WO2024156149A1 - Method, device and computer program product for wireless communication - Google Patents

Method, device and computer program product for wireless communication Download PDF

Info

Publication number
WO2024156149A1
WO2024156149A1 PCT/CN2023/086950 CN2023086950W WO2024156149A1 WO 2024156149 A1 WO2024156149 A1 WO 2024156149A1 CN 2023086950 W CN2023086950 W CN 2023086950W WO 2024156149 A1 WO2024156149 A1 WO 2024156149A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
node
communication node
iab
mobile
Prior art date
Application number
PCT/CN2023/086950
Other languages
French (fr)
Inventor
Ying Huang
Lin Chen
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to PCT/CN2023/086950 priority Critical patent/WO2024156149A1/en
Publication of WO2024156149A1 publication Critical patent/WO2024156149A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information

Definitions

  • This document is directed generally to wireless communications, and in particular to 5 th generation (5G) communications or 6 th generation (6G) communications.
  • IAB Integrated Access and Backhaul
  • This document relates to methods, systems, and devices for IAB.
  • the wireless communication method includes: receiving, by a mobile wireless communication node from a communication node, configuration information of the mobile wireless communication node; and broadcasting, by the mobile wireless communication node, location information according to the configuration information.
  • the communication method includes: transmitting, by a communication node to a mobile wireless communication node, configuration information of the mobile wireless communication node to allow the mobile wireless communication node to broadcasting location information according to the configuration information.
  • the communication method includes: transmitting, by a donor node of a mobile wireless communication node, configuration information of the mobile wireless communication node to an Access and Mobility Management Function, AMF.
  • AMF Access and Mobility Management Function
  • the communication method includes: transmitting, by a donor node of a mobile wireless communication node, configuration information of the mobile wireless communication node to one or more neighbor communication nodes.
  • the wireless communication node includes a communication unit and a processor.
  • the processor is configured to: receive, via the communication unit from a communication node, configuration information of the mobile wireless communication node; and broadcast, via the communication unit, location information according to the configuration information.
  • the communication node includes a communication unit and a processor.
  • the processor is configured to: transmit, via the communication unit to a mobile wireless communication node, configuration information of the mobile wireless communication node to allow the mobile wireless communication node to broadcasting location information according to the configuration information.
  • the configuration information comprises at least one of:
  • Radio Access Network Area Code RANAC, configuration information.
  • the TAC configuration information comprises at least one of:
  • TACs one or more TACs
  • the RANAC configuration information comprises at least one of:
  • the cell information comprises at least one of: a node identifier for the donor node connected with a parent node of the mobile wireless communication node or a cell identifier for a parent cell of the mobile wireless communication node.
  • the communication node is a parent communication node of the mobile wireless communication node or a donor node of the wireless communication node.
  • the communication node is a parent communication node of the mobile wireless communication node and receives the configuration information from a donor node of the mobile wireless communication node; or wherein the wireless communication node is a donor of the mobile wireless communication node and transmits the configuration information to a parent communication node of the mobile wireless communication node.
  • the communication node is a donor node of the mobile wireless communication node, and the donor node transmits the configuration information to an Access and Mobility Management Function, AMF.
  • AMF Access and Mobility Management Function
  • the wireless communication node is a donor node of the mobile wireless communication node, and the donor wireless communication node transmits the configuration information to one or more neighbor communication nodes.
  • the present disclosure relates to a computer program product comprising a computer-readable program medium code stored thereupon, the code, when executed by a processor, causing the processor to implement a wireless communication method recited in any one of foregoing methods.
  • the present disclosure is not limited to the exemplary embodiments and applications described and illustrated herein. Additionally, the specific order and/or hierarchy of steps in the methods disclosed herein are merely exemplary approaches. Based upon design preferences, the specific order or hierarchy of steps of the disclosed methods or processes can be re-arranged while remaining within the scope of the present disclosure. Thus, those of ordinary skill in the art will understand that the methods and techniques disclosed herein present various steps or acts in a sample order, and the present disclosure is not limited to the specific order or hierarchy presented unless expressly stated otherwise.
  • FIG. 1 shows a mobile IAB scenario according to an embodiment of the present disclosure.
  • FIGs. 2a) and 2b) show an IAB architecture according to an embodiment of the present disclosure.
  • FIG. 3 shows a parent-node and child-node relationship for IAB-node according to an embodiment of the present disclosure.
  • FIG. 4A to 4C show inter-donor migration including partial migration and full migration according to an embodiment of the present disclosure.
  • FIG. 5 shows an example of a schematic diagram of a wireless terminal according to an embodiment of the present disclosure.
  • FIG. 6 shows an example of a schematic diagram of a network node according to an embodiment of the present disclosure.
  • FIGs. 7 to 10 show flowcharts of methods according to some embodiments of the present disclosure.
  • an Intra-donor CU (control unit) migration procedure may have both the source and the target parent node being served by the same IAB-donor-CU.
  • Inter-donor CU partial migration may have a migrating IAB node being static.
  • an inter-donor migration in a mobile IAB use-case is discussed.
  • FIG. 1 shows a mobile IAB scenario.
  • IAB nodes may be mounted in vehicles and can provide 5G coverage and/or capacity enhancement to onboard and/or surrounding UEs (user equipment (s) ) .
  • UEs user equipment
  • FIG. 1 a train is shown as an exemplary vehicle, but the invention also applies to other means of transportation.
  • IAB may enable wireless relaying in NG-RAN (Next Generation Radio Access Network) .
  • the relaying node referred to as IAB-node, supports access and backhauling via NR.
  • the terminating node of NR backhauling on the network side is referred to as the IAB-donor, which represents a gNB (gNodeB) with an additional functionality to support IAB. Backhauling can occur via a single or via multiple hops.
  • the IAB architecture is shown in FIGs. 2a) and 2b) .
  • the IAB-node may support a gNB-DU (distributed unit) functionality, to terminate the NR access interface to UEs and next-hop IAB-nodes, and to terminate the F1 protocol to the gNB-CU (central unit) functionality, on the IAB-donor.
  • the gNB-DU functionality on the IAB-node is also referred to as IAB-DU.
  • the IAB-node may also support a subset of the UE functionality referred to as IAB-MT (Mobile Termination) , which includes, e.g., the physical layer, the layer-2, the RRC (Radio Resource Control) and NAS (Non-access stratum) functionality to connect to the gNB-DU of another IAB-node or the IAB-donor, to connect to the gNB-CU on the IAB-donor, and to the core network.
  • IAB-MT Mobile Termination
  • RRC Radio Resource Control
  • NAS Non-access stratum
  • the IAB-node can access the network using either SA(Standalone) -mode or EN-DC (E-UTRAN New Radio –Dual Connectivity) .
  • EN-DC E-UTRAN New Radio –Dual Connectivity
  • the IAB-node also connects via the E-UTRA to a MeNB (master eNodeB) , and the IAB-donor terminates X2-C as SgNB (secondary gNodeB) .
  • all IAB-nodes that are connected to an IAB-donor via one or multiple hops form a directed acyclic graph (DAG) topology with the IAB-donor at its root (see FIG. 3) .
  • DAG directed acyclic graph
  • the neighbor node on the IAB-DU’s interface is referred to as child node and the neighbor node on the IAB-MT’s interface is referred to as parent node.
  • the direction toward the child node is further referred to as downstream while the direction toward the parent node is referred to as upstream.
  • the IAB-donor performs centralized resource, topology and route management for the IAB topology.
  • the migration of an IAB-MT to a parent node underneath a different IAB-donor-CU may be performed while the co-located IAB-DU and descendant IAB-node (s) , if any, are not migrated (i.e., terminated at the initial IAB-donor-CU) .
  • the migrating IAB node i.e., the mobile IAB node in mobile IAB scenario
  • the descendant IAB node if any
  • An F1-terminating IAB-donor may refer to the IAB-donor that terminates F1 for the IAB-node, which can also be referred to as the DU’s donor.
  • the two logical DUs in the mobile IAB node can be called source logical DU and target logical DU, or logical DU1 and logical DU2.
  • FIGs. 4A to 4C show examples of inter-donor migrations including the partial migration and the full migration.
  • a partial migration is performed.
  • the IAB-MT migrates from the donor DU1 which belongs to the donor CU1 to the donor DU2 which belongs to the donor CU2.
  • the IAB-DU maintains its F1 connection with the donor CU1 and the UE context remains in the donor CU1.
  • the F1 control plane and/or user plane traffic between the donor CU1 and the IAB-DU is transmitted via the donor DU2.
  • a partial migration is performed.
  • the IAB-MT migrates from the donor DU2 which belongs to the donor CU2 to the donor DU3 which belongs to the donor CU3.
  • the IAB-DU maintains its F1 connection with the donor CU1 and the UE context remains in the donor CU1.
  • the F1 control plane and/or user plane traffic between the donor CU1 and the IAB-DU is transmitted via the donor DU3.
  • a full migration is performed.
  • the MT and the DU are migrated to the same donor.
  • the IAB-DU migrates from the donor CU1 to the donor CU3.
  • the UE is handed over from the donor CU1 to the donor CU3.
  • the F1 control plane and/or user plane traffic between the donor CU3 and the IAB-DU is transmitted via the donor DU3.
  • the mobile IAB node may be mounted in vehicles and moves with the vehicle.
  • the mobile IAB node may perform a partial migration or a full migration along with the movement of the mobile IAB-MT.
  • the TAC (Tracking Area Code) /RANAC (RAN-based Notification Area Code) broadcast by the mobile IAB-DU cell may need to change (or updated) to reflect the actual location (e.g., geographic location) of the mobile IAB node after the mobile IAB node moves.
  • the mobile IAB-DU obtains the TAC for broadcasting as below.
  • the TAC is taken as an example, and the mobile IAB-DU may obtain the RANAC for broadcasting in a similar manner.
  • Step 1 the mobile IAB node’s parent IAB node broadcasts TAC configuration information (e.g., updated TAC configuration information) for the mobile IAB node via system information.
  • the TAC configuration information includes at least one of the following: one or more TACs, a mobile IAB indication, a TAC for mobile IAB cell, a dedicated TAC, or a dedicated TAC indication.
  • the mobile IAB node’s parent IAB node may receive the TAC configuration information (e.g., updated TAC configuration information) for the mobile IAB node from the IAB donor, e.g., via an F1 message.
  • TAC configuration information e.g., updated TAC configuration information
  • Step 2 The mobile IAB-MT receives the TAC configuration information (e.g., updated TAC configuration information) for a mobile IAB cell from the system information and delivers it to the co-located DU.
  • TAC configuration information e.g., updated TAC configuration information
  • Step 3 The mobile IAB-DU sends its TAC configuration (e.g., updated TAC configuration) to its connected IAB donor.
  • the TAC configuration may include at least the TAC (e.g., updated TAC) received from the mobile IAB node’s parent IAB node via the system information.
  • Step 4 The mobile IAB-DU broadcasts the TAC (e.g., updated TAC) received from the mobile IAB node’s parent IAB node via the system information.
  • TAC e.g., updated TAC
  • the mobile IAB-DU’s donor i.e., the IAB donor which has an F1 connection with the mobile IAB-DU
  • sends the TAC configuration information (e.g., updated TAC configuration information) to the mobile IAB node, e.g., via an F1 message.
  • the TAC configuration information may include at least one of the following: one or more TACs, a mobile IAB indication, a TAC for the mobile IAB cell, a dedicated TAC, a dedicated TAC indication, geographic location information, or cell information.
  • the cell information may include a gNB ID (identifier) or cell ID (e.g., PCI (Physical Cell ID) or NCGI (New Radio Cell Global Identity)) of the mobile IAB-MT’s parent cell, i.e., the cell which belongs to the mobile IAB-MT’s parent node and serves the mobile IAB-MT.
  • a gNB ID identifier
  • cell ID e.g., PCI (Physical Cell ID) or NCGI (New Radio Cell Global Identity)
  • PCI Physical Cell ID
  • NCGI New Radio Cell Global Identity
  • Step 2 The mobile IAB-DU broadcasts the TAC (e.g., updated TAC) received from the mobile IAB-DU’s donor via an F1 message.
  • TAC e.g., updated TAC
  • the AMF (access and mobility management function) may need to know the TAC supported in the gNB, so that the AMF can send paging message for UE to appropriate gNBs.
  • the AMF obtains the TAC for a mobile IAB cell as follows.
  • the mobile IAB’s donor (e.g., the mobile IAB-MT’s donor or the mobile IAB-DU’s donor) sends the TAC configuration for the mobile IAB cell to the AMF via a NG message.
  • the TAC configuration for the mobile IAB cell includes at least one of the following: one or more TACs, a mobile IAB indication, a TAC for mobile IAB cell, a dedicated TAC, or a dedicated TAC indication.
  • the gNB may need to know the TAC supported in neighbor gNBs, so that the gNB can send a RAN paging message for UE to appropriate neighbor gNBs.
  • neighbor gNBs obtain the TAC for a mobile IAB cell as below.
  • the mobile IAB’s donor (e.g., the mobile IAB-MT’s donor or the mobile IAB-DU’s donor) sends the TAC configuration for the mobile IAB cell to neighbor gNBs, e.g., via a Xn message.
  • the TAC configuration for mobile IAB cell includes at least one of the following: one or more TACs, a mobile IAB indication, a TAC for mobile IAB cell, a dedicated TAC, or a dedicated TAC indication.
  • Embodiment 5 inter-donor backhaul RLF recovery
  • An embodiment of the present disclosure addresses the problem that, during an inter-donor backhaul RLF recovery, how the initial IAB donor could identify the recovery IAB-node during the IPsec (Internet Protocol Security) connection establishment phase.
  • IPsec Internet Protocol Security
  • Step 1 the recovery IAB-node sends an RRC message to the new IAB donor.
  • An IAB node indication is included in the RRC message, e.g., an RRC reestablishment request or an RRC reestablishment request complete message.
  • Step 2 the new IAB donor determines that the node involved in the RRC reestablishment procedure is an IAB node.
  • Step 3 the new IAB node sends the F1-C (control plane) IP (internet protocol) address (es) of the recovery IAB-node to the initial IAB donor via Xn, e.g., via an Xn retrieve the UE context request message.
  • F1-C control plane
  • IP Internet protocol
  • the new IAB donor sends the F1-C IP address (es) of the recovery IAB-node to the initial IAB donor via Xn, e.g., via a UE context release message or a new XnAP message.
  • the new IAB donor may send the F1-C IP address (es) to the initial IAB donor after receiving the Xn retrieve UE context response message.
  • FIG. 5 relates to a schematic diagram of a wireless terminal 50 according to an embodiment of the present disclosure.
  • the wireless terminal 50 may be a user equipment (UE) , a mobile phone, a laptop, a tablet computer, an electronic book or a portable computer system and is not limited herein.
  • the wireless terminal 50 may include a processor 500 such as a microprocessor or Application Specific Integrated Circuit (ASIC) , a storage unit 510 and a communication unit 520.
  • the storage unit 510 may be any data storage device that stores a program code 512, which is accessed and executed by the processor 500.
  • Embodiments of the storage unit 512 include but are not limited to a subscriber identity module (SIM) , read-only memory (ROM) , flash memory, random-access memory (RAM) , hard-disk, and optical data storage device.
  • SIM subscriber identity module
  • ROM read-only memory
  • RAM random-access memory
  • the communication unit 520 may a transceiver and is used to transmit and receive signals (e.g., messages or packets) according to processing results of the processor 500.
  • the communication unit 520 transmits and receives the signals via at least one antenna 522 shown in FIG. 5.
  • the storage unit 510 and the program code 512 may be omitted and the processor 500 may include a storage unit with stored program code.
  • the processor 500 may implement any one of the steps in exemplified embodiments on the wireless terminal 50, e.g., by executing the program code 512.
  • the communication unit 520 may be a transceiver.
  • the communication unit 520 may as an alternative or in addition be combining a transmitting unit and a receiving unit configured to transmit and to receive, respectively, signals to and from a network node.
  • FIG. 6 relates to a schematic diagram of a network node 60 according to an embodiment of the present disclosure.
  • the network node 60 may be a satellite, a base station (BS) , a network entity, a Mobility Management Entity (MME) , Serving Gateway (S-GW) , Packet Data Network (PDN) Gateway (P-GW) , a radio access network (RAN) node, a next generation RAN (NG-RAN) node, a gNB, an eNB, a gNB central unit (gNB-CU) , a gNB distributed unit (gNB-DU) a data network, a core network, a Radio Network Controller (RNC) , a mobile IAB node, a parent IAB node, or a IAB donor and is not limited herein.
  • RNC Radio Network Controller
  • the network node 60 may comprise (perform) at least one network function such as an access and mobility management function (AMF) , a session management function (SMF) , a user place function (UPF) , a policy control function (PCF) , an application function (AF) , etc.
  • the network node 60 may include a processor 600 such as a microprocessor or ASIC, a storage unit 610 and a communication unit 620.
  • the storage unit 610 may be any data storage device that stores a program code 612, which is accessed and executed by the processor 600. Examples of the storage unit 612 include but are not limited to a SIM, ROM, flash memory, RAM, hard-disk, and optical data storage device.
  • the communication unit 620 may be a transceiver and is used to transmit and receive signals (e.g., messages or packets) according to processing results of the processor 600.
  • the communication unit 620 transmits and receives the signals via at least one antenna 622 shown in FIG. 6.
  • network node 60 may not have antenna, and the communication unit 620 transmits and receives the signals via wires.
  • the storage unit 610 and the program code 612 may be omitted.
  • the processor 600 may include a storage unit with stored program code.
  • the processor 600 may implement any steps described in exemplified embodiments on the network node 60, e.g., via executing the program code 612.
  • the network node 60 may be used to implement the mobile IAB node, the parent IAB node, or the IAB donor described above.
  • the communication unit 620 may be a transceiver.
  • the communication unit 620 may as an alternative or in addition be combining a transmitting unit and a receiving unit configured to transmit and to receive, respectively, signals to and from a node (e.g., a mobile IAB node or a parent IAB node) .
  • a node e.g., a mobile IAB node or a parent IAB node
  • a wireless communication method is also provided according to an embodiment of the present disclosure.
  • the wireless communication method may be performed by using a wireless communication node (e.g., a mobile IAB node) .
  • the wireless communication node may be implemented by using the network node 60 described above, but is not limited thereto.
  • the wireless communication method includes: receiving, by a mobile wireless communication node (e.g., a mobile IAB node) from a communication node (e.g., a parent IAB node or a IAB donor) , configuration information of the mobile wireless communication node; and broadcasting, by the mobile wireless communication node, location information according to the configuration information.
  • a mobile wireless communication node e.g., a mobile IAB node
  • a communication node e.g., a parent IAB node or a IAB donor
  • a wireless communication method is also provided according to an embodiment of the present disclosure.
  • the wireless communication method may be performed by using a wireless communication node (e.g., a parent IAB node or a IAB donor) .
  • the wireless communication node may be implemented by using the network node 60 described above, but is not limited thereto.
  • the communication method includes transmitting, by a communication node (e.g., a parent IAB node or a IAB donor) to a mobile wireless communication node (e.g., a mobile IAB node) , configuration information of the mobile wireless communication node to allow the mobile wireless communication node to broadcasting location information according to the configuration information.
  • a communication node e.g., a parent IAB node or a IAB donor
  • a mobile wireless communication node e.g., a mobile IAB node
  • a wireless communication method is also provided according to an embodiment of the present disclosure.
  • the wireless communication method may be performed by using a wireless communication node (e.g., a IAB donor) .
  • the wireless communication node may be implemented by using the network node 60 described above, but is not limited thereto.
  • the communication method includes transmitting, by a donor node (e.g., a IAB donor) of a mobile wireless communication node (e.g., a mobile IAB node) , configuration information of the mobile wireless communication node to an Access and Mobility Management Function, AMF.
  • a donor node e.g., a IAB donor
  • AMF Access and Mobility Management Function
  • a wireless communication method is also provided according to an embodiment of the present disclosure.
  • the wireless communication method may be performed by using a wireless communication node (e.g., a IAB donor) .
  • the wireless communication node may be implemented by using the network node 60 described above, but is not limited thereto.
  • the communication method includes transmitting, by a donor node (e.g., a IAB donor) of a mobile wireless communication node (e.g., a mobile IAB node) , configuration information of the mobile wireless communication node to one or more neighbor communication nodes (e.g., neighbor gNBs) .
  • a donor node e.g., a IAB donor
  • a mobile wireless communication node e.g., a mobile IAB node
  • neighbor communication nodes e.g., neighbor gNBs
  • IAB-donor a gNB that provides network access to UEs via a network of backhaul and access links.
  • IAB-donor-CU the gNB-CU of an IAB-donor, terminating the F1 interface towards IAB-nodes and IAB-donor-DU.
  • IAB-donor-DU the gNB-DU of an IAB-donor, hosting the IAB BAP (Backhaul Adaptation Protocol) sublayer, providing wireless backhaul to IAB-nodes.
  • IAB BAP Backhaul Adaptation Protocol
  • IAB-DU a gNB-DU functionality supported by the IAB-node to terminate the NR access interface to UEs and next-hop IAB-nodes, and to terminate the F1 protocol to the gNB-CU functionality, on the IAB-donor.
  • IAB-MT IAB-node function that terminates the Uu interface to the parent node using the procedures and behaviors specified for UEs unless stated otherwise.
  • IAB-MT function corresponds to IAB-UE function.
  • IAB-node a RAN node that supports NR access links to UEs and NR backhaul links to parent nodes and child nodes.
  • the IAB-node may not support backhauling via LTE.
  • Child node the IAB-DU's and IAB-donor-DU's next hop neighbor node; the child node can be also an IAB-node.
  • Parent node IAB-MT's next hop neighbor node; the parent node can be an IAB-node or a IAB-donor-DU.
  • Upstream a direction toward a parent node in the IAB-topology.
  • Downstream a direction toward a child node or a UE in the IAB-topology.
  • any reference to an element herein using a designation such as “first, “ “second, “ and so forth does not generally limit the quantity or order of those elements. Rather, these designations can be used herein as a convenient means of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does not mean that only two elements can be employed, or that the first element must precede the second element in some manner.
  • any one of the various illustrative logical blocks, units, processors, means, circuits, methods and functions described in connection with the aspects disclosed herein can be implemented by electronic hardware (e.g., a digital implementation, an analog implementation, or a combination of the two) , firmware, various forms of program or design code incorporating instructions (which can be referred to herein, for convenience, as "software” or a “software unit” ) , or any combination of these techniques.
  • a processor, device, component, circuit, structure, machine, unit, etc. can be configured to perform one or more of the functions described herein.
  • IC integrated circuit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the logical blocks, units, and circuits can further include antennas and/or transceivers to communicate with various components within the network or within the device.
  • a general purpose processor can be a microprocessor, but in the alternative, the processor can be any conventional processor, controller, or state machine.
  • a processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other suitable configuration to perform the functions described herein. If implemented in software, the functions can be stored as one or more instructions or code on a computer-readable medium. Thus, the steps of a method or algorithm disclosed herein can be implemented as software stored on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program or code from one place to another.
  • a storage media can be any available media that can be accessed by a computer.
  • such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • unit refers to software, firmware, hardware, and any combination of these elements for performing the associated functions described herein. Additionally, for purpose of discussion, the various units are described as discrete units; however, as would be apparent to one of ordinary skill in the art, two or more units may be combined to form a single unit that performs the associated functions according embodiments of the present disclosure.
  • memory or other storage may be employed in embodiments of the present disclosure.
  • memory or other storage may be employed in embodiments of the present disclosure.
  • any suitable distribution of functionality between different functional units, processing logic elements or domains may be used without detracting from the present disclosure.
  • functionality illustrated to be performed by separate processing logic elements, or controllers may be performed by the same processing logic element, or controller.
  • references to specific functional units are only references to a suitable means for providing the described functionality, rather than indicative of a strict logical or physical structure or organization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A wireless communication method is disclosed. The method comprises receiving, by a mobile wireless communication node from a communication node, configuration information of the mobile wireless communication node; and broadcasting, by the mobile wireless communication node, location information according to the configuration information.

Description

METHOD, DEVICE AND COMPUTER PROGRAM PRODUCT FOR WIRELESS COMMUNICATION
This document is directed generally to wireless communications, and in particular to 5th generation (5G) communications or 6th generation (6G) communications.
Integrated Access and Backhaul (IAB) supports wireless backhauling via NR (new radio) enabling flexible and dense deployment of NR cells while reducing the need for wireline transport infrastructure. However, the migration of a IAB node is still a topic to be discussed.
This document relates to methods, systems, and devices for IAB.
One aspect of the present disclosure relates to a wireless communication method. In an embodiment, the wireless communication method includes: receiving, by a mobile wireless communication node from a communication node, configuration information of the mobile wireless communication node; and broadcasting, by the mobile wireless communication node, location information according to the configuration information.
Another aspect of the present disclosure relates to a communication method. In an embodiment, the communication method includes: transmitting, by a communication node to a mobile wireless communication node, configuration information of the mobile wireless communication node to allow the mobile wireless communication node to broadcasting location information according to the configuration information.
Another aspect of the present disclosure relates to a communication method. In an embodiment, the communication method includes: transmitting, by a donor node of a mobile wireless communication node, configuration information of the mobile wireless communication node to an Access and Mobility Management Function, AMF.
Another aspect of the present disclosure relates to a communication method. In an embodiment, the communication method includes: transmitting, by a donor node of a mobile wireless communication node, configuration information of the mobile wireless communication node to one or more neighbor communication nodes.
Another aspect of the present disclosure relates to a wireless communication node. In an embodiment, the wireless communication node includes a communication unit and a processor. The processor is configured to: receive, via the communication unit from a communication node,  configuration information of the mobile wireless communication node; and broadcast, via the communication unit, location information according to the configuration information.
Another aspect of the present disclosure relates to a communication node. In an embodiment, the communication node includes a communication unit and a processor. The processor is configured to: transmit, via the communication unit to a mobile wireless communication node, configuration information of the mobile wireless communication node to allow the mobile wireless communication node to broadcasting location information according to the configuration information.
Various embodiments may preferably implement the following features:
Preferably, the configuration information comprises at least one of:
Tracking Area Code, TAC, configuration information; or
Radio Access Network Area Code, RANAC, configuration information.
Preferably, the TAC configuration information comprises at least one of:
one or more TACs,
a mobile IAB indication,
a TAC for a mobile IAB cell,
a dedicated TAC,
a dedicated TAC indication,
geographic location information, or
cell information.
Preferably, the RANAC configuration information comprises at least one of:
one or more RANACs,
a mobile IAB indication,
an RANAC for a mobile IAB cell,
a dedicated RANAC,
a dedicated RANAC indication,
geographic location information, or
cell information.
Preferably, the cell information comprises at least one of: a node identifier for the donor node connected with a parent node of the mobile wireless communication node or a cell identifier  for a parent cell of the mobile wireless communication node.
Preferably, the communication node is a parent communication node of the mobile wireless communication node or a donor node of the wireless communication node.
Preferably, the communication node is a parent communication node of the mobile wireless communication node and receives the configuration information from a donor node of the mobile wireless communication node; or wherein the wireless communication node is a donor of the mobile wireless communication node and transmits the configuration information to a parent communication node of the mobile wireless communication node.
Preferably, the communication node is a donor node of the mobile wireless communication node, and the donor node transmits the configuration information to an Access and Mobility Management Function, AMF.
Preferably, the wireless communication node is a donor node of the mobile wireless communication node, and the donor wireless communication node transmits the configuration information to one or more neighbor communication nodes.
The present disclosure relates to a computer program product comprising a computer-readable program medium code stored thereupon, the code, when executed by a processor, causing the processor to implement a wireless communication method recited in any one of foregoing methods.
The exemplary embodiments disclosed herein are directed to providing features that will become readily apparent by reference to the following description when taken in conjunction with the accompany drawings. In accordance with various embodiments, exemplary systems, methods, devices and computer program products are disclosed herein. It is understood, however, that these embodiments are presented by way of example and not limitation, and it will be apparent to those of ordinary skill in the art who read the present disclosure that various modifications to the disclosed embodiments can be made while remaining within the scope of the present disclosure.
Thus, the present disclosure is not limited to the exemplary embodiments and applications described and illustrated herein. Additionally, the specific order and/or hierarchy of steps in the methods disclosed herein are merely exemplary approaches. Based upon design preferences, the specific order or hierarchy of steps of the disclosed methods or processes can be  re-arranged while remaining within the scope of the present disclosure. Thus, those of ordinary skill in the art will understand that the methods and techniques disclosed herein present various steps or acts in a sample order, and the present disclosure is not limited to the specific order or hierarchy presented unless expressly stated otherwise.
The above and other aspects and their implementations are described in greater detail in the drawings, the descriptions, and the claims.
FIG. 1 shows a mobile IAB scenario according to an embodiment of the present disclosure.
FIGs. 2a) and 2b) show an IAB architecture according to an embodiment of the present disclosure.
FIG. 3 shows a parent-node and child-node relationship for IAB-node according to an embodiment of the present disclosure.
FIG. 4A to 4C show inter-donor migration including partial migration and full migration according to an embodiment of the present disclosure.
FIG. 5 shows an example of a schematic diagram of a wireless terminal according to an embodiment of the present disclosure.
FIG. 6 shows an example of a schematic diagram of a network node according to an embodiment of the present disclosure.
FIGs. 7 to 10 show flowcharts of methods according to some embodiments of the present disclosure.
In some embodiments, an Intra-donor CU (control unit) migration procedure may have both the source and the target parent node being served by the same IAB-donor-CU. Inter-donor CU partial migration may have a migrating IAB node being static.
In some embodiments of the present disclosure, an inter-donor migration in a mobile IAB use-case is discussed.
FIG. 1 shows a mobile IAB scenario. In a mobile IAB use case, IAB nodes may be mounted in vehicles and can provide 5G coverage and/or capacity enhancement to onboard and/or surrounding UEs (user equipment (s) ) . In FIG. 1, a train is shown as an exemplary vehicle, but the invention also applies to other means of transportation.
In some embodiments, IAB may enable wireless relaying in NG-RAN (Next Generation Radio Access Network) . The relaying node, referred to as IAB-node, supports access and backhauling via NR. The terminating node of NR backhauling on the network side is referred to as the IAB-donor, which represents a gNB (gNodeB) with an additional functionality to support IAB. Backhauling can occur via a single or via multiple hops. The IAB architecture is shown in FIGs. 2a) and 2b) .
In some embodiments, the IAB-node may support a gNB-DU (distributed unit) functionality, to terminate the NR access interface to UEs and next-hop IAB-nodes, and to terminate the F1 protocol to the gNB-CU (central unit) functionality, on the IAB-donor. The gNB-DU functionality on the IAB-node is also referred to as IAB-DU.
In some embodiments, in addition to the gNB-DU functionality, the IAB-node may also support a subset of the UE functionality referred to as IAB-MT (Mobile Termination) , which includes, e.g., the physical layer, the layer-2, the RRC (Radio Resource Control) and NAS (Non-access stratum) functionality to connect to the gNB-DU of another IAB-node or the IAB-donor, to connect to the gNB-CU on the IAB-donor, and to the core network.
In some embodiments, the IAB-node can access the network using either SA(Standalone) -mode or EN-DC (E-UTRAN New Radio –Dual Connectivity) . In EN-DC, the IAB-node also connects via the E-UTRA to a MeNB (master eNodeB) , and the IAB-donor terminates X2-C as SgNB (secondary gNodeB) .
In some embodiments, all IAB-nodes that are connected to an IAB-donor via one or multiple hops form a directed acyclic graph (DAG) topology with the IAB-donor at its root (see FIG. 3) . In this DAG topology, the neighbor node on the IAB-DU’s interface is referred to as child node and the neighbor node on the IAB-MT’s interface is referred to as parent node. The direction toward the child node is further referred to as downstream while the direction toward the parent node is referred to as upstream. The IAB-donor performs centralized resource, topology and route management for the IAB topology.
In the paragraphs below, a partial migration and a full migration in a mobile IAB use case will be discussed.
According to an embodiment, in the partial migration, the migration of an IAB-MT to a parent node underneath a different IAB-donor-CU may be performed while the co-located IAB-DU  and descendant IAB-node (s) , if any, are not migrated (i.e., terminated at the initial IAB-donor-CU) .
According to an embodiment, in the full migration, the migrating IAB node (i.e., the mobile IAB node in mobile IAB scenario) and the descendant IAB node (s) (if any) may be migrated (both RRC and F1 connections) to the 2nd IAB-donor-CU from 1st IAB-donor-CU.
An F1-terminating IAB-donor may refer to the IAB-donor that terminates F1 for the IAB-node, which can also be referred to as the DU’s donor.
In an embodiment, there may be two logical DUs in the mobile IAB node. The two logical DUs in the mobile IAB node can be called source logical DU and target logical DU, or logical DU1 and logical DU2.
FIGs. 4A to 4C show examples of inter-donor migrations including the partial migration and the full migration. As illustrated in FIG. 4A, a partial migration is performed. The IAB-MT migrates from the donor DU1 which belongs to the donor CU1 to the donor DU2 which belongs to the donor CU2. However, the IAB-DU maintains its F1 connection with the donor CU1 and the UE context remains in the donor CU1. The F1 control plane and/or user plane traffic between the donor CU1 and the IAB-DU is transmitted via the donor DU2.
As illustrated in FIG. 4B, a partial migration is performed. The IAB-MT migrates from the donor DU2 which belongs to the donor CU2 to the donor DU3 which belongs to the donor CU3. However, the IAB-DU maintains its F1 connection with the donor CU1 and the UE context remains in the donor CU1. The F1 control plane and/or user plane traffic between the donor CU1 and the IAB-DU is transmitted via the donor DU3.
As illustrated in FIG. 4C, a full migration is performed. The MT and the DU are migrated to the same donor. The IAB-DU migrates from the donor CU1 to the donor CU3. The UE is handed over from the donor CU1 to the donor CU3. The F1 control plane and/or user plane traffic between the donor CU3 and the IAB-DU is transmitted via the donor DU3.
In the paragraphs below, details of the present disclosure will be provided in different embodiments, but the present disclosure is not limited to the embodiments below.
Embodiment 1
In the mobile IAB use case, the mobile IAB node may be mounted in vehicles and moves with the vehicle. The mobile IAB node may perform a partial migration or a full migration  along with the movement of the mobile IAB-MT. In this situation, the TAC (Tracking Area Code) /RANAC (RAN-based Notification Area Code) broadcast by the mobile IAB-DU cell may need to change (or updated) to reflect the actual location (e.g., geographic location) of the mobile IAB node after the mobile IAB node moves.
In an embodiment, the mobile IAB-DU obtains the TAC for broadcasting as below. Note that in the present disclosure, the TAC is taken as an example, and the mobile IAB-DU may obtain the RANAC for broadcasting in a similar manner.
Step 1: the mobile IAB node’s parent IAB node broadcasts TAC configuration information (e.g., updated TAC configuration information) for the mobile IAB node via system information. The TAC configuration information includes at least one of the following: one or more TACs, a mobile IAB indication, a TAC for mobile IAB cell, a dedicated TAC, or a dedicated TAC indication.
In an embodiment, before the mobile IAB node’s parent IAB node broadcasts TAC configuration information for the mobile IAB node via system information, the mobile IAB node’s parent IAB node may receive the TAC configuration information (e.g., updated TAC configuration information) for the mobile IAB node from the IAB donor, e.g., via an F1 message.
Step 2: The mobile IAB-MT receives the TAC configuration information (e.g., updated TAC configuration information) for a mobile IAB cell from the system information and delivers it to the co-located DU.
Step 3: The mobile IAB-DU sends its TAC configuration (e.g., updated TAC configuration) to its connected IAB donor. The TAC configuration may include at least the TAC (e.g., updated TAC) received from the mobile IAB node’s parent IAB node via the system information.
Step 4: The mobile IAB-DU broadcasts the TAC (e.g., updated TAC) received from the mobile IAB node’s parent IAB node via the system information.
Embodiment 2
Step 1: The mobile IAB-DU’s donor (i.e., the IAB donor which has an F1 connection with the mobile IAB-DU) sends the TAC configuration information (e.g., updated TAC configuration information) to the mobile IAB node, e.g., via an F1 message. The TAC  configuration information may include at least one of the following: one or more TACs, a mobile IAB indication, a TAC for the mobile IAB cell, a dedicated TAC, a dedicated TAC indication, geographic location information, or cell information. The cell information may include a gNB ID (identifier) or cell ID (e.g., PCI (Physical Cell ID) or NCGI (New Radio Cell Global Identity)) of the mobile IAB-MT’s parent cell, i.e., the cell which belongs to the mobile IAB-MT’s parent node and serves the mobile IAB-MT.
Step 2: The mobile IAB-DU broadcasts the TAC (e.g., updated TAC) received from the mobile IAB-DU’s donor via an F1 message.
Embodiment 3
In an embodiment, the AMF (access and mobility management function) may need to know the TAC supported in the gNB, so that the AMF can send paging message for UE to appropriate gNBs. In an embodiment, the AMF obtains the TAC for a mobile IAB cell as follows.
In an embodiment, the mobile IAB’s donor (e.g., the mobile IAB-MT’s donor or the mobile IAB-DU’s donor) sends the TAC configuration for the mobile IAB cell to the AMF via a NG message. The TAC configuration for the mobile IAB cell includes at least one of the following: one or more TACs, a mobile IAB indication, a TAC for mobile IAB cell, a dedicated TAC, or a dedicated TAC indication.
Embodiment 4
In an embodiment, the gNB may need to know the TAC supported in neighbor gNBs, so that the gNB can send a RAN paging message for UE to appropriate neighbor gNBs. In an embodiment, neighbor gNBs obtain the TAC for a mobile IAB cell as below.
In an embodiment, the mobile IAB’s donor (e.g., the mobile IAB-MT’s donor or the mobile IAB-DU’s donor) sends the TAC configuration for the mobile IAB cell to neighbor gNBs, e.g., via a Xn message. The TAC configuration for mobile IAB cell includes at least one of the following: one or more TACs, a mobile IAB indication, a TAC for mobile IAB cell, a dedicated TAC, or a dedicated TAC indication.
Embodiment 5 -inter-donor backhaul RLF recovery
An embodiment of the present disclosure addresses the problem that, during an inter-donor backhaul RLF recovery, how the initial IAB donor could identify the recovery IAB-node during the IPsec (Internet Protocol Security) connection establishment phase.
Option 1:
Step 1: the recovery IAB-node sends an RRC message to the new IAB donor. An IAB node indication is included in the RRC message, e.g., an RRC reestablishment request or an RRC reestablishment request complete message.
Step 2: the new IAB donor determines that the node involved in the RRC reestablishment procedure is an IAB node.
Step 3: the new IAB node sends the F1-C (control plane) IP (internet protocol) address (es) of the recovery IAB-node to the initial IAB donor via Xn, e.g., via an Xn retrieve the UE context request message.
Option 2:
The new IAB donor sends the F1-C IP address (es) of the recovery IAB-node to the initial IAB donor via Xn, e.g., via a UE context release message or a new XnAP message. Optionally, the new IAB donor may send the F1-C IP address (es) to the initial IAB donor after receiving the Xn retrieve UE context response message.
FIG. 5 relates to a schematic diagram of a wireless terminal 50 according to an embodiment of the present disclosure. The wireless terminal 50 may be a user equipment (UE) , a mobile phone, a laptop, a tablet computer, an electronic book or a portable computer system and is not limited herein. The wireless terminal 50 may include a processor 500 such as a microprocessor or Application Specific Integrated Circuit (ASIC) , a storage unit 510 and a communication unit 520. The storage unit 510 may be any data storage device that stores a program code 512, which is accessed and executed by the processor 500. Embodiments of the storage unit 512 include but are not limited to a subscriber identity module (SIM) , read-only memory (ROM) , flash memory, random-access memory (RAM) , hard-disk, and optical data storage device. The communication unit 520 may a transceiver and is used to transmit and receive signals (e.g., messages or packets) according to processing results of the processor 500. In an embodiment, the communication unit 520 transmits and receives the signals via at least one antenna 522 shown in FIG. 5.
In an embodiment, the storage unit 510 and the program code 512 may be omitted and  the processor 500 may include a storage unit with stored program code.
The processor 500 may implement any one of the steps in exemplified embodiments on the wireless terminal 50, e.g., by executing the program code 512.
The communication unit 520 may be a transceiver. The communication unit 520 may as an alternative or in addition be combining a transmitting unit and a receiving unit configured to transmit and to receive, respectively, signals to and from a network node.
FIG. 6 relates to a schematic diagram of a network node 60 according to an embodiment of the present disclosure. The network node 60 may be a satellite, a base station (BS) , a network entity, a Mobility Management Entity (MME) , Serving Gateway (S-GW) , Packet Data Network (PDN) Gateway (P-GW) , a radio access network (RAN) node, a next generation RAN (NG-RAN) node, a gNB, an eNB, a gNB central unit (gNB-CU) , a gNB distributed unit (gNB-DU) a data network, a core network, a Radio Network Controller (RNC) , a mobile IAB node, a parent IAB node, or a IAB donor and is not limited herein. In addition, the network node 60 may comprise (perform) at least one network function such as an access and mobility management function (AMF) , a session management function (SMF) , a user place function (UPF) , a policy control function (PCF) , an application function (AF) , etc. The network node 60 may include a processor 600 such as a microprocessor or ASIC, a storage unit 610 and a communication unit 620. The storage unit 610 may be any data storage device that stores a program code 612, which is accessed and executed by the processor 600. Examples of the storage unit 612 include but are not limited to a SIM, ROM, flash memory, RAM, hard-disk, and optical data storage device. The communication unit 620 may be a transceiver and is used to transmit and receive signals (e.g., messages or packets) according to processing results of the processor 600. In an example, the communication unit 620 transmits and receives the signals via at least one antenna 622 shown in FIG. 6. In another example, network node 60 may not have antenna, and the communication unit 620 transmits and receives the signals via wires.
In an embodiment, the storage unit 610 and the program code 612 may be omitted. The processor 600 may include a storage unit with stored program code.
The processor 600 may implement any steps described in exemplified embodiments on the network node 60, e.g., via executing the program code 612. In an embodiment, the network node 60 may be used to implement the mobile IAB node, the parent IAB node, or the IAB donor  described above.
The communication unit 620 may be a transceiver. The communication unit 620 may as an alternative or in addition be combining a transmitting unit and a receiving unit configured to transmit and to receive, respectively, signals to and from a node (e.g., a mobile IAB node or a parent IAB node) .
A wireless communication method is also provided according to an embodiment of the present disclosure. In an embodiment, the wireless communication method may be performed by using a wireless communication node (e.g., a mobile IAB node) . In an embodiment, the wireless communication node may be implemented by using the network node 60 described above, but is not limited thereto.
Referring to FIG. 7, in an embodiment, the wireless communication method includes: receiving, by a mobile wireless communication node (e.g., a mobile IAB node) from a communication node (e.g., a parent IAB node or a IAB donor) , configuration information of the mobile wireless communication node; and broadcasting, by the mobile wireless communication node, location information according to the configuration information.
Details in this regard can be ascertained with reference to the paragraphs above, and will not be repeated herein.
A wireless communication method is also provided according to an embodiment of the present disclosure. In an embodiment, the wireless communication method may be performed by using a wireless communication node (e.g., a parent IAB node or a IAB donor) . In an embodiment, the wireless communication node may be implemented by using the network node 60 described above, but is not limited thereto.
Referring to FIG. 8, in an embodiment, the communication method includes transmitting, by a communication node (e.g., a parent IAB node or a IAB donor) to a mobile wireless communication node (e.g., a mobile IAB node) , configuration information of the mobile wireless communication node to allow the mobile wireless communication node to broadcasting location information according to the configuration information.
Details in this regard can be ascertained with reference to the paragraphs above, and will not be repeated herein.
A wireless communication method is also provided according to an embodiment of the  present disclosure. In an embodiment, the wireless communication method may be performed by using a wireless communication node (e.g., a IAB donor) . In an embodiment, the wireless communication node may be implemented by using the network node 60 described above, but is not limited thereto.
Referring to FIG. 9, in an embodiment, the communication method includes transmitting, by a donor node (e.g., a IAB donor) of a mobile wireless communication node (e.g., a mobile IAB node) , configuration information of the mobile wireless communication node to an Access and Mobility Management Function, AMF.
Details in this regard can be ascertained with reference to the paragraphs above, and will not be repeated herein.
A wireless communication method is also provided according to an embodiment of the present disclosure. In an embodiment, the wireless communication method may be performed by using a wireless communication node (e.g., a IAB donor) . In an embodiment, the wireless communication node may be implemented by using the network node 60 described above, but is not limited thereto.
Referring to FIG. 10, in an embodiment, the communication method includes transmitting, by a donor node (e.g., a IAB donor) of a mobile wireless communication node (e.g., a mobile IAB node) , configuration information of the mobile wireless communication node to one or more neighbor communication nodes (e.g., neighbor gNBs) .
Details in this regard can be ascertained with reference to the paragraphs above, and will not be repeated herein.
In accordance with some embodiments, many terms used in the present disclosure may be described as below.
IAB-donor: a gNB that provides network access to UEs via a network of backhaul and access links.
IAB-donor-CU: the gNB-CU of an IAB-donor, terminating the F1 interface towards IAB-nodes and IAB-donor-DU.
IAB-donor-DU: the gNB-DU of an IAB-donor, hosting the IAB BAP (Backhaul Adaptation Protocol) sublayer, providing wireless backhaul to IAB-nodes.
IAB-DU: a gNB-DU functionality supported by the IAB-node to terminate the NR  access interface to UEs and next-hop IAB-nodes, and to terminate the F1 protocol to the gNB-CU functionality, on the IAB-donor.
IAB-MT: IAB-node function that terminates the Uu interface to the parent node using the procedures and behaviors specified for UEs unless stated otherwise. IAB-MT function corresponds to IAB-UE function.
IAB-node: a RAN node that supports NR access links to UEs and NR backhaul links to parent nodes and child nodes. The IAB-node may not support backhauling via LTE.
Child node: the IAB-DU's and IAB-donor-DU's next hop neighbor node; the child node can be also an IAB-node.
Parent node: IAB-MT's next hop neighbor node; the parent node can be an IAB-node or a IAB-donor-DU.
Upstream: a direction toward a parent node in the IAB-topology.
Downstream: a direction toward a child node or a UE in the IAB-topology.
While various embodiments of the present disclosure have been described above, it should be understood that they have been presented by way of example only, and not by way of limitation. Likewise, the various diagrams may depict an example architectural or configuration, which are provided to enable persons of ordinary skill in the art to understand exemplary features and functions of the present disclosure. Such persons would understand, however, that the present disclosure is not restricted to the illustrated example architectures or configurations, but can be implemented using a variety of alternative architectures and configurations. Additionally, as would be understood by persons of ordinary skill in the art, one or more features of one embodiment can be combined with one or more features of another embodiment described herein. Thus, the breadth and scope of the present disclosure should not be limited by any one of the above-described exemplary embodiments.
It is also understood that any reference to an element herein using a designation such as "first, " "second, " and so forth does not generally limit the quantity or order of those elements. Rather, these designations can be used herein as a convenient means of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does not mean that only two elements can be employed, or that the first element must precede the second element in some manner.
Additionally, a person having ordinary skill in the art would understand that information and signals can be represented using any one of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits and symbols, for example, which may be referenced in the above description can be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
A skilled person would further appreciate that any one of the various illustrative logical blocks, units, processors, means, circuits, methods and functions described in connection with the aspects disclosed herein can be implemented by electronic hardware (e.g., a digital implementation, an analog implementation, or a combination of the two) , firmware, various forms of program or design code incorporating instructions (which can be referred to herein, for convenience, as "software" or a "software unit” ) , or any combination of these techniques.
To clearly illustrate this interchangeability of hardware, firmware and software, various illustrative components, blocks, units, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware, firmware or software, or a combination of these techniques, depends upon the particular application and design constraints imposed on the overall system. Skilled artisans can implement the described functionality in various ways for each particular application, but such implementation decisions do not cause a departure from the scope of the present disclosure. In accordance with various embodiments, a processor, device, component, circuit, structure, machine, unit, etc. can be configured to perform one or more of the functions described herein. The term “configured to” or “configured for” as used herein with respect to a specified operation or function refers to a processor, device, component, circuit, structure, machine, unit, etc. that is physically constructed, programmed and/or arranged to perform the specified operation or function.
Furthermore, a skilled person would understand that various illustrative logical blocks, units, devices, components and circuits described herein can be implemented within or performed by an integrated circuit (IC) that can include a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, or any combination thereof. The logical blocks, units, and circuits can further include antennas and/or transceivers to communicate with various components  within the network or within the device. A general purpose processor can be a microprocessor, but in the alternative, the processor can be any conventional processor, controller, or state machine. A processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other suitable configuration to perform the functions described herein. If implemented in software, the functions can be stored as one or more instructions or code on a computer-readable medium. Thus, the steps of a method or algorithm disclosed herein can be implemented as software stored on a computer-readable medium.
Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program or code from one place to another. A storage media can be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer.
In this document, the term "unit" as used herein, refers to software, firmware, hardware, and any combination of these elements for performing the associated functions described herein. Additionally, for purpose of discussion, the various units are described as discrete units; however, as would be apparent to one of ordinary skill in the art, two or more units may be combined to form a single unit that performs the associated functions according embodiments of the present disclosure.
Additionally, memory or other storage, as well as communication components, may be employed in embodiments of the present disclosure. It will be appreciated that, for clarity purposes, the above description has described embodiments of the present disclosure with reference to different functional units and processors. However, it will be apparent that any suitable distribution of functionality between different functional units, processing logic elements or domains may be used without detracting from the present disclosure. For example, functionality illustrated to be performed by separate processing logic elements, or controllers, may be performed by the same processing logic element, or controller. Hence, references to specific functional units are only references to a suitable means for providing the described functionality, rather than indicative of a  strict logical or physical structure or organization.
Various modifications to the implementations described in this disclosure will be readily apparent to those skilled in the art, and the general principles defined herein can be applied to other implementations without departing from the scope of the claims. Thus, the disclosure is not intended to be limited to the implementations shown herein, but is to be accorded the widest scope consistent with the novel features and principles disclosed herein, as recited in the claims below.

Claims (23)

  1. A wireless communication method comprising:
    receiving, by a mobile wireless communication node from a communication node, configuration information of the mobile wireless communication node; and
    broadcasting, by the mobile wireless communication node, location information according to the configuration information.
  2. The wireless communication method of claim 1, wherein the configuration information comprises at least one of:
    Tracking Area Code, TAC, configuration information; or
    Radio Access Network Area Code, RANAC, configuration information.
  3. The wireless communication method of claim 2, wherein the TAC configuration information comprises at least one of:
    one or more TACs,
    a mobile IAB indication,
    a TAC for a mobile IAB cell,
    a dedicated TAC,
    a dedicated TAC indication,
    geographic location information, or
    cell information.
  4. The wireless communication method of claim 2 or 3, wherein the RANAC configuration information comprises at least one of:
    one or more RANACs,
    a mobile IAB indication,
    an RANAC for a mobile IAB cell,
    a dedicated RANAC,
    a dedicated RANAC indication,
    geographic location information, or
    cell information.
  5. The wireless communication method of claim 3 or 4, wherein the cell information comprises at least one of: a node identifier for the donor node connected with a parent node of the mobile wireless communication node or a cell identifier for a parent cell of the mobile wireless communication node.
  6. The wireless communication method of any of claims 1 to 5, wherein the communication node is a parent communication node of the mobile wireless communication node or a donor node of the wireless communication node.
  7. A communication method comprising:
    transmitting, by a communication node to a mobile wireless communication node, configuration information of the mobile wireless communication node to allow the mobile wireless communication node to broadcasting location information according to the configuration information.
  8. The wireless communication method of claim 7, wherein the configuration information comprises at least one of:
    Tracking Area Code, TAC, configuration information; or
    Radio Access Network Area Code, RANAC, configuration information.
  9. The wireless communication method of claim 8, wherein the TAC configuration information comprises at least one of:
    one or more TACs,
    a mobile IAB indication,
    a TAC for a mobile IAB cell,
    a dedicated TAC,
    a dedicated TAC indication,
    geographic location information, or
    cell information.
  10. The wireless communication method of claim 8 or 9, wherein the RANAC configuration information comprises at least one of:
    one or more RANACs,
    a mobile IAB indication,
    an RANAC for a mobile IAB cell,
    a dedicated RANAC,
    a dedicated RANAC indication,
    geographic location information, or
    cell information.
  11. The wireless communication method of claim 9 or 10, wherein the cell information comprises at least one of: a node identifier for the donor node connected with a parent node of the mobile wireless communication node or a cell identifier for a parent cell of the mobile wireless communication node.
  12. The wireless communication method of any of claims 7 to 11, wherein the communication node is a parent communication node of the mobile wireless communication node or a donor node of the wireless communication node.
  13. The communication method of any of claims 7 to 12, wherein the communication node is a parent communication node of the mobile wireless communication node and receives the configuration information from a donor node of the mobile wireless communication node; or wherein the wireless communication node is a donor of the mobile wireless communication node and transmits the configuration information to a parent communication node of the mobile wireless communication node.
  14. The communication method of any of claims 7 to 13, wherein the communication node is a donor node of the mobile wireless communication node, and the donor node  transmits the configuration information to an Access and Mobility Management Function, AMF.
  15. The communication method of any of claims 7 to 14, wherein the wireless communication node is a donor node of the mobile wireless communication node, and the donor wireless communication node transmits the configuration information to one or more neighbor communication nodes.
  16. A communication method comprising:
    transmitting, by a donor node of a mobile wireless communication node, configuration information of the mobile wireless communication node to an Access and Mobility Management Function, AMF.
  17. A communication method comprising:
    transmitting, by a donor node of a mobile wireless communication node, configuration information of the mobile wireless communication node to one or more neighbor communication nodes.
  18. A wireless communication node, comprising:
    a communication unit; and
    a processor configured to: receive, via the communication unit from a communication node, configuration information of a mobile wireless communication node; and broadcast, via the communication unit, location information according to the configuration information.
  19. The wireless communication node of claim 18, wherein the processor is further configured to perform a wireless communication method of any of claims 2 to 6.
  20. A communication node, comprising:
    a communication unit; and
    a processor configured to: transmit, via the communication unit to a mobile wireless communication node, configuration information of a mobile wireless communication node to allow the mobile wireless communication node to broadcasting location information according to the configuration information.
  21. The communication node of claim 20, wherein the processor is further configured to perform a communication method of any of claims 8 to 15.
  22. A communication node, comprising:
    a communication unit; and
    a processor configured to: perform a communication method of claim 16 or 17.
  23. A computer program product comprising a computer-readable program medium code stored thereupon, the code, when executed by a processor, causing the processor to implement a wireless communication method recited in any one of claims 1 to 15.
PCT/CN2023/086950 2023-04-07 2023-04-07 Method, device and computer program product for wireless communication WO2024156149A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/086950 WO2024156149A1 (en) 2023-04-07 2023-04-07 Method, device and computer program product for wireless communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/086950 WO2024156149A1 (en) 2023-04-07 2023-04-07 Method, device and computer program product for wireless communication

Publications (1)

Publication Number Publication Date
WO2024156149A1 true WO2024156149A1 (en) 2024-08-02

Family

ID=91969883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/086950 WO2024156149A1 (en) 2023-04-07 2023-04-07 Method, device and computer program product for wireless communication

Country Status (1)

Country Link
WO (1) WO2024156149A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111727661A (en) * 2018-02-14 2020-09-29 株式会社Kt Method and device for processing RRC (radio resource control) message in relay node
US20220330196A1 (en) * 2019-12-20 2022-10-13 Vivo Mobile Communication Co., Ltd. Tau method and device based on mobile iab node

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111727661A (en) * 2018-02-14 2020-09-29 株式会社Kt Method and device for processing RRC (radio resource control) message in relay node
US20220330196A1 (en) * 2019-12-20 2022-10-13 Vivo Mobile Communication Co., Ltd. Tau method and device based on mobile iab node

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GEORG HAMPEL, QUALCOMM INC.: "Mobility enhancements for mobile IAB", 3GPP TSG-RAN WG3 #119, R3-230230, 16 February 2023 (2023-02-16), XP052244078 *
LIN CHEN, ZTE, SANECHIPS: "Discussion on TAC and RNAC configuration of mobile IAB", 3GPP TSG-RAN WG2 MEETING #121, R2-2301079, 17 February 2023 (2023-02-17), XP052245721 *
YING HUANG, ZTE: "Discussion on enhancements to UE migration in mobile IAB scenario", 3GPP TSG-RAN WG3 #119, R3-230285, 17 February 2023 (2023-02-17), XP052244130 *

Similar Documents

Publication Publication Date Title
US9723531B2 (en) Method and apparatus for in sequence delivery of downlink local IP access (LIPA) packets
US20230337317A1 (en) Method for small data transmission
US20230142993A1 (en) Method for sidelink relay communication under dual connectivity
EP3226648B1 (en) Method, device, and system for transmitting data packet
ES2755826T3 (en) Mobile communication method and mobile station
US20240187880A1 (en) Systems and methods for configuration information transfer
US20230054991A1 (en) Method for slice information update
US20240106530A1 (en) Method for satellite selection
EP2833660B1 (en) Network elements, wireless communication system and methods therefor
WO2024031289A1 (en) Communication method for network node, communication method for mobile node, mobile node, and donor device
WO2024156149A1 (en) Method, device and computer program product for wireless communication
WO2022217864A1 (en) Wireless communication method, and device and storage medium
WO2024156124A1 (en) Method of inter-donor migration and apparatus thereof
WO2023141795A1 (en) Inter-donor migration for integrated access and backhaul (iab) nodes
WO2024065245A1 (en) Systems and methods for information transfer in iab system and apparatus
WO2022150965A1 (en) Stand-alone non-public network mobility
WO2023236050A1 (en) Systems and methods for inter-donor migration and apparatus
US20240314672A1 (en) Method for traffic relay from network to ue
EP2995122B1 (en) Method for subscriber identity determination, network elements and wireless communication system therefor
WO2024031263A1 (en) Delivery of multicast and broadcast services
WO2023060570A1 (en) Method, device and computer program product for wireless communication
WO2024168720A1 (en) Method for mobile integrated access and backhaul
WO2024183576A1 (en) Communication method and related apparatus
WO2023236049A1 (en) Systems and methods for inter-donor migration and apparatus
WO2022147737A1 (en) A method for notification of disaster condition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23918153

Country of ref document: EP

Kind code of ref document: A1