WO2024156266A1 - 一种固态激光雷达的控制方法及固态激光雷达 - Google Patents
一种固态激光雷达的控制方法及固态激光雷达 Download PDFInfo
- Publication number
- WO2024156266A1 WO2024156266A1 PCT/CN2024/073176 CN2024073176W WO2024156266A1 WO 2024156266 A1 WO2024156266 A1 WO 2024156266A1 CN 2024073176 W CN2024073176 W CN 2024073176W WO 2024156266 A1 WO2024156266 A1 WO 2024156266A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- detector
- blocks
- partition
- partitions
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 48
- 238000005192 partition Methods 0.000 claims abstract description 324
- 238000007599 discharging Methods 0.000 claims description 44
- 230000008569 process Effects 0.000 claims description 10
- 230000004913 activation Effects 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 25
- 238000001514 detection method Methods 0.000 description 13
- 230000008878 coupling Effects 0.000 description 11
- 238000010168 coupling process Methods 0.000 description 11
- 238000005859 coupling reaction Methods 0.000 description 11
- 239000003990 capacitor Substances 0.000 description 7
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 6
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 3
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 3
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000000638 solvent extraction Methods 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/484—Transmitters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/486—Receivers
- G01S7/4861—Circuits for detection, sampling, integration or read-out
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Definitions
- the present application relates to the field of laser radar technology, and in particular to a control method for a solid-state laser radar and a solid-state laser radar.
- Solid-state LiDAR has become the mainstream development trend of LiDAR due to its outstanding advantages such as high system integration, easy large-scale mass production, high system reliability and low production cost. Among them, the application of pure solid-state Flash LiDAR is also increasing.
- the transmitting end of the pure solid-state Flash laser radar adopts a planar array of lasers, and the receiving end adopts a planar array of photosensitive devices. Due to the limitations of factors such as the laser transmission power and the parallel processing capability of the receiving end signal, in the related technology, the planar array of lasers is divided into several partitions, and then one of the partitions is turned on in turn, and the receiving end turns on the corresponding photosensitive device. At present, this control method of starting scanning by partition has the problems of reduced scanning efficiency and decreased frame rate.
- the embodiments of the present application provide a control method of a solid-state laser radar and a solid-state laser radar.
- the technical solution is as follows:
- a control method of a solid-state laser radar comprises a planar laser array having a plurality of laser partitions and a detector array having a plurality of detector partitions, each of the laser partitions comprises a plurality of lasers, the plurality of laser partitions correspond one-to-one to the plurality of detector partitions, the plurality of detector partitions are divided into a plurality of detector blocks, each of the detector blocks comprises at least two of the detector partitions, and each of the detector blocks is respectively coupled to a different processing module; the control method comprises:
- At least one laser partition to emit laser light; wherein at least one target detector partition corresponding to the at least one laser partition is located in different detector blocks;
- the target processing module Based on the target processing module corresponding to each target detector partition, the reflected laser signal received by each target detector partition is processed; the target processing module is a processing module coupled to the detector block where the target detector partition is located.
- the plurality of laser zones are divided into a plurality of laser blocks.
- Each of the laser blocks includes at least two laser partitions, and each of the laser blocks corresponds to a different detector block;
- the controlling at least one laser to emit laser light in different areas comprises:
- the laser subregions currently to be turned on in each of the laser blocks to be turned on are controlled to emit lasers respectively.
- each of the laser blocks is respectively coupled to a driving module
- each of the driving modules includes a plurality of charging modules and a plurality of discharging modules, and the plurality of charging modules and the plurality of discharging modules constitute a plurality of driving channels;
- the input ends of the laser partitions in the same column of each laser block are connected to the same charging module of the corresponding driving module, and the output ends of the laser partitions in the same row of each laser block are connected to the same discharging module of the corresponding driving module.
- the plurality of laser blocks are arranged in an array, and the plurality of detector blocks are arranged in an array;
- each of the driving modules comprises a plurality of charging modules and a plurality of discharging modules, and the plurality of charging modules and the plurality of discharging modules constitute a plurality of driving channels;
- the output ends of the laser partitions located in the same row of the laser blocks in the same row are connected to the same discharge module of the corresponding driving module;
- the input ends of the laser subregions located in the same column in each laser block of the same row of laser blocks are connected to the same charging module of the corresponding driving module.
- controlling the current laser subareas to be turned on in each of the laser blocks to be turned on to respectively emit lasers comprises:
- a solid-state laser radar comprising:
- a transmitting unit comprising a planar laser array having a plurality of laser partitions, each of the laser partitions comprising a plurality of lasers;
- a receiving unit comprising a detector array having a plurality of detector partitions and a plurality of processing modules, wherein the plurality of detector partitions correspond to the plurality of laser partitions one by one, the plurality of detector partitions are divided into a plurality of detector blocks, each of the detector blocks comprises at least two of the detector partitions, and each of the detector blocks is respectively coupled to different processing modules;
- a control unit is coupled to the transmitting unit and the receiving unit, and is used to control at least one laser partition to respectively transmit lasers, and to control at least one target detector partition corresponding to the at least one laser partition to receive reflected laser signals, and to process the reflected laser signals received by each target detector partition based on a target processing module corresponding to each target detector partition; wherein the at least one target detector partition is located in a different detector block, and the target processing module is a processing module coupled to the detector block where the target detector partition is located.
- the plurality of laser partitions of the planar laser array are divided into a plurality of laser blocks, each of the laser blocks includes at least two of the laser partitions, and each of the laser blocks corresponds to a different detector block;
- control unit When controlling at least one laser partition to emit laser, the control unit is specifically used to: determine at least one laser block to be turned on among the multiple laser blocks; determine the current laser partition to be turned on in each of the laser blocks to be turned on based on a preset partition turn-on sequence corresponding to each of the laser blocks to be turned on; and control the current laser partition to be turned on in each of the laser blocks to be turned on to emit laser respectively.
- the transmitting unit further includes a plurality of driving modules, each of the laser blocks is respectively coupled to one of the driving modules; each of the driving modules includes a plurality of charging modules and a plurality of discharging modules, and the plurality of charging modules and the plurality of discharging modules constitute a plurality of driving channels;
- the input ends of the laser partitions in the same column of each laser block are connected to the same charging module of the corresponding driving module, and the output ends of the laser partitions in the same row of each laser block are connected to the same discharging module of the corresponding driving module.
- the plurality of laser blocks are arranged in an array, and the plurality of detector blocks are arranged in an array;
- the transmitting unit further comprises a plurality of driving modules, the laser blocks in the same row of the plurality of laser blocks are connected to one of the driving modules, each of the driving modules comprises a plurality of charging modules and a plurality of discharging modules, and the plurality of charging modules and the plurality of discharging modules constitute a plurality of driving channels;
- the output ends of the laser partitions located in the same row of the laser blocks in the same row are connected to the same discharge module of the corresponding driving module;
- each laser block in the same row of laser blocks and located in the same column of laser partitions is connected to the same charging module of the corresponding driving module.
- control unit when the control unit controls the current laser partitions to be turned on in each of the laser blocks to be turned on to emit lasers respectively, it is specifically used to: for the current laser partition to be turned on in each laser block to be turned on, control the target charging module connected to the current laser partition to be turned on in the driving module coupled to the laser block to be turned on to enter a charging state; control the target discharge module connected to the current laser partition to be turned on in the driving module coupled to the laser block to be turned on to enter a discharge state, so as to turn on the target drive channel formed by the target charging module and the target discharge module, and drive the current laser partition to be turned on in the laser block to be turned on to emit laser.
- the embodiment of the present application divides the multiple detector partitions in the detector array into multiple detector blocks, each detector block includes at least two detector partitions, each detector block is respectively coupled to different processing modules, and then at least one laser partition can be controlled to emit lasers respectively, and at least one target detector partition corresponding to the at least one laser partition is located in a different detector block, and the at least one target detector partition is controlled to receive reflected laser signals respectively, and the reflected laser signal received by each target detector partition is processed based on the target processing module corresponding to each target detector partition, wherein the target processing module is a processing module coupled to the detector block where the corresponding target detector partition is located, so that parallel processing can be performed based on the processing modules coupled to each detector block, thereby improving the scanning efficiency and frame rate of the solid-state laser radar in two-dimensional addressing scanning, or the partition size can be reduced exponentially under the same scanning efficiency conditions, and the small partition can reduce the probability of crosstalk between different transceiver channels.
- FIG1 is an example of laser partitioning of a laser array in a two-dimensional addressing scanning mode provided by an embodiment of the present application
- FIG2 is a schematic diagram of the driving principle of laser partitions in a two-dimensional addressing scanning mode provided in an embodiment of the present application
- FIG3a is a schematic diagram of an arrangement of multiple detector blocks in a detector array provided in an embodiment of the present application.
- FIG3 b is a schematic diagram of another arrangement of multiple detector blocks in a detector array provided in an embodiment of the present application.
- FIG3c is a schematic diagram of another arrangement of multiple detector blocks in a detector array provided in an embodiment of the present application.
- FIG4 is a schematic flow chart of a control method for a solid-state laser radar provided in an embodiment of the present application
- FIG5a is a schematic diagram of an arrangement of multiple laser blocks provided in an embodiment of the present application.
- FIG5 b is a schematic diagram of another arrangement of multiple laser blocks provided in an embodiment of the present application.
- FIG5c is a schematic diagram of another arrangement of multiple laser blocks provided in an embodiment of the present application.
- FIG6 is a schematic flow chart of another control method of a solid-state laser radar provided in an embodiment of the present application.
- FIG7a is a schematic diagram of a driving module coupling corresponding to FIG5a provided in an embodiment of the present application.
- FIG7b is a schematic diagram of a driving module coupling corresponding to FIG5b provided in an embodiment of the present application;
- FIG. 7c is a schematic diagram of a driving module coupling corresponding to FIG. 5c provided in an embodiment of the present application.
- FIG8 is a schematic diagram of another driving module coupling corresponding to FIG5c provided in an embodiment of the present application.
- FIG9 is an example of opening a laser partition in a plurality of laser blocks provided in an embodiment of the present application.
- FIG10 is a schematic diagram of the structure of a solid-state laser radar provided in an embodiment of the present application.
- the pure solid-state Flash laser radar transmits laser pulses to the target detection area through a planar laser array.
- the receiving end detects the reflected laser signal and calculates the distance S of the detected target based on the difference between the receiving time t2 and the transmitting time t1 , that is: Where C represents the speed of light.
- the transmitting end is divided into several partitions, one of which is turned on in turn, and the receiving end turns on the corresponding photosensitive device until the entire detection area is traversed.
- This partition activation method is called scanning, and in order to distinguish it from mechanical rotation scanning, it can also be called electronic scanning.
- scanning refers to electronic scanning, among which the two-dimensional addressing scanning method is a commonly used scanning method.
- FIG1 shows an example of laser partitioning of a planar laser array in a two-dimensional addressing scanning mode, wherein the shaded portion represents the laser partition that is currently turned on.
- the planar laser array at the transmitting end is divided into M rows (i.e., R1 to R M ) and N columns (i.e., L1 to L N ) for a total of M*N laser partitions, and each laser partition includes multiple lasers.
- the partitioning example of the detector array at the receiving end is the same as that of the planar laser array, which is divided into M rows and N columns for a total of M*N detector partitions.
- each laser partition is turned on in turn, and the corresponding detector partition is used to receive the reflected laser signal to achieve scanning of the entire field of view.
- the driving principle of the laser partition can be seen in FIG2, where a laser symbol represents a laser partition in the scan, and VCC represents indicates the supply voltage of the circuit, and GND indicates the ground terminal.
- the anodes of each laser in the laser partition in the same column are connected to the same charging module, and the charging module includes a charging control component A (A 1 , A 2 ?? AN ), a capacitor and a resistor.
- the charging control component of the charging module By switching on the charging control component of the charging module, the capacitor of the corresponding column can be charged; the cathodes of each laser in the laser partition in the same row are connected to the same discharge module, and the discharge module includes a discharge control component B (B 1 , B 2 partly BM ).
- the discharge control component B B 1 , B 2 — BM
- the charging control component A 2 of the charging module in the L 2 column is turned on to charge the capacitor of the column
- the discharge control component B 2 of the discharge module in the R 2 row is turned on, and the lasers of the laser partitions L 2 R 2 are turned on.
- an embodiment of the present application provides a control method for a solid-state laser radar, wherein the solid-state laser radar includes a planar laser array having multiple laser partitions and a detector array having multiple detector partitions, each laser partition includes multiple lasers, and the multiple laser partitions of the planar laser array correspond one-to-one to the multiple detector partitions of the detector array, that is, one laser partition and one detector partition can constitute a detection channel.
- the multiple detector partitions in the detector array are divided into multiple detector blocks, each detector block includes at least two detector partitions, and each detector block is respectively coupled to different processing modules, that is, each detector partition in the same detector block shares a processing module to realize the sharing of data transmission channels, storage space and data processing resources by each detector partition in the same detector block.
- FIG3a is a schematic diagram of the arrangement of multiple detector blocks in the detector array, which is two detector blocks arranged in 1 row and 2 columns, namely, detector block SL 1 and detector block SL 2 , wherein detector block SL 1 is coupled to processing module P 1 , and detector block SL 2 is coupled to processing module P 2 .
- FIG3 b is another schematic diagram of an arrangement of multiple detector blocks in a detector array, which is two detector blocks arranged in 2 rows and 1 column, namely detector block SR 1 and detector block SR 2 , wherein detector block SR 1 is coupled to processing module P 1 , and detector block SR 2 is coupled to processing module P 2 .
- FIG. 3 c is another schematic diagram of the arrangement of multiple detector blocks in the detector array, which is a schematic diagram of four detector blocks arranged in 2 rows and 2 columns, namely, detector blocks SL 1 &SR 1 , detector blocks SL 2 & SR 1 , detector block SL 1 & SR 2 , detector block SL 2 & SR 2 , wherein the detector block SL 1 & SR 1 is coupled to the processing module P 1 , the detector block SL 2 & SR 1 is coupled to the processing module P 2 , the detector block SL 1 & SR 2 is coupled to the processing module P 3 , and the detector block SL 2 & SR 2 is coupled to the processing module P 4 .
- FIG4 a flow chart of a control method of a solid-state laser radar provided in an embodiment of the present application is shown, and the method includes:
- S401 controlling at least one laser to emit laser light in different areas.
- At least one target detector partition corresponding to at least one laser partition is located in different detector blocks.
- At least one laser partition that emits laser light corresponds to different detector partitions in multiple detector blocks.
- two laser partitions can be controlled to emit laser light at the same time, and the detector partitions corresponding to the two laser partitions are located in different detector blocks;
- four laser partitions can be controlled to emit laser light at the same time, and the detector partitions corresponding to the four laser partitions are located in different detector blocks.
- the target detector partition is the detector partition corresponding to the laser partition emitting laser in the detector array.
- the target processing module is a processing module coupled to the detector block where the corresponding target detector partition is located.
- the reflected laser signal received by the target detector partitions L1 & R1 can be processed based on the processing module P1 coupled to the detector block SL1
- the reflected laser signal received by the target detector partitions LK +1 & R1 can be processed based on the processing module P2 coupled to the detector block SL2, thereby realizing parallel processing of the reflected laser signals received by the two detection partitions.
- the reflected laser signals received by the target detector partitions L1 & R1 can be processed based on the processing module P1 coupled to the detector block SR1
- the reflected laser signals received by the target detector partitions L1 & RJ +1 can be processed based on the processing module P2 coupled to the detector block SR2, thereby realizing parallel processing of the reflected laser signals received by the two detection partitions.
- the processing module P1 coupled based on the detector block SL1 & SR1 can be used to process the reflected laser signal received by the target detector partition L1 & R1
- the processing module P2 coupled based on the detector block SL2 & SR1 can be used to process the reflected laser signal received by the target detector partition LK +1 & R1
- the processing module P3 coupled based on the detector block SL1 & SR2 can be used to process the reflected laser signal received by the target detector partition L1 &RJ +1
- the processing module P4 coupled based on the detector block SL2 & SR2 can be used to process the reflected laser signal received by the target detector partition LK +1 &RJ +1 , thereby realizing parallel processing of the reflected laser signals received by the four detection partitions.
- the multiple laser partitions of the planar laser array are also divided into multiple laser blocks, each laser block includes at least two laser partitions, and each laser block corresponds to a different detector block, that is, a laser block and its corresponding detector block can constitute a detection channel set, which includes multiple detection channels, and each detection channel is composed of a laser partition in the laser block and a detector partition in the detector block.
- Figure 5a is a schematic diagram showing the arrangement of multiple laser blocks corresponding to Figure 3a, which is two laser blocks arranged in 1 row and 2 columns, namely laser block SL 1 and laser block SL 2 , wherein laser block SL 1 corresponds to detector block SL 1 , and laser block SL 2 corresponds to detector block SL 2 .
- FIG5 b is a schematic diagram showing an arrangement of multiple laser blocks corresponding to FIG3 b , which is a schematic diagram showing two laser blocks arranged in 2 rows and 1 column, namely laser block SR 1 and laser block SR 2 , wherein laser block SR 1 corresponds to detector block SR 1 , and laser block SR 2 corresponds to detector block SR 2 .
- Figure 5c is a schematic diagram of the arrangement of multiple laser blocks corresponding to Figure 3c, which is four laser blocks arranged in 2 rows and 2 columns, namely laser block SL 1 & SR 1 , laser block SL 2 & SR 1 , laser block SL 1 & SR 2 , and laser block SL 2 & SR 2 , wherein laser block SL 1 & SR 1 corresponds to detector block SL 1 & SR 1 , laser block SL 2 & SR 1 corresponds to detector block SL 2 & SR 1 , laser block SL 1 & SR 2 corresponds to detector block SL 1 & SR 2 , and laser block SL 2 & SR 2 corresponds to detector block SL 2 & SR 2 .
- multiple laser blocks can also adopt the arrangement of FIG. 5a and FIG. 5b.
- the laser block SL 1 can correspond to the detector block SL 1 & SR 1 and the detector block SL 1 & SR 2
- the laser block SL 2 can correspond to the detector block SL 2 & SR 1 and the detector block SL 2 & SR 2 ; similarly, Taking FIG.
- the laser block SR 1 may correspond to the detector blocks SL 1 & SR 1 and SL 2 & SR 1
- the laser block SR 2 may correspond to the detector blocks SL 1 & SR 2 and SL 2 & SR 2 .
- step S401 may include the following steps in FIG6 when controlling at least one laser to emit laser in a partitioned manner:
- S601 determining at least one laser block to be turned on among a plurality of laser blocks.
- At least one laser block to be turned on can be determined from multiple laser blocks based on a block determination strategy.
- the block determination strategy can be set based on actual needs. For example, all laser blocks can be used as laser blocks to be turned on in each scan. Then, in each scan, a laser partition can be lit up or turned on in each laser block to emit laser light. Generally, the more laser blocks are used as laser blocks to be turned on in each scan, the higher the scanning efficiency.
- each laser block in the plurality of laser blocks can independently turn on a laser partition in the laser block to emit laser light.
- the preset partition turn-on sequence indicates the turn-on sequence of the laser partitions in the corresponding laser block, which can be set based on actual needs, for example, from left to right, from top to bottom, etc.
- the preset partition turn-on sequence corresponding to different laser blocks can be the same or different.
- the driving method of FIG. 2 above cannot realize the simultaneous independent opening of different laser partitions in the same column, that is, if two laser partitions in the same column are to be controlled to be turned on at the same time, the charging control component A of the column must first be turned on to charge the capacitor of the column, and then the discharge control components B in the row where the two laser partitions are located must be controlled to be turned on at the same time, so that the two laser partitions emit lasers at the same time.
- the discharge control components B in the row where the two laser partitions are located must be controlled to be turned on at the same time, so that the two laser partitions emit lasers at the same time.
- there is inevitably a slight difference in the turn-on time of the discharge control components B in the two rows resulting in different luminous intensities of the two laser partitions, or even a situation where one of the laser partitions does not emit light.
- each laser block in the embodiment of the present application can independently open a laser partition in the laser block to emit laser.
- each laser block is respectively coupled to a driving module, and each driving module includes a plurality of charging modules and a plurality of discharging modules, and the plurality of charging modules and the plurality of discharging modules constitute a plurality of driving channels.
- the input of the laser partition in the same column of each laser block is The input end is connected to the same charging module of the corresponding driving module, and the output end of the laser partitions located in the same row in each laser block is connected to the same discharging module of the corresponding driving module.
- the input end of the laser partition includes the anode of each laser in the laser partition
- the output end of the laser partition includes the cathode of each laser in the laser partition.
- Each charging module includes a charging control component, a resistor and a capacitor. When the charging control component is turned on, the charging module enters a charging state, that is, charging the capacitor of the charging module. When the charging control component is disconnected, the charging module can exit the charging state.
- Each discharge module includes a discharge control component. When the discharge control component is turned on, the discharge module enters a discharge state, and the anode can be connected to the charged charging module, and the cathode can be connected to the laser partition of the discharge module to open so that the laser in the laser partition emits laser.
- the charging control component and the discharge control component can be transistor switches.
- FIG5a is a schematic diagram of the driving module coupling corresponding to FIG5a, wherein each laser symbol represents a laser partition.
- the laser blocks SL1 and SL2 are each coupled to a driving module.
- the coupled driving module includes K charging modules (i.e., the circuit module where the charging control components A1 to A K in FIG7a are located) and M discharging modules (i.e., the circuit module where the discharging control components B'1 to B'M in FIG7a are located).
- the K charging modules correspond one-to-one to the K columns in the laser block SL1 , and the input ends of the laser partitions in the same column in the laser block SL1 are connected to the charging modules corresponding to the column;
- the M discharging modules correspond one-to-one to the M rows in the laser block SL1 , and the output ends of the laser partitions in the same row in the laser block SL1 are connected to the discharging modules corresponding to the row.
- FIG5b is a schematic diagram of the driving module coupling corresponding to FIG5b, wherein each laser symbol represents a laser partition.
- the laser block SR1 and the laser block SR2 are each coupled to a driving module.
- the coupled driving module includes N charging modules (i.e., the circuit module where the charging control components A'1 to A'N are located in the lower part of FIG7b) and J discharging modules (i.e., the circuit module where the discharging control components B1 to BJ are located in FIG7b).
- the N charging modules are connected to the laser block SR1 and the laser block SR2.
- the N columns in block SR 1 correspond one to one, and the input ends of the laser partitions in the same column in the laser block SR 1 are connected to the charging modules corresponding to the column; the J discharge modules correspond one to one to the J rows in the laser block SR 1 , and the output ends of the laser partitions in the same row in the laser block SR 1 are connected to the discharge modules corresponding to the row.
- FIG5c is a schematic diagram of the driving module coupling corresponding to FIG5c, wherein each laser symbol represents a laser partition.
- the laser blocks SL 1 & SR 1 , SL 2 & SR 1 , SL 1 & SR 2 , and SL 2 & SR 2 are each coupled to a driving module.
- the coupled driving modules include K charging modules (i.e., the circuit modules where the charging control components A' 1 to A' K in Figure 7c are located) and J discharging modules (i.e., the circuit modules where the discharging control components B' 1 to B' J in Figure 7c are located).
- the above-mentioned K charging modules correspond one-to-one to the K columns in the laser blocks SL 1 & SR 1 , and the input ends of the laser partitions in the same column in the laser blocks SL 1 & SR 1 are connected to the charging modules corresponding to the column;
- the J discharging modules correspond one-to-one to the J rows in the laser blocks SL 1 & SR 1 , and the output ends of the laser partitions in the same row in the laser blocks SL 1 & SR 1 are connected to the discharging modules corresponding to the row.
- each driving module includes multiple charging modules and multiple discharging modules
- the multiple charging modules and the multiple discharging modules constitute multiple driving channels
- the output ends of the laser partitions located in the same row of the laser blocks in the same row are connected to the same discharge module of the corresponding driving module, that is, the cathodes of each laser in the laser partitions located in the same row but in different laser blocks are connected to the same discharge module
- the input ends of the laser partitions located in the same column of each laser block in the same row of laser blocks are connected to the same charging module of the corresponding driving module.
- FIG2 can be used as a schematic diagram of the coupling of its driving module.
- the maximum discharge current of the discharge module needs to be increased by 1 times. This method is suitable for a single laser partition with a small driving current. Therefore, it is easier to find a suitable discharge control component even if two laser partitions are driven at the same time.
- FIG8 shows another driving module coupling diagram corresponding to FIG5 c , wherein each laser symbol represents a laser partition.
- laser blocks SL 1 & SR 1 and SL 2 & SR 1 are located in the same row, so laser blocks SL 1 & SR 1 and SL 2 & SR 1 are coupled to one driver module, and laser blocks SL 1 & SR 2 and SL 2 & SR 2 are located in the same row, so laser blocks SL 1 & SR 2 and SL 2 & SR 2 are coupled to one driver module.
- the coupled driving modules include N charging modules (i.e., the circuit modules where the charging control components A' 1 to A' N in FIG8 are located) and J discharging modules (i.e., the circuit modules where the discharging control components B 1 to B J in FIG8 are located), the above-mentioned N charging modules correspond one-to-one to the K columns in the laser blocks SL 1 & SR 1 and the (NK) columns in the laser blocks SL 2 & SR 1 , the input ends of the laser partitions in the same column in the laser blocks SL 1 & SR 1 are connected to the charging modules corresponding to the column, and the input ends of the laser partitions in the same column in the laser blocks SL 2 & SR 1 are connected to the charging modules corresponding to the column; the above-mentioned J discharging modules correspond one-to-one to the J rows in the laser blocks SL 1 & SR 1 and SL
- step S605 may include:
- the target discharge module connected to the current laser partition to be turned on in the driving module coupled to the laser block to be turned on is controlled to enter a discharge state, so as to turn on a target drive channel composed of a target charging module and a target discharge module, and drive the current laser partition to be turned on in the laser block to be turned on to emit laser.
- the circuit module where the charging control component A 1 is located represents L 1 R 1.
- the circuit module where the discharge control component B' 1 is located represents the target discharge module connected to L 1 R 1 in the driving module coupled to SL 1 , and then the target charging module connected thereto can be put into a charging state by controlling the charge control component A 1 , and after the charging is completed, the target discharge module connected thereto can be put into a discharge state by controlling the discharge control component B 1 , thereby driving the laser in L 1 R 1 to emit laser; similarly, for the laser partition L K+1 R 1 to be turned on in SL 2 , the circuit module where the charge control component A K+1 is located represents the target charging module connected to L K+1 R 1 in the driving module coupled to SL 2 , and the circuit module where the discharge control component B 1 is located represents the target discharge module connected to L K+1 R 1 in the driving module coupled to SL 2 , and then the charge control component A K+1 is controlled to be turned on to enter the charging state of the target charging module connected thereto, and after the charging is completed, the
- the embodiment of the present application can independently start the laser partitions in the two laser blocks, and can achieve a scanning efficiency that can be increased by up to 2 times, or the size of a single partition can be reduced to 1/2 of the original size under the same scanning efficiency, and smaller partitions can reduce the probability of crosstalk between different channels.
- the control method of FIG7a can also be used to achieve independent turning on of the laser partition L 1 R 1 in SR 1 and the laser partition L 1 R J+1 in SR 2.
- the embodiment of the present application can still independently turn on the laser partitions in the two laser blocks, and can achieve a scanning efficiency that is increased by up to 2 times, or the size of a single partition can be reduced to 1/2 of the original size under the same scanning efficiency. Smaller partitions can reduce the probability of crosstalk between different channels.
- the laser blocks to be turned on in Figures 7c and 8 are SL 1 & SR 1 , SL 2 & SR 1 , SL 1 & SR 2 , and SL 2 & SR 2 , referring to the control method of Figure 7a above, the laser partition L 1 R 1 in SL 1 & SR 1 , the laser partition L K+1 R 1 in SL 2 & SR 1 , the laser partition L 1 R J+1 in SL 1 & SR 2, and the laser partition L K+1 R J+1 in SL 2 & SR 2 can also be independently turned on.
- the embodiment of the present application can still independently turn on the laser partitions in the four laser blocks, and can achieve a scanning efficiency that is increased by up to 4 times, or the size of a single partition can be reduced to 1/4 of the original size under the same scanning efficiency. Smaller partitions can reduce the probability of crosstalk between different channels.
- the block turn-on method shown in Figure 9 can be adopted.
- a total of M*N laser partitions with M rows and N columns are divided into laser blocks with M' rows and N' columns.
- the filled part in the figure represents the laser partition turned on in each block at present.
- Each block can be controlled to turn on the partition at the same relative position during each scan.
- the embodiment of the present application further provides a solid-state laser radar, which includes a transmitting unit 1010, a receiving unit 1020 and a control unit 1030 as shown in FIG10 , wherein:
- the transmitting unit 1010 includes a planar laser array having a plurality of laser partitions, each laser partition including a plurality of lasers.
- the plurality of laser partitions may be evenly arranged in an array, and the laser may be a VCSEL (Vertical Cavity Surface Emitting Laser).
- the receiving unit 1020 includes a detector array having multiple detector partitions and multiple processing modules.
- the multiple detector partitions correspond to the multiple laser partitions one by one.
- the multiple detector partitions are divided into multiple detector blocks.
- Each detector block includes at least two detector partitions, and each detector block is respectively coupled to different processing modules.
- the multiple detector partitions can be arranged in an array, and the detector can be a planar array photosensitive device, such as SPAD (Single Photon Avalanche Diode).
- SPAD Single Photon Avalanche Diode
- the receiving unit 1020 can refer to the aforementioned Figures 3a, 3b and 3c.
- the control unit 1030 is coupled to the transmitting unit 1010 and the receiving unit 1020, and is used to control at least one laser partition to emit laser, and control at least one target detector partition corresponding to the at least one laser partition to receive the reflected laser signal, and process the reflected laser signal received by each target detector partition based on the target processing module corresponding to each target detector partition; wherein the above-mentioned at least one target detector partition is located in a different detector block, and the target processing module is a processing module coupled to the detector block where the corresponding target detector partition is located.
- the plurality of laser partitions of the planar laser array are divided into a plurality of The laser blocks each include at least two laser partitions, and each laser block corresponds to a different detector block.
- control unit 1030 when controlling at least one laser partition to emit laser, is specifically used to: determine at least one laser block to be turned on among multiple laser blocks; determine the current laser partition to be turned on in each laser block to be turned on based on the preset partition turn-on sequence corresponding to each laser block to be turned on; and control the current laser partition to be turned on in each laser block to be turned on to emit laser respectively.
- the transmitting unit 1010 further includes a plurality of driving modules, each laser block is respectively coupled to a driving module, each driving module includes a plurality of charging modules and a plurality of discharging modules, and the plurality of charging modules and the plurality of discharging modules constitute a plurality of driving channels.
- the input ends of the laser partitions in the same column of each laser block are connected to the same charging module in the driving module coupled to the laser block, and the output ends of the laser partitions in the same row of each laser block are connected to the same discharging module in the driving module coupled to the laser block.
- the coupling between multiple laser blocks and multiple driving modules in the planar laser array corresponding to this implementation can refer to the aforementioned Figures 7a, 7b and 7c and related descriptions of the embodiment of the present application, which will not be repeated here.
- multiple laser blocks are arranged in an array, and multiple detector blocks are also arranged in an array; wherein the emitting unit 1010 further includes multiple driving modules, and the laser blocks in the same row among the multiple laser blocks are coupled to a driving module, and each driving module includes multiple charging modules and multiple discharging modules, and the multiple charging modules and the multiple discharging modules constitute multiple driving channels.
- the output ends of the laser partitions located in the same row of the laser blocks in the same row are connected to the same discharge module in the driving module coupled to the laser blocks in the row, and the input ends of the laser partitions located in the same column of each laser block in the same row of laser blocks are connected to the same charging module in the driving module coupled to the laser blocks in the row. That is, the output ends of the laser partitions located in the same row but in different laser blocks are connected to the same discharge module in the driving module coupled to the row, and the input ends of the laser partitions in the same column of the laser blocks are connected to the same charging module in the driving module coupled to the row where the laser block is located.
- the coupling between the plurality of laser blocks and the plurality of driving modules in the planar array laser array corresponding to the embodiment can refer to the aforementioned FIG. 8 and related description of the embodiment of the present application. No longer.
- control unit 1030 controls the current laser partition to be turned on in each laser block to be turned on to emit lasers respectively, it is specifically used to: for the current laser partition to be turned on in each laser block to be turned on, control the target charging module connected to the current laser partition to be turned on in the driving module coupled to the laser block to be turned on to enter a charging state; control the target discharge module connected to the current laser partition to be turned on in the driving module coupled to the laser block to be turned on to enter a discharge state, so as to open the target drive channel composed of the target charging module and the target discharge module, and drive the current laser partition to be turned on in the laser block to be turned on to emit lasers.
- control the target charging module connected to the current laser partition to be turned on in the driving module coupled to the laser block to be turned on to enter a discharge state
- the solid-state laser radar of the embodiment of the present application can realize that each laser block in the two-dimensional addressing scan independently turns on a laser partition, thereby avoiding the difference in luminous intensity of laser partitions turned on at the same time, and when the size of the laser partition remains unchanged, the scanning efficiency can be increased by a maximum of M'*N' times, or the size of a single partition can be reduced to the original 1/(M'*N') at the same scanning efficiency. Smaller partitions can reduce the probability of crosstalk between different detection channels.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
一种固态激光雷达的控制方法及固态激光雷达,该固态激光雷达包括具有多个激光器分区的面阵激光器阵列和具有多个探测器分区的探测器阵列,多个探测器分区分为多个探测器区块,每个探测器区块包括至少两个探测器分区,每个探测器区块分别藕接到不同的处理模块;该控制方法包括:控制至少一个激光器分区发射激光,该至少一个激光器分区对应的至少一个目标探测器分区位于不同的探测器区块中(S401);控制该至少一个目标探测器分区接收反射激光信号(S403);基于每个目标探测器分区所位于的与探测器区块藕接的处理模块,处理每个目标探测器分区接收的反射激光信号(S405)。该控制方法提高了二维寻址扫描中固态激光雷达的扫描效率和帧率。
Description
本申请涉及激光雷达技术领域,特别涉及一种固态激光雷达的控制方法及固态激光雷达。
固态激光雷达由于具有系统集成度高、易于规模化量产、系统可靠性高和生产成本低等突出优点,已成为激光雷达的主流发展趋势,其中纯固态Flash激光雷达的应用也越来越多。
纯固态Flash激光雷达的发射端采用面阵激光器阵列,接收端面采用面阵感光器件阵列,受激光器发射功率和接收端信号并行处理能力等因素的限制,相关技术中,将其面阵激光器阵列分成若干个分区,然后依次开启其中一个分区,接收端开启与之对应的感光器件,目前这种分区开启扫描的控制方式存在扫描效率降低以及帧率下降的问题。
发明内容
为了解决现有技术的问题,本申请实施例提供了一种固态激光雷达的控制方法及固态激光雷达。所述技术方案如下:
一方面,提供了一种固态激光雷达的控制方法,所述固态激光雷达包括具有多个激光器分区的面阵激光器阵列和具有多个探测器分区的探测器阵列,每个所述激光器分区包括多个激光器,所述多个激光器分区与所述多个探测器分区一一对应,所述多个探测器分区分为多个探测器区块,每个所述探测器区块包括至少两个所述探测器分区,每个所述探测器区块分别藕接到不同的处理模块;所述控制方法包括:
控制至少一个激光器分区发射激光;所述至少一个激光器分区对应的至少一个目标探测器分区位于不同的所述探测器区块中;
控制所述至少一个目标探测器分区接收反射激光信号;
基于每个所述目标探测器分区对应的目标处理模块,处理每个所述目标探测器分区接收的反射激光信号;所述目标处理模块为所述目标探测器分区所位于的与探测器区块藕接的处理模块。
在一个示例性的实施方式中,所述多个激光器分区分为多个激光器区块,
每个所述激光器区块包括至少两个所述激光器分区,每个所述激光器区块与不同的所述探测器区块相对应;
所述控制至少一个激光器分区发射激光,包括:
确定所述多个激光器区块中的至少一个待开启激光器区块;
基于每个所述待开启激光器区块对应的预设分区开启顺序,确定每个所述待开启激光器区块中的当前待开启激光器分区;
控制各所述待开启激光器区块中的当前待开启激光器分区分别发射激光。
在一个示例性的实施方式中,每个所述激光器区块分别藕接一个驱动模块,每个所述驱动模块包括多个充电模块和多个放电模块,所述多个充电模块和多个放电模块构成多个驱动通道;
每个所述激光器区块中位于同一列的激光器分区的输入端连接至相应驱动模块的同一个充电模块,每个所述激光器区块中位于同一行的激光器分区的输出端连接至相应驱动模块的同一个放电模块。
在一个示例性的实施方式中,所述多个激光器区块呈阵列式排布,所述多个探测器区块呈阵列式排布;
所述多个激光器区块中的同一行激光器区块藕接一个驱动模块,每个所述驱动模块包括多个充电模块和多个放电模块,所述多个充电模块和多个放电模块构成多个驱动通道;
所述同一行激光器区块中位于同一行的激光器分区的输出端连接至相应驱动模块的同一个放电模块;
所述同一行激光器区块的每个激光器区块中位于同一列的激光器分区的输入端连接至相应驱动模块的同一个充电模块。
在一个示例性的实施方式中,所述控制各所述待开启激光器区块中的当前待开启激光器分区分别发射激光,包括:
对于每个待开启激光器区块中的当前待开启激光器分区,控制所述当前待开启激光器分区在所述待开启激光器区块藕接的驱动模块中所连接的目标充电模块进入充电状态;
控制所述当前待开启激光器分区在所述待开启激光器区块藕接的驱动模块中所连接的目标放电模块进入放电状态,以开启所述目标充电模块和所述目标放电模块构成的目标驱动通道,驱动所述待开启激光器区块中的当前待
开启激光器分区发射激光。
另一方面,提供了一种固态激光雷达,包括:
发射单元,包括具有多个激光器分区的面阵激光器阵列,每个所述激光器分区包括多个激光器;
接收单元,包括具有多个探测器分区的探测器阵列和多个处理模块,所述多个探测器分区与所述多个激光器分区一一对应,所述多个探测器分区分为多个探测器区块,每个所述探测器区块包括至少两个所述探测器分区,每个所述探测器区块分别藕接到不同的所述处理模块;
控制单元,藕接到所述发射单元和所述接收单元,用于控制至少一个激光器分区分别发射激光,并控制所述至少一个激光器分区对应的至少一个目标探测器分区接收反射激光信号,以及基于每个所述目标探测器分区对应的目标处理模块,处理每个所述目标探测器分区接收的反射激光信号;其中,所述至少一个目标探测器分区位于不同的所述探测器区块中,所述目标处理模块为所述目标探测器分区所位于的与探测器区块藕接的处理模块。
在一个示例性的实施方式中,所述面阵激光器阵列的所述多个激光器分区分为多个激光器区块,每个所述激光器区块包括至少两个所述激光器分区,每个所述激光器区块与不同的所述探测器区块相对应;
所述控制单元在控制至少一个激光器分区发射激光时,具体用于:确定所述多个激光器区块中的至少一个待开启激光器区块;基于每个所述待开启激光器区块对应的预设分区开启顺序,确定每个所述待开启激光器区块中的当前待开启激光器分区;控制各所述待开启激光器区块中的当前待开启激光器分区分别发射激光。
在一个示例性的实施方式中,所述发射单元还包括多个驱动模块,每个所述激光器区块分别藕接一个所述驱动模块;每个所述驱动模块包括多个充电模块和多个放电模块,所述多个充电模块和多个放电模块构成多个驱动通道;
每个所述激光器区块中位于同一列的激光器分区的输入端连接至相应驱动模块的同一个充电模块,每个所述激光器区块中位于同一行的激光器分区的输出端连接至相应驱动模块的同一个放电模块。
在一个示例性的实施方式中,所述多个激光器区块呈阵列式排布,所述多个探测器区块呈阵列式排布;
所述发射单元还包括多个驱动模块,所述多个激光器区块中的同一行激光器区块藕接一个所述驱动模块,每个所述驱动模块包括多个充电模块和多个放电模块,所述多个充电模块和多个放电模块构成多个驱动通道;
所述同一行激光器区块中位于同一行的激光器分区的输出端连接至相应驱动模块的同一个放电模块;
所述同一行激光器区块的每个激光器区块中位于同一列激光器分区的输入端连接至相应驱动模块的同一个充电模块。
在一个示例性的实施方式中,所述控制单元在控制各所述待开启激光器区块中的当前待开启激光器分区分别发射激光时,具体用于:对于每个待开启激光器区块中的当前待开启激光器分区,控制所述当前待开启激光器分区在所述待开启激光器区块藕接的驱动模块中所连接的目标充电模块进入充电状态;控制所述当前待开启激光器分区在所述待开启激光器区块藕接的驱动模块中所连接的目标放电模块进入放电状态,以开启所述目标充电模块和所述目标放电模块构成的目标驱动通道,驱动所述待开启激光器区块中的当前待开启激光器分区发射激光。
本申请实施例通过将探测器阵列中的多个探测器分区分为多个探测器区块,每个探测器区块包括至少两个探测器分区,每个探测器区块分别藕接到不同的处理模块,进而可以控制至少一个激光器分区分别发射激光,且该至少一个激光器分区对应的至少一个目标探测器分区位于不同的探测器区块中,控制该至少一个目标探测器分区分别接收反射激光信号,并基于每个目标探测器分区对应的目标处理模块处理每个目标探测器分区接收的反射激光信号,其中目标处理模块为相应目标探测器分区所位于的与探测器区块藕接的处理模块,从而可以基于各探测器区块藕接的处理模块进行并行处理,提高了二维寻址扫描中固态激光雷达的扫描效率和帧率,或在相同扫描效率条件下可以成倍降低分区大小,分区小可降低不同收发通道间的串扰概率。
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的二维寻址扫描方式下面阵激光器阵列的激光器分区示例;
图2是本申请实施例提供的二维寻址扫描方式下激光器分区的驱动原理示意图;
图3a是本申请实施例提供的探测器阵列中多个探测器区块的一种排布示意图;
图3b是本申请实施例提供的探测器阵列中多个探测器区块的另一种排布示意图;
图3c是本申请实施例提供的探测器阵列中多个探测器区块的另一种排布示意图;
图4是本申请实施例提供的一种固态激光雷达的控制方法的流程示意图;
图5a是本申请实施例提供的多个激光器区块的一种排布示意图;
图5b是本申请实施例提供的多个激光器区块的另一种排布示意图;
图5c是本申请实施例提供的多个激光器区块的另一种排布示意图;
图6是本申请实施例提供的另一种固态激光雷达的控制方法的流程示意图;
图7a是本申请实施例提供的对应图5a的驱动模块藕接示意图;
图7b是本申请实施例提供的对应图5b的驱动模块藕接示意图;
图7c是本申请实施例提供的对应图5c的驱动模块藕接示意图;
图8是本申请实施例提供的对应图5c的另一种驱动模块藕接示意图;
图9是本申请实施例提供的多个激光器区块中激光器分区的开启示例;
图10是本申请实施例提供的一种固态激光雷达的结构示意图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申
请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或服务器不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本申请实施例的描述中,需要理解的是,术语"行"、"列"、"中心"、"纵向"、"横向"、"长度"、"宽度"、"厚度"、"上"、"下"、"前"、"后"、"左"、"右"、"竖直"、"水平"、"顶"、"底"、"内"、"外"、"顺时针"、"逆时针"等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
纯固态Flash激光雷达通过面阵激光器阵列对目标探测区域发射激光脉冲,接收端探测反射激光信号,根据接收时间t2与发射时间t1的差值计算探测目标的距离S,即:其中C代表光速。
比较理想的情况下,面阵光源中的所有激光器同时开启,对整个目标探测区域打光,探测器中对应的感光器件接收反射激光信号,即1次打光实现对整个视场的探测。但受激光器发射功率和接收端信号并行处理能力等因素的限制,目前是无法实现的,相关技术中,将发射端分成若干个分区,依次开启其中一个分区,接收端开启与之对应的感光器件,直至遍历整个探测区域。这种分区开启方式称为扫描,为了与机械旋转扫描相区分,也可称为电子扫描。本申请实施例中若不特殊强调,扫描均指电子扫描,其中二维寻址扫描方式是目前常用的一种扫描方式。
图1所示为二维寻址扫描方式下面阵激光器阵列的激光器分区示例,其中阴影部分表示当前开启的激光器分区,如图1所示,发射端的面阵激光器阵列分成M行(即R1~RM)N列(即L1~LN)共M*N个激光器分区,每个激光器分区包括多个激光器。可以理解的,接收端的探测器阵列的分区示例与该面阵激光器阵列相同,分成M行N列共M*N个探测器分区。相关技术中,每个激光器分区依次开启,并利用相对应的探测器分区接收反射激光信号可实现对整个视场的扫描。这种二维寻址扫描方式中,激光器分区的驱动原理可以参见图2,其中一个激光器符号代表扫描中的一个激光器分区,VCC表
示电路的供电电压,GND表示接地端。
如图2所示,处于同一列的激光器分区中各激光器的阳极连接至同一充电模块,充电模块包括充电控制部件A(A1、A2……AN)、电容和电阻,通过选通充电模块的充电控制部件导通即可为相应列的电容充电;处于同一行的激光器分区中各激光器的阴极连接至同一放电模块,放电模块包括放电控制部件B(B1、B2……BM),通过选通放电模块的放电控制部件导通即可实现已充电电容列与该放电模块所在行的交叉区域的激光器分区开启。例如,控制L2列的充电模块的充电控制部件A2导通以为该列电容充电后,控制R2行的放电模块的放电控制部件B2导通,则实现将激光器分区L2R2的激光器的开启。可见相关技术中的上述二维寻址扫描方式,在激光器分区比较多时,将增加扫描遍历整个视场的时间,导致扫描效率低、帧率下降。
鉴于此,本申请实施例提供一种固态激光雷达的控制方法,其中,固态激光雷达包括具有多个激光器分区的面阵激光器阵列和具有多个探测器分区的探测器阵列,每个激光器分区包括多个激光器,面阵激光器阵列的多个激光器分区与探测器阵列的多个探测器分区一一对应,也即一个激光器分区与一个探测器分区可以构成一个探测通道。其中,探测器阵列中的多个探测器分区分为多个探测器区块,每个探测器区块包括至少两个探测器分区,且每个探测器区块分别藕接到不同的处理模块,也即同一探测器区块中的各探测器分区共享一个处理模块,以实现同一探测器区块中的各探测器分区对数据传输通道、存储空间和数据处理资源的共享。
示例性的,多个探测器区块呈阵列式排布,例如可以对探测器阵列中的多个探测器分区均匀划分。如图3a所示为探测器阵列中多个探测器区块的排布示意图,为呈1行2列排布的两个探测器区块,分别为探测器区块SL1和探测器区块SL2,其中,探测器区块SL1藕接到处理模块P1,探测器区块SL2藕接到处理模块P2。
如图3b所示为探测器阵列中多个探测器区块的另一种排布示意图,为呈2行1列排布的两个探测器区块,分别为探测器区块SR1和探测器区块SR2,其中,探测器区块SR1藕接到处理模块P1,探测器区块SR2藕接到处理模块P2。
如图3c所示为探测器阵列中多个探测器区块的另一排布示意图,为呈2行2列排布的4个探测器区块,分别为探测器区块SL1&SR1、探测器区块
SL2&SR1、探测器区块SL1&SR2、探测器区块SL2&SR2,其中,探测器区块SL1&SR1藕接到处理模块P1,探测器区块SL2&SR1藕接到处理模块P2,探测器区块SL1&SR2藕接到处理模块P3,探测器区块SL2&SR2藕接到处理模块P4。
基于此,如图4所示为本申请实施例提供的一种固态激光雷达的控制方法的流程示意图,该方法包括:
S401,控制至少一个激光器分区发射激光。
其中,至少一个激光器分区对应的至少一个目标探测器分区位于不同的探测器区块中。
具体的实施中,发射激光的至少一个激光器分区对应多个探测器区块中的不同探测器分区。以前述图3a和3b为例,可以控制2个激光器分区同时发射激光,且这两个激光器分区对应的探测器分区位于不同的探测器区块中;以前述图3c为例,可以控制4个激光器分区同时发射激光,且这4个激光器分区对应的探测器分区位于不同的探测器区块中。
S403,控制至少一个目标探测器分区接收反射激光信号。
其中目标探测器分区为发射激光的激光器分区在探测器阵列中对应的探测器分区。
S405,基于每个目标探测器分区对应的目标处理模块,处理每个目标探测器分区接收的反射激光信号。
其中,目标处理模块为相应目标探测器分区所位于的与探测器区块藕接的处理模块。
以图3a为例,当两个探测器区块的左下角的探测器分区同时为目标探测器分区时,可以基于探测器区块SL1藕接的处理模块P1来处理目标探测器分区L1&R1接收到的反射激光信号,基于探测器区块SL2藕接的处理模块P2来处理目标探测器分区LK+1&R1接收到的反射激光信号,可以实现对两个探测分区接收的反射激光信号的并行处理。
以图3b为例,当两个探测器区块的左下角的探测器分区同时为目标探测器分区时,可以基于探测器区块SR1藕接的处理模块P1来处理目标探测器分区L1&R1接收到的反射激光信号,基于探测器区块SR2藕接的处理模块P2来处理目标探测器分区L1&RJ+1接收到的反射激光信号,可以实现对两个探测分区接收的反射激光信号的并行处理。
以图3c为例,当四个探测器区块的左下角的探测器分区同时为目标探测
器分区时,可以基于探测器区块SL1&SR1藕接的处理模块P1来处理目标探测器分区L1&R1接收到的反射激光信号,基于探测器区块SL2&SR1藕接的处理模块P2来处理目标探测器分区LK+1&R1接收到的反射激光信号,基于探测器区块SL1&SR2藕接的处理模块P3来处理目标探测器分区L1&RJ+1接收到的反射激光信号,基于探测器区块SL2&SR2藕接的处理模块P4来处理目标探测器分区LK+1&RJ+1接收到的反射激光信号,可以实现对四个探测分区接收的反射激光信号的并行处理。
在一个示例性的实施方式中,面阵激光器阵列的多个激光器分区也分为多个激光器区块,每个激光器区块包括至少两个激光器分区,每个激光器区块与不同的探测器区块相对应,也即一个激光器区块与其对应的探测器区块可以构成一个探测通道集,该探测通道集包括多个探测通道,每个探测通道由该激光器区块中的一个激光器分区与该探测器区块中的一个探测器分区构成。
以前述图3a至图3c的探测器区块排布为例,图5a所示为对应图3a的多个激光器区块的排布示意图,为呈1行2列排布的两个激光器区块,分别为激光器区块SL1和激光器区块SL2,其中,激光器区块SL1与探测器区块SL1相对应,激光器区块SL2与探测器区块SL2相对应。
图5b所示为对应图3b的多个激光器区块的排布示意图,为呈2行1列排布的两个激光器区块,分别为激光器区块SR1和激光器区块SR2,其中,激光器区块SR1与探测器区块SR1相对应,激光器区块SR2与探测器区块SR2相对应。
图5c所示为对应图3c的多个激光器区块的排布示意图,为呈2行2列排布的4个激光器区块,分别为激光器区块SL1&SR1、激光器区块SL2&SR1、激光器区块SL1&SR2、激光器区块SL2&SR2,其中,激光器区块SL1&SR1与探测器区块SL1&SR1相对应,激光器区块SL2&SR1与探测器区块SL2&SR1相对应,激光器区块SL1&SR2与探测器区块SL1&SR2相对应,激光器区块SL2&SR2与探测器区块SL2&SR2相对应。
可以理解的,在多个探测器区块采用图3c的排布即2行2列排布时,多个激光器区块也可以采用图5a和图5b的排布方式,以图5a为例,此时激光器区块SL1可以与探测器区块SL1&SR1和探测器区块SL1&SR2相对应,激光器区块SL2可以与探测器区块SL2&SR1和探测器区块SL2&SR2相对应;同理,
以图5b为例,激光器区块SR1可以与探测器区块SL1&SR1和探测器区块SL2&SR1相对应,激光器区块SR2可以与探测器区块SL1&SR2和探测器区块SL2&SR2相对应。
基于此,上述步骤S401在控制至少一个激光器分区发射激光时可以包括图6中的以下步骤:
S601,确定多个激光器区块中的至少一个待开启激光器区块。
S603,基于每个待开启激光器区块对应的预设分区开启顺序,确定每个待开启激光器区块中的当前待开启激光器分区。
S605,控制各待开启激光器区块中的当前待开启激光器分区发射激光。
具体的,可以基于区块确定策略从多个激光器区块中确定至少一个待开启激光器区块,该区块确定策略可以基于实际需要进行设定,例如可以是每次扫描将所有激光器区块均作为待开启激光器区块,那么每次扫描可以在每个激光器区块中点亮即开启一个激光器分区以发射激光。通常每次扫描作为待开启激光器区块的数量越多,那么扫描效率也就越高。
本申请实施例中,多个激光器区块中的每个激光器区块均可以独立开启该激光器区块中的一个激光器分区以发射激光。其中,预设分区开启顺序指示相应激光器区块中激光器分区的依次开启顺序,可以基于实际需要进行设定,例如可以是从左至右、从上之下等。不同激光器区块对应的预设分区开启顺序可以相同也可以不同。
考虑到前述图2的驱动方式中无法实现同一列的不同激光器分区的同时独立开启,即若要控制同一列的两个激光器分区同时开启,则首先要使该列的充电控制部件A导通使该列电容充电,然后控制该两个激光器分区所在行的放电控制部件B同时导通,进而使得该两个激光器分区同时发射激光。但是,实际应用中两行放电控制部件B的导通时间不可避免存在微小差异,导致该两个激光器分区的发光强度不同,甚至是其中一个激光器分区不发光的情况。
为了避免上述问题的出现,以使得本申请实施例中多个激光器区块中的每个激光器区块均可以独立开启该激光器区块中的一个激光器分区以发射激光,在一个示例性的实施方式中,每个激光器区块分别藕接一个驱动模块,每个驱动模块包括多个充电模块和多个放电模块,该多个充电模块和多个放电模块构成多个驱动通道。每个激光器区块中位于同一列的激光器分区的输
入端连接至相应驱动模块的同一个充电模块,每个激光器区块中位于同一行的激光器分区的输出端连接至相应驱动模块的同一个放电模块。
其中,激光器分区的输入端包括该激光器分区中各激光器的阳极,激光器分区的输出端包括该激光器分区中各激光器的阴极。每个充电模块包括充电控制部件、电阻和电容,当充电控制部件导通时充电模块进入充电状态即为该充电模块的电容充电,当充电控制部件断开时可以使充电模块退出充电状态。每个放电模块包括放电控制部件,当放电控制部件导通时放电模块进入放电状态,可以使得阳极连接到已充电的充电模块,阴极连接到该放电模块的激光器分区开启以使得该激光器分区中的激光器发射激光。其中,充电控制部件和放电控制部件可以是晶体管开关。
以图5a所示的面阵激光器阵列包括M行N列的激光器分区,该M行N列的激光器分区分为1行2列共两个激光器区块SL1和SL2,其中,激光器区块SL1中包括M行K列的激光器分区,激光器区块SL2中包括M行(N-K)列的激光器分区为例,图7a所示为对应图5a的驱动模块藕接示意图,其中每个激光器符号表示一个激光器分区。
如图7a所示,激光器区块SL1和SL2各自藕接一个驱动模块,以激光器区块SL1为例进行说明,其藕接的驱动模块包括K个充电模块(即图7a中充电控制部件A1至AK所在的电路模块)和M个放电模块(即图7a中放电控制部件B'1至B'M所在的电路模块),K个充电模块与激光器区块SL1中的K列一一对应,激光器区块SL1中同一列的激光器分区的输入端连接至该列对应的充电模块;M个放电模块与激光器区块SL1中的M行一一对应,激光器区块SL1中同一行的激光器分区的输出端连接至该行对应的放电模块。
以图5b所示的面阵激光器阵列包括M行N列的激光器分区,该M行N列的激光器分区分为2行1列共两个激光器区块SR1和激光器区块SR2,其中,激光器区块SR1中包括J行N列的激光器分区,激光器区块SR2中包括(M-J)行N列的激光器分区为例,图7b所示为对应图5b的驱动模块藕接示意图,其中每个激光器符号表示一个激光器分区。
如图7b所示,激光器区块SR1和激光器区块SR2各自藕接一个驱动模块,以激光器区块SR1为例进行说明,其藕接的驱动模块包括N个充电模块(即图7b中下边充电控制部件A'1至A'N所在的电路模块)和J个放电模块(即图7b中放电控制部件B1至BJ所在的电路模块),上述N个充电模块与激光器区
块SR1中的N列一一对应,激光器区块SR1中同一列的激光器分区的输入端连接至该列对应的充电模块;J个放电模块与激光器区块SR1中的J行一一对应,激光器区块SR1中同一行的激光器分区的输出端连接至该行对应的放电模块。
以图5c所示的面阵激光器阵列包括M行N列的激光器分区,该M行N列的激光器分区分为2行2列共4个激光器区块SL1&SR1、激光器区块SL2&SR1、激光器区块SL1&SR2、激光器区块SL2&SR2,其中,激光器区块SL1&SR1中包括J行K列的激光器分区,激光器区块SL2&SR1中包括J行(N-K)列的激光器分区,激光器区块SL1&SR2中包括(M-J)行K列的激光器分区,激光器区块SL2&SR2中包括(M-J)行(N-K)列的激光器分区为例,图7c所示为对应图5c的驱动模块藕接示意图,其中每个激光器符号表示一个激光器分区。
如图7c所示,激光器区块SL1&SR1、激光器区块SL2&SR1、激光器区块SL1&SR2、激光器区块SL2&SR2各自藕接一个驱动模块,以激光器区块SL1&SR1为例进行说明,其藕接的驱动模块包括K个充电模块(即图7c中充电控制部件A'1至A'K所在的电路模块)和J个放电模块(即图7c中放电控制部件B'1至B'J所在的电路模块),上述K个充电模块与激光器区块SL1&SR1中的K列一一对应,激光器区块SL1&SR1中同一列的激光器分区的输入端连接至该列对应的充电模块;J个放电模块与激光器区块SL1&SR1中的J行一一对应,激光器区块SL1&SR1中同一行的激光器分区的输出端连接至该行对应的放电模块。
在另一个示例性的实施方式中,若多个激光器区块呈阵列式排布,那么多个激光器区块中的同一行激光器区块藕接一个驱动模块,每个驱动模块包括多个充电模块和多个放电模块,多个充电模块和多个放电模块构成多个驱动通道,且同一行激光器区块中位于同一行的激光器分区的输出端连接至相应驱动模块的同一个放电模块,即位于同一行但在不同激光器区块的激光器分区中各激光器的阴极连接至同一个放电模块,且同一行激光器区块的每个激光器区块中位于同一列的激光器分区的输入端连接至相应驱动模块的同一个充电模块。
以图5a所示的1行2列共两个激光器区块SL1和SL2为例,可以采用图2作为其驱动模块藕接的示意图,但是同一行中同时开启2个激光器分区时,
放电模块的最大放电电流需要增大1倍,这种方式适用于单个激光器分区驱动电流不大,因此即使同时驱动两个激光器分区也比较容易找到合适的放电控制部件。
以图5c所示的2行2列共4个激光器区块SL1&SR1、激光器区块SL2&SR1、激光器区块SL1&SR2、激光器区块SL2&SR2为例,图8所示为对应图5c的另一种驱动模块藕接示意图,其中每个激光器符号表示一个激光器分区。
如图8所示,激光器区块SL1&SR1和SL2&SR1位于同一行,因此激光器区块SL1&SR1和SL2&SR1藕接一个驱动模块,激光器区块SL1&SR2和SL2&SR2位于同一行,因此激光器区块SL1&SR2和SL2&SR2藕接一个驱动模块。以激光器区块SL1&SR1和SL2&SR1为例进行说明,其藕接的驱动模块包括N个充电模块(即图8中充电控制部件A'1至A'N所在的电路模块)和J个放电模块(即图8中放电控制部件B1至BJ所在的电路模块),上述N个充电模块与激光器区块SL1&SR1中的K列以及激光器区块SL2&SR1中的(N-K)列一一对应,激光器区块SL1&SR1中同一列的激光器分区的输入端连接至该列对应的充电模块,激光器区块SL2&SR1中同一列的激光器分区的输入端连接至该列对应的充电模块;上述J个放电模块与激光器区块SL1&SR1和SL2&SR1中的J行一一对应,激光器区块SL1&SR1和SL2&SR1中位于同一行的激光器分区的输出端连接至该行对应的放电模块。
基于此,前述步骤S605在控制各待开启激光器区块中的当前待开启激光器分区分别发射激光时可以包括:
对于每个待开启激光器区块中的当前待开启激光器分区,控制当前待开启激光器分区在待开启激光器区块藕接的驱动模块中所连接的目标充电模块进入充电状态;
控制当前待开启激光器分区在待开启激光器区块藕接的驱动模块中所连接的目标放电模块进入放电状态,以开启目标充电模块和目标放电模块构成的目标驱动通道,驱动待开启激光器区块中的当前待开启激光器分区发射激光。
可以理解的,在开启目标放电模块进入放电状态之前,需要先完成充电。
以图7a为例,若待开启激光器区块为SL1和SL2,SL1中的当前待开启激光器分区为L1R1,SL2中的当前待开启激光器分区为LK+1R1,那么对于SL1中的当前待开启激光器分区L1R1,充电控制部件A1所在的电路模块表示L1R1
在SL1藕接的驱动模块中所连接的目标充电模块,放电控制部件B'1所在的电路模块表示L1R1在SL1藕接的驱动模块中所连接的目标放电模块,则控制导通充电控制部件A1即可对其所连接的目标充电模块进入充电状态,在充电完成后,控制导通放电控制部件B1即可使其所连接的目标放电模块进入放电状态,进而驱动L1R1中的激光器发射激光;同理,对于SL2中的当前待开启激光器分区LK+1R1,充电控制部件AK+1所在的电路模块表示LK+1R1在SL2藕接的驱动模块中所连接的目标充电模块,放电控制部件B1所在的电路模块表示LK+1R1在SL2藕接的驱动模块中所连接的目标放电模块,则控制导通充电控制部件AK+1即可对其所连接的目标充电模块进入充电状态,在充电完成后,控制导通放电控制部件B1即可使其所连接的目标放电模块进入放电状态,进而驱动LK+1R1中的激光器发射激光。可见,在面阵激光器阵列为1行2列共两个激光器区块时,与图2的驱动方式相比,本申请实施例可以独立开启两个激光器区块中的激光器分区,且可以实现扫描效率最多可提高2倍,或者同样扫描效率下单个分区的大小可减小为原来的1/2,更小的分区可以降低不同通道间串扰的概率。
可以理解的,图7b中若待开启激光器区块为SR1和SR2,参照前述图7a的控制方式同样可以实现SR1中的激光器分区L1R1和SR2中的激光器分区L1RJ+1的各自独立开启,进而在面阵激光器阵列为2行1列共两个激光器区块时,与图2的驱动方式相比,本申请实施例仍可以独立开启两个激光器区块中的激光器分区,且可以实现扫描效率最多可提高2倍,或者同样扫描效率下单个分区的大小可减小为原来的1/2,更小的分区可以降低不同通道间串扰的概率。
可以理解的,图7c和图8中若待开启激光器区块为SL1&SR1、SL2&SR1、SL1&SR2和SL2&SR2,参照前述图7a的控制方式同样可以SL1&SR1中的激光器分区L1R1、SL2&SR1中的激光器分区LK+1R1、SL1&SR2中的激光器分区L1RJ+1和SL2&SR2中的激光器分区LK+1RJ+1的各自独立开启,进而在面阵激光器阵列为2行2列共4个激光器区块时,与图2的驱动方式相比,本申请实施例仍可以独立开启四个激光器区块中的激光器分区,且可以实现扫描效率最多可提高4倍,或者同样扫描效率下单个分区的大小可减小为原来的1/4,更小的分区可以降低不同通道间串扰的概率。
实际应用中,为了降低不同激光器区块中开启的激光器分区之间造成串
扰的可能,不同激光器区块中开启的激光器分区之间的距离应尽可能远。因此可采用图9所示的区块开启方式,图9中将M行N列的共M*N个激光器分区划分为M'行*N'列的激光器区块,图中填充部分表示当前每个区块中开启的激光器分区,每次扫描时可控制每个区块开启同一相对位置的分区。
由此可见,本申请实施例的技术方案中对于包括M行N列的激光器分区的面阵激光器阵列,以及包括M行N列的探测器分区的探测器阵列,采用本申请实施例的控制方法若将该M行N列的激光器分区划分为M'行*N'列的激光器区块,且将M行N列的探测器分区划分为同样的M'行*N'列的探测器区块,则二维寻址扫描可以实现每个激光器区块独立开启一个激光器分区,从而可以避免同时开启的激光器分区发光强度的不同,且在激光器分区大小不变的情况下,可以将扫描效率最大提高M'*N'倍,或者同样扫描效率下单个分区的大小可减小为原来的1/(M'*N'),更小的分区可以降低不同探测通道间串扰的概率。
本申请实施例还提供了一种固态激光雷达,如图10所示包括发射单元1010、接收单元1020和控制单元1030,其中:
发射单元1010包括具有多个激光器分区的面阵激光器阵列,每个激光器分区包括多个激光器。多个激光器分区可以均匀排布为阵列,激光器可以为VCSEL(Vertical Cavity Surface Emitting Laser,垂直腔面发射激光器)。
接收单元1020包括具有多个探测器分区的探测器阵列和多个处理模块,多个探测器分区与多个激光器分区一一对应,该多个探测器分区分为多个探测器区块,每个探测器区块包括至少两个探测器分区,每个探测器区块分别藕接到不同的处理模块。示例性的,多个探测器分区可以排布为阵列,探测器可以为面阵感光器件,如SPAD(SinglePhotonAvalancheDiode,单光子雪崩二极管)。具体的,接收单元1020可以参见前述图3a、图3b和图3c。
控制单元1030藕接到发射单元1010和接收单元1020,用于控制至少一个激光器分区发射激光,并控制该至少一个激光器分区对应的至少一个目标探测器分区接收反射激光信号,以及基于每个目标探测器分区对应的目标处理模块,处理每个目标探测器分区接收的反射激光信号;其中,上述至少一个目标探测器分区位于不同的探测器区块中,目标处理模块为相应目标探测器分区所位于的与探测器区块藕接的处理模块。
在一些可能的实施方式中,面阵激光器阵列的多个激光器分区分为多个
激光器区块,每个所述激光器区块包括至少两个激光器分区,每个激光器区块与不同的探测器区块相对应。
相应的,控制单元1030在控制至少一个激光器分区发射激光时,具体用于:确定多个激光器区块中的至少一个待开启激光器区块;基于每个待开启激光器区块对应的预设分区开启顺序,确定每个待开启激光器区块中的当前待开启激光器分区;控制各待开启激光器区块中的当前待开启激光器分区分别发射激光。
在一些可能的实施方式中,发射单元1010还包括多个驱动模块,每个激光器区块分别藕接一个驱动模块,每个驱动模块包括多个充电模块和多个放电模块,该多个充电模块和多个放电模块构成多个驱动通道。
其中,每个激光器区块中位于同一列的激光器分区的输入端连接至该激光器区块所藕接驱动模块中的同一个充电模块,且每个激光器区块中位于同一行的激光器分区的输出端连接至该激光器区块所藕接驱动模块中的同一个放电模块。
具体的实施中,该实施方式所对应面阵激光器阵列中多个激光器区块与多个驱动模块的藕接可以参见本申请实施例的前述图7a、图7b和图7c以及相关描述,在此不再赘述。
在另一些可能的实施方式中,多个激光器区块呈阵列式排布,多个探测器区块也呈阵列式排布;其中,发射单元1010还包括多个驱动模块,多个激光器区块中的同一行激光器区块藕接一个驱动模块,每个驱动模块包括多个充电模块和多个放电模块,该多个充电模块和多个放电模块构成多个驱动通道。
其中,同一行激光器区块中位于同一行的激光器分区的输出端连接至该行激光器区块所藕接驱动模块中的同一个放电模块,且同一行激光器区块的每个激光器区块中位于同一列激光器分区的输入端连接至该行激光器区块所藕接驱动模块中的同一个充电模块。也即位于同一行但在不同激光器区块的激光器分区的输出端与该行所藕接驱动模块中的同一个放电模块连接,而激光器区块中同一列激光器分区的输入端与该激光器区块所在行所藕接驱动模块中的同一个充电模块连接。
具体的实施中,该实施方式所对应面阵激光器阵列中多个激光器区块与多个驱动模块的藕接可以参见本申请实施例的前述图8以及相关描述,在此
不再赘述。
基于此,控制单元1030在控制各待开启激光器区块中的当前待开启激光器分区分别发射激光时,具体用于:对于每个待开启激光器区块中的当前待开启激光器分区,控制该当前待开启激光器分区在待开启激光器区块藕接的驱动模块中所连接的目标充电模块进入充电状态;控制当前待开启激光器分区在待开启激光器区块藕接的驱动模块中所连接的目标放电模块进入放电状态,以开启目标充电模块和目标放电模块构成的目标驱动通道,驱动待开启激光器区块中的当前待开启激光器分区发射激光。具体可以参见本申请实施例的前述相关描述,在此不再赘述。
本申请实施例的固态激光雷达可以实现二维寻址扫描中每个激光器区块独立开启一个激光器分区,从而可以避免同时开启的激光器分区发光强度的不同,且在激光器分区大小不变的情况下,可以将扫描效率最大提高M'*N'倍,或者同样扫描效率下单个分区的大小可减小为原来的1/(M'*N'),更小的分区可以降低不同探测通道间串扰的概率。
需要说明的是:上述本申请实施例先后顺序仅仅为了描述,不代表实施例的优劣。且上述对本说明书特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
Claims (10)
- 一种固态激光雷达的控制方法,其特征在于,所述固态激光雷达包括具有多个激光器分区的面阵激光器阵列和具有多个探测器分区的探测器阵列,每个所述激光器分区包括多个激光器,所述多个激光器分区与所述多个探测器分区一一对应,所述多个探测器分区分为多个探测器区块,每个所述探测器区块包括至少两个所述探测器分区,每个所述探测器区块分别藕接到不同的处理模块;所述控制方法包括:控制至少一个激光器分区发射激光;所述至少一个激光器分区对应的至少一个目标探测器分区位于不同的所述探测器区块中;控制所述至少一个目标探测器分区接收反射激光信号;基于每个所述目标探测器分区对应的目标处理模块,处理每个所述目标探测器分区接收的反射激光信号;所述目标处理模块为所述目标探测器分区所位于的与探测器区块藕接的处理模块。
- 根据权利要求1所述的方法,其特征在于,所述多个激光器分区分为多个激光器区块,每个所述激光器区块包括至少两个所述激光器分区,每个所述激光器区块与不同的所述探测器区块相对应;所述控制至少一个激光器分区发射激光,包括:确定所述多个激光器区块中的至少一个待开启激光器区块;基于每个所述待开启激光器区块对应的预设分区开启顺序,确定每个所述待开启激光器区块中的当前待开启激光器分区;控制各所述待开启激光器区块中的当前待开启激光器分区分别发射激光。
- 根据权利要求2所述的方法,其特征在于,每个所述激光器区块分别藕接一个驱动模块,每个所述驱动模块包括多个充电模块和多个放电模块,所述多个充电模块和多个放电模块构成多个驱动通道;每个所述激光器区块中位于同一列的激光器分区的输入端连接至相应驱动模块的同一个充电模块,每个所述激光器区块中位于同一行的激光器分区的输出端连接至相应驱动模块的同一个放电模块。
- 根据权利要求2所述的方法,其特征在于,所述多个激光器区块呈阵列式排布,所述多个探测器区块呈阵列式排布;所述多个激光器区块中的同一行激光器区块藕接一个驱动模块,每个所 述驱动模块包括多个充电模块和多个放电模块,所述多个充电模块和多个放电模块构成多个驱动通道;所述同一行激光器区块中位于同一行的激光器分区的输出端连接至相应驱动模块的同一个放电模块;所述同一行激光器区块的每个激光器区块中位于同一列的激光器分区的输入端连接至相应驱动模块的同一个充电模块。
- 根据权利要求3或4所述的方法,其特征在于,所述控制各所述待开启激光器区块中的当前待开启激光器分区分别发射激光,包括:对于每个待开启激光器区块中的当前待开启激光器分区,控制所述当前待开启激光器分区在所述待开启激光器区块藕接的驱动模块中所连接的目标充电模块进入充电状态;控制所述当前待开启激光器分区在所述待开启激光器区块藕接的驱动模块中所连接的目标放电模块进入放电状态,以开启所述目标充电模块和所述目标放电模块构成的目标驱动通道,驱动所述待开启激光器区块中的当前待开启激光器分区发射激光。
- 一种固态激光雷达,其特征在于,包括:发射单元,包括具有多个激光器分区的面阵激光器阵列,每个所述激光器分区包括多个激光器;接收单元,包括具有多个探测器分区的探测器阵列和多个处理模块,所述多个探测器分区与所述多个激光器分区一一对应,所述多个探测器分区分为多个探测器区块,每个所述探测器区块包括至少两个所述探测器分区,每个所述探测器区块分别藕接到不同的所述处理模块;控制单元,藕接到所述发射单元和所述接收单元,用于控制至少一个激光器分区分别发射激光,并控制所述至少一个激光器分区对应的至少一个目标探测器分区接收反射激光信号,以及基于每个所述目标探测器分区对应的目标处理模块,处理每个所述目标探测器分区接收的反射激光信号;其中,所述至少一个目标探测器分区位于不同的所述探测器区块中,所述目标处理模块为所述目标探测器分区所位于的与探测器区块藕接的处理模块。
- 根据权利要求6所述的固态激光雷达,其特征在于,所述面阵激光器阵列的所述多个激光器分区分为多个激光器区块,每个所述激光器区块包括至少两个所述激光器分区,每个所述激光器区块与不同的所述探测器区块相 对应;所述控制单元在控制至少一个激光器分区发射激光时,具体用于:确定所述多个激光器区块中的至少一个待开启激光器区块;基于每个所述待开启激光器区块对应的预设分区开启顺序,确定每个所述待开启激光器区块中的当前待开启激光器分区;控制各所述待开启激光器区块中的当前待开启激光器分区分别发射激光。
- 根据权利要求7所述的固态激光雷达,其特征在于,所述发射单元还包括多个驱动模块,每个所述激光器区块分别藕接一个所述驱动模块;每个所述驱动模块包括多个充电模块和多个放电模块,所述多个充电模块和多个放电模块构成多个驱动通道;每个所述激光器区块中位于同一列的激光器分区的输入端连接至相应驱动模块的同一个充电模块,每个所述激光器区块中位于同一行的激光器分区的输出端连接至相应驱动模块的同一个放电模块。
- 根据权利要求7所述的固态激光雷达,其特征在于,所述多个激光器区块呈阵列式排布,所述多个探测器区块呈阵列式排布;所述发射单元还包括多个驱动模块,所述多个激光器区块中的同一行激光器区块藕接一个所述驱动模块,每个所述驱动模块包括多个充电模块和多个放电模块,所述多个充电模块和多个放电模块构成多个驱动通道;所述同一行激光器区块中位于同一行的激光器分区的输出端连接至相应驱动模块的同一个放电模块;所述同一行激光器区块的每个激光器区块中位于同一列激光器分区的输入端连接至相应驱动模块的同一个充电模块。
- 根据权利要求8或9所述的固态激光雷达,其特征在于,所述控制单元在控制各所述待开启激光器区块中的当前待开启激光器分区分别发射激光时,具体用于:对于每个待开启激光器区块中的当前待开启激光器分区,控制所述当前待开启激光器分区在所述待开启激光器区块藕接的驱动模块中所连接的目标充电模块进入充电状态;控制所述当前待开启激光器分区在所述待开启激光器区块藕接的驱动模块中所连接的目标放电模块进入放电状态,以开启所述目标充电模块和所述目标放电模块构成的目标驱动通道,驱动所述待开启激光器区块中的当前待开启激光器分区发射激光。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310043864.0A CN115825926B (zh) | 2023-01-29 | 2023-01-29 | 一种固态激光雷达的控制方法及固态激光雷达 |
CN202310043864.0 | 2023-01-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024156266A1 true WO2024156266A1 (zh) | 2024-08-02 |
Family
ID=85520627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2024/073176 WO2024156266A1 (zh) | 2023-01-29 | 2024-01-19 | 一种固态激光雷达的控制方法及固态激光雷达 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115825926B (zh) |
WO (1) | WO2024156266A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115825926B (zh) * | 2023-01-29 | 2023-06-16 | 苏州识光芯科技术有限公司 | 一种固态激光雷达的控制方法及固态激光雷达 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000022274A (ja) * | 1998-06-26 | 2000-01-21 | Fuji Xerox Co Ltd | 2次元発光素子アレイ及びこれを用いた画像形成装置 |
US20070273574A1 (en) * | 2004-04-05 | 2007-11-29 | Sri International | Method and system for multiple target class data recording, processing and display for over-the-horizon radar |
CN102565808A (zh) * | 2010-12-17 | 2012-07-11 | 上海无线电设备研究所 | 一种稀疏阵列高速三维成像激光雷达的实现方法 |
CN106970393A (zh) * | 2017-03-14 | 2017-07-21 | 南京航空航天大学 | 一种基于码分多址的面阵激光雷达三维成像方法 |
CN114415198A (zh) * | 2021-12-31 | 2022-04-29 | 深圳市安思疆科技有限公司 | 一种分区寻址dTOF测距系统 |
CN216624871U (zh) * | 2021-11-05 | 2022-05-27 | 武汉万集光电技术有限公司 | 驱动电路、vcsel阵列装置和激光雷达设备 |
CN114660569A (zh) * | 2020-12-22 | 2022-06-24 | 北京万集科技股份有限公司 | 激光雷达装置、系统及测距方法 |
CN115825926A (zh) * | 2023-01-29 | 2023-03-21 | 苏州识光芯科技术有限公司 | 一种固态激光雷达的控制方法及固态激光雷达 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019091004A1 (zh) * | 2017-11-07 | 2019-05-16 | 北醒(北京)光子科技有限公司 | 一种固态面阵激光雷达装置及探测方法 |
CN111323787A (zh) * | 2020-03-16 | 2020-06-23 | 宁波飞芯电子科技有限公司 | 探测装置及方法 |
-
2023
- 2023-01-29 CN CN202310043864.0A patent/CN115825926B/zh active Active
-
2024
- 2024-01-19 WO PCT/CN2024/073176 patent/WO2024156266A1/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000022274A (ja) * | 1998-06-26 | 2000-01-21 | Fuji Xerox Co Ltd | 2次元発光素子アレイ及びこれを用いた画像形成装置 |
US20070273574A1 (en) * | 2004-04-05 | 2007-11-29 | Sri International | Method and system for multiple target class data recording, processing and display for over-the-horizon radar |
CN102565808A (zh) * | 2010-12-17 | 2012-07-11 | 上海无线电设备研究所 | 一种稀疏阵列高速三维成像激光雷达的实现方法 |
CN106970393A (zh) * | 2017-03-14 | 2017-07-21 | 南京航空航天大学 | 一种基于码分多址的面阵激光雷达三维成像方法 |
CN114660569A (zh) * | 2020-12-22 | 2022-06-24 | 北京万集科技股份有限公司 | 激光雷达装置、系统及测距方法 |
CN216624871U (zh) * | 2021-11-05 | 2022-05-27 | 武汉万集光电技术有限公司 | 驱动电路、vcsel阵列装置和激光雷达设备 |
CN114415198A (zh) * | 2021-12-31 | 2022-04-29 | 深圳市安思疆科技有限公司 | 一种分区寻址dTOF测距系统 |
CN115825926A (zh) * | 2023-01-29 | 2023-03-21 | 苏州识光芯科技术有限公司 | 一种固态激光雷达的控制方法及固态激光雷达 |
Also Published As
Publication number | Publication date |
---|---|
CN115825926A (zh) | 2023-03-21 |
CN115825926B (zh) | 2023-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024156266A1 (zh) | 一种固态激光雷达的控制方法及固态激光雷达 | |
US12038509B2 (en) | Solid-state LIDAR transmitter with laser control | |
CN110689840B (zh) | 一种像素电路、短路检测方法和显示面板 | |
CN107534049A (zh) | 固态图像元件、半导体装置和电子设备 | |
WO2024179619A1 (zh) | 一种激光器驱动电路和多线激光雷达 | |
EP4088136A1 (de) | Lichtmodul und lidar-vorrichtung mit mindestens einem derartigen lichtmodul | |
CN112731350A (zh) | 一种激光雷达的扫描驱动电路及控制方法 | |
US20220059716A1 (en) | Control circuit and distance measuring system | |
CN216055673U (zh) | 激光发射模块及激光雷达 | |
WO2022042548A1 (zh) | 电源单元、包括其的发射装置及控制方法 | |
US6628273B1 (en) | Method and apparatus for selective enabling of addressable display elements | |
US20210011167A1 (en) | Solid-state imaging device, solid-state imaging system, and method of driving the solid-state imaging device | |
EP4318831A1 (en) | Laser and laser radar comprising same | |
CN113689828B (zh) | 背光驱动电路、显示终端及显示驱动方法 | |
EP4321903A1 (en) | Solid-state laser radar and method for detecting by using same | |
EP3923025B1 (en) | Routing for dtof sensors | |
KR100538144B1 (ko) | 발광소자 구동회로 및 이를 채용한 매트릭스형 디스플레이패널 | |
CN117607838B (zh) | 多通道驱动系统、激光雷达及激光雷达发射端驱动方法 | |
CN215575642U (zh) | 激光发射电路与激光雷达 | |
WO2024114089A1 (zh) | 扫描控制电路、显示模组和显示设备 | |
US11960033B2 (en) | SPAD based indirect time of flight sensing from solid state transmitter scanning | |
CN214798180U (zh) | 激光雷达用驱动芯片、激光器驱动芯片及激光雷达 | |
CN115864127A (zh) | 激光发射模块及激光雷达 | |
WO2023123984A1 (zh) | 光收发模组及激光雷达 | |
US20220196835A1 (en) | Indirect time of flight sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24746973 Country of ref document: EP Kind code of ref document: A1 |