WO2024157329A1 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
WO2024157329A1
WO2024157329A1 PCT/JP2023/001946 JP2023001946W WO2024157329A1 WO 2024157329 A1 WO2024157329 A1 WO 2024157329A1 JP 2023001946 W JP2023001946 W JP 2023001946W WO 2024157329 A1 WO2024157329 A1 WO 2024157329A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
value
signal value
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2023/001946
Other languages
French (fr)
Japanese (ja)
Inventor
哲志 市橋
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to PCT/JP2023/001946 priority Critical patent/WO2024157329A1/en
Publication of WO2024157329A1 publication Critical patent/WO2024157329A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00

Definitions

  • the present invention relates to a control device for an internal combustion engine that controls the internal combustion engine based on parameters obtained from the oxygen concentration in the exhaust gas.
  • control device for an internal combustion engine that includes an oxygen sensor having a detection unit that is disposed in contact with the exhaust gas of an internal combustion engine equipped with a fuel injection valve and detects the oxygen concentration in the exhaust gas, and that controls the internal combustion engine based on the excess air ratio ⁇ , which is a parameter obtained based on the detection value from the detection unit (see, for example, Patent Document 1).
  • the device of Patent Document 1 includes a temperature detection unit that detects the temperature of a detection unit having a predetermined temperature characteristic, and an excess ratio calculation unit that calculates the exhaust air excess ratio ⁇ using data obtained by linearly converting the detection value to the air excess ratio while compensating for the temperature characteristic, based on the detection value and temperature of the detection unit.
  • the detection unit (sensor element) uses a titania-type sensor element, which is a resistance-type oxygen sensor whose resistance value changes depending on the oxygen concentration.
  • the excess ratio calculation unit includes a limit threshold setting unit that sets a conversion limit threshold for the linearization conversion, and a data map that associates the temperature and detection value of the oxygen sensor detection unit with the exhaust air excess ratio ⁇ .
  • the linearized converted data is obtained using this data map, and when the detection value or the linearized converted data is equal to or less than the conversion limit threshold, the linearized converted data is regarded as the exhaust air excess ratio ⁇ .
  • the excess ratio calculation unit regards the alternative value R calculated based on the ratio between the fuel injection execution time and the torque value as the air excess ratio ⁇ , instead of the linearized converted data.
  • Patent Document 1 uses a sensor element whose resistance value changes significantly depending on the oxygen partial pressure, so when setting the data map, it is difficult to perform tests that fix the exhaust temperature and oxygen sensor output, and the amount of work required for trial and error using the actual device is burdensome.
  • the object of the present invention is to provide a control device for an internal combustion engine that has a means for calculating the excess air ratio with high accuracy and that allows easy setting of tables, etc.
  • the control device for an internal combustion engine of the present invention comprises: 1.
  • a control device for an internal combustion engine including a parameter detection unit that detects a parameter obtained based on an oxygen concentration in exhaust gas from an internal combustion engine including a fuel injection valve, based on a signal value that changes in one direction as the parameter increases,
  • the parameter detection unit when a third signal value between a first signal value corresponding to a first parameter as the parameter and a second signal value corresponding to a second parameter as the parameter larger than the first parameter is input as the signal value, a third parameter is detected based on the first signal value, the first parameter, the second signal value, the second parameter, and the third signal value, the third parameter being the parameter corresponding to the third signal value;
  • the third parameter does not change linearly with respect to the change in the signal value, but changes along a curve with an increasing rate of change.
  • parameters include the excess air ratio and the air-fuel ratio.
  • the third parameter can be detected with good accuracy.
  • the third parameter corresponding to the third signal value in the interval between the first signal value and the second signal value can be determined with good accuracy by simple processing set with few man-hours.
  • the third parameter corresponding to the third signal value can be found by a process set up with few steps by using the method of calculating the replacement value R disclosed in Patent Document 1 or the method of performing linear interpolation.
  • a control device for an internal combustion engine equipped with a parameter detection unit that can calculate a third parameter (excess air ratio or air-fuel ratio) using only an easily settable two-dimensional table and a simple calculation formula, without the need to set up a three-dimensional data map, which is complicated and labor-intensive.
  • the second parameter may be smaller than the parameter corresponding to the theoretical air-fuel ratio of the internal combustion engine.
  • the first signal value corresponding to the first parameter and the second signal value corresponding to the second parameter can be appropriately set so that the third parameter has a characteristic of changing more sensitively to changes in the third signal value as the third signal value approaches the first signal value.
  • a detection unit that detects the oxygen concentration in the exhaust gas may be provided, and the signal value may be smaller as the temperature of the detection unit increases when the parameter is constant.
  • the third parameter can be calculated using only a two-dimensional table that is easy to set up and a simple formula, without the need to set up a three-dimensional data map, which is complicated and requires a lot of work.
  • a detection unit that detects the oxygen concentration in the exhaust gas may be provided, and the parameter may be such that, when the signal value is constant, the parameter increases as the temperature of the detection unit increases.
  • the third parameter can be calculated using only a two-dimensional table that is easy to set up and a simple formula, without the need to set up a three-dimensional data map, which is complicated and requires a lot of work.
  • a detection unit that detects the oxygen concentration in the exhaust gas, a voltage calculation unit that calculates a voltage value indicating the oxygen concentration based on the detection value from the detection unit, and a temperature calculation unit that calculates a temperature value indicating the temperature of the detection unit are provided, and the signal value is a voltage value calculated by the voltage calculation unit, and the one direction may be a direction in which the voltage value increases.
  • the third parameter can be calculated using only an easily set up two-dimensional table and a simple formula, without the need to set up a three-dimensional data map, which is complicated and labor-intensive.
  • the third parameter PARAM3 corresponding to the third signal value VHGM between the first signal value VHGR and the second signal value VHGL can be detected with good accuracy.
  • FIG. 1 is a schematic diagram showing a configuration of a main part of an internal combustion engine equipped with a control device according to an embodiment of the present invention
  • 2 is a block diagram showing a main configuration of an ECU of the internal combustion engine of FIG. 1
  • 3 is a diagram showing divided regions A1 to A7 to which respective calculation methods are applied when an excess ratio calculation unit in the ECU in FIG. 2 calculates an air excess ratio ⁇ .
  • FIG. This figure shows the characteristics ( ⁇ -voltage characteristics (T ⁇ )) of the voltage value VHG versus the air excess ratio ⁇ when the temperature value T input to the excess ratio calculation unit in Figure 3 is a temperature T ⁇ that is higher than T2 and lower than T3, for the areas A1 to A7 in Figure 3.
  • T ⁇ ⁇ -voltage characteristics
  • FIG. 3 is a flowchart showing an excess rate calculation process in an excess rate calculation unit of the ECU of FIG. 2 .
  • 6 is a diagram showing an example of a table that associates a coefficient PN and a ⁇ addition value PNLAMADD used in the excess rate calculation process of FIG. 5 .
  • FIG. 5 is a diagram showing an example of a table that associates a coefficient PN and a ⁇ addition value PNLAMADD used in the excess rate calculation process of FIG. 5 .
  • Figure 1 shows the configuration of the main parts of a four-stroke internal combustion engine equipped with an internal combustion engine control device according to one embodiment of the present invention.
  • the engine body 1 of this internal combustion engine is equipped with an intake pipe 2 provided at an intake port, and a throttle valve 3 provided within the intake pipe 2 to adjust the amount of intake air supplied to the intake port from an air cleaner 4 according to the opening degree.
  • the throttle valve 3 is provided with a throttle sensor 5 that detects the opening of the throttle valve 3.
  • a fuel injection valve 6 that injects fuel is provided near the intake port of the intake pipe 2. Fuel is pumped from a fuel tank (not shown) to the fuel injection valve 6 by a fuel pump.
  • the intake pipe 2 is provided with an intake pressure sensor 7 that detects the intake pressure in the intake pipe 2 and an intake air temperature sensor 8 that detects the temperature of the intake air in the intake pipe 2.
  • a catalyst 11 that reduces unburned components in the exhaust of the exhaust pipe 10 and an oxygen sensor 12 that detects the oxygen concentration in the exhaust are provided.
  • An ignition plug 13 connected to an ignition device 14 is fixed to the engine body 1.
  • an ECU (electronic control unit) 15 issues an ignition timing command to the ignition device 14, a spark discharge occurs in the cylinder combustion chamber of the engine body 1.
  • the ECU 15 receives analog voltages indicating the detection values of the throttle sensor 5, intake pressure sensor 7, intake air temperature sensor 8, oxygen sensor 12, coolant temperature sensor 17, and atmospheric pressure sensor 20 that detects atmospheric pressure.
  • the fuel injection valve 6 is also connected to the ECU 15.
  • the ECU 15 also receives a signal indicating the rotational angle position of the crankshaft 18 from a crank angle sensor 19. That is, the crank angle sensor 19 magnetically or optically detects multiple protrusions provided at predetermined angles (e.g., 15 degrees) on the outer periphery of a rotor 19a that rotates in conjunction with the crankshaft 18, using a pickup 19b located near the outer periphery of the rotor 19a, and generates a pulse (crank signal) from the pickup 19b every time the crankshaft 18 rotates by the predetermined angle.
  • predetermined angles e.g. 15 degrees
  • crank angle sensor 19 outputs a signal indicating the reference angle to the ECU 15 each time the piston 9 reaches top dead center or each time the crankshaft 18 rotates 360 degrees.
  • Figure 2 shows the main components of the ECU 15.
  • the oxygen sensor 12 which supplies the ECU 15 with a detection signal of the oxygen concentration in the exhaust gas, includes a sensor element 12a that is disposed in contact with the exhaust gas from the internal combustion engine and serves as a detector for detecting the oxygen concentration in the exhaust gas, and a sensor heater 12b that is adjacent to the sensor element 12a and heats the sensor element 12a.
  • the sensor element 12a has temperature characteristics in which the detection value changes according to the temperature of the sensor element 12a.
  • a titania-type sensor element which is a resistive oxygen sensor whose resistance value changes according to the oxygen concentration, is used as the sensor element 12a.
  • the ECU 15 includes a heater controller 22 that controls the sensor heater 12b, a temperature calculation unit 23 that calculates a temperature value T that indicates the temperature of the sensor element 12a, and a voltage calculation unit 24 that converts the output signal of the sensor element 12a into a voltage value VHG that indicates the oxygen concentration in the exhaust gas.
  • the heater controller 22 controls the temperature of the sensor heater 12b by controlling the amount of current I supplied to the sensor heater 12b from a power source (storage battery) (not shown) using pulse width modulation (PWM) control by the ECU 15.
  • the temperature calculation unit 23 calculates the temperature value T by, for example, reading the resistance value of the sensor heater 12b using the ECU 15.
  • the ECU 15 also includes a rotation speed calculation unit 27 that calculates the rotation speed NE and angular speed NETC of the internal combustion engine based on the detection results of the crank angle sensor 19, and an excess air ratio calculation unit 25 that calculates an excess air ratio ⁇ based on the temperature value T from the temperature calculation unit 23, the voltage value VHG from the voltage calculation unit 24, and the angular speed NETC from the rotation speed calculation unit 27.
  • the ECU 15 further includes a target value calculation unit 28 that calculates the target excess air ratio ⁇ cmd based on an estimated value of the amount of oxygen stored in the catalyst 11, a basic injection amount calculation unit 29 that calculates a basic injection amount BJ based on the rotation speed NE from the rotation speed calculation unit 27 and the pressure PM in the intake pipe 2 from the intake pressure sensor 7, a feedback coefficient calculation unit 30 that determines a feedback coefficient k for correcting the basic fuel injection amount BJ calculated by the basic injection amount calculation unit 29 so that the excess air ratio ⁇ calculated by the excess ratio calculation unit 25 matches the target excess air ratio ⁇ cmd, and an injection amount calculation unit 31 that calculates the injection amount Ti based on the feedback coefficient k and the basic injection amount BJ and operates the fuel injection valve 6.
  • a target value calculation unit 28 that calculates the target excess air ratio ⁇ cmd based on an estimated value of the amount of oxygen stored in the catalyst 11
  • a basic injection amount calculation unit 29 that calculates a basic injection amount BJ based on the rotation speed
  • PID control is performed based on a comparison between the excess air ratio ⁇ and the target excess air ratio ⁇ cmd, and the feedback coefficient k is calculated.
  • the fuel injection valve 6 is opened for a corresponding time, and thus an amount of fuel according to the feedback coefficient k of the PID control based on a comparison between the excess air ratio ⁇ and the target excess air ratio ⁇ cmd is injected into the cylinder combustion chamber of the engine body 1.
  • FIG. 3 shows seven divided regions to which each calculation method is applied when the excess ratio calculation unit 25, which serves as a parameter detection unit, calculates the air excess ratio ⁇ .
  • the seven regions A1 to A7 are obtained by dividing the region consisting of the horizontal axis scale for the temperature value T calculated by the temperature calculation unit 23 and the vertical axis scale for the voltage value VHG calculated by the voltage calculation unit 24, by six graph curves indicating six predetermined air excess ratios ⁇ .
  • the six predetermined air excess factors ⁇ may be, for example, ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, and ⁇ 6.
  • the six graph curves showing each air excess factor ⁇ constitute six lookup tables that associate the temperature value T with the voltage value VHG for each air excess factor ⁇ , that is, lookup tables TB1 to TB6 from the lean side.
  • the voltage value VHG as a signal value has a characteristic that, when the air excess ratio ⁇ as a parameter is constant, the higher the temperature value T of the sensor element 12a as the detection unit, the smaller the voltage value VHG as a signal value becomes. Also, when the voltage value VHG is constant, the higher the temperature value T, the larger the air excess ratio ⁇ becomes.
  • FIG. 4 shows the characteristics ( ⁇ -voltage characteristics (T ⁇ )) of the voltage value VHG versus the air excess factor ⁇ when the temperature value T is a temperature T ⁇ higher than T2 and lower than T3, corresponding to seven regions A1 to A7 divided from the lean side by the six graph curves (six air excess factors ⁇ ). Note that in FIG. 4, VHG11>0.
  • the excess factor calculation unit 25 calculates the air excess factor ⁇ corresponding to the voltage value VHG input from the voltage calculation unit 24 in a method corresponding to the corresponding region depending on which of the regions A1 to A7 shown in FIG. 4 the voltage value VHG falls into.
  • FIG. 5 shows the excess ratio calculation process for calculating the air excess ratio ⁇ in the excess ratio calculation unit 25. Note that the control by the ECU 15, including this excess ratio calculation process, is executed in synchronization with the stroke of the internal combustion engine, based on a pulse signal indicating the rotational angle position of the crankshaft 18 from the crank angle sensor 19.
  • step S1 the voltage value VHG is read from the voltage calculation unit 24.
  • step S2 the voltage value VHGMA is obtained by performing a moving average process on the read voltage value VHG.
  • step S3 the temperature value T of the sensor element 12a of the oxygen sensor 12 is read from the temperature calculation unit 23.
  • step S4 based on the read temperature value T, voltage values VHG1 to VHG6 are obtained from each of the lookup tables TB1 to TB6 corresponding to the excess air factor ⁇ indicated by the six graph curves described above.
  • the voltage values VHG1 to VHG6 indicate the boundaries of the seven areas A1 to A7 described above at the read temperature value T.
  • step S5 the voltage values VHG1 to VHG6 are compared with the voltage value VHGMA calculated in step S2 to determine whether or not the voltage value VHGMA corresponds to region A1 (VHGMA ⁇ VHG1). If it is determined that the voltage value VHGMA corresponds to region A1, then in step S6, the excess air factor ⁇ is calculated according to the operating conditions of the internal combustion engine. Specifically, the method disclosed in the above-mentioned Patent Document 1 can be used.
  • the torque value calculated based on the crank angular velocity NETC of the internal combustion engine is TQ1
  • the air excess ratio separating region A1 from region A2 is ⁇ b
  • the injection amount when the air excess ratio ⁇ reaches a value corresponding to region A1 is Ti2 and the torque is TQ2
  • the air excess ratio ⁇ is calculated by the following formula (1).
  • ((Ti1 ⁇ Ti2) ⁇ (TQ1 ⁇ TQ2)) ⁇ b (1)
  • step S5 If it is determined in step S5 that the voltage value VHGMA does not correspond to region A1 (VHGMA ⁇ VHG1), it is determined in step S7 whether the voltage value VHGMA corresponds to any of regions A2, A3, A4, or A6. If it is determined that the voltage value VHGMA corresponds to any of regions A2, A3, A4, or A6, the excess air factor ⁇ corresponding to the voltage value VHGMA is calculated by linear interpolation in step S8.
  • the lean side value of the air excess factor ⁇ dividing the area A2, A3, A4 or A6 corresponding to the voltage value VHGMA is defined as the lean side excess factor LAML
  • the rich side value is defined as the rich side excess factor LAMR
  • the corresponding voltage value in the lean side lookup table is defined as the lean side voltage value VHGL
  • the rich side voltage value is defined as the rich side voltage value VHGR.
  • step S9 it is determined whether the voltage value VHGMA corresponds to area A5 (VHG4>VHGMA>VHG5). If it is determined that the voltage value VHGMA corresponds to area A5, then in step S10 the excess air factor ⁇ corresponding to the voltage value VHGMA is calculated by curve interpolation, and the excess air factor calculation process ends.
  • FIG. 6 shows an example of a table that can be used to calculate the air excess factor ⁇ by curve interpolation in step S10. This table associates the search ratio coefficient PN with the ⁇ addition value PNLAMADD. However, in FIG. 6, 0 ⁇ PNLAMADD1 ⁇ PNLAMADD2 ⁇ PNLAMADD3 ⁇ PNLAMADD4.
  • the calculation of the air excess ratio ⁇ in step S10 can be performed by obtaining a ⁇ addition value PNLAMADD corresponding to the coefficient PN calculated by the following equation (3) from the table in FIG. 6, setting the values of the air excess ratio ⁇ at the lean side boundary and the rich side boundary of region A5 as the lean side boundary excess ratio LAML and the rich side boundary excess ratio LAMR, respectively, and using the following equation (4).
  • PN (VHGMA-VHG5) ⁇ (VHG4-VHG5) (3)
  • [(LAML-LAMR) ⁇ PNLAMADD]+LAMR (4)
  • step S9 If it is determined in step S9 that the voltage value VHGMA does not correspond to region A5, then in step S11 it is determined whether the voltage value VHGMA corresponds to region A7 (VHGMA ⁇ VHG6), and if it is determined that it does not correspond to region A7, the excess ratio calculation process ends. If it is determined that it corresponds to region A7, then in step S12 a predetermined lower limit value for the air excess ratio, for example the above-mentioned ⁇ 6, is set as the air excess ratio ⁇ , and the excess ratio calculation process ends.
  • a predetermined lower limit value for the air excess ratio for example the above-mentioned ⁇ 6, is set as the air excess ratio ⁇ , and the excess ratio calculation process ends.
  • the temperature value T and voltage value VHG of the sensor element 12a are set as the horizontal and vertical axes, and six graph curves showing six air excess ratios ⁇ are plotted on these, dividing the region into seven regions A1 to A7 from the lean side.
  • the air excess ratio ⁇ of region A1 is obtained using the above-mentioned formula (1)
  • regions A2, A3, A4, and A6 are obtained by interpolation
  • region A5 is obtained using the table in FIG. 6 and the above-mentioned formulas (3) and (4)
  • the air excess ratio ⁇ of region A7 is set to a predetermined value, thereby obtaining the air excess ratio ⁇ of each region.
  • the air excess factor ⁇ when the voltage value VHGMA corresponds to region A5 can be calculated with good accuracy by curve approximation using the table in FIG. 6 and the above-mentioned equations (3) and (4). Therefore, the air excess factor ⁇ when the voltage value VHGMA corresponds to region A5 can also be obtained without the need to use a complicated three-dimensional map representing the temperature value T of the sensor element 12a, the voltage value VHG, and the air excess factor ⁇ .
  • the present invention is not limited to this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Provided is a control device for an internal combustion engine, the control device comprising a means for calculating an excess air ratio in which a table or the like can be set easily and that has excellent accuracy. The control device includes an excess ratio calculation unit (25) that calculates an excess air ratio λ on the basis of a voltage value VHG that increases with an increase in the excess air ratio λ obtained on the basis of oxygen concentration in the exhaust of the internal combustion engine. The excess ratio calculation unit (25) calculates a corresponding excess air ratio λ in response to the input of a voltage value VHGMA between a voltage value VHG5 corresponding to a rich-side boundary excess ratio LAMR and a voltage value VHG4 corresponding to a lean-side boundary excess ratio LAML. The excess air ratio λ has a characteristic that changes sensitively with respect to a change in the voltage value VHGMA as the voltage value VHGMA approaches the voltage value VHG5.

Description

内燃機関の制御装置Control device for internal combustion engine
 本発明は、排気中の酸素濃度から得られるパラメータに基づいて内燃機関を制御する内燃機関の制御装置に関する。 The present invention relates to a control device for an internal combustion engine that controls the internal combustion engine based on parameters obtained from the oxygen concentration in the exhaust gas.
 従来、燃料噴射弁を備える内燃機関の排気に接するように設けられて排気中の酸素濃度を検出する検出部を有する酸素センサを備え、その検出部からの検出値に基づいて得られるパラメータとしての空気過剰率λに基づいて内燃機関を制御する内燃機関の制御装置が知られている(例えば、特許文献1参照)。  Conventionally, there is known a control device for an internal combustion engine that includes an oxygen sensor having a detection unit that is disposed in contact with the exhaust gas of an internal combustion engine equipped with a fuel injection valve and detects the oxygen concentration in the exhaust gas, and that controls the internal combustion engine based on the excess air ratio λ, which is a parameter obtained based on the detection value from the detection unit (see, for example, Patent Document 1).
 特許文献1の装置は、所定の温度特性を有する検出部の温度を検出する温度検出部と、検出部の検出値及び温度に基づき、該検出値を、温度特性を補償しつつ空気過剰率に対してリニアライズ変換したデータを用いて排気の空気過剰率λを算出する過剰率算出部とを備える。検出部(センサ素子)としては、酸素濃度に応じて抵抗値が変化する抵抗型酸素センサであるチタニア型のセンサ素子が用いている。 The device of Patent Document 1 includes a temperature detection unit that detects the temperature of a detection unit having a predetermined temperature characteristic, and an excess ratio calculation unit that calculates the exhaust air excess ratio λ using data obtained by linearly converting the detection value to the air excess ratio while compensating for the temperature characteristic, based on the detection value and temperature of the detection unit. The detection unit (sensor element) uses a titania-type sensor element, which is a resistance-type oxygen sensor whose resistance value changes depending on the oxygen concentration.
 過剰率算出部は、前記リニアライズ変換についての変換限界閾値を設定する限界閾値設定部と、酸素センサの検出部の温度及び検出値と排気の空気過剰率λとを対応付けたデータマップとを備える。そして、このデータマップを用いて前記リニアライズ変換されたデータを取得し、前記検出値又はリニアライズ変換されたデータが変換限界閾値以下のとき、リニアライズ変換されたデータを排気の空気過剰率λとみなす。 The excess ratio calculation unit includes a limit threshold setting unit that sets a conversion limit threshold for the linearization conversion, and a data map that associates the temperature and detection value of the oxygen sensor detection unit with the exhaust air excess ratio λ. The linearized converted data is obtained using this data map, and when the detection value or the linearized converted data is equal to or less than the conversion limit threshold, the linearized converted data is regarded as the exhaust air excess ratio λ.
 一方、過剰率算出部は、前記検出値又はリニアライズ変換されたデータが変換限界閾値を超えている場合には、リニアライズ変換されたデータに代えて、燃料噴射の実行時間とトルク値との比に基づいて算出される代替値Rを、空気過剰率λとみなす。 On the other hand, when the detected value or the linearized converted data exceeds the conversion limit threshold, the excess ratio calculation unit regards the alternative value R calculated based on the ratio between the fuel injection execution time and the torque value as the air excess ratio λ, instead of the linearized converted data.
特開2022-70442号公報JP 2022-70442 A
 しかしながら、上記特許文献1の装置では、酸素分圧によって抵抗値が大きく変化するセンサ素子を用いているので、上述のデータマップを設定する際に、排気温と酸素センサ出力を固定するテストが難しく、実機を用いたトライアンドエラーによる工数が負担となる。 However, the device in Patent Document 1 uses a sensor element whose resistance value changes significantly depending on the oxygen partial pressure, so when setting the data map, it is difficult to perform tests that fix the exhaust temperature and oxygen sensor output, and the amount of work required for trial and error using the actual device is burdensome.
 本発明の目的は、かかる従来技術の課題に鑑み、テーブルなどの設定が容易で精度の良好な空気過剰率の算出手段を有する内燃機関の制御装置を提供することにある。 In view of the problems with the conventional technology, the object of the present invention is to provide a control device for an internal combustion engine that has a means for calculating the excess air ratio with high accuracy and that allows easy setting of tables, etc.
 本発明の内燃機関の制御装置は、
 燃料噴射弁を備える内燃機関の排気中の酸素濃度に基づいて得られるパラメータが大きくなるにつれて一方向に変化する信号値に基づき、前記パラメータを検出するパラメータ検出部を備える内燃機関の制御装置において、
 前記パラメータ検出部は、
 前記信号値として、前記パラメータとしての第1パラメータに対応する第1信号値と前記第1パラメータより大きい前記パラメータとしての第2パラメータに対応する第2信号値との間の第3信号値が入力されたとき、
 前記第1信号値と、前記第1パラメータと、前記第2信号値と、前記第2パラメータと、前記第3信号値とに基づき、前記第3信号値に対応する前記パラメータである第3パラメータを検出するものであり、
 前記第3信号値が前記第1信号値に近いほど、前記第3信号値の変化に対して前記第3パラメータは敏感に変化することを特徴とする。
The control device for an internal combustion engine of the present invention comprises:
1. A control device for an internal combustion engine including a parameter detection unit that detects a parameter obtained based on an oxygen concentration in exhaust gas from an internal combustion engine including a fuel injection valve, based on a signal value that changes in one direction as the parameter increases,
The parameter detection unit
when a third signal value between a first signal value corresponding to a first parameter as the parameter and a second signal value corresponding to a second parameter as the parameter larger than the first parameter is input as the signal value,
a third parameter is detected based on the first signal value, the first parameter, the second signal value, the second parameter, and the third signal value, the third parameter being the parameter corresponding to the third signal value;
The closer the third signal value is to the first signal value, the more sensitively the third parameter changes with respect to a change in the third signal value.
 この構成において、入力された第3信号値が第1信号値に近いほど、対応する第3パラメータは敏感に変化する。すなわち、第3パラメータは、信号値が第1信号値から第2信号値へ変化する区間において、信号値の変化に対してリニアには変化せず、変化率が増大する曲線に沿って変化する。なお、パラメータとしては、例えば、空気過剰率や空燃比が該当する。 In this configuration, the closer the input third signal value is to the first signal value, the more sensitively the corresponding third parameter changes. In other words, in the section where the signal value changes from the first signal value to the second signal value, the third parameter does not change linearly with respect to the change in the signal value, but changes along a curve with an increasing rate of change. Note that examples of parameters include the excess air ratio and the air-fuel ratio.
 このため、当該区間における第3パラメータの変化をこの曲線(補完曲線)で近似(曲線補完)し、その近似曲線(補完曲線)をテーブルや関数として記憶しておくことにより、第3パラメータを良好な精度で検出することができる。 Therefore, by approximating (curve complementing) the change in the third parameter in that section with this curve (complementary curve) and storing the approximation curve (complementary curve) as a table or function, the third parameter can be detected with good accuracy.
 したがって、第1パラメータに対応する第1信号値と第2パラメータに対応する第2信号値とを適切に設定することにより、第1信号値と第2信号値との間の区間における第3信号値に対応する第3パラメータを、少ない工数で設定された単純な処理により、良好な精度で求めることができる。 Therefore, by appropriately setting the first signal value corresponding to the first parameter and the second signal value corresponding to the second parameter, the third parameter corresponding to the third signal value in the interval between the first signal value and the second signal value can be determined with good accuracy by simple processing set with few man-hours.
 そして、第1信号値と第2信号値との間以外の他の区間に対応する第3信号値が入力された場合には、特許文献1で開示される上記代替値Rの算出方法や、直線補完を行う方法を用いることにより、該第3信号値に対応する第3パラメータを、少ない工数で設定された処理で求めることができる。 If a third signal value corresponding to an interval other than between the first and second signal values is input, the third parameter corresponding to the third signal value can be found by a process set up with few steps by using the method of calculating the replacement value R disclosed in Patent Document 1 or the method of performing linear interpolation.
 したがって、設定が煩雑で工数を要する三次元のデータマップの設定を必要とすることなく、設定が容易な二次元テーブルや簡単な計算式のみを用いて第3パラメータ(空気過剰率や空燃比)を算出できるパラメータ検出部を備えた内燃機関の制御装置を提供することができる。 Therefore, it is possible to provide a control device for an internal combustion engine equipped with a parameter detection unit that can calculate a third parameter (excess air ratio or air-fuel ratio) using only an easily settable two-dimensional table and a simple calculation formula, without the need to set up a three-dimensional data map, which is complicated and labor-intensive.
 本発明において、前記第2パラメータは、前記内燃機関の理論空燃比に対応する前記パラメータよりも小さくてもよい。これによれば、第1パラメータに対応する第1信号値と第2パラメータに対応する第2信号値とを、第3パラメータが、第3信号値が第1信号値に近いほど、第3信号値の変化に対して敏感に変化する特性を有するように、適切に設定することができる。 In the present invention, the second parameter may be smaller than the parameter corresponding to the theoretical air-fuel ratio of the internal combustion engine. In this way, the first signal value corresponding to the first parameter and the second signal value corresponding to the second parameter can be appropriately set so that the third parameter has a characteristic of changing more sensitively to changes in the third signal value as the third signal value approaches the first signal value.
 本発明において、前記排気中の酸素濃度を検出する検出部を備え、前記信号値は、前記パラメータが一定である場合、前記検出部の温度が高くなるほど小さくなるものであってもよい。この場合も、設定が煩雑で工数を要する三次元のデータマップの設定を必要とすることなく、設定が容易な二次元テーブルや簡単な計算式のみを用いて第3パラメータを算出することができる。 In the present invention, a detection unit that detects the oxygen concentration in the exhaust gas may be provided, and the signal value may be smaller as the temperature of the detection unit increases when the parameter is constant. In this case, too, the third parameter can be calculated using only a two-dimensional table that is easy to set up and a simple formula, without the need to set up a three-dimensional data map, which is complicated and requires a lot of work.
 本発明において、前記排気中の酸素濃度を検出する検出部を備え、前記パラメータは、前記信号値が一定である場合、前記検出部の温度が高くなるほど大きくなるものであってもよい。この場合も、設定が煩雑で工数を要する三次元のデータマップの設定を必要とすることなく、設定が容易な二次元テーブルや簡単な計算式のみを用いて第3パラメータを算出することができる。 In the present invention, a detection unit that detects the oxygen concentration in the exhaust gas may be provided, and the parameter may be such that, when the signal value is constant, the parameter increases as the temperature of the detection unit increases. In this case, too, the third parameter can be calculated using only a two-dimensional table that is easy to set up and a simple formula, without the need to set up a three-dimensional data map, which is complicated and requires a lot of work.
 本発明において、前記排気中の酸素濃度を検出する検出部と、前記検出部からの検出値に基づいて、前記酸素濃度を示す電圧値を算出する電圧算出部と、前記検出部の温度を示す温度値を算出する温度算出部とを備え、前記信号値は、前記電圧算出部が算出する電圧値であり、前記一方向は、前記電圧値が大きくなる方向であってもよい。 In the present invention, a detection unit that detects the oxygen concentration in the exhaust gas, a voltage calculation unit that calculates a voltage value indicating the oxygen concentration based on the detection value from the detection unit, and a temperature calculation unit that calculates a temperature value indicating the temperature of the detection unit are provided, and the signal value is a voltage value calculated by the voltage calculation unit, and the one direction may be a direction in which the voltage value increases.
 これによれば、検出部としてチタニア型のセンサ素子を用いる場合でも、設定が煩雑で工数を要する三次元のデータマップの設定を必要とすることなく、設定が容易な二次元テーブルや簡単な計算式のみを用いて第3パラメータを算出することができる。 As a result, even when a titania-type sensor element is used as the detection section, the third parameter can be calculated using only an easily set up two-dimensional table and a simple formula, without the need to set up a three-dimensional data map, which is complicated and labor-intensive.
 本発明において、前記第3パラメータの検出は、前記第1信号値をVHGRとし、前記第2信号値をVHGLとし、前記第3信号値をVHGMとして次式
  PN=(VHGM-VHGR)÷(VHGL-VHGR)
で求められる係数PNと加算値PNLAMADDとを対応付けたテーブルから、入力された前記第3信号値についての係数PNに対応する加算値PNLAMADDを求め、さらに前記第1パラメータの値をLAMR、前記第2パラメータの値をLAMLとし、前記第3パラメータとしてのPARAM3を、次式
  PARAM3=[(LAML-LAMR)×PNLAMADD]+LAMR
で算出することにより行ってもよい。
In the present invention, the detection of the third parameter is performed by the following equation: PN=(VHGM-VHGR)÷(VHGL-VHGR), where VHGR is the first signal value, VHGL is the second signal value, and VHGM is the third signal value.
The additional value PNLAMADD corresponding to the coefficient PN for the input third signal value is obtained from a table in which the coefficient PN obtained by the above corresponds to the additional value PNLAMADD, and further, the value of the first parameter is set to LAMR, the value of the second parameter is set to LAML, and PARAM3 as the third parameter is calculated by the following formula: PARAM3=[(LAML-LAMR)×PNLAMADD]+LAMR
This may be done by calculating:
 これによれば、係数PNと加算値PNLAMADDとを対応付けたテーブルを記憶しておくことにより、第1信号値VHGRと第2信号値VHGLとの間の第3信号値VHGMに対応する第3パラメータPARAM3を良好な精度で検出することができる。 By storing a table that associates the coefficient PN with the additional value PNLAMADD, the third parameter PARAM3 corresponding to the third signal value VHGM between the first signal value VHGR and the second signal value VHGL can be detected with good accuracy.
本発明の一実施形態に係る制御装置を備える内燃機関の主要部の構成を示す模式図である。1 is a schematic diagram showing a configuration of a main part of an internal combustion engine equipped with a control device according to an embodiment of the present invention; 図1の内燃機関のECUにおける主要構成を示すブロック図である。2 is a block diagram showing a main configuration of an ECU of the internal combustion engine of FIG. 1 . 図2のECUにおける過剰率算出部が空気過剰率λを算出する際に、各算出方法がそれぞれ適用される分割された各領域A1~A7を示す図である。3 is a diagram showing divided regions A1 to A7 to which respective calculation methods are applied when an excess ratio calculation unit in the ECU in FIG. 2 calculates an air excess ratio λ. FIG. 図3の過剰率算出部に入力される温度値TがT2より高くT3より低い温度Tαである場合の空気過剰率λに対する電圧値VHGの特性(λ-電圧特性(Tα))を、図3の領域A1~A7について示す図である。This figure shows the characteristics (λ-voltage characteristics (Tα)) of the voltage value VHG versus the air excess ratio λ when the temperature value T input to the excess ratio calculation unit in Figure 3 is a temperature Tα that is higher than T2 and lower than T3, for the areas A1 to A7 in Figure 3. 図2のECUの過剰率算出部における過剰率算出処理を示すフローチャートである。3 is a flowchart showing an excess rate calculation process in an excess rate calculation unit of the ECU of FIG. 2 . 図5の過剰率算出処理で使用される係数PNとλ加算値PNLAMADDを対応付けるテーブルの一例を示す図である。6 is a diagram showing an example of a table that associates a coefficient PN and a λ addition value PNLAMADD used in the excess rate calculation process of FIG. 5 . FIG.
 以下、図面を用いて本発明の実施形態を説明する。図1は、本発明の一実施形態に係る内燃機関の制御装置を備える4サイクル形式の内燃機関の主要部の構成を示す。同図に示すように、この内燃機関の機関本体1は、吸入ポートに設けられた吸気管2と、吸気管2内に設けられてエアクリーナ4から吸入ポートに供給される吸気の量を開度に応じて調整するスロットル弁3とを備える。 Below, an embodiment of the present invention will be described with reference to the drawings. Figure 1 shows the configuration of the main parts of a four-stroke internal combustion engine equipped with an internal combustion engine control device according to one embodiment of the present invention. As shown in the figure, the engine body 1 of this internal combustion engine is equipped with an intake pipe 2 provided at an intake port, and a throttle valve 3 provided within the intake pipe 2 to adjust the amount of intake air supplied to the intake port from an air cleaner 4 according to the opening degree.
 スロットル弁3には、スロットル弁3の開度を検出するスロットルセンサ5が設けられる。吸気管2の吸入ポート近傍には、燃料を噴射する燃料噴射弁6が設けられる。燃料噴射弁6には、図示しない燃料タンクから燃料ポンプによって燃料が圧送される。吸気管2には、吸気管2における吸気圧を検出する吸気圧センサ7及び吸気管2内の吸入空気の温度を検出する吸気温センサ8が設けられる。 The throttle valve 3 is provided with a throttle sensor 5 that detects the opening of the throttle valve 3. A fuel injection valve 6 that injects fuel is provided near the intake port of the intake pipe 2. Fuel is pumped from a fuel tank (not shown) to the fuel injection valve 6 by a fuel pump. The intake pipe 2 is provided with an intake pressure sensor 7 that detects the intake pressure in the intake pipe 2 and an intake air temperature sensor 8 that detects the temperature of the intake air in the intake pipe 2.
 機関本体1の排気ポートに連結された排気管10内には、排気管10の排気中の未燃焼成分を低減させる触媒11及び排気中の酸素濃度を検出する酸素センサ12が設けられる。機関本体1には、点火装置14に接続された点火プラグ13が固着される。ECU(電子制御ユニット)15が点火装置14に対して点火タイミングの指令を発することにより、機関本体1のシリンダ燃焼室内で火花放電が生じる。 In the exhaust pipe 10 connected to the exhaust port of the engine body 1, a catalyst 11 that reduces unburned components in the exhaust of the exhaust pipe 10 and an oxygen sensor 12 that detects the oxygen concentration in the exhaust are provided. An ignition plug 13 connected to an ignition device 14 is fixed to the engine body 1. When an ECU (electronic control unit) 15 issues an ignition timing command to the ignition device 14, a spark discharge occurs in the cylinder combustion chamber of the engine body 1.
 ECU15には、スロットルセンサ5、吸気圧センサ7、吸気温センサ8、酸素センサ12、冷却水温センサ17、及び大気圧を検出する大気圧センサ20のそれぞれの検出値を示すアナログ電圧が入力される。また、ECU15には、上記の燃料噴射弁6が接続される。 The ECU 15 receives analog voltages indicating the detection values of the throttle sensor 5, intake pressure sensor 7, intake air temperature sensor 8, oxygen sensor 12, coolant temperature sensor 17, and atmospheric pressure sensor 20 that detects atmospheric pressure. The fuel injection valve 6 is also connected to the ECU 15.
 ECU15には、さらに、クランク角度センサ19からのクランク軸18の回転角度位置を示す信号が入力される。すなわち、クランク角度センサ19は、クランク軸18に連動して回転するロータ19aの外周に所定角度(例えば、15度)毎に設けられた複数の凸部を、ロータ19aの外周近傍に配置されたピックアップ19bによって磁気的あるいは光学的に検出し、ピックアップ19bからクランク軸18の所定角度の回転毎にパルス(クランク信号)を発生する。 The ECU 15 also receives a signal indicating the rotational angle position of the crankshaft 18 from a crank angle sensor 19. That is, the crank angle sensor 19 magnetically or optically detects multiple protrusions provided at predetermined angles (e.g., 15 degrees) on the outer periphery of a rotor 19a that rotates in conjunction with the crankshaft 18, using a pickup 19b located near the outer periphery of the rotor 19a, and generates a pulse (crank signal) from the pickup 19b every time the crankshaft 18 rotates by the predetermined angle.
 具体的には、クランク角度センサ19は、ピストン9が上死点に至る毎に、又はクランク軸18が360度回転する毎に基準角度を示す信号をECU15に出力する。 Specifically, the crank angle sensor 19 outputs a signal indicating the reference angle to the ECU 15 each time the piston 9 reaches top dead center or each time the crankshaft 18 rotates 360 degrees.
 図2は、ECU15における主要な構成を示す。同図に示すように、ECU15に排気中の酸素濃度の検出信号を供給する酸素センサ12は、内燃機関の排気に接するように設けられて排気中の酸素濃度を検出する検出部としてのセンサ素子12aと、センサ素子12aに隣接して同センサ素子12aを加熱するセンサヒータ12bとを備える。 Figure 2 shows the main components of the ECU 15. As shown in the figure, the oxygen sensor 12, which supplies the ECU 15 with a detection signal of the oxygen concentration in the exhaust gas, includes a sensor element 12a that is disposed in contact with the exhaust gas from the internal combustion engine and serves as a detector for detecting the oxygen concentration in the exhaust gas, and a sensor heater 12b that is adjacent to the sensor element 12a and heats the sensor element 12a.
 センサ素子12aは、検出値がセンサ素子12aの温度に応じて変化する温度特性を有する。センサ素子12aとしては、本実施形態では、酸素濃度に応じて抵抗値が変化する抵抗型酸素センサであるチタニア型のセンサ素子が用いられる。 The sensor element 12a has temperature characteristics in which the detection value changes according to the temperature of the sensor element 12a. In this embodiment, a titania-type sensor element, which is a resistive oxygen sensor whose resistance value changes according to the oxygen concentration, is used as the sensor element 12a.
 ECU15は、センサヒータ12bを制御するヒータ制御器22と、センサ素子12aの温度を示す温度値Tを算出する温度算出部23と、センサ素子12aの出力信号を、排気中の酸素濃度を示す電圧値VHGに変換する電圧算出部24とを備える。 The ECU 15 includes a heater controller 22 that controls the sensor heater 12b, a temperature calculation unit 23 that calculates a temperature value T that indicates the temperature of the sensor element 12a, and a voltage calculation unit 24 that converts the output signal of the sensor element 12a into a voltage value VHG that indicates the oxygen concentration in the exhaust gas.
 ヒータ制御器22によるセンサヒータ12bの温度の制御は、不図示の電源(蓄電池)からセンサヒータ12bに供給される通電電流量IをECU15でパルス幅変調(PWM)制御することにより行われる。また、温度算出部23による温度値Tの算出は、たとえば、センサヒータ12bの抵抗値をECU15で読み取ることにより行われる。 The heater controller 22 controls the temperature of the sensor heater 12b by controlling the amount of current I supplied to the sensor heater 12b from a power source (storage battery) (not shown) using pulse width modulation (PWM) control by the ECU 15. The temperature calculation unit 23 calculates the temperature value T by, for example, reading the resistance value of the sensor heater 12b using the ECU 15.
 また、ECU15は、クランク角度センサ19の検出結果に基づいて内燃機関の回転速度NE及び角速度NETCを算出する回転速度演算部27と、温度算出部23からの温度値T、電圧算出部24からの電圧値VHG、及び回転速度演算部27からの角速度NETCに基づいて空気過剰率λを算出する過剰率算出部25とを備える。 The ECU 15 also includes a rotation speed calculation unit 27 that calculates the rotation speed NE and angular speed NETC of the internal combustion engine based on the detection results of the crank angle sensor 19, and an excess air ratio calculation unit 25 that calculates an excess air ratio λ based on the temperature value T from the temperature calculation unit 23, the voltage value VHG from the voltage calculation unit 24, and the angular speed NETC from the rotation speed calculation unit 27.
 さらに、ECU15は、目標とする空気過剰率λcmdを触媒11における貯蔵酸素量の推定値等に基づいて算出する目標値演算部28と、回転速度演算部27からの回転速度NE、及び吸気圧センサ7からの吸気管2内の圧力PMに基づいて基本噴射量BJを算出する基本噴射量演算部29と、過剰率算出部25により算出された空気過剰率λを目標空気過剰率λcmdに一致させるべく、基本噴射量演算部29が算出した基本燃料噴射量BJを補正するためのフィードバック係数kを求めるフィードバック係数演算部30と、フィードバック係数k及び基本噴射量BJに基づいて噴射量Tiを算出するとともに、燃料噴射弁6を作動させる噴射量演算部31とを備える。 The ECU 15 further includes a target value calculation unit 28 that calculates the target excess air ratio λcmd based on an estimated value of the amount of oxygen stored in the catalyst 11, a basic injection amount calculation unit 29 that calculates a basic injection amount BJ based on the rotation speed NE from the rotation speed calculation unit 27 and the pressure PM in the intake pipe 2 from the intake pressure sensor 7, a feedback coefficient calculation unit 30 that determines a feedback coefficient k for correcting the basic fuel injection amount BJ calculated by the basic injection amount calculation unit 29 so that the excess air ratio λ calculated by the excess ratio calculation unit 25 matches the target excess air ratio λcmd, and an injection amount calculation unit 31 that calculates the injection amount Ti based on the feedback coefficient k and the basic injection amount BJ and operates the fuel injection valve 6.
 フィードバック係数演算部30においては、空気過剰率λと目標空気過剰率λcmdとの比較に基づいたPID制御が行われてフィードバック係数kが演算される。噴射量演算部31によりフィードバック係数k及び基本噴射量BJに基づいて算出される噴射量Tiに基づき、これに対応する時間だけ、燃料噴射弁6が開弁され、而して、機関本体1のシリンダ燃焼室内には空気過剰率λと目標空気過剰率λcmdとの比較に基づいた上記PID制御のフィードバック係数kに応じた量の燃料が噴射される。 In the feedback coefficient calculation unit 30, PID control is performed based on a comparison between the excess air ratio λ and the target excess air ratio λcmd, and the feedback coefficient k is calculated. Based on the injection amount Ti calculated by the injection amount calculation unit 31 based on the feedback coefficient k and the basic injection amount BJ, the fuel injection valve 6 is opened for a corresponding time, and thus an amount of fuel according to the feedback coefficient k of the PID control based on a comparison between the excess air ratio λ and the target excess air ratio λcmd is injected into the cylinder combustion chamber of the engine body 1.
 図3は、パラメータ検出部としての過剰率算出部25が空気過剰率λを算出する際に、各算出方法がそれぞれ適用される7つに分割された領域を示す。この7つの領域A1~A7は、温度算出部23が算出する温度値Tについての横軸目盛と、電圧算出部24が算出する電圧値VHGについての縦軸目盛値とで構成される領域を、予め所定の6つの空気過剰率λを示す6本のグラフ曲線で分割したものである。 FIG. 3 shows seven divided regions to which each calculation method is applied when the excess ratio calculation unit 25, which serves as a parameter detection unit, calculates the air excess ratio λ. The seven regions A1 to A7 are obtained by dividing the region consisting of the horizontal axis scale for the temperature value T calculated by the temperature calculation unit 23 and the vertical axis scale for the voltage value VHG calculated by the voltage calculation unit 24, by six graph curves indicating six predetermined air excess ratios λ.
 所定の6つの空気過剰率λとしては、例えば、λ1、λ2、λ3、λ4、λ5、λ6が採用される。各空気過剰率λを示す6本のグラフ曲線は、各空気過剰率λについて、温度値Tに電圧値VHGを対応付けた6つのルックアップテーブル、すなわちリーン側からルックアップテーブルTB1~TB6を構成している。なお、図3において、λ1>λ2>1.000>λ3>λ4>λ5>λ6であり、T1<T2<T3<T4<T5である。 The six predetermined air excess factors λ may be, for example, λ1, λ2, λ3, λ4, λ5, and λ6. The six graph curves showing each air excess factor λ constitute six lookup tables that associate the temperature value T with the voltage value VHG for each air excess factor λ, that is, lookup tables TB1 to TB6 from the lean side. In FIG. 3, λ1>λ2>1.000>λ3>λ4>λ5>λ6, and T1<T2<T3<T4<T5.
 図3から理解されるように、信号値としての電圧値VHGは、パラメータとしての空気過剰率λが一定である場合、検出部としてのセンサ素子12aの温度値Tが高くなるほど小さくなる特性を有する。また、空気過剰率λは、電圧値VHGが一定である場合、温度値Tが高くなるほど大きくなる特性を有する。 As can be seen from FIG. 3, the voltage value VHG as a signal value has a characteristic that, when the air excess ratio λ as a parameter is constant, the higher the temperature value T of the sensor element 12a as the detection unit, the smaller the voltage value VHG as a signal value becomes. Also, when the voltage value VHG is constant, the higher the temperature value T, the larger the air excess ratio λ becomes.
 図4は、温度値TがT2より高くT3より低い温度Tαである場合の空気過剰率λに対する電圧値VHGの特性(λ-電圧特性(Tα))を、リーン側から上記6本のグラフ曲線(6つの空気過剰率λ)で分割した7つの領域A1~A7に対応させて示す。なお、図4において、VHG11>0である。過剰率算出部25は、温度算出部23からの温度値Tが例えばTαである場合、電圧算出部24から入力される電圧値VHGが、図4に示すような領域A1~A7のいずれに該当するかに応じ、該当する領域に対応する方法で、該電圧値VHGに対応する空気過剰率λを算出する。 FIG. 4 shows the characteristics (λ-voltage characteristics (Tα)) of the voltage value VHG versus the air excess factor λ when the temperature value T is a temperature Tα higher than T2 and lower than T3, corresponding to seven regions A1 to A7 divided from the lean side by the six graph curves (six air excess factors λ). Note that in FIG. 4, VHG11>0. When the temperature value T from the temperature calculation unit 23 is, for example, Tα, the excess factor calculation unit 25 calculates the air excess factor λ corresponding to the voltage value VHG input from the voltage calculation unit 24 in a method corresponding to the corresponding region depending on which of the regions A1 to A7 shown in FIG. 4 the voltage value VHG falls into.
 図5は、過剰率算出部25における空気過剰率λを算出する過剰率算出処理を示す。なお、この過剰率算出処理を含むECU15による制御は、クランク角度センサ19からのクランク軸18の回転角度位置を示すパルス信号に基づき、内燃機関の行程に同期して実行される。 FIG. 5 shows the excess ratio calculation process for calculating the air excess ratio λ in the excess ratio calculation unit 25. Note that the control by the ECU 15, including this excess ratio calculation process, is executed in synchronization with the stroke of the internal combustion engine, based on a pulse signal indicating the rotational angle position of the crankshaft 18 from the crank angle sensor 19.
 過剰率算出処理が開始されると、ステップS1において、電圧算出部24から電圧値VHGを読み込む。次に、ステップS2において、読み込んだ電圧値VHGについて移動平均処理を施した電圧値VHGMAを取得する。 When the excess rate calculation process is started, in step S1, the voltage value VHG is read from the voltage calculation unit 24. Next, in step S2, the voltage value VHGMA is obtained by performing a moving average process on the read voltage value VHG.
 次に、ステップS3において、酸素センサ12のセンサ素子12aの温度値Tを温度算出部23から読み込む。次に、ステップS4において、読み込んだ温度値Tに基づき、上述の6本のグラフ曲線が示す空気過剰率λに対応する各ルックアップテーブルTB1~TB6から、電圧値VHG1~VHG6を取得する。電圧値VHG1~VHG6は、読み込んだ温度値Tにおける上述の7つの領域A1~A7の境界を示す。 Next, in step S3, the temperature value T of the sensor element 12a of the oxygen sensor 12 is read from the temperature calculation unit 23. Next, in step S4, based on the read temperature value T, voltage values VHG1 to VHG6 are obtained from each of the lookup tables TB1 to TB6 corresponding to the excess air factor λ indicated by the six graph curves described above. The voltage values VHG1 to VHG6 indicate the boundaries of the seven areas A1 to A7 described above at the read temperature value T.
 次に、ステップS5において、電圧値VHG1~VHG6と、ステップS2で算出した電圧値VHGMAとを比較し、電圧値VHGMAが領域A1に対応する(VHGMA≧VHG1)か否かを判定する。領域A1に対応すると判定した場合には、ステップS6において、内燃機関の運転状況に応じて空気過剰率λを算出する。具体的には、上記特許文献1において開示されている方法を用いることができる。 Next, in step S5, the voltage values VHG1 to VHG6 are compared with the voltage value VHGMA calculated in step S2 to determine whether or not the voltage value VHGMA corresponds to region A1 (VHGMA≧VHG1). If it is determined that the voltage value VHGMA corresponds to region A1, then in step S6, the excess air factor λ is calculated according to the operating conditions of the internal combustion engine. Specifically, the method disclosed in the above-mentioned Patent Document 1 can be used.
 すなわち、空気過剰率λが領域A1よりもリッチ側であるときの燃料噴射弁6による燃料噴射の実行時間をTi1、内燃機関のクランク角速度NETCに基づいて算出されるトルク値をTQ1、領域A1を領域A2から区分している空気過剰率をλbとし、空気過剰率λが領域A1に対応する値になったときの噴射量をTi2、トルクをTQ2として、下記(1)式により空気過剰率λを算出する。
  λ=((Ti1÷Ti2)÷(TQ1÷TQ2))×λb          (1)
That is, the execution time of fuel injection by the fuel injection valve 6 when the air excess ratio λ is richer than region A1 is Ti1, the torque value calculated based on the crank angular velocity NETC of the internal combustion engine is TQ1, the air excess ratio separating region A1 from region A2 is λb, and the injection amount when the air excess ratio λ reaches a value corresponding to region A1 is Ti2 and the torque is TQ2, and the air excess ratio λ is calculated by the following formula (1).
λ=((Ti1÷Ti2)÷(TQ1÷TQ2))×λb (1)
 この空気過剰率λを算出した後、過剰率算出処理を終了する。なお、この場合の空気過剰率λとして、通常時は1より若干大きい値を採用し、燃料カット時にはさらに大きい値を採用してもよい。 After this excess air ratio λ is calculated, the excess ratio calculation process ends. Note that in this case, a value slightly larger than 1 may be used as the excess air ratio λ under normal circumstances, and an even larger value may be used when fuel is cut off.
 ステップS5において電圧値VHGMAが領域A1に対応しない(VHGMA<VHG1)と判定した場合には、ステップS7において、電圧値VHGMAが領域A2、A3、A4、A6のいずれかに対応するかどうかを判定する。いずれかに対応すると判定した場合には、ステップS8において、線形補完により、電圧値VHGMAに対応する空気過剰率λを算出する。 If it is determined in step S5 that the voltage value VHGMA does not correspond to region A1 (VHGMA<VHG1), it is determined in step S7 whether the voltage value VHGMA corresponds to any of regions A2, A3, A4, or A6. If it is determined that the voltage value VHGMA corresponds to any of regions A2, A3, A4, or A6, the excess air factor λ corresponding to the voltage value VHGMA is calculated by linear interpolation in step S8.
 具体的には、電圧値VHGMAに対応する領域A2、A3、A4又はA6を区分する空気過剰率λのリーン側の値をリーン側過剰率LAML、リッチ側の値をリッチ側過剰率LAMR、対応するリーン側のルックアップテーブルの電圧値をリーン側電圧値VHGL、リッチ側の電圧値をリッチ側電圧値VHGRとし、下記(2)式により、電圧値VHGMAに対応する空気過剰率λを算出し、過剰率算出処理を終了する。
  λ=[(LAML-LAMR)×(VHGMA-VHGR)÷(VHGL-VHGR)]]+LAMR   (2)
Specifically, the lean side value of the air excess factor λ dividing the area A2, A3, A4 or A6 corresponding to the voltage value VHGMA is defined as the lean side excess factor LAML, the rich side value is defined as the rich side excess factor LAMR, the corresponding voltage value in the lean side lookup table is defined as the lean side voltage value VHGL, and the rich side voltage value is defined as the rich side voltage value VHGR. The air excess factor λ corresponding to the voltage value VHGMA is calculated using the following equation (2), and the excess factor calculation process is terminated.
λ=[(LAML-LAMR)×(VHGMA-VHGR)÷(VHGL-VHGR)]]+LAMR (2)
 ステップS7において領域A2、A3、A4、A6のいずれにも対応しないと判定した場合には、ステップS9において、電圧値VHGMAが領域A5に対応する(VHG4>VHGMA≧VHG5)かどうかを判定する。領域A5に対応すると判定した場合には、ステップS10において、曲線補完により、電圧値VHGMAに対応する空気過剰率λを算出し、過剰率算出処理を終了する。 If it is determined in step S7 that the voltage value VHGMA does not correspond to any of areas A2, A3, A4, or A6, then in step S9 it is determined whether the voltage value VHGMA corresponds to area A5 (VHG4>VHGMA>VHG5). If it is determined that the voltage value VHGMA corresponds to area A5, then in step S10 the excess air factor λ corresponding to the voltage value VHGMA is calculated by curve interpolation, and the excess air factor calculation process ends.
 図6は、ステップS10における曲線補完により空気過剰率λを算出する際に用いることができるテーブルの一例を示す。このテーブルは、検索の比率の係数PNとλ加算値PNLAMADDとを対応付けたものである。ただし、図6において、0<PNLAMADD1<PNLAMADD2<PNLAMADD3<PNLAMADD4である。 FIG. 6 shows an example of a table that can be used to calculate the air excess factor λ by curve interpolation in step S10. This table associates the search ratio coefficient PN with the λ addition value PNLAMADD. However, in FIG. 6, 0<PNLAMADD1<PNLAMADD2<PNLAMADD3<PNLAMADD4.
 ステップS10における空気過剰率λの算出は、下記(3)式で算出される係数PNに対応するλ加算値PNLAMADDを図6のテーブルから求め、領域A5のリーン側境界及びリッチ側境界の空気過剰率λの値をそれぞれリーン側境界過剰率LAML及びリッチ側境界過剰率LAMRとし、下記(4)式を用いて行うことができる。
  PN=(VHGMA-VHG5)÷(VHG4-VHG5)             (3)
  λ=[(LAML-LAMR)×PNLAMADD]+LAMR            (4)
The calculation of the air excess ratio λ in step S10 can be performed by obtaining a λ addition value PNLAMADD corresponding to the coefficient PN calculated by the following equation (3) from the table in FIG. 6, setting the values of the air excess ratio λ at the lean side boundary and the rich side boundary of region A5 as the lean side boundary excess ratio LAML and the rich side boundary excess ratio LAMR, respectively, and using the following equation (4).
PN=(VHGMA-VHG5)÷(VHG4-VHG5) (3)
λ=[(LAML-LAMR)×PNLAMADD]+LAMR (4)
 ステップS9において電圧値VHGMAが領域A5に対応しないと判定した場合には、ステップS11において、電圧値VHGMAが領域A7に対応するか(VHGMA<VHG6)どうかを判定し、領域A7に対応しないと判定した場合には、そのまま過剰率算出処理を終了する。領域A7に対応すると判定した場合には、ステップS12において、空気過剰率についての所定の下限値、例えば上述のλ6を空気過剰率λに設定し、過剰率算出処理を終了する。 If it is determined in step S9 that the voltage value VHGMA does not correspond to region A5, then in step S11 it is determined whether the voltage value VHGMA corresponds to region A7 (VHGMA<VHG6), and if it is determined that it does not correspond to region A7, the excess ratio calculation process ends. If it is determined that it corresponds to region A7, then in step S12 a predetermined lower limit value for the air excess ratio, for example the above-mentioned λ6, is set as the air excess ratio λ, and the excess ratio calculation process ends.
 以上のように、本実施形態によれば、センサ素子12aの温度値T及び電圧値VHGを横軸及び縦軸とし、これに6つの空気過剰率λを示す6本のグラフ曲線を表してリーン側から7つの領域A1~A7に分割し、領域A1の空気過剰率λについては、上述の(1)式により、領域A2、A3、A4、A6については補完演算により、領域A5については図6のテーブル及び上述の(3)、(4)式により、領域A7の空気過剰率λについては所定の値を設定することにより、各領域の空気過剰率λが得られる。 As described above, according to this embodiment, the temperature value T and voltage value VHG of the sensor element 12a are set as the horizontal and vertical axes, and six graph curves showing six air excess ratios λ are plotted on these, dividing the region into seven regions A1 to A7 from the lean side. The air excess ratio λ of region A1 is obtained using the above-mentioned formula (1), regions A2, A3, A4, and A6 are obtained by interpolation, region A5 is obtained using the table in FIG. 6 and the above-mentioned formulas (3) and (4), and the air excess ratio λ of region A7 is set to a predetermined value, thereby obtaining the air excess ratio λ of each region.
 また、領域A5のリーン側境界過剰率LAML(第2パラメータ)は、内燃機関の理論空燃比に対応する空気過剰率λの値(=1)よも小さいので、領域A5のリッチ側境界過剰率LAMR(第1パラメータ)に対応する電圧値VHG5(第1信号値)と、領域A5のリーン側境界過剰率LAML(第2パラメータ)に対応する電圧値VHG4(第2信号値)とを、電圧値VHGMA(第3信号値)が電圧値VHG5(第1信号値)に近いほど、電圧値VHGMA(第3信号値)の変化に対して、これに対応する空気過剰率λ(第3パラメータ)が敏感に変化する特性を有するように、適切に設定することができる。 In addition, since the lean side boundary excess ratio LAML (second parameter) of region A5 is smaller than the value of the air excess ratio λ (=1) corresponding to the theoretical air-fuel ratio of the internal combustion engine, the voltage value VHG5 (first signal value) corresponding to the rich side boundary excess ratio LAMR (first parameter) of region A5 and the voltage value VHG4 (second signal value) corresponding to the lean side boundary excess ratio LAML (second parameter) of region A5 can be appropriately set so that the closer the voltage value VHGMA (third signal value) is to the voltage value VHG5 (first signal value), the more sensitively the corresponding air excess ratio λ (third parameter) changes in response to changes in the voltage value VHGMA (third signal value).
 これにより、電圧値VHGMAが領域A5に対応する場合の空気過剰率λの算出を、図6のテーブル及び上述の(3)、(4)式を用いた曲線近似よって、良好な精度で行うことができる。したがって、電圧値VHGMAが領域A5に対応する場合の空気過剰率λについても、センサ素子12aの温度値T、電圧値VHG及び空気過剰率λを表した設定が煩雑な三次元マップを用いる必要なく、取得することができる。 As a result, the air excess factor λ when the voltage value VHGMA corresponds to region A5 can be calculated with good accuracy by curve approximation using the table in FIG. 6 and the above-mentioned equations (3) and (4). Therefore, the air excess factor λ when the voltage value VHGMA corresponds to region A5 can also be obtained without the need to use a complicated three-dimensional map representing the temperature value T of the sensor element 12a, the voltage value VHG, and the air excess factor λ.
 以上、本発明の実施形態について説明したが、本発明はこれに限定されない。例えば、電圧値VHGMAが領域A5に対応する場合の空気過剰率λの算出において係数PNから加算値PNLAMADDを求める際に、図6のテーブルに代えて近似式(PNLAMADD=F(PN))を用いて、係数PNから加算値PNLAMADDを求めてもよい。 Although the embodiment of the present invention has been described above, the present invention is not limited to this. For example, when calculating the additional value PNLAMADD from the coefficient PN in calculating the excess air ratio λ when the voltage value VHGMA corresponds to region A5, the additional value PNLAMADD may be calculated from the coefficient PN using an approximation formula (PNLAMADD=F(PN)) instead of the table in FIG. 6.
 1…機関本体、2…吸気管、3…スロットル弁、4…エアクリーナ、5…スロットルセンサ、6…燃料噴射弁、7…吸気圧センサ、8…吸気温センサ、9…ピストン、10…排気管、11…触媒、12…酸素センサ、12a…センサ素子、12b…センサヒータ、13…点火プラグ、14…点火装置、15…ECU(電子制御ユニット)、17…冷却水温センサ、18…クランク軸、19…クランク角度センサ、19a…ロータ、19b…ピックアップ、20…大気圧センサ、22…ヒータ制御器、23…温度算出部、24…電圧算出部、25…過剰率算出部、26…代替値演算部、27…回転速度演算部、28…目標値演算部、29…基本噴射量演算部、30…フィードバック係数演算部、31…噴射量演算部、A1~A7…領域、TB1~TB6…ルックアップテーブル。 1...engine body, 2...intake pipe, 3...throttle valve, 4...air cleaner, 5...throttle sensor, 6...fuel injector, 7...intake pressure sensor, 8...intake temperature sensor, 9...piston, 10...exhaust pipe, 11...catalyst, 12...oxygen sensor, 12a...sensor element, 12b...sensor heater, 13...spark plug, 14...ignition device, 15...ECU (electronic control unit), 17...cooling water temperature sensor, 18...crankshaft, 19 ...crank angle sensor, 19a...rotor, 19b...pickup, 20...atmospheric pressure sensor, 22...heater controller, 23...temperature calculation unit, 24...voltage calculation unit, 25...excess rate calculation unit, 26...substitute value calculation unit, 27...rotation speed calculation unit, 28...target value calculation unit, 29...basic injection amount calculation unit, 30...feedback coefficient calculation unit, 31...injection amount calculation unit, A1-A7...area, TB1-TB6...lookup table.

Claims (6)

  1.  燃料噴射弁を備える内燃機関の排気中の酸素濃度に基づいて得られるパラメータが大きくなるにつれて一方向に変化する信号値に基づき、前記パラメータを検出するパラメータ検出部を備える内燃機関の制御装置において、
     前記パラメータ検出部は、
     前記信号値として、前記パラメータとしての第1パラメータに対応する第1信号値と前記第1パラメータより大きい前記パラメータとしての第2パラメータに対応する第2信号値との間の第3信号値が入力されたとき、
     前記第1信号値と、前記第1パラメータと、前記第2信号値と、前記第2パラメータと、前記第3信号値とに基づき、前記第3信号値に対応する前記パラメータである第3パラメータを検出するものであり、
     前記第3パラメータは、前記第3信号値が前記第1信号値に近いほど、前記第3信号値の変化に対して敏感に変化する特性を有することを特徴とする内燃機関の制御装置。
    1. A control device for an internal combustion engine including a parameter detection unit that detects a parameter obtained based on an oxygen concentration in exhaust gas from an internal combustion engine including a fuel injection valve, based on a signal value that changes in one direction as the parameter increases,
    The parameter detection unit
    when a third signal value between a first signal value corresponding to a first parameter as the parameter and a second signal value corresponding to a second parameter as the parameter larger than the first parameter is input as the signal value,
    a third parameter is detected based on the first signal value, the first parameter, the second signal value, the second parameter, and the third signal value, the third parameter being the parameter corresponding to the third signal value;
    A control device for an internal combustion engine, characterized in that the third parameter has a characteristic that it changes more sensitively to a change in the third signal value as the third signal value approaches the first signal value.
  2.  前記第2パラメータは、前記内燃機関の理論空燃比に対応する前記パラメータよりも小さいことを特徴とする請求項1に記載の内燃機関の制御装置。 The control device for an internal combustion engine according to claim 1, characterized in that the second parameter is smaller than the parameter corresponding to the theoretical air-fuel ratio of the internal combustion engine.
  3.  前記排気中の酸素濃度を検出する検出部を備え、
     前記信号値は、前記パラメータが一定である場合、前記検出部の温度が高くなるほど小さくなるものであることを特徴とする請求項1に記載の内燃機関の制御装置。
    A detection unit for detecting an oxygen concentration in the exhaust gas,
    2. The control device for an internal combustion engine according to claim 1, wherein the signal value decreases as the temperature of the detection portion increases when the parameter is constant.
  4.  前記排気中の酸素濃度を検出する検出部を備え、
     前記パラメータは、前記信号値が一定である場合、前記検出部の温度が高くなるほど大きくなるものであることを特徴とする請求項1に記載の内燃機関の制御装置。
    A detection unit for detecting an oxygen concentration in the exhaust gas,
    2. The control device for an internal combustion engine according to claim 1, wherein the parameter increases as the temperature of the detection portion increases when the signal value is constant.
  5.  前記排気中の酸素濃度を検出する検出部と、
     前記検出部からの検出値に基づいて、前記酸素濃度を示す電圧値を算出する電圧算出部と、
     前記検出部の温度を示す温度値を算出する温度算出部とを備え、
     前記信号値は、前記電圧算出部が算出する電圧値であり、
     前記一方向は、前記電圧値が大きくなる方向であることを特徴とする請求項1に記載の内燃機関の制御装置。
    A detection unit for detecting an oxygen concentration in the exhaust gas;
    a voltage calculation unit that calculates a voltage value indicating the oxygen concentration based on the detection value from the detection unit;
    a temperature calculation unit that calculates a temperature value indicating a temperature of the detection unit,
    the signal value is a voltage value calculated by the voltage calculation unit,
    2. The control device for an internal combustion engine according to claim 1, wherein the one direction is a direction in which the voltage value increases.
  6.  前記第3パラメータの検出は、前記第1信号値をVHGRとし、前記第2信号値をVHGLとし、前記第3信号値をVHGMとして次式
      PN=(VHGM-VHGR)÷(VHGL-VHGR)
    で求められる係数PNと加算値PNLAMADDとを対応付けたテーブルから、入力された前記第3信号値についての係数PNに対応する加算値PNLAMADDを求め、さらに前記第1パラメータの値をLAMR、前記第2パラメータの値をLAMLとし、前記第3パラメータとしてのPARAM3を、次式
      PARAM3=[(LAML-LAMR)×PNLAMADD]+LAMR
    で算出することにより行うことを特徴とする請求項1に記載の内燃機関の制御装置。
    The detection of the third parameter is performed by the following equation: PN=(VHGM-VHGR)÷(VHGL-VHGR), where VHGR is the first signal value, VHGL is the second signal value, and VHGM is the third signal value.
    The additional value PNLAMADD corresponding to the coefficient PN for the input third signal value is obtained from a table in which the coefficient PN obtained by the above corresponds to the additional value PNLAMADD, and further, the value of the first parameter is set to LAMR, the value of the second parameter is set to LAML, and PARAM3 as the third parameter is calculated by the following formula: PARAM3=[(LAML-LAMR)×PNLAMADD]+LAMR
    2. The control device for an internal combustion engine according to claim 1, wherein the calculation is performed by:
PCT/JP2023/001946 2023-01-23 2023-01-23 Control device for internal combustion engine WO2024157329A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/001946 WO2024157329A1 (en) 2023-01-23 2023-01-23 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/001946 WO2024157329A1 (en) 2023-01-23 2023-01-23 Control device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2024157329A1 true WO2024157329A1 (en) 2024-08-02

Family

ID=91970250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001946 WO2024157329A1 (en) 2023-01-23 2023-01-23 Control device for internal combustion engine

Country Status (1)

Country Link
WO (1) WO2024157329A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01223333A (en) * 1988-03-02 1989-09-06 Mazda Motor Corp Semiconductor exhaust gas sensor of engine
JPH05248285A (en) * 1992-03-06 1993-09-24 Atsugi Unisia Corp Air-fuel ratio control device for internal combustion engine
JP2005091736A (en) * 2003-09-17 2005-04-07 Matsushita Electric Ind Co Ltd Image density controller, image forming apparatus, and image density control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01223333A (en) * 1988-03-02 1989-09-06 Mazda Motor Corp Semiconductor exhaust gas sensor of engine
JPH05248285A (en) * 1992-03-06 1993-09-24 Atsugi Unisia Corp Air-fuel ratio control device for internal combustion engine
JP2005091736A (en) * 2003-09-17 2005-04-07 Matsushita Electric Ind Co Ltd Image density controller, image forming apparatus, and image density control method

Similar Documents

Publication Publication Date Title
JP4315179B2 (en) Air-fuel ratio control device for internal combustion engine
US7677027B2 (en) Deterioration detecting apparatus for catalyst
US6567738B2 (en) Fueling control system
JP4673787B2 (en) Air-fuel ratio control device for internal combustion engine
JP3980424B2 (en) Air-fuel ratio control device for internal combustion engine
JP5118247B2 (en) Cylinder intake air amount calculation device for internal combustion engine
JP5331613B2 (en) In-cylinder gas amount estimation device for internal combustion engine
CN101187341B (en) Air amount computing unit and fuel control unit of internal combustion engine
US8818690B2 (en) Air-fuel ratio control apparatus for internal combustion engine
JP4280931B2 (en) Air-fuel ratio control device for internal combustion engine
JP4919945B2 (en) Air-fuel ratio control method by engine sliding mode control, and fuel control apparatus including the method
US20010007192A1 (en) Exhaust gas purifying apparatus for internal combustion engine
WO2024157329A1 (en) Control device for internal combustion engine
JP2018044504A (en) Control device of internal combustion engine
JP7499146B2 (en) Air Excess Ratio Calculator
US20040199323A1 (en) Plant control device
JP4790787B2 (en) Control device for internal combustion engine
JP5310102B2 (en) Control device for internal combustion engine
JP5216787B2 (en) Engine control device
JP4859525B2 (en) Misfire detection device for internal combustion engine
JP5770585B2 (en) Air-fuel ratio control device for internal combustion engine
JP4807670B2 (en) Control device
JP2017020417A (en) Control device of internal combustion engine
JP4710716B2 (en) Air-fuel ratio control device for internal combustion engine
WO2023181209A1 (en) Excess air ratio calculation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23918302

Country of ref document: EP

Kind code of ref document: A1