29.7±0.5deg.のピーク強度(アルジロダイト型結晶構造由来のピーク強度)と、の強度比(酸化物由来のピーク強度/アルジロダイト型結晶構造由来のピーク強度)が0.1未満であることが好ましく、実質的に観測されない(測定機器の下限値未満)ことが最も好ましい。 As described above, in the XRD pattern of the modified sulfide solid electrolyte, the intensity ratio (peak intensity from oxide/peak intensity from argyrodite crystal structure) between the peak intensity from the oxide and the peak intensity of 29.7±0.5 deg. from the argyrodite crystal structure (peak intensity from argyrodite crystal structure) is preferably less than 0.1, and most preferably is not substantially observable (less than the lower limit of the measuring device).
 酸化物由来のピーク位置は、酸化物の種類により異なるが、アルジロダイト型結晶構造に由来するピーク及び原料含有物に由来するピークと重ならないピークとして、例えばアルミナ(Al)では33.0±0.5deg.及び37.0±0.5deg.に現れ、シリカ(SiO)では38.0±0.5deg.及び48.0±0.5deg.に現れ、チタニア(TiO)では20.8±0.5deg.及び26.5±0.5deg.に現れる。 The positions of the peaks derived from oxides vary depending on the type of oxide, but as peaks that do not overlap with peaks derived from the argyrodite-type crystal structure and peaks derived from raw material contents, for example, they appear at 33.0±0.5 deg. and 37.0±0.5 deg. in alumina (Al 2 O 3 ), 38.0±0.5 deg. and 48.0±0.5 deg. in silica (SiO 2 ), and 20.8±0.5 deg. and 26.5±0.5 deg. in titania (TiO 2 ) .
〔電極合材〕
 本実施形態の電極合材は、上記の本実施形態の改質硫化物固体電解質と、電極活物質と、を含む電極合材である。
(電極活物質)
 電極活物質としては、電極合材が正極、負極のいずれに用いられるかに応じて、各々正極活物質、負極活物質が採用される。
[Electrode mixture]
The electrode mixture of the present embodiment is an electrode mixture containing the modified sulfide solid electrolyte of the present embodiment described above and an electrode active material.
(Electrode active material)
As the electrode active material, a positive electrode active material or a negative electrode active material is adopted depending on whether the electrode mixture is used for a positive electrode or a negative electrode.
 正極活物質としては、負極活物質との関係で、イオン伝導度を発現させる原子として採用される原子、好ましくはリチウム原子に起因するリチウムイオンの移動を伴う電池化学反応を促進させ得るものであれば特に制限なく用いることができる。このようなリチウムイオンの挿入脱離が可能な正極活物質としては、酸化物系正極活物質、硫化物系正極活物質等が挙げられる。 The positive electrode active material can be any material that can promote a battery chemical reaction involving the movement of lithium ions resulting from atoms that are used to exhibit ionic conductivity in relation to the negative electrode active material, preferably lithium atoms, and is not particularly limited. Examples of such positive electrode active materials that can insert and remove lithium ions include oxide-based positive electrode active materials and sulfide-based positive electrode active materials.
 酸化物系正極活物質としてはLMO(マンガン酸リチウム)、LCO(コバルト酸リチウム)、NMC(ニッケルマンガンコバルト酸リチウム)、NCA(ニッケルコバルトアルミ酸リチウム)、LNCO(ニッケルコバルト酸リチウム)、オリビン型化合物(LiMeNPO、Me=Fe、Co、Ni、Mn)等のリチウム含有遷移金属複合酸化物が好ましく挙げられる。
 硫化物系正極活物質としては、硫化チタン(TiS)、硫化モリブデン(MoS)、硫化鉄(FeS、FeS)、硫化銅(CuS)、硫化ニッケル(Ni)等が挙げられる。
 また、上記正極活物質の他、セレン化ニオブ(NbSe)等も使用可能である。
 正極活物質は、一種単独で、又は複数種を組み合わせて用いることが可能である。
Preferred examples of oxide-based positive electrode active materials include lithium-containing transition metal composite oxides such as LMO (lithium manganese oxide), LCO (lithium cobalt oxide), NMC (lithium nickel manganese cobalt oxide), NCA (lithium nickel cobalt aluminate), LNCO (lithium nickel cobalt oxide), and olivine-type compounds ( LiMeNPO4 , Me = Fe, Co, Ni, Mn).
Examples of sulfide-based positive electrode active materials include titanium sulfide (TiS 2 ), molybdenum sulfide (MoS 2 ), iron sulfide (FeS, FeS 2 ), copper sulfide (CuS), and nickel sulfide (Ni 3 S 2 ).
In addition to the above positive electrode active materials, niobium selenide (NbSe 3 ) and the like can also be used.
The positive electrode active material may be used alone or in combination of two or more kinds.
 負極活物質としては、イオン伝導度を発現させる原子として採用される原子、好ましくはリチウム原子と合金を形成し得る金属、その酸化物、当該金属とリチウム原子との合金等の、好ましくはリチウム原子に起因するリチウムイオンの移動を伴う電池化学反応を促進させ得るものであれば特に制限なく用いることができる。このようなリチウムイオンの挿入脱離が可能な負極活物質としては、電池分野において負極活物質として公知のものを制限なく採用することができる。
 このような負極活物質としては、例えば、金属リチウム、金属インジウム、金属アルミニウム、金属ケイ素、金属スズ等の金属リチウム又は金属リチウムと合金を形成し得る金属、これら金属の酸化物、またこれら金属と金属リチウムとの合金等が挙げられる。
The negative electrode active material can be used without any particular limitation as long as it can promote a battery chemical reaction accompanied by the movement of lithium ions caused by lithium atoms, such as an atom that is used as an atom that exhibits ion conductivity, preferably a metal that can form an alloy with lithium atoms, an oxide thereof, an alloy of the metal with lithium atoms, etc. As such a negative electrode active material capable of inserting and removing lithium ions, any material known in the battery field as a negative electrode active material can be used without any limitation.
Examples of such negative electrode active materials include metallic lithium, metallic indium, metallic aluminum, metallic silicon, metallic tin, and other metallic lithium or metals capable of forming alloys with metallic lithium, oxides of these metals, and alloys of these metals with metallic lithium.
 本実施形態で用いられる電極活物質は、その表面がコーティングされた、被覆層を有するものであってもよい。
 被覆層を形成する材料としては、硫化物固体電解質においてイオン伝導度を発現する原子、好ましくはリチウム原子の窒化物、酸化物、又はこれらの複合物等のイオン伝導体が挙げられる。具体的には、窒化リチウム(LiN)、LiGeOを主構造とする、例えばLi4-2xZnGeO等のリシコン型結晶構造を有する伝導体、LiPO型の骨格構造を有する例えばLi4-xGe1-x等のチオリシコン型結晶構造を有する伝導体、La2/3-xLi3xTiO等のペロブスカイト型結晶構造を有する伝導体、LiTi(PO等のNASICON型結晶構造を有する伝導体等が挙げられる。
 また、LiTi3-y(0<y<3)、LiTi12(LTO)等のチタン酸リチウム、LiNbO、LiTaO等の周期表の第5族に属する金属の金属酸リチウム、またLiO-B-P系、LiO-B-ZnO系、LiO-Al-SiO-P-TiO系等の酸化物系の伝導体等が挙げられる。
The electrode active material used in this embodiment may have a coating layer on its surface.
Materials for forming the coating layer include ion conductors such as nitrides, oxides, and composites of atoms, preferably lithium atoms, that exhibit ion conductivity in the sulfide solid electrolyte. Specific examples include conductors having a lysicone-type crystal structure, such as Li 4-2x Zn x GeO 4 , which has a main structure of lithium nitride (Li 3 N) and Li 4 GeO 4 , conductors having a thiolysicone-type crystal structure, such as Li 4-x Ge 1-x P x S 4 , which has a Li 3 PO 4 type skeleton structure, conductors having a perovskite-type crystal structure, such as La 2/3-x Li 3x TiO 3 , and conductors having a NASICON-type crystal structure, such as LiTi 2 (PO 4 ) 3 .
Other examples include lithium titanates such as Li y Ti 3-y O 4 (0<y<3) and Li 4 Ti 5 O 12 (LTO), lithium metal oxides of metals belonging to Group 5 of the periodic table such as LiNbO 3 and LiTaO 3 , and oxide-based conductors such as Li 2 O—B 2 O 3 —P 2 O 5 , Li 2 O—B 2 O 3 —ZnO, and Li 2 O—Al 2 O 3 —SiO 2 —P 2 O 5 —TiO 2 .
 被覆層を有する電極活物質は、例えば電極活物質の表面に、被覆層を形成する材料を構成する各種原子を含む溶液を付着させ、付着後の電極活物質を好ましくは200℃以上400℃以下で焼成することにより得られる。
 ここで、各種原子を含む溶液としては、例えばリチウムエトキシド、チタンイソプロポキシド、ニオブイソプロポキシド、タンタルイソプロポキシド等の各種金属のアルコキシドを含む溶液を用いればよい。この場合、溶媒としては、エタノール、ブタノール等のアルコール系溶媒、ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素溶媒等を用いればよい。
 また、上記の付着は、浸漬、スプレーコーティング等により行えばよい。
An electrode active material having a coating layer can be obtained, for example, by applying a solution containing various atoms constituting the material forming the coating layer to the surface of an electrode active material, and then baking the electrode active material after application at a temperature of preferably 200° C. or higher and 400° C. or lower.
Here, the solution containing various atoms may be a solution containing alkoxides of various metals such as lithium ethoxide, titanium isopropoxide, niobium isopropoxide, tantalum isopropoxide, etc. In this case, the solvent may be an alcohol solvent such as ethanol or butanol, an aliphatic hydrocarbon solvent such as hexane, heptane, or octane, or an aromatic hydrocarbon solvent such as benzene, toluene, or xylene.
The above attachment may be performed by immersion, spray coating, or the like.
 焼成温度としては、製造効率及び電池性能の向上の観点から、上記200℃以上400℃以下が好ましく、より好ましくは250℃以上390℃以下であり、焼成時間としては、通常1分~10時間程度であり、好ましくは10分~4時間である。 From the viewpoint of improving manufacturing efficiency and battery performance, the firing temperature is preferably 200°C or higher and 400°C or lower, and more preferably 250°C or higher and 390°C or lower, and the firing time is usually about 1 minute to 10 hours, and preferably 10 minutes to 4 hours.
 被覆層の被覆率としては、電極活物質の表面積を基準として好ましくは90%以上、より好ましくは95%以上、更に好ましくは100%、すなわち全面が被覆されていることが好ましい。また、被覆層の厚さは、好ましくは1nm以上、より好ましくは2nm以上であり、上限として好ましくは30nm以下、より好ましくは25nm以下である。
 被覆層の厚さは、透過型電子顕微鏡(TEM)による断面観察により、被覆層の厚さを測定することができ、被覆率は、被覆層の厚さと、元素分析値、BET比表面積と、から算出することができる。
The coverage of the coating layer is preferably 90% or more, more preferably 95% or more, and even more preferably 100% based on the surface area of the electrode active material, that is, the entire surface is preferably covered. The thickness of the coating layer is preferably 1 nm or more, more preferably 2 nm or more, and the upper limit is preferably 30 nm or less, more preferably 25 nm or less.
The thickness of the coating layer can be measured by cross-sectional observation using a transmission electron microscope (TEM), and the coverage rate can be calculated from the thickness of the coating layer, elemental analysis values, and BET specific surface area.
(その他の成分)
 本実施形態の電極合材は、上記の改質硫化物固体電解質、電極活物質の他、例えば導電材、結着剤等のその他成分を含んでもよい。すなわち、本実施形態の電極合材は、上記の改質硫化物固体電解質、電極活物質の他、例えば導電材、結着剤等のその他成分を用いてもよい。導電剤、結着剤等のその他成分は、上記の改質硫化物固体電解質と、電極活物質と、を混合することにおいて、これらの改質硫化物固体電解質及び電極活物質に、さらに加えて混合して用いればよい。
 導電材としては、電子伝導性の向上により電池性能を向上させる観点から、人造黒鉛、黒鉛炭素繊維、樹脂焼成炭素、熱分解気相成長炭素、コークス、メソカーボンマイクロビーズ、フルフリルアルコール樹脂焼成炭素、ポリアセン、ピッチ系炭素繊維、気相成長炭素繊維、天然黒鉛、難黒鉛化性炭素等の炭素系材料が挙げられる。
(Other ingredients)
The electrode mixture of this embodiment may contain other components such as a conductive material, a binder, etc. in addition to the modified sulfide solid electrolyte and the electrode active material. That is, the electrode mixture of this embodiment may contain other components such as a conductive material, a binder, etc. in addition to the modified sulfide solid electrolyte and the electrode active material. The other components such as a conductive material, a binder, etc. may be further added to and mixed with the modified sulfide solid electrolyte and the electrode active material when the modified sulfide solid electrolyte and the electrode active material are mixed together.
Examples of the conductive material, from the viewpoint of improving battery performance by improving electronic conductivity, include carbon-based materials such as artificial graphite, graphite carbon fiber, resin-calcined carbon, pyrolytic vapor-grown carbon, coke, mesocarbon microbeads, furfuryl alcohol resin-calcined carbon, polyacene, pitch-based carbon fiber, vapor-grown carbon fiber, natural graphite, and non-graphitizable carbon.
 結着剤を用いることで、正極、負極を作製した場合の強度が向上する。
 結着剤としては、結着性、柔軟性等の機能を付与し得るものであれば特に制限はなく、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等のフッ素系ポリマー、ブチレンゴム、スチレン-ブタジエンゴム等の熱可塑性エラストマー、アクリル樹脂、アクリルポリオール樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、シリコーン樹脂等の各種樹脂が例示される。
By using a binder, the strength of the positive and negative electrodes is improved.
The binder is not particularly limited as long as it can impart functions such as binding property and flexibility, and examples thereof include fluorine-based polymers such as polytetrafluoroethylene and polyvinylidene fluoride, thermoplastic elastomers such as butylene rubber and styrene-butadiene rubber, and various resins such as acrylic resins, acrylic polyol resins, polyvinyl acetal resins, polyvinyl butyral resins, and silicone resins.
 電極合材における、電極活物質と改質硫化物固体電解質との配合比(質量比)としては、電池性能を向上させ、かつ製造効率を考慮すると、好ましくは99.5:0.5~40:60、より好ましくは99:1~50:50、更に好ましくは98:2~60:40である。 The compounding ratio (mass ratio) of the electrode active material to the modified sulfide solid electrolyte in the electrode mixture is preferably 99.5:0.5 to 40:60, more preferably 99:1 to 50:50, and even more preferably 98:2 to 60:40, in order to improve battery performance and take into consideration manufacturing efficiency.
 導電材を含有する場合、電極合材中の導電材の含有量は特に制限はないが、電池性能を向上させ、かつ製造効率を考慮すると、好ましくは0.5質量%以上、より好ましくは1質量%以上、更に好ましくは1.5質量%以上であり、上限として好ましくは10質量%以下、好ましくは8質量%以下、更に好ましくは5質量%以下である。
 また、結着剤を含有する場合、電極合材中の結着剤の含有量は特に制限はないが、電池性能を向上させ、かつ製造効率を考慮すると、好ましくは1質量%以上、より好ましくは3質量%以上、更に好ましくは5質量%以上であり、上限として好ましくは20質量%以下、好ましくは15質量%以下、更に好ましくは10質量%以下である。
When a conductive material is contained, the content of the conductive material in the electrode mixture is not particularly limited, but in consideration of improving battery performance and production efficiency, the content is preferably 0.5 mass% or more, more preferably 1 mass% or more, and even more preferably 1.5 mass% or more, and the upper limit is preferably 10 mass% or less, preferably 8 mass% or less, and even more preferably 5 mass% or less.
Furthermore, when a binder is contained, the content of the binder in the electrode mixture is not particularly limited, but in consideration of improving battery performance and production efficiency, the content is preferably 1 mass % or more, more preferably 3 mass % or more, and even more preferably 5 mass % or more, and the upper limit is preferably 20 mass % or less, preferably 15 mass % or less, and even more preferably 10 mass % or less.
〔リチウムイオン電池〕
 本実施形態のリチウムイオン電池は、前記の本実施形態の改質硫化物固体電解質及び前記の電極合材から選ばれる少なくとも一方を含むことを要する。
[Lithium-ion battery]
The lithium ion battery of this embodiment is required to contain at least one selected from the modified sulfide solid electrolyte of this embodiment and the electrode mixture.
 本実施形態のリチウムイオン電池は、前記の本実施形態の改質硫化物固体電解質、これを含む電極合材のいずれかを含むものであれば、その構成については特に制限はなく、汎用されるリチウムイオン電池の構成を有するものであればよい。 The lithium ion battery of this embodiment is not particularly limited in its configuration as long as it contains either the modified sulfide solid electrolyte of this embodiment or an electrode composite material containing the same, and it may have the configuration of a commonly used lithium ion battery.
 本実施形態のリチウムイオン電池としては、例えば正極層、負極層、電解質層、また集電体を備えたものであることが好ましい。正極層及び負極層としては本実施形態の電極合材が用いられるものであることが好ましく、また電解質層としては本実施形態の改質硫化物固体電解質が用いられるものであることが好ましい。 The lithium ion battery of this embodiment preferably includes, for example, a positive electrode layer, a negative electrode layer, an electrolyte layer, and a current collector. The positive electrode layer and the negative electrode layer preferably use the electrode mixture of this embodiment, and the electrolyte layer preferably uses the modified sulfide solid electrolyte of this embodiment.
 また、集電体は公知のものを用いればよい。例えば、Au、Pt、Al、Ti、又は、Cu等のように、前記の固体電解質と反応するものをAu等で被覆した層が使用できる。 The current collector may be any known material. For example, a layer of a material that reacts with the solid electrolyte, such as Au, Pt, Al, Ti, or Cu, coated with Au or the like can be used.
 次に実施例により、本発明を具体的に説明するが、本発明は、これらの例によってなんら制限されるものではない。 The present invention will now be described in detail with reference to examples, but the present invention is not limited to these examples in any way.
(1) 測定方法
(1-1) イオン伝導度測定
 本実施例において、イオン伝導度の測定は、以下のようにして行った。
 固体電解質から、直径10mm(断面積S:0.785cm)、高さ(L)0.1~0.3cmの円形ペレットを成形して試料とした。その試料の上下から電極端子を取り、25℃において交流インピーダンス法により測定し(周波数範囲:1MHz~100Hz、振幅:10mV)、Cole-Coleプロットを得た。高周波側領域に観測される円弧の右端付近で、-Z’’(Ω)が最小となる点での実数部Z’(Ω)を電解質のバルク抵抗R(Ω)とし、以下式に従い、イオン伝導度σ(S/cm)を計算した。
     R=ρ(L/S)
     σ=1/ρ
(1) Measurement Method (1-1) Measurement of Ion Conductivity In this example, the measurement of ion conductivity was carried out as follows.
A circular pellet with a diameter of 10 mm (cross-sectional area S: 0.785 cm 2 ) and a height (L) of 0.1 to 0.3 cm was molded from the solid electrolyte to prepare a sample. Electrode terminals were attached to the top and bottom of the sample, and measurements were made at 25°C by an AC impedance method (frequency range: 1 MHz to 100 Hz, amplitude: 10 mV) to obtain a Cole-Cole plot. The real part Z' (Ω) at the point where -Z'' (Ω) is minimum near the right end of the arc observed in the high frequency region was taken as the bulk resistance R (Ω) of the electrolyte, and the ionic conductivity σ (S/cm) was calculated according to the following formula:
R = ρ(L/S)
σ=1/ρ
(1-2) 硫化水素の発生量の測定
 以下の曝露試験を行い、硫化水素の発生量を測定した。
 まず、曝露試験で用いる試験装置(曝露試験装置1)について、図2を用いて説明する。
 曝露試験装置1は、窒素を加湿するフラスコ10と、加湿した窒素と加湿しない窒素とを混合するスタティックミキサー20と、混合した窒素の水分を測定する露点計30(VAISALA社製 M170/DMT152)と、測定試料を設置する二重反応管40と、二重反応管40から排出される窒素の水分を測定する露点計50と、排出された窒素中に含まれる硫化水素濃度を測定する硫化水素計測器60(AMI社製 Model3000RS)とを、主な構成要素とし、これらを管(図示せず)にて接続した構成としてある。フラスコ10の温度は冷却槽11により10℃に設定されている。
 なお、各構成要素を接続する管には直径6mmのテフロン(登録商標)チューブを使用した。本図では管の表記を省略し、代わりに窒素の流れを矢印で示してある。
(1-2) Measurement of the amount of hydrogen sulfide generated The following exposure test was carried out and the amount of hydrogen sulfide generated was measured.
First, a test apparatus (exposure test apparatus 1) used in the exposure test will be described with reference to FIG.
The exposure test apparatus 1 mainly comprises a flask 10 for humidifying nitrogen, a static mixer 20 for mixing humidified nitrogen and non-humidified nitrogen, a dew point meter 30 (M170/DMT152 manufactured by VAISALA) for measuring the moisture content of the mixed nitrogen, a double reaction tube 40 in which a measurement sample is placed, a dew point meter 50 for measuring the moisture content of the nitrogen discharged from the double reaction tube 40, and a hydrogen sulfide meter 60 (Model 3000RS manufactured by AMI) for measuring the hydrogen sulfide concentration contained in the discharged nitrogen, and is configured to be connected by pipes (not shown). The temperature of the flask 10 is set to 10° C. by a cooling tank 11.
The components were connected to each other using Teflon tubes with a diameter of 6 mm. In this figure, the tubes are omitted, and instead the flow of nitrogen is indicated by arrows.
 評価の手順は以下のとおりとした。
 露点を-80℃とした窒素グローブボックス内で、実施例及び比較例で得られた粉末の試料41を約1.5g秤量し、石英ウール42で挟むように反応管40内部に設置し密封した。評価は室温(20℃)で行った。
 窒素源(図示せず)から0.02MPaで窒素を装置1内に供給した。供給された窒素は、二又分岐管BPを通過して、一部はフラスコ10に供給され加湿される。その他は加湿しない窒素としてスタティックミキサー20に直接供給される。なお、窒素のフラスコ10への供給量はニードルバルブVで調整される。
 加湿しない窒素及び加湿した窒素の流量を、ニードルバルブ付きフローメーターFMで調整することにより露点を制御する。具体的に、加湿しない窒素の流量を800mL/min、加湿した窒素の流量を10~30mL/minで、スタティックミキサー20に供給し、混合して、露点計30にて混合ガス(加湿しない窒素及び加湿した窒素の混合物)の露点を確認した。
The evaluation procedure was as follows.
In a nitrogen glove box with a dew point of −80° C., about 1.5 g of the powder sample 41 obtained in the examples and comparative examples was weighed out, placed in a reaction tube 40 so as to be sandwiched between quartz wool 42, and sealed. The evaluation was carried out at room temperature (20° C.).
Nitrogen was supplied from a nitrogen source (not shown) at 0.02 MPa into the apparatus 1. The supplied nitrogen passed through a bifurcated branch pipe BP, and a portion of the nitrogen was supplied to the flask 10 and humidified. The remaining portion was supplied directly to the static mixer 20 as unhumidified nitrogen. The amount of nitrogen supplied to the flask 10 was adjusted by a needle valve V.
The flow rates of non-humidified nitrogen and humidified nitrogen were adjusted with a flow meter FM equipped with a needle valve to control the dew point. Specifically, non-humidified nitrogen was supplied to the static mixer 20 at a flow rate of 800 mL/min, and humidified nitrogen was supplied to the static mixer 20 at a flow rate of 10 to 30 mL/min, and mixed. The dew point of the mixed gas (a mixture of non-humidified nitrogen and humidified nitrogen) was confirmed with a dew point meter 30.
 露点を-30℃に調整した後、三方コック43を回転して、混合ガスを反応管40内部に2時間流通させた。試料41を通過した混合ガスに含まれる硫化水素量を、硫化水素計測器60で測定した。硫化水素量は15秒間隔で記録した。また、参考のため曝露後の混合ガスの露点を露点計50で測定した。測定開始から60分間及び120分間の硫化水素(HS)の発生量(累計)を第1表に示す。
 なお、測定後の窒素から硫化水素を除去するため、アルカリトラップ70を通過させた。
After adjusting the dew point to -30°C, the three-way cock 43 was rotated to circulate the mixed gas inside the reaction tube 40 for 2 hours. The amount of hydrogen sulfide contained in the mixed gas that passed through the sample 41 was measured with a hydrogen sulfide meter 60. The amount of hydrogen sulfide was recorded at 15-second intervals. For reference, the dew point of the mixed gas after exposure was also measured with a dew point meter 50. The amounts of hydrogen sulfide ( H2S ) generated (cumulative) for 60 minutes and 120 minutes from the start of measurement are shown in Table 1.
In order to remove hydrogen sulfide from the nitrogen after measurement, the nitrogen was passed through an alkali trap 70.
(1-3) 粉末X線回折(XRD)測定
 粉末X線回折(XRD)測定は以下のようにして実施した。
 実施例及び比較例で得られた改質硫化物固体電解質の粉末を、直径20mm、深さ0.2mmの溝に充填し、ガラスで均して試料とした。この試料を、XRD用カプトンフィルムで密閉し、空気に触れさせずに、以下の条件で測定した。
測定装置:D2 PHASER、ブルカー(株)製
   管電圧:30kV
   管電流:10mA
   X線波長:Cu-Kα線(1.5418Å)
   光学系:集中法
   スリット構成:ソーラースリット4°、発散スリット1mm、Kβフィルター(Ni板)使用
   検出器:半導体検出器
   測定範囲:2θ=10-60deg
   ステップ幅、スキャンスピード:0.05deg、0.05deg/秒
 得られたXRDパターンから、酸化物由来のピーク強度と、アルジロダイト型結晶構造に由来する29.7±0.5deg.のピーク強度(アルジロダイト型結晶構造由来のピーク強度)を測定した。これらピーク強度から、酸化物由来のピーク強度と、アルジロダイト型結晶構造に由来する29.7±0.5deg.のピーク強度(アルジロダイト型結晶構造由来のピーク強度)と、の強度比(酸化物由来のピーク強度/アルジロダイト型結晶構造由来のピーク強度)を求めた。
(1-3) Powder X-ray Diffraction (XRD) Measurement Powder X-ray diffraction (XRD) measurement was carried out as follows.
The powder of the modified sulfide solid electrolyte obtained in the examples and comparative examples was filled into a groove having a diameter of 20 mm and a depth of 0.2 mm, and the groove was leveled with glass to prepare a sample. The sample was sealed with a Kapton film for XRD and measured under the following conditions without exposing it to air.
Measurement device: D2 PHASER, manufactured by Bruker Corporation Tube voltage: 30 kV
Tube current: 10mA
X-ray wavelength: Cu-Kα ray (1.5418 Å)
Optical system: focusing method Slit configuration: Soller slit 4°, divergence slit 1 mm, Kβ filter (Ni plate) used Detector: semiconductor detector Measurement range: 2θ = 10-60 deg
Step width, scan speed: 0.05 deg, 0.05 deg/sec. From the obtained XRD pattern, the peak intensity derived from the oxide and the peak intensity at 29.7±0.5 deg. derived from the argyrodite crystal structure (peak intensity derived from the argyrodite crystal structure) were measured. From these peak intensities, the intensity ratio (peak intensity derived from the oxide/peak intensity derived from the argyrodite crystal structure) between the peak intensity derived from the oxide and the peak intensity at 29.7±0.5 deg. derived from the argyrodite crystal structure (peak intensity derived from the argyrodite crystal structure) was calculated.
(1-4) メジアン径(D50
 体積基準メジアン径は、レーザー回折/散乱式粒子径分布測定装置(「Partica LA-950V2モデルLA-950W2」、株式会社堀場製作所製)を用いて測定した。脱水処理された、トルエン(富士フィルム和光純薬株式会社製、特級)とターシャリーブチルアルコール(富士フィルム和光純薬株式会社製、特級)を93.8:6.2の重量比で混合したものを分散媒として用いた。装置のフローセル内に分散媒を50ml注入し、循環させた後、測定対象を投入して超音波処理をしたのち、粒子径分布を測定した。なお、測定対象の投入量は装置で規定されている測定画面で、粒子濃度に対応する赤色光透過率(R)が80~90%、青色光透過率(B)が70~90%に収まるように調整した。また、演算条件には、測定対象の屈折率の値として2.16を、分散媒の屈折率の値として1.49をそれぞれ用いた。分布形態の設定において、反復回数を15回に固定して粒径演算を行い、硫化物固体電解質及び酸化物のメジアン径(D50)を求めた。
(1-4) Median diameter ( D50 )
The volume-based median diameter was measured using a laser diffraction/scattering particle size distribution measuring device ("Partica LA-950V2 model LA-950W2", manufactured by Horiba, Ltd.). A mixture of dehydrated toluene (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., special grade) and tertiary butyl alcohol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., special grade) in a weight ratio of 93.8:6.2 was used as the dispersion medium. 50 ml of the dispersion medium was injected into the flow cell of the device and circulated, after which the measurement target was introduced and subjected to ultrasonic treatment, and the particle size distribution was measured. The amount of the measurement target introduced was adjusted so that the red light transmittance (R) corresponding to the particle concentration was within 80 to 90% and the blue light transmittance (B) was within 70 to 90% on the measurement screen specified by the device. In addition, 2.16 was used as the refractive index value of the measurement target, and 1.49 was used as the refractive index value of the dispersion medium, respectively, for the calculation conditions. In setting the distribution form, the number of repetitions was fixed at 15, particle size calculation was performed, and the median diameter (D 50 ) of the sulfide solid electrolyte and oxide was obtained.
(2) 硫化物固体電解質の製造
(2-1) 硫化リチウム(LiS)の調製
 非水溶性媒体としてトルエン(住友商事株式会社製)を脱水処理し、カールフィッシャー水分計にて測定し水分量が100ppmとなったもの303.8kgを窒素気流下で500Lステンレス製反応釜に加え、続いて無水水酸化リチウム33.8kg(本荘ケミカル株式会社製)を投入し、ツインスター撹拌翼131rpmで撹拌しながら、95℃に保持した。スラリー中に硫化水素(住友精化株式会社製)を100L/minの供給速度で吹き込みながら104℃まで昇温した。反応釜からは、水とトルエンの共沸ガスが連続的に排出された。この共沸ガスを、系外のコンデンサーで凝縮させることにより脱水した。この間、留出するトルエンと同量のトルエンを連続的に供給し、反応液レベルを一定に保持した。凝縮液中の水分量は徐々に減少し、硫化水素導入後24時間で水の留出は認められなくなった。なお、反応の間は、トルエン中に固体が分散して撹拌された状態であり、トルエンから分層した水分は無かった。この後、硫化水素を窒素に切り替え100L/minで1時間流通した。得られた固形分をろ過及び乾燥して、白色粉末であるLiSを得た。
(2) Production of sulfide solid electrolyte (2-1) Preparation of lithium sulfide (Li 2 S) Toluene (manufactured by Sumitomo Corporation) was dehydrated as a non-aqueous medium, and 303.8 kg of the product was added to a 500 L stainless steel reaction kettle under a nitrogen stream, followed by 33.8 kg of anhydrous lithium hydroxide (manufactured by Honjo Chemical Co., Ltd.) and maintained at 95 ° C. while stirring with a twin star stirring blade at 131 rpm. The temperature was raised to 104 ° C. while blowing hydrogen sulfide (manufactured by Sumitomo Seika Chemicals Co., Ltd.) into the slurry at a supply rate of 100 L / min. Azeotropic gas of water and toluene was continuously discharged from the reaction kettle. This azeotropic gas was dehydrated by condensing it with a condenser outside the system. During this time, toluene in the same amount as the toluene distilled was continuously supplied to maintain the reaction liquid level constant. The amount of water in the condensate gradually decreased, and 24 hours after the introduction of hydrogen sulfide, distillation of water was no longer observed. During the reaction, the solid was dispersed and stirred in the toluene, and no water was separated from the toluene. After this, hydrogen sulfide was replaced with nitrogen and circulated at 100 L/min for 1 hour. The obtained solid was filtered and dried to obtain Li 2 S, a white powder.
(2-2)アルジロダイト型結晶構造を有する硫化物固体電解質の製造
(A)粉砕工程
 前記(2-1)で得たLiSを、窒素雰囲気下にて、定量供給機を有するピンミル(ホソカワミクロン株式会社製 100UPZ)にて粉砕した。投入速度は80g/min、円板の回転速度は18000rpmとした。同様に、P(イタルマッチ社製)、LiBr(本荘ケミカル株式会社製)及びLiCl(本荘ケミカル株式会社製)を、それぞれ、ピンミルにて粉砕した。Pの投入速度は140g/min、LiBrの投入速度は230g/min、LiClの投入速度は250g/minとした。円板の回転速度はいずれも18000rpmとした。
(2-2) Production of sulfide solid electrolyte having an argyrodite-type crystal structure (A) Grinding step The Li 2 S obtained in (2-1) was ground in a pin mill (100UPZ, manufactured by Hosokawa Micron Corporation) having a constant-volume feeder under a nitrogen atmosphere. The feeding rate was 80 g/min, and the rotation speed of the disk was 18,000 rpm. Similarly, P 2 S 5 (manufactured by Italmatch), LiBr (manufactured by Honjo Chemical Co., Ltd.), and LiCl (manufactured by Honjo Chemical Co., Ltd.) were each ground in a pin mill. The feeding rate of P 2 S 5 was 140 g/min, the feeding rate of LiBr was 230 g/min, and the feeding rate of LiCl was 250 g/min. The rotation speed of the disk was 18,000 rpm in each case.
(B)原料混合物の調製
 窒素雰囲気のグローブボックス内にて、前記(A)で粉砕した各化合物を、モル比がLiS:P:LiBr:LiCl=47.5:12.5:15.0:25.0であり、合計110gとなるように計量し、ガラス容器に投入して、容器を振盪することにより粗混合した。粗混合した後にその全量を、窒素雰囲気下で、脱水トルエン(富士フィルム和光純薬株式会社製)1140mLと脱水イソブチロニトリル(キシダ化学株式会社製)7mLとの混合溶媒中に分散させ、約10重量%のスラリーとした。スラリーを窒素雰囲気に保ったまま、ビーズミル(LMZ015、アシザワ・ファインテック株式会社製)を用いて混合粉砕した。具体的には、粉砕媒体には直径0.5mmのジルコニアビーズ456gを使用し、周速12m/s、流量500mL/minの条件でビーズミルを稼働させ、スラリーをミル内に投入し、1時間循環運転した。処理後のスラリーを窒素置換したシュレンク瓶に入れた後、減圧乾燥して原料混合物を調製した。
(B) Preparation of raw material mixture In a glove box under nitrogen atmosphere, the compounds pulverized in (A) were weighed out so that the molar ratio was Li 2 S:P 2 S 5 :LiBr:LiCl=47.5:12.5:15.0:25.0, and the total was 110 g, and the compounds were put into a glass container and roughly mixed by shaking the container. After the rough mixing, the total amount was dispersed in a mixed solvent of 1140 mL of dehydrated toluene (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and 7 mL of dehydrated isobutyronitrile (manufactured by Kishida Chemical Co., Ltd.) under a nitrogen atmosphere to obtain a slurry of about 10% by weight. The slurry was mixed and pulverized using a bead mill (LMZ015, manufactured by Ashizawa Finetech Co., Ltd.) while maintaining the nitrogen atmosphere. Specifically, 456 g of zirconia beads having a diameter of 0.5 mm were used as the grinding medium, and the bead mill was operated under conditions of a peripheral speed of 12 m/s and a flow rate of 500 mL/min, and the slurry was charged into the mill and circulated for 1 hour. The treated slurry was placed in a nitrogen-substituted Schlenk flask and then dried under reduced pressure to prepare a raw material mixture.
(C)仮焼工程
 前記(B)で得た原料混合物30gを、エチルベンゼン(富士フィルム和光純薬株式会社製)300mLに分散させてスラリーとした。このスラリーを、撹拌機及び加熱用オイルバスを具備したオートクレーブ(容量1000mL、SUS316製)に投入し、回転数200rpmで撹拌しながら、200℃で2時間加熱処理した。処理後、減圧乾燥して溶媒を留去して、仮焼物を得た。
(C) Calcination Step 30 g of the raw material mixture obtained in (B) was dispersed in 300 mL of ethylbenzene (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) to obtain a slurry. This slurry was placed in an autoclave (capacity 1000 mL, made of SUS316) equipped with a stirrer and a heating oil bath, and heat-treated at 200° C. for 2 hours while stirring at a rotation speed of 200 rpm. After the treatment, the mixture was dried under reduced pressure to remove the solvent, and a calcined product was obtained.
(D)焼成工程
 前記(C)で得た仮焼物を、窒素雰囲気下のグローブボックス内の電気炉(F-1404-A、東京硝子器械株式会社製)で加熱した。具体的には、電気炉内にAl製の匣鉢(999-60S、東京硝子器械株式会社製)を入れ、室温(20℃)から380℃まで1時間で昇温し380℃で1時間以上保持した。その後、電気炉の扉を開け、素早く仮焼物を匣鉢に注ぎ入れたのち、扉を直ちに閉じ、1時間加熱した。その後、匣鉢を電気炉より取り出し、徐冷することにより硫化物固体電解質を得た。
(D) Firing step The calcined product obtained in (C) was heated in an electric furnace (F-1404-A, manufactured by Tokyo Glass Machinery Co., Ltd.) in a glove box under a nitrogen atmosphere. Specifically, an Al 2 O 3 sagger (999-60S, manufactured by Tokyo Glass Machinery Co., Ltd.) was placed in the electric furnace, and the temperature was raised from room temperature (20°C) to 380°C in 1 hour and maintained at 380°C for 1 hour or more. Thereafter, the door of the electric furnace was opened, and the calcined product was quickly poured into the sagger, after which the door was immediately closed and heated for 1 hour. Thereafter, the sagger was removed from the electric furnace and slowly cooled to obtain a sulfide solid electrolyte.
(E)微粒子化工程
 前記(D)で得られた硫化物固体電解質を、窒素雰囲気下で、脱水トルエン(富士フィルム和光純薬株式会社製)と脱水イソブチロニトリル(キシダ化学株式会社製)との混合溶媒中に分散させ、約8重量%のスラリーとした。スラリーを窒素雰囲気に保ったまま、ビーズミル(LMZ015、アシザワ・ファインテック株式会社製)を用いて混合粉砕した。処理後のスラリーを窒素置換したシュレンク瓶に入れた後、減圧乾燥して微粒子化した硫化物固体電解質(硫化物固体電解質(C1))を得た。
(実施例1)
(E) Microparticulation step The sulfide solid electrolyte obtained in (D) was dispersed in a mixed solvent of dehydrated toluene (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and dehydrated isobutyronitrile (manufactured by Kishida Chemical Co., Ltd.) under a nitrogen atmosphere to obtain a slurry of about 8% by weight. The slurry was mixed and pulverized using a bead mill (LMZ015, manufactured by Ashizawa Finetech Co., Ltd.) while maintaining the nitrogen atmosphere. The treated slurry was placed in a nitrogen-substituted Schlenk flask, and then dried under reduced pressure to obtain a microparticulated sulfide solid electrolyte (sulfide solid electrolyte (C1)).
Example 1
(F)酸化物材料添加工程
 窒素雰囲気下で、前記(E)にて得られた硫化物固体電解質(C1)1.350gに対し、Al原料(日本アエロジル株式会社製)を0.150g量りとり、ジルコニア製容器(フリッチュ社製)に投入した。次に前記ジルコニア製容器に直径5mmのジルコニア製ボールを80個注入し、密閉した後、転動ミル(小型ボールミルAV型、アサヒ理化製作所製)を用いて回転数600rpm、1時間の乾式混合を施し、硫化物固体電解質(硫化物固体電解質(C2))を得た。
(F) Oxide material addition step Under a nitrogen atmosphere, 0.150 g of Al2O3 raw material (manufactured by Nippon Aerosil Co., Ltd.) was weighed out for 1.350 g of the sulfide solid electrolyte (C1) obtained in (E) above, and was placed in a zirconia container (manufactured by Fritsch). Next, 80 zirconia balls with a diameter of 5 mm were poured into the zirconia container, which was then sealed. After that, a rolling mill (small ball mill AV type, manufactured by Asahi Rika Seisakusho Co., Ltd.) was used to perform dry mixing at a rotation speed of 600 rpm for 1 hour, to obtain a sulfide solid electrolyte (sulfide solid electrolyte (C2)).
(G)2次焼成工程
 前記(F)にて得られた硫化物固体電解質(C2)をグローブボックス内の電気炉(アズワン株式会社製)で加熱した。具体的には、電気炉内にAl製のるつぼ(株式会社ニッカトー製)を入れ、室温(20℃)から500℃まで6℃/分で昇温し500℃で2時間以上保持した。その後、るつぼを電気炉より取り出し、徐冷することにより、アルジロダイト型結晶構造を有する硫化物固体電解質(改質硫化物固体電解質(1))を製造した。アルジロダイト型結晶構造を有することは、XRD測定により確認した。前記改質硫化物固体電解質(1)を用い、イオン伝導度、硫化水素の発生量、XRDパターン及びメジアン径(D50)を測定した。結果を表2に記載した。
(G) Secondary Firing Step The sulfide solid electrolyte (C2) obtained in (F) was heated in an electric furnace (manufactured by AS ONE Corporation) in a glove box. Specifically, an Al 2 O 3 crucible (manufactured by Nikkato Corporation) was placed in the electric furnace, and the temperature was raised from room temperature (20° C.) to 500° C. at a rate of 6° C./min and held at 500° C. for 2 hours or more. The crucible was then removed from the electric furnace and slowly cooled to produce a sulfide solid electrolyte having an argyrodite-type crystal structure (modified sulfide solid electrolyte (1)). The presence of the argyrodite-type crystal structure was confirmed by XRD measurement. The ionic conductivity, amount of hydrogen sulfide generated, XRD pattern, and median diameter (D 50 ) were measured using the modified sulfide solid electrolyte (1). The results are shown in Table 2.
(実施例2)~(実施例5)
 実施例1と使用した酸化物の種類と量を表1に記載のものとする以外は同様にして、改質硫化物固体電解質(2)~改質硫化物固体電解質(5)を得た。イオン伝導度、硫化水素の発生量、XRDパターン及びメジアン径(D50)を表2に記載した。
 表1において、酸化物1は、使用した1種目の酸化物を意味し、酸化物1の添加量を添加量1と、2種目の酸化物を用いた場合には酸化物2として記載し、その添加量を添加量2として記載した。
(Example 2) to (Example 5)
Modified sulfide solid electrolytes (2) to (5) were obtained in the same manner as in Example 1, except that the types and amounts of oxides used were those shown in Table 1. The ionic conductivity, amount of hydrogen sulfide generated, XRD pattern, and median diameter (D 50 ) are shown in Table 2.
In Table 1, oxide 1 means the first oxide used, and the amount of oxide 1 added is recorded as added amount 1, and when a second oxide was used, it is recorded as oxide 2, and the amount of oxide 1 added is recorded as added amount 2.
(比較例1)
 前記の硫化物固体電解質(C1)を比較例1の硫化物固体電解質として用いた。イオン伝導度、硫化水素の発生量、XRDパターン及びメジアン径(D50)を表2に記載した。
(Comparative Example 1)
The sulfide solid electrolyte (C1) was used as the sulfide solid electrolyte of Comparative Example 1. Table 2 shows the ionic conductivity, the amount of hydrogen sulfide generated, the XRD pattern, and the median diameter (D 50 ).
(比較例2)
 前記の硫化物固体電解質(C2)を比較例2の硫化物固体電解質として用いた。比較例2の硫化物固体電解質は、実施例1の改質硫化物固体電解質の加熱することの前に該当する。イオン伝導度、硫化水素の発生量、XRDパターン及びメジアン径(D50)を表2に記載した。
(Comparative Example 2)
The sulfide solid electrolyte (C2) was used as the sulfide solid electrolyte of Comparative Example 2. The sulfide solid electrolyte of Comparative Example 2 corresponds to the modified sulfide solid electrolyte of Example 1 before heating. The ionic conductivity, amount of hydrogen sulfide generated, XRD pattern, and median diameter (D 50 ) are shown in Table 2.
(比較例3)~(比較例6)
 比較例2と使用した酸化物の種類と量を表1に記載のものとする以外は同様にして硫化物固体電解質(C3)~硫化物固体電解質(C6)を得た。比較例3~6の硫化物固体電解質は、実施例2~5の改質硫化物固体電解質の加熱することの前に該当する。イオン伝導度、硫化水素の発生量、XRDパターン及びメジアン径(D50)を表2に記載した。
(Comparative Example 3) to (Comparative Example 6)
Sulfide solid electrolytes (C3) to (C6) were obtained in the same manner as in Comparative Example 2, except that the types and amounts of oxides used were those shown in Table 1. The sulfide solid electrolytes of Comparative Examples 3 to 6 correspond to the modified sulfide solid electrolytes of Examples 2 to 5 before heating. The ionic conductivity, amount of hydrogen sulfide generated, XRD pattern, and median diameter (D 50 ) are shown in Table 2.
(比較例7)
 前記硫化物固体電解質(C4)を窒素雰囲気下で、650℃、2時間加熱した。比較例7の硫化物固体電解質は、前記特許文献5及び6に記載された硫化物固体電解質に該当するものである。得られた改質硫化物固体電解質(改質硫化物固体電解質(C7))を用い、イオン伝導度、硫化水素の発生量、XRDパターン及びメジアン径(D50)を測定した。結果を表2に記載した。
(Comparative Example 7)
The sulfide solid electrolyte (C4) was heated at 650° C. for 2 hours under a nitrogen atmosphere. The sulfide solid electrolyte of Comparative Example 7 corresponds to the sulfide solid electrolytes described in Patent Documents 5 and 6. The ionic conductivity, hydrogen sulfide generation amount, XRD pattern, and median diameter (D 50 ) of the obtained modified sulfide solid electrolyte (modified sulfide solid electrolyte (C7)) were measured. The results are shown in Table 2.
(比較例8)
 前記硫化物固体電解質(C5)を窒素雰囲気下で、650℃、2時間加熱した。比較例8の硫化物固体電解質は、前記特許文献5及び6に記載された硫化物固体電解質に該当するものである。得られた改質硫化物固体電解質(改質硫化物固体電解質(C8))を用い、イオン伝導度、硫化水素の発生量、XRDパターン及びメジアン径(D50)を測定した。結果を表2に記載した。
(Comparative Example 8)
The sulfide solid electrolyte (C5) was heated at 650° C. for 2 hours under a nitrogen atmosphere. The sulfide solid electrolyte of Comparative Example 8 corresponds to the sulfide solid electrolyte described in Patent Documents 5 and 6. The ionic conductivity, hydrogen sulfide generation amount, XRD pattern, and median diameter (D 50 ) of the obtained modified sulfide solid electrolyte (modified sulfide solid electrolyte (C8)) were measured. The results are shown in Table 2.
 表2において、M/Mは、前記改質硫化物固体電解質に含まれる全酸化物中の前記Mの合計のモル数(M)と、前記硫化物固体電解質中のリン原子の合計のモル数(M)との比の値を表し、強度比は、X線回折スペクトル(XRDパターン)による、前記酸化物由来のピーク強度と、前記アルジロダイト型結晶構造に由来する29.7±0.5deg.のピーク強度(アルジロダイト型結晶構造由来のピーク強度)と、の強度比(酸化物由来のピーク強度/アルジロダイト型結晶構造由来のピーク強度)を表す。 In Table 2, M M /M P represents the ratio of the total number of moles of M in all oxides contained in the modified sulfide solid electrolyte (M M ) to the total number of moles of phosphorus atoms in the sulfide solid electrolyte (M P ), and the intensity ratio represents the intensity ratio (peak intensity derived from oxide/peak intensity derived from argyrodite-type crystal structure) between the peak intensity derived from the oxide in an X-ray diffraction spectrum (XRD pattern) and the peak intensity of 29.7±0.5 deg. derived from the argyrodite-type crystal structure (peak intensity derived from argyrodite-type crystal structure).
 実施例及び比較例で用いた酸化物のメジアン径(D50)は、酸化アルミニウム(アルミナ、Al)は、13μmであり、酸化ケイ素(シリカ、SiO)は、20μmであり、酸化チタン(チタニア、TiO)は、14μmである。 The median diameter (D 50 ) of the oxides used in the examples and comparative examples is 13 μm for aluminum oxide (alumina, Al 2 O 3 ), 20 μm for silicon oxide (silica, SiO 2 ), and 14 μm for titanium oxide (titania, TiO 2 ).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表中、酸化物1及び酸化物2に対する「-」は、酸化物を使用していないことを意味し、添加量1及び添加量2に対する「-」は、酸化物を使用していないため、添加量が0質量%であることを意味する。加熱温度における「-」は、請求項1の製造方法における加熱することを行わないことを意味する。 In the table, "-" for Oxide 1 and Oxide 2 means that no oxide was used, and "-" for Addition Amount 1 and Addition Amount 2 means that no oxide was used, and therefore the addition amount is 0 mass%. "-" for heating temperature means that heating was not performed in the manufacturing method of claim 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2中、「-」は、29.7±0.5deg.にピークが一つのみ観測され、ピーク強度が二番目に大きいピークがないことを意味する。Iは、29.7±0.5deg.の範囲内にピークが1本しか観測されない場合にはそのピーク強度を、29.7±0.5deg.の範囲内にピークが2本以上観測される場合には、最も高いピークの強度を意味する。Iは、29.7±0.5deg.の範囲内にピークが2本以上観測される場合、2番目に高いピークの強度を意味する。 In Table 2, "-" means that only one peak is observed at 29.7±0.5 deg. and there is no peak with the second highest peak intensity. I1 means the peak intensity when only one peak is observed within the range of 29.7±0.5 deg., and means the intensity of the highest peak when two or more peaks are observed within the range of 29.7±0.5 deg. I2 means the intensity of the second highest peak when two or more peaks are observed within the range of 29.7±0.5 deg.
 前記酸化物由来のピーク強度と、前記アルジロダイト型結晶構造に由来する29.7±0.5deg.のピーク強度(アルジロダイト型結晶構造由来のピーク強度)を表3に示す。 The peak intensity derived from the oxide and the peak intensity at 29.7±0.5 deg. derived from the argyrodite crystal structure (peak intensity derived from the argyrodite crystal structure) are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3中、「N/A」は、酸化物由来のピークに該当するピークが観測されなかったことを意味する。 In Table 3, "N/A" means that no peaks corresponding to oxide-derived peaks were observed.
 製造された改質硫化物固体電解質(1)、改質硫化物固体電解質(2)、改質硫化物固体電解質(4)及び改質硫化物固体電解質(5)は、硫化物固体電解質のイオン伝導度を保ちつつ、メジアン径(D50)の増大を抑制しながら、硫化水素の発生が抑制した改質硫化物固体電解質であることが分かった。 The produced modified sulfide solid electrolyte (1), modified sulfide solid electrolyte (2), modified sulfide solid electrolyte (4) and modified sulfide solid electrolyte (5) were found to be modified sulfide solid electrolytes in which the generation of hydrogen sulfide was suppressed while maintaining the ionic conductivity of the sulfide solid electrolyte and suppressing an increase in the median diameter ( D50 ).
 改質硫化物固体電解質(3)のXRDパターンでは、改質硫化物固体電解質(1)等のXRDパターンでは見られなかった35.4°に新たな結晶相に由来するピークが観測され、その強度は12,000countであった。酸化物としてTiOを用いると新たなピークが現れることから、新たな結晶相が生じることが確認できた。新たな結晶相が生じているものの、硫化水素の減少が大幅に抑制されることが分かった。 In the XRD pattern of the modified sulfide solid electrolyte (3), a peak was observed at 35.4° derived from a new crystal phase, which was not observed in the XRD patterns of the modified sulfide solid electrolyte (1) and the like, and the intensity was 12,000 counts. Since a new peak appeared when TiO4 was used as the oxide, it was confirmed that a new crystal phase was generated. Although a new crystal phase was generated, it was found that the reduction of hydrogen sulfide was significantly suppressed.
 比較例1の結果から、本実施形態の改質硫化物固体電解質は、硫化水素の発生を抑制できることが分かった。また、比較例2~6の結果から酸化物を硫化物固体電解質と混合するだけでは硫化水素の発生を抑制することはできず、加熱することが必要であることが分かった。
 更に、比較例7及び8の結果から、前記特許文献5及び6に記載された硫化物固体電解質の製造方法のように、加熱温度を650℃のような高温としてしまうと、イオン伝導度が大幅に低下し、メジアン径(D50)も大きくなることが分かった。
The results of Comparative Example 1 show that the modified sulfide solid electrolyte of the present embodiment can suppress the generation of hydrogen sulfide. Moreover, the results of Comparative Examples 2 to 6 show that the generation of hydrogen sulfide cannot be suppressed by simply mixing an oxide with a sulfide solid electrolyte, and that heating is necessary.
Furthermore, from the results of Comparative Examples 7 and 8, it was found that when the heating temperature was set to a high temperature such as 650° C. as in the methods for producing a sulfide solid electrolyte described in Patent Documents 5 and 6, the ionic conductivity was significantly reduced and the median diameter (D 50 ) was also increased.
 図3は、硫化水素の積算の発生量と瞬間発生量の経時変化を表すグラフである。図3中の実線1は、改質硫化物固体電解質(5)の、実線2は、改質硫化物固体電解質(C6)の、実線3は、改質硫化物固体電解質(C8)の、硫化水素(HS)のガス流通時間0分から各時間までの累計の発生量(累計)を表す。図3中の破線4は、改質硫化物固体電解質(5)の、破線5は、改質硫化物固体電解質(C6)の、破線6は、改質硫化物固体電解質(C8)の、各ガス流通時間における硫化水素(HS)の瞬間発生量を表す。 3 is a graph showing the change over time in the cumulative generation amount and instantaneous generation amount of hydrogen sulfide. In FIG. 3, solid line 1 shows the cumulative generation amount (cumulative) from 0 minutes into the gas flow time of hydrogen sulfide (H 2 S) for the modified sulfide solid electrolyte (5), solid line 2 shows the cumulative generation amount (cumulative) for each time from 0 minutes into the gas flow time of the modified sulfide solid electrolyte (C6), and solid line 3 shows the cumulative generation amount (cumulative) for each time from 0 minutes into the gas flow time of the modified sulfide solid electrolyte (C8). In FIG. 3, dashed line 4 shows the instantaneous generation amount of hydrogen sulfide (H 2 S) for the modified sulfide solid electrolyte (5), dashed line 5 shows the instantaneous generation amount of hydrogen sulfide (H 2 S) for each gas flow time for the modified sulfide solid electrolyte (C6), and dashed line 6 shows the instantaneous generation amount of hydrogen sulfide (H 2 S) for each gas flow time for the modified sulfide solid electrolyte (C8).
 実施例5、比較例6及び比較例8の硫化物固体電解質は、いずれも酸化物としてAlを2.7質量%用いている。しかし、比較例6は加熱することを行っておらず、実施例5は500℃で加熱し比較例8は650℃で加熱している。図3から比較例6は瞬間発生量が常に高く、積算の発生量も多くなっている。これに対し実施例5と比較例8を比較すると初期の瞬間発生量は比較例8の方が少ないものの、60分後ぐらいから、両者の間に差はなくなることが読み取れる。 The sulfide solid electrolytes of Example 5, Comparative Example 6, and Comparative Example 8 all use 2.7 mass% Al2O3 as an oxide. However, Comparative Example 6 was not heated, Example 5 was heated at 500°C, and Comparative Example 8 was heated at 650°C. From Fig. 3, Comparative Example 6 always has a high instantaneous generation amount and a large cumulative generation amount. In contrast, when comparing Example 5 and Comparative Example 8, it can be seen that although Comparative Example 8 has a lower initial instantaneous generation amount, the difference between the two disappears after about 60 minutes.
 図4に、実施例5、比較例6及び比較例8で得られた硫化物固体電解質のXRDパターンを示す。
 実施例5及び比較例6のXRDパターンから、500℃で加熱しても、アルジロダイト型結晶構造は保たれることが分かる。これに対し、比較例8では実施例5及び比較例6のXRDパターンで強いピーク強度を示したピークの前後に、新たなピークが出現していることが分かる。これは、比較例8の製造方法では酸化物とともに、硫化物固体電解質を、高温で加熱することにより、酸化物が硫化物固体電解質の結晶構造に取り込まれているためと考えられる。このように比較例8の硫化物固体電解質は、酸化物が結晶構造に取り込まれ、変性することで、硫化水素の発生を抑制していることが考えられる。しかし、このように硫化物固体電解質が変性すると、表2に示したように、比較例8の硫化物固体電解質はイオン伝導度が大きく低下してしまうことが分かる。また、高温で加熱することで、比較例8の硫化物固体電解質はメジアン径(D50)が大きく増大してしまうため、その後粉砕する必要が生じてしまう。
FIG. 4 shows XRD patterns of the sulfide solid electrolytes obtained in Example 5, Comparative Example 6, and Comparative Example 8.
From the XRD patterns of Example 5 and Comparative Example 6, it can be seen that the argyrodite-type crystal structure is maintained even when heated at 500°C. In contrast, in Comparative Example 8, it can be seen that new peaks appear before and after the peaks that showed strong peak intensities in the XRD patterns of Example 5 and Comparative Example 6. This is thought to be because, in the manufacturing method of Comparative Example 8, the sulfide solid electrolyte is heated at a high temperature together with the oxide, and the oxide is incorporated into the crystal structure of the sulfide solid electrolyte. In this way, it is thought that the sulfide solid electrolyte of Comparative Example 8 suppresses the generation of hydrogen sulfide by incorporating the oxide into the crystal structure and modifying it. However, when the sulfide solid electrolyte is modified in this way, it can be seen that the ionic conductivity of the sulfide solid electrolyte of Comparative Example 8 is greatly reduced, as shown in Table 2. In addition, the median diameter (D 50 ) of the sulfide solid electrolyte of Comparative Example 8 is greatly increased by heating at a high temperature, so that it becomes necessary to crush it afterwards.
 本実施形態によれば、硫化物固体電解質のイオン伝導度を保ちつつ、メジアン径(D50)の増大を抑制しながら、硫化水素の発生が抑制した改質硫化物固体電解質を得ることができる改質硫化物固体電解質の製造方法を提供すること、前記改質硫化物固体電解質を提供すること、並びに前記改質硫化物固体電解質を含む電極合材及びリチウムイオン電池を提供することができる。
 本実施形態の製造方法により得られる改質硫化物固体電解質は、リチウムイオン電池に、とりわけ、パソコン、ビデオカメラ、及び携帯電話等の情報関連機器や通信機器等に用いられるリチウムイオン電池に好適に用いられる。
According to the present embodiment, it is possible to provide a method for producing a modified sulfide solid electrolyte that can obtain a modified sulfide solid electrolyte in which the generation of hydrogen sulfide is suppressed while suppressing an increase in the median diameter (D 50 ) and maintaining the ionic conductivity of the sulfide solid electrolyte; it is also possible to provide the modified sulfide solid electrolyte; and it is also possible to provide an electrode mixture and a lithium ion battery that include the modified sulfide solid electrolyte.
The modified sulfide solid electrolyte obtained by the production method of this embodiment is suitable for use in lithium ion batteries, particularly lithium ion batteries used in information-related devices and communication devices such as personal computers, video cameras, and mobile phones.
1    曝露試験装置
10   フラスコ
11   冷却槽
20   スタティックミキサー
30   露点計
40   二重反応管
41   試料
42   石英ウール
43   三方コック
50   露点計
60   硫化水素計測器
70   アルカリトラップ
BP   二又分岐管
V    ニードルバルブ
FM   ニードルバルブ付きフローメーター
Reference Signs List 1 Exposure test apparatus 10 Flask 11 Cooling tank 20 Static mixer 30 Dew point meter 40 Double reaction tube 41 Sample 42 Quartz wool 43 Three-way cock 50 Dew point meter 60 Hydrogen sulfide measuring instrument 70 Alkaline trap BP Bifurcated branch pipe V Needle valve FM Flow meter with needle valve

Claims (20)

  1.  アルジロダイト型結晶構造を有する硫化物固体電解質と、酸化物と、を300℃以上600℃以下で加熱すること、を含む、改質硫化物固体電解質の製造方法。 A method for producing a modified sulfide solid electrolyte, comprising heating a sulfide solid electrolyte having an argyrodite-type crystal structure and an oxide at 300°C or higher and 600°C or lower.
  2.  前記硫化物固体電解質が、リチウム原子、硫黄原子、リン原子及びハロゲン原子を含む、請求項1に記載の改質硫化物固体電解質の製造方法。 The method for producing a modified sulfide solid electrolyte according to claim 1, wherein the sulfide solid electrolyte contains lithium atoms, sulfur atoms, phosphorus atoms, and halogen atoms.
  3.  前記ハロゲン原子として、塩素原子及び臭素原子から選ばれる少なくとも1種を含む、請求項2に記載の改質硫化物固体電解質の製造方法。 The method for producing a modified sulfide solid electrolyte according to claim 2, wherein the halogen atoms include at least one selected from chlorine atoms and bromine atoms.
  4.  前記酸化物が、一般式M(式中、Mは、Mg、Al、Si、Ca、Ti、V、Fe、Zn、Ga、Sr、Y、Zr、Nb、Mo、Sn、Sb、Ba、Ta、W及びBiから選ばれる原子を表し、m及びnはそれぞれ独立して1~5の整数を表す。)で表される化合物を含む、請求項1~3のいずれか1項に記載の改質硫化物固体電解質の製造方法。 The method for producing a modified sulfide solid electrolyte according to any one of claims 1 to 3, wherein the oxide comprises a compound represented by the general formula M m O n (wherein M represents an atom selected from Mg, Al, Si, Ca, Ti, V, Fe, Zn, Ga, Sr, Y, Zr, Nb, Mo, Sn, Sb, Ba, Ta, W and Bi, and m and n each independently represent an integer of 1 to 5).
  5.  前記一般式MにおけるMがAlである酸化物を含む、請求項4に記載の改質硫化物固体電解質の製造方法。 The method for producing a modified sulfide solid electrolyte according to claim 4, comprising an oxide in which M in the general formula MmOn is Al.
  6.  前記酸化物中の前記Mの合計のモル数(M)と、前記硫化物固体電解質中のリン原子の合計のモル数(M)との比の値(M/M)が、0.010より大きい、請求項5に記載の改質硫化物固体電解質の製造方法。 6. The method for producing a modified sulfide solid electrolyte according to claim 5, wherein a ratio (M M /M P ) of the total number of moles of M in the oxide (M M ) to the total number of moles of phosphorus atoms in the sulfide solid electrolyte (M P ) is greater than 0.010.
  7.  前記加熱を1時間以上行う、請求項1~6のいずれか1項に記載の改質硫化物固体電解質の製造方法。 The method for producing a modified sulfide solid electrolyte according to any one of claims 1 to 6, wherein the heating is carried out for one hour or more.
  8.  更に混合することを含む、請求項1~7のいずれか1項に記載の改質硫化物固体電解質の製造方法。 A method for producing the modified sulfide solid electrolyte according to any one of claims 1 to 7, further comprising mixing.
  9.  前記加熱することが、
     前記硫化物固体電解質と、前記酸化物と、を一の加熱器で同時に加熱して行われる、請求項1~8のいずれか1項に記載の改質硫化物固体電解質の製造方法。
    The heating step comprises:
    The method for producing a modified sulfide solid electrolyte according to any one of claims 1 to 8, wherein the sulfide solid electrolyte and the oxide are heated simultaneously in one heater.
  10.  前記改質硫化物固体電解質の1次粒子の表面に付着又は結合した前記酸化物のメジアン径(D50)が、100.0μm未満である、請求項1~9のいずれか1項に記載の改質硫化物固体電解質の製造方法。 The method for producing a modified sulfide solid electrolyte according to any one of claims 1 to 9, wherein the median diameter (D 50 ) of the oxide attached to or bonded to the surface of a primary particle of the modified sulfide solid electrolyte is less than 100.0 μm.
  11.  リチウム原子、硫黄原子、リン原子及びハロゲン原子を含むアルジロダイト型結晶構造を有する硫化物固体電解質と、
     一般式M(式中、Mは、Mg、Al、Si、Ca、Ti、V、Fe、Zn、Ga、Sr、Y、Zr、Nb、Mo、Sn、Sb、Ba、Ta、W及びBiから選ばれる原子を表し、m及びnはそれぞれ独立して1~5の整数を表す。)で表される酸化物と、を含み、
     下記(i)~(iii)を満たす、改質硫化物固体電解質。
    (i) 前記一般式MにおけるMがAlである酸化物を少なくとも1種含む。
    (ii) 前記改質硫化物固体電解質に含まれる全酸化物中の前記Mの合計のモル数(M)と、前記硫化物固体電解質中のリン原子の合計のモル数(M)との比の値(M/M)が、0.010より大きい。
    (iii) X線回折スペクトル(XRDパターン)による、29.7±0.5deg.の範囲内にピークが1本しか観測されないか、2本以上観測される場合には、最も高いピークの強度をIとし2番目に高いピークの強度をIとした時、I/Iが1.0未満である。
    a sulfide solid electrolyte having an argyrodite-type crystal structure containing lithium atoms, sulfur atoms, phosphorus atoms, and halogen atoms;
    and an oxide represented by the general formula M m O n (wherein M represents an atom selected from Mg, Al, Si, Ca, Ti, V, Fe, Zn, Ga, Sr, Y, Zr, Nb, Mo, Sn, Sb, Ba, Ta, W and Bi, and m and n each independently represent an integer of 1 to 5),
    A modified sulfide solid electrolyte that satisfies the following (i) to (iii):
    (i) At least one oxide in which M in the general formula M m O n is Al is contained.
    (ii) the ratio (M M /M P ) of the total number of moles of M in all oxides contained in the modified sulfide solid electrolyte (M M ) to the total number of moles of phosphorus atoms in the sulfide solid electrolyte ( M P ) is greater than 0.010.
    (iii) Only one peak is observed within the range of 29.7±0.5 deg. in an X-ray diffraction spectrum (XRD pattern), or when two or more peaks are observed, I2 / I1 is less than 1.0, where I1 is the intensity of the highest peak and I2 is the intensity of the second highest peak.
  12.  X線回折スペクトル(XRDパターン)による、前記酸化物由来のピーク強度と、前記アルジロダイト型結晶構造に由来する29.7±0.5deg.のピーク強度(アルジロダイト型結晶構造由来のピーク強度)と、の強度比(酸化物由来のピーク強度/アルジロダイト型結晶構造由来のピーク強度)が0.1未満である、請求項11記載の改質硫化物固体電解質。 The modified sulfide solid electrolyte according to claim 11, in which the intensity ratio (peak intensity due to oxide/peak intensity due to argyrodite crystal structure) of the peak intensity due to the oxide and the peak intensity at 29.7±0.5 deg. due to the argyrodite crystal structure (peak intensity due to argyrodite crystal structure) in an X-ray diffraction spectrum (XRD pattern) is less than 0.1.
  13.  前記ハロゲン原子として、塩素原子及び臭素原子から選ばれる少なくとも1種を含む、請求項11又は12に記載の改質硫化物固体電解質。 The modified sulfide solid electrolyte according to claim 11 or 12, wherein the halogen atoms include at least one selected from chlorine atoms and bromine atoms.
  14.  1次粒子の表面に前記酸化物が付着又は結合した、請求項11~13のいずれか1項に記載の改質硫化物固体電解質。 The modified sulfide solid electrolyte according to any one of claims 11 to 13, in which the oxide is attached or bonded to the surface of the primary particles.
  15.  メジアン径(D50)が、150μm未満である、請求項11~14のいずれか1項に記載の改質硫化物固体電解質。 The modified sulfide solid electrolyte according to any one of claims 11 to 14, having a median diameter (D 50 ) of less than 150 μm.
  16.  改質硫化物固体電解質の1次粒子の表面に付着又は結合した前記酸化物のメジアン径(D50)が、100.0μm未満である、請求項14又は15に記載の改質硫化物固体電解質。 16. The modified sulfide solid electrolyte of claim 14 or 15, wherein the median diameter ( D50 ) of the oxide attached or bonded to the surface of the primary particles of the modified sulfide solid electrolyte is less than 100.0 μm.
  17.  前記一般式MにおけるMがSiである酸化物を含む、請求項11~16のいずれか1項に記載の改質硫化物固体電解質。 The modified sulfide solid electrolyte according to any one of claims 11 to 16, comprising an oxide in which M in the general formula M m O n is Si.
  18.  前記一般式MにおけるMがTiである酸化物を含まない、請求項11~17のいずれか1項に記載の改質硫化物固体電解質。 The modified sulfide solid electrolyte according to any one of claims 11 to 17, which does not include an oxide in which M in the general formula M m O n is Ti.
  19.  請求項11~18のいずれか1項に記載の改質硫化物固体電解質と、電極活物質と、を含む、電極合材。 An electrode mixture comprising the modified sulfide solid electrolyte according to any one of claims 11 to 18 and an electrode active material.
  20.  請求項11~18のいずれか1項に記載の改質硫化物固体電解質及び請求項19に記載の電極合材の少なくとも一方を含む、リチウムイオン電池。 A lithium ion battery comprising at least one of the modified sulfide solid electrolyte described in any one of claims 11 to 18 and the electrode mixture described in claim 19.
PCT/JP2024/002743 2023-01-31 2024-01-30 Modified sulfide solid electrolyte producing method, said modified sulfide solid electrolyte, and electrode mixture and lithium-ion battery containing said modified sulfide solid electrolyte WO2024162294A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023012435 2023-01-31
JP2023-012435 2023-01-31

Publications (1)

Publication Number Publication Date
WO2024162294A1 true WO2024162294A1 (en) 2024-08-08

Family

ID=92146812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/002743 WO2024162294A1 (en) 2023-01-31 2024-01-30 Modified sulfide solid electrolyte producing method, said modified sulfide solid electrolyte, and electrode mixture and lithium-ion battery containing said modified sulfide solid electrolyte

Country Status (1)

Country Link
WO (1) WO2024162294A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012022801A (en) * 2010-07-12 2012-02-02 Toyota Motor Corp Sulfide solid electrolyte material
WO2022009935A1 (en) * 2020-07-07 2022-01-13 Agc株式会社 Sulfide-based solid electrolyte used in lithium ion secondary battery, method for producing same, and lithium ion secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012022801A (en) * 2010-07-12 2012-02-02 Toyota Motor Corp Sulfide solid electrolyte material
WO2022009935A1 (en) * 2020-07-07 2022-01-13 Agc株式会社 Sulfide-based solid electrolyte used in lithium ion secondary battery, method for producing same, and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP6892815B2 (en) Sulfide-based solid electrolyte for lithium secondary batteries
JP7435452B2 (en) Method for producing sulfide solid electrolyte, sulfide solid electrolyte, all-solid-state battery, and method for selecting raw material compounds used for producing sulfide solid electrolyte
KR102151511B1 (en) Sulfide-based solid electrolyte particles
WO2018164224A1 (en) Sulfide solid electrolyte particle
US20200381772A1 (en) Solid electrolyte, preparation method thereof, and all-solid-state battery employing the same
WO2020105737A1 (en) Method for producing solid electrolyte, and electrolyte precursor
WO2022019099A1 (en) Positive pole material and battery
JP6544579B2 (en) Method for producing lithium tungstate, and method for producing positive electrode active material for non-aqueous electrolyte secondary battery using lithium tungstate
WO2022158458A1 (en) Modified sulfide solid electrolyte and method for producing same
JP6798477B2 (en) Sulfide solid electrolyte
JP6036769B2 (en) Negative electrode active material for sodium ion battery and sodium ion battery
JP7324849B2 (en) Electrode mixture and its manufacturing method
WO2022080435A1 (en) Sulfide solid electrolyte and method for manufacturing same
WO2021220927A1 (en) Positive electrode material, and battery
WO2024162294A1 (en) Modified sulfide solid electrolyte producing method, said modified sulfide solid electrolyte, and electrode mixture and lithium-ion battery containing said modified sulfide solid electrolyte
US20220416293A1 (en) Solid electrolyte, lithium ion energy storage device, and energy storage apparatus
WO2023127736A1 (en) Composite active material
JP7575981B2 (en) Method for producing solid electrolyte
Tan et al. A scalable dry chemical method for lithium borate coating to improve the performance of LiNi0. 90Co0. 06Mn0. 04O2 cathode material
JP2023180901A (en) Lithium titanate powder, negative electrode active material composition using the same, and all-solid-state secondary battery
WO2024024823A1 (en) Solid electrolyte composition, solid electrolyte layer or electrode mixture, and lithium ion battery
WO2021240913A1 (en) Electrode mixture and method for producing same
WO2022239754A1 (en) Sulfide solid electrolyte composition, electrode mixture containing same, and method for producing sulfide solid electrolyte composition
WO2022163541A1 (en) Method for producing solid electrolyte
WO2021221000A1 (en) Positive electrode material, and battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24750243

Country of ref document: EP

Kind code of ref document: A1