WO2024156970A1 - Device for generating power by salinity gradient comprising an activated carbon fabric - Google Patents

Device for generating power by salinity gradient comprising an activated carbon fabric Download PDF

Info

Publication number
WO2024156970A1
WO2024156970A1 PCT/FR2024/050108 FR2024050108W WO2024156970A1 WO 2024156970 A1 WO2024156970 A1 WO 2024156970A1 FR 2024050108 W FR2024050108 W FR 2024050108W WO 2024156970 A1 WO2024156970 A1 WO 2024156970A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
membranes
concentration
membrane
textile
Prior art date
Application number
PCT/FR2024/050108
Other languages
French (fr)
Inventor
Bruno Mottet
Assane SENE
Mohammed KECHADI
Chloé BIZOT
Original Assignee
Sweetch Energy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sweetch Energy filed Critical Sweetch Energy
Publication of WO2024156970A1 publication Critical patent/WO2024156970A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/22Fuel cells in which the fuel is based on materials comprising carbon or oxygen or hydrogen and other elements; Fuel cells in which the fuel is based on materials comprising only elements other than carbon, oxygen or hydrogen
    • H01M8/227Dialytic cells or batteries; Reverse electrodialysis cells or batteries

Definitions

  • the present invention relates to a device for producing energy by salinity gradient comprising an activated carbon textile, as well as a method implementing such a device.
  • the invention also relates to the use of an activated carbon textile positioned between a cation exchange membrane and an anion exchange membrane in an energy production device.
  • Devices involving ion exchange processes between compartments separated by ion exchange membranes can be used to produce energy by exploiting salinity gradients.
  • the production of electrical energy by salinity gradient is one of the sources of renewable energy with the greatest potential on a planetary scale.
  • the reverse electrodialysis (RED) method is based on the conversion of mixing energy into electrical energy.
  • This technology is based on the use of membranes with selective permeability to anions (anionic membranes) or cations (cationic membranes), whose basic property is the selective transport of ions according to the sign of their charge.
  • a common type of RED device consists of membranes stacked between a pair of electrodes.
  • the stack of membranes comprises an alternation of anionic membranes and cationic membranes between which salt water and fresh water are alternately circulated.
  • the intermembrane spaces i.e. the spaces within which fluids circulate, are maintained by placing spacers between the membranes.
  • the circulation of alternating salt water and fresh water between these membranes in other words the establishment of a salinity gradient on either side of each of these membranes, leads to selective ionic flows through each of these membranes.
  • This low energy production capacity is notably due to the fact that current membranes develop electrical powers per unit of membrane surface (/e. membrane powers) of only a few W/m 2 of membrane.
  • the low energy production capacity of these types of RED devices is also due to the resistances that different elements of the system oppose to the ionic flows.
  • This resistance depends mainly on the membrane resistance, the ionic conductivity of the electrolyte solution, in particular the solution with the least electrolyte concentration, and the intermembrane distance.
  • maintaining a spacing of several hundred micrometers between the membranes by means of spacers is necessary to allow the flow of fluids within the stack of membranes but contributes significantly to the overall resistance of the system. .
  • the spacer can also contribute to increasing the resistance of the device and affect the overall performance of the device in terms of power developed.
  • the spacers conventionally used in such devices are nylon type fabric spacers.
  • tissue filaments The size of the tissue filaments, their arrangement and their spacing are important parameters for optimizing the performance of such spacers (Gurreri et al., Journal of membrane science, 497 (2016) 300-317).
  • Another alternative consists of using thin spacers, typically of the order of 100pm or less, which makes it possible to increase the power developed but is not applicable industrially due in particular to high pressure losses.
  • the subject of the invention is a device for the production of energy comprising:
  • a device (5) making it possible to harvest the electrical energy generated by a potential differential existing between the 2 electrodes (1) the stack of membranes (9) being intended to be supplied by an electrolytic solution (7) of concentration CA in a solute and an electrolytic solution (8) of concentration CB in the same solute, CB being greater than CA, said solutions having to circulate alternately in the intermembrane spaces of said stack (9).
  • the activated carbon textile has a thickness ranging from 100 pm to 1000 pm, preferably from 200 pm to 600 pm.
  • the activated carbon textile has a specific surface area SBET ranging from 200 to 3,000 m 2 /g, preferably from 1,000 to 2,000 m 2 /g.
  • the invention also relates to a method for producing electrical energy using a device as described above comprising the following steps: i) supplying the stack (9) of membranes with an electrolytic solution (7) of concentration CA in a solute and an electrolytic solution (8) of concentration CB in the same solute, CB being greater than CA, so that said solutions circulate alternately in the intermembrane spaces of said stack (10); ii) allow the electrolytes to diffuse from the intermembrane spaces supplied by the electrolytic solution (7) of concentration CB towards the adjacent intermembrane spaces supplied by the electrolytic solution (8) of concentration CA; ill) capture the electrical energy generated by the potential differential existing between the two electrodes (1), using the device (5).
  • the CB/CA concentration ratio ranges from 2 to 100, preferably from 5 to 50.
  • the electrolytic solutions (7) and (8) are aqueous solutions comprising a solute chosen from alkali halides or alkaline earth halides, preferably chosen from NaCI, KG, CaCh and MgCh, more preferably NaCI.
  • Another subject concerns the use of an activated carbon textile positioned between a membrane selectively permeable to cations and a membrane selectively permeable to anions in a device intended for the implementation of an energy production process.
  • FIG. 1 represents in exploded view the 2 two electrodes (1) and 5 membranes positioned between the two electrodes with a stack of membranes (9) comprising an alternation of membranes selectively permeable to cations (2) and membranes selectively permeable to anions ( 3), with an activated carbon textile (4) positioned in the intermembrane space between 2 neighboring membranes according to the device of the invention.
  • FIG. 2 schematically represents in section the reverse electrodialysis device (RED) used in example 1 comprising:
  • a redox solution (6) circulates between the electrodes (1).
  • the stack of membranes is supplied with an electrolytic solution (7) of concentration CA in a solute and an electrolytic solution (8) of concentration CB in the same solute, CB being greater than CA, said solutions circulating alternately in the intermembrane spaces of stacking.
  • the aim of the present invention is to overcome the drawbacks of the prior art and to provide a device using a spacer that is simple to implement, inexpensive to manufacture and makes it possible to obtain improved performance.
  • Another aim of the invention is to provide a method for producing electrical energy using the device of the invention.
  • the first object of the invention is a device for the production of energy comprising:
  • each membrane is separated from a membrane adjacent to an intermembrane space in which an activated carbon textile (4) is positioned, i.e. a spacer;
  • the stack of membranes (9) being intended to be supplied by an electrolytic solution (7) of concentration CA in a solute and an electrolytic solution (8) of concentration CB in the same solute, CB being greater than CA, said solutions having to circulate alternately in the intermembrane spaces of said stack (9).
  • the difference in the CA and CB concentrations in the same solute causes the mobility of the electrolytes from the most concentrated solution to the least concentrated solution.
  • an activated carbon textile makes it possible, by increasing ionic conduction, to improve the performance of energy production devices in terms of electrical power generated, compared to conventionally used spacers. in such devices.
  • the spacer according to the invention is an activated carbon textile (4).
  • activated carbon textile means a sheet of a woven, knitted or non-woven textile comprising activated carbon fibers.
  • the activated carbon textile may be a sheet of a woven textile comprising yarns based on activated carbon fibers, or a sheet of a knitted textile comprising at least one yarn based on activated carbon fibers, or a sheet of a non-woven textile comprising activated carbon fibers.
  • a nonwoven textile is an essentially planar fibrous assembly, possessing a nominal level of structural integrity imparted by means of physical and/or chemical processes, excluding weaving, knitting or papermaking.
  • the non-woven textile of the invention meets the definition according to the ISO 9092 standard of April 2019 of a non-woven textile.
  • fibrous assembly we mean the assembly of fibrous materials such as fibers, continuous filaments or even cut threads of any length or section.
  • the nonwoven textile may comprise threads obtained from activated carbon fibers.
  • a woven textile is an essentially planar assembly of threads parallel to each other called warp threads crossed by threads called weft threads, said threads being preferably intertwined by weaving.
  • the yarn comprises activated carbon fibers.
  • the activated carbon non-woven fabric may be made of activated carbon fibers.
  • the activated carbon non-woven fabric may be a composite non-woven fabric comprising activated carbon fibers and fibers of one or more materials other than activated carbon.
  • the activated carbon non-woven textile may be a composite non-woven textile consisting of activated carbon fibers and fibers of one or more materials other than activated carbon.
  • the woven or non-woven activated carbon textile may consist of threads comprising activated carbon fibers.
  • the yarns of the woven or non-woven activated carbon textile may be composite yarns comprising activated carbon fibers and fibers of one or more materials other than activated carbon.
  • the yarns of the woven or non-woven activated carbon textile may be composite yarns made up of activated carbon fibers and fibers of one or more materials other than activated carbon.
  • the yarns of the woven or non-woven activated carbon textile may be yarns comprising activated carbon fibers on the one hand and yarns comprising fibers of one or more materials other than activated carbon on the other hand.
  • the yarns of the woven or non-woven active carbon textile may be yarns made up of activated carbon fibers on the one hand and yarns comprising fibers of one or more materials other than activated carbon on the other hand.
  • the yarns of the woven or non-woven activated carbon textile may be yarns comprising activated carbon fibers on the one hand and yarns made up of fibers of one or more materials other than activated carbon on the other hand.
  • the yarns of the woven or non-woven activated carbon textile may be yarns made up of activated carbon fibers on the one hand and yarns made up of fibers of one or more materials other than activated carbon on the other hand.
  • the woven or non-woven activated carbon textile is made up of threads made of activated carbon fibers.
  • the non-woven activated carbon textile can for example be an activated carbon felt.
  • the activated carbon felt is obtained by needling fibers.
  • the at least one yarn obtained from activated carbon fibers of the activated carbon knitted textile is as described above.
  • the fibers of the material(s) different from activated carbon can make it possible to modify the mechanical properties of the activated carbon textile by, for example, increasing its rigidity.
  • Activated carbon textile can be obtained by assembling activated carbon fibers.
  • the activated carbon textile can be obtained by assembling activated carbon fibers and fibers of one or more materials other than activated carbon.
  • the activated carbon textile can also be obtained from a textile comprising fibers of an activated carbon precursor, said textile being subjected to further processing to obtain said activated carbon textile.
  • the treatments for obtaining said activated carbon film are well known to those skilled in the art. This concerns in particular thermochemical processes carried out at temperatures between 200°C and 3000°C.
  • the material(s) different from the activated carbon are advantageously temperature-resistant materials, preferably silica or glass.
  • the mass of the activated carbon fibers of the activated carbon textile is equal to at least 50% of the total mass of the activated carbon textile.
  • the mass of the activated carbon fibers per ratio to the total mass of the activated carbon textile can be calculated from the mass ratio of the different fibers or yarns used to manufacture the textile and the mass of the textile before and after treatment, Indeed, when the textile comprises silica fibers or glass for example, their mass remains unchanged after said treatment.
  • the impact of the treatment on the mass of each type of textile fiber or yarn can also be evaluated separately.
  • the activated carbon textile has a thickness ranging from 100 pm to 1000 pm, preferably from 200 pm to 600 pm.
  • the thickness of the activated carbon textile is less than 100 pm, the flow of electrolyte solutions in the intermembrane spaces may be hindered, charge loss phenomena may occur and the power required to circulate the electrolyte solutions may be greatly reduced. increased.
  • the thickness of the activated carbon textile is greater than 1000 pm, the electrical resistance linked to the thickness of the intermembrane compartment is too high and affects the efficiency of the device.
  • the specific surface area of the textile is measured by the B.E.T. method. (Brunauer, Emmett and Teller) according to the ISO 9277 standard of September 2010.
  • Activated carbon textile can have a specific surface area from 1 m 2 /g to 3,000 m 2 /g.
  • the activated carbon textile has a specific surface area of 200 m 2 /g to 3,000 m 2 /g, preferably 1,000 m 2 /g to 2,000 m 2 /g.
  • the activated carbon textile can have a specific surface area of 1 m 2 /g to 10 m 2 /g or from 1 m 2 /g to 5 m 2 /g.
  • the activated carbon textile of the invention is a material having interstitial volumes allowing the circulation of electrolytic solutions. It may have an interstitial volume percentage of at least approximately 50% and preferably at least approximately 60%.
  • the total interstitial volume is determined indirectly by differential weighing of a sample impregnated and a sample not impregnated with a wetting liquid of known density, such as an alcohol.
  • the VE volume can be determined as the product of the surface area of the sample and its thickness.
  • the activated carbon textile has a density ranging from 0.05 to 0.20 g/cm 3 .
  • the term “activated carbon fibers” refers to fibers obtained from a carbonaceous precursor according to processes well known to those skilled in the art, in particular thermochemical processes carried out at temperatures between 200 °C and 3000°C.
  • the carbon precursor is of the polymer or macromolecule type, preferably a carbon precursor chosen from phenol-aldehyde resins, polyacrylonitrile (PAN), rayon, lignin, or one of their mixtures.
  • PAN polyacrylonitrile
  • Phenol-aldehyde resins polyacrylonitrile (PAN), and rayon and mixtures thereof are preferred.
  • the process comprising the following steps: optionally a step of pre-oxidation of the carbonaceous precursor, calcination or carbonization, physical activation which may consist of calcination in the presence of gas such as carbon dioxide, water or oxygen, or chemical activation by means of an activating agent, such as an acid such as phosphoric acid or a base such as carbon hydroxide potassium.
  • the precursor can be directly activated before a calcination step.
  • the activated carbon fibers are essentially made up of carbon, that is to say they are preferably made up of at least 80% by mole of carbon, preferably at least 90% by mole of carbon. , more preferably at least 95% by mole of carbon, the remainder being elements such as oxygen, nitrogen and hydrogen.
  • the activated carbon fibers comprise 80 to 100% by weight of carbon, 0 to 10% by weight of nitrogen, 0 to 10% of oxygen and 0 to 5% by weight of hydrogen.
  • the activated carbon fibers of the textile advantageously have a diameter of less than 50 pm, preferably less than 20 pm, particularly preferably less than 10 pm.
  • the fibers of the activated carbon textile advantageously have a diameter greater than 0.1 pm, preferably greater than 1 pm.
  • the activated carbon fibers can have a diameter ranging from 0.1 pm to 50 pm, preferably ranging from 1 to 20 pm, particularly preferably ranging from 1 to 10 pm.
  • the diameter of the activated carbon fibers in the textile can be determined using a scanning electron microscope (SEM).
  • the surface charge density of the activated carbon is between 0.1 mmol/g and 3 mmol/g.
  • the surface charge density is measured by dosimetry.
  • the surface charge density of the activated carbon is between 10'5 meq/m 2 and 10'2 meq/m 2 .
  • the charged groups of the activated carbon are monovalent ionic groups
  • 1 meq of surface charge corresponds to 1 mmol of surface charge, i.e. 1 mmol of charged group.
  • the surface charge density of the activated carbon is thus advantageously between 10'5 mmol/m 2 and 10' 2 mmol/m 2 .
  • each membrane is separated from a neighboring membrane by an intermembrane space in which an activated carbon textile (4) is positioned as described above.
  • the activated carbon textile according to the invention is simple, inexpensive to manufacture and makes it possible to improve the performance of energy production devices compared to the spacers conventionally used in such devices.
  • the thickness of the intermembrane space between 2 membranes can be controlled by means of a seal or any other system making it possible to control the thickness of the intermembrane space, to ensure its tightness while allowing the circulation of electrolytic solutions and positioning the activated carbon textile according to the invention.
  • membrane means a material in the form of a sheet permeable to at least part of the ions of the electrolytic solution.
  • selective permeability to anions or cations means that the membrane allows the majority of anions or cations to pass through it, and inhibits or strongly delays the passage of ions of opposite charge.
  • the membrane is also permeable to the solvent of the electrolytic solution, preferably water.
  • the membrane selectively permeable to anions (3) or cations (2) can be in the form of a homogeneous layer of a material or a stack of several layers formed of different materials.
  • the membrane selectively permeable to anions (3) or cations (2) of the invention is an ion exchange membrane, that is to say a membrane formed of at least one mineral or organic material carrying ionogenic groups, also called ion exchange groups, which give the membrane its property of selective permeability to ions.
  • an ionogenic group is a chemical group which, placed in a liquid, has the ability to release an ion, called counter-ion, and to fix an ion of the same charge contained in this liquid.
  • the membrane comprises an organic polymer bearing ionogenic groups, commonly referred to as an “ion exchange resin”.
  • the membrane of the invention can thus be formed of a matrix of an insoluble polymer in which an ion exchange resin has been included, or of a matrix of an insoluble polymer onto which ionogenic groups have been grafted. .
  • the insoluble polymer is typically a hydrocarbon matrix advantageously chosen from a polysaccharide matrix such as a cellulose or dextran matrix, a polystyrene matrix, a polytetrafluoroethylene matrix, or a matrix of a copolymer such as 'a copolymer of styrene and divinylbenzene.
  • the membrane selectively permeable to anions (3) comprises anion exchange groups advantageously chosen from the quaternary ammonium group -N(R) 3 + with R a C1-C4 alkyl, the tertiary ammonium group - N(H)R)2 + with R a C1-C4 alkyl, preferably a C1 alkyl, the dimethylhydroxyethylammonium group -N(C2H4OH)CH 3 )2 + , and mixtures thereof.
  • the thickness of the membrane is between 10 pm and 200 pm, preferably between 10 and 100 pm, preferably between 10 pm and 75 pm.
  • the membrane advantageously comprises channels which connect the two faces of the membrane.
  • the channels can pass right through the membrane or form a network of channels ensuring the circulation of ions and/or the solvent between the two faces of the membrane.
  • the channels of the membrane of the invention advantageously have an average diameter of between 1 and 500 nm, preferably between 1 and 100 nm, more preferably between 2 and 100 nm, more preferably between 10 and 100 nm.
  • the membrane has a density of channels per unit surface area of membrane greater than 10 5 channels per cm 2 of membrane, preferably greater than 10 8 channels per cm 2 of membrane.
  • the channels of the membrane of the invention can have any type of morphology, for example a tubular, asymmetrical conical type, or neck morphology.
  • the internal surface of the channels of the membrane is covered with boron nitride, a compound based on carbon, boron and nitrogen, or a titanium oxide , preferably titanium dioxide.
  • boron nitride a compound based on carbon, boron and nitrogen
  • titanium oxide preferably titanium dioxide.
  • these coatings have the effect of increasing the surface charge of the internal surface of the channels and significantly improving the electrical power generated by devices comprising such nanofluidic membranes with high surface charge density, as detailed in international applications WO 2014/0606902017 and WO 2017/037213.
  • the membranes advantageously have channels having an average diameter of between 2 and 100 nm.
  • the membrane of the invention is self-supporting.
  • self-supporting membrane means a membrane which does not need to be supported by one or more rigid supports (for example sheets of a porous solid material) or deformable (for example sheets of 'a polymer material) to ensure its mechanical integrity.
  • the membrane comprises at least one layer formed of a cellulose material comprising a network of nanofibers and/or crosslinked microfibers of cellulose.
  • the device according to the invention comprises a stack of membranes (9), arranged between the two electrodes (1), comprising an alternation of membranes selectively permeable to cations (2) and membranes selectively permeable to anions (3) as described below. above, and such that each membrane is separated from a neighboring membrane by an intermembrane space in which an activated carbon textile is positioned as described above.
  • stack of membranes we mean an arrangement of the membranes as illustrated in Figures 1 and 2, that is to say that the membranes are arranged between the 2 electrodes (1) positioned opposite each other and are in different parallel planes.
  • the device may comprise N+1 membrane and N intermembrane spaces, N being an even integer, in particular between 2 and 1000, preferably between 2 and 250, for example between 2 and 100.
  • the device according to the invention comprises a pair of electrodes (1) and a device (5) making it possible to harvest the electrical energy generated by the potential differential existing between the 2 electrodes (1).
  • Electrodes can be used in the device.
  • any type of electrode capable of collecting the flow of Na+ or Cl- ion can be used, and preferably electrodes composed of Silver and Silver Chloride (Ag/ AgCI), Carbon and Platinum (C/Pt-), Carbon (C-), Graphite or even Iron complexes of the type [Fe(CN)e] 4_ /[Fe(CN) 6 ] 3 -.
  • the electrodes can in particular be circulation electrodes (in English “redox-flow”) as illustrated in Figure 2.
  • the principle of these electrodes is based on an oxidation reaction and a reduction reaction at each of the electrodes. .
  • the recirculating solution (6) may include a solute solution of concentration (CA+CB)/2.
  • the electrodes can also be capacitive flow electrodes comprising a dispersion of conductive particles called "slurry" in the medium comprising the solute.
  • Conductive particles can be activated carbon particles, carbon nanotubes or any other conductive agent.
  • Each electrode can be in contact with a membrane selectively permeable to ions of the same sign, that is to say each electrode can be in contact with a membrane selectively permeable to cations or each electrode can be in contact with a membrane selectively permeable to anions.
  • the electrodes (1) are connected together to a device (5) making it possible to collect, that is to say circulate and capture the electrical energy spontaneously generated by the potential differential existing between them.
  • This device forms an external electrical circuit advantageously comprising a current collector and an electrical cable, a battery, a bulb or any other form of electrical consumer.
  • An electrolytic solution of concentration CA is circulated in a solute and an electrolytic solution of concentration CB in this same solute, CB being greater than CA in the intermembrane spaces of the stack of membranes (9).
  • the solutions circulate alternately in the stack (9), which means that the electrolytic solution of concentration CA in a solute circulates in the intermembrane space between 2 membranes and that the electrolytic solution of concentration CB in this same solute circulates in the or adjacent intermembrane spaces.
  • An osmotic flow is generated between two adjacent intermembrane spaces, preferably by diffusion-osmosis, that is to say without any osmotic pressure appearing.
  • the concentration gradient can be obtained and/or modulated via a temperature gradient between the two electrolytic solutions, which influences the solubility of the electrolyte as a function of temperature.
  • the concentration ratio Rc designates the ratio of the concentration of the most concentrated solution to the concentration of the least concentrated solution, that is to say the CB/CA ratio.
  • Electrolyte solutions are aqueous solutions comprising electrolytes.
  • the electrolytes can be of any chemical nature as long as they dissolve in the solution in the form of ions.
  • these ions come from dissolved salts such as NaCl, KG, CaCh and MgCh.
  • Electrolytic solutions can be:
  • the electrolyte is NaCI.
  • the CB solution is a seawater solution and the CA solution is a freshwater solution.
  • the device comprises means for switching the flow of the electrolytic solutions of concentration CA and CB, which are produced according to a mode (1) in which the electrolytic solution of concentration CA in a solute circulates in the intermembrane space between 2 membranes and that the electrolytic solution of CA concentration in this same solute circulates in the adjacent intermembrane space(s) and a mode (2) in which the circulation of the CA and CB solutions is reversed.
  • the pH of the solutions can be adjusted as a function of the isoelectric point of the material(s) constituting the membrane.
  • pHiso means the pH of the isoelectric point of the material(s) constituting the membrane.
  • the pHiso is measured by methods known to those skilled in the art, in particular by the acid/base potentiometric titration method.
  • a pH gradient can also be established between the two reservoirs, the pH difference between the two solutions will be greater than 1, preferably greater than 2.
  • a second object of the invention relates to a method of producing energy using a device as described above comprising the following steps i) supplying the stack of membranes (9) with an electrolytic solution (7) of concentration CA in a solute and an electrolytic solution (8) of concentration CB in the same solute, CB being greater than CA, so that said solutions circulate alternately in the intermembrane spaces of said stack (9); ii) allow the electrolytes to diffuse from the intermembrane spaces supplied by the electrolytic solution (7) of concentration CB towards the adjacent intermembrane spaces supplied by the electrolytic solution (8) of concentration CA; ill) capture the electrical energy generated by the potential differential existing between the two electrodes (1), using the device (5).
  • Steps i) and ii) are preferably implemented by providing the electrolytic solution of concentration CA and the electrolytic solution of concentration CB IN the form of a continuous flow.
  • the flow rate of the electrolytic solutions (7) and (8) is adjusted so as to optimize the salinity gradient of the device by varying the residence time of the electrolytic solutions within the device.
  • the electrolytic solutions (7) and (8) are at a temperature between 10°C and 40°C, preferably at a temperature between 15°C and 25°C.
  • the process according to the invention is an energy production process exploiting the difference in salinity between a seawater solution and a freshwater solution.
  • Another object of the invention relates to the use of an activated carbon textile as described above, positioned between a cation exchange membrane and an anion exchange membrane in an energy production device.
  • the activated carbon textile is used as a spacer.
  • the energy production device is as described above.
  • the present invention will be better understood on reading the following examples which illustrate the invention in a non-limiting manner.
  • the device and method illustrated are a device and method for producing energy by reverse electrodialysis.
  • the device comprises 7 cationic (2) and anionic (3) membranes each having a surface area of 1 cm 2 .
  • the electrodes (1) are connected by an external electrical circuit including a voltmeter.
  • Activated carbon felt (4) obtained from a polyacrylonitrile precursor with a thickness of 300pm or 500pm.
  • a seawater solution with a NaCI concentration of 35g/l (CB concentration solution) and a solution with a NaCI concentration of 1.17g/l (CA concentration solution) are used (corresponding respectively to solutions 8 and 7 of Figure 2).
  • the temperature of the saline solutions is 25°C.
  • the flow rate of saline solutions is 1 ml/min.
  • the aqueous solution for rinsing the electrode (6) comprises 0.25 M Na3Fe(CN)e, 0.25 M Na 4 Fe(CN) 6 and (CB + CA)/2 in NaCI.
  • the temperature of the rinsing solution is 25°C.
  • the solution flow rate is 0.25 ml/min.
  • Example 1 Preparation of devices D1 and D2 in accordance with the invention and comparison with comparative devices C1 and C2 not in accordance with the invention. The results are presented in Table 1.
  • the power gain obtained with the activated carbon spacer according to the invention is 2.5.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The invention relates to a device for generating power, comprising: - two electrodes (1); - a stack of membranes (9), arranged between the two electrodes, comprising an alternation of membranes selectively permeable to cations (2) and membranes selectively permeable to anions (3), and such that each membrane is separated from an adjacent membrane by an intermembrane space in which an activated carbon fabric (4) is positioned; and - a device (5) making it possible to harvest the electric power generated by a potential differential existing between the two electrodes (1), the stack of membranes (9) being intended to be supplied by an electrolytic solution (7) of concentration CA in a solute and an electrolytic solution (8) of concentration CB in the same solute, CB being greater than CA, the solutions having to circulate alternately in the intermembrane spaces of the stack (9).

Description

DISPOSITIF DE PRODUCTION D’ENERGIE PAR GRADIENT DE SALINITEDEVICE FOR PRODUCING ENERGY BY SALINITY GRADIENT
COMPRENANT UN TEXTILE DE CHARBON ACTIF COMPRISING AN ACTIVATED CARBON TEXTILE
DOMAINE DE L’INVENTION FIELD OF INVENTION
La présente invention concerne un dispositif de production d’énergie par gradient de salinité comprenant un textile de charbon actif, ainsi qu’un procédé mettant en œuvre un tel dispositif. The present invention relates to a device for producing energy by salinity gradient comprising an activated carbon textile, as well as a method implementing such a device.
L’invention concerne également l’utilisation d’un textile de charbon actif positionné entre une membrane échangeuse de cations et une membrane échangeuse d’anions dans un dispositif de production d’énergie. The invention also relates to the use of an activated carbon textile positioned between a cation exchange membrane and an anion exchange membrane in an energy production device.
ETAT DE LA TECHNIQUE STATE OF THE ART
Les dispositifs mettant en jeu des processus d’échange d’ions entre des compartiments séparés par des membranes échangeuses d’ions peuvent être utilisés pour produire de l’énergie en exploitant des gradients de salinité. Devices involving ion exchange processes between compartments separated by ion exchange membranes can be used to produce energy by exploiting salinity gradients.
La production d’énergie électrique par gradient de salinité est une des sources d’énergie renouvelable présentant le plus gros potentiel à l’échelle de la planète. The production of electrical energy by salinity gradient is one of the sources of renewable energy with the greatest potential on a planetary scale.
Parmi les différentes technologies actuellement envisagées, la méthode d’électrodialyse inverse (RED de l’anglais « reverse electrodialysis ») repose sur la conversion de l’énergie de mélange en énergie électrique. Cette technologie repose sur l’utilisation de membranes ayant une perméabilité sélective aux anions (membranes anioniques) ou aux cations (membranes cationiques), dont la propriété de base est le transport sélectif d’ions selon le signe de leur charge. Among the different technologies currently being considered, the reverse electrodialysis (RED) method is based on the conversion of mixing energy into electrical energy. This technology is based on the use of membranes with selective permeability to anions (anionic membranes) or cations (cationic membranes), whose basic property is the selective transport of ions according to the sign of their charge.
Un type commun de dispositif RED est constitué de membranes empilées entre une paire d’électrodes. L’empilement de membranes comprend une alternance de membranes anioniques et de membranes cationiques entre lesquelles on fait circuler alternativement de l’eau salée et de l’eau douce. Les espaces intermembranaires, c’est à dire les espaces au sein desquels circulent les fluides sont maintenus en disposant des espaceurs (en anglais « spacers ») entre les membranes. La circulation d’une alternance d’eau salée et d’eau douce entre ces membranes, autrement dit l’établissement d’un gradient de salinité de part et d’autre de chacune de ces membranes, entraine des flux ioniques sélectifs au travers de chacune de ces membranes. Par exemple, des flux d’ions sodium traversent les membranes cationiques en direction de la cathode et des flux d’ions chlore traversent les membranes anioniques en direction de l’anode, faisant naitre entre les deux faces de chaque membrane une différence de potentiel électrochimique que l’on désigne couramment comme différence de potentiel de membrane. Aux extrémités, des systèmes d’électrodes convertissent le courant ionique en courant électrique et un circuit électrique extérieur assure le transfert d’électrons de l’anode vers la cathode. La résultante des différences de potentiels de membrane produit donc un courant électrique qui peut être utilisé par un dispositif placé sur le circuit reliant les électrodes. A common type of RED device consists of membranes stacked between a pair of electrodes. The stack of membranes comprises an alternation of anionic membranes and cationic membranes between which salt water and fresh water are alternately circulated. The intermembrane spaces, i.e. the spaces within which fluids circulate, are maintained by placing spacers between the membranes. The circulation of alternating salt water and fresh water between these membranes, in other words the establishment of a salinity gradient on either side of each of these membranes, leads to selective ionic flows through each of these membranes. For example, flows of sodium ions cross the cationic membranes towards the cathode and flows of chlorine ions cross the anionic membranes towards the anode, giving rise between the two faces of each membrane a difference in electrochemical potential which is commonly referred to as the membrane potential difference. At the ends, systems electrodes convert the ionic current into electric current and an external electrical circuit ensures the transfer of electrons from the anode to the cathode. The result of the differences in membrane potentials therefore produces an electric current which can be used by a device placed on the circuit connecting the electrodes.
L’un des problèmes rencontrés par les dispositifs de production d’électricité à partir d’un gradient de salinité, tels que les dispositifs RED actuels, est que ceux-ci présentent une faible capacité de production d’électricité. One of the problems encountered by devices for producing electricity from a salinity gradient, such as current RED devices, is that they have a low electricity production capacity.
Cette faible capacité de production d’énergie est notamment due au fait que les membranes actuelles développent des puissances électriques par unité de surface de membrane (/.e. des puissances membranaires) de seulement quelques W/m2 de membrane. This low energy production capacity is notably due to the fact that current membranes develop electrical powers per unit of membrane surface (/e. membrane powers) of only a few W/m 2 of membrane.
La faible capacité de production d’énergie de ces types de dispositifs RED est également due aux résistances qu’opposent différents éléments du système aux flux ioniques. Cette résistance dépend principalement de la résistance membranaire, de la conductivité ionique de la solution d’électrolytes, en particulier de la solution la moins concentrée en électrolyte, et de la distance intermembranaire. En particulier, le maintien d’un espacement de plusieurs centaines de micromètres entre les membranes au moyen d’espaceurs est nécessaire pour permettre l’écoulement des fluides au sein de l’empilement de membranes mais contribue de façon importante à la résistance globale du système. The low energy production capacity of these types of RED devices is also due to the resistances that different elements of the system oppose to the ionic flows. This resistance depends mainly on the membrane resistance, the ionic conductivity of the electrolyte solution, in particular the solution with the least electrolyte concentration, and the intermembrane distance. In particular, maintaining a spacing of several hundred micrometers between the membranes by means of spacers is necessary to allow the flow of fluids within the stack of membranes but contributes significantly to the overall resistance of the system. .
L’espaceur peut également contribuer à augmenter la résistance du dispositif et affecter la performance globale du dispositif en termes de puissance développée. The spacer can also contribute to increasing the resistance of the device and affect the overall performance of the device in terms of power developed.
Les espaceurs utilisés classiquement dans de tels dispositifs sont des espaceurs en tissu de type nylon. The spacers conventionally used in such devices are nylon type fabric spacers.
La taille des filaments du tissu, leur arrangement et leur espacement sont des paramètres importants permettant d’optimiser les performances de tels espaceurs (Gurreri et al., Journal of membrane science, 497 (2016) 300-317). The size of the tissue filaments, their arrangement and their spacing are important parameters for optimizing the performance of such spacers (Gurreri et al., Journal of membrane science, 497 (2016) 300-317).
Toutefois, les dispositifs RED mettant en œuvre de tels espaceurs développent des puissances qui restent faibles. However, RED devices implementing such spacers develop powers which remain low.
Une autre alternative consiste à mettre en œuvre des espaceurs de faible épaisseur, typiquement de l’ordre de 100pm ou moins, ce qui permet d’augmenter la puissance développée mais n’est pas applicable industriellement en raison notamment de pertes de charges élevées. Another alternative consists of using thin spacers, typically of the order of 100pm or less, which makes it possible to increase the power developed but is not applicable industrially due in particular to high pressure losses.
Au regard de ce qui précède, il existe donc toujours un besoin pour améliorer la puissance électrique générée par les dispositifs de production d’énergie électrique à partir d’un gradient de concentration, en particulier en développant des espaceurs permettant de maintenir un espace intermembranaire d’épaisseur suffisante mais n’induisant pas de résistance trop importante. In view of the above, there is therefore still a need to improve the electrical power generated by devices for producing electrical energy from a concentration gradient, in particular by developing spacers making it possible to maintain an intermembrane space of sufficient thickness but not causing too much resistance.
RESUME DE L’INVENTION SUMMARY OF THE INVENTION
L’invention a pour objet un dispositif pour la production d’énergie comprenant : The subject of the invention is a device for the production of energy comprising:
- deux électrodes (1 ), - two electrodes (1),
- un empilement de membranes (9), disposé entre les deux électrodes, comprenant une alternance de membranes perméables sélectivement aux cations (2) et de membranes perméables sélectivement aux anions (3), et tel que chaque membrane est séparée d’une membrane voisine par un espace intermembranaire dans lequel est positionné un textile de charbon actif (4) - a stack of membranes (9), arranged between the two electrodes, comprising an alternation of membranes selectively permeable to cations (2) and membranes selectively permeable to anions (3), and such that each membrane is separated from a neighboring membrane by an intermembrane space in which an activated carbon textile is positioned (4)
- un dispositif (5) permettant de récolter l’énergie électrique générée par un différentiel de potentiel existant entre les 2 électrodes (1 ) l’empilement de membranes (9) étant destiné à être alimenté par une solution électrolytique (7) de concentration CA en un soluté et une solution électrolytique (8) de concentration CB en un même soluté, CB étant supérieure à CA, lesdites solutions devant circuler en alternance dans les espaces intermembranaires dudit empilement (9). - a device (5) making it possible to harvest the electrical energy generated by a potential differential existing between the 2 electrodes (1) the stack of membranes (9) being intended to be supplied by an electrolytic solution (7) of concentration CA in a solute and an electrolytic solution (8) of concentration CB in the same solute, CB being greater than CA, said solutions having to circulate alternately in the intermembrane spaces of said stack (9).
Avantageusement, le textile de charbon actif a une épaisseur allant de 100 pm à 1 000 pm, préférentiellement de 200 pm à 600 pm. Advantageously, the activated carbon textile has a thickness ranging from 100 pm to 1000 pm, preferably from 200 pm to 600 pm.
Avantageusement, le textile de charbon actif présente une surface spécifique SBET allant de 200 à 3 000 m2/g, préférentiellement de 1 000 à 2 000 m2/g. Advantageously, the activated carbon textile has a specific surface area SBET ranging from 200 to 3,000 m 2 /g, preferably from 1,000 to 2,000 m 2 /g.
L’invention a également pour objet un procédé de production d’énergie électrique utilisant un dispositif tel que décrit ci-dessus comprenant les étapes suivantes : i) alimenter l’empilement (9) de membranes par une solution électrolytique (7) de concentration CA en un soluté et une solution électrolytique (8) de concentration CB en un même soluté, CB étant supérieure à CA, de sorte que lesdites solutions circulent en alternance dans les espaces intermembranaires dudit empilement (10) ; ii) laisser diffuser les électrolytes des espaces intermembranaires alimentés par la solution électrolytique (7) de concentration CB vers les espaces intermembranaires adjacents alimentés par la solution électrolytique (8) de concentration CA ; ill) capter l’énergie électrique générée par le différentiel de potentiel existant entre les deux électrodes (1 ), à l’aide du dispositif (5). Avantageusement, le ratio de concentration CB/CA va de 2 à 100, préférentiellement de 5 à 50. The invention also relates to a method for producing electrical energy using a device as described above comprising the following steps: i) supplying the stack (9) of membranes with an electrolytic solution (7) of concentration CA in a solute and an electrolytic solution (8) of concentration CB in the same solute, CB being greater than CA, so that said solutions circulate alternately in the intermembrane spaces of said stack (10); ii) allow the electrolytes to diffuse from the intermembrane spaces supplied by the electrolytic solution (7) of concentration CB towards the adjacent intermembrane spaces supplied by the electrolytic solution (8) of concentration CA; ill) capture the electrical energy generated by the potential differential existing between the two electrodes (1), using the device (5). Advantageously, the CB/CA concentration ratio ranges from 2 to 100, preferably from 5 to 50.
Avantageusement, les solutions électrolytiques (7) et (8) sont des solutions aqueuses comprenant un soluté choisi parmi les halogénures alcalins ou les halogénures alcalino- terreux, de préférence choisi parmi NaCI, KG, CaCh et MgCh, de préférence encore NaCI. Advantageously, the electrolytic solutions (7) and (8) are aqueous solutions comprising a solute chosen from alkali halides or alkaline earth halides, preferably chosen from NaCI, KG, CaCh and MgCh, more preferably NaCI.
Un autre objet concerne l’utilisation d’un textile de charbon actif positionné entre une membrane perméable sélectivement aux cations et une membrane perméable sélectivement aux anions dans un dispositif destiné à la mise en œuvre d’un procédé de production d’énergie. Another subject concerns the use of an activated carbon textile positioned between a membrane selectively permeable to cations and a membrane selectively permeable to anions in a device intended for the implementation of an energy production process.
D’autres aspects de l’invention sont tels que décrits ci-dessous et dans les revendications. Other aspects of the invention are as described below and in the claims.
DESCRIPTION DES FIGURES DESCRIPTION OF FIGURES
[Fig. 1] : représente en vue éclatée les 2 deux électrodes (1 ) et 5 membranes positionnées entre les deux électrodes avec un empilement de membranes (9) comprenant une alternance de membranes perméables sélectivement aux cations (2) et de membranes perméables sélectivement aux anions (3), avec un textile de charbon actif (4) positionné dans l’espace intermembranaire entre 2 membranes voisines selon le dispositif de l’invention. [Fig. 1]: represents in exploded view the 2 two electrodes (1) and 5 membranes positioned between the two electrodes with a stack of membranes (9) comprising an alternation of membranes selectively permeable to cations (2) and membranes selectively permeable to anions ( 3), with an activated carbon textile (4) positioned in the intermembrane space between 2 neighboring membranes according to the device of the invention.
[Fig. 2] : représente schématiquement en coupe le dispositif d’électrodialyse inverse (RED) utilisé dans l’exemple 1 comprenant : [Fig. 2]: schematically represents in section the reverse electrodialysis device (RED) used in example 1 comprising:
- deux électrodes (1 ), - two electrodes (1),
- un empilement de 7 membranes, disposé entre les deux électrodes, comprenant une alternance de membranes perméables sélectivement aux cations (2) et de membranes perméables sélectivement aux anions (3), et tel que chaque membrane est séparée d’une membrane voisine par un espace intermembranaire dans lequel est positionné un textile de charbon actif (4) - a stack of 7 membranes, arranged between the two electrodes, comprising an alternation of membranes selectively permeable to cations (2) and membranes selectively permeable to anions (3), and such that each membrane is separated from a neighboring membrane by a intermembrane space in which an activated carbon textile is positioned (4)
- un dispositif (5) permettant de récolter l’énergie électrique générée par un différentiel de potentiel existant entre les 2 électrodes. - a device (5) making it possible to harvest the electrical energy generated by a potential differential existing between the 2 electrodes.
Une solution redox (6) circule entre les électrodes (1 ). L’empilement de membranes est alimenté par une solution électrolytique (7) de concentration CA en un soluté et une solution électrolytique (8) de concentration CB en un même soluté, CB étant supérieure à CA, lesdites solutions circulant en alternance dans les espaces intermembranaires de l’empilement. DESCRIPTION DETAILLEE DE L’INVENTION A redox solution (6) circulates between the electrodes (1). The stack of membranes is supplied with an electrolytic solution (7) of concentration CA in a solute and an electrolytic solution (8) of concentration CB in the same solute, CB being greater than CA, said solutions circulating alternately in the intermembrane spaces of stacking. DETAILED DESCRIPTION OF THE INVENTION
Le but de la présente invention est de pallier les inconvénients de l’art antérieur et de fournir un dispositif utilisant un espaceur simple de mise en œuvre, peu coûteux à fabriquer et permettant d’obtenir des performances améliorées. The aim of the present invention is to overcome the drawbacks of the prior art and to provide a device using a spacer that is simple to implement, inexpensive to manufacture and makes it possible to obtain improved performance.
Un autre but de l’invention est de fournir un procédé de production d’énergie électrique utilisant le dispositif de l’invention. Another aim of the invention is to provide a method for producing electrical energy using the device of the invention.
Ces buts sont atteints par l’invention qui va être décrite ci-après. These goals are achieved by the invention which will be described below.
DISPOSITIF DEVICE
L’invention a pour premier objet un dispositif pour la production d’énergie comprenant :The first object of the invention is a device for the production of energy comprising:
- deux électrodes (1 ) ; - two electrodes (1);
- un empilement de membranes (9), disposé entre les deux électrodes (1 ), comprenant une alternance de membranes perméables sélectivement aux cations (2) et de membranes perméables sélectivement aux anions (3), et tel que chaque membrane est séparée d’une membrane voisine par un espace intermembranaire dans lequel est positionné un textile de charbon actif (4), i.e. un espaceur ; - a stack of membranes (9), arranged between the two electrodes (1), comprising an alternation of membranes selectively permeable to cations (2) and membranes selectively permeable to anions (3), and such that each membrane is separated from a membrane adjacent to an intermembrane space in which an activated carbon textile (4) is positioned, i.e. a spacer;
- et un dispositif (5) permettant de récolter l’énergie électrique générée par un différentiel de potentiel existant entre les 2 électrodes (1 ) l’empilement de membranes (9) étant destiné à être alimenté par une solution électrolytique (7) de concentration CA en un soluté et une solution électrolytique (8) de concentration CB en un même soluté, CB étant supérieure à CA, lesdites solutions devant circuler en alternance dans les espaces intermembranaires dudit empilement (9). - and a device (5) making it possible to harvest the electrical energy generated by a potential differential existing between the 2 electrodes (1) the stack of membranes (9) being intended to be supplied by an electrolytic solution (7) of concentration CA in a solute and an electrolytic solution (8) of concentration CB in the same solute, CB being greater than CA, said solutions having to circulate alternately in the intermembrane spaces of said stack (9).
Dans ce mode de réalisation, la différence des concentrations CA et CB en un même soluté provoque la mobilité des électrolytes de la solution la plus concentrée vers la solution la moins concentrée. In this embodiment, the difference in the CA and CB concentrations in the same solute causes the mobility of the electrolytes from the most concentrated solution to the least concentrated solution.
Espaceur Spacer
De façon surprenante et inattendue, les inventeurs ont découvert qu’un textile de charbon actif permet, en augmentant la conduction ionique, d’améliorer les performances de dispositifs de production d’énergie en termes de puissance électrique générée, par rapport aux espaceurs utilisés classiquement dans de tels dispositifs. L’espaceur selon l’invention est un textile de charbon actif (4). Surprisingly and unexpectedly, the inventors have discovered that an activated carbon textile makes it possible, by increasing ionic conduction, to improve the performance of energy production devices in terms of electrical power generated, compared to conventionally used spacers. in such devices. The spacer according to the invention is an activated carbon textile (4).
Au sens de la présente invention, on entend par « textile de charbon actif » une feuille d’un textile tissé, tricoté ou non-tissé comprenant des fibres de charbon actif. For the purposes of the present invention, the term “activated carbon textile” means a sheet of a woven, knitted or non-woven textile comprising activated carbon fibers.
Le textile de charbon actif peut être une feuille d’un textile tissé comprenant des fils à base de fibres de charbon actif, ou une feuille d’un textile tricoté comprenant au moins un fil à base de fibres de charbon actif, ou une feuille d’un textile non-tissé comprenant des fibres de charbon actif. The activated carbon textile may be a sheet of a woven textile comprising yarns based on activated carbon fibers, or a sheet of a knitted textile comprising at least one yarn based on activated carbon fibers, or a sheet of a non-woven textile comprising activated carbon fibers.
Un textile non-tissé est un assemblage fibreux essentiellement plan, possédant un niveau nominal d’intégrité structurale conférée au moyen de procédés physiques et/ou chimiques, à l’exclusion du tissage, du tricotage ou de la fabrication du papier. En ce sens, le textile non-tissé de l’invention répond à la définition selon la norme ISO 9092 d’avril 2019 d’un textile non-tissé. Par assemblage fibreux, il s’entend ainsi de l’assemblage de matières fibreuses comme des fibres, des filaments continus ou encore des fils coupés de toute longueur ou section. Le textile non-tissé peut comprendre des fils obtenus à partir de fibres de charbon actif. A nonwoven textile is an essentially planar fibrous assembly, possessing a nominal level of structural integrity imparted by means of physical and/or chemical processes, excluding weaving, knitting or papermaking. In this sense, the non-woven textile of the invention meets the definition according to the ISO 9092 standard of April 2019 of a non-woven textile. By fibrous assembly, we mean the assembly of fibrous materials such as fibers, continuous filaments or even cut threads of any length or section. The nonwoven textile may comprise threads obtained from activated carbon fibers.
Un textile tissé est un assemblage essentiellement plan de fils parallèles les uns aux autres dits fils de chaine traversés par des fils dits fils de trame, lesdits fils étant de préférence entremêlés par tissage. A woven textile is an essentially planar assembly of threads parallel to each other called warp threads crossed by threads called weft threads, said threads being preferably intertwined by weaving.
Par fil à base de fibres de charbon actif, il s’entend que le fil comprend des fibres de charbon actif. By yarn based on activated carbon fibers, it is understood that the yarn comprises activated carbon fibers.
Le textile non tissé de charbon actif peut être constitué de fibres de charbon actif. The activated carbon non-woven fabric may be made of activated carbon fibers.
Le textile non tissé de charbon actif peut être un textile non tissé composite comprenant des fibres de charbon actif et des fibres d’un ou plusieurs matériaux différents du charbon actif. The activated carbon non-woven fabric may be a composite non-woven fabric comprising activated carbon fibers and fibers of one or more materials other than activated carbon.
Le textile non tissé de charbon actif peut être un textile non tissé composite constitué de fibres de charbon actif et de fibres d’un ou plusieurs matériaux différents du charbon actif. The activated carbon non-woven textile may be a composite non-woven textile consisting of activated carbon fibers and fibers of one or more materials other than activated carbon.
Le textile tissé ou non-tissé de charbon actif peut être constitué de fils comprenant des fibres de charbon actif. Les fils du textile tissé ou non tissé de charbon actif peuvent être des fils composites comprenant des fibres de charbon actif et des fibres d’un ou plusieurs matériaux différents du charbon actif. The woven or non-woven activated carbon textile may consist of threads comprising activated carbon fibers. The yarns of the woven or non-woven activated carbon textile may be composite yarns comprising activated carbon fibers and fibers of one or more materials other than activated carbon.
Les fils du textile tissé ou non-tissé de charbon actif peuvent être des fils composites constitués de fibres de charbon actif et de fibres d’un ou plusieurs matériaux différents du charbon actif. The yarns of the woven or non-woven activated carbon textile may be composite yarns made up of activated carbon fibers and fibers of one or more materials other than activated carbon.
Les fils du textile tissé ou non-tissé de charbon actif peuvent être des fils comprenant des fibres de charbon actif d’une part et des fils comprenant des fibres d’un ou plusieurs matériaux différents du charbon actif d’autre part. The yarns of the woven or non-woven activated carbon textile may be yarns comprising activated carbon fibers on the one hand and yarns comprising fibers of one or more materials other than activated carbon on the other hand.
Les fils du textile tissé ou non tissé de charbon actif peuvent être des fils constitués de fibres de charbon actif d’une part et des fils comprenant des fibres d’un ou plusieurs matériaux différents du charbon actif d’autre part. The yarns of the woven or non-woven active carbon textile may be yarns made up of activated carbon fibers on the one hand and yarns comprising fibers of one or more materials other than activated carbon on the other hand.
Les fils du textile tissé ou non tissé de charbon actif peuvent être des fils comprenant des fibres de charbon actif d’une part et des fils constitués de fibres d’un ou plusieurs matériaux différents du charbon actif d’autre part. The yarns of the woven or non-woven activated carbon textile may be yarns comprising activated carbon fibers on the one hand and yarns made up of fibers of one or more materials other than activated carbon on the other hand.
Les fils du textile tissé ou non-tissé de charbon actif peuvent être des fils constitués de fibres de charbon actif d’une part et des fils constitué de fibres d’un ou plusieurs matériaux différents du charbon actif d’autre part. The yarns of the woven or non-woven activated carbon textile may be yarns made up of activated carbon fibers on the one hand and yarns made up of fibers of one or more materials other than activated carbon on the other hand.
Avantageusement, le textile tissé ou non tissé de charbon actif est constitué de fils constitués de fibres de charbon actif. Advantageously, the woven or non-woven activated carbon textile is made up of threads made of activated carbon fibers.
Le textile non-tissé de charbon actif peut par exemple être un feutre de charbon actif. Dans un mode de réalisation particulier, le feutre de charbon actif est obtenu par aiguilletage de fibres. The non-woven activated carbon textile can for example be an activated carbon felt. In a particular embodiment, the activated carbon felt is obtained by needling fibers.
Le au moins un fil obtenu à partir de fibres de charbon actif du textile tricoté de charbon actif est tel que décrit ci-dessus. The at least one yarn obtained from activated carbon fibers of the activated carbon knitted textile is as described above.
Lorsque le textile de charbon actif comprend des fibres d’un ou plusieurs matériaux différents du charbon actif, les fibres du ou des matériaux différents du charbon actif peuvent permettent de modifier les propriétés mécaniques du textile de charbon actif en augmentant par exemple sa rigidité. When the activated carbon textile comprises fibers of one or more materials different from activated carbon, the fibers of the material(s) different from activated carbon can make it possible to modify the mechanical properties of the activated carbon textile by, for example, increasing its rigidity.
Le textile de charbon actif peut être obtenu par assemblage de fibres de charbon actif. Activated carbon textile can be obtained by assembling activated carbon fibers.
Le textile de charbon actif peut être obtenu par assemblage de fibres de charbon actif et de fibres d’un ou plusieurs matériaux différents du charbon actif. The activated carbon textile can be obtained by assembling activated carbon fibers and fibers of one or more materials other than activated carbon.
Le textile de charbon actif peut également être obtenu à partir d’un textile comprenant des fibres d’un précurseur du charbon actif, ledit textile étant soumis à un traitement ultérieur pour obtenir ledit textile de charbon actif. Les traitements pour obtenir ledit film de charbon actif sont bien connus de l’homme du métier. Il s’agit en particulier des procédés thermochimiques réalisés à des températures comprises entre 200°C et 3000°C. The activated carbon textile can also be obtained from a textile comprising fibers of an activated carbon precursor, said textile being subjected to further processing to obtain said activated carbon textile. The treatments for obtaining said activated carbon film are well known to those skilled in the art. This concerns in particular thermochemical processes carried out at temperatures between 200°C and 3000°C.
Dans ce mode de réalisation, lorsque le textile comprend des fibres d’un ou plusieurs autres matériaux différents du précurseur de charbon actif, le ou les matériaux différents du charbon actif sont avantageusement des matériaux résistants à la température, préférentiellement la silice ou le verre. In this embodiment, when the textile comprises fibers of one or more other materials different from the activated carbon precursor, the material(s) different from the activated carbon are advantageously temperature-resistant materials, preferably silica or glass.
Avantageusement, la masse des fibres de charbon actif du textile de charbon actif est égale à au moins 50% de la masse totale du textile de charbon actif. Advantageously, the mass of the activated carbon fibers of the activated carbon textile is equal to at least 50% of the total mass of the activated carbon textile.
Lorsque le textile de charbon actif est obtenu à partir d’un textile comprenant des fibres d’un précurseur du charbon actif, ledit textile étant ensuite soumis à un traitement ultérieur pour obtenir ledit textile de charbon actif, la masse des fibres de charbon actif par rapport à la masse totale du textile de charbon actif peut être calculée à partir du rapport massique des différentes fibres ou fils utilisés pour fabriquer le textile et la masse du textile avant et après traitement, En effet, lorsque le textile comprend des fibres de silice ou de verre par exemple, leur masse reste inchangée après ledit traitement. L’impact du traitement sur la masse de chaque type de fibres ou fils du textile peut également être évalué séparément. When the activated carbon textile is obtained from a textile comprising fibers of an activated carbon precursor, said textile then being subjected to a subsequent treatment to obtain said activated carbon textile, the mass of the activated carbon fibers per ratio to the total mass of the activated carbon textile can be calculated from the mass ratio of the different fibers or yarns used to manufacture the textile and the mass of the textile before and after treatment, Indeed, when the textile comprises silica fibers or glass for example, their mass remains unchanged after said treatment. The impact of the treatment on the mass of each type of textile fiber or yarn can also be evaluated separately.
Avantageusement, le textile de charbon actif a une épaisseur allant de 100 pm à 1 000 pm, préférentiellement de 200 pm à 600 pm. Advantageously, the activated carbon textile has a thickness ranging from 100 pm to 1000 pm, preferably from 200 pm to 600 pm.
Lorsque l’épaisseur du textile de charbon actif est inférieure à 100 pm, l’écoulement des solutions électrolytiques dans les espaces intermembranaires peut être gêné, des phénomènes de perte de charge peuvent survenir et la puissance nécessaire pour faire circuler les solutions électrolytiques peut être fortement augmentée. Lorsque l’épaisseur du textile de charbon actif est supérieure à 1 000 pm, la résistance électrique liée à l’épaisseur du compartiment intermembranaire est trop élevée et affecte l’efficacité du dispositif. When the thickness of the activated carbon textile is less than 100 pm, the flow of electrolyte solutions in the intermembrane spaces may be hindered, charge loss phenomena may occur and the power required to circulate the electrolyte solutions may be greatly reduced. increased. When the thickness of the activated carbon textile is greater than 1000 pm, the electrical resistance linked to the thickness of the intermembrane compartment is too high and affects the efficiency of the device.
Dans la présente invention, la surface spécifique du textile est mesurée par la méthode B.E.T. (Brunauer, Emmett et Teller) selon le standard ISO 9277 de septembre 2010. In the present invention, the specific surface area of the textile is measured by the B.E.T. method. (Brunauer, Emmett and Teller) according to the ISO 9277 standard of September 2010.
Le textile de charbon actif peut avoir une surface spécifique de 1 m2/g à 3 000 m2/g. Activated carbon textile can have a specific surface area from 1 m 2 /g to 3,000 m 2 /g.
Avantageusement, le textile de charbon actif présente une surface spécifique de 200 m2/g à 3 000 m2/g, préférentiellement de 1 000 m2/g à 2 000 m2/g. Advantageously, the activated carbon textile has a specific surface area of 200 m 2 /g to 3,000 m 2 /g, preferably 1,000 m 2 /g to 2,000 m 2 /g.
Le textile de charbon actif peut avoir une surface spécifique de 1 m2/g à 10 m2/g ou de 1 m2/g à 5 m2/g. The activated carbon textile can have a specific surface area of 1 m 2 /g to 10 m 2 /g or from 1 m 2 /g to 5 m 2 /g.
Le textile de charbon actif de l’invention est un matériau présentant des volumes interstitiels permettant la circulation des solutions électrolytiques. Il peut présenter un pourcentage de volume interstitiel d’au moins 50% environ et de préférence d’au moins 60% environ. Dans la présente invention, le pourcentage de volume interstitiel est défini comme le rapport entre le volume interstitiel total Vinterstitiei d’un échantillon et le volume total occupé par l’échantillon VE : P= Vinterstitiei/VE- Le volume interstitiel total est déterminé indirectement par pesée différentielle d’un échantillon imprégné et d’un échantillon non imprégné d’un liquide mouillant de densité connue, tel qu’un alcool. Plus précisément, nterstitiei peut être mesuré selon la méthode suivante : a) fournir un échantillon de masse rriE ; b) imprégner l’échantillon de l’étape a) d’un liquide de masse volumique pL ; c) déterminer la masse rriEi de l’échantillon imprégné de l’étape b) ; d) calculer Vinterstitiei selon la formule Vinterstitiei=(mEi - mE)/ pL. The activated carbon textile of the invention is a material having interstitial volumes allowing the circulation of electrolytic solutions. It may have an interstitial volume percentage of at least approximately 50% and preferably at least approximately 60%. In the present invention, the percentage of interstitial volume is defined as the ratio between the total interstitial volume Vinterstitiei of a sample and the total volume occupied by the sample VE: P= Vinterstitiei/VE- The total interstitial volume is determined indirectly by differential weighing of a sample impregnated and a sample not impregnated with a wetting liquid of known density, such as an alcohol. More precisely, nterstitiei can be measured according to the following method: a) providing a mass sample rriE; b) impregnate the sample from step a) with a liquid of density pL; c) determine the mass rriEi of the impregnated sample from step b); d) calculate V in terstitiei according to the formula V in terstitiei=(mEi - m E )/ pL.
Le volume VE peut être déterminé comme le produit de la surface de l’échantillon par son épaisseur. The VE volume can be determined as the product of the surface area of the sample and its thickness.
Dans un mode de réalisation de la présente invention, le textile de charbon actif a une densité allant de 0.05 à 0.20 g/cm3. Dans l’invention, la densité du textile de charbon actif est définie comme le rapport entre la masse d’un échantillon mE et son volume VE : d =ITIE/VE. Dans l’invention, le terme « fibres de charbon actif » se réfère à des fibres obtenues à partir d’un précurseur carboné selon des procédés bien connus de l’homme du métier, en particulier des procédés thermochimiques réalisés à des températures comprises entre 200°C et 3000°C. In one embodiment of the present invention, the activated carbon textile has a density ranging from 0.05 to 0.20 g/cm 3 . In the invention, the density of the activated carbon textile is defined as the ratio between the mass of a sample mE and its volume VE: d =ITIE/VE. In the invention, the term “activated carbon fibers” refers to fibers obtained from a carbonaceous precursor according to processes well known to those skilled in the art, in particular thermochemical processes carried out at temperatures between 200 °C and 3000°C.
Avantageusement, le précurseur carboné est de type polymère ou macromolécule, de préférence un précurseur carboné choisi parmi les résines phénol-aldéhyde, le polyacrylonitrile (PAN), la rayonne, la lignine, ou l’un de leurs mélanges. Advantageously, the carbon precursor is of the polymer or macromolecule type, preferably a carbon precursor chosen from phenol-aldehyde resins, polyacrylonitrile (PAN), rayon, lignin, or one of their mixtures.
Les résines phénol-aldéhyde, le polyacrylonitrile (PAN), et la rayonne et leurs mélanges sont préférés. Phenol-aldehyde resins, polyacrylonitrile (PAN), and rayon and mixtures thereof are preferred.
Parmi les procédés mis en œuvre pour obtenir des fibres de charbon actif à partir de précurseur carboné, citons à titre illustratif le procédé comprenant les étapes suivantes : optionnellement une étape de préoxydation du précurseur carboné, calcination ou carbonisation, activation physique pouvant consister en une calcination en présence de gaz tel que le dioxyde de carbone, l’eau ou l’oxygène, ou activation chimique au moyen d’un agent d’activation, tel qu’un acide comme l'acide phosphorique ou une base comme l’hydroxyde de potassium. Among the processes implemented to obtain activated carbon fibers from carbonaceous precursor, let us cite by way of illustration the process comprising the following steps: optionally a step of pre-oxidation of the carbonaceous precursor, calcination or carbonization, physical activation which may consist of calcination in the presence of gas such as carbon dioxide, water or oxygen, or chemical activation by means of an activating agent, such as an acid such as phosphoric acid or a base such as carbon hydroxide potassium.
Selon une variante de ce procédé, le précurseur peut être directement activé avant une étape de calcination. According to a variant of this process, the precursor can be directly activated before a calcination step.
Avantageusement, les fibres de charbon actif sont essentiellement constituées de carbone, c’est-à-dire qu’elles sont de préférence constituées d’au moins 80% en mole de carbone, de préférence d’au moins 90% en mole de carbone, de préférence encore d’au moins 95% en mole de carbone, le reste étant des éléments tels que l’oxygène, l’azote et l’hydrogène. Avantageusement, les fibres de charbon actif comprennent de 80 à 100% en poids de carbone, de 0 à 10% en poids d’azote, de 0 à 10% d’oxygène et de 0 à 5% en poids d’hydrogène. Advantageously, the activated carbon fibers are essentially made up of carbon, that is to say they are preferably made up of at least 80% by mole of carbon, preferably at least 90% by mole of carbon. , more preferably at least 95% by mole of carbon, the remainder being elements such as oxygen, nitrogen and hydrogen. Advantageously, the activated carbon fibers comprise 80 to 100% by weight of carbon, 0 to 10% by weight of nitrogen, 0 to 10% of oxygen and 0 to 5% by weight of hydrogen.
Les fibres de charbon actif du textile présentent avantageusement un diamètre inférieur à 50pm, préférentiellement inférieur à 20pm, de manière particulièrement préférée inférieur à 10 pm. Les fibres du textile de charbon actif présentent avantageusement un diamètre supérieur à 0,1 pm, préférentiellement supérieur à 1 pm. Les fibres de charbon actif peuvent avoir un diamètre allant de 0,1 pm à 50pm, préférentiellement allant de 1 à 20pm, de manière particulièrement préférée allant de 1 à 10 pm. The activated carbon fibers of the textile advantageously have a diameter of less than 50 pm, preferably less than 20 pm, particularly preferably less than 10 pm. The fibers of the activated carbon textile advantageously have a diameter greater than 0.1 pm, preferably greater than 1 pm. The activated carbon fibers can have a diameter ranging from 0.1 pm to 50 pm, preferably ranging from 1 to 20 pm, particularly preferably ranging from 1 to 10 pm.
Le diamètre des fibres de charbon actif du textile peut être déterminé au microscope électronique à balayage (MEB). The diameter of the activated carbon fibers in the textile can be determined using a scanning electron microscope (SEM).
Avantageusement, la densité de charge surfacique du charbon actif est comprise entre 0,1 mmol/g et 3 mmol/g. La densité de charge surfacique est mesurée par dosimétrie. Advantageously, the surface charge density of the activated carbon is between 0.1 mmol/g and 3 mmol/g. The surface charge density is measured by dosimetry.
Avantageusement, la densité de charge surfacique du charbon actif est comprise entre 10’ 5 meq/m2 et 10'2 meq/m2. Advantageously, the surface charge density of the activated carbon is between 10'5 meq/m 2 and 10'2 meq/m 2 .
Lorsque les groupements chargés du charbon actif sont des groupements ioniques monovalents, 1 meq de charge surfacique correspond à 1 mmol de charge surfacique, soit à 1 mmol de groupement chargé. Dans ce cas, la densité de charge surfacique du charbon actif est ainsi avantageusement comprise entre 10'5 mmol/m2 et 10'2 mmol/m2. When the charged groups of the activated carbon are monovalent ionic groups, 1 meq of surface charge corresponds to 1 mmol of surface charge, i.e. 1 mmol of charged group. In this case, the surface charge density of the activated carbon is thus advantageously between 10'5 mmol/m 2 and 10' 2 mmol/m 2 .
Dans le dispositif selon l’invention, chaque membrane est séparée d’une membrane voisine par un espace intermembranaire dans lequel est positionné un textile de charbon actif (4) tel que décrit ci-dessus. In the device according to the invention, each membrane is separated from a neighboring membrane by an intermembrane space in which an activated carbon textile (4) is positioned as described above.
Le textile de charbon actif selon l’invention est simple, peu coûteux à fabriquer et permet d’améliorer les performances de dispositifs de production d’énergie par rapport aux espaceurs utilisés classiquement dans de tels dispositifs. The activated carbon textile according to the invention is simple, inexpensive to manufacture and makes it possible to improve the performance of energy production devices compared to the spacers conventionally used in such devices.
L’épaisseur de l’espace intermembranaire entre 2 membranes peut être contrôlée au moyen d’un joint ou de tout autre système permettant de contrôler l’épaisseur de l’espace intermembranaire, d’assurer son étanchéité tout en permettant la circulation des solutions électrolytiques et de positionner le textile de charbon actif selon l’invention. The thickness of the intermembrane space between 2 membranes can be controlled by means of a seal or any other system making it possible to control the thickness of the intermembrane space, to ensure its tightness while allowing the circulation of electrolytic solutions and positioning the activated carbon textile according to the invention.
Membrane Membrane
Au sens de la présente invention, on entend par « membrane » un matériau se présentant sous la forme d’une feuille perméable à au moins une partie des ions de la solution électrolytique. L’expression « perméabilité sélective aux anions ou au cations » signifie quant à elle que la membrane se laisse traverser majoritairement par les anions ou les cations, et inhibe ou retarde fortement le passage des ions de charge opposée. For the purposes of the present invention, the term “membrane” means a material in the form of a sheet permeable to at least part of the ions of the electrolytic solution. The expression “selective permeability to anions or cations” means that the membrane allows the majority of anions or cations to pass through it, and inhibits or strongly delays the passage of ions of opposite charge.
Avantageusement, la membrane est également perméable au solvant de la solution électrolytique, de préférence à l’eau. Advantageously, the membrane is also permeable to the solvent of the electrolytic solution, preferably water.
Tout type de membrane perméable sélectivement aux anions (3) ou aux cations (2) est compatible avec l’invention. Any type of membrane selectively permeable to anions (3) or cations (2) is compatible with the invention.
La membrane perméable sélectivement aux anions (3) ou aux cations (2) peut se présenter sous la forme d’une couche homogène d’un matériau ou bien d’un empilement de plusieurs couches formées de matériaux différents. Avantageusement, la membrane perméable sélectivement aux anions (3) ou aux cations (2) de l’invention est une membrane échangeuse d’ions, c’est-à-dire une membrane formée d’au moins un matériau minéral ou organique portant des groupes ionogènes, également appelés groupes échangeurs d’ions, qui confèrent à la membrane sa propriété de perméabilité sélective aux ions. Au sens de l’invention, un groupe ionogène est un groupe chimique qui, placé dans un liquide, a la faculté de libérer un ion, appelé contre-ion, et de fixer un ion de même charge contenu dans ce liquide. The membrane selectively permeable to anions (3) or cations (2) can be in the form of a homogeneous layer of a material or a stack of several layers formed of different materials. Advantageously, the membrane selectively permeable to anions (3) or cations (2) of the invention is an ion exchange membrane, that is to say a membrane formed of at least one mineral or organic material carrying ionogenic groups, also called ion exchange groups, which give the membrane its property of selective permeability to ions. For the purposes of the invention, an ionogenic group is a chemical group which, placed in a liquid, has the ability to release an ion, called counter-ion, and to fix an ion of the same charge contained in this liquid.
Dans un mode de réalisation, la membrane comprend un polymère organique portant des groupes ionogènes, couramment désigné sous le terme « résine échangeuse d’ions ». La membrane de l’invention peut ainsi être formée d’une matrice d’un polymère insoluble dans laquelle a été inclus une résine échangeuse d'ions, ou bien d’une matrice d’un polymère insoluble sur lequel ont été greffés des groupes ionogènes. In one embodiment, the membrane comprises an organic polymer bearing ionogenic groups, commonly referred to as an “ion exchange resin”. The membrane of the invention can thus be formed of a matrix of an insoluble polymer in which an ion exchange resin has been included, or of a matrix of an insoluble polymer onto which ionogenic groups have been grafted. .
Dans un mode de réalisation, le polymère insoluble est typiquement une matrice hydrocarbonée avantageusement choisie parmi une matrice polyosidique telle qu’une une matrice de cellulose ou de dextrane, une matrice de polystyrène, une matrice polytétrafluoroéthylène, ou une matrice d’un copolymère tel qu’un copolymère de styrène et de divinylbenzène. In one embodiment, the insoluble polymer is typically a hydrocarbon matrix advantageously chosen from a polysaccharide matrix such as a cellulose or dextran matrix, a polystyrene matrix, a polytetrafluoroethylene matrix, or a matrix of a copolymer such as 'a copolymer of styrene and divinylbenzene.
Dans un mode de réalisation, la membrane perméable sélectivement aux cations (2) comporte des groupes échangeurs de cations avantageusement choisis parmi le groupe époxyde, le groupe hydroxyle, le groupe carbonyle, le groupe carboxyle, le groupe sulfonate -SO , le groupe carboxyalkylate R-CC avec R un alkyle en C1-C4 et de préférence en C1 , le groupe aminodiacétate -N(CH2CO2')2, le groupe phosphonate PO3 2' ; le groupe amidoxine -C(=NH2)(NOH), le groupe aminophosphonate -CFk-NH-CFk-POs2' , le groupe thiol -SH, et leurs mélanges. In one embodiment, the cation-selectively permeable membrane (2) comprises cation exchange groups advantageously chosen from the epoxide group, the hydroxyl group, the carbonyl group, the carboxyl group, the sulfonate group -SO, the carboxyalkylate group R -CC with R a C1-C4 and preferably C1 alkyl, the aminodiacetate group -N(CH2CO2')2, the phosphonate group PO 3 2 '; the amidoxin group -C(=NH2)(NOH), the aminophosphonate group -CFk-NH-CFk-POs 2 ', the thiol group -SH, and mixtures thereof.
Dans un mode de réalisation, la membrane perméable sélectivement aux anions (3) comporte des groupes échangeurs d’anions avantageusement choisis parmi le groupe ammonium quaternaire -N(R)3 + avec R un alkyl en C1-C4, le groupe ammonium tertiaire -N(H)R)2+ avec R un alkyl en C1-C4, de préférence un alkyl en C1 , le groupe diméthylhydroxyéthylammonium -N(C2H4OH)CH3)2+, et leurs mélanges. Avantageusement, l’épaisseur de la membrane est comprise entre 10 pm et 200 pm, de préférence entre 10 et 100pm, de préférence entre 10 pm et 75 pm. In one embodiment, the membrane selectively permeable to anions (3) comprises anion exchange groups advantageously chosen from the quaternary ammonium group -N(R) 3 + with R a C1-C4 alkyl, the tertiary ammonium group - N(H)R)2 + with R a C1-C4 alkyl, preferably a C1 alkyl, the dimethylhydroxyethylammonium group -N(C2H4OH)CH 3 )2 + , and mixtures thereof. Advantageously, the thickness of the membrane is between 10 pm and 200 pm, preferably between 10 and 100 pm, preferably between 10 pm and 75 pm.
La membrane comprend avantageusement des canaux qui relient les deux faces de la membrane. Les canaux peuvent traverser de part en part la membrane ou former un réseau de canaux permettant d’assurer la circulation des ions et/ou du solvant entre les deux faces de la membrane. Les canaux de la membrane de l’invention ont avantageusement un diamètre moyen compris entre 1 et 500 nm, de préférence entre 1 et 100 nm, de préférence encore entre 2 et 100 nm, de préférence encore entre 10 et 100 nm. The membrane advantageously comprises channels which connect the two faces of the membrane. The channels can pass right through the membrane or form a network of channels ensuring the circulation of ions and/or the solvent between the two faces of the membrane. The channels of the membrane of the invention advantageously have an average diameter of between 1 and 500 nm, preferably between 1 and 100 nm, more preferably between 2 and 100 nm, more preferably between 10 and 100 nm.
Dans un mode de réalisation particulier de l’invention, la membrane présente une densité de canaux par unité de surface de membrane supérieure à 105 canaux par cm2 de membrane, de préférence supérieure à 108 canaux par cm2 de membrane. In a particular embodiment of the invention, the membrane has a density of channels per unit surface area of membrane greater than 10 5 channels per cm 2 of membrane, preferably greater than 10 8 channels per cm 2 of membrane.
Les canaux de la membrane de l’invention peuvent présenter tout type de morphologie, par exemple une morphologie tubulaire, asymétrique de type conique, ou en goulot. The channels of the membrane of the invention can have any type of morphology, for example a tubular, asymmetrical conical type, or neck morphology.
Dans un mode de réalisation particulier, au moins une partie de la surface interne des canaux de la membrane est recouverte de nitrure de bore, d’un composé à base de carbone, de bore et d’azote, ou d’un oxyde de titane, de préférence de dioxyde de titane. Ces revêtements ont pour effet d’augmenter la charge de surface de la surface interne des canaux et d’améliorer significativement la puissance électrique générée par les dispositifs comprenant de telles membranes nanofluidiques à forte densité de charges de surface, comme détaillé dans les demandes internationales WO 2014/0606902017 et WO 2017/037213. Dans ce mode de réalisation, les membranes présentent avantageusement des canaux ayant un diamètre moyen compris entre 2 et 100 nm. Dans un mode de réalisation, la membrane de l’invention est autoportante. Au sens de la présente invention, on entend par « membrane autoportante » une membrane qui ne nécessite pas d’être supportée par un ou plusieurs supports rigides (par exemple des feuilles d’un matériau solide poreux) ou déformables (par exemple des feuilles d’un matériau polymère) pour assurer son intégrité mécanique. In a particular embodiment, at least part of the internal surface of the channels of the membrane is covered with boron nitride, a compound based on carbon, boron and nitrogen, or a titanium oxide , preferably titanium dioxide. These coatings have the effect of increasing the surface charge of the internal surface of the channels and significantly improving the electrical power generated by devices comprising such nanofluidic membranes with high surface charge density, as detailed in international applications WO 2014/0606902017 and WO 2017/037213. In this embodiment, the membranes advantageously have channels having an average diameter of between 2 and 100 nm. In one embodiment, the membrane of the invention is self-supporting. For the purposes of the present invention, the term "self-supporting membrane" means a membrane which does not need to be supported by one or more rigid supports (for example sheets of a porous solid material) or deformable (for example sheets of 'a polymer material) to ensure its mechanical integrity.
Dans un autre mode de réalisation, comme détaillé dans la demande internationale WO2021/234296, la membrane comprend au moins une couche formée d’un matériau cellulosique comprenant un réseau de nanofibres et/ou de microfibres réticulées de cellulose. In another embodiment, as detailed in international application WO2021/234296, the membrane comprises at least one layer formed of a cellulose material comprising a network of nanofibers and/or crosslinked microfibers of cellulose.
Le dispositif selon l’invention comprend un empilement de membranes (9), disposé entre les deux électrodes (1 ), comprenant une alternance de membranes perméables sélectivement aux cations (2) et de membranes perméables sélectivement aux anions (3) telles que décrites ci-dessus, et tel que chaque membrane est séparée d’une membrane voisine par un espace intermembranaire dans lequel est positionné un textile de charbon actif tel que décrit ci- dessus. The device according to the invention comprises a stack of membranes (9), arranged between the two electrodes (1), comprising an alternation of membranes selectively permeable to cations (2) and membranes selectively permeable to anions (3) as described below. above, and such that each membrane is separated from a neighboring membrane by an intermembrane space in which an activated carbon textile is positioned as described above.
Par empilement de membranes selon l’invention, on entend une disposition des membranes telle qu’illustrée sur les Figures 1 et 2, c’est-à-dire que les membranes sont disposées entre les 2 électrodes (1 ) positionnées en vis-à-vis et sont dans des plans parallèles différents. By stack of membranes according to the invention, we mean an arrangement of the membranes as illustrated in Figures 1 and 2, that is to say that the membranes are arranged between the 2 electrodes (1) positioned opposite each other and are in different parallel planes.
Dans un mode particulier de l’invention, le dispositif peut comprendre N+1 membrane et N espaces intermembranaires, N étant un nombre entier pair, notamment compris entre 2 et 1000, de préférence compris entre 2 et 250, par exemple compris entre 2 et 100. In a particular embodiment of the invention, the device may comprise N+1 membrane and N intermembrane spaces, N being an even integer, in particular between 2 and 1000, preferably between 2 and 250, for example between 2 and 100.
On peut aussi parler de paires de membranes du dispositif. Dans ce cas, le nombre de paires de membranes est égal à N/2.
Figure imgf000015_0001
We can also speak of pairs of membranes of the device. In this case, the number of pairs of membranes is equal to N/2.
Figure imgf000015_0001
Le dispositif selon l’invention comprend une paire d’électrodes (1 ) et un dispositif (5) permettant de récolter l’énergie électrique générée par le différentiel de potentiel existant entre les 2 électrodes (1 ). The device according to the invention comprises a pair of electrodes (1) and a device (5) making it possible to harvest the electrical energy generated by the potential differential existing between the 2 electrodes (1).
Différents types d’électrodes peuvent être utilisés dans le dispositif. Different types of electrodes can be used in the device.
Dans le cas où les solutions électrolytiques sont des solutions de NaCI, tout type d’électrode capable de collecter le flux de ion Na+ ou Cl- pourra être utilisé, et de préférence les électrodes composées d’Argent et Chlorure d’Argent (Ag/AgCI), de Carbone et Platine (C/Pt-), de Carbone (C-), de Graphite ou encore de complexes de Fer du type [Fe(CN)e]4_ /[Fe(CN)6]3-. In the case where the electrolytic solutions are NaCI solutions, any type of electrode capable of collecting the flow of Na+ or Cl- ion can be used, and preferably electrodes composed of Silver and Silver Chloride (Ag/ AgCI), Carbon and Platinum (C/Pt-), Carbon (C-), Graphite or even Iron complexes of the type [Fe(CN)e] 4_ /[Fe(CN) 6 ] 3 -.
Les électrodes peuvent notamment être des électrodes à circulation (en anglais « redox- flow ») telle qu’illustrée sur la Figure 2. Le principe de ces électrodes repose sur une réaction d’oxydation et une réaction de réduction au niveau de chacune des électrodes.The electrodes can in particular be circulation electrodes (in English “redox-flow”) as illustrated in Figure 2. The principle of these electrodes is based on an oxidation reaction and a reduction reaction at each of the electrodes. .
Parmi les différents couples RedOx possibles, citons les couples FeCb / FeCb, K3Fe(CN)6/K4Fe(CN)6 , Fe(III)-EDTA/Fe(II)-EDTA et Na3Fe(CN)6/Na4Fe(CN)6. Among the different possible RedOx couples, let us cite the FeCb / FeCb, K3Fe(CN)6/K 4 Fe(CN)6, Fe(III)-EDTA/Fe(II)-EDTA and Na 3 Fe(CN)6/ couples. Na 4 Fe(CN)6.
En plus du couple RedOx, la solution recirculante (6) peut comprendre une solution de soluté de concentration (CA+CB)/2. In addition to the RedOx couple, the recirculating solution (6) may include a solute solution of concentration (CA+CB)/2.
Les électrodes peuvent également être des électrodes capacitives à circulation (en anglais « capacitive flow ») comprenant une dispersion de particules conductrices nommée « slurry » en anglais dans le milieu comprenant le soluté. Les particules conductrices peuvent être des particules de charbon actif, des nanotubes de carbone au tout autre agent conducteur. The electrodes can also be capacitive flow electrodes comprising a dispersion of conductive particles called "slurry" in the medium comprising the solute. Conductive particles can be activated carbon particles, carbon nanotubes or any other conductive agent.
Chaque électrode peut être en contact avec une membrane perméable sélectivement aux ions de même signe, c’est-à-dire que chaque électrode peut être en contact avec une membrane perméable sélectivement aux cations ou chaque électrode peut être en contact avec une membrane perméable sélectivement aux anions. Each electrode can be in contact with a membrane selectively permeable to ions of the same sign, that is to say each electrode can be in contact with a membrane selectively permeable to cations or each electrode can be in contact with a membrane selectively permeable to anions.
Les électrodes (1 ) sont reliées ensemble à un dispositif (5) permettant de récolter, c’est à- dire de faire circuler et de capter l’énergie électrique spontanément générée par le différentiel de potentiel existant entre elles. Ce dispositif forme un circuit électrique extérieur comprenant avantageusement un collecteur de courant et un câble électrique, une batterie, une ampoule ou toute autre forme de consommateur électrique.
Figure imgf000016_0001
The electrodes (1) are connected together to a device (5) making it possible to collect, that is to say circulate and capture the electrical energy spontaneously generated by the potential differential existing between them. This device forms an external electrical circuit advantageously comprising a current collector and an electrical cable, a battery, a bulb or any other form of electrical consumer.
Figure imgf000016_0001
On fait circuler une solution électrolytique de concentration CA en un soluté et une solution électrolytique de concentration CB en ce même soluté, CB étant supérieure à CA dans les espaces intermembranaires de l’empilement de membranes (9). Les solutions circulent en alternance dans l’empilement (9), ce qui signifie que la solution électrolytique de concentration CA en un soluté circule dans l’espace intermembranaire entre 2 membranes et que la solution électrolytique de concentration CB en ce même soluté circule dans le ou les espaces intermembranaires adjacents. An electrolytic solution of concentration CA is circulated in a solute and an electrolytic solution of concentration CB in this same solute, CB being greater than CA in the intermembrane spaces of the stack of membranes (9). The solutions circulate alternately in the stack (9), which means that the electrolytic solution of concentration CA in a solute circulates in the intermembrane space between 2 membranes and that the electrolytic solution of concentration CB in this same solute circulates in the or adjacent intermembrane spaces.
Un flux osmotique est généré entre deux espaces intermembranaires adjacents, de préférence par diffusio-osmose, c’est-à-dire sans qu’aucune pression osmotique n’apparaisse. An osmotic flow is generated between two adjacent intermembrane spaces, preferably by diffusion-osmosis, that is to say without any osmotic pressure appearing.
Dans un mode de réalisation particulier, le gradient de concentration peut être obtenu et/ou modulé par l’intermédiaire d’un gradient de température entre les deux solutions électrolytiques, qui influe sur la solubilité de l’électrolyte en fonction de la température. In a particular embodiment, the concentration gradient can be obtained and/or modulated via a temperature gradient between the two electrolytic solutions, which influences the solubility of the electrolyte as a function of temperature.
Dans le cadre de la présente invention, le ratio de concentrations Rc désigne le rapport de la concentration de la solution la plus concentrée sur la concentration de la solution la moins concentrée, c’est-à-dire le ratio CB/CA. In the context of the present invention, the concentration ratio Rc designates the ratio of the concentration of the most concentrated solution to the concentration of the least concentrated solution, that is to say the CB/CA ratio.
De préférence, le ratio de concentration CB/CA va de 2 à 100, préférentiellement de 5 à 50. Les solutions électrolytiques sont des solutions aqueuses comprenant des électrolytes. Les électrolytes pourront être de toute nature chimique dans la mesure où ils se dissolvent dans la solution sous forme d’ions. Préférentiellement, ces ions proviennent de sels dissous tels que NaCI, KG, CaCh et MgCh. Les solutions électrolytiques peuvent être : Preferably, the CB/CA concentration ratio ranges from 2 to 100, preferably from 5 to 50. Electrolyte solutions are aqueous solutions comprising electrolytes. The electrolytes can be of any chemical nature as long as they dissolve in the solution in the form of ions. Preferably, these ions come from dissolved salts such as NaCl, KG, CaCh and MgCh. Electrolytic solutions can be:
- des solutions synthétiques ; - synthetic solutions;
- des solutions naturelles, telles que des eaux douces provenant des lacs ou des rivières, des eaux sous-terraines, des eaux saumâtres, de l’eau de mer ; - natural solutions, such as fresh water from lakes or rivers, underground water, brackish water, sea water;
- des eaux de production industrielle, des eaux de production pétrolière ou des solutions biologiques. - industrial production water, oil production water or biological solutions.
De manière particulièrement avantageuse, l’électrolyte est le NaCI. Particularly advantageously, the electrolyte is NaCI.
Avantageusement, la solution CB est une solution d’eau de mer et la solution CA est une solution d’eau douce. Advantageously, the CB solution is a seawater solution and the CA solution is a freshwater solution.
Avantageusement, le dispositif comprend des moyens pour commuter l’écoulement des solutions électrolytiques de concentration CA et CB, lesquels sont réalisés selon un mode (1 ) dans lequel la solution électrolytique de concentration CA en un soluté circule dans l’espace intermembranaire entre 2 membranes et que la solution électrolytique de concentration CA en ce même soluté circule dans le ou les espaces intermembranaires adjacents et un mode (2) dans lequel la circulation des solutions CA et CB est inversée. Advantageously, the device comprises means for switching the flow of the electrolytic solutions of concentration CA and CB, which are produced according to a mode (1) in which the electrolytic solution of concentration CA in a solute circulates in the intermembrane space between 2 membranes and that the electrolytic solution of CA concentration in this same solute circulates in the adjacent intermembrane space(s) and a mode (2) in which the circulation of the CA and CB solutions is reversed.
Pour améliorer le flux osmotique généré de part et d’autre de la membrane selon l’invention, le pH des solutions peut être ajusté en fonction du point isoélectrique du ou des matériaux constituant la membrane. To improve the osmotic flow generated on either side of the membrane according to the invention, the pH of the solutions can be adjusted as a function of the isoelectric point of the material(s) constituting the membrane.
Dans le cadre de la présente invention, on entend par pHiso, le pH du point isoélectrique du ou des matériaux constituant la membrane. Le pHiso se mesure par des méthodes connues de l’homme du métier, notamment par la méthode de titration potentiométrique acide/base. In the context of the present invention, pHiso means the pH of the isoelectric point of the material(s) constituting the membrane. The pHiso is measured by methods known to those skilled in the art, in particular by the acid/base potentiometric titration method.
Plus favorablement encore, pour accroître l’asymétrie du dispositif et amplifier la quantité d’énergie électrique produite par le dispositif, un gradient de pH pourra également être établi entre les deux réservoirs, la différence de pH entre les deux solutions sera supérieure à 1 , préférentiellement supérieure à 2. Even more favorably, to increase the asymmetry of the device and amplify the quantity of electrical energy produced by the device, a pH gradient can also be established between the two reservoirs, the pH difference between the two solutions will be greater than 1, preferably greater than 2.
PROCEDE DE PRODUCTION D’ENERGIE ELECTRIQUE PROCESS FOR PRODUCING ELECTRIC ENERGY
Un deuxième objet de l’invention concerne un procédé de production d’énergie utilisant un dispositif tel que décrit ci-dessus comprenant les étapes suivantes i) alimenter l’empilement de membranes (9) par une solution électrolytique (7) de concentration CA en un soluté et une solution électrolytique (8) de concentration CB en un même soluté, CB étant supérieure à CA, de sorte que lesdites solutions circulent en alternance dans les espaces intermembranaires dudit empilement (9); ii) laisser diffuser les électrolytes des espaces intermembranaires alimentés par la solution électrolytique (7) de concentration CB vers les espaces intermembranaires adjacents alimentés par la solution électrolytique (8) de concentration CA ; ill) capter l’énergie électrique générée par le différentiel de potentiel existant entre les deux électrodes (1 ), à l’aide du dispositif (5). A second object of the invention relates to a method of producing energy using a device as described above comprising the following steps i) supplying the stack of membranes (9) with an electrolytic solution (7) of concentration CA in a solute and an electrolytic solution (8) of concentration CB in the same solute, CB being greater than CA, so that said solutions circulate alternately in the intermembrane spaces of said stack (9); ii) allow the electrolytes to diffuse from the intermembrane spaces supplied by the electrolytic solution (7) of concentration CB towards the adjacent intermembrane spaces supplied by the electrolytic solution (8) of concentration CA; ill) capture the electrical energy generated by the potential differential existing between the two electrodes (1), using the device (5).
Les étapes i) et ii) sont préférentiellement mises en œuvre en fournissant la solution électrolytique de concentration CA et la solution électrolytique de concentration CB SOUS forme d’un écoulement continu. Steps i) and ii) are preferably implemented by providing the electrolytic solution of concentration CA and the electrolytic solution of concentration CB IN the form of a continuous flow.
Le débit des solutions électrolytiques (7) et (8) est ajusté de façon à optimiser le gradient de salinité du dispositif en jouant sur le temps de résidence des solutions électrolytiques au sein du dispositif. The flow rate of the electrolytic solutions (7) and (8) is adjusted so as to optimize the salinity gradient of the device by varying the residence time of the electrolytic solutions within the device.
Avantageusement, les solutions électrolytiques (7) et (8) sont à une température comprise entre 10°C et 40°C, préférentiellement à une température comprise entre 15°C et 25°C. Advantageously, the electrolytic solutions (7) and (8) are at a temperature between 10°C and 40°C, preferably at a temperature between 15°C and 25°C.
Avantageusement, le procédé selon l’invention est un procédé de production d’énergie exploitant la différence de salinité entre une solution d’eau de mer et une solution d’eau douce. Advantageously, the process according to the invention is an energy production process exploiting the difference in salinity between a seawater solution and a freshwater solution.
UTILISATION DE L’ESPACEUR USING THE SPACER
Un autre objet de l’invention concerne l’utilisation d’un textile de charbon actif tel que décrit ci-dessus, positionné entre une membrane échangeuse de cations et une membrane échangeuse d’anions dans un dispositif de production d’énergie. Another object of the invention relates to the use of an activated carbon textile as described above, positioned between a cation exchange membrane and an anion exchange membrane in an energy production device.
Avantageusement, le textile de charbon actif est utilisé en tant qu’espaceur. Advantageously, the activated carbon textile is used as a spacer.
Le dispositif de production d’énergie est tel que décrit ci-dessus. The energy production device is as described above.
EXEMPLES EXAMPLES
La présente invention se comprendra mieux à la lecture des exemples suivants qui illustrent non-limitativement l'invention. Le dispositif et le procédé illustrés sont un dispositif et un procédé de production d’énergie par électrodialyse inverse. The present invention will be better understood on reading the following examples which illustrate the invention in a non-limiting manner. The device and method illustrated are a device and method for producing energy by reverse electrodialysis.
Le dispositif utilisé est illustré sur la Figure 2. The device used is illustrated in Figure 2.
Le dispositif comprend 7 membranes cationiques (2) et anioniques (3) ayant chacune une surface de 1 cm2. The device comprises 7 cationic (2) and anionic (3) membranes each having a surface area of 1 cm 2 .
Les électrodes (1 ) sont connectées par un circuit électrique extérieur comprenant un voltmètre. The electrodes (1) are connected by an external electrical circuit including a voltmeter.
Les matières premières utilisées dans les exemples sont listées ci-après : The raw materials used in the examples are listed below:
Membranes : Membranes:
- Membrane échangeuse de cations (2) commercialisée par Fumasep sous la référence FKS 30 ; - Cation exchange membrane (2) marketed by Fumasep under the reference FKS 30;
- Membrane échangeuse d’anions (3) commercialisée par Fumasep sous la référence FAS. Espaceurs: - Anion exchange membrane (3) marketed by Fumasep under the reference FAS. Spacers:
- Nylon commercialisé par la société SEFAR sous la référence SEFAR NITEX 06-335/48 pour le nylon d’épaisseur 300pm ou SEFAR NITEX 06-1140/66 pour le nylon d’épaisseur 500pm ; - Nylon marketed by the company SEFAR under the reference SEFAR NITEX 06-335/48 for nylon with a thickness of 300 pm or SEFAR NITEX 06-1140/66 for nylon with a thickness of 500 pm;
- Feutre de charbon actif (4) obtenu à partir d’un précurseur polyacrylonitrile d’épaisseur 300pm ou 500pm. - Activated carbon felt (4) obtained from a polyacrylonitrile precursor with a thickness of 300pm or 500pm.
Les espaceurs sont au nombre de 6. There are 6 spacers.
Solutions salines d’alimentation du dispositif Saline solutions for supplying the device
Une solution d’eau de mer de concentration en NaCI de 35g/l (solution de concentration CB) et une solution de concentration en NaCI de 1 ,17g/l (solution de concentration CA) sont utilisées (correspondant respectivement aux solutions 8 et 7 de la Figure 2). A seawater solution with a NaCI concentration of 35g/l (CB concentration solution) and a solution with a NaCI concentration of 1.17g/l (CA concentration solution) are used (corresponding respectively to solutions 8 and 7 of Figure 2).
La température des solutions salines est 25°C. The temperature of the saline solutions is 25°C.
Le débit des solutions salines est de 1 ml/min. The flow rate of saline solutions is 1 ml/min.
Solution Redox ORP solution
La solution aqueuse de rinçage de l’électrode (6) comprend 0,25 M Na3Fe(CN)e, 0,25 M Na4Fe(CN)6 et (CB + CA)/2 en NaCI. The aqueous solution for rinsing the electrode (6) comprises 0.25 M Na3Fe(CN)e, 0.25 M Na 4 Fe(CN) 6 and (CB + CA)/2 in NaCI.
La température de la solution de rinçage est de 25°C. The temperature of the rinsing solution is 25°C.
Le débit de la solution est de 0,25 ml/min. The solution flow rate is 0.25 ml/min.
Exemple 1 : Préparation de dispositifs D1 et D2 conformes à l’invention et comparaison avec des dispositifs comparatifs C1 et C2 non conformes à l’invention. Les résultats sont présentés dans le Tableau 1 . Example 1: Preparation of devices D1 and D2 in accordance with the invention and comparison with comparative devices C1 and C2 not in accordance with the invention. The results are presented in Table 1.
[Table 1]
Figure imgf000020_0001
avec : - AV le potentiel mesuré par un voltmètre lorsque le circuit extérieur est ouvert ;
[Table 1]
Figure imgf000020_0001
with: - AV the potential measured by a voltmeter when the external circuit is open;
- 1 le courant mesuré par un ampèremètre à la fermeture du circuit extérieur ; - 1 the current measured by an ammeter when the external circuit is closed;
- R la résistance surfacique du dispositif calculée par la loi d’Ohm : Rs = U/I.S ; - R the surface resistance of the device calculated by Ohm's law: R s = U/IS;
- Pmax = V2/4R Le Tableau 1 montre qu’en utilisant un espaceur en feutre de charbon actif de 500 pm selon l’invention à la place d’un espaceur en nylon de même épaisseur utilisé classiquement dans les dispositifs de production d’énergie, la puissance développée par unité de surface est multipliée par un facteur supérieur à 4. - Pmax = V 2 /4R Table 1 shows that by using a 500 pm activated carbon felt spacer according to the invention instead of a nylon spacer of the same thickness conventionally used in devices for producing energy, the power developed per unit area is multiplied by a factor greater than 4.
Lorsque l’épaisseur de l’espaceur est de 300pm, le gain en puissance obtenu avec l’espaceur en charbon actif selon l’invention est de 2,5. When the thickness of the spacer is 300 pm, the power gain obtained with the activated carbon spacer according to the invention is 2.5.

Claims

REVENDICATIONS
1 .Dispositif pour la production d’énergie comprenant : 1.Device for the production of energy comprising:
- deux électrodes (1 ), - two electrodes (1),
- un empilement de membranes (9), disposé entre les deux électrodes, comprenant une alternance de membranes perméables sélectivement aux cations (2) et de membranes perméables sélectivement aux anions (3), et tel que chaque membrane est séparée d’une membrane voisine par un espace intermembranaire dans lequel est positionné un textile de charbon actif (4) - a stack of membranes (9), arranged between the two electrodes, comprising an alternation of membranes selectively permeable to cations (2) and membranes selectively permeable to anions (3), and such that each membrane is separated from a neighboring membrane by an intermembrane space in which an activated carbon textile is positioned (4)
- un dispositif (5) permettant de récolter l’énergie électrique générée par un différentiel de potentiel existant entre les 2 électrodes (1 ) l’empilement de membranes (9) étant destiné à être alimenté par une solution électrolytique (7) de concentration CA en un soluté et une solution électrolytique (8) de concentration CB en un même soluté, CB étant supérieure à CA, lesdites solutions devant circuler en alternance dans les espaces intermembranaires dudit empilement (9). - a device (5) making it possible to harvest the electrical energy generated by a potential differential existing between the 2 electrodes (1) the stack of membranes (9) being intended to be supplied by an electrolytic solution (7) of concentration CA in a solute and an electrolytic solution (8) of concentration CB in the same solute, CB being greater than CA, said solutions having to circulate alternately in the intermembrane spaces of said stack (9).
2. Dispositif selon la revendication 1 caractérisé en ce que le textile de charbon actif a une épaisseur allant de 100 pm à 1 000 pm, préférentiellement de 200 pm à 600 pm. 2. Device according to claim 1 characterized in that the activated carbon textile has a thickness ranging from 100 pm to 1000 pm, preferably from 200 pm to 600 pm.
3. Dispositif selon l’une quelconque des revendications précédentes caractérisé en ce que le textile de charbon actif présente une surface spécifique SBET allant de 200 à 3 000 m2/g, préférentiellement de 1 000 à 2 000 m2/g. 3. Device according to any one of the preceding claims characterized in that the activated carbon textile has a specific surface area SBET ranging from 200 to 3,000 m 2 /g, preferably from 1,000 to 2,000 m 2 /g.
4. Procédé de production d’énergie électrique utilisant un dispositif tel que décrit dans l’une quelconque des revendications précédentes comprenant les étapes suivantes : i) alimenter l’empilement de membranes (9) par une solution électrolytique (7) de concentration CA en un soluté et une solution électrolytique (8) de concentration CB en un même soluté, CB étant supérieure à CA,, de sorte que lesdites solutions circulent en alternance dans les espaces intermembranaires dudit empilement (9) ii) laisser diffuser les électrolytes des espaces intermembranaires alimentés par la solution électrolytique (7) de concentration CB vers les espaces intermembranaires adjacents alimentés par la solution électrolytique (8) de concentration CA ; iii) capter l’énergie électrique générée par le différentiel de potentiel existant entre les deux électrodes (1 ), à l’aide du dispositif (5). 4. Method for producing electrical energy using a device as described in any one of the preceding claims comprising the following steps: i) supplying the stack of membranes (9) with an electrolytic solution (7) of CA concentration in a solute and an electrolytic solution (8) of concentration CB in the same solute, CB being greater than CA, so that said solutions circulate alternately in the intermembrane spaces of said stack (9) ii) allow the electrolytes from the intermembrane spaces to diffuse supplied by the electrolytic solution (7) of concentration CB towards the adjacent intermembrane spaces supplied by the electrolytic solution (8) of concentration CA; iii) capture the electrical energy generated by the potential differential existing between the two electrodes (1), using the device (5).
5. Procédé selon la revendication 4, caractérisé en ce que le ratio de concentration CB/CA va de 2 à 100, préférentiellement de 5 à 50. 5. Method according to claim 4, characterized in that the CB/CA concentration ratio ranges from 2 to 100, preferably from 5 to 50.
6. Procédé selon la revendication 4 ou la revendication 5, caractérisé en ce que les solutions électrolytiques (7) et (8) sont des solutions aqueuses comprenant un soluté choisi parmi les halogénures alcalins ou les halogénures alcalino-terreux, de préférence choisi parmi NaCI, KG, CaCh et MgCh, de préférence encore NaCI. 6. Method according to claim 4 or claim 5, characterized in that the electrolytic solutions (7) and (8) are aqueous solutions comprising a solute chosen from alkali halides or alkaline earth halides, preferably chosen from NaCI , KG, CaCh and MgCh, more preferably NaCl.
7. Utilisation d’un textile de charbon actif positionné entre une membrane perméable sélectivement aux cations et une membrane perméable sélectivement aux anions dans un dispositif destiné à la mise en œuvre d’un procédé de production d’énergie. 7. Use of an activated carbon textile positioned between a membrane selectively permeable to cations and a membrane selectively permeable to anions in a device intended for the implementation of an energy production process.
PCT/FR2024/050108 2023-01-26 2024-01-26 Device for generating power by salinity gradient comprising an activated carbon fabric WO2024156970A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2300748A FR3145448A1 (en) 2023-01-26 2023-01-26 DEVICE FOR PRODUCING ENERGY BY SALINITY GRADIENT COMPRISING AN ACTIVATED CARBON TEXTILE
FRFR2300748 2023-01-26

Publications (1)

Publication Number Publication Date
WO2024156970A1 true WO2024156970A1 (en) 2024-08-02

Family

ID=86007521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2024/050108 WO2024156970A1 (en) 2023-01-26 2024-01-26 Device for generating power by salinity gradient comprising an activated carbon fabric

Country Status (2)

Country Link
FR (1) FR3145448A1 (en)
WO (1) WO2024156970A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014060690A1 (en) 2012-10-16 2014-04-24 Universite Claude Bernard Lyon I Method and device for producing energy
WO2017037213A1 (en) 2015-09-02 2017-03-09 Sweetch Energy Device for producing energy by salinity gradient through titanium oxide nanofluid membranes
WO2018132393A1 (en) * 2017-01-13 2018-07-19 Bl Technologies, Inc. Ion conductive spacer, preparing process thereof and electrodialysis reversal stack
WO2021234296A2 (en) 2020-05-20 2021-11-25 Sweetch Energy Device for producing energy by salinity gradient through a membrane based on crosslinked cellulose fibres

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014060690A1 (en) 2012-10-16 2014-04-24 Universite Claude Bernard Lyon I Method and device for producing energy
WO2017037213A1 (en) 2015-09-02 2017-03-09 Sweetch Energy Device for producing energy by salinity gradient through titanium oxide nanofluid membranes
WO2018132393A1 (en) * 2017-01-13 2018-07-19 Bl Technologies, Inc. Ion conductive spacer, preparing process thereof and electrodialysis reversal stack
WO2021234296A2 (en) 2020-05-20 2021-11-25 Sweetch Energy Device for producing energy by salinity gradient through a membrane based on crosslinked cellulose fibres

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DBUGOBCKI P ET AL: "Ion conductive spacers for increased power generation in reverse electrodialysis", JOURNAL OF MEMBRANE SCIENCE, ELSEVIER BV, NL, vol. 347, no. 1-2, 17 August 2009 (2009-08-17), pages 101 - 107, XP026796029, ISSN: 0376-7388, [retrieved on 20091017] *
GURRERI ET AL., JOURNAL OF MEMBRANE SCIENCE, vol. 497, 2016, pages 300 - 317
LI MEI ET AL: "Reverse electrodialysis for power production with ion-permselective spacers and its optimization", JOURNAL OF APPLIED ELECTROCHEMISTRY, SPRINGER, DORDRECHT, NL, vol. 52, no. 5, 15 February 2022 (2022-02-15), pages 871 - 884, XP037769146, ISSN: 0021-891X, [retrieved on 20220215], DOI: 10.1007/S10800-022-01678-X *

Also Published As

Publication number Publication date
FR3145448A1 (en) 2024-08-02

Similar Documents

Publication Publication Date Title
FR2928492A1 (en) MATERIAL FOR AN ELECTROCHEMICAL DEVICE.
US11583808B2 (en) Method of preparation of conductive polymer/carbon nanotube composite nanofiltration membrane and the use thereof
KR20110069839A (en) Biomimetic membrane formed from a vesicle-thread conjugate
Ahmed et al. Electrically conducting nanofiltration membranes based on networked cellulose and carbon nanostructures
EP0215016B1 (en) Solid compositions based on superoxides, production thereof and electrochemical applications thereof
CN106268322A (en) A kind of LBL self-assembly graphene oxide/n-trimethyl chitosan chloride Positively charged composite nanofiltration membrane and preparation method thereof
Rajput et al. Functionalized carbon dots composite cation exchange membranes: Improved electrochemical performance and salt removal efficiency
Wang et al. Enhancing the total salt adsorption capacity and monovalent ion selectivity in capacitive deionization using a dual-layer membrane coating electrode
WO2024156970A1 (en) Device for generating power by salinity gradient comprising an activated carbon fabric
Divyapriya et al. One-step biosynthesis of a bilayered graphene oxide embedded bacterial nanocellulose hydrogel for versatile photothermal membrane applications
WO2019078141A1 (en) Water splitting device
Roh Electricity generation from microbial fuel cell with polypyrrole-coated carbon nanofiber composite
CA3184154A1 (en) Device for producing energy by salinity gradient through a membrane based on crosslinked cellulose fibres
Mukhopadhyay et al. Proton-conductive membranes with percolated transport paths for aqueous redox flow batteries
FR3117888A1 (en) DEVICE FOR GENERATING ENERGY BY SALINITY GRADIENT COMPRISING ELECTRODES OF AN ACTIVATED CARBON TEXTILE
WO2021234294A1 (en) Ion-selective composite membrane
Hao et al. Improved ion transfer and osmotic energy conversion via nanofibers/polymer composite membrane with hierarchical 3D porous
KR20210011776A (en) Fabrication and operation method of sodium ion-selective, water permeable capacitive deionization electrode using NASICON incorporated carbon nanotube structure
EP2774946A1 (en) Use of a functionalised polysiloxane network for chemically stabilizing a polymer, membrane thus stabilized, process for preparing same and uses thereof
Hou et al. Multiscale carbon-Based ion channel fiber membrane for efficient osmotic energy capture
JP5317994B2 (en) Water separation membrane
KR20240047572A (en) Enhanced coversion of carbon dioxide in microbial electrosynthesis system with carbon based membrane electrode, and method of the same
Ravi et al. A recent development of low-cost membranes for microbial fuel cell applications
CN118543248A (en) Graphene oxide membrane with high flux desalination performance and preparation method and application thereof
CN114984779A (en) Preparation method of high-flux cellulose forward osmosis membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24705716

Country of ref document: EP

Kind code of ref document: A1