WO2024154655A1 - Winch system - Google Patents

Winch system Download PDF

Info

Publication number
WO2024154655A1
WO2024154655A1 PCT/JP2024/000553 JP2024000553W WO2024154655A1 WO 2024154655 A1 WO2024154655 A1 WO 2024154655A1 JP 2024000553 W JP2024000553 W JP 2024000553W WO 2024154655 A1 WO2024154655 A1 WO 2024154655A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
winch
cable
control
instruction
Prior art date
Application number
PCT/JP2024/000553
Other languages
French (fr)
Japanese (ja)
Inventor
成隆 倉持
幸佑 野平
Original Assignee
株式会社Liberaware
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Liberaware filed Critical 株式会社Liberaware
Publication of WO2024154655A1 publication Critical patent/WO2024154655A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/87Mounting of imaging devices, e.g. mounting of gimbals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/02Driving gear
    • B66D1/12Driving gear incorporating electric motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/28Other constructional details
    • B66D1/40Control devices
    • B66D1/48Control devices automatic
    • B66D1/50Control devices automatic for maintaining predetermined rope, cable, or chain tension, e.g. in ropes or cables for towing craft, in chains for anchors; Warping or mooring winch-cable tension control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/54Safety gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/60Rope, cable, or chain winding mechanisms; Capstans adapted for special purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D5/00Braking or detent devices characterised by application to lifting or hoisting gear, e.g. for controlling the lowering of loads
    • B66D5/02Crane, lift hoist, or winch brakes operating on drums, barrels, or ropes
    • B66D5/24Operating devices
    • B66D5/30Operating devices electrical

Definitions

  • This disclosure relates to a winch system.
  • Patent Document 1 discloses a device that suspends a camera from the top opening of a shaft to check the state of corrosion inside the shaft.
  • the present disclosure has been made in consideration of the above problems, and its purpose is to provide a winch system that can easily control the aircraft suspended by the cable and the cable.
  • an electric winch connected to a cable that suspends an airframe having a thrust generating unit;
  • a receiving unit that receives a control signal from a control device;
  • a signal generating unit that generates a winch operation signal that instructs an operation of the electric winch based on the operation signal received by the receiving unit, the control signal includes information on an instruction to ascend or descend for the aircraft
  • a winch system is provided, characterized in that the signal generating unit generates the winch operation signal including winding instruction information based on the ascent instruction, and generates the winch operation signal including pay-out instruction information based on the descent instruction.
  • the present disclosure provides a winch system that can easily control the aircraft suspended by the cable and the cable itself.
  • FIG. 1 illustrates a side view of a system according to an embodiment of the present disclosure.
  • FIG. 2 is a block diagram of the winch system according to the embodiment.
  • FIG. 2 is a perspective view showing an example of the configuration of the aircraft according to the embodiment.
  • 2 is a perspective view showing a configuration example of a deflection suppression device according to the embodiment;
  • FIG. 1 illustrates a side view of a system according to an embodiment of the present disclosure.
  • FIG. 2 is a block diagram of the winch system according to the embodiment.
  • FIG. 2 is a perspective view showing an example of the configuration of the aircraft according to the embodiment.
  • 2 is a perspective view showing a configuration example of a deflection suppression device according to the embodiment;
  • FIG. 1 illustrates a side view of a system according to an embodiment of the present disclosure.
  • FIG. 2 is a block diagram of the winch system according to the embodiment.
  • FIG. 2 is a perspective view showing an example of the configuration of the aircraft according to the embodiment.
  • FIG. 1 is a schematic diagram of an inspection system 1 (hereinafter, also simply referred to as the "system") according to an embodiment of the present disclosure.
  • the system 1 according to the present embodiment can be used for various purposes, such as various inspections and repairs of chimneys, various manufacturing furnaces, structures, equipment, piping, etc., or checking instruments in factories, etc.
  • the target facility is not particularly limited, but can be a facility with an opening at the top.
  • the inner wall W can be photographed and inspected with a camera of a machine body 10 suspended in the internal space A of the target facility.
  • the system 1 includes an aircraft 10, a cable 20 that suspends the aircraft 10 from above, an electric winch 30 that reels out and winds up the cable 20, and a control device 40 that controls the aircraft 10 and the electric winch 30.
  • the aircraft 10 in this example is an unmanned aerial vehicle (drone) that can fly without being suspended by a cable 20, and can be controlled to any position and any attitude.
  • the aircraft 10 can ascend (levitate), descend, hover (stop in the air), move horizontally forward, backward, left and right, and turn, using the thrust obtained from the thrust generating unit 11.
  • the aircraft 10 is supported by the cable 20, it is not necessary for it to obtain upward thrust from the thrust generating unit 11.
  • the aircraft 10 is not limited to this, and may have a structure that is unable to levitate under its own power.
  • the aircraft 10 comprises a thrust generating unit 11 and a main body 12 that supports the thrust generating unit 11.
  • the main body has a frame as a support structure and a cover that protects electronic components provided on the frame.
  • the frame that constitutes the main body is not particularly limited, but may be made of any one of carbon fiber resin, glass fiber resin, magnesium, magnesium alloy, aluminum, aluminum alloy, steel, titanium, or other materials, or a combination of these.
  • the thrust generating unit 11 includes, for example, a plurality of rotors, a motor for rotating the rotors, a battery for supplying power, and the like.
  • Each rotor constituting the thrust generating unit can generate an upward thrust, and by changing the rotation direction of the rotors, a downward thrust can also be generated.
  • the thrust generating unit can also generate thrust for translation (horizontal movement) in the front-rear and left-right directions.
  • the thrust generating unit can also generate thrust in the turning direction.
  • the thrust generating unit can also change the direction (attitude) and inclination of the aircraft.
  • the rotors are provided at four locations around the aircraft (one on each side of the front and rear), but the present invention is not limited to this example, and the rotors may be provided at six or eight locations around the aircraft.
  • the number of rotors provided can be changed as appropriate depending on the structure, shape, equipment, size, etc. of the aircraft 1.
  • the frame of the airframe 10 supports components related to rotor control and power, such as a circuit board, a flight controller, an ESC (Electric Speed Controller), sensors, and a battery.
  • a control circuit including a flight controller may be mounted on the frame.
  • the battery supplies power to the motor, the camera, and the sensors, and the flight controller controls the motor rotation speed and the like.
  • the flight controller may have one or more processors 23b, such as a central processing unit (CPU) or a programmable processor such as an FPGA (Field-Programmable Gate Array).
  • the flight controller has a memory and is accessible to the memory.
  • the memory stores logic, code, and/or program instructions that the flight controller can execute to perform one or more steps.
  • the memory or other storage unit may include a separable medium or an external storage device, such as an SD card or a random access memory (RAM). Data acquired from the camera/sensor may be directly transmitted to and stored in memory. For example, still image/video data captured by the camera is recorded in an internal or external memory.
  • the flight controller includes a control module configured to control the state of the aircraft 10. For example, the control module controls the motor of the aircraft 10 via the ESC to adjust the spatial arrangement, speed, and/or acceleration of the aircraft 10 having six degrees of freedom (translational motion x, y, and z, and rotational motion ⁇ x, ⁇ y, and ⁇ z).
  • the sensor may include, for example, an inertial sensor (an inertial measurement unit such as an IMU (Inertial Measurement Sensor)), an acceleration sensor, a gyro sensor, a GPS sensor, a wind sensor, a temperature sensor, a humidity sensor, a pressure sensor, an altitude sensor, a proximity sensor such as a LiDAR (Laser Imaging Detection and Ranging), or a vision/image sensor other than a camera.
  • the sensor may be mounted on the flight controller or may be provided outside the flight controller.
  • the camera may be any camera.
  • the camera may be an infrared camera, a stereo camera, or the like, in addition to a general camera.
  • the camera may include a camera for use in self-position estimation and a camera for capturing an image of a target.
  • the attitude of the aircraft 10 may be controlled by a flight controller based on inputs obtained from appropriate sensors.
  • the attitude control of the aircraft 10 may be performed by adjusting the thrust obtained from the thrust generating unit 11, or by moving the cable 20 in the vertical direction or the horizontal direction (front/back, left/right, diagonal), or both.
  • the feedback control of the attitude may be to control the number of rotations of each rotor, or to control the horizontal and vertical movement of the cable 20. This makes it possible to suppress the horizontal movement of the aircraft 10 and more reliably maintain the attitude even if the attitude of the aircraft 10 tilts due to the influence of wind or drift.
  • the number of rotors that generate thrust is not particularly limited, but it is preferable that the number of rotors is four or more in order to make the attitude of the aircraft 10 more stable.
  • the thrust generating unit may be realized by a mechanism other than rotors.
  • Rotation control around the yaw axis using the rotors can be achieved, for example, by making the rotation directions of each of the four rotors different, thereby making it possible to rotate the aircraft 10 around the yaw axis.
  • the rotation directions of the two rotors (first rotors) on the right front and left rear sides are made counterclockwise, and the rotation directions of the rotors (second rotors) on the left front and right rear sides are made clockwise, and the first rotor and second rotor are controlled to have different rotation speeds, thereby making it possible to rotate the aircraft 10 around the yaw axis.
  • the rotation directions of the first rotor and the second rotor may be opposite to each other.
  • the aircraft 10 is equipped with one or more cameras, and can capture images of the surroundings of the aircraft 10 and obtain image data (including still images and videos).
  • the cameras may be installed in any orientation, including up and down, front and back, left and right, of the aircraft 10, and there are no particular limitations on their position on the aircraft 10. For example, they can be installed on the front side of the aircraft 10, facing forward (so that the shooting direction is toward the front of the aircraft).
  • the aircraft 10 has a communication unit for transmitting and receiving signals to the control device 40 and other external devices.
  • the aircraft 10 can transmit data acquired by cameras, sensors, etc. to external devices including the control device 40 via the communication unit.
  • the data acquired by the aircraft 10 may be stored in a memory unit provided in the aircraft 10, or may be transmitted to and stored in an external device.
  • the communication unit can use any appropriate communication means such as wired communication or wireless communication.
  • the communication unit can use one or more of any communication methods such as a local area network (LAN), a wide area network (WAN), infrared, wireless, WiFi, a point-to-point (P2P) network, a telecommunications network, and cloud communication.
  • the flight controller receives control signals from the control device 40 via the communication unit, and controls the thrust generating unit 11 based on the control signals, thereby controlling operations such as movement and rotation. It is also possible to operate the camera in response to signals from the control device 40. Camera operation includes starting and stopping filming, zooming, changing the camera orientation, etc. It is also possible to control various sensors and lights provided on the aircraft 10 based on control signals from the control device 40. It is preferable that the center of gravity of the aircraft 10 is located approximately in the center of the aircraft 10 in a planar view, but this is not limited to this.
  • a rotary joint 7 may be provided on the cable 20.
  • the rotary joint 7 is configured to be freely rotatable, and the rotation (twist) of the cable 20 connected to one side of the rotary joint 7 (e.g., the lower side of FIG. 3) is not transmitted to the cable 20 connected to the other side of the rotary joint 7 (e.g., the upper side of FIG. 3).
  • the position of the rotary joint 7 is not particularly limited and can be provided at any position, but it is preferable to provide it in the main part 50 near the connection part 52.
  • a weight 8 may be provided on the cable 20.
  • the aircraft and the cable 20 are less susceptible to the effects of air currents, improving stability. Even if the weight 8 is provided, the aircraft is supported by the cable 20, so there is almost no effect on the battery consumption when controlling the aircraft.
  • the weight 8 may be located above or below the rotary joint 7, or may be integrated with the rotary joint 7.
  • the position of the weight 8 is not particularly limited, and it may be provided at one or multiple positions on the main part 20a of the cable 20, each branch part 20b, the connection part 20c, or any position on the aircraft.
  • the aircraft may be provided with a light 9 that emits light.
  • the position and orientation of the light 9 are not particularly limited, but it is preferable that the light 9 is arranged so as to illuminate the shooting direction and shooting range of the camera 6.
  • the light 9 is provided so as to illuminate the front of the aircraft in correspondence with the camera 6 that shoots the front of the aircraft.
  • the light 9 is located above the camera 6, but it may be located below, to the left, or to the right of the camera 6.
  • the cable 20 suspends and supports the aircraft 10.
  • the cable 20 may, for example, branch midway and be connected to the four corners at the top of the main body 12 of the aircraft 10, or it may be connected to the center of the main body without branching.
  • the material that constitutes the cable 20 is not particularly limited.
  • the cable 20 may be made of, for example, fiber, metal, or hard plastic, and may be made of different materials in parts, or may have other rods, plates, etc. installed in parts.
  • the cable 20 may include a power cable capable of supplying power, a communication cable capable of transmitting and receiving signals, etc. (see reference numeral 21 in FIG. 3). This allows power to be supplied from a power supply unit provided on the electric winch 30 side to the machine 10, data such as control signals to the machine 10 to be transmitted, and conversely, various data such as image data to an information processing device provided on the electric winch 30 side from the machine 10.
  • the electric winch 30 constitutes a winch system S together with a communication unit (receiving unit) 31 that receives a control signal from the control device 40, and a control unit (signal generating unit) 32 that generates a winch operation signal that instructs the operation of the electric winch 30 based on the control signal received by the communication unit 31.
  • the winch system S may also include other components such as a memory unit.
  • the communication unit 31 may be capable of transmitting signals from the electric winch 30 to the control device 40, the aircraft 10, and other external devices, or may be configured to only receive signals without transmitting them.
  • the control unit 32 generates a winch operation signal based on the control signal from the control device 40 while referring to information stored in advance in a memory unit (not shown), and controls the motor that constitutes the electric winch 30.
  • the winch operation signal includes information such as the rotation direction, rotation speed, and rotation angle of the motor. By controlling the motor with the winch operation signal, it is possible to start, stop, or change the speed of unwinding and winding the cable 20.
  • the electric winch 30 includes a motor and a power supply unit for rotating the motor.
  • the power supply unit may be, for example, an external power supply or a rechargeable battery.
  • the electric winch 30, electronic components, battery, etc. provided in the winch system S are preferably covered by a waterproof case, waterproof cover, etc.
  • the winch system S includes a support section 33 that supports the electric winch 30, and a guide section 34 that guides the cable 20.
  • the support section 33 includes a base section 33a such as a tripod that can be placed on the ground, the top surface of a facility, etc., a support section 33b extending from the base section 33a, and an arm section 33c extending from the support section 33b.
  • the support section 33b and the arm section 33c are provided with one or more guide rollers as the guide section 34.
  • guide rollers are provided at the connection section between the support section 33b and the arm section 33c, and at the tip of the arm section 33c.
  • the base section 33a, the support section 33b, and the arm section 33c may be folded so that the whole can be carried compactly.
  • the support section 33b and the arm section 33c may be made to be able to extend and retract, rotate, tilt in any of the forward/backward/left/right/up/down directions, and be bent. This allows the positions of the cable 20 and the aircraft 10 to be controlled in a plan view.
  • the operations of the support 33b and the arm 33c may be controlled by the control unit 32 based on a control signal from the control device 40, or may be manually extended, rotated, tilted, bent, etc.
  • the position of the aircraft 10 can be moved in the extension direction of the arm 33c by extending the arm 33c in the extension direction of the arm 33c, which extends horizontally.
  • the electric winch 30 may be controlled to pay out the cable 20 so that the height of the aircraft 10 does not change.
  • the support pillar 33b is provided with a connecting portion to which a wire, string, etc. can be connected to prevent the support pillar 33 from tipping over.
  • the connecting portion may be, for example, ring-shaped, hook-shaped, or have another connecting structure.
  • a deflection suppression device 35 is provided on the support portion 33b to prevent the cable 20 from being bent when the electric winch 30 winds the cable 20.
  • the deflection suppression device 35 is located on the upper side of the electric winch 30, and by sandwiching the cable 20 between the first roller 35a and the second roller 35b, the tension of the cable 20 between the electric winch 30 and the deflection suppression device 35 is maintained. This suppresses the deflection of the cable 20 wound by the electric winch 30 and prevents irregular winding.
  • the first roller 35a is rotatably fixed to the first support portion 35c
  • the second roller 35b is rotatably fixed to the second support portion 35d.
  • the second support portion 35d is held so as to be swingable (rotatable) around the rotation axis 35e relative to the first support portion 35c, and the second support portion 35d is biased toward the first support portion 35c by a biasing member such as a spring.
  • a biasing member such as a spring.
  • an anti-slip portion such as rubber or elastomer is provided on the outer surface of at least one of the first roller 35a and the second roller 35b.
  • the length of the cable 20 can be adjusted by winding and unwinding the electric winch 30.
  • the aircraft 10 moves up and down, and for example, the shooting height of the camera can be changed.
  • the installation location of the electric winch 30 is not particularly limited, and may be inside or outside the flight environment. Also, for example, by installing guide rollers above the aircraft 10 to support the cable 20, the electric winch 30 can be placed below the aircraft. For example, the position of the electric winch 30 may be on the ground outside or inside the facility to be inspected.
  • the electric winch 30 performs control of winding, payout, etc. based on input from the control device 40, but may also be partially controlled autonomously according to a program, etc.
  • the control signal from the control device 40 includes, for example, information on an instruction to raise or lower the aircraft 10.
  • the signal generating unit 32 generates a winch operation signal including information on a winding instruction based on an instruction to raise, and generates a winch operation signal including information on a payout instruction based on an instruction to lower.
  • the electric winch 30 can automatically pay out the cable 20 and lower the aircraft 10 simply by the pilot manually operating the control device 40 to instruct the aircraft 10 to descend.
  • the control device 40 transmits control signals to control the thrust generating unit 11 of the aircraft 10, and can be, for example, a transmitter/receiver (radio transmitter) for controlling a normal unmanned aerial vehicle, or an information processing device such as a smartphone or tablet terminal, but is not limited to these.
  • a transmitter/receiver radio transmitter
  • information processing device such as a smartphone or tablet terminal
  • the control device 40 can control the operation of the thrust generating unit 11 and the electric winch 30 of the aircraft 10.
  • the control device 40 can transmit control signals (control instruction information) to the communication unit provided in the aircraft 10 and the receiving unit 31 connected to the electric winch 30.
  • the control signals include information instructing the aircraft 10 to ascend, descend, stop, move horizontally forward, backward, left, right, and diagonally, turn left and right, etc.
  • the control signals can include information to control the orientation of the aircraft 10 and information to control the parallel position (horizontal position) of the aircraft 10.
  • the control device 40 can also transmit signals to control the cameras, sensors, etc. installed on the aircraft 10, such as control instruction signals to start and stop shooting, operate the zoom, change the camera direction, control various sensors installed on the aircraft 10, and turn lights on and off.
  • the control device 40 has an input unit that accepts manual operation by the user (operator).
  • the input unit can be, for example, a pair of rod-shaped control sticks on the left and right, a rotary dial, a push button, various icons displayed on a touch panel screen, or a microphone for voice input, but is not limited to any particular input unit that can accept input from the user.
  • the control device 40 may be capable of transmitting control signals based on travel route information or an autonomous flight program based on sensing (for example, a GCS (Ground Control Station)).
  • a single control device 40 can simultaneously control the aircraft 10 and the electric winch 30. This facilitates operations to control the position and attitude of the aircraft 10 suspended by the cable 20. Furthermore, by performing work with the aircraft 10 suspended by the cable 20, it is possible to prevent the aircraft 10 from falling or becoming unable to be recovered within the facility. Furthermore, by suspending it by the cable 20, the thrust generating unit 11 of the aircraft 10 does not need to generate an upward thrust greater than its own weight, reducing battery consumption and enabling long-term use. Furthermore, there is no need to control the aircraft 10 when hovering in the air, making it easier to control.
  • the thrust generating unit when the aircraft is suspended by the tether, the thrust generating unit generates an upward force (thrust force DF2) that is smaller than the force of gravity G acting on the aircraft, thereby reducing the strain on the cable 20 (see FIG. 3), but this is not limited thereto, and the thrust generating unit may also generate a downward force on the aircraft.
  • the thrust generating unit may also temporarily generate an upward force (thrust force DF2) that is larger than the force of gravity G acting on the aircraft.
  • the autonomous control is described as being performed by the flight controller of the aircraft, but the present technology is not limited to this example.
  • this autonomous flight control method is not limited to an example in which processing is performed at the edge of the aircraft, but may be one in which the above-mentioned correction processing is performed remotely by another autonomous control device, the processing results are transmitted to the aircraft, and the drive unit is controlled based on these results.
  • the main hardware that executes this autonomous flight control method is not particularly limited, and the above-mentioned functional units may be executed by multiple hardware. The same applies to the control unit 32 of the electric winch 30.
  • an electric winch connected to a cable that suspends an aircraft having a thrust generating unit;
  • a receiving unit that receives a control signal from a control device;
  • a signal generating unit that generates a winch operation signal that instructs an operation of the electric winch based on the operation signal received by the receiving unit, the control signal includes information on an instruction to ascend or descend for the aircraft,
  • the winch system is characterized in that the signal generating unit generates the winch operation signal including winding instruction information based on the ascent instruction, and generates the winch operation signal including pay-out instruction information based on the descent instruction.
  • (Item 2) A support portion that supports the electric winch; The winch system according to claim 1 , further comprising: a guide portion that guides the cable.
  • (Item 3) The winch system according to claim 1 or 2, wherein the control signal includes information for controlling the orientation of the aircraft.
  • (Item 4) The winch system according to claim 1 or 2, wherein the control signal includes information for controlling a parallel position of the aircraft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Studio Devices (AREA)

Abstract

[Problem] To provide a winch system capable of easily carrying out control of a fuselage suspended by a cable and control of the cable. [Solution] A winch system according to the present disclosure comprises: an electric winch connected to a cable that suspends a fuselage provided with a thrust generation unit; a reception unit that receives a manipulation signal from a manipulation device; and a signal generation unit that generates a winch operation signal, which gives instructions for operation of the electric winch, on the basis of the manipulation signal received by the reception unit, wherein the manipulation signal includes information on an ascent instruction or a descent instruction for the fuselage, and the signal generation unit generates a winch operation signal, which includes information for a winding instruction, on the basis of the ascent instruction, and generates a winch operation signal, which includes information for a winding instruction, on the basis of the descent instruction.

Description

ウィンチシステムWinch System
 本開示は、ウィンチシステムに関する。 This disclosure relates to a winch system.
 従来、上方からケーブル等でカメラを吊り下げた状態で、施設内部を点検する方法が知られている。例えば特許文献1には、立坑の上部開口からカメラを吊り下げて立坑内の腐食状態などを確認する装置が開示されている。  Conventionally, there is a known method of inspecting the inside of a facility by suspending a camera from above with a cable or the like. For example, Patent Document 1 discloses a device that suspends a camera from the top opening of a shaft to check the state of corrosion inside the shaft.
特開2016-223164号公報JP 2016-223164 A
 また、カメラを備えたドローンをケーブルで吊り下げて施設内で点検することを想定した場合、ドローンの制御と、ケーブルの巻き取り及び繰り出し等の操作を並行して行うことが難しい。 In addition, if a drone equipped with a camera is suspended from a cable to inspect a facility, it would be difficult to control the drone and perform operations such as winding and unwinding the cable at the same time.
 そこで、本開示は上記問題点に鑑みてなされたものであり、その目的は、ケーブルで吊り下げられる機体の制御と、ケーブルの制御とを容易に行うことが可能なウィンチシステムを提供することである。 The present disclosure has been made in consideration of the above problems, and its purpose is to provide a winch system that can easily control the aircraft suspended by the cable and the cable.
 本開示によれば、推力発生部を備える機体を吊り下げるケーブルに接続される電動ウィンチと、
 操縦装置からの操縦信号を受信する受信部と、
 前記受信部で受信した前記操縦信号に基づいて、前記電動ウィンチの動作を指示するウィンチ動作信号を生成する信号生成部と、を備え、
 前記操縦信号は、前記機体に対する上昇指示または下降指示の情報を含み、
 前記信号生成部は、前記上昇指示に基づいて巻き取り指示の情報を含む前記ウィンチ動作信号を生成し、前記下降指示に基づいて繰り出し指示の情報を含む前記ウィンチ動作信号を生成する、ことを特徴とするウィンチシステムが提供される。
According to the present disclosure, an electric winch connected to a cable that suspends an airframe having a thrust generating unit;
A receiving unit that receives a control signal from a control device;
a signal generating unit that generates a winch operation signal that instructs an operation of the electric winch based on the operation signal received by the receiving unit,
the control signal includes information on an instruction to ascend or descend for the aircraft,
A winch system is provided, characterized in that the signal generating unit generates the winch operation signal including winding instruction information based on the ascent instruction, and generates the winch operation signal including pay-out instruction information based on the descent instruction.
 本開示によれば、ケーブルで吊り下げられる機体の制御と、ケーブルの制御とを容易に行うことが可能なウィンチシステムを提供することができる。 The present disclosure provides a winch system that can easily control the aircraft suspended by the cable and the cable itself.
本開示の一実施形態に係るシステムを示す側面図である。FIG. 1 illustrates a side view of a system according to an embodiment of the present disclosure. 同実施形態に係るウィンチシステムのブロック図である。FIG. 2 is a block diagram of the winch system according to the embodiment. 同実施形態に係る機体の構成例を示す斜視図である。FIG. 2 is a perspective view showing an example of the configuration of the aircraft according to the embodiment. 同実施形態に係る撓み抑制装置の構成例を示す斜視図である。2 is a perspective view showing a configuration example of a deflection suppression device according to the embodiment; FIG.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Below, a preferred embodiment of the present disclosure will be described in detail with reference to the attached drawings. Note that in this specification and drawings, components having substantially the same functional configurations are designated by the same reference numerals to avoid redundant description.
<概要>
 図1は、本開示の一実施形態に係る点検システム1(以下、単に「システム」とも称する)の概要図である。本実施形態に係るシステム1は、例えば、煙突、各種製造炉、構造物、設備、配管等に対する種々の検査、修理、または工場等における計器の確認等、様々な用途における作業に用いられ得る。対象施設は、特に限定されないが、上部に開口を有する施設とすることができる。図1の例では、対象施設の内部空間Aにつり下げられた機体10のカメラで、内壁Wを撮影して点検することができる。
<Overview>
FIG. 1 is a schematic diagram of an inspection system 1 (hereinafter, also simply referred to as the "system") according to an embodiment of the present disclosure. The system 1 according to the present embodiment can be used for various purposes, such as various inspections and repairs of chimneys, various manufacturing furnaces, structures, equipment, piping, etc., or checking instruments in factories, etc. The target facility is not particularly limited, but can be a facility with an opening at the top. In the example of FIG. 1, the inner wall W can be photographed and inspected with a camera of a machine body 10 suspended in the internal space A of the target facility.
 図1に示すように、システム1は、機体10と、機体10を上方から吊り下げるケーブル20と、ケーブル20の繰り出し及び巻き取りを行う電動ウィンチ30と、機体10及び電動ウィンチ30を制御するための操縦装置40と、を備える。 As shown in FIG. 1, the system 1 includes an aircraft 10, a cable 20 that suspends the aircraft 10 from above, an electric winch 30 that reels out and winds up the cable 20, and a control device 40 that controls the aircraft 10 and the electric winch 30.
 本例の機体10は、無人飛行体(ドローン)であり、ケーブル20で吊り下げられなくても飛行可能であり、任意の位置、任意の姿勢に制御することができる。機体10は、推力発生部11から得られる推力によって、上昇(浮上)、下降、ホバリング(空中停止)、前後左右等の水平移動、旋回動作が可能である。なお、機体10はケーブル20により支持されるため、上方への推力は推力発生部11から得なくてもよい。機体10は、これに限られず、自力での浮上が不可能な構造であってもよい。 The aircraft 10 in this example is an unmanned aerial vehicle (drone) that can fly without being suspended by a cable 20, and can be controlled to any position and any attitude. The aircraft 10 can ascend (levitate), descend, hover (stop in the air), move horizontally forward, backward, left and right, and turn, using the thrust obtained from the thrust generating unit 11. Note that since the aircraft 10 is supported by the cable 20, it is not necessary for it to obtain upward thrust from the thrust generating unit 11. The aircraft 10 is not limited to this, and may have a structure that is unable to levitate under its own power.
 機体10は、推力発生部11と、推力発生部11を支持する本体部12とを備える。本体部は、支持構造としてのフレームと、フレーム上に設けられた電子部品を保護するカバーとを有している。本体部を構成するフレームは、特に限定されないが、例えば、炭素繊維樹脂、ガラス繊維樹脂、マグネシウム、マグネシウム合金、アルミニウム、アルミニウム合金、鉄鋼、チタンその他の材料の何れかまたはそれらの組み合わせで構成される。 The aircraft 10 comprises a thrust generating unit 11 and a main body 12 that supports the thrust generating unit 11. The main body has a frame as a support structure and a cover that protects electronic components provided on the frame. The frame that constitutes the main body is not particularly limited, but may be made of any one of carbon fiber resin, glass fiber resin, magnesium, magnesium alloy, aluminum, aluminum alloy, steel, titanium, or other materials, or a combination of these.
 推力発生部11は、例えば、複数の回転翼と、当該回転翼を回転させるモータ、電力を供給するバッテリ等を備える。推力発生部を構成する各回転翼は、上向きの推力を発生させることができ、回転翼の回転方向を変更すれば下向きの推力を発生させることもできる。また、推力発生部は、前後左右方向の平行移動(水平移動)のための推力を発生させることができる。推力発生部は、旋回方向の推力を発生させることも可能である。また、推力発生部は、機体の向き(姿勢)、傾きも変更することができる。回転翼は、本実施形態においては、機体の周囲の4箇所(前側と後側にそれぞれ左右1箇所ずつ)に設けられているが、本発明はかかる例に限定されず、例えば回転翼を機体の周囲6箇所、8箇所に設けてもよい。飛行体1の構造、形状、装備およびサイズ等に応じて、回転翼の設けられる数は適宜変更されうる。 The thrust generating unit 11 includes, for example, a plurality of rotors, a motor for rotating the rotors, a battery for supplying power, and the like. Each rotor constituting the thrust generating unit can generate an upward thrust, and by changing the rotation direction of the rotors, a downward thrust can also be generated. The thrust generating unit can also generate thrust for translation (horizontal movement) in the front-rear and left-right directions. The thrust generating unit can also generate thrust in the turning direction. The thrust generating unit can also change the direction (attitude) and inclination of the aircraft. In this embodiment, the rotors are provided at four locations around the aircraft (one on each side of the front and rear), but the present invention is not limited to this example, and the rotors may be provided at six or eight locations around the aircraft. The number of rotors provided can be changed as appropriate depending on the structure, shape, equipment, size, etc. of the aircraft 1.
 機体10のフレームは、回路基板、フライトコントローラ、ESC(Electric Speed Controller)、センサ、バッテリ等、回転翼の制御および動力に係る部品を積載して支持する。フレームには、フライトコントローラを含む制御回路が実装されてもよい。バッテリからモータ、カメラおよびセンサ類に電力が供給され、フライトコントローラによりモータの回転数等の制御が行われる。フライトコントローラは、例えば、中央演算処理装置(CPU)や、FPGA(Field-Programmable Gate Array)のようなプログラマブルプロセッサなど、1つ以上のプロセッサ23bを有することができる。フライトコントローラは、メモリを有しており、当該メモリにアクセス可能である。メモリは、1つ以上のステップを行うためにフライトコントローラが実行可能であるロジック、コード、および/またはプログラム命令を記憶している。メモリ等の記憶部は、たとえば、SDカードやランダムアクセスメモリ(RAM)などの分離可能な媒体または外部の記憶装置を含んでいてもよい。カメラ/センサから取得したデータは、メモリに直接に伝達され記憶されてもよい。たとえば、カメラで撮影した静止画・動画データが内蔵メモリ又は外部メモリに記録される。フライトコントローラは、機体10の状態を制御するように構成された制御モジュールを含んでいる。たとえば、制御モジュールは、6自由度(並進運動x、y及びz、並びに回転運動θx、θy及びθz)を有する機体10の空間的配置、速度、および/または加速度を調整するために、ESCを経由して機体10のモータを制御する。センサは、例えば、慣性センサ(IMU(Inertial Measurement Sensor)等の慣性計測装置)、加速度センサ、ジャイロセンサ、GPSセンサ、風センサ、温度センサ、湿度センサ、気圧センサ、高度センサ、LiDAR(Laser Imaging Detection and Ranging)等の近接センサ、またはカメラ以外のビジョン/イメージセンサ等を含み得る。また、センサは、フライトコントローラに搭載されるものであってもよいし、フライトコントローラの外部に設けられるものであってもよい。また、カメラは、任意のカメラであってもよい。例えば、カメラは、一般的なカメラの他に、赤外線カメラ、ステレオカメラ等であってもよい。カメラは、例えば、自己位置推定に用いるためのカメラと、撮影対象を撮像するためのカメラとがそれぞれ設けられていてもよい。 The frame of the airframe 10 supports components related to rotor control and power, such as a circuit board, a flight controller, an ESC (Electric Speed Controller), sensors, and a battery. A control circuit including a flight controller may be mounted on the frame. The battery supplies power to the motor, the camera, and the sensors, and the flight controller controls the motor rotation speed and the like. The flight controller may have one or more processors 23b, such as a central processing unit (CPU) or a programmable processor such as an FPGA (Field-Programmable Gate Array). The flight controller has a memory and is accessible to the memory. The memory stores logic, code, and/or program instructions that the flight controller can execute to perform one or more steps. The memory or other storage unit may include a separable medium or an external storage device, such as an SD card or a random access memory (RAM). Data acquired from the camera/sensor may be directly transmitted to and stored in memory. For example, still image/video data captured by the camera is recorded in an internal or external memory. The flight controller includes a control module configured to control the state of the aircraft 10. For example, the control module controls the motor of the aircraft 10 via the ESC to adjust the spatial arrangement, speed, and/or acceleration of the aircraft 10 having six degrees of freedom (translational motion x, y, and z, and rotational motion θx, θy, and θz). The sensor may include, for example, an inertial sensor (an inertial measurement unit such as an IMU (Inertial Measurement Sensor)), an acceleration sensor, a gyro sensor, a GPS sensor, a wind sensor, a temperature sensor, a humidity sensor, a pressure sensor, an altitude sensor, a proximity sensor such as a LiDAR (Laser Imaging Detection and Ranging), or a vision/image sensor other than a camera. The sensor may be mounted on the flight controller or may be provided outside the flight controller. The camera may be any camera. For example, the camera may be an infrared camera, a stereo camera, or the like, in addition to a general camera. For example, the camera may include a camera for use in self-position estimation and a camera for capturing an image of a target.
 機体10の姿勢は、適宜センサから得られる入力に基づいてフライトコントローラが制御するものであってもよい。また、機体10の姿勢制御は、推力発生部11から得られる推力の調整により行われるものであってもよいし、また、ケーブル20を上下方向や水平方向(前後左右、斜め)に移動させることによって行われてもよいし、その両方であってもよい。具体的には、機体10の水平方向に対する姿勢が0度となるように目標値を定める場合、姿勢のフィードバック制御は、回転翼の各々の回転数を制御するものであってもよいし、また、ケーブル20の水平方向や上下方向の移動を制御するものであってもよい。これにより、風やドリフトの影響により機体10の姿勢が傾いてしまっても、機体10の水平方向の移動を抑制し、姿勢をより確実に維持することが可能となる。なお、推力を発生させる回転翼の数は特に限定されないが、機体10の姿勢をより安定させる点から、回転翼の数は4つ以上であることが好ましい。また、推力発生部としては、回転翼以外の機構により実現されるものであってもよい。 The attitude of the aircraft 10 may be controlled by a flight controller based on inputs obtained from appropriate sensors. The attitude control of the aircraft 10 may be performed by adjusting the thrust obtained from the thrust generating unit 11, or by moving the cable 20 in the vertical direction or the horizontal direction (front/back, left/right, diagonal), or both. Specifically, when a target value is set so that the attitude of the aircraft 10 with respect to the horizontal direction is 0 degrees, the feedback control of the attitude may be to control the number of rotations of each rotor, or to control the horizontal and vertical movement of the cable 20. This makes it possible to suppress the horizontal movement of the aircraft 10 and more reliably maintain the attitude even if the attitude of the aircraft 10 tilts due to the influence of wind or drift. The number of rotors that generate thrust is not particularly limited, but it is preferable that the number of rotors is four or more in order to make the attitude of the aircraft 10 more stable. The thrust generating unit may be realized by a mechanism other than rotors.
 また、機体10を水平面に沿って回転(いわゆる水平面に直交するヨー軸まわりの回転)させる場合は、ケーブル20をねじることによって実現してもよいし、回転翼の回転の制御により実現されてもよい。回転翼によるヨー軸まわりの回転制御は、例えば、4つの回転翼のうち、それぞれの回転方向を異ならせることによって、機体10をヨー軸まわりに回転させることが可能である。具体的には、右前側、左後側の2つの回転翼(第1の回転翼)の回転方向を反時計回りとし、左前側、右後側の回転翼(第2の回転翼)の回転方向を時計回りとし、第1の回転翼と第2の回転翼の各々の回転数を異ならせる制御を行うことで、機体10をヨー軸まわりに回転することが可能である。なお、第1の回転翼と第2の回転翼の回転方向はそれぞれ反対であってもよい。 Furthermore, when rotating the aircraft 10 along a horizontal plane (so-called rotation around a yaw axis perpendicular to the horizontal plane), this may be achieved by twisting the cable 20 or by controlling the rotation of the rotors. Rotation control around the yaw axis using the rotors can be achieved, for example, by making the rotation directions of each of the four rotors different, thereby making it possible to rotate the aircraft 10 around the yaw axis. Specifically, the rotation directions of the two rotors (first rotors) on the right front and left rear sides are made counterclockwise, and the rotation directions of the rotors (second rotors) on the left front and right rear sides are made clockwise, and the first rotor and second rotor are controlled to have different rotation speeds, thereby making it possible to rotate the aircraft 10 around the yaw axis. The rotation directions of the first rotor and the second rotor may be opposite to each other.
 機体10は、1つまたは複数のカメラを備え、機体10の周囲を撮影し、画像データ(静止画、動画を含む)を取得することができる。カメラは、機体10の上下、前後、左右、の何れの向きに設けられてもよく、機体10上の位置も特に限定されない。例えば、機体10の前方側に、前向き(撮影方向が機体の前方となる向き)で設置することができる。 The aircraft 10 is equipped with one or more cameras, and can capture images of the surroundings of the aircraft 10 and obtain image data (including still images and videos). The cameras may be installed in any orientation, including up and down, front and back, left and right, of the aircraft 10, and there are no particular limitations on their position on the aircraft 10. For example, they can be installed on the front side of the aircraft 10, facing forward (so that the shooting direction is toward the front of the aircraft).
 機体10は、操縦装置40、及び他の外部装置等に対して信号を送受信するための通信部を有する。機体10は、カメラやセンサ等で取得したデータを、操縦装置40を含む外部装置に通信部を介して送信することができる。なお、機体10が取得したデータは機体10に設けた記憶部に記憶してもよいし、外部装置に送信して記憶するようにしてもよい。通信部は、有線通信または無線通信などの任意の適当な通信手段を使用することができる。通信部は、たとえば、ローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(WAN)、赤外線、無線、WiFi、ポイントツーポイント(P2P)ネットワーク、電気通信ネットワーク、クラウド通信などの任意の通信方式のうちの1つ以上を利用することができる。 The aircraft 10 has a communication unit for transmitting and receiving signals to the control device 40 and other external devices. The aircraft 10 can transmit data acquired by cameras, sensors, etc. to external devices including the control device 40 via the communication unit. The data acquired by the aircraft 10 may be stored in a memory unit provided in the aircraft 10, or may be transmitted to and stored in an external device. The communication unit can use any appropriate communication means such as wired communication or wireless communication. The communication unit can use one or more of any communication methods such as a local area network (LAN), a wide area network (WAN), infrared, wireless, WiFi, a point-to-point (P2P) network, a telecommunications network, and cloud communication.
 フライトコントローラは、通信部を介して操縦装置40からの操縦信号を受信して、当該操縦信号に基づいて推力発生部11が制御され、移動、旋回等の動作が制御される。また、操縦装置40からの信号に応じてカメラの操作も可能である。カメラの操作とは、撮影の開始、停止、ズーム操作、カメラの向きの変更等を含む。また、操縦装置40からの制御信号に基づいて、機体10に設けた各種センサやライトの制御も可能である。機体10の重心は、平面視で機体10の略中心に位置することが好ましいが、これに限られるものではない。 The flight controller receives control signals from the control device 40 via the communication unit, and controls the thrust generating unit 11 based on the control signals, thereby controlling operations such as movement and rotation. It is also possible to operate the camera in response to signals from the control device 40. Camera operation includes starting and stopping filming, zooming, changing the camera orientation, etc. It is also possible to control various sensors and lights provided on the aircraft 10 based on control signals from the control device 40. It is preferable that the center of gravity of the aircraft 10 is located approximately in the center of the aircraft 10 in a planar view, but this is not limited to this.
 図3に示すように、ケーブル20に回転ジョイント7を設けてもよい。回転ジョイント7は、回転自在な構成となっており、回転ジョイント7の一方側(例えば図3の下側)に接続されるケーブル20の回転(捩れ)が、回転ジョイント7の他方側(例えば図3の上側)に接続されるケーブル20に伝わらないようになっている。このような構成により、例えば機体がヨー軸周りに回転した場合でも、ケーブル20が捩れないので捩れ方向の反力等の影響を受けることがなく、機体の制御が容易となる。回転ジョイント7の位置は特に限定されず任意の位置に設けることができるが、接続部52付近の主部50に設けることが好ましい。 As shown in FIG. 3, a rotary joint 7 may be provided on the cable 20. The rotary joint 7 is configured to be freely rotatable, and the rotation (twist) of the cable 20 connected to one side of the rotary joint 7 (e.g., the lower side of FIG. 3) is not transmitted to the cable 20 connected to the other side of the rotary joint 7 (e.g., the upper side of FIG. 3). With this configuration, even if the aircraft rotates around the yaw axis, the cable 20 does not twist, so it is not affected by reaction forces in the torsional direction, making it easier to control the aircraft. The position of the rotary joint 7 is not particularly limited and can be provided at any position, but it is preferable to provide it in the main part 50 near the connection part 52.
 また、図3に示すように、ケーブル20に重り8を設けてもよい。重り8を設けることで、機体及びケーブル20が、気流の影響を受けにくくなり、安定性が向上する。また、重り8を設けた場合でも、ケーブル20によって機体を支持しているため、機体を制御する際のバッテリの消費量にはほとんど影響がない。重り8の位置は、回転ジョイント7の上側でも下側でもよく、回転ジョイント7と一体であってもよい。なお、重り8の位置は特に限定されず、ケーブル20の主部20a、各枝部20b、接続部20c、あるいは機体の何れかの位置に、1つ、もしくは複数の位置にそれぞれ設けてもよい。 Also, as shown in FIG. 3, a weight 8 may be provided on the cable 20. By providing the weight 8, the aircraft and the cable 20 are less susceptible to the effects of air currents, improving stability. Even if the weight 8 is provided, the aircraft is supported by the cable 20, so there is almost no effect on the battery consumption when controlling the aircraft. The weight 8 may be located above or below the rotary joint 7, or may be integrated with the rotary joint 7. The position of the weight 8 is not particularly limited, and it may be provided at one or multiple positions on the main part 20a of the cable 20, each branch part 20b, the connection part 20c, or any position on the aircraft.
 また、図3に示すように、機体には光を発するライト9を設けてもよい。ライト9の位置及び向きは特に限定されないが、カメラ6の撮影方向、撮影範囲を照らすように配置されることが好ましい。図示例では機体の前方を撮影するカメラ6に対応して、機体の前方を照らすようにライト9が設けられている。ライト9は、図示例ではカメラ6の上側に位置しているが、カメラ6の下側、左側、右側の何れの位置にあってもよい。 Also, as shown in FIG. 3, the aircraft may be provided with a light 9 that emits light. The position and orientation of the light 9 are not particularly limited, but it is preferable that the light 9 is arranged so as to illuminate the shooting direction and shooting range of the camera 6. In the illustrated example, the light 9 is provided so as to illuminate the front of the aircraft in correspondence with the camera 6 that shoots the front of the aircraft. In the illustrated example, the light 9 is located above the camera 6, but it may be located below, to the left, or to the right of the camera 6.
 ケーブル20は、一端が機体10に接続され、他端が電動ウィンチ30に接続される。ケーブル20は機体10を吊り下げて支持する。ケーブル20は、例えば途中で分岐して機体10の本体部12の上部の4隅に接続されてもよいし、あるいは分岐せずに本体部の中央に接続されてもよい。 One end of the cable 20 is connected to the aircraft 10, and the other end is connected to the electric winch 30. The cable 20 suspends and supports the aircraft 10. The cable 20 may, for example, branch midway and be connected to the four corners at the top of the main body 12 of the aircraft 10, or it may be connected to the center of the main body without branching.
 ケーブル20を構成する素材は特に限定されない。ケーブル20は、例えば、繊維、金属または硬質プラスチック等からなり、部分的に素材が異なっていたり、他の棒材、板材等が一部に設けられたりしてもよい。 The material that constitutes the cable 20 is not particularly limited. The cable 20 may be made of, for example, fiber, metal, or hard plastic, and may be made of different materials in parts, or may have other rods, plates, etc. installed in parts.
 ケーブル20は、電力を供給可能な電力ケーブル、信号を送受信可能な通信ケーブル等(図3の符号21参照)を含んでいてもよい。これによれば、電動ウィンチ30側に設けた電源部から機体10に電力を供給したり、機体10への制御信号等のデータを送信したり、逆に機体10から電動ウィンチ30側に設けた情報処理装置に画像データ等の各種データを送信したりすることができる。 The cable 20 may include a power cable capable of supplying power, a communication cable capable of transmitting and receiving signals, etc. (see reference numeral 21 in FIG. 3). This allows power to be supplied from a power supply unit provided on the electric winch 30 side to the machine 10, data such as control signals to the machine 10 to be transmitted, and conversely, various data such as image data to an information processing device provided on the electric winch 30 side from the machine 10.
 電動ウィンチ30は、操縦装置40からの操縦信号を受信する通信部(受信部)31と、通信部31で受信した操縦信号に基づいて、電動ウィンチ30の動作を指示するウィンチ動作信号を生成する制御部(信号生成部)32と共に、ウィンチシステムSを構成する。ウィンチシステムSは、記憶部等の他の構成を備えてもよい。通信部31は、電動ウィンチ30側からの信号を、操縦装置40、機体10、及び他の外部装置等に送信することができるものであってもよいし、信号の送信はせずに受信のみを行う構成であってもよい。制御部32は、図示しない記憶部に予め記憶された情報を参照しつつ、操縦装置40からの操縦信号に基づいてウィンチ動作信号を生成し、電動ウィンチ30を構成するモータを制御する。ウィンチ動作信号は、当該モータの回転方向、回転速度、回転角度等の情報を含む。ウィンチ動作信号でモータを制御することで、ケーブル20の繰り出し、巻き取りを開始したり、停止したり、速度を変更したりすることができる。電動ウィンチ30は、モータと、モータを回転させるための電源部を備える。電源部は、例えば、外部電源でもよいし、充電可能なバッテリ等でもよい。ウィンチシステムSに設けられる電動ウィンチ30、電子部品、バッテリ等は、それらを覆う防水ケース、防水カバー等によって覆われていることが好ましい。 The electric winch 30 constitutes a winch system S together with a communication unit (receiving unit) 31 that receives a control signal from the control device 40, and a control unit (signal generating unit) 32 that generates a winch operation signal that instructs the operation of the electric winch 30 based on the control signal received by the communication unit 31. The winch system S may also include other components such as a memory unit. The communication unit 31 may be capable of transmitting signals from the electric winch 30 to the control device 40, the aircraft 10, and other external devices, or may be configured to only receive signals without transmitting them. The control unit 32 generates a winch operation signal based on the control signal from the control device 40 while referring to information stored in advance in a memory unit (not shown), and controls the motor that constitutes the electric winch 30. The winch operation signal includes information such as the rotation direction, rotation speed, and rotation angle of the motor. By controlling the motor with the winch operation signal, it is possible to start, stop, or change the speed of unwinding and winding the cable 20. The electric winch 30 includes a motor and a power supply unit for rotating the motor. The power supply unit may be, for example, an external power supply or a rechargeable battery. The electric winch 30, electronic components, battery, etc. provided in the winch system S are preferably covered by a waterproof case, waterproof cover, etc.
 ウィンチシステムSは、電動ウィンチ30を支持する支持部33と、ケーブル20をガイドするガイド部34と、を備える。支持部33は、地面、施設の上面等に載置可能な三脚等のベース部33aと、ベース部33aから延在する支柱部33bと、支柱部33bから延びるアーム部33cと、を備える。支柱部33b、アーム部33cには、ガイド部34としての1以上のガイドローラが設けられている。本例では、支柱部33bとアーム部33cの連結部、及び、アーム部33cの先端部に、ガイドローラが設けられている。ベース部33a、支柱部33b及びアーム部33cは、折り畳むことにより全体としてコンパクトに持ち運ぶことができるようにしてもよい。支柱部33b及びアーム部33cは、それぞれ伸縮したり、回転したり、前後左右上下方向の何れかに傾斜したり、折り曲げたりすることができるようにしてもよい。これにより、ケーブル20及び機体10の平面視での位置を制御することができる。また、支柱部33b及びアーム部33cの動作は、操縦装置40からの操縦信号に基づいて、制御部32によって制御されるようにしてもよいし、手動で伸縮、回転、傾斜、折り曲げ等を行ってもよい。例えば、水平方向に延びるアーム部33cの延在方向にアーム部33cを伸ばすことで、機体10の位置をアーム部33cの延在方向に移動させることができる。その際、機体10の高さが変わらないように、電動ウィンチ30を制御してケーブル20を繰り出すようにしてもよい。 The winch system S includes a support section 33 that supports the electric winch 30, and a guide section 34 that guides the cable 20. The support section 33 includes a base section 33a such as a tripod that can be placed on the ground, the top surface of a facility, etc., a support section 33b extending from the base section 33a, and an arm section 33c extending from the support section 33b. The support section 33b and the arm section 33c are provided with one or more guide rollers as the guide section 34. In this example, guide rollers are provided at the connection section between the support section 33b and the arm section 33c, and at the tip of the arm section 33c. The base section 33a, the support section 33b, and the arm section 33c may be folded so that the whole can be carried compactly. The support section 33b and the arm section 33c may be made to be able to extend and retract, rotate, tilt in any of the forward/backward/left/right/up/down directions, and be bent. This allows the positions of the cable 20 and the aircraft 10 to be controlled in a plan view. The operations of the support 33b and the arm 33c may be controlled by the control unit 32 based on a control signal from the control device 40, or may be manually extended, rotated, tilted, bent, etc. For example, the position of the aircraft 10 can be moved in the extension direction of the arm 33c by extending the arm 33c in the extension direction of the arm 33c, which extends horizontally. At that time, the electric winch 30 may be controlled to pay out the cable 20 so that the height of the aircraft 10 does not change.
 支柱部33bには、支持部33の転倒を防止するためのワイヤー、紐等を連結することができる連結部が設けられている。連結部は、例えばリング状、フック状、他の連結構造であってもよい。当該連結部に連結したワイヤーを、アーム部33cと逆側に延在させ、地面や他の重量物に連結することにより、支持部33がアーム部33c及び機体10の重みでアーム部33c側に倒れることを防止することができる。連結部は、支柱部33bの中央部分から上側部分に設けられていることが好ましい。 The support pillar 33b is provided with a connecting portion to which a wire, string, etc. can be connected to prevent the support pillar 33 from tipping over. The connecting portion may be, for example, ring-shaped, hook-shaped, or have another connecting structure. By extending the wire connected to the connecting portion on the opposite side to the arm pillar 33c and connecting it to the ground or another heavy object, it is possible to prevent the support pillar 33 from tipping over towards the arm pillar 33c due to the weight of the arm pillar 33c and the aircraft body 10. The connecting portion is preferably provided from the center to the upper portion of the support pillar 33b.
 ここで、電動ウィンチ30でケーブル20を巻き取る際に、ケーブル20に撓みが生じると、ケーブル20が電動ウィンチ30で絡まり乱巻き状態となるおそれがある。そのため、本例では、図4に示すように、電動ウィンチ30でケーブル20を巻き取る際に、ケーブル20に撓みが生じるのを防止するための撓み抑制装置35が支柱部33bに設けられている。撓み抑制装置35は、電動ウィンチ30の上側に位置し、第1ローラ35aと第2ローラ35bとの間にケーブル20を挟み込むことで、電動ウィンチ30と撓み抑制装置35の間のケーブル20のテンションを維持する。これにより、電動ウィンチ30で巻き取るケーブル20の撓みを抑制し、乱巻きを防ぐことができる。本例では、第1ローラ35aは第1支持部35cに対して回転可能に固定されており、第2ローラ35bは第2支持部35dに対して回転可能に固定されている。第2支持部35dは、第1支持部35cに対して回転軸35eを中心として揺動(回転)可能に保持され、第2支持部35dは、ばね等の付勢部材により、第1支持部35cに向けて付勢されている。第1支持部35cから離れる方向に第2支持部35dを開くことで、ケーブル20を第1ローラ35aと第2ローラ35bの間に挟んだり、取り出したりすることができる。第1ローラ35aと第2ローラ35bの少なくとも一方の外表面には、ゴム、エラストマ等の滑り止め部が設けられていることが好ましい。 Here, if the cable 20 is bent when the electric winch 30 winds the cable 20, the cable 20 may become tangled and irregularly wound on the electric winch 30. Therefore, in this example, as shown in FIG. 4, a deflection suppression device 35 is provided on the support portion 33b to prevent the cable 20 from being bent when the electric winch 30 winds the cable 20. The deflection suppression device 35 is located on the upper side of the electric winch 30, and by sandwiching the cable 20 between the first roller 35a and the second roller 35b, the tension of the cable 20 between the electric winch 30 and the deflection suppression device 35 is maintained. This suppresses the deflection of the cable 20 wound by the electric winch 30 and prevents irregular winding. In this example, the first roller 35a is rotatably fixed to the first support portion 35c, and the second roller 35b is rotatably fixed to the second support portion 35d. The second support portion 35d is held so as to be swingable (rotatable) around the rotation axis 35e relative to the first support portion 35c, and the second support portion 35d is biased toward the first support portion 35c by a biasing member such as a spring. By opening the second support portion 35d in a direction away from the first support portion 35c, the cable 20 can be sandwiched between the first roller 35a and the second roller 35b or removed. It is preferable that an anti-slip portion such as rubber or elastomer is provided on the outer surface of at least one of the first roller 35a and the second roller 35b.
 電動ウィンチ30の巻き取り、繰り出しにより、ケーブル20の長さを調整することができる。ケーブル20の長さ(繰り出し量)に応じて、機体10が上下動して、例えば、カメラの撮影高さを変更することができる。なお、電動ウィンチ30の設置位置は特に限定されず、飛行環境の内部であっても外部であってもよい。また、例えば機体10の上方にガイドローラを設置してケーブル20を支持することで、電動ウィンチ30は、機体の下方に配置することも可能である。例えば、電動ウィンチ30の位置は、点検対象施設の外部もしくは内部の地面であってもよい。 The length of the cable 20 can be adjusted by winding and unwinding the electric winch 30. Depending on the length (unwinding amount) of the cable 20, the aircraft 10 moves up and down, and for example, the shooting height of the camera can be changed. The installation location of the electric winch 30 is not particularly limited, and may be inside or outside the flight environment. Also, for example, by installing guide rollers above the aircraft 10 to support the cable 20, the electric winch 30 can be placed below the aircraft. For example, the position of the electric winch 30 may be on the ground outside or inside the facility to be inspected.
 電動ウィンチ30は、操縦装置40の入力に基づいて巻き取り、繰り出し等の制御が実行されるが、部分的に、プログラム等に従って自律的に制御されるものであってもよい。 The electric winch 30 performs control of winding, payout, etc. based on input from the control device 40, but may also be partially controlled autonomously according to a program, etc.
 操縦装置40からの操縦信号は、例えば、機体10に対する上昇指示または下降指示の情報を含む。信号生成部32は、上昇指示に基づいて巻き取り指示の情報を含むウィンチ動作信号を生成し、下降指示に基づいて繰り出し指示の情報を含むウィンチ動作信号を生成する。これにより、例えば操縦者が操縦装置40に設けられた操作スティックを一方に倒す、または、タッチパネルに表示された操作アイコンを一方にスライド操作するなどして、機体10の上昇を指示する操作を行うだけで、自動的に電動ウィンチ30がケーブル20を巻き取り、機体10を上昇させることができる。同様に、操縦者が操縦装置40を手動操作して機体10の下降を指示する操作を行うだけで、自動的に電動ウィンチ30がケーブル20を繰り出し、機体10を下降させることができる。 The control signal from the control device 40 includes, for example, information on an instruction to raise or lower the aircraft 10. The signal generating unit 32 generates a winch operation signal including information on a winding instruction based on an instruction to raise, and generates a winch operation signal including information on a payout instruction based on an instruction to lower. This allows the electric winch 30 to automatically wind up the cable 20 and raise the aircraft 10 simply by the pilot tilting the control stick provided on the control device 40 to one side, or by sliding an operation icon displayed on a touch panel to one side, to instruct the aircraft 10 to rise. Similarly, the electric winch 30 can automatically pay out the cable 20 and lower the aircraft 10 simply by the pilot manually operating the control device 40 to instruct the aircraft 10 to descend.
 操縦装置40は、機体10の推力発生部11等を制御するための操縦信号を送信するものであり、例えば、通常の無人飛行体を操縦するための送受信機(プロポ)、スマートフォン、タブレット端末等の情報処理装置とすることができるが、これに限られない。 The control device 40 transmits control signals to control the thrust generating unit 11 of the aircraft 10, and can be, for example, a transmitter/receiver (radio transmitter) for controlling a normal unmanned aerial vehicle, or an information processing device such as a smartphone or tablet terminal, but is not limited to these.
 操縦装置40は、機体10の推力発生部11及び電動ウィンチ30の動作を制御することができる。操縦装置40は、機体10に設けられた通信部、及び、電動ウィンチ30に接続される受信部31に対して操縦信号(制御指示情報)を送信することができる。操縦信号は、機体10の上昇、下降、停止、前後左右斜めの水平移動、左右の旋回等を指示する情報を含む。つまり、操縦信号は、機体10の向き制御する情報、機体10の平行位置(水平方向の位置)を制御する情報を含むことができる。 The control device 40 can control the operation of the thrust generating unit 11 and the electric winch 30 of the aircraft 10. The control device 40 can transmit control signals (control instruction information) to the communication unit provided in the aircraft 10 and the receiving unit 31 connected to the electric winch 30. The control signals include information instructing the aircraft 10 to ascend, descend, stop, move horizontally forward, backward, left, right, and diagonally, turn left and right, etc. In other words, the control signals can include information to control the orientation of the aircraft 10 and information to control the parallel position (horizontal position) of the aircraft 10.
 操縦装置40は、機体10に設けたカメラ、センサ等を制御するための信号も送信可能であり、例えば撮影の開始、停止、ズーム操作、カメラの向きの変更、機体10に設けた各種センサの制御やライトの点灯、消灯等の制御指示信号も送信可能である。 The control device 40 can also transmit signals to control the cameras, sensors, etc. installed on the aircraft 10, such as control instruction signals to start and stop shooting, operate the zoom, change the camera direction, control various sensors installed on the aircraft 10, and turn lights on and off.
 操縦装置40は、使用者(オペレータ)による手動操作を受け付ける入力部を有する。入力部は、例えば、左右一対の棒状の操作スティックや、回転ダイヤル、押しボタン、タッチパネルの画面に表示される各種アイコン、あるいは、音声入力のためのマイク等とすることができるが、使用者からの入力を受け付けるものであれば特に限定されない。操縦装置40は、移動経路情報やセンシングによる自律的な飛行プログラム(例えば、GCS(Ground Control Station))に基づいて、操縦信号を送信することができるものであってもよい。 The control device 40 has an input unit that accepts manual operation by the user (operator). The input unit can be, for example, a pair of rod-shaped control sticks on the left and right, a rotary dial, a push button, various icons displayed on a touch panel screen, or a microphone for voice input, but is not limited to any particular input unit that can accept input from the user. The control device 40 may be capable of transmitting control signals based on travel route information or an autonomous flight program based on sensing (for example, a GCS (Ground Control Station)).
 本実施形態のシステムにあっては、1台の操縦装置40で、機体10の制御と、電動ウィンチ30の制御を同時に実行可能である。これにより、ケーブル20で吊り下げた機体10の位置や姿勢を制御するための操作が容易となる。また、機体10をケーブル20で吊り下げて作業を行うことで、機体10が墜落することや施設内で回収不能となることを防止することができる。また、ケーブル20で吊り下げることで、機体10の推力発生部11が自重以上の上向きの推力を発生させる必要がなく、バッテリの消耗を低減させて長時間の使用が可能となる。また、機体10を空中停止(ホバリング)させる際の操縦の必要がなく、操縦が容易となる。 In the system of this embodiment, a single control device 40 can simultaneously control the aircraft 10 and the electric winch 30. This facilitates operations to control the position and attitude of the aircraft 10 suspended by the cable 20. Furthermore, by performing work with the aircraft 10 suspended by the cable 20, it is possible to prevent the aircraft 10 from falling or becoming unable to be recovered within the facility. Furthermore, by suspending it by the cable 20, the thrust generating unit 11 of the aircraft 10 does not need to generate an upward thrust greater than its own weight, reducing battery consumption and enabling long-term use. Furthermore, there is no need to control the aircraft 10 when hovering in the air, making it easier to control.
 以上、本実施形態について説明したが、上記実施形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物も含まれる。 The present embodiment has been described above, but the above embodiment is intended to facilitate understanding of the present invention and is not intended to limit the interpretation of the present invention. The present invention may be modified or improved without departing from the spirit of the present invention, and equivalents thereof are also included in the present invention.
 上記実施形態では、機体が繋留体により吊り下げられている状態において、推力発生部が機体に生じる重力Gよりも小さい力(推力DF2)を上方に生じさせてケーブル20に掛かる負担を軽減する構成としていたが(図3参照)、これに限られず、推力発生部が機体に対して下方に力を生じさせる構成としてもよい。なお、推力発生部は、一時的に機体に生じる重力Gよりも大きい力(推力DF2)を上方に生じさせてもよい。 In the above embodiment, when the aircraft is suspended by the tether, the thrust generating unit generates an upward force (thrust force DF2) that is smaller than the force of gravity G acting on the aircraft, thereby reducing the strain on the cable 20 (see FIG. 3), but this is not limited thereto, and the thrust generating unit may also generate a downward force on the aircraft. The thrust generating unit may also temporarily generate an upward force (thrust force DF2) that is larger than the force of gravity G acting on the aircraft.
 なお、上記実施形態においては、自律的な制御を機体のフライトコントローラにより実行するものとして説明したが、本技術はかかる例に限定されない。すなわち、かかる自律飛行制御方法は、機体においてエッジで処理される例に限られず、他の自律制御装置により遠隔で上述した補正処理がなされ、その処理結果を飛行体に送信し、かかる結果をもとに駆動部を制御するようなものであってもよい。つまり、かかる自律飛行制御方法を実行するハードウェアの主体は特に限定されず、上述した機能部は複数のハードウェアにより実行されるものであってもよい。これは、電動ウィンチ30の制御部32も同様である。 In the above embodiment, the autonomous control is described as being performed by the flight controller of the aircraft, but the present technology is not limited to this example. In other words, this autonomous flight control method is not limited to an example in which processing is performed at the edge of the aircraft, but may be one in which the above-mentioned correction processing is performed remotely by another autonomous control device, the processing results are transmitted to the aircraft, and the drive unit is controlled based on these results. In other words, the main hardware that executes this autonomous flight control method is not particularly limited, and the above-mentioned functional units may be executed by multiple hardware. The same applies to the control unit 32 of the electric winch 30.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 Furthermore, the effects described in this specification are merely descriptive or exemplary and are not limiting. In other words, the technology disclosed herein may achieve other effects that are apparent to a person skilled in the art from the description in this specification, in addition to or in place of the above effects.
 なお、以下のような構成も本開示の技術的範囲に属する。
(項目1)
 推力発生部を備える機体を吊り下げるケーブルに接続される電動ウィンチと、
 操縦装置からの操縦信号を受信する受信部と、
 前記受信部で受信した前記操縦信号に基づいて、前記電動ウィンチの動作を指示するウィンチ動作信号を生成する信号生成部と、を備え、
 前記操縦信号は、前記機体に対する上昇指示または下降指示の情報を含み、
 前記信号生成部は、前記上昇指示に基づいて巻き取り指示の情報を含む前記ウィンチ動作信号を生成し、前記下降指示に基づいて繰り出し指示の情報を含む前記ウィンチ動作信号を生成する、ことを特徴とするウィンチシステム。
(項目2)
 前記電動ウィンチを支持する支持部と、
 前記ケーブルをガイドするガイド部と、を備える、請求項1に記載のウィンチシステム。
(項目3)
 前記操縦信号は、機体の向き制御する情報を含む、請求項1または2に記載のウィンチシステム。
(項目4)
 前記操縦信号は、機体の平行位置を制御する情報を含む、請求項1または2に記載のウィンチシステム。
Note that the following configurations also fall within the technical scope of the present disclosure.
(Item 1)
an electric winch connected to a cable that suspends an aircraft having a thrust generating unit;
A receiving unit that receives a control signal from a control device;
a signal generating unit that generates a winch operation signal that instructs an operation of the electric winch based on the operation signal received by the receiving unit,
the control signal includes information on an instruction to ascend or descend for the aircraft,
The winch system is characterized in that the signal generating unit generates the winch operation signal including winding instruction information based on the ascent instruction, and generates the winch operation signal including pay-out instruction information based on the descent instruction.
(Item 2)
A support portion that supports the electric winch;
The winch system according to claim 1 , further comprising: a guide portion that guides the cable.
(Item 3)
The winch system according to claim 1 or 2, wherein the control signal includes information for controlling the orientation of the aircraft.
(Item 4)
The winch system according to claim 1 or 2, wherein the control signal includes information for controlling a parallel position of the aircraft.
 1      ウィンチシステム
 10     機体
 20     ケーブル
 30     電動ウィンチ
 31     受信部
 32     信号生成部
 40     操縦装置
Reference Signs List 1 Winch system 10 Airframe 20 Cable 30 Electric winch 31 Receiving unit 32 Signal generating unit 40 Control device

Claims (4)

  1.  推力発生部を備える機体を吊り下げるケーブルに接続される電動ウィンチと、
     操縦装置からの操縦信号を受信する受信部と、
     前記受信部で受信した前記操縦信号に基づいて、前記電動ウィンチの動作を指示するウィンチ動作信号を生成する信号生成部と、を備え、
     前記操縦信号は、前記機体に対する上昇指示または下降指示の情報を含み、
     前記信号生成部は、前記上昇指示に基づいて巻き取り指示の情報を含む前記ウィンチ動作信号を生成し、前記下降指示に基づいて繰り出し指示の情報を含む前記ウィンチ動作信号を生成する、ことを特徴とするウィンチシステム。
    an electric winch connected to a cable that suspends an aircraft having a thrust generating unit;
    A receiving unit that receives a control signal from a control device;
    a signal generating unit that generates a winch operation signal that instructs an operation of the electric winch based on the operation signal received by the receiving unit,
    the control signal includes information on an instruction to ascend or descend for the aircraft,
    The winch system is characterized in that the signal generating unit generates the winch operation signal including winding instruction information based on the ascent instruction, and generates the winch operation signal including pay-out instruction information based on the descent instruction.
  2.  前記電動ウィンチを支持する支持部と、
     前記ケーブルをガイドするガイド部と、を備える、請求項1に記載のウィンチシステム。
    A support portion that supports the electric winch;
    The winch system according to claim 1 , further comprising: a guide portion that guides the cable.
  3.  前記操縦信号は、機体の向き制御する情報を含む、請求項1または2に記載のウィンチシステム。 The winch system of claim 1 or 2, wherein the control signal includes information for controlling the orientation of the aircraft.
  4.  前記操縦信号は、機体の平行位置を制御する情報を含む、請求項1または2に記載のウィンチシステム。 The winch system of claim 1 or 2, wherein the control signal includes information for controlling the parallel position of the aircraft.
PCT/JP2024/000553 2023-01-20 2024-01-12 Winch system WO2024154655A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023007045A JP2024102949A (en) 2023-01-20 2023-01-20 Winch System
JP2023-007045 2023-01-20

Publications (1)

Publication Number Publication Date
WO2024154655A1 true WO2024154655A1 (en) 2024-07-25

Family

ID=91955900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/000553 WO2024154655A1 (en) 2023-01-20 2024-01-12 Winch system

Country Status (2)

Country Link
JP (1) JP2024102949A (en)
WO (1) WO2024154655A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018052429A (en) * 2016-09-30 2018-04-05 株式会社エンルートM’s Unmanned work device, method for the same and program
JP2018095394A (en) * 2016-12-12 2018-06-21 株式会社自律制御システム研究所 Work system
JP2020138640A (en) * 2019-02-28 2020-09-03 株式会社旭テクノロジー Structure inspection device using unmanned flight body
KR102189033B1 (en) * 2020-01-28 2020-12-10 주식회사 숨비 Drone hangar for pickup truck with take-off and landing guide function and, drone operating system including the same
CN113492994A (en) * 2021-06-23 2021-10-12 深圳市贝贝特科技实业有限公司 Interactive synchronous automatic take-up and pay-off system for mooring unmanned aerial vehicle and winch

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018052429A (en) * 2016-09-30 2018-04-05 株式会社エンルートM’s Unmanned work device, method for the same and program
JP2018095394A (en) * 2016-12-12 2018-06-21 株式会社自律制御システム研究所 Work system
JP2020138640A (en) * 2019-02-28 2020-09-03 株式会社旭テクノロジー Structure inspection device using unmanned flight body
KR102189033B1 (en) * 2020-01-28 2020-12-10 주식회사 숨비 Drone hangar for pickup truck with take-off and landing guide function and, drone operating system including the same
CN113492994A (en) * 2021-06-23 2021-10-12 深圳市贝贝特科技实业有限公司 Interactive synchronous automatic take-up and pay-off system for mooring unmanned aerial vehicle and winch

Also Published As

Publication number Publication date
JP2024102949A (en) 2024-08-01

Similar Documents

Publication Publication Date Title
US12038129B2 (en) Systems and methods for payload stabilization
US11001395B2 (en) Payload mounting platform
CN108027098B (en) Cloud platform with parallelly connected steady mechanism that increases
JP6283425B2 (en) Unmanned aerial vehicle
JP6262318B1 (en) Cable inspection device
JP2014062789A (en) Photograph measuring camera and aerial photographing device
JP6213968B2 (en) Shooting unit
WO2024154655A1 (en) Winch system
JP7034896B2 (en) Unmanned flying object
JP2024149573A (en) Winch System
JP6798729B2 (en) An air vehicle with a long body
WO2022172987A1 (en) Work system and method of controlling airframe
JP2023099877A (en) Imaging apparatus and monitoring system
JP2022065247A (en) Moving device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24744578

Country of ref document: EP

Kind code of ref document: A1