WO2024159349A1 - 控制系统以及用于其的控制方法、以及设备 - Google Patents

控制系统以及用于其的控制方法、以及设备 Download PDF

Info

Publication number
WO2024159349A1
WO2024159349A1 PCT/CN2023/073784 CN2023073784W WO2024159349A1 WO 2024159349 A1 WO2024159349 A1 WO 2024159349A1 CN 2023073784 W CN2023073784 W CN 2023073784W WO 2024159349 A1 WO2024159349 A1 WO 2024159349A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
value
state
driving
display
Prior art date
Application number
PCT/CN2023/073784
Other languages
English (en)
French (fr)
Inventor
诸健文
孙宾华
訾峰
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202380008126.0A priority Critical patent/CN118742941A/zh
Priority to PCT/CN2023/073784 priority patent/WO2024159349A1/zh
Publication of WO2024159349A1 publication Critical patent/WO2024159349A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes

Definitions

  • the present disclosure relates to the field of display control technology, and in particular, to a control system for controlling a display module and a control method applicable to the control system, as well as a device capable of executing the control method.
  • AR augmented reality
  • a control system which includes: a module driving state monitoring module, which is configured to obtain driving state parameters of a display module, wherein the driving state parameters reflect the driving state of the display module; a module driving control module, which is configured to: determine a current driving state of the display module based on the driving state parameters, and select a driving strategy for the display module based on the current driving state; and a module driving state adjustment module, which is configured to: drive the display module based on the selected driving strategy.
  • the driving state parameters include: the measured values of the output voltage and the output current of the power management integrated circuit that supplies power to the display module, and the current power consumption value of the display module;
  • the module driving state monitoring module includes a module electrical signal acquisition module, and the module electrical signal acquisition module is configured to obtain the measured value of the output voltage, the measured value of the output current, and the current power consumption value;
  • the module driving control module includes: an electrical state determination module, which is configured to: determine the current driving state of the display module based on the measured values of the output voltage and the output current and the current power consumption value; a driving strategy selection module, which is configured to: select a driving strategy for the display module based on the current driving state of the display module.
  • the module electrical signal acquisition module includes: a sampling resistor, which is arranged in a power supply path from the output end of the power management integrated circuit to the power supply end of the display module; a voltage measurement module, which is configured to: measure the voltage at one end of the sampling resistor to obtain the measured value of the output voltage; a current measurement module, which is configured to: measure the voltage difference on the sampling resistor, and obtain the measured value of the output current based on the voltage difference; a power consumption estimation module, which is configured to: estimate the current power consumption value of the display module based on the measured value of the output voltage and the measured value of the output current.
  • the electrical state determination module is further configured to: determine a voltage to be calibrated state in response to the measured value of the output voltage being different from a preset value of the output voltage of the power management integrated circuit during the calibration and adjustment stage; determine an electrical abnormality state in response to the measured value of the output voltage being greater than a preset voltage specification value, the measured value of the output current being greater than a preset current specification value, or the current power consumption value being greater than a preset power consumption specification value during the feedback adjustment stage; the drive strategy selection module is further configured to: select a voltage drive calibration strategy in response to the voltage to be calibrated state; and select a drive abnormality forced adjustment strategy in response to the electrical abnormality state.
  • the module drive state adjustment module is also configured to, in response to selecting the voltage drive calibration strategy, perform the following operations: determine a voltage calibration value based on a difference between a measured value of the output voltage and a preset value of the output voltage; and adjust the output voltage of the power management integrated circuit based on the voltage calibration value.
  • the module drive state adjustment module is also configured to, in response to selecting the drive abnormality forced adjustment strategy, perform the following operations: in response to the measured value of the output voltage being less than or equal to a preset overvoltage threshold, the measured value of the output current being less than or equal to a preset overcurrent threshold, and the current power consumption value being less than or equal to a preset overload threshold, reduce the voltage output by the power management integrated circuit; in response to the measured value of the output voltage being greater than the overvoltage threshold, the measured value of the output current being greater than the overcurrent threshold, or the current power consumption value being greater than the overload threshold, cause the power management integrated circuit to stop supplying power to the display module.
  • the module electrical signal acquisition module further includes a fuse, which is arranged in the power supply path and connected in series with the sampling resistor.
  • the module electrical signal acquisition module further includes: an electrical signal comparator, which is configured to: in response to the measured value of the output voltage being greater than or equal to The preset overvoltage threshold and/or the measured value of the output current is greater than or equal to the preset overcurrent threshold, generating an overvoltage/overcurrent warning signal; a multi-way AND gate circuit is configured to: perform a logical AND operation on the overvoltage/overcurrent warning signal and the power management integrated circuit initial enable signal received from the module drive control module, so that the obtained power management integrated circuit enable signal is invalid.
  • control system also includes an alarm module, which is configured to: perform an alarm operation in response to receiving an alarm enable signal from the module drive control module; wherein the module drive control module is also configured to: generate the alarm enable signal in response to receiving the overvoltage/overcurrent prompt signal.
  • alarm module which is configured to: perform an alarm operation in response to receiving an alarm enable signal from the module drive control module; wherein the module drive control module is also configured to: generate the alarm enable signal in response to receiving the overvoltage/overcurrent prompt signal.
  • the module drive control module also includes a battery life evaluation module, wherein: the battery life evaluation module is configured to: estimate the battery life of the display module based on the current power consumption value and the current power value received from the module drive control module; in response to the battery life being less than a preset battery life threshold, determine an insufficient battery life state; the drive strategy selection module is also configured to: in response to the insufficient battery life state, select a low power consumption drive adjustment strategy.
  • the battery life evaluation module is configured to: estimate the battery life of the display module based on the current power consumption value and the current power value received from the module drive control module; in response to the battery life being less than a preset battery life threshold, determine an insufficient battery life state
  • the drive strategy selection module is also configured to: in response to the insufficient battery life state, select a low power consumption drive adjustment strategy.
  • the module driving state adjustment module is further configured to: in response to the low power consumption driving adjustment strategy, enable the power management integrated circuit to reduce the output voltage.
  • the driving state parameters also include: the ambient temperature of the surrounding environment of the display module and the temperature inside the display module;
  • the module driving state monitoring module also includes: an ambient temperature sensor, which is configured to: measure the ambient temperature of the surrounding environment of the display module and generate an ambient temperature measurement value;
  • a module internal temperature sensor which is configured to: measure the temperature inside the display module and generate a module internal temperature measurement value;
  • the module driving control module also includes a temperature state determination module, which is configured to: determine an abnormal ambient temperature state in response to the ambient temperature measurement value being greater than a preset ambient temperature threshold; determine an abnormal module internal temperature state in response to the module internal temperature measurement value being greater than a preset internal temperature threshold;
  • the driving strategy selection module is also configured to: select a heat dissipation adjustment strategy in response to the abnormal ambient temperature state; select the heat dissipation adjustment strategy or the low power consumption driving adjustment strategy in response to the abnormal module internal temperature state.
  • the temperature state determination module is further configured to: in the feedback adjustment stage, when the ambient temperature measurement value is not greater than the ambient temperature threshold and the module internal temperature measurement value is not greater than the internal temperature threshold, in response to a preset time
  • the internal temperature measurement value of the module corresponding to the same power consumption value of the display module in the interval continues to rise, and the rising rate is greater than the preset temperature rise rate threshold, and the temperature rise abnormal state is determined
  • the driving strategy selection module is also configured to: in response to the temperature rise abnormal state, select the heat dissipation adjustment strategy or the low power consumption driving adjustment strategy.
  • the electrical state determination module is further configured to: in the feedback adjustment stage, in response to the internal temperature measurement value of the module being less than the internal temperature threshold and there being a positive correlation between the internal temperature measurement value of the module and the current power consumption value, determine a temperature-power consumption positive correlation state; the driving strategy selection module is further configured to: in response to the temperature-power consumption positive correlation state, select the heat dissipation adjustment strategy or the low-power driving adjustment strategy.
  • the module drive state adjustment module is also configured to: in response to selecting the heat dissipation adjustment strategy, perform at least one of the following operations: increase the operating voltage provided to the heat dissipation fan; increase the duty cycle of the drive signal provided to the heat dissipation fan; in response to selecting the low power consumption drive adjustment strategy, cause the power management integrated circuit to reduce the output voltage.
  • the module driving state adjustment module is further configured to: determine a corresponding gamma adjustment value based on the measured value of the output voltage and the measured value of the module internal temperature; and reset the gamma value used in the display module using the gamma adjustment value.
  • the driving state parameters also include: the chromaticity and brightness of the display screen of the display module;
  • the module driving state monitoring module also includes: a module chromaticity sensor, which is configured to: measure the chromaticity of the display screen of the display module to obtain a module chromaticity measurement value;
  • a module brightness sensor which is configured to: measure the brightness of the display screen of the display module to obtain a module brightness measurement value;
  • the module driving control module also includes a display state determination module, which is configured to: in response to the difference between the module chromaticity measurement value and the target chromaticity value being greater than the chromaticity measurement value in the calibration adjustment stage, In response to the difference between the module chromaticity measurement value and the target chromaticity value being greater than the chromaticity difference threshold, or the difference between the module brightness measurement value and the target brightness value being greater than the brightness difference threshold, determining that the display module is in a to-be-calibrated state; in response to the difference between the module chromaticity measurement
  • the module driving adjustment module is also configured to: in response to adopting the display module calibration strategy, perform the following operations: determine a chromaticity calibration value based on the difference between the module chromaticity measurement value and the target chromaticity value; determine a brightness calibration value based on the difference between the module brightness measurement value and the target brightness value; and adjust the chromaticity offset value and the brightness offset value of the display module based on the chromaticity calibration value and the brightness calibration value.
  • a control method which includes: obtaining a driving state parameter of a display module, wherein the driving state parameter reflects the driving state of the display module; determining a current driving state of the display module based on the driving state parameter; selecting a driving strategy for the display module based on the current driving state; and driving the display module based on the selected driving strategy.
  • acquiring the driving state parameters of the display module includes: acquiring display parameters, temperature parameters and electrical parameters of the display module, wherein the display parameters include the module chromaticity measurement value and the module brightness measurement value, the temperature parameters include the ambient temperature measurement value and the module internal temperature measurement value, and the electrical parameters include the output voltage, the output current measurement value and the current power consumption value; determining the current driving state of the display module based on the driving state parameters includes: performing display state judgment based on the display parameters, performing temperature state judgment based on the temperature parameters, performing electrical state judgment based on the electrical parameters, and determining the current driving state of the display module based on the judgment results.
  • control method further includes: performing a battery life evaluation based on the current power consumption value and the current power amount; and selecting a driving strategy for the display module based on a result of the battery life evaluation.
  • a device including a display module including a processor and a memory, the memory being configured to store executable instructions, the executable instructions being configured to, when executed on the processor, cause the processor to execute the control method described in the second aspect of the present disclosure.
  • FIG1 schematically shows a control system according to the present disclosure in the form of a block diagram
  • FIG2 schematically illustrates a control system according to an exemplary embodiment of the present disclosure in the form of a block diagram
  • FIG3 schematically illustrates details of the control system shown in FIG2 in the form of a block diagram according to an exemplary embodiment of the present disclosure
  • FIG4 schematically illustrates details of the control system shown in FIG2 in the form of a block diagram according to another exemplary embodiment of the present disclosure
  • FIG5 schematically shows an implementation of abnormal driving forced regulation according to an exemplary embodiment of the present disclosure
  • FIG6 schematically illustrates a control system according to another exemplary embodiment of the present disclosure in the form of a block diagram
  • FIG7 schematically shows a control system according to another exemplary embodiment of the present disclosure in the form of a block diagram
  • FIG8 schematically shows an implementation of heat dissipation regulation according to an exemplary embodiment of the present disclosure
  • FIG9 schematically shows an implementation of active gamma adjustment according to an exemplary embodiment of the present disclosure
  • FIG10 schematically shows a control system according to another exemplary embodiment of the present disclosure in the form of a block diagram
  • FIG11 schematically shows an exemplary arrangement of sensors in the control system shown in FIG10 ;
  • FIG12 schematically illustrates a control method according to an exemplary embodiment of the present disclosure in the form of a flowchart
  • FIG13 schematically shows a flow chart of a control system according to an exemplary embodiment of the present disclosure
  • FIG. 14 schematically illustrates, in the form of a block diagram, a device including a display module according to an exemplary embodiment of the present disclosure.
  • a control system according to the present disclosure is schematically shown in the form of a block diagram.
  • the power management module 150 is used to manage the battery 140 and to supply power to the display module 110, the core processor 120 and the peripherals 130, and the control system 100 is used to drive the display module 110 to display, monitor the driving state of the display module 110, and make corresponding adjustments according to the changes in the driving state of the display module 110.
  • the term "display module” refers to such a device, which includes components such as a display screen, a display drive circuit, and a packaging component, and these components together constitute a separate device so that it can be independently installed and used.
  • the power management module 150 may include a plurality of power management integrated circuits (i.e., Power Management Integrated Circuit, abbreviated as PMIC), each of which is used to supply power to corresponding components, such as the display module 110, the peripherals 130, etc.
  • PMIC Power Management Integrated Circuit
  • the peripheral device 130 in the present disclosure is an additional device that can be used together with the display module 110, for example, a control handle, an external audio device, an external memory, etc.
  • the present disclosure does not limit the specific type of the peripheral device 130.
  • the peripheral device 130 can also be implemented as a cooling fan to reduce the ambient temperature of the environment in which the display module 110 is located. This will be described in detail below.
  • the control system 100 includes a module drive state monitoring module 111, a module drive control module 112 and a module drive state adjustment module 113.
  • the module drive state monitoring module 111 is configured to obtain the drive state parameters of the display module, wherein the drive state parameters reflect the drive state of the display module.
  • the drive state parameters may include at least one of the display parameters, temperature parameters and electrical parameters of the display module 110, or may also include any other suitable parameters as long as the parameters can reflect the drive state of the display module 110.
  • the module drive control module 112 is configured to: determine the current drive state of the display module 110 based on the drive state parameters, and select a drive strategy for the display module 110 based on the current drive state.
  • the module drive state adjustment module 113 is configured to: drive the display module 110 based on the selected drive strategy.
  • the module drive state adjustment module can also drive the display module based on manually input control parameters and/or control instructions (for example, inputting the required control parameters and/or control instructions through a suitable user interface or interface). In this way, the module drive state adjustment module can achieve more flexible drive control of the display module.
  • FIG. 2 a block diagram schematically illustrates an example of Compared with the control system shown in FIG1 , FIG2 is only an exemplary embodiment of the present disclosure, specifically showing the respective structures of the module drive state monitoring module 111, the module drive control module 112 and the module drive state adjustment module 113. Therefore, the following will only describe the specific structures of these modules, and the same features will not be repeated.
  • the module driving state monitoring module 111 includes a module electrical signal acquisition module 111a.
  • the module electrical signal acquisition module 111a is configured to measure the output voltage and output current of the PMIC that supplies power to the display module 110 and determine the current power consumption value of the display module 110.
  • the module driving control module 112 includes an electrical state determination module 112b and a driving strategy selection module 112a.
  • the module electrical signal acquisition module 111a transmits the measured values of the output voltage and output current to the electrical state determination module 112b with the current power consumption value determined thereby.
  • the electrical state determination module 112b is configured to determine the current driving state of the display module 110 based on the measured values of the output voltage and output current of the PMIC that supplies power to the display module 110 with the current power consumption value determined thereby.
  • the driving strategy selection module 112a is configured to select a driving strategy for the display module 110 based on the current driving state of the display module 110.
  • the module driving state adjustment module 113 is configured to: drive the display module 110 based on the selected driving strategy, for example, to perform voltage driving calibration 113a, driving abnormal forced adjustment 113b or low power driving adjustment 113c.
  • control system 100 can monitor the electrical state of the display module 110, for example, monitor its current voltage, current and power consumption, and perform intelligent driving adjustment on the display module 110 based on the monitoring results, thereby reducing the driving power consumption of the display module 110 and avoiding electrical abnormalities such as overcurrent, overvoltage or overload in the display module 110.
  • FIG1 shows that the module drive control module 112 and the module drive state adjustment module 113 can be implemented in the core processor 120, for example, in the form of software or hardware modules. Therefore, in some schematic diagrams of the present disclosure, for the convenience of display, the module drive control module and the module drive state adjustment module in the control system are represented by the core processor 120. However, it should be understood that it is not necessary for the module drive control module 112 and the module drive state adjustment module 113 to be implemented in the core processor 120. According to actual needs, the module drive control module 112 and the module drive state adjustment module 113, as well as the modules included therein, can be formed as separate modules independent of the core processor 120.
  • the module electrical signal acquisition module 111a′ includes The display module 110 includes a sampling resistor 111a-1, a voltage measurement module 111a-2, a current measurement module 111a-3 and a power consumption estimation module 111a-4.
  • the sampling resistor 111a-1 is arranged in the power supply path from the output end of the PMIC to the power supply end of the display module 110.
  • the sampling resistor 111a-1 can be a precision resistor.
  • the voltage measurement module 111a-2 is configured to measure the voltage at one end of the sampling resistor 111a-1 to obtain a measured value of the output voltage of the PMIC.
  • the voltage at one end of the sampling resistor 111a-1 connected to the output end of the PMIC is transmitted to the voltage measurement module 111a-2 through the first voltage divider circuit 111a-5, and the voltage measurement module 111a-2 generates a measured value of the output voltage of the PMIC.
  • the voltage at the other end of the sampling resistor 111a-1 can also be measured to generate a measured value of the output voltage.
  • the current measurement module 111a-3 is configured to measure the voltage difference on the sampling resistor 111a-1, and obtain the measured value of the output current of the PMIC based on the voltage difference.
  • the voltage at one end of the sampling resistor 111a-1 connected to the output end of the PMIC is transmitted to the current measurement module 111a-3 through the first voltage divider circuit 111a-5, and the voltage at one end of the sampling resistor 111a-1 connected to the power supply end of the display module 110 is also transmitted to the current measurement module 111a-3 through the second voltage divider circuit 111a-6, and the current measurement module 111a-3 amplifies the voltage difference to generate the measured value of the output current.
  • the current measurement module 111a-3 can be implemented as a high-precision conditioning amplifier.
  • the measured value of the output voltage and the measured value of the output current of the PMIC are transmitted to the power consumption estimation module 111a-4, whereby the power consumption estimation module 111a-4 can estimate the current power consumption value of the display module 110.
  • the power consumption estimation module 111a-4 can send the obtained electrical signals (e.g., the measured values of the output voltage and the output current, and the current power consumption value) to the electrical state determination module 112b in the core processor 120.
  • the transmission of the electrical signals can be achieved through any suitable communication bus (e.g., a serial bus), thereby enabling the electrical state determination module 112b to determine the electrical state of the display module 110 based on these electrical signals.
  • the voltage measurement module 111a-2 and the power consumption estimation module 111a-4 can be integrated together. In this case, the power consumption estimation module 111a-4 can directly measure the output voltage of the PMIC to obtain the measured value of the output voltage.
  • the control of the display module by the module drive control module 112 and the module drive state adjustment module 113 mainly includes two aspects: one is calibration adjustment, which occurs at the initial startup of the device. By actively monitoring and adjusting the electrical module, the deviation between the actual working condition of the control system and the preset mode is calibrated, thereby preventing the display state caused by the drive level from being affected in advance. Abnormality; on the other hand, there is feedback regulation, which monitors the electrical signals of the display module during the operation of the equipment, feedbacks based on abnormal conditions, checks the drivers at all levels, locates the causes, and eliminates faults.
  • the electrical state determination module 112b is further configured to: determine the voltage to be calibrated state in response to the measured value of the output voltage being different from the preset value of the output voltage of the PMIC during the calibration adjustment phase; determine the electrical abnormal state in response to the measured value of the output voltage being greater than the preset voltage specification value, the measured value of the output current being greater than the preset current specification value, or the current power consumption being greater than the preset power consumption specification value during the feedback adjustment phase.
  • the drive strategy selection module 112a is further configured to: select the voltage drive calibration strategy 113a in response to the voltage to be calibrated state; and select the drive abnormality forced adjustment strategy 113b in response to the electrical abnormal state.
  • the module driving state adjustment module 113 is also configured to perform the following operations in response to selecting the voltage driving calibration strategy 113a: determine the voltage calibration value based on the difference between the measured value of the output voltage and the preset value of the output voltage of the PMIC; and adjust the output voltage of the PMIC based on the voltage calibration value.
  • the module driving state adjustment module 113 is also configured to perform the following operations in response to selecting the driving abnormality forced adjustment strategy 113b: in response to the measured value of the output voltage being less than or equal to the preset overvoltage threshold, the measured value of the output current being less than or equal to the preset overcurrent threshold, and the current power consumption value being less than or equal to the preset overload threshold, reduce the voltage output by the PMIC; in response to the measured value of the output voltage being greater than the preset overvoltage threshold, the measured value of the output current being greater than the preset overcurrent threshold, or the current power consumption value being greater than the preset overload threshold, make the PMIC stop supplying power to the display module 110.
  • the former is that the value of the electrical signal exceeds the electrical specification value, but it is not obvious, and the display module can usually withstand this abnormality in a short time. Therefore, in this case, adjustment can be made after the abnormality is detected to eliminate the abnormality; while the latter is that the value of the electrical signal exceeds the electrical specification value too much, resulting in that the display module can no longer withstand it, so it is necessary to cut off the power supply to protect the display module.
  • the module drive state adjustment module 113 may also be based on manually input electrical control parameters (for example, by appropriate A user interface or interface is used to input the required electrical control parameters, such as voltage parameters, current parameters, etc.) and/or control instructions to drive the display module, thereby achieving more flexible drive control of the display module.
  • the details of the module electrical signal acquisition module in the control system 100 shown in FIG. 2 are schematically shown in the form of a block diagram, and the module electrical signal acquisition module can stop the PMIC from supplying power in the form of a hardware circuit when the electrical state is abnormal.
  • the module electrical signal acquisition module 111a′′ shown in FIG. 4 also includes an electrical signal comparator 111a-7, a multi-way AND gate circuit 111a-8 and a fuse 111a-9, and therefore, these features will be described below, and the features previously described will not be repeated.
  • the electrical signal comparator 111a-7 is configured to generate an overvoltage/overcurrent warning signal in response to the measured value of the output voltage of the PMIC being greater than or equal to a preset overvoltage threshold and/or the measured value of the output current of the PMIC being greater than or equal to a preset overcurrent threshold.
  • the multi-channel AND gate circuit 111a-8 is configured to perform a logic AND operation on the overvoltage/overcurrent warning signal and the PMIC initial enable signal received from the core processor 120 (for example, the module drive control module 112 therein), so that the obtained PMIC enable signal is invalid, thereby, the PMIC 150-1 stops supplying power to the display module.
  • the logical relationship of the drive abnormality forced adjustment implemented based on the electrical signal comparator 111a-7 and the multi-channel AND gate circuit 111a-8 is shown in the following table.
  • the PMIC can stop supplying power in a hardware circuit manner when the electrical state is abnormal. Therefore, the response speed is faster and the display module can be better protected.
  • the module electrical signal acquisition module 111a" also includes a fuse 111a-9, which is arranged in the power supply path from the output end of the PMIC to the power supply end of the display module 110 and is connected to the sampling resistor 111a-1 is connected in series. Fuse 111a-9 is used to blow in an emergency situation where the electrical state is seriously abnormal, directly disconnecting the power supply from PMIC to the display module. However, it should be understood that the fuse is not necessary. In some exemplary embodiments, the module electrical signal acquisition module 111a" may not include fuse 111a-9.
  • the alarm module 114 is shown therein.
  • the electrical signal comparator 111a-7 When the electrical signal comparator 111a-7 generates an overvoltage/overcurrent warning signal, it transmits it to the core processor 120. After receiving the overvoltage/overcurrent warning signal, the core processor 120 sends an alarm enable signal to the alarm module 114, and the alarm module 114 performs an alarm operation in response to receiving the alarm enable signal.
  • the electrical signal comparator 111a-7 generates an overvoltage/overcurrent warning signal in response to the measured value of the output voltage of the PMIC being greater than or equal to a preset overvoltage threshold and/or the measured value of the output current of the PMIC being greater than or equal to a preset overcurrent threshold.
  • the core processor 120 interrupts the enable signal transmitted to the PMIC 150-1, thereby cutting off the power supply from the PMIC 150-1 to the display module 110. Therefore, in the implementation shown in FIG. 5 , the multi-channel AND gate circuit 111a-8 is omitted, and the enable signal is directly interrupted by the core processor 120, thereby reducing the complexity of the circuit.
  • control system 100 shown in Figure 2 is capable of monitoring the electrical state of the display module 110, such as monitoring at least one of its voltage, current and power consumption, analyzing and determining the driving state of the display module 110 based on the monitoring results, and selecting a corresponding driving strategy based on the determined driving state, so as to perform intelligent driving adjustment, thereby reducing the driving power consumption of the display module 110, preventing the display module 110 from electrical anomalies such as overcurrent, overvoltage or overload, and ensuring that the equipment can operate stably and efficiently.
  • the electrical state of the display module 110 such as monitoring at least one of its voltage, current and power consumption
  • analyzing and determining the driving state of the display module 110 based on the monitoring results and selecting a corresponding driving strategy based on the determined driving state, so as to perform intelligent driving adjustment, thereby reducing the driving power consumption of the display module 110, preventing the display module 110 from electrical anomalies such as overcurrent, overvoltage or overload, and ensuring that the equipment can operate stably and efficiently.
  • a control system according to another exemplary embodiment of the present disclosure is schematically shown in the form of a block diagram.
  • the difference between the control system 100′ and the control system 100 shown in Fig. 2 is that the module drive control module 112′ of the control system 100′ further includes a range evaluation module 112c. Therefore, only the range evaluation module 112c will be described below, and the other identical features will not be described in detail.
  • the module drive control module 112′ further includes a battery life evaluation module 112c.
  • the battery life evaluation module 112c is configured to: estimate the battery life of the display module 112 based on the current power consumption value and the current power value received from the module drive control module 112′; The battery life should be less than the preset battery life threshold, and the battery life state is determined.
  • the driving strategy selection module 113 is also configured to: select a low-power driving adjustment strategy in response to the battery life state.
  • the driving strategy selection module 112a is also configured to: select a low-power driving adjustment strategy 113c in response to the battery life state.
  • the module driving state adjustment module 113 is also configured to: in response to the low-power driving adjustment strategy 113c, the PMIC reduces the output voltage.
  • the low-power driving adjustment strategy 113c refers to a driving strategy that drives the display module to maintain basic functions with significantly lower power consumption than the power consumption required when the display module is normally displayed. Therefore, the low-power driving adjustment strategy 113c can be regarded as an emergency avoidance mode, that is, a self-protection measure when the display module is in a bad state. It should be understood that when the low-power driving adjustment strategy 113c is adopted, because the display module is not in a normal state, it will not consider meeting the user's optimal display needs, but will give priority to how to get the display module back to normal display.
  • the basic power consumption of the display module 110 is directly determined by the positive and negative voltages applied thereto and the power consumption of the logic circuit. Therefore, the control system can directly issue instructions to the corresponding PMIC to reduce the output voltage to reduce the power consumption of the display module.
  • the reduction in the positive and negative voltages applied to the display module will cause a gamma mismatch problem in the display module;
  • the reduction in the logic level will cause the driver integrated circuit to not work properly. Therefore, in the technical solution of the present disclosure, the former can be overcome by timely re-adjusting the gamma for matching, and the latter can be overcome by strictly clamping the output voltage of the PMIC above the minimum operating voltage of the driver integrated circuit of the display module.
  • FIG. 7 schematically shows a control system according to another exemplary embodiment of the present disclosure in the form of a block diagram.
  • the control system 100′′ is different from the control system 100′ shown in Figure 6 only in that the module drive state monitoring module 111′ also includes an ambient temperature sensor 111b and a module internal temperature sensor 111c, the module drive control module 112′′ also includes a temperature state judgment module 112d, and the module drive state adjustment module 113′ also includes a heat dissipation adjustment strategy 113d. Therefore, only the above-mentioned differences will be described below, and the other identical features will not be repeated.
  • the ambient temperature sensor 111b is configured to measure the ambient temperature of the surrounding environment of the display module 110 and generate an ambient temperature measurement value
  • the module internal temperature sensor 111c is configured to measure the temperature inside the display module 110 and generate a module internal temperature measurement value. Therefore, the ambient temperature measurement value reflects The temperature condition of the working environment of the display module 110, and the temperature measurement value inside the module reflects the temperature condition of the display module 110 itself due to power consumption and heat dissipation during operation.
  • the ambient temperature measurement value and the module internal temperature measurement value are transmitted to the temperature state determination module 112d, for example, they can be transmitted through the I 2 C bus.
  • the temperature state determination module 112d is configured to: in response to the ambient temperature measurement value being greater than the preset ambient temperature threshold, determine the ambient temperature abnormal state; in response to the module internal temperature measurement value being greater than the preset internal temperature threshold, determine the module internal temperature abnormal state.
  • the drive strategy selection module 112a is also configured to: in response to the ambient temperature abnormal state, select the heat dissipation adjustment strategy 113d; in response to the module internal temperature abnormal state, select the heat dissipation adjustment strategy 113d or the low power drive adjustment strategy 113c. Therefore, for the ambient temperature, whether in the calibration adjustment stage or in the feedback adjustment stage, as long as the ambient temperature measurement value is greater than the preset ambient temperature threshold, it can be determined that the ambient temperature is in an abnormal state. For the internal temperature of the module, its measured value may exceed the internal temperature threshold value in the feedback adjustment stage. Therefore, the monitoring and corresponding adjustment of the internal temperature of the module are generally carried out in the feedback adjustment stage.
  • the control system can regularly sample the display screen of the display module, and can parse the grayscale information therein, thereby parsing multiple display screens with the same power consumption level in the past period of time. If the internal temperature of the module at the corresponding moment of the display screen with the same power consumption level shows a continuous upward trend over a period of time, it can be considered that the display module currently has a temperature overshoot risk, and the heat dissipation intervention or low power consumption driving mode can be determined according to the rising rate.
  • the temperature state determination module 112d is also configured to: in the feedback adjustment stage, when the ambient temperature measurement value is not greater than the ambient temperature threshold and the module internal temperature measurement value is not greater than the internal temperature threshold, in response to the continuous rise of the module internal temperature measurement value corresponding to the same power consumption value of the display module 110 in the preset time period, and the rising rate is greater than the preset temperature rise rate threshold, determine the abnormal temperature rise state.
  • the driving strategy selection module 112a is further configured to: in response to the abnormal temperature rise state, select the heat dissipation adjustment strategy 113d or the low power consumption driving adjustment strategy 113c.
  • control system 100′′ shown in FIG. 7 can also judge and adjust the temperature-power-consumption positive correlation condition that may occur in the display module 110.
  • the temperature-power-consumption positive correlation condition refers to such a situation that: the higher the temperature in the display module, the higher the power consumption, which in turn causes The temperature rises further, and this vicious cycle continues, eventually causing damage to the display module.
  • the electrical state determination module 112b is further configured to: in the feedback adjustment stage, in response to the module internal temperature measurement value being less than the internal temperature threshold and there being a positive correlation between the module internal temperature measurement value and the current power consumption value, determine a temperature-power consumption positive correlation state.
  • the drive strategy selection module 112a is further configured to: in response to the temperature-power consumption positive correlation state, select the heat dissipation adjustment strategy 113d or the low-power drive adjustment strategy 113c.
  • the module drive state adjustment module 113' is also configured to: in response to selecting the heat dissipation adjustment strategy, increase the operating voltage provided to the heat dissipation fan, and/or increase the duty cycle of the drive signal provided to the heat dissipation fan; and, in response to selecting the low power consumption drive adjustment strategy, cause the power management integrated circuit to reduce the output voltage. It should be understood that in other exemplary embodiments of the present disclosure, the module drive state adjustment module 113' can also drive the display module based on manually input temperature control parameters (for example, inputting the required temperature control parameters through a suitable user interface or interface) and/or control instructions, thereby achieving more flexible drive control of the display module.
  • manually input temperature control parameters for example, inputting the required temperature control parameters through a suitable user interface or interface
  • the peripheral 130 can be implemented as a heat dissipation fan 130-1. Therefore, the core processor 120 (which may have a module drive control module 112′′ and a module drive state adjustment module 113′) receives the ambient temperature measurement value and the module internal temperature measurement value, and the core processor 120 can configure the output of the PMIC 150-2 that powers the heat dissipation fan 130-1 according to the heat dissipation requirements, including adjusting the output voltage of the PMIC or adjusting the duty cycle of the drive signal provided to the heat dissipation fan 130-1, thereby being able to adjust the fan speed of the heat dissipation fan 130-1.
  • the module driving state adjustment module 113' is also configured to: determine the corresponding gamma adjustment value based on the measured value of the output voltage and the measured value of the module internal temperature; and reset the gamma value used in the display module with the gamma adjustment value. Active gamma adjustment is performed because the display module may have a gamma mismatch problem after the internal temperature of the module and/or the output voltage of the PMIC changes, so gamma adjustment is required to re-match it.
  • the core processor 120 may pre-store a pre-stored gamma value corresponding to the operating voltage and internal temperature of the display module.
  • the core processor 120 may select a corresponding gamma value from the pre-stored gamma values and send it to the display module 110 .
  • FIG 10 schematically shows a control system according to another exemplary embodiment of the present disclosure in the form of a block diagram.
  • the difference between the control system 100"' and the control system 100" shown in Figure 7 is that the module drive state monitoring module 111" also includes a module chromaticity sensor 111d and a module brightness sensor 111e, the module drive control module 112"' also includes a display state judgment module 112e, and the module drive state adjustment module 113" also includes a display module calibration strategy 113f. Therefore, only the above-mentioned differences will be described below, and the other identical features will not be repeated.
  • the module chromaticity sensor 111d is configured to measure the chromaticity of the display screen of the display module 110 to obtain a module chromaticity measurement value.
  • the module brightness sensor 111e is configured to measure the brightness of the display screen of the display module 110 to obtain a module brightness measurement value. Referring to FIG. 11 and in combination with FIG. 10 , FIG. 11 schematically shows an exemplary arrangement of sensors in the control system shown in FIG. 10 .
  • the module chromaticity sensor 111d and the module brightness sensor 111e can be arranged in front of the display module 110 to measure the display screen of the display module 110, the ambient temperature sensor 111b can be arranged around the display module 110, and the module internal temperature sensor 111c can be arranged in the display module 110 in an embedded manner to measure the temperature inside the display module 110.
  • the module electrical signal acquisition module 111a can be arranged on the driving board 160 to measure the output voltage and output current of the PMIC 150-1. It should be understood that other arrangements of various sensors are also possible, and the present disclosure does not impose any restrictions on this.
  • the display status determination module 112e is configured to: determine the display module to be calibrated in response to the difference between the module chromaticity measurement value and the target chromaticity value being greater than the chromaticity difference threshold, or the difference between the module brightness measurement value and the target brightness value being greater than the brightness difference threshold, in the calibration adjustment stage; determine the display abnormal state in response to the difference between the module chromaticity measurement value and the target chromaticity value being greater than the chromaticity difference threshold, or the difference between the module brightness measurement value and the target brightness value being greater than the brightness difference threshold, and, in response to the display abnormal state, perform temperature state determination and electrical state determination, respectively.
  • the display status determination module 112e determines that the display is in an abnormal state, it is necessary to continue to troubleshoot abnormalities from the two aspects of temperature and electrical state. For example, when the display abnormal state is determined: it can continue to determine whether it is caused by temperature, If it is caused by temperature, then immediately apply heat dissipation intervention or even switch to low power mode; if it is not caused by temperature, then enter the electrical state judgment to determine whether the abnormal display state is caused by electrical drive deviation or overvoltage or overcurrent. If there is a deviation in the electrical drive, then modulate the voltage state.
  • the driving strategy selection module 112a is further configured to: select a display module calibration strategy in response to the display module being in a state to be calibrated.
  • the module driving adjustment module 113 is further configured to: perform the following operations in response to the adoption of the display module calibration strategy: determine a chromaticity calibration value based on the difference between the module chromaticity measurement value and the target chromaticity value; determine a brightness calibration value based on the difference between the module brightness measurement value and the target brightness value; and adjust the chromaticity offset value and the brightness offset value of the display module based on the chromaticity calibration value and the brightness calibration value.
  • the control system 100'' can read back the measurement values detected by the module chromaticity sensor 111d and the module brightness sensor 111e through the I2C bus, which include color coordinates and brightness, and then extract the timestamps of the color coordinates and brightness data, call the picture at the corresponding time, and perform picture sampling and analysis to obtain the target chromaticity value and target brightness value corresponding to the actual output picture at that moment, and compare the collected data with the target chromaticity value and target brightness value of the output picture to obtain the difference, so as to obtain the calibration value based on the difference.
  • the control system 100'' can add the calibration value to the picture output, so as to improve the matching degree between the output video stream and the actual state of the display module.
  • the module drive state adjustment module 113'' can also drive the display module based on manually input display control parameters (for example, inputting the required display control parameters, such as chromaticity value, brightness value, etc., through a suitable user interface or interface) and/or control instructions, thereby realizing more flexible drive control of the display module.
  • manually input display control parameters for example, inputting the required display control parameters, such as chromaticity value, brightness value, etc., through a suitable user interface or interface
  • control instructions thereby realizing more flexible drive control of the display module.
  • control system shown in FIG10 realizes effective detection of the brightness, chromaticity, temperature, working voltage, working current, power consumption and other states of the display module by setting up a variety of sensors and acquisition modules.
  • the current operating state of the display module can be effectively and accurately determined, and the corresponding driving strategy can be determined according to the judgment result.
  • instructions are sent to the module driving adjustment module, and various adjustment means are applied to intelligently drive the state of the display module. Adjustment, thereby improving the overall performance of the device including the display module.
  • a control method according to an exemplary embodiment of the present disclosure is schematically shown in the form of a flow chart. As shown in Fig. 12, the control method 300 can be applied to the control system 100 shown in Fig. 1 .
  • the control method 300 includes steps 310, 320, 330 and 340:
  • step 310 a driving state parameter of the display module is obtained, wherein the driving state parameter reflects the driving state of the display module;
  • step 320 based on the driving state parameter, a current driving state of the display module is determined
  • step 330 based on the current driving state, a driving strategy for the display module is selected.
  • step 340 the display module is driven based on the selected driving strategy.
  • the control method 300 shown in Figure 12 can monitor the electrical state of the display module 110, such as monitoring at least one of its voltage, current and power consumption, analyze and determine the driving state of the display module 110 based on the monitoring results, and select a corresponding driving strategy based on the determined driving state, so as to perform intelligent driving adjustment.
  • the driving power consumption of the display module 110 can be reduced, and the display module 110 can be prevented from electrical anomalies such as overcurrent, overvoltage or overload, thereby ensuring stable and efficient operation of the equipment.
  • the workflow of the control system disclosed in the present invention generally includes calibration, sensor module monitoring, display abnormality troubleshooting, and active gamma adjustment.
  • the control system In the calibration phase, after the whole device is started, the control system first runs the forward calibration function to ensure that the initial state display, active heat dissipation strategy, and electrical drive specifications of the whole device are in the best state to complete the calibration work. Then, in the sensor module monitoring phase, the control system calls each sensor module to monitor the display state of the display module to ensure that the display module abnormality is discovered in time. In addition, the temperature and electrical sensors are also in real-time sampling state to correspond to the subsequent troubleshooting process. In the display abnormality troubleshooting link, when a display abnormality occurs, first determine whether it is caused by temperature.
  • FIG. 13 a flowchart schematically illustrates the workflow of a control system according to an exemplary embodiment of the present disclosure.
  • the display is started (e.g., the device including the display module 110 is started), in block 502 , the module display status is monitored (e.g., the chromaticity and brightness are monitored by the module chromaticity sensor 111d and the module brightness sensor 111e), in block 503 , it is determined whether a display abnormality occurs, if not, it returns to block 502 , and the module display status monitoring is continued, if a display abnormality occurs, it is also necessary to perform temperature and electrical state determination, therefore, the workflow proceeds to block 504 , and the temperature measurement value is obtained (For example, the ambient temperature measurement value and the module internal temperature measurement value), the temperature state is determined in block 505, if the temperature state is abnormal, proceed to block 506, perform heat dissipation adjustment or low power drive adjustment,
  • the temperature measurement value is obtained (For example, the ambient temperature measurement value and the module internal temperature measurement value)
  • the electrical state is abnormal, proceed to block 509, and force the power supply to the display module to stop. If the electrical state is normal, the video can be optimized and displayed according to the display screen offset. In addition, while the display is started, normalized power monitoring is performed in block 511, and battery life evaluation is performed in block 512. If there is no problem of insufficient battery life, return to block 511 and keep normalizing power monitoring. If there is a problem of insufficient battery life, low power drive is adopted in block 513.
  • step 310 can further include: obtaining display parameters, temperature parameters and electrical parameters of the display module, wherein the display parameters include the module chromaticity measurement value and the module brightness measurement value, the temperature parameters include the ambient temperature measurement value and the module internal temperature measurement value, and the electrical parameters include the output voltage, the output current measurement value and the current power consumption value; and step 320 can further include: performing display state determination based on the display parameters, performing temperature state determination based on the temperature parameters, performing electrical state determination based on the electrical parameters, and determining the current driving state of the display module based on the determination result.
  • control method 300 can also include the following steps: performing a battery life evaluation based on the current power consumption value and the current power; and selecting a driving strategy for the display module based on the result of the battery life evaluation. It can be seen that, Steps 310 and 320 are defined as above.
  • the device 700 including the display module includes a processor 710 and a memory 720.
  • the memory 720 is configured to store executable instructions, and the executable instructions are configured to cause the processor 710 to execute the above-mentioned control method described in the present disclosure when executed on the processor 710.
  • the device 700 including the display module can be implemented as an AR device, in particular an AR head-mounted device.
  • the method described in the present disclosure includes one or more steps or actions. These method steps and/or actions do not have to be performed in the order described in the present disclosure, but can be performed in a different order, for example, they can be performed simultaneously or in a reverse order, as long as they do not conflict with the principle of the technical solution described in the present disclosure.
  • the steps or actions in the method described in the present disclosure can be replaced by different steps or actions, or can also include additional steps or actions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

提供了一种控制系统,其包括模组驱动状态监测模块(111)、模组驱动控制模块(112)和模组驱动状态调节模块(113)。模组驱动状态监测模块(111)被配置成获取显示模组(110)的驱动状态参数,其中,驱动状态参数反映了显示模组(110)的驱动状态。模组驱动控制模块(112)包括:基于驱动状态参数,确定显示模组(110)的当前驱动状态,并且基于当前驱动状态,选择用于显示模组(110)的驱动策略。模组驱动状态调节模块(113)被配置成:基于被选择的驱动策略来驱动显示模组(110)。还公开了可以应用于控制系统的控制方法,以及可执行控制方法的设备。

Description

控制系统以及用于其的控制方法、以及设备 技术领域
本公开涉及显示控制技术领域,具体而言,涉及一种用于对显示模组进行控制的控制系统和可以应用于该控制系统的控制方法,以及还涉及可执行该控制方法的设备。
背景技术
近来,增强现实(Augmented Reality,缩写为AR)设备,尤其是AR头戴式设备的发展越来越趋向于设备轻量化。然而,这种趋势一方面压缩了AR头戴式设备内的各模块的放置空间,使得设备散热不畅,并因此导致设备运行异常的风险升高;另一方面,为了降低AR头戴式设备对佩戴者的负担,其电池的尺寸往往会受限,使得电池容量不得不适当降低,从而不利地影响了整机的续航能力。
发明内容
根据本公开的第一个方面,提供了一种控制系统,其包括:模组驱动状态监测模块,其被配置成获取显示模组的驱动状态参数,其中,所述驱动状态参数反映了所述显示模组的驱动状态;模组驱动控制模块,其被配置成:基于所述驱动状态参数,确定所述显示模组的当前驱动状态,并且基于所述当前驱动状态,选择用于所述显示模组的驱动策略;模组驱动状态调节模块,其被配置成:基于被选择的驱动策略来驱动所述显示模组。
根据一些示例性实施例,所述驱动状态参数包括:给所述显示模组供电的功率管理集成电路的输出电压和输出电流的测量值、以及所述显示模组的当前功耗值;所述模组驱动状态监测模块包括模组电学信号采集模块,所述模组电学信号采集模块被配置成获取所述输出电压的测量值、所述输出电流的测量值以及所述当前功耗值;所述模组驱动控制模块包括:电学状态判定模块,其被配置成:基于所述输出电压和所述输出电流的测量值以及所述当前功耗值,确定所述显示模组的当前驱动状态;驱动策略选择模块,其被配置成:基于所述显示模组的当前驱动状态,选择用于所述显示模组的驱动策略。
根据一些示例性实施例,所述模组电学信号采集模块包括:采样电阻,其被布置在从所述功率管理集成电路的输出端到所述显示模组的电源端的供电路径中;电压测量模块,其被配置成:对所述采样电阻的一端的电压进行测量,得到所述输出电压的测量值;电流测量模块,其被配置成:对所述采样电阻上的电压差进行测量,并且基于所述电压差得到所述输出电流的测量值;功耗估计模块,其被配置成:基于所述输出电压的测量值和所述输出电流的测量值,估计所述显示模组的当前功耗值。
根据一些示例性实施例,所述电学状态判定模块还被配置成:响应于在校准调节阶段所述输出电压的测量值与所述功率管理集成电路的输出电压预设值不同,确定电压待校准状态;响应于在反馈调节阶段所述输出电压的测量值大于预设的电压规格值、所述输出电流的测量值大于预设的电流规格值、或者所述当前功耗值大于预设的功耗规格值,确定电学异常状态;所述驱动策略选择模块还被配置成:响应于所述电压待校准状态,选择电压驱动校准策略;响应于所述电学异常状态,选择驱动异常强制调节策略。
根据一些示例性实施例,所述模组驱动状态调节模块还被配置成,响应于选择所述电压驱动校准策略,进行下述操作:基于所述输出电压的测量值与所述输出电压预设值之间的差值,确定电压校准值;基于所述电压校准值,调节所述功率管理集成电路的输出电压。
根据一些示例性实施例,所述模组驱动状态调节模块还被配置成,响应于选择所述驱动异常强制调节策略,进行下述操作:响应于所述输出电压的测量值小于或等于预设的过压阈值、所述输出电流的测量值小于或等于预设的过流阈值、并且所述当前功耗值小于或等于预设的过载阈值,减小所述功率管理集成电路输出的电压;响应于所述输出电压的测量值大于所述过压阈值、所述输出电流的测量值大于所述过流阈值、或者所述当前功耗值大于所述过载阈值,使所述功率管理集成电路停止为所述显示模组供电。
根据一些示例性实施例,所述模组电学信号采集模块还包括保险丝,所述保险丝被布置在所述供电路径中并且与所述采样电阻串联。
根据一些示例性实施例,所述模组电学信号采集模块还包括:电信号比较器,其被配置成:响应于所述输出电压的测量值大于或等于 预设的过压阈值和/或所述输出电流的测量值大于或等于预设的过流阈值,生成过压/过流提示信号;多路与门电路,其被配置成:将所述过压/过流提示信号与从所述模组驱动控制模块接收的功率管理集成电路初始使能信号进行逻辑与操作,使得到的功率管理集成电路使能信号无效。
根据一些示例性实施例,控制系统还包括报警模块,所述报警模块被配置成:响应于从所述模组驱动控制模块接收到报警使能信号,进行报警操作;其中,所述模组驱动控制模块还被配置成:响应于接收到所述过压/过流提示信号,生成所述报警使能信号。
根据一些示例性实施例,所述模组驱动控制模块还包括续航评估模块,其中:所述续航评估模块被配置成:基于所述当前功耗值和从所述模组驱动控制模块接收到的当前电量值,估计所述显示模组的续航时间;响应于所述续航时间小于预设的续航时间阈值,确定续航不足状态;所述驱动策略选择模块还被配置成:响应于所述续航不足状态,选择低功耗驱动调节策略。
根据一些示例性实施例,所述模组驱动状态调节模块还被配置成:响应于所述低功耗驱动调节策略,使所述功率管理集成电路减小所述输出电压。
根据一些示例性实施例,所述驱动状态参数还包括:所述显示模组的周围环境的环境温度和所述显示模组内部的温度;所述模组驱动状态监测模块还包括:环境温度传感器,其被配置成:对所述显示模组的周围环境的环境温度进行测量,生成环境温度测量值;模组内部温度传感器,其被配置成:对所述显示模组内部的温度进行测量,生成模组内部温度测量值;所述模组驱动控制模块还包括温度状态判定模块,其被配置成:响应于所述环境温度测量值大于预设的环境温度阈值,确定环境温度异常状态;响应于所述模组内部温度测量值大于预设的内部温度阈值,确定模组内部温度异常状态;所述驱动策略选择模块还被配置成:响应于所述环境温度异常状态,选择散热调节策略;响应于所述模组内部温度异常状态,选择所述散热调节策略或者低功耗驱动调节策略。
根据一些示例性实施例,所述温度状态判定模块还被配置成:在反馈调节阶段,当所述环境温度测量值不大于所述环境温度阈值并且所述模组内部温度测量值不大于所述内部温度阈值时,响应于预设时 间段中所述显示模组的相同功耗值对应的模组内部温度测量值持续上升,并且上升的速率大于预设的温升速率阈值,确定温升异常状态;所述驱动策略选择模块还被配置成:响应于所述温升异常状态,选择所述散热调节策略或者低功耗驱动调节策略。
根据一些示例性实施例,所述电学状态判定模块还被配置成:在所述反馈调节阶段,响应于所述模组内部温度测量值小于所述内部温度阈值并且所述模组内部温度测量值和所述当前功耗值之间存在正相关关系,确定温度功耗正相关状态;所述驱动策略选择模块还被配置成:响应于所述温度功耗正相关状态,选择所述散热调节策略或者所述低功耗驱动调节策略。
根据一些示例性实施例,所述模组驱动状态调节模块还被配置成:响应于选择所述散热调节策略,进行下述操作中的至少一种:使提供给散热风扇的工作电压升高;使提供给所述散热风扇的驱动信号的占空比增大;响应于选择所述低功耗驱动调节策略,使所述功率管理集成电路减小所述输出电压。
根据一些示例性实施例,所述模组驱动状态调节模块还被配置成:基于所述输出电压的测量值和所述模组内部温度测量值确定对应的伽马调节值;用所述伽马调节值重置所述显示模组中采用的伽马值。
根据一些示例性实施例,所述驱动状态参数还包括:所述显示模组的显示画面的色度和亮度;所述模组驱动状态监测模块还包括:模组色度传感器,其被配置成:对所述显示模组的显示画面的色度进行测量,得到模组色度测量值;模组亮度传感器,其被配置成:对所述显示模组的显示画面的亮度进行测量,得到模组亮度测量值;所述模组驱动控制模块还包括显示状态判定模块,其被配置成:响应于在校准调节阶段所述模组色度测量值与目标色度值的差异大于色度差异阈值,或者所述模组亮度测量值与目标亮度值的差异大于亮度差异阈值,确定显示模组待校准状态;响应于在反馈调节阶段所述模组色度测量值与所述目标色度值的差异大于所述色度差异阈值,或者所述模组亮度测量值与所述目标亮度值的差异大于所述亮度差异阈值,确定显示异常状态;以及响应于所述显示异常状态,分别进行温度状态判定和电学状态判定;所述驱动策略选择模块还被配置成:响应于所述显示模组待校准状态,选择显示模组校准策略。
根据一些示例性实施例,所述模组驱动调节模块还被配置成:响应于采用所述显示模组校准策略,进行下述操作:基于所述模组色度测量值与所述目标色度值之间的差,确定色度校准值;基于所述模组亮度测量值与所述目标亮度值之间的差,确定亮度校准值;基于所述色度校准值和所述亮度校准值,调节所述显示模组的色度偏移值和亮度偏移值。
根据本公开的第二个方面,提供了一种控制方法,其包括:获取显示模组的驱动状态参数,其中,所述驱动状态参数反映了所述显示模组的驱动状态;基于所述驱动状态参数,确定所述显示模组的当前驱动状态;基于所述当前驱动状态,选择用于所述显示模组的驱动策略;基于被选择的驱动策略来驱动所述显示模组。
根据一些示例性实施例,所述获取显示模组的驱动状态参数包括:获取所述显示模组的显示参数、温度参数和电学参数,其中,所述显示参数包括所述模组色度测量值和所述模组亮度测量值,所述温度参数包括所述环境温度测量值和所述模组内部温度测量值,所述电学参数包括所述输出电压、所述输出电流的测量值以及所述当前功耗值;所述基于所述驱动状态参数,确定所述显示模组的当前驱动状态包括:基于所述显示参数进行显示状态判定,基于所述温度参数进行温度状态判定,基于所述电学参数进行电学状态判定,并且基于判定结果确定所述显示模组的当前驱动状态。
根据一些示例性实施例,控制方法还包括:基于所述当前功耗值和当前电量进行续航评估;基于所述续航评估的结果,选择用于所述显示模组的驱动策略。
根据本公开的第三个方面,提供了一种包括显示模组的设备,所述设备包括处理器和存储器,所述存储器被配置成存储可执行指令,所述可执行指令被配置成当在所述处理器上执行时,使所述处理器执行根据本公开的第二个方面所述的控制方法。
附图说明
下面将结合附图对本公开的具体实施例进行详细的描述,以便能够对本公开的更多细节、特征和优点具有更加充分的认识和理解;在附图中:
图1以框图的形式示意性地示出了根据本公开的控制系统;
图2以框图的形式示意性地示出了根据本公开的一个示例性实施例的控制系统;
图3根据本公开的一个示例性实施例,以框图的形式示意性地示出了图2所示的控制系统的细节;
图4根据本公开的另一个示例性实施例,以框图的形式示意性地示出了图2所示的控制系统的细节;
图5根据本公开的一个示例性实施例示意性地示出了驱动异常强制调节的一种实现方式;
图6以框图的形式示意性地示出了根据本公开的另一个示例性实施例的控制系统;
图7以框图的形式示意性地示出了根据本公开的又一个示例性实施例的控制系统;
图8根据本公开的一个示例性实施例示意性地示出了散热调节的一种实现方式;
图9根据本公开的一个示例性实施例示意性地示出了主动伽马调节的一种实现方式;
图10以框图的形式示意性地示出了根据本公开的再一个示例性实施例的控制系统;
图11示意性地示出了图10所示的控制系统中各传感器的示例性布置;
图12以流程图的形式示意性地示出了根据本公开的一个示例性实施例的控制方法;
图13以流程图的形式示意性地示出了根据本公开的一个示例性实施例的控制系统的工作流程;
图14以框图的形式示意性地示出了根据本公开的一个示例性实施例的包括显示模组的设备。
应理解的是,附图中显示的内容都仅仅是示意性的,因此,其不必按照比例进行绘制。此外,在全部附图中,相同、相似或者同类型的特征由相同或相似的附图标记指示。
具体实施方式
下面的描述提供了本公开的各示例性实施例的特定细节,以便本领域的技术人员能够充分理解和实施根据本公开的技术方案。
参见图1,其以框图的形式示意性地示出了根据本公开的控制系统。如图1所示,电源管理模块150用于对电池140进行管理并且对显示模组110、核心处理器120以及外设130供电,控制系统100用于驱动显示模组110进行显示,监测显示模组110的驱动状态,并且根据显示模组110的驱动状态的变化进行相应的调节。应理解的是,贯穿本公开,术语“显示模组”是指这样的器件,其包括显示屏、显示驱动电路、封装部件等零部件,这些零部件共同构成单独的器件,使得其能够被独立地安装和使用。电源管理模块150可以包括多个功率管理集成电路(即Power Management Integrated Circuit,缩写为PMIC),每一个PMIC用于为相应的部件供电,例如为显示模组110、外设130等供电。外设130在本公开中可以与显示模组110一起使用的附加装置,例如,控制手柄、外接音频装置、外接存储器,等等,本公开对于外设130的具体类型不作限制。此外,在一些实施方式中,外设130也可以被实现为散热风扇,用于降低显示模组110所处环境的环境温度,关于这一点,下文中将详细描述。
控制系统100包括模组驱动状态监测模块111、模组驱动控制模块112和模组驱动状态调节模块113。模组驱动状态监测模块111被配置成获取显示模组的驱动状态参数,其中,所述驱动状态参数反映了所述显示模组的驱动状态。驱动状态参数可以包括显示模组110的显示参数、温度参数和电学参数中的至少一种,或者还可以包括任何其他合适的参数,只要该参数能够反映显示模组110的驱动状态便可。模组驱动控制模块112被配置成:基于所述驱动状态参数,确定显示模组110的当前驱动状态,并且基于所述当前驱动状态,选择用于显示模组110的驱动策略。模组驱动状态调节模块113被配置成:基于被选择的驱动策略来驱动显示模组110。应理解的是,在本公开的另一些示例性实施例中,模组驱动状态调节模块也可以基于手动输入的控制参数和/或控制指令(例如,通过合适的用户接口或者界面来输入所需的控制参数和/或控制指令)来驱动显示模组。以这种方式,模组驱动状态调节模块能够实现对显示模组的更为灵活的驱动控制。
参见图2,其以框图的形式示意性地示出了根据本公开的一个示例 性实施例的控制系统。与图1显示的控制系统相比,图2仅仅是根据本公开的一个示例性实施例具体示出了模组驱动状态监测模块111、模组驱动控制模块112和模组驱动状态调节模块113各自的构成。因此,下文中将仅就这些模块的具体构成进行描述,相同的特征将不再赘述。
如图2所示,模组驱动状态监测模块111包括模组电学信号采集模块111a。模组电学信号采集模块111a被配置成:对给显示模组110供电的PMIC的输出电压和输出电流进行测量并且确定显示模组110的当前功耗值。模组驱动控制模块112包括电学状态判定模块112b和驱动策略选择模块112a。模组电学信号采集模块111a将输出电压和输出电流的测量值以由此确定的当前功耗值传送给电学状态判定模块112b。电学状态判定模块112b被配置成:基于给显示模组110供电的PMIC的输出电压和输出电流的测量值以由此确定的当前功耗值,确定显示模组110的当前驱动状态。驱动策略选择模块112a被配置成:基于显示模组110的当前驱动状态,选择用于显示模组110的驱动策略。模组驱动状态调节模块113被配置成:基于被选择的驱动策略来驱动显示模组110,例如,进行电压驱动校准113a、驱动异常强制调节113b或者低功耗驱动调节113c。由此,控制系统100能够基于对显示模组110的电学状态的监测,例如对其当前的电压、电流以及功耗进行监测,基于监测的结果对显示模组110进行智能驱动调节,由此,能够降低显示模组110的驱动功耗,避免显示模组110出现过流、过压或过载之类的电学异常状态。
图1中示出了模组驱动控制模块112和模组驱动状态调节模块113可以被实现在核心处理器120中,例如以软件或硬件模块的形式。因此,在本公开的一些示意图中,为了方便显示,以核心处理器120来表示控制系统中的模组驱动控制模块和模组驱动状态调节模块。然而,应理解的是,模组驱动控制模块112和模组驱动状态调节模块113被实现在核心处理器120中并不是必需的,根据实际需要,模组驱动控制模块112和模组驱动状态调节模块113、以及它们各自包括的模块均可以形成为独立于核心处理器120的单独的模块。
参见图3,其根据本公开的一个示例性实施例,以框图的形式示意性地示出了图2所示的控制系统100中的模组电学信号采集模块的细节。如图3所示,并且结合参见图2,模组电学信号采集模块111a′包 括采样电阻111a-1、电压测量模块111a-2、电流测量模块111a-3和功耗估计模块111a-4。采样电阻111a-1被布置在从PMIC的输出端到显示模组110的电源端的供电路径中。采样电阻111a-1可以为精密电阻,作为非限制示例,其可以是规格为500mΩ、0.05%的精密电阻。电压测量模块111a-2被配置成:对采样电阻111a-1的一端的电压进行测量,得到PMIC的输出电压的测量值。在图2中,采样电阻111a-1的与PMIC的输出端连接的一端处的电压通过第一分压电路111a-5被传送给电压测量模块111a-2,电压测量模块111a-2由此生成PMIC的输出电压的测量值。应理解的是,也可以对采样电阻111a-1的另一端处的电压进行测量,以生成输出电压的测量值。电流测量模块111a-3被配置成:对采样电阻111a-1上的电压差进行测量,并且基于所述电压差得到PMIC的输出电流的测量值。在图3中,采样电阻111a-1的与PMIC的输出端连接的一端处的电压通过第一分压电路111a-5被传送给电流测量模块111a-3,并且采样电阻111a-1的与显示模组110的电源端连接的一端处的电压通过第二分压电路111a-6也被传送给电流测量模块111a-3,电流测量模块111a-3对该电压差进行放大,生成输出电流的测量值。作为非限制性示例,电流测量模块111a-3可以被实现为高精度调理放大器。PMIC的输出电压的测量值和输出电流的测量值被传送给功耗估计模块111a-4,由此,功耗估计模块111a-4能够估计显示模组110的当前功耗值。参见图3并且结合参见图2,功耗估计模块111a-4可以将所得的电学信号(例如,输出电压和输出电流的测量值、以及当前功耗值)发送给核心处理器120中的电学状态判定模块112b,例如可以通过任何合适的通信总线(例如,串行总线)来实现对电学信号的传送,由此,使得电学状态判定模块112b能够基于这些电学信号来判定显示模组110的电学状态。此外,在一些实施例中,电压测量模块111a-2和功耗估计模块111a-4能够被集成在一起,在这种情况下,功耗估计模块111a-4能够直接对该PMIC的输出电压进行测量,以获得输出电压的测量值。
模组驱动控制模块112和模组驱动状态调节模块113对显示模组的控制主要包括两个方面:一方面是校准调节,其发生在设备的整机启动初期,通过对电学模块的主动监测和调节,校准控制系统实际工况与预设模式间的偏差,从而预先防止在驱动层面引起的显示状态的 异常;另一方面是反馈调节,其在设备的运行过程中通过对显示模组的电学信号的监测,根据异常情况反馈,排查各级驱动,定位原因,排除故障。
继续参见图2,电学状态判定模块112b还被配置成:响应于在校准调节阶段所述输出电压的测量值与所述PMIC的输出电压预设值不同,确定电压待校准状态;响应于在反馈调节阶段所述输出电压的测量值大于预设的电压规格值、所述输出电流的测量值大于预设的电流规格值、或者所述当前功耗值大于预设的功耗规格值,确定电学异常状态。相应地,驱动策略选择模块112a还被配置成:响应于所述电压待校准状态,选择电压驱动校准策略113a;响应于所述电学异常状态,选择驱动异常强制调节策略113b。
模组驱动状态调节模块113还被配置成,响应于选择电压驱动校准策略113a,进行下述操作:基于所述输出电压的测量值与所述PMIC的输出电压预设值之间的差值,确定电压校准值;基于所述电压校准值,调节所述PMIC的输出电压。由此,使PMIC能够在当前情况下输出的电压精准匹配模组规格要求,减小了主控制板情况、环境温度以及负载情况对给显示模组110供电的PMIC的实际输出值的影响,消除了显示模组110实际得到的电压值的偏差。
模组驱动状态调节模块113还被配置成,响应于选择驱动异常强制调节策略113b,进行下述操作:响应于所述输出电压的测量值小于或等于预设的过压阈值、所述输出电流的测量值小于或等于预设的过流阈值、并且所述当前功耗值小于或等于预设的过载阈值,减小PMIC输出的电压;响应于所述输出电压的测量值大于预设的过压阈值、所述输出电流的测量值大于预设的过流阈值、或者所述当前功耗值大于预设的过载阈值,使PMIC停止为显示模组110供电。上述两种情况中,前者是电学信号的值超出电学规格值,但并不明显,显示模组通常可以在短时间内承受这一异常,因此,这种情况下可以在检测到异常后进行调节,以便消除异常;而后者则是电学信号的值超出电学规格值过多,导致显示模组已无法承受,因此需要切断供电,以保护显示模组。
应理解的是,在本公开的另一些示例性实施例中,模组驱动状态调节模块113也可以基于手动输入的电学控制参数(例如,通过合适 的用户接口或者界面来输入所需的电学控制参数,例如,电压参数、电流参数等等)和/或控制指令来驱动显示模组,由此实现对显示模组的更为灵活的驱动控制。
可以有多种方式来实现响应于过压、过流或者过载而使PMIC停止供电。参见图4,其根据本公开的另一个示例性实施例,以框图的形式示意性地示出了图2所示的控制系统100中的模组电学信号采集模块的细节,该模组电学信号采集模块在电学状态异常的情况下能够以硬件电路的方式使PMIC停止供电。与图3所示的模组电学信号采集模块111a′相比,图4示出的模组电学信号采集模块111a″还包括电信号比较器111a-7、多路与门电路111a-8和保险丝111a-9,因此,下文中将就这些特征进行描述,先前已经描述过的特征则不再赘述。
电信号比较器111a-7被配置成:响应于PMIC的输出电压的测量值大于或等于预设的过压阈值和/或PMIC的输出电流的测量值大于或等于预设的过流阈值,生成过压/过流提示信号。多路与门电路111a-8被配置成:将所述过压/过流提示信号与从核心处理器120(例如,其中的模组驱动控制模块112)接收的PMIC初始使能信号进行逻辑与操作,使得到的PMIC使能信号无效,由此,PMIC 150-1停止给显示模组供电。基于电信号比较器111a-7和多路与门电路111a-8实现的驱动异常强制调节的逻辑关系如下表所示。
表1驱动异常强制调节逻辑关系
基于电信号比较器111a-7和多路与门电路111a-8以上述逻辑关系实现的驱动异常强制调节,在电学状态异常的情况下能够以硬件电路的方式使PMIC停止供电,因此,响应速度更快,能够更好地保护显示模组。
模组电学信号采集模块111a″还包括保险丝111a-9,其被布置在从PMIC的输出端到显示模组110的电源端的供电路径中并且与采样电阻 111a-1串联。保险丝111a-9用于在电学状态严重异常的紧急状况下熔断,直接断开PMIC给显示模组的供电。然而,应理解的是,保险丝并不是必需的,在一些示例性实施例中,模组电学信号采集模块111a″也可以不包括保险丝111a-9。
继续参见图4,其中示出了报警模块114。电信号比较器111a-7在生成过压/过流提示信号的情况下,将其传送给核心处理器120。核心处理器120在接收到过压/过流提示信号后,向报警模块114发送报警使能信号,并且报警模块114响应于接收到报警使能信号,进行报警操作。
参见图5,其根据本公开的一个示例性实施例示意性地示出了驱动异常强制调节的一种实现方式。如图5所示,电信号比较器111a-7响应于PMIC的输出电压的测量值大于或等于预设的过压阈值和/或PMIC的输出电流的测量值大于或等于预设的过流阈值,生成过压/过流提示信号。核心处理器120响应于接收到过压/过流提示信号,使传送给PMIC 150-1的使能信号中断,由此,使PMIC 150-1给显示模组110的供电被切断。因此,图5所示的实现方式中,省略了多路与门电路111a-8,而是由核心处理器120直接中断使能信号,由此,能够减小电路的复杂程度。
由以上描述可见,图2所示的控制系统100能够对显示模组110的电学状态进行监测,例如对其电压、电流和功耗中的至少一项进行监测,基于监测的结果分析和确定显示模组110的驱动状态,基于确定的驱动状态选择相应的驱动策略,从而进行智能驱动调节,由此,能够降低显示模组110的驱动功耗,防止显示模组110出现过流、过压或过载等电学异常,确保了设备能够稳定和高效的运行。
参见图6,其以框图的形式示意性地示出了根据本公开的另一个示例性实施例的控制系统。如图6所示,控制系统100′与图2所示的控制系统100相比,其差异仅在于控制系统100′的模组驱动控制模块112′还包括续航评估模块112c,因此,下文中将仅就续航评估模块112c进行描述,其余相同的特征不再赘述。
如图6所示,模组驱动控制模块112′还包括续航评估模块112c。续航评估模块112c被配置成:基于所述当前功耗值和从所述模组驱动控制模块112′接收到的当前电量值,估计显示模组112的续航时间;响 应于所述续航时间小于预设的续航时间阈值,确定续航不足状态。驱动策略选择模块113还被配置成:响应于所述续航不足状态,选择低功耗驱动调节策略。驱动策略选择模块112a还被配置成:响应于所述续航不足状态,选择低功耗驱动调节策略113c。相应地,模组驱动状态调节模块113还被配置成:响应于低功耗驱动调节策略113c,使PMIC减小输出电压。低功耗驱动调节策略113c是指相对于显示模组正常显示时所需功耗以显著更低的功耗来驱动显示模组维持基本功能的驱动策略。因此,低功耗驱动调节策略113c可以被视为一种紧急避险模式,即当显示模组处在不良状态下的一种自我保护措施。应理解的是,在采取低功耗驱动调节策略113c时,因为显示模组未处于正常状态,所以不会考虑满足用户的最佳显示需求,而是会优先考虑如何让显示模组回到正常显示。
应理解的是,显示模组110的基础功耗由施加于其的正负电压以及逻辑电路的功耗直接决定,因此,控制系统可以直接下发指令至相应的PMIC,使其降低输出电压来降低显示模组的功耗。但通过这种方式降低显示模组的功耗存在两个问题,第一,施加到显示模组的正负压降低会使得显示模组出现伽马(即Gamma)不匹配问题;第二,逻辑电平降低会引起驱动集成电路无法正常工作。因此,在本公开的技术方案中,前者可以通过及时地重新进行伽马调节以进行匹配来克服,后者可以通过将PMIC的输出电压严格钳位在显示模组的驱动集成电路的最低工作电压之上来克服。
参见图7,其以框图的形式示意性地示出了根据本公开的又一个示例性实施例的控制系统。如图7所示,控制系统100″与图6所示的控制系统100′相比,其差异仅在于:模组驱动状态监测模块111′还包括环境温度传感器111b和模组内部温度传感器111c,模组驱动控制模块112″还包括温度状态判断模块112d,模组驱动状态调节模块113′还包括散热调节策略113d。因此,下文中将仅就上述差异进行描述,其余相同的特征不再赘述。
在图7所示的控制系统100″中,环境温度传感器111b被配置成:对显示模组110的周围环境的环境温度进行测量,生成环境温度测量值;模组内部温度传感器111c被配置成:对显示模组110内部的温度进行测量,生成模组内部温度测量值。因此,环境温度测量值反映了 显示模组110的工作环境中的温度状况,而模组内部温度测量值则反映了显示模组110在工作中由于功耗、散热而导致的其本身的温度状况。环境温度测量值和模组内部温度测量值被传送给温度状态判定模块112d,例如,可以通过I2C总线来进行传输。温度状态判定模块112d被配置成:响应于所述环境温度测量值大于预设的环境温度阈值,确定环境温度异常状态;响应于所述模组内部温度测量值大于预设的内部温度阈值,确定模组内部温度异常状态。相应地,驱动策略选择模块112a还被配置成:响应于所述环境温度异常状态,选择散热调节策略113d;响应于所述模组内部温度异常状态,选择散热调节策略113d或者低功耗驱动调节策略113c。因此,对于环境温度,无论是在校准调节阶段还是在反馈调节阶段,只要环境温度测量值大于预设的环境温度阈值,就可以判定处在环境温度异常状态。对于模组内部温度而言,一般在反馈调节阶段其测量值才可能超出内部温度阈值,所以,针对模组内部温度的监测和相应的调节一般在反馈调节阶段才会进行。
当环境温度测量值和模组内部温度测量值都不超出预设的阈值时,仍需进一步进行温超风险判定。例如,控制系统可以定期对显示模组的显示画面进行采样,并且可以解析其中灰阶信息,由此可以解析到过去一段时间内多个相同功耗水平的显示画面。如果一段时间内,相同功耗水平的显示画面对应时刻的模组内部温度呈现持续上升趋势,则可认为显示模组当前存在温超风险,并且可以根据上升速率决定采取散热干预或低功耗驱动模式。具体而言,温度状态判定模块112d还被配置成:在反馈调节阶段,当所述环境温度测量值不大于所述环境温度阈值并且所述模组内部温度测量值不大于所述内部温度阈值时,响应于预设时间段中所述显示模组110的相同功耗值对应的模组内部温度测量值持续上升,并且上升的速率大于预设的温升速率阈值,确定温升异常状态。相应地,驱动策略选择模块112a还被配置成:响应于所述温升异常状态,选择所述散热调节策略113d或者低功耗驱动调节策略113c。
此外,图7所示的控制系统100″还能够针对显示模组110中可能出现的温度功耗正相关状况进行判断和调节。温度功耗正相关状况是指这样的情况,即:在显示模组中温度越高,功耗也越高,进而引起 温度进一步升高,并且持续这样的恶性循环,最终引起显示模组损坏。因此,在控制系统100″中,当环境温度测量值和模组内部温度测量值都不超出预设的阈值时,电学状态判定模块112b还被配置成:在所述反馈调节阶段,响应于所述模组内部温度测量值小于所述内部温度阈值并且所述模组内部温度测量值和所述当前功耗值之间存在正相关关系,确定温度功耗正相关状态。相应地,驱动策略选择模块112a还被配置成:响应于所述温度功耗正相关状态,选择所述散热调节策略113d或者所述低功耗驱动调节策略113c。
模组驱动状态调节模块113′还被配置成:响应于选择所述散热调节策略,使提供给散热风扇的工作电压升高,和/或使提供给所述散热风扇的驱动信号的占空比增大;以及,响应于选择所述低功耗驱动调节策略,使所述功率管理集成电路减小所述输出电压。应理解的是,在本公开的另一些示例性实施例中,模组驱动状态调节模块113′也可以基于手动输入的温度控制参数(例如,通过合适的用户接口或者界面来输入所需的温度控制参数)和/或控制指令来驱动显示模组,由此实现对显示模组的更为灵活的驱动控制。
参见图8,其根据本公开的一个示例性实施例示意性地示出了散热调节的一种实现方式。如图8所示,外设130可以被实现为散热风扇130-1。因此,核心处理器120(其上可以具有模组驱动控制模块112″和模组驱动状态调节模块113′)接收环境温度测量值和模组内部温度测量值,核心处理器120可以根据散热需求配置给散热风扇130-1供电的PMIC 150-2的输出,包括调节PMIC的输出电压的大小或者调节提供给散热风扇130-1的驱动信号的占空比,由此,能够调节散热风扇130-1的风扇转速。
模组驱动状态调节模块113′还被配置成:基于所述输出电压的测量值和所述模组内部温度测量值确定对应的伽马调节值;用所述伽马调节值重置所述显示模组中采用的伽马值。进行主动伽马调节是因为,在模组内部温度和/或PMIC的输出电压发生改变后会导致显示模组出现伽马不匹配的问题,因此需要进行伽马调节,以使其重新匹配。
参见图9,其根据本公开的一个示例性实施例示意性地示出了主动伽马调节的一种实现方式。如图9所示,核心处理器120中可以预存与显示模组的工作电压和内部温度对应的预存伽马值,当获得关于 PMIC 150-1的输出电压的电压反馈V0-VN中的一个,并且获得显示模组110的内部温度的温度范围T0-TN中的一个时,核心处理器120可以从预存伽马值中选择对应的伽马值并将其发送给显示模组110。
参见图10,其以框图的形式示意性地示出了根据本公开的再一个示例性实施例的控制系统。如图10所示,控制系统100″′与图7所示的控制系统100″相比,其差异仅在于:模组驱动状态监测模块111″还包括模组色度传感器111d和模组亮度传感器111e,模组驱动控制模块112″′还包括显示状态判断模块112e,模组驱动状态调节模块113″还包括显示模组校准策略113f。因此,下文中将仅就上述差异进行描述,其余相同的特征不再赘述。
模组色度传感器111d被配置成:对显示模组110的显示画面的色度进行测量,得到模组色度测量值。模组亮度传感器111e被配置成:对显示模组110的显示画面的亮度进行测量,得到模组亮度测量值。参见图11并且结合参见图10,图11示意性地示出了图10所示的控制系统中各传感器的示例性布置。如图11所示,模组色度传感器111d和模组亮度传感器111e可以被布置在显示模组110的斜前方,以便对显示模组110的显示画面进行测量,环境温度传感器111b可以被布置在显示模组110的周边,模组内部温度传感器111c可以以内嵌的方式布置在显示模组110内,以便对显示模组110内部的温度进行测量,此外,模组电学信号采集模块111a可以布置在驱动板160上,对PMIC150-1的输出电压和输出电流进行测量。应理解的是,各种传感器的其余布置方式也是可能的,本公开对此不作任何限制。
继续参见图10,显示状态判定模块112e被配置成:响应于在校准调节阶段所述模组色度测量值与目标色度值的差异大于色度差异阈值,或者所述模组亮度测量值与目标亮度值的差异大于亮度差异阈值,确定显示模组待校准状态;响应于在反馈调节阶段所述模组色度测量值与所述目标色度值的差异大于所述色度差异阈值,或者所述模组亮度测量值与所述目标亮度值的差异大于所述亮度差异阈值,确定显示异常状态;以及,响应于所述显示异常状态,分别进行温度状态判定和电学状态判定。因此,在反馈调节阶段,当显示状态判定模块112e确定显示异常状态时,还需从温度和电学状态两个方面继续进行异常排查。例如,当确定显示异常状态时:可以继续判断是否由温度引起, 若由温度引起,则立即应用散热干预甚至切换至低功耗模式;若不由温度引起,则进入电学状态判定,判断显示异常状态是否由电学驱动偏差或过压过流引起,如电学驱动存在偏差,则调制电压状态,如存在过压过流,则立即报警并切断供电,以保护显示模组以及相关装置(例如主板);若不由电学异常引起,则重新进行色度、亮度校准,通过调制输出画面偏移量,校准实际显示画面。此外,如果涉及温度和电学异常,并进行了相应调节,则需重新进行伽马适配,例如,通过调用主动伽马调节来恢复显示效果。
驱动策略选择模块112a还被配置成:响应于所述显示模组待校准状态,选择显示模组校准策略。模组驱动调节模块113还被配置成:响应于采用所述显示模组校准策略,进行下述操作:基于所述模组色度测量值与所述目标色度值之间的差,确定色度校准值;基于所述模组亮度测量值与所述目标亮度值之间的差,确定亮度校准值;基于所述色度校准值和所述亮度校准值,调节所述显示模组的色度偏移值和亮度偏移值。例如,在进行显示模组校准时,控制系统100″′可以通过I2C总线回读模组色度传感器111d和模组亮度传感器111e检测到的测量值,其包含色坐标和亮度,随后,提取色坐标与亮度数据的时间戳,并调取对应时间下的画面,并进行画面采样与解析,得到该时刻实际输出画面对应的目标色度值和目标亮度值,将采集得到数据与输出画面的目标色度值和目标亮度值进行比较以获得差值,从而基于该差值得出校准值。控制系统100″′可以将该校准值添加至画面输出中,从而提高输出视频流与显示模组的实际状态的匹配度。因此,应理解的是,在本公开的另一些示例性实施例中,模组驱动状态调节模块113″也可以基于手动输入的显示控制参数(例如,通过合适的用户接口或者界面来输入所需的显示控制参数,例如色度值、亮度值等等)和/或控制指令来驱动显示模组,由此实现对显示模组的更为灵活的驱动控制。
由此可见,图10所示的控制系统通过设置多种传感器和采集模块,实现了对显示模组的亮度、色度、温度、工作电压、工作电流、功耗等状态的有效检测,通过有效地收集各状态数据,并对各状态数据进行分析,从而能够对显示模组的当前运行状态进行有效和准确的判定,并且能够根据判断结果确定相应的驱动策略,基于该驱动策略向模组驱动调节模块下发指令,应用各种调节手段对于显示模组的状态进行智能驱动 调节,从而提高了包括该显示模组的设备的整体性能。
参见图12,其以流程图的形式示意性地示出了根据本公开的一个示例性实施例的控制方法。如图12所示,控制方法300可以被应用于图1所示的控制系统100。
控制方法300包括步骤310、320、330和340:
在步骤310,获取显示模组的驱动状态参数,其中,所述驱动状态参数反映了所述显示模组的驱动状态;
在步骤320,基于所述驱动状态参数,确定所述显示模组的当前驱动状态;
在步骤330,基于所述当前驱动状态,选择用于所述显示模组的驱动策略;
在步骤340,基于被选择的驱动策略来驱动所述显示模组。
因此,图12所示的控制方法300能够对显示模组110的电学状态进行监测,例如对其电压、电流和功耗中的至少一项的监测,基于监测的结果分析和确定显示模组110的驱动状态,基于确定的驱动状态选择相应的驱动策略,从而进行智能驱动调节,由此,能够降低显示模组110的驱动功耗,防止显示模组110出现过流、过压或过载等电学异常,确保了设备的稳定和高效的运行。
根据本公开的控制系统的工作流程总体上包括校准、传感模块监测、显示异常排查、主动伽马调节这些环节。在校准环节,设备的整机启动后,控制系统率先运行前向校准功能,确保整机初始态显示、主动散热策略、电学驱动规格等三个方面均处于最佳状态,完成校准工作。然后,在传感模块监测环节,控制系统调用各传感模块,对显示模组的显示状态进行监测,确保及时发现显示模组异常,此外,温度与电学传感器也处于实时采样状态,以对应后续排故流程。在显示异常排查环节中,当显示异常发生后,首先判断是否由温度引起,若由温度引起,则立即应用散热干预甚至切换至低功耗模式,若不由温度引起,则进入电学状态判定,判断显示状态异常是否由电学驱动偏差或过压过流引起,如电学驱动存在偏差,则调制电压状态,如存在过压过流,则立即报警并切断供电,以保护显示模组,若不由电学异常引起,则重新进行色度、亮度校准,通过调制输出画面偏移量,校准实际显示画面。此外,当涉及温度与电学异常,并进行了相应调节 时,则需重新进行伽马适配,因此,通过调用主动伽马调节来恢复显示效果。
参见图13,其以流程图的形式示意性地示出了根据本公开的一个示例性实施例的控制系统的工作流程。如图13所示,并且结合参见图10,在块501,显示启动(例如,包括显示模组110的设备启动),在块502,进行模组显示状态监测(例如,通过模组色度传感器111d和模组亮度传感器111e来监测色度和亮度),在块503判断是否发生显示异常,如果没有,则返回块502,继续保持进行模组显示状态监测,如果发生显示异常,则还需要进行温度和电学状态判定,因此,工作流程行进到块504,获取温度测量值(例如,环境温度测量值和模组内部温度测量值),在块505进行温度状态判定,如果发生温度状态异常,则行进到块506,进行散热调节或者低功耗驱动调节,如果温度状态正常,则行进到块507,获取电信号测量值(例如,电压、电流和功耗等),在块508进行电学状态判定,如果发生电学状态异常,则行进到块509,强制停止给显示模组的供电,如果电学状态正常,则可以根据显示画面偏移量,优化视频并进行显示。此外,在显示启动的同时,在块511进行常态化电量监测,在块512进行续航评估,如果没有续航不足的问题,则返回块511,保持进行常态化电量监测,如果存在续航不足的问题,则在块513采取低功耗驱动。
因此,基于图13所示的工作流程,图12所示的控制方法300中的一些步骤可以被进一步限定,从而使控制方法300可以被应用于图9所示的控制系统100″′具体而言,步骤310可以进一步包括:获取所述显示模组的显示参数、温度参数和电学参数,其中,所述显示参数包括所述模组色度测量值和所述模组亮度测量值,所述温度参数包括所述环境温度测量值和所述模组内部温度测量值,所述电学参数包括所述输出电压、所述输出电流的测量值以及所述当前功耗值;并且步骤320可以进一步包括:基于所述显示参数进行显示状态判定,基于所述温度参数进行温度状态判定,基于所述电学参数进行电学状态判定,并且基于判定结果确定所述显示模组的当前驱动状态。此外,基于图13所示的工作流程,根据一些示例性实施例,控制方法300还可以包括下述步骤:基于所述当前功耗值和当前电量进行续航评估;基于所述续航评估的结果,选择用于所述显示模组的驱动策略。由此可见, 步骤310、320通过上述限定,
参见图14,其以框图的形式示意性地示出了根据本公开的一个示例性实施例的包括显示模组的设备。如图14所示,包括显示模组的设备700包括处理器710和存储器720。存储器720被配置成存储可执行指令,并且所述可执行指令被配置成当在处理器710上执行时,使处理器710执行本公开中描述的上述控制方法。在一些示例性实施例中,包括显示模组的设备700可以被实施为AR设备,尤其是AR头戴式设备。
本公开中使用的术语仅用于描述本公开中的实施例,并不意图限制本公开。如本文中使用的,单数形式“一个”、“一”和“该”旨在也包括复数形式,除非上下文清楚地另有指示。还要理解的是,术语“包括”和“包含”当在本公开中使用时,是指所述及的特征的存在,但不排除一,个或多个其他特征的存在或者添加一个或多个其他特征。如本文中使用的,术语“和/或”包括相关联的列出项目中的一个或多个的任意和全部组合。将理解的是,尽管术语“第一”、“第二”、“第三”等在本文中可以用来描述各种特征,但是这些特征不应当由这些术语限制。这些术语仅用来将一个特征与另一个特征相区分。
除非另有定义,本公开中使用的所有术语(包括技术术语和科学术语)具有与本公开所属领域的普通技术人员所通常理解的相同含义。还要理解的是,诸如那些在通常使用的字典中定义的之类的术语应当被解释为具有与其在相关领域和/或本说明书上下文中的含义相一致的含义,并且将不在理想化或过于正式的意义上进行解释,除非本公开中明确地如此定义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点被包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下以及不违背技术原理的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合,或者可以从本说明书中描述的不同实施例或 示例中省略一些技术特征,并且基于这样的结合、组合或省略而得到的实施例或示例也被认为落在本公开的范围内。
本公开所描述的方法包括一个或多个步骤或动作。这些方法步骤和/或动作并不必须按照本公开描述的顺序来执行,而是可以按照不同的顺序来执行,例如它们可以同时被执行或者以相反的顺序来执行,只要不与本公开描述的技术方案的原理矛盾便可。此外,根据实际需要,本公开所描述的方法中的步骤或动作可以被替换成不同的步骤或动作,或者还可以包括附加的步骤或动作。
本公开所描述的各种描述性逻辑框、模块、以及电路是能够以本领域已知的任何合适的技术来实现的硬件电路,例如但不限于,具有合适的组合逻辑门电路的专用集成电路、可编程门阵列、现场可编程门阵列等等。本公开对此不作任何限制。
尽管已经结合一些示例性实施例详细地描述了本公开,但是其并不局限于在本文中所描述的特定形式。相反,本公开的范围仅由所附权利要求限定。

Claims (22)

  1. 一种控制系统,其包括:
    模组驱动状态监测模块,其被配置成获取显示模组的驱动状态参数,其中,所述驱动状态参数反映了所述显示模组的驱动状态;
    模组驱动控制模块,其被配置成:基于所述驱动状态参数,确定所述显示模组的当前驱动状态,并且基于所述当前驱动状态,选择用于所述显示模组的驱动策略;
    模组驱动状态调节模块,其被配置成:基于被选择的驱动策略来驱动所述显示模组。
  2. 根据权利要求1所述的控制系统,其中:
    所述驱动状态参数包括:给所述显示模组供电的功率管理集成电路的输出电压和输出电流的测量值、以及所述显示模组的当前功耗值;
    所述模组驱动状态监测模块包括模组电学信号采集模块,所述模组电学信号采集模块被配置成获取所述输出电压的测量值、所述输出电流的测量值以及所述当前功耗值;
    所述模组驱动控制模块包括:
    电学状态判定模块,其被配置成:基于所述输出电压和所述输出电流的测量值以及所述当前功耗值,确定所述显示模组的当前驱动状态;
    驱动策略选择模块,其被配置成:基于所述显示模组的当前驱动状态,选择用于所述显示模组的驱动策略。
  3. 根据权利要求2所述的控制系统,其中,所述模组电学信号采集模块包括:
    采样电阻,其被布置在从所述功率管理集成电路的输出端到所述显示模组的电源端的供电路径中;
    电压测量模块,其被配置成:对所述采样电阻的一端的电压进行测量,得到所述输出电压的测量值;
    电流测量模块,其被配置成:对所述采样电阻上的电压差进行测量,并且基于所述电压差得到所述输出电流的测量值;
    功耗估计模块,其被配置成:基于所述输出电压的测量值和所述输出电流的测量值,估计所述显示模组的当前功耗值。
  4. 根据权利要求3所述的控制系统,其中:
    所述电学状态判定模块还被配置成:
    响应于在校准调节阶段所述输出电压的测量值与所述功率管理集成电路的输出电压预设值不同,确定电压待校准状态;
    响应于在反馈调节阶段所述输出电压的测量值大于预设的电压规格值、所述输出电流的测量值大于预设的电流规格值、或者所述当前功耗值大于预设的功耗规格值,确定电学异常状态;
    所述驱动策略选择模块还被配置成:
    响应于所述电压待校准状态,选择电压驱动校准策略;
    响应于所述电学异常状态,选择驱动异常强制调节策略。
  5. 根据权利要求4所述的控制系统,其中,所述模组驱动状态调节模块还被配置成,响应于选择所述电压驱动校准策略,进行下述操作:
    基于所述输出电压的测量值与所述输出电压预设值之间的差值,确定电压校准值;
    基于所述电压校准值,调节所述功率管理集成电路的输出电压。
  6. 根据权利要求4所述的控制系统,其中,所述模组驱动状态调节模块还被配置成,响应于选择所述驱动异常强制调节策略,进行下述操作:
    响应于所述输出电压的测量值小于或等于预设的过压阈值、所述输出电流的测量值小于或等于预设的过流阈值、并且所述当前功耗值小于或等于预设的过载阈值,减小所述功率管理集成电路输出的电压;
    响应于所述输出电压的测量值大于所述过压阈值、所述输出电流的测量值大于所述过流阈值、或者所述当前功耗值大于所述过载阈值,使所述功率管理集成电路停止为所述显示模组供电。
  7. 根据权利要求3所述的控制系统,其中,所述模组电学信号采集模块还包括保险丝,所述保险丝被布置在所述供电路径中并且与所述采样电阻串联。
  8. 根据权利要求3所述的控制系统,其中,所述模组电学信号采集模块还包括:
    电信号比较器,其被配置成:响应于所述输出电压的测量值大于或等于预设的过压阈值和/或所述输出电流的测量值大于或等于预设的过流阈值,生成过压/过流提示信号;
    多路与门电路,其被配置成:将所述过压/过流提示信号与从所述模组驱动控制模块接收的功率管理集成电路初始使能信号进行逻辑与操作,使得到的功率管理集成电路使能信号无效。
  9. 根据权利要求8所述的控制系统,还包括报警模块,所述报警模块被配置成:响应于从所述模组驱动控制模块接收到报警使能信号,进行报警操作;
    其中,所述模组驱动控制模块还被配置成:响应于接收到所述过压/过流提示信号,生成所述报警使能信号。
  10. 根据权利要求4所述的控制系统,其中,所述模组驱动控制模块还包括续航评估模块,其中:
    所述续航评估模块被配置成:
    基于所述当前功耗值和从所述模组驱动控制模块接收到的当前电量值,估计所述显示模组的续航时间;
    响应于所述续航时间小于预设的续航时间阈值,确定续航不足状态;
    所述驱动策略选择模块还被配置成:响应于所述续航不足状态,选择低功耗驱动调节策略。
  11. 根据权利要求10所述的控制系统,其中,所述模组驱动状态调节模块还被配置成:响应于所述低功耗驱动调节策略,使所述功率管理集成电路减小所述输出电压。
  12. 根据权利要求2所述的控制系统,其中:
    所述驱动状态参数还包括:所述显示模组的周围环境的环境温度和所述显示模组内部的温度;
    所述模组驱动状态监测模块还包括:
    环境温度传感器,其被配置成:对所述显示模组的周围环境的环境温度进行测量,生成环境温度测量值;
    模组内部温度传感器,其被配置成:对所述显示模组内部的温度进行测量,生成模组内部温度测量值;
    所述模组驱动控制模块还包括温度状态判定模块,其被配置成:
    响应于所述环境温度测量值大于预设的环境温度阈值,确定环境温度异常状态;
    响应于所述模组内部温度测量值大于预设的内部温度阈值, 确定模组内部温度异常状态;
    所述驱动策略选择模块还被配置成:
    响应于所述环境温度异常状态,选择散热调节策略;
    响应于所述模组内部温度异常状态,选择所述散热调节策略或者低功耗驱动调节策略。
  13. 根据权利要求12所述的控制系统,其中:
    所述温度状态判定模块还被配置成:在反馈调节阶段,当所述环境温度测量值不大于所述环境温度阈值并且所述模组内部温度测量值不大于所述内部温度阈值时,响应于预设时间段中所述显示模组的相同功耗值对应的模组内部温度测量值持续上升,并且上升的速率大于预设的温升速率阈值,确定温升异常状态;
    所述驱动策略选择模块还被配置成:响应于所述温升异常状态,选择所述散热调节策略或者低功耗驱动调节策略。
  14. 根据权利要求12所述的控制系统,其中:
    所述电学状态判定模块还被配置成:在所述反馈调节阶段,响应于所述模组内部温度测量值小于所述内部温度阈值并且所述模组内部温度测量值和所述当前功耗值之间存在正相关关系,确定温度功耗正相关状态;
    所述驱动策略选择模块还被配置成:响应于所述温度功耗正相关状态,选择所述散热调节策略或者所述低功耗驱动调节策略。
  15. 根据权利要求12至14中任一项所述的控制系统,其中,所述模组驱动状态调节模块还被配置成:
    响应于选择所述散热调节策略,进行下述操作中的至少一种:
    使提供给散热风扇的工作电压升高;
    使提供给所述散热风扇的驱动信号的占空比增大;
    响应于选择所述低功耗驱动调节策略,使所述功率管理集成电路减小所述输出电压。
  16. 根据权利要求15所述的控制系统,其中,所述模组驱动状态调节模块还被配置成:
    基于所述输出电压的测量值和所述模组内部温度测量值确定对应的伽马调节值;
    用所述伽马调节值重置所述显示模组中采用的伽马值。
  17. 根据权利要求12所述的控制系统,其中:
    所述驱动状态参数还包括:所述显示模组的显示画面的色度和亮度;
    所述模组驱动状态监测模块还包括:
    模组色度传感器,其被配置成:对所述显示模组的显示画面的色度进行测量,得到模组色度测量值;
    模组亮度传感器,其被配置成:对所述显示模组的显示画面的亮度进行测量,得到模组亮度测量值;
    所述模组驱动控制模块还包括显示状态判定模块,其被配置成:
    响应于在校准调节阶段所述模组色度测量值与目标色度值的差异大于色度差异阈值,或者所述模组亮度测量值与目标亮度值的差异大于亮度差异阈值,确定显示模组待校准状态;
    响应于在反馈调节阶段所述模组色度测量值与所述目标色度值的差异大于所述色度差异阈值,或者所述模组亮度测量值与所述目标亮度值的差异大于所述亮度差异阈值,确定显示异常状态;以及
    响应于所述显示异常状态,分别进行温度状态判定和电学状态判定;
    所述驱动策略选择模块还被配置成:响应于所述显示模组待校准状态,选择显示模组校准策略。
  18. 根据权利要求17所述的控制系统,其中,所述模组驱动调节模块还被配置成:响应于采用所述显示模组校准策略,进行下述操作:
    基于所述模组色度测量值与所述目标色度值之间的差,确定色度校准值;
    基于所述模组亮度测量值与所述目标亮度值之间的差,确定亮度校准值;
    基于所述色度校准值和所述亮度校准值,调节所述显示模组的色度偏移值和亮度偏移值。
  19. 一种控制方法,其包括:
    获取显示模组的驱动状态参数,其中,所述驱动状态参数反映了所述显示模组的驱动状态;
    基于所述驱动状态参数,确定所述显示模组的当前驱动状态;
    基于所述当前驱动状态,选择用于所述显示模组的驱动策略;
    基于被选择的驱动策略来驱动所述显示模组。
  20. 根据权利要求19所述的控制方法,其中:
    所述获取显示模组的驱动状态参数包括:获取所述显示模组的显示参数、温度参数和电学参数,其中,所述显示参数包括所述模组色度测量值和所述模组亮度测量值,所述温度参数包括所述环境温度测量值和所述模组内部温度测量值,所述电学参数包括所述输出电压、所述输出电流的测量值以及所述当前功耗值;
    所述基于所述驱动状态参数,确定所述显示模组的当前驱动状态包括:基于所述显示参数进行显示状态判定,基于所述温度参数进行温度状态判定,基于所述电学参数进行电学状态判定,并且基于判定结果确定所述显示模组的当前驱动状态。
  21. 根据权利要求20所述的控制方法,还包括:
    基于所述当前功耗值和当前电量进行续航评估;
    基于所述续航评估的结果,选择用于所述显示模组的驱动策略。
  22. 一种包括显示模组的设备,所述设备包括处理器和存储器,所述存储器被配置成存储可执行指令,所述可执行指令被配置成当在所述处理器上执行时,使所述处理器执行根据权利要求19至21中任一项所述的控制方法。
PCT/CN2023/073784 2023-01-30 2023-01-30 控制系统以及用于其的控制方法、以及设备 WO2024159349A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202380008126.0A CN118742941A (zh) 2023-01-30 2023-01-30 控制系统以及用于其的控制方法、以及设备
PCT/CN2023/073784 WO2024159349A1 (zh) 2023-01-30 2023-01-30 控制系统以及用于其的控制方法、以及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/073784 WO2024159349A1 (zh) 2023-01-30 2023-01-30 控制系统以及用于其的控制方法、以及设备

Publications (1)

Publication Number Publication Date
WO2024159349A1 true WO2024159349A1 (zh) 2024-08-08

Family

ID=92145645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073784 WO2024159349A1 (zh) 2023-01-30 2023-01-30 控制系统以及用于其的控制方法、以及设备

Country Status (2)

Country Link
CN (1) CN118742941A (zh)
WO (1) WO2024159349A1 (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032789A (ja) * 2008-07-29 2010-02-12 Kyocera Corp 画像表示装置および画像表示装置の駆動方法
CN102725786A (zh) * 2009-11-30 2012-10-10 伊格尼斯创新公司 在amoled显示器中用于老化补偿的系统和方法
US20160027382A1 (en) * 2009-06-16 2016-01-28 Ignis Innovation Inc. Display system with compensation techniques and/or shared level resources
CN106920514A (zh) * 2015-12-25 2017-07-04 上海和辉光电有限公司 一种显示面板及其制备方法
CN108091311A (zh) * 2017-12-29 2018-05-29 武汉华显光电技术有限公司 显示模组的控制方法、显示模组、终端及存储介质
CN109285508A (zh) * 2018-11-27 2019-01-29 合肥惠科金扬科技有限公司 一种显示装置的驱动方法、驱动系统及显示装置
US20190259325A1 (en) * 2009-06-16 2019-08-22 Ignis Innovation Inc. Display system with compensation techniques and/or shared level resources
CN111124096A (zh) * 2019-12-27 2020-05-08 联想(北京)有限公司 数据处理方法、装置、计算机系统和介质
CN112509505A (zh) * 2019-09-16 2021-03-16 硅工厂股份有限公司 具有温度传感器的源极驱动器和显示装置
CN113852147A (zh) * 2021-08-25 2021-12-28 荣耀终端有限公司 显示屏的供电装置和电子设备
WO2022126330A1 (zh) * 2020-12-14 2022-06-23 京东方科技集团股份有限公司 显示模组及其控制方法、显示装置
CN115426739A (zh) * 2022-11-04 2022-12-02 东莞锐视光电科技有限公司 一种led驱动控制的方法及系统
CN218099788U (zh) * 2022-07-25 2022-12-20 京东方科技集团股份有限公司 显示装置以及显示系统

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032789A (ja) * 2008-07-29 2010-02-12 Kyocera Corp 画像表示装置および画像表示装置の駆動方法
US20190259325A1 (en) * 2009-06-16 2019-08-22 Ignis Innovation Inc. Display system with compensation techniques and/or shared level resources
US20160027382A1 (en) * 2009-06-16 2016-01-28 Ignis Innovation Inc. Display system with compensation techniques and/or shared level resources
CN102725786A (zh) * 2009-11-30 2012-10-10 伊格尼斯创新公司 在amoled显示器中用于老化补偿的系统和方法
CN106920514A (zh) * 2015-12-25 2017-07-04 上海和辉光电有限公司 一种显示面板及其制备方法
CN108091311A (zh) * 2017-12-29 2018-05-29 武汉华显光电技术有限公司 显示模组的控制方法、显示模组、终端及存储介质
CN109285508A (zh) * 2018-11-27 2019-01-29 合肥惠科金扬科技有限公司 一种显示装置的驱动方法、驱动系统及显示装置
CN112509505A (zh) * 2019-09-16 2021-03-16 硅工厂股份有限公司 具有温度传感器的源极驱动器和显示装置
CN111124096A (zh) * 2019-12-27 2020-05-08 联想(北京)有限公司 数据处理方法、装置、计算机系统和介质
WO2022126330A1 (zh) * 2020-12-14 2022-06-23 京东方科技集团股份有限公司 显示模组及其控制方法、显示装置
CN113852147A (zh) * 2021-08-25 2021-12-28 荣耀终端有限公司 显示屏的供电装置和电子设备
CN218099788U (zh) * 2022-07-25 2022-12-20 京东方科技集团股份有限公司 显示装置以及显示系统
CN115426739A (zh) * 2022-11-04 2022-12-02 东莞锐视光电科技有限公司 一种led驱动控制的方法及系统

Also Published As

Publication number Publication date
CN118742941A (zh) 2024-10-01

Similar Documents

Publication Publication Date Title
EP2728440B1 (en) Device and method for electric power management of a plurality of peripheral interfaces
US8035314B2 (en) Method and device for LED channel managment in LED driver
US8780143B2 (en) Display method and apparatus for controlling brightness of projector light source
US20080133943A1 (en) Method and apparatus for on-demand power management
JP5881907B2 (ja) 電子内視鏡システム、電子内視鏡、電源装置、電子内視鏡システムの作動方法
US20030071913A1 (en) Electronic camera with internal temperature increase controlled
JP2007079848A (ja) 電源装置およびそれを用いた電子機器
WO2024159349A1 (zh) 控制系统以及用于其的控制方法、以及设备
US8423804B2 (en) System and method for adjusting system performance based on an output power of a power adapter determined according to an over current recovering time
US20060164712A1 (en) Optical transmitter capable of prompt shutting down and recovering optical output thereof
CN113360344A (zh) 一种服务器监控方法、装置、设备及计算机可读存储介质
US20200374494A1 (en) Light emission control device, light source device, and projection-type video display device
US20090289590A1 (en) System and method for compensating characteristics of a fan
CN110701084B (zh) 电子系统内的风扇控制方法
US10338649B2 (en) Fan control apparatus and method of operating the same
US20070192050A1 (en) Interface control apparatus and setting method for an interface
CN112015256B (zh) 一种基于嵌入式处理器的机箱管理模块的设计方法
JP5743706B2 (ja) マルチ画面表示装置
CN112002287A (zh) 背光电路的亮度补偿方法、电子设备存储介质
JP2004023990A (ja) 電源供給装置及び電源供給方法
CN110049264A (zh) 一种激光电视供电控制系统及方法
TWI777320B (zh) 功耗校調方法與伺服器
WO2023109438A1 (zh) 通信传输的控制方法、装置、电子设备及存储介质
TWI826114B (zh) 穩壓電路模組與電壓控制方法
US11493983B2 (en) Head mounted display device and power management method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23918939

Country of ref document: EP

Kind code of ref document: A1