WO2024154195A1 - Light emitting device and display device - Google Patents

Light emitting device and display device Download PDF

Info

Publication number
WO2024154195A1
WO2024154195A1 PCT/JP2023/000992 JP2023000992W WO2024154195A1 WO 2024154195 A1 WO2024154195 A1 WO 2024154195A1 JP 2023000992 W JP2023000992 W JP 2023000992W WO 2024154195 A1 WO2024154195 A1 WO 2024154195A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
electrode
emitting device
emitting element
layer
Prior art date
Application number
PCT/JP2023/000992
Other languages
French (fr)
Japanese (ja)
Inventor
伸郎 齊藤
Original Assignee
シャープディスプレイテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープディスプレイテクノロジー株式会社 filed Critical シャープディスプレイテクノロジー株式会社
Priority to PCT/JP2023/000992 priority Critical patent/WO2024154195A1/en
Publication of WO2024154195A1 publication Critical patent/WO2024154195A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K65/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element and at least one organic radiation-sensitive element, e.g. organic opto-couplers

Definitions

  • This disclosure relates to a light-emitting device and a display device.
  • Predictive compensation for light-emitting elements only compensates for deterioration over time based on a prediction. For this reason, there is a need to perform external compensation based on the deterioration state of the light-emitting element, and in order to optimize external compensation, there is a need for a configuration in which a light-receiving sensor is provided for each light-emitting element.
  • Patent Document 1 discloses a configuration in which an organic EL element is formed on a transparent substrate, and an optical sensor is formed between the transparent substrate and the organic EL element, or on the transparent substrate on the opposite side to the organic EL element.
  • the refractive index of the layer containing the light-emitting element is different from that of the outside, so light emitted at a large angle is reflected at the boundary or surface, making it difficult to extract to the outside.
  • light emitted at a small angle is easy to extract to the outside.
  • the light sensor overlaps with the organic EL element in a planar view, so some of the light emitted at a small angle enters the light sensor. Therefore, the amount of light that is easy to extract is reduced by the amount that enters the light sensor, resulting in a problem of reduced light extraction efficiency.
  • the light emitting device includes an optical waveguide, a light emitting element that overlaps with the optical waveguide in a planar view, and a light receiving sensor that overlaps with the optical waveguide but does not overlap with the light emitting element in a planar view.
  • the light extraction efficiency can be improved in a light emitting device that includes a light emitting element and a light receiving sensor.
  • FIG. 1 is a schematic plan view illustrating an example of a configuration of a light-emitting device according to an embodiment of the present disclosure.
  • 1 is a schematic cross-sectional view showing an example of a configuration of a light-emitting device according to an embodiment of the present disclosure.
  • 3 is a circuit diagram showing an example in which the pixel circuit and the light receiving circuit shown in FIG. 2 have the same circuit configuration.
  • 4 is a circuit diagram showing an example of an operation when data is written from a data line to a pixel circuit in the circuit configuration shown in FIG. 3.
  • FIG. 4 is a circuit diagram showing an example of an operation when a light receiving element emits light in the circuit configuration shown in FIG. 3.
  • FIG. 3 is a schematic plan view illustrating an example of a configuration of a light-emitting device according to an embodiment of the present disclosure.
  • 3 is a circuit diagram showing an example in which the pixel circuit and the light receiving circuit shown in FIG. 2 have the same circuit configuration.
  • 4 is a circuit
  • FIG. 3 is a circuit diagram showing an example of a different circuit configuration of the pixel circuit and the light receiving circuit shown in FIG. 2.
  • 7 is a circuit diagram showing an example of an operation when data is written from a data line to a pixel circuit in the circuit configuration shown in FIG. 6.
  • FIG. 7 is a circuit diagram showing an example of the operation when a light receiving element emits light in the circuit configuration shown in FIG. 6.
  • FIG. 7 is a circuit diagram showing an example of an operation when data is read out from a light receiving circuit to a data line in the circuit configuration shown in FIG. 6.
  • FIG. 1 is a schematic cross-sectional view showing an example of a configuration of a light-emitting device according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic cross-sectional view showing an example of a configuration of a light-emitting device according to an embodiment of the present disclosure.
  • 1 is a schematic cross-sectional view showing an example of a configuration of a light-emitting device according to an embodiment of the present disclosure.
  • 1 is a schematic cross-sectional view showing an example of a configuration of a light-emitting device according to an embodiment of the present disclosure.
  • 1 is a schematic cross-sectional view showing an example of a configuration of a light-emitting device according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram illustrating an example of a configuration of a display device according to an embodiment of the present disclosure.
  • 16 is a schematic plan view showing an example of the configuration of the display unit shown in FIG. 15.
  • FIG. 16 is a schematic plan view showing another example of the configuration of the display unit shown in FIG. 15.
  • 16 is a schematic plan view showing yet another example of the configuration of the display unit shown in FIG. 15 .
  • FIG. 1 is a schematic diagram illustrating an example of a configuration of a display device according to an embodiment of the present disclosure.
  • Fig. 1 is a schematic plan view showing an example of the configuration of a light-emitting device according to an embodiment of the present disclosure.
  • the light-emitting device 1 includes an optical waveguide 2, a light-emitting element 3 overlapping the optical waveguide 2 in a planar view, and a light-receiving sensor 4 overlapping the optical waveguide 2 in a planar view but not overlapping the light-emitting element 3 in a planar view.
  • the light-emitting element 3 emits light when a voltage or current is applied to the light-emitting element 3.
  • the light-receiving sensor 4 generates a photoelectromotive force when light is incident on the light-receiving sensor 4.
  • the light receiving sensor 4 is located to the side of the light emitting element 3 in a planar view, so that light guided by the optical waveguide 2 is incident on the light receiving sensor 4.
  • Light incident from the light emitting element 3 to the optical waveguide 2 at an angle smaller than the critical angle crosses the optical waveguide 2 and is easily extracted to the outside.
  • light incident at an angle larger than the critical angle is reflected on the surface or inside of the optical waveguide 2, tends to propagate along the optical waveguide 2, and is difficult to extract to the outside. Therefore, advantageously, since light that is difficult to extract to the outside is incident on the light receiving sensor 4, the efficiency of extracting light from the light emitting device 1 to the outside can be improved.
  • FIG. 2 is a schematic cross-sectional view showing an example of the configuration of a light-emitting device according to an embodiment of the present disclosure.
  • FIG. 2 corresponds to the A-A cross-sectional view of FIG. 1.
  • the light-emitting element 3 may include a pixel electrode PE that overlaps with the optical waveguide 2 in a planar view, a first electrode E1 located between the optical waveguide 2 and the pixel electrode PE, and an emission layer EM located between the pixel electrode PE and the first electrode E1.
  • the light-receiving sensor 4 may include a sensor electrode SE that overlaps with the optical waveguide 2 in a planar view and does not overlap with the pixel electrode PE in a planar view, a second electrode E2 located between the optical waveguide 2 and the sensor electrode SE, a first generation layer G1 located between the sensor electrode SE and the second electrode E2 and generating first carriers, and a second generation layer G2 located between the sensor electrode SE and the second electrode E2 and generating second carriers of the opposite polarity to the first carriers.
  • the first carrier is either a hole or an electron
  • the second carrier is the other of the hole and the electron.
  • the first generating layer G1 is a layer in which holes are generated as charge carriers (hereinafter referred to as the "hole generating layer")
  • the second generating layer G2 is a layer in which electrons are generated as charge carriers (hereinafter referred to as the "electron generating layer”).
  • the scope of the present disclosure also includes a configuration in which the first generating layer G1 is an electron generating layer and the second generating layer G2 is a hole generating layer.
  • the hole generating layer may include a p-type semiconductor or a hole transporting organic material
  • the electron generating layer may include an n-type semiconductor or an electron transporting organic material.
  • a pn junction is formed between the hole generating layer and the electron generating layer, and light incident on or near the pn junction generates one or more pairs of holes and electrons.
  • the first generating layer G1 is in direct contact with the second generating layer G2.
  • the light-emitting element 3 may include a first transport layer T1 located between the pixel electrode PE and the first electrode E1 and transporting a first carrier, and a second transport layer T2 located between the pixel electrode PE and the first electrode E1 and transporting a second carrier.
  • the first transport layer T1 may be formed from the same layer made of the same material as the first generation layer G1
  • the second transport layer T2 may be formed from the same layer made of the same material as the second generation layer G2.
  • the number of layers stacked in the light-emitting device 1 can be reduced by sharing at least some layers between the light-emitting element 3 and the light-receiving sensor 4.
  • a certain layer is formed from the same layer as another certain layer.
  • the former layer and the latter layer are formed in the same process. If the material and thickness of the former layer are substantially the same as the material and thickness of the latter layer, it is possible to presume that the former layer is formed in the same process as the latter layer, unless there is a basis for presuming that the former layer and the latter layer are formed in different processes.
  • a material is substantially the same as another material” includes not only the case where the former material and the latter material are completely identical, but also the case where the latter material can be obtained by subjecting the former material to any processing such as doping and exposure, and the case where the former material can be obtained by subjecting the latter material to any processing.
  • the thickness of a layer is substantially the same as the thickness of another layer
  • the thickness of the latter layer is completely the same as the thickness of the former layer, but also the case where the difference between the thickness of the former layer and the thickness of the latter layer is sufficiently small. Usually, a difference of 10% or less of the larger thickness is permitted.
  • the first transport layer T1 may be continuous with the first generation layer G1, and the second transport layer T2 may be continuous with the second generation layer G2.
  • the first generation layer G1 and the second generation layer G2 may extend between the pixel electrode PE and the first electrode E1, respectively, and may function as the first transport layer T1 and the second transport layer T2.
  • the layer that is continuous from the light-emitting element 3 to the light-receiving sensor 4 can help guide a portion of the light emitted by the light-emitting element 3 to the light-receiving sensor 4.
  • the first transport layer T1 may be discontinuous with the first generation layer G1
  • the second transport layer T2 may be discontinuous with the second generation layer G2, due to a film break due to a step or patterning, etc.
  • the first transport layer T1 is located between the pixel electrode PE and the light-emitting layer EM, and the first structure between the pixel electrode PE and the first transport layer T1 may be the same as the second structure between the sensor electrode SE and the first generating layer G1.
  • the second transport layer T2 is located between the first electrode E1 and the light-emitting layer EM, and the third structure between the first electrode E1 and the second transport layer T2 may be the same as the fourth structure between the second electrode E2 and the second generating layer G2.
  • the number of layers in the light-emitting device 1 can be further reduced by sharing more layers between the light-emitting element 3 and the light-receiving sensor 4.
  • the structure between a pair of layers is the same as the structure between another pair of layers
  • the first structure may be continuous with the second structure.
  • the third structure may be continuous with the fourth structure. This advantageously allows more layers to be continuous from the light-emitting element 3 to the light-receiving sensor 4, helping to guide some of the light emitted by the light-emitting element 3 to the light-receiving sensor 4.
  • the hole injection layer HIL may be continuous between the pixel electrode PE and the first transport layer T1 and between the sensor electrode SE and the first generation layer G1.
  • the electron injection layer EIL may be continuous between the first electrode E1 and the second transport layer T2 and between the second electrode E2 and the second generation layer G2.
  • the sensor electrode SE may be electrically separated from the pixel electrode PE, and the second electrode E2 may be electrically connected to the first electrode E1. This allows the light emitting element 3 to emit light and the light receiving sensor 4 to receive light simultaneously and independently.
  • the first electrode E1 may be continuous with the second electrode E2.
  • the continuous first electrode E1 and second electrode E2 are included in the so-called “common electrode” or "counter electrode”.
  • the sensor electrode SE may be formed from the same layer as the pixel electrode PE.
  • each layer constituting the light-emitting element 3 may extend to the light-receiving sensor 4, except for the pixel electrode PE and the light-emitting layer EM.
  • the light emitting device 1 may further include an edge cover film EC that covers at least a portion of the edge of the pixel electrode PE and has an opening AP that overlaps in a planar view with a portion of the pixel electrode PE and at least a portion of the sensor electrode SE.
  • the edge cover film EC may cover at least a portion of the edge of the sensor electrode SE.
  • the light-emitting element 3 may be a light-emitting diode, and the light-receiving sensor 4 may be a photodiode.
  • the light-emitting element 3 may be an organic light-emitting diode (OLED) in which the light-emitting layer EM contains an organic light-emitting material, or a quantum dot light-emitting diode (QLED) in which the light-emitting layer EM contains quantum dots.
  • OLED organic light-emitting diode
  • QLED quantum dot light-emitting diode
  • the light-receiving sensor 4 may be an organic photodiode in which the first generating layer G1 and the second generating layer G2 contain an organic material, or an inorganic photodiode in which the first generating layer G1 and the second generating layer G2 contain an inorganic material.
  • the light emitting device 1 may further include a substrate CP, and the light emitting element 3 and the light receiving sensor 4 may be located between the substrate CP and the optical waveguide 2.
  • the substrate CP may be a circuit board including a support substrate BP and a circuit layer CL formed on the support substrate.
  • the optical waveguide 2 can guide a portion of the light emitted by the light-emitting element 3 to the light-receiving sensor 4.
  • the light generated in the light-emitting layer EM light that is incident on the optical waveguide 2 at an angle smaller than the critical angle crosses the optical waveguide 2 and is radiated to the outside of the light-emitting device 1.
  • light that is incident on the optical waveguide 2 at an angle larger than the critical angle passes through the optical waveguide 2 and is guided to the light-receiving sensor 4. Therefore, advantageously, the light-receiving sensor 4 does not cause a decrease in the light extraction efficiency because it takes in light that is difficult to extract to the outside.
  • the optical waveguide 2 may include at least a portion of the sealing layer TFE that seals the light-emitting element 3 and the light-receiving sensor 4, or may include the entirety of the sealing layer TFE. Furthermore, one or more layers located between the substrate CP and the sealing layer TFE may help guide a portion of the light emitted by the light-emitting element 3 to the light-receiving sensor 4. In the example shown in FIG. 2, the entire sealing layer TFE is the optical waveguide 2. Therefore, it is denoted by the symbol "TFE(2)".
  • the sealing layer TFE may be a thin sealing layer, and may include, for example, a first inorganic sealing film N1, a second inorganic sealing film N2, and an organic sealing film O1 located between the first inorganic sealing film N1 and the second inorganic sealing film N2.
  • the first inorganic sealing film N1 and the second inorganic sealing film N2 may include, for example, one or more selected from the group consisting of silicon nitride and silicon oxide.
  • the organic sealing film O1 is preferably made of a transparent material having a smaller refractive index than the first inorganic sealing film N1 and the second inorganic sealing film N2.
  • the organic sealing film O1 may include one or more selected from the group consisting of polyacrylic resins.
  • the light emitting device 1 may further include a pixel circuit C1 that controls the light emission of the light emitting element 3 by controlling the applied voltage or current, and a light receiving circuit C2 that detects the light received by the light receiving sensor 4 by measuring the generated electromotive force.
  • the circuit configuration of the light receiving circuit C2 may be the same as or different from the circuit configuration of the pixel circuit C1.
  • the pixel circuit C1 and the light receiving circuit C2 may be formed in the substrate CP.
  • circuit configuration of one circuit is the same as the circuit configuration of another circuit, it means that the circuit elements of the former are equivalent to the circuit elements of the latter, and that the connection relationships between the circuit elements in the former are equivalent to the connection relationships between the circuit elements in the latter.
  • the circuit elements and connection relationships are considered to be equivalent even if their characteristic values are different.
  • two transistors with different threshold values and resistance values are equivalent circuit elements.
  • two capacitors with different capacitances and geometric sizes are equivalent circuit elements.
  • a light-emitting diode and a photodiode are equivalent circuit elements.
  • parasitic capacitance and wiring resistance may be ignored.
  • FIG. 3 is a circuit diagram showing an example in which the pixel circuit and the light receiving circuit shown in FIG. 2 have the same circuit configuration.
  • the pixel circuit C1 may include a write transistor T11, an amplifying transistor T12, a read transistor T13, a light emitting transistor T14, an initialization transistor T15, and a storage capacitor M11.
  • the light receiving circuit C2 may include a write transistor T21, an amplifying transistor T22, a read transistor T23, a light receiving transistor T24, an initialization transistor T25, and a storage capacitor M21.
  • the gate signal line GL connected to the pixel circuit C1 and the gate signal line GL connected to the light receiving circuit C2 are separate and can be supplied with control signals independently.
  • the monitor signal line ML connected to the pixel circuit C1 and the monitor signal line ML connected to the light receiving circuit C2 are separate and can be supplied with control signals independently.
  • the light-emitting signal line EL connected to the pixel circuit C1 and the light-emitting signal line EL connected to the light-receiving circuit C2 may be separate or connected to each other.
  • the pixel circuit C1 and the light-receiving circuit C2 may share the light-emitting signal line EL.
  • the pixel circuit C1 and the light-receiving circuit C2 may share the power lines that supply the drain side power supply potential ELVDD, the source side power supply potential ELVSS, and the initialization potential Vini, respectively.
  • FIG. 4 is a circuit diagram showing an example of the operation when data is written from a data line to a pixel circuit in the circuit configuration shown in FIG. 3.
  • FIG. 5 is a circuit diagram showing an example of the operation when the light receiving element is emitting light in the circuit configuration shown in FIG. 3.
  • FIG. 4 and FIG. 5 show write transistors T11, T21, read transistors T13, T23, light emitting transistor T14, light receiving transistor T24, and initialization transistors T15, T25 as switching elements.
  • the write transistor T11, the read transistor T13, and the initialization transistor T15 are then de-energized, and the light-emitting transistor T14 is energized.
  • the voltage applied to the pixel electrode PE and the light-emitting brightness of the light-emitting element 3 are determined according to the gate voltage of the amplification transistor T12, i.e., the data written to one electrode of the storage capacitor M11.
  • the write transistor T21 and the initialization transistor T25 may be de-energized, and the read transistor T23 and the light-receiving transistor T24 may be energized. This allows the charge generated in the light-receiving sensor 4 to be output to the data signal line DL through the sensor electrode SE, the light-receiving transistor T24, and the read transistor T23.
  • the write transistor T21, read transistor T23, and initialization transistor T25 may be made non-conductive, and the light-receiving transistor T24 may be made conductive. This allows the charge generated in the light-receiving sensor 4 to be stored in the opposite electrode of the storage capacitor M21 through the sensor electrode SE and the light-receiving transistor T24.
  • the read transistor T23 can be made conductive, and the charge stored in the storage capacitor M21 can be output to the data signal line DL through the read transistor T23.
  • the pixel circuit C1 and the light receiving circuit C2 may share some of the circuit elements.
  • the pixel circuit C1 and the light receiving circuit C2 may share one transistor as the initialization transistors T15 and T25.
  • the pixel circuit C1 and the light receiving circuit C2 may share a portion of the wiring that connects them.
  • the light emitting device 1 may further include a data signal line DL that supplies data specifying the light emission brightness of the light emitting element 3 to the pixel circuit C1, and the light receiving circuit C2 may output the detection result of the light receiving sensor 4 through the data signal line DL.
  • FIG. 6 is a circuit diagram showing an example in which the pixel circuit and light receiving circuit shown in FIG. 2 have different circuit configurations.
  • the pixel circuit C1 may include initialization transistors T31 and T37, write transistors T32 and T33, an amplification transistor T34, light emitting transistors T35 and T36, and a storage capacitor M3.
  • the light receiving circuit C2 may include initialization transistors T41 and T45, an amplification transistor T43, a readout transistor T42, and a light receiving transistor T44.
  • FIG. 7 is a circuit diagram showing an example of the operation when data is written from the data line to the pixel circuit in the circuit configuration shown in FIG. 6.
  • FIG. 8 is a circuit diagram showing an example of the operation when the light receiving element is emitting light in the circuit configuration shown in FIG. 6.
  • FIG. 9 is a circuit diagram showing an example of the operation when data is read from the light receiving circuit to the data line in the circuit configuration shown in FIG. 6.
  • FIGS. 7, 8 and 9 show initialization transistors T31, T37, T41, T45, write transistors T32, T33, light emitting transistors T35, T36, read transistor T42 and light receiving transistor T44 as switching elements.
  • the write transistors T32 and T33 are brought into a conducting state, and the initialization transistor T31 and the light emitting transistors T35 and T36 are brought into a non-conducting state.
  • This allows data to be written from the data signal line DL through the write transistor T33, the amplifying transistor T34, and the write transistor T21 to the gate electrode of the amplifying transistor T34 and one electrode of the memory capacitor M3.
  • the read transistor T42 in the light receiving circuit C2 may be brought into a non-conducting state.
  • initialization transistors T31, T37 and write transistors T32, T33 are turned off, and light-emitting transistors T35, T36 are turned on.
  • light-emitting element 3 is emitting light
  • initialization transistors T41, T45 and read transistor T42 may be turned off, and light-receiving transistor T44 may be turned on. This allows charge generated in light-receiving sensor 4 to be accumulated in the gate electrode of amplification transistor T43 through sensor electrode SE and light-receiving transistor T44.
  • the pixel circuit C1 and the light receiving circuit C2 may share some of the circuit elements.
  • the pixel circuit C1 and the light receiving circuit C2 may share one transistor as the initialization transistors T37 and T41.
  • the pixel circuit C1 and the light receiving circuit C2 may share some of the wiring that connects them.
  • the pixel circuit C1 and the light receiving circuit C2 may share the data signal line DL.
  • FIG. 10 is a schematic cross-sectional view showing an example of the configuration of a light-emitting device according to an embodiment of the present disclosure.
  • the optical waveguide 2 may include a scatterer SP that overlaps with the light-receiving sensor 4 in a planar view.
  • the scatterers SP may be distributed so as not to overlap with the light-emitting element 3 in a planar view.
  • the organic sealing film O1 may include a plurality of scatterers SP and a filling material FM that fills the spaces between the scatterers SP.
  • FIG. 11 is a schematic cross-sectional view showing an example of the configuration of a light emitting device according to an embodiment of the present disclosure.
  • the optical waveguide 2 may include a first portion P1 overlapping with the light emitting element 3 in a plan view, and a second portion P2 overlapping with the light receiving sensor 4 in a plan view and having a refractive index larger than that of the first portion P1.
  • the organic sealing film O1 may have a portion P3 included in the first portion P1 and made of a first transparent material, and a portion P4 included in the second portion P2 and made of a second transparent material having a higher refractive index than the first transparent material.
  • the first inorganic sealing film N1 and the second inorganic sealing film N2 may each be made of the same material across the first portion P1 and the second portion P2.
  • the average refractive index of the second portion P2 is higher than the average refractive index of the first portion P1.
  • This embodiment 3 can be combined with the above-described embodiment 2.
  • the scatterers SP may be distributed in the second portion P2 of the optical waveguide 2 (or the portion P4 of the organic sealing film O1).
  • Fig. 12 is a schematic cross-sectional view showing an example of the configuration of a light-emitting device according to an embodiment of the present disclosure.
  • the light-emitting device 1 may further include a light reflecting portion RF that overlaps with the light-receiving sensor 4 in a plan view and reflects the propagating light of the optical waveguide 2.
  • the light reflecting portion RF is provided so as not to overlap with the light-emitting element 3 in a plan view.
  • This embodiment 4 can be combined with one or more of the above-mentioned embodiments 1 to 3.
  • Fig. 13 is a schematic cross-sectional view showing an example of the configuration of a light-emitting device according to an embodiment of the present disclosure.
  • the light-emitting device 1 may further include a light-shielding part SH that overlaps with the light-receiving sensor 4 in a plan view and blocks external light.
  • the light-shielding part SH is provided so as not to overlap with the light-emitting element 3 in a plan view.
  • This embodiment 5 can be combined with any one or more of the above-mentioned embodiments 1 to 3. Furthermore, this embodiment 5 can be combined with the above-mentioned embodiment 4.
  • the light shielding portion SH may function as the light reflecting portion RF.
  • the light reflecting portion RF may be located between the light shielding portion SH and the optical waveguide 2.
  • the light-emitting device 1 may further include a light-shielding bank SB that surrounds the light-emitting element 3 and the light-receiving sensor 4 in a plan view and blocks external light.
  • the light-shielding bank SB may be included in the edge cover film EC.
  • the light-shielding bank SB may be a black bank that absorbs light, and may be formed from a resin to which a pigment is added.
  • the pigment may include carbon powder.
  • the light emitting device 1 may further include a light-transmitting bank TB that is located between the light emitting element 3 and the light receiving sensor 4 and allows the light emitted by the light emitting element 3 to pass through.
  • the light-transmitting bank TB may be included in the edge cover film EC.
  • This embodiment 6 can be combined with one or more of the above-mentioned embodiments 1 to 5.
  • FIG. 15 is a schematic diagram showing an example of the configuration of a display device according to an embodiment of the present disclosure.
  • the display device 100 includes at least one light-emitting device 1.
  • the display device 100 includes, for example, a display unit 10 having a plurality of sub-pixels PX and a drive circuit 20 that drives the display unit 10.
  • At least one of the sub-pixels PX includes a light-emitting device 1.
  • the light-emitting device 1 included in the display device 100 may be the light-emitting device 1 according to any one of the above-mentioned embodiments 1 to 6, the light-emitting device 1 according to some combination of the above-mentioned embodiments 1 to 6, or a light-emitting device 1 modified or improved therefrom.
  • the display device 100 may further include a control unit CT that controls the voltage or current applied to the light-emitting element 3 so as to compensate for deterioration of the light-emitting element 3 based on the detection result of the light-receiving sensor 4. This compensates for the decrease in luminance of the light-emitting element 3, and the display quality of the display device 100 can be maintained and improved.
  • the control unit CT may be built into the drive circuit 20.
  • FIG. 16 is a schematic plan view showing an example of the configuration of the display unit shown in FIG. 15.
  • the display unit 10 may include a red subpixel RX, a green subpixel GX, and a blue subpixel BX.
  • the red subpixel RX includes a light-emitting element 3R that emits red light, a light-receiving sensor 4R that detects the light emitted by the light-emitting element 3R, and an optical waveguide 2 (not shown).
  • the green subpixel GX includes a light-emitting element 3G that emits green light, a light-receiving sensor 4G that detects the light emitted by the light-emitting element 3G, and an optical waveguide 2 (not shown).
  • the blue subpixel BX includes a light-emitting element 3B that emits blue light, a light-receiving sensor 4B that detects the light emitted by the light-emitting element 3B, and an optical waveguide 2 (not shown).
  • the red subpixel RX, the green subpixel GX, and the blue subpixel BX may have edge cover films EC, and each edge cover film EC may be continuous with each other.
  • the edge cover film EC may include a light-transmitting bank TB and a light-shielding bank SB.
  • FIG. 17 is a schematic plan view showing another example of the configuration of the display unit shown in FIG. 15. As shown in FIG. 17, a red subpixel RX, a green subpixel GX, and a blue subpixel BX may be arranged.
  • FIG. 18 is a schematic plan view showing yet another example of the configuration of the display unit shown in FIG. 15. As shown in FIG. 18, light-emitting elements 3R, 3G, and 3B may surround corresponding light-receiving sensors 4R, 4G, and 4B, respectively.
  • the configuration of the display unit 10 is not limited to the examples shown in FIGS. 16 to 18.
  • FIG. 19 is a schematic diagram showing an example of the configuration of a display device according to an embodiment of the present disclosure.
  • the display device 100 includes at least one light-emitting device 1.
  • the display device 100 may further include an external light sensor LS and a control unit CT that controls the voltage or current applied to the light-emitting element 3 so as to compensate for deterioration of the light-emitting element 3 based on the detection result of the light receiving sensor 4 and the detection result of the external light sensor SL. This compensates for the decrease in luminance of the light-emitting element 3 in consideration of external light, and the display quality of the display device 100 can be maintained and improved.
  • the control unit CT may be built into the drive circuit 20.
  • Light emitting device 2 Optical waveguide 3
  • Light emitting element 4 Light receiving sensor 100 Display device AP Opening C1 Pixel circuit C2 Light receiving circuit CP Substrate CT Control unit DL Data signal line E1 First electrode E2 Second electrode EC Edge cover film G1 First generation layer G2 Second generation layer EM Light emitting layer LS External light sensor P1 First portion P2 Second portion PE Pixel electrode RF Light reflecting portion SB Light shielding bank SE Sensor electrode SP Scatterer SH Light shielding portion T1 First transport layer T2 Second transport layer T37, T41 Initialization transistor TFE Sealing layer

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A light emitting device (1) comprises: an optical waveguide (2); a light emitting element (3) that overlaps with the optical waveguide (2) in plan view; and a light receiving sensor (4) that overlaps with the optical waveguide (2) and does not overlap with the light emitting element (3) in plan view.

Description

発光装置および表示装置Light emitting device and display device
 本開示は、発光装置および表示装置に関する。 This disclosure relates to a light-emitting device and a display device.
 発光素子の予測補償は、経時的劣化を予測に基づいて補償するに過ぎない。このため、発光素子の劣化状態に基づいて外部補償を行うことが求められており、外部補償を最適化するために、発光素子毎に受光センサを設けた構成が求められている。 Predictive compensation for light-emitting elements only compensates for deterioration over time based on a prediction. For this reason, there is a need to perform external compensation based on the deterioration state of the light-emitting element, and in order to optimize external compensation, there is a need for a configuration in which a light-receiving sensor is provided for each light-emitting element.
 特許文献1は、透明基板上に有機EL素子が形成され、光センサが透明基板と有機EL素子との間に、または、透明基板において有機EL素子とは反対側に形成されている構成を開示している。 Patent Document 1 discloses a configuration in which an organic EL element is formed on a transparent substrate, and an optical sensor is formed between the transparent substrate and the organic EL element, or on the transparent substrate on the opposite side to the organic EL element.
特開2012-186218号(2012年9月27日公開)JP 2012-186218 A (Published on September 27, 2012)
 通常、発光素子を含む層と外部との屈折率は異なるため、大角度で放射された光は、境界面または表面で反射され、外部へ取出し困難である。一方、小角度で放射された光は、外部へ取出し容易である。特許文献1に開示の構成では、光センサが平面視で有機EL素子と重畳しているため、小角度で放射された光の一部が、光センサに入射する。したがって、光センサに入射する分だけ、取出し容易な光が減少し、光取り出し効率が減少するという問題があった。 Normally, the refractive index of the layer containing the light-emitting element is different from that of the outside, so light emitted at a large angle is reflected at the boundary or surface, making it difficult to extract to the outside. On the other hand, light emitted at a small angle is easy to extract to the outside. In the configuration disclosed in Patent Document 1, the light sensor overlaps with the organic EL element in a planar view, so some of the light emitted at a small angle enters the light sensor. Therefore, the amount of light that is easy to extract is reduced by the amount that enters the light sensor, resulting in a problem of reduced light extraction efficiency.
 本開示の一態様に係る発光装置は、光導波路と、平面視で前記光導波路と重畳する発光素子と、平面視で、前記光導波路と重畳し、かつ、前記発光素子と重畳しない受光センサと、を備える構成である。 The light emitting device according to one aspect of the present disclosure includes an optical waveguide, a light emitting element that overlaps with the optical waveguide in a planar view, and a light receiving sensor that overlaps with the optical waveguide but does not overlap with the light emitting element in a planar view.
 本開示の一態様によれば、発光素子および受光センサを備える発光装置において、光取り出し効率を向上できる。 According to one aspect of the present disclosure, the light extraction efficiency can be improved in a light emitting device that includes a light emitting element and a light receiving sensor.
本開示の一実施形態に係る発光装置の構成の一例を示す概略平面図である。1 is a schematic plan view illustrating an example of a configuration of a light-emitting device according to an embodiment of the present disclosure. 本開示の一実施形態に係る発光装置の構成の一例を示す概略断面図である。1 is a schematic cross-sectional view showing an example of a configuration of a light-emitting device according to an embodiment of the present disclosure. 図2に示した画素回路および受光回路の回路構成が同一である一例を示す回路図である。3 is a circuit diagram showing an example in which the pixel circuit and the light receiving circuit shown in FIG. 2 have the same circuit configuration. 図3に示した回路構成において、データ線から画素回路にデータを書き込むときの動作の一例を示す回路図である。4 is a circuit diagram showing an example of an operation when data is written from a data line to a pixel circuit in the circuit configuration shown in FIG. 3. FIG. 図3に示した回路構成において、受光素子が発光しているときの動作の一例を示す回路図である。4 is a circuit diagram showing an example of an operation when a light receiving element emits light in the circuit configuration shown in FIG. 3. FIG. 図2に示した画素回路および受光回路の回路構成が異なる一例を示す回路図である。3 is a circuit diagram showing an example of a different circuit configuration of the pixel circuit and the light receiving circuit shown in FIG. 2. 図6に示した回路構成において、データ線から画素回路にデータを書き込むときの動作の一例を示す回路図である。7 is a circuit diagram showing an example of an operation when data is written from a data line to a pixel circuit in the circuit configuration shown in FIG. 6. FIG. 図6に示した回路構成において、受光素子が発光しているときの動作の一例を示す回路図である。7 is a circuit diagram showing an example of the operation when a light receiving element emits light in the circuit configuration shown in FIG. 6. FIG. 図6に示した回路構成において、受光回路からデータ線にデータを読み出すときの動作の一例を示す回路図である。7 is a circuit diagram showing an example of an operation when data is read out from a light receiving circuit to a data line in the circuit configuration shown in FIG. 6. FIG. 本開示の一実施形態に係る発光装置の構成の一例を示す概略断面図である。1 is a schematic cross-sectional view showing an example of a configuration of a light-emitting device according to an embodiment of the present disclosure. 本開示の一実施形態に係る発光装置の構成の一例を示す概略断面図である。1 is a schematic cross-sectional view showing an example of a configuration of a light-emitting device according to an embodiment of the present disclosure. 本開示の一実施形態に係る発光装置の構成の一例を示す概略断面図である。1 is a schematic cross-sectional view showing an example of a configuration of a light-emitting device according to an embodiment of the present disclosure. 本開示の一実施形態に係る発光装置の構成の一例を示す概略断面図である。1 is a schematic cross-sectional view showing an example of a configuration of a light-emitting device according to an embodiment of the present disclosure. 本開示の一実施形態に係る発光装置の構成の一例を示す概略断面図である。1 is a schematic cross-sectional view showing an example of a configuration of a light-emitting device according to an embodiment of the present disclosure. 本開示の一実施形態に係る表示装置の構成の一例を示す模式図である。FIG. 1 is a schematic diagram illustrating an example of a configuration of a display device according to an embodiment of the present disclosure. 図15に示した表示部の構成の一例を示す概略平面図である。16 is a schematic plan view showing an example of the configuration of the display unit shown in FIG. 15. 図15に示した表示部の構成の別の一例を示す概略平面図である。16 is a schematic plan view showing another example of the configuration of the display unit shown in FIG. 15. 図15に示した表示部の構成のさらに別の一例を示す概略平面図である。16 is a schematic plan view showing yet another example of the configuration of the display unit shown in FIG. 15 . 本開示の一実施形態に係る表示装置の構成の一例を示す模式図である。FIG. 1 is a schematic diagram illustrating an example of a configuration of a display device according to an embodiment of the present disclosure.
 〔実施形態1〕
 (発光装置の構成)
 図1は、本開示の一実施形態に係る発光装置の構成の一例を示す概略平面図である。図1に示すように、発光装置1は、光導波路2と、平面視で光導波路2と重畳する発光素子3と、平面視で光導波路2と重畳し、かつ、平面視で発光素子3と重畳しない受光センサ4とを備える。発光素子3は、発光素子3に電圧または電流を印加することによって、発光する。受光センサ4は、受光センサ4に光が入射することによって、光起電力を生じる。
[Embodiment 1]
(Configuration of the Light Emitting Device)
Fig. 1 is a schematic plan view showing an example of the configuration of a light-emitting device according to an embodiment of the present disclosure. As shown in Fig. 1, the light-emitting device 1 includes an optical waveguide 2, a light-emitting element 3 overlapping the optical waveguide 2 in a planar view, and a light-receiving sensor 4 overlapping the optical waveguide 2 in a planar view but not overlapping the light-emitting element 3 in a planar view. The light-emitting element 3 emits light when a voltage or current is applied to the light-emitting element 3. The light-receiving sensor 4 generates a photoelectromotive force when light is incident on the light-receiving sensor 4.
 本開示に係る構成によれば、受光センサ4は、平面視で発光素子3の側方に位置しているため、光導波路2によって導かれた光が、受光センサ4に入射する。発光素子3から光導波路2へ臨界角より小さな角度で入射する光は、光導波路2を横切り、外部へ取出され易い。一方、臨界角より大きな角度で入射する光は、光導波路2の表面または内部で反射され、光導波路2に沿って伝播し易く、外部へ取出され難い。したがって有益なことに、外部へ取出し困難な光が受光センサ4に入射するため、発光装置1から外部に光を取出す効率を向上できる。 In the configuration disclosed herein, the light receiving sensor 4 is located to the side of the light emitting element 3 in a planar view, so that light guided by the optical waveguide 2 is incident on the light receiving sensor 4. Light incident from the light emitting element 3 to the optical waveguide 2 at an angle smaller than the critical angle crosses the optical waveguide 2 and is easily extracted to the outside. On the other hand, light incident at an angle larger than the critical angle is reflected on the surface or inside of the optical waveguide 2, tends to propagate along the optical waveguide 2, and is difficult to extract to the outside. Therefore, advantageously, since light that is difficult to extract to the outside is incident on the light receiving sensor 4, the efficiency of extracting light from the light emitting device 1 to the outside can be improved.
 図2は、本開示の一実施形態に係る発光装置の構成の一例を示す概略断面図である。図2は、図1のA-A断面図に相当する。図2に示すように、発光素子3は、平面視で光導波路2と重畳する画素電極PEと、光導波路2および画素電極PEの間に位置する第1電極E1と、画素電極PEおよび第1電極E1の間に位置する発光層EMと、を含んでよい。受光センサ4は、平面視で光導波路2と重畳し、平面視で画素電極PEと重畳しないセンサ電極SEと、光導波路2およびセンサ電極SEの間に位置する第2電極E2と、センサ電極SEおよび第2電極E2の間に位置し、第1キャリアが発生する第1発生層G1と、センサ電極SEおよび第2電極E2の間に位置し、第1キャリアと逆極性の第2キャリアが発生する第2発生層G2とを含んでよい。 FIG. 2 is a schematic cross-sectional view showing an example of the configuration of a light-emitting device according to an embodiment of the present disclosure. FIG. 2 corresponds to the A-A cross-sectional view of FIG. 1. As shown in FIG. 2, the light-emitting element 3 may include a pixel electrode PE that overlaps with the optical waveguide 2 in a planar view, a first electrode E1 located between the optical waveguide 2 and the pixel electrode PE, and an emission layer EM located between the pixel electrode PE and the first electrode E1. The light-receiving sensor 4 may include a sensor electrode SE that overlaps with the optical waveguide 2 in a planar view and does not overlap with the pixel electrode PE in a planar view, a second electrode E2 located between the optical waveguide 2 and the sensor electrode SE, a first generation layer G1 located between the sensor electrode SE and the second electrode E2 and generating first carriers, and a second generation layer G2 located between the sensor electrode SE and the second electrode E2 and generating second carriers of the opposite polarity to the first carriers.
 第1キャリアは、正孔および電子の一方であり、第2キャリアは、正孔および電子の他方である。図1に示す例において、第1発生層G1は、電荷担体(キャリア)とし正孔が発生する層(以降、「正孔発生層」と称する)であり、第2発生層G2は、電荷担体として電子が発生する層(以降、「電子発生層」と称する)である。これに限らず、第1発生層G1が電子発生層であり、第2発生層G2が正孔発生層である構成も、本開示の範囲に含まれる。 The first carrier is either a hole or an electron, and the second carrier is the other of the hole and the electron. In the example shown in FIG. 1, the first generating layer G1 is a layer in which holes are generated as charge carriers (hereinafter referred to as the "hole generating layer"), and the second generating layer G2 is a layer in which electrons are generated as charge carriers (hereinafter referred to as the "electron generating layer"). Not limited to this, the scope of the present disclosure also includes a configuration in which the first generating layer G1 is an electron generating layer and the second generating layer G2 is a hole generating layer.
 正孔発生層は、p型半導体または正孔輸送性有機材料を含んでよく、電子発生層は、n型半導体または電子輸送層有機材料を含んでよい。正孔発生層と電子発生層との間に、pn接続が形成され、pn接続またはその近傍に光が入射することにより、1対または複数対の正孔および電子が生じる。正孔電子対の発生効率を高めるために、第1発生層G1は、第2発生層G2に直接接触していることが好ましい。 The hole generating layer may include a p-type semiconductor or a hole transporting organic material, and the electron generating layer may include an n-type semiconductor or an electron transporting organic material. A pn junction is formed between the hole generating layer and the electron generating layer, and light incident on or near the pn junction generates one or more pairs of holes and electrons. In order to increase the efficiency of generating hole-electron pairs, it is preferable that the first generating layer G1 is in direct contact with the second generating layer G2.
 発光素子3は、画素電極PEおよび第1電極E1の間に位置し、第1キャリアを輸送する第1輸送層T1と、画素電極PEおよび第1電極E1の間に位置し、第2キャリアを輸送する第2輸送層T2と、を含んでよい。第1輸送層T1は、第1発生層G1と同一材料からなる同一層から形成されてよく、第2輸送層T2は、第2発生層G2と同一材料からなる同一層から形成されてよい。有益なことに、発光素子3と受光センサ4とが、少なくとも一部の層を共有することによって、発光装置1の積層数を低減できる。 The light-emitting element 3 may include a first transport layer T1 located between the pixel electrode PE and the first electrode E1 and transporting a first carrier, and a second transport layer T2 located between the pixel electrode PE and the first electrode E1 and transporting a second carrier. The first transport layer T1 may be formed from the same layer made of the same material as the first generation layer G1, and the second transport layer T2 may be formed from the same layer made of the same material as the second generation layer G2. Advantageously, the number of layers stacked in the light-emitting device 1 can be reduced by sharing at least some layers between the light-emitting element 3 and the light-receiving sensor 4.
 本開示において、「或る層が別の或る層と同一層から形成されている」とは、前者の層と後者の層とが同一工程で形成されていると推定可能であることを意味する。前者の層の材料および厚さが後者の層の材料および厚さと略同一である場合、前者の層と後者の層とが別工程で形成されていると推定する根拠が無い限り、前者の層が後者の層と同一工程で形成されていると推定可能である。 In this disclosure, "a certain layer is formed from the same layer as another certain layer" means that it is possible to presume that the former layer and the latter layer are formed in the same process. If the material and thickness of the former layer are substantially the same as the material and thickness of the latter layer, it is possible to presume that the former layer is formed in the same process as the latter layer, unless there is a basis for presuming that the former layer and the latter layer are formed in different processes.
 本開示において、「或る材料が、別の或る材料と略同一である」とは、前者の材料と後者の材料とが完全に一致する場合だけでなく、前者の材料にドーピングおよび露光等の任意の処理を行うことによって後者の材料を得ることができる場合、および後者の材料に任意の処理を行うことによって前者の材料を得ることができる場合を含む。 In this disclosure, "a material is substantially the same as another material" includes not only the case where the former material and the latter material are completely identical, but also the case where the latter material can be obtained by subjecting the former material to any processing such as doping and exposure, and the case where the former material can be obtained by subjecting the latter material to any processing.
 本開示において、「或る層の厚さが、別の或る層の厚さと略同一である」とは、後者の厚さと前者の厚さとが完全に一致する場合だけでなく、前者の厚さと後者の厚さとの差が十分に小さい場合も含む。通常、大きい方の厚さの10%以下の差を許容する。 In this disclosure, "the thickness of a layer is substantially the same as the thickness of another layer" includes not only the case where the thickness of the latter layer is completely the same as the thickness of the former layer, but also the case where the difference between the thickness of the former layer and the thickness of the latter layer is sufficiently small. Usually, a difference of 10% or less of the larger thickness is permitted.
 第1輸送層T1は、第1発生層G1と連続してよく、第2輸送層T2は、第2発生層G2と連続していてよい。換言すると、第1発生層G1および第2発生層G2はそれぞれ、画素電極PEおよび第1電極E1の間に延在してよく、第1輸送層T1および第2輸送層T2として機能してよい。有益なことに、発光素子3から受光センサ4まで連続する層は、発光素子3が発光した光の一部を、受光センサ4に導く一助となることができる。これに限らず、段差による膜切れまたはパターニングなどによって、第1輸送層T1は、第1発生層G1と不連続であってもよく、第2輸送層T2は、第2発生層G2と不連続であってもよい。 The first transport layer T1 may be continuous with the first generation layer G1, and the second transport layer T2 may be continuous with the second generation layer G2. In other words, the first generation layer G1 and the second generation layer G2 may extend between the pixel electrode PE and the first electrode E1, respectively, and may function as the first transport layer T1 and the second transport layer T2. Advantageously, the layer that is continuous from the light-emitting element 3 to the light-receiving sensor 4 can help guide a portion of the light emitted by the light-emitting element 3 to the light-receiving sensor 4. Not limited to this, the first transport layer T1 may be discontinuous with the first generation layer G1, and the second transport layer T2 may be discontinuous with the second generation layer G2, due to a film break due to a step or patterning, etc.
 第1輸送層T1は、画素電極PEと発光層EMとの間に位置し、画素電極PEおよび第1輸送層T1の間の第1構造は、センサ電極SEおよび第1発生層G1の間の第2構造と同一であってよい。第2輸送層T2は、第1電極E1と発光層EMとの間に位置し、第1電極E1および第2輸送層T2の間の第3構造は、第2電極E2および第2発生層G2の間の第4構造と同一であってよい。有益なことに、発光素子3と受光センサ4とが、より多くの層を共有することによって、発光装置1の積層数をより低減できる。 The first transport layer T1 is located between the pixel electrode PE and the light-emitting layer EM, and the first structure between the pixel electrode PE and the first transport layer T1 may be the same as the second structure between the sensor electrode SE and the first generating layer G1. The second transport layer T2 is located between the first electrode E1 and the light-emitting layer EM, and the third structure between the first electrode E1 and the second transport layer T2 may be the same as the fourth structure between the second electrode E2 and the second generating layer G2. Advantageously, the number of layers in the light-emitting device 1 can be further reduced by sharing more layers between the light-emitting element 3 and the light-receiving sensor 4.
 本開示において、「或る1対の層の間の構造が、別の或る一対の間の構造と同一である」とは次の意味である。第1に、前者らの間に層が無い場合、後者らの間にも層が無いことを意味する。第2に、前者らの間に1層のみが在る場合、後者らの間に対応する1層のみが在り、前者の間の1層の材料および厚さが、後者らの間の1層の材料および厚さと略同一であることを意味する。第3に、前者らの間にn層(nは、2以上の整数)が重なって在る場合、後者らの間に対応するn層が同一順序で重なって在り、前者らの間の各層の材料および厚さが、後者らの間の対応する層の材料および厚さと略同一であることを意味する。 In this disclosure, "the structure between a pair of layers is the same as the structure between another pair of layers" has the following meanings. First, it means that if there is no layer between the former, there is also no layer between the latter. Second, it means that if there is only one layer between the former, there is only one corresponding layer between the latter, and the material and thickness of the one layer between the former are approximately the same as the material and thickness of the one layer between the latter. Third, it means that if there are n layers (n is an integer of 2 or more) overlapping between the former, the corresponding n layers between the latter are overlapping in the same order, and the material and thickness of each layer between the former are approximately the same as the material and thickness of the corresponding layer between the latter.
 第1構造は、第2構造と連続していてよい。また、第3構造は、第4構造と連続していてよい。これによって有益なことに、より多くの層が発光素子3から受光センサ4まで連続し、発光素子3が発光した光の一部を受光センサ4に導く一助となることができる。例えば、正孔注入層HILが、画素電極PEおよび第1輸送層T1の間と、センサ電極SEおよび第1発生層G1の間とに連続してよい。また例えば、電子注入層EILが、第1電極E1および第2輸送層T2の間と、第2電極E2および第2発生層G2の間とに連続してよい。 The first structure may be continuous with the second structure. Also, the third structure may be continuous with the fourth structure. This advantageously allows more layers to be continuous from the light-emitting element 3 to the light-receiving sensor 4, helping to guide some of the light emitted by the light-emitting element 3 to the light-receiving sensor 4. For example, the hole injection layer HIL may be continuous between the pixel electrode PE and the first transport layer T1 and between the sensor electrode SE and the first generation layer G1. Also, for example, the electron injection layer EIL may be continuous between the first electrode E1 and the second transport layer T2 and between the second electrode E2 and the second generation layer G2.
 センサ電極SEは、画素電極PEと電気的に分離してよく、第2電極E2は、第1電極E1と電気的に接続してよい。これによって、発光素子3の発光と受光センサ4の受光とを同時に独立に行うことができる。また、第1電極E1が第2電極E2と連続することができる。連続な第1電極E1および第2電極E2は、いわゆる「共通電極」または「対向電極」に含まれる。センサ電極SEは、画素電極PEと同層から形成されてよい。 The sensor electrode SE may be electrically separated from the pixel electrode PE, and the second electrode E2 may be electrically connected to the first electrode E1. This allows the light emitting element 3 to emit light and the light receiving sensor 4 to receive light simultaneously and independently. The first electrode E1 may be continuous with the second electrode E2. The continuous first electrode E1 and second electrode E2 are included in the so-called "common electrode" or "counter electrode". The sensor electrode SE may be formed from the same layer as the pixel electrode PE.
 要するに、発光素子3を構成する各層は、画素電極PEおよび発光層EMを除いて、受光センサ4まで延在していてよい。 In short, each layer constituting the light-emitting element 3 may extend to the light-receiving sensor 4, except for the pixel electrode PE and the light-emitting layer EM.
 発光装置1は、画素電極PEのエッジの少なくとも一部を覆い、画素電極PEの一部およびセンサ電極SEの少なくとも一部と平面視で重畳する開口APを有するエッジカバー膜ECをさらに備えてよい。エッジカバー膜ECは、センサ電極SEのエッジの少なくとも一部を覆ってよい。 The light emitting device 1 may further include an edge cover film EC that covers at least a portion of the edge of the pixel electrode PE and has an opening AP that overlaps in a planar view with a portion of the pixel electrode PE and at least a portion of the sensor electrode SE. The edge cover film EC may cover at least a portion of the edge of the sensor electrode SE.
 発光素子3は発光ダイオードであってよく、受光センサ4はフォトダイオードであってよい。発光素子3は、発光層EMが有機発光材料を含む有機発光ダイオード(OLED)であっても、発光層EMが量子ドットを含む量子ドット発光ダイオード(QLED)であってもよい。受光センサ4は、第1発生層G1および第2発生層G2が有機材料を含む有機フォトダイオードであっても、第1発生層G1および第2発生層G2が無機材料を含む無機フォトダイオードであってもよい。 The light-emitting element 3 may be a light-emitting diode, and the light-receiving sensor 4 may be a photodiode. The light-emitting element 3 may be an organic light-emitting diode (OLED) in which the light-emitting layer EM contains an organic light-emitting material, or a quantum dot light-emitting diode (QLED) in which the light-emitting layer EM contains quantum dots. The light-receiving sensor 4 may be an organic photodiode in which the first generating layer G1 and the second generating layer G2 contain an organic material, or an inorganic photodiode in which the first generating layer G1 and the second generating layer G2 contain an inorganic material.
 発光装置1は、基板CPをさらに備え、発光素子3および受光センサ4は、基板CPおよび光導波路2の間に位置してよい。基板CPは、支持基板BPと、支持基板の上に形成された回路層CLとを含む回路基板であってよい。 The light emitting device 1 may further include a substrate CP, and the light emitting element 3 and the light receiving sensor 4 may be located between the substrate CP and the optical waveguide 2. The substrate CP may be a circuit board including a support substrate BP and a circuit layer CL formed on the support substrate.
 光導波路2は、発光素子3が発光した光の一部を、受光センサ4に導くことができる。発光層EMで生じた光のうち、光導波路2へ臨界角より小さな角度で入射する光は、光導波路2を横切って、発光装置1の外部へ放射される。一方、光導波路2へ臨界角より大きな角度で入射する光は、光導波路2を通って、受光センサ4に導かれる。したがって有益なことに、受光センサ4は、外部へ取出し困難な光を取り込むため、光取り出し効率の低下を引き起こさない。 The optical waveguide 2 can guide a portion of the light emitted by the light-emitting element 3 to the light-receiving sensor 4. Of the light generated in the light-emitting layer EM, light that is incident on the optical waveguide 2 at an angle smaller than the critical angle crosses the optical waveguide 2 and is radiated to the outside of the light-emitting device 1. On the other hand, light that is incident on the optical waveguide 2 at an angle larger than the critical angle passes through the optical waveguide 2 and is guided to the light-receiving sensor 4. Therefore, advantageously, the light-receiving sensor 4 does not cause a decrease in the light extraction efficiency because it takes in light that is difficult to extract to the outside.
 光導波路2は、発光素子3および受光センサ4を封止する封止層TFEの少なくとも一部を含んでよく、全部を含んでよい。さらに、基板CPと封止層TFEとの間に位置する層の1つ以上が、発光素子3が発光した光の一部を、受光センサ4に導く一助となってよい。図2に示す例においては、封止層TFE全体が、光導波路2である。そのため、符号を「TFE(2)」と表記している。 The optical waveguide 2 may include at least a portion of the sealing layer TFE that seals the light-emitting element 3 and the light-receiving sensor 4, or may include the entirety of the sealing layer TFE. Furthermore, one or more layers located between the substrate CP and the sealing layer TFE may help guide a portion of the light emitted by the light-emitting element 3 to the light-receiving sensor 4. In the example shown in FIG. 2, the entire sealing layer TFE is the optical waveguide 2. Therefore, it is denoted by the symbol "TFE(2)".
 封止層TFEは、薄膜封止層であってよく、例えば、第1無機封止膜N1と、第2無機封止膜N2と、第1無機封止膜N1および第2無機封止膜N2の間に位置する有機封止膜O1とを含んでよい。第1無機封止膜N1と第2無機封止膜N2とは、例えば、窒化シリコンおよび酸化シリコンから成る群から選択される1つ以上を含んでよい。有機封止膜O1は、第1無機封止膜N1と第2無機封止膜N2よりも屈折率が小さい透明材料から構成されることが好ましく、例えば、第1無機封止膜N1と第2無機封止膜N2とが酸化シリコンから成る場合、有機封止膜O1は、ポリアクリル樹脂から成る群から選択される1つ以上を含んでよい。 The sealing layer TFE may be a thin sealing layer, and may include, for example, a first inorganic sealing film N1, a second inorganic sealing film N2, and an organic sealing film O1 located between the first inorganic sealing film N1 and the second inorganic sealing film N2. The first inorganic sealing film N1 and the second inorganic sealing film N2 may include, for example, one or more selected from the group consisting of silicon nitride and silicon oxide. The organic sealing film O1 is preferably made of a transparent material having a smaller refractive index than the first inorganic sealing film N1 and the second inorganic sealing film N2. For example, when the first inorganic sealing film N1 and the second inorganic sealing film N2 are made of silicon oxide, the organic sealing film O1 may include one or more selected from the group consisting of polyacrylic resins.
 (回路構成)
 発光装置1は、印加する電圧または電流を制御することによって、発光素子3の発光を制御する画素回路C1と、生じた起電力を測定することによって、受光センサ4の受光を検出する受光回路C2と、をさらに備えよい。受光回路C2の回路構成が、画素回路C1の回路構成と同一であっても異なってもよい。画素回路C1および受光回路C2は、基板CP内に形成されてよい。
(Circuit configuration)
The light emitting device 1 may further include a pixel circuit C1 that controls the light emission of the light emitting element 3 by controlling the applied voltage or current, and a light receiving circuit C2 that detects the light received by the light receiving sensor 4 by measuring the generated electromotive force. The circuit configuration of the light receiving circuit C2 may be the same as or different from the circuit configuration of the pixel circuit C1. The pixel circuit C1 and the light receiving circuit C2 may be formed in the substrate CP.
 或る回路の回路構成が、別の或る回路の回路構成と同一であるとは、前者が有する回路素子が、後者が有する回路素子と同等であり、かつ、前者における回路素子間の接続関係が後者における回路素子間の接続関係と同等であることを意味する。ここで、回路素子および接続関係は、特性値が異なっても、同等であると見做す。例えば、閾値および抵抗値が異なる2つのトランジスタは、同等の回路素子である。また例えば、容量および幾何学的サイズが異なる2つのコンデンサは、同等の回路素子である。また例えば、発光ダイオードとフォトダイオードは、同等の回路素子である。また例えば、寄生容量および配線抵抗を無視してよい。 When the circuit configuration of one circuit is the same as the circuit configuration of another circuit, it means that the circuit elements of the former are equivalent to the circuit elements of the latter, and that the connection relationships between the circuit elements in the former are equivalent to the connection relationships between the circuit elements in the latter. Here, the circuit elements and connection relationships are considered to be equivalent even if their characteristic values are different. For example, two transistors with different threshold values and resistance values are equivalent circuit elements. Also, for example, two capacitors with different capacitances and geometric sizes are equivalent circuit elements. Also, for example, a light-emitting diode and a photodiode are equivalent circuit elements. Also, for example, parasitic capacitance and wiring resistance may be ignored.
 図3は、図2に示した画素回路および受光回路の回路構成が同一である一例を示す回路図である。図3に示すように、画素回路C1は、書き込みトランジスタT11と、増幅トランジスタT12と、読み出しトランジスタT13と、発光トランジスタT14と、初期化トランジスタT15と、記憶容量M11と、を備えてよい。受光回路C2も同様に、書き込みトランジスタT21と、増幅トランジスタT22と、読み出しトランジスタT23と、受光トランジスタT24と、初期化トランジスタT25と、記憶容量M21と、を備えてよい。 FIG. 3 is a circuit diagram showing an example in which the pixel circuit and the light receiving circuit shown in FIG. 2 have the same circuit configuration. As shown in FIG. 3, the pixel circuit C1 may include a write transistor T11, an amplifying transistor T12, a read transistor T13, a light emitting transistor T14, an initialization transistor T15, and a storage capacitor M11. Similarly, the light receiving circuit C2 may include a write transistor T21, an amplifying transistor T22, a read transistor T23, a light receiving transistor T24, an initialization transistor T25, and a storage capacitor M21.
 画素回路C1に接続するゲート信号線GLと受光回路C2に接続するゲート信号線GLとは、別個であり、独立に制御信号を供給されることができる。画素回路C1に接続するモニタ信号線MLと受光回路C2に接続するモニタ信号線MLとは、別個であり、独立に制御信号を供給されることができる。 The gate signal line GL connected to the pixel circuit C1 and the gate signal line GL connected to the light receiving circuit C2 are separate and can be supplied with control signals independently. The monitor signal line ML connected to the pixel circuit C1 and the monitor signal line ML connected to the light receiving circuit C2 are separate and can be supplied with control signals independently.
 画素回路C1に接続する発光信号線ELと受光回路C2に接続する発光信号線ELとは、別個であっても、互いと接続していてもよい。画素回路C1および受光回路C2は、発光信号線ELを共有してもよい。画素回路C1および受光回路C2は、ドレイン側電源電位ELVDD、ソース側電源電位ELVSS、および初期化電位Viniを供給する電力線をそれぞれ共有してよい。 The light-emitting signal line EL connected to the pixel circuit C1 and the light-emitting signal line EL connected to the light-receiving circuit C2 may be separate or connected to each other. The pixel circuit C1 and the light-receiving circuit C2 may share the light-emitting signal line EL. The pixel circuit C1 and the light-receiving circuit C2 may share the power lines that supply the drain side power supply potential ELVDD, the source side power supply potential ELVSS, and the initialization potential Vini, respectively.
 図4は、図3に示した回路構成において、データ線から画素回路にデータを書き込むときの動作の一例を示す回路図である。図5は、図3に示した回路構成において、受光素子が発光しているときの動作の一例を示す回路図である。図4および図5は、書き込みトランジスタT11,T21と、読出しトランジスタT13,T23と、発光トランジスタT14と受光トランジスタT24と、初期化トランジスタT15,T25とをスイッチング素子として示す。 FIG. 4 is a circuit diagram showing an example of the operation when data is written from a data line to a pixel circuit in the circuit configuration shown in FIG. 3. FIG. 5 is a circuit diagram showing an example of the operation when the light receiving element is emitting light in the circuit configuration shown in FIG. 3. FIG. 4 and FIG. 5 show write transistors T11, T21, read transistors T13, T23, light emitting transistor T14, light receiving transistor T24, and initialization transistors T15, T25 as switching elements.
 図4に示すように、画素回路C1および受光回路C2を初期化した後、画素回路C1において、書き込みトランジスタT11および初期化トランジスタT15を通電状態にし、読出しトランジスタT13および発光トランジスタT14を非通電状態にする。これによって、データ信号線DLからデータを、書き込みトランジスタT11を通じて増幅トランジスタT12のゲート電極および記憶容量M11の一方側電極に書き込み、初期化トランジスタT15を通じて初期化電位Viniを記憶容量M11の反対側電極に書き込むことができる。記憶容量M11への書き込み中、受光回路C2において書き込みトランジスタT21および読出しトランジスタT23を非通電状態にしてよい。 As shown in FIG. 4, after the pixel circuit C1 and the light receiving circuit C2 are initialized, in the pixel circuit C1, the write transistor T11 and the initialization transistor T15 are brought into a conducting state, and the read transistor T13 and the light emitting transistor T14 are brought into a non-conducting state. This allows data to be written from the data signal line DL to the gate electrode of the amplifier transistor T12 and one electrode of the storage capacitor M11 through the write transistor T11, and the initialization potential Vini to be written to the opposite electrode of the storage capacitor M11 through the initialization transistor T15. During writing to the storage capacitor M11, the write transistor T21 and the read transistor T23 in the light receiving circuit C2 may be brought into a non-conducting state.
 図5に示すように、続いて、画素回路C1において、書き込みトランジスタT11、読出しトランジスタT13、および初期化トランジスタT15を非通電状態にし、発光トランジスタT14を通電状態にする。これによって、ドレイン側電源電位ELVDDを、増幅トランジスタT12および発光トランジスタT14を通じて、画素電極PEに印加し、発光素子3を発光させることができる。画素電極PEへの印加電圧および発光素子3の発光輝度は、増幅トランジスタT12のゲート電圧、すなわち、記憶容量M11の一方側電極に書き込まれたデータに応じて決定される。発光素子3の発光中、受光回路C2において書き込みトランジスタT21および初期化トランジスタT25を非通電状態にし、読出しトランジスタT23および受光トランジスタT24を通電状態にしてよい。これによって、受光センサ4で発生した電荷を、センサ電極SE、受光トランジスタT24および読出しトランジスタT23を通じてデータ信号線DLに出力できる。 As shown in FIG. 5, in the pixel circuit C1, the write transistor T11, the read transistor T13, and the initialization transistor T15 are then de-energized, and the light-emitting transistor T14 is energized. This allows the drain-side power supply potential ELVDD to be applied to the pixel electrode PE through the amplification transistor T12 and the light-emitting transistor T14, causing the light-emitting element 3 to emit light. The voltage applied to the pixel electrode PE and the light-emitting brightness of the light-emitting element 3 are determined according to the gate voltage of the amplification transistor T12, i.e., the data written to one electrode of the storage capacitor M11. During the emission of the light-emitting element 3, in the light-receiving circuit C2, the write transistor T21 and the initialization transistor T25 may be de-energized, and the read transistor T23 and the light-receiving transistor T24 may be energized. This allows the charge generated in the light-receiving sensor 4 to be output to the data signal line DL through the sensor electrode SE, the light-receiving transistor T24, and the read transistor T23.
 あるいは、発光素子3の発光中、受光回路C2において、書き込みトランジスタT21、読出しトランジスタT23および初期化トランジスタT25を非通電状態にし、受光トランジスタT24を通電状態にしてよい。これによって、受光センサ4で発生した電荷を、センサ電極SEおよび受光トランジスタT24を通じて記憶容量M21の反対側電極に蓄積できる。発光素子3の発光後、読出しトランジスタT23を通電状態にして、記憶容量M21に蓄積された電荷を、読出しトランジスタT23を通じてデータ信号線DLに出力できる。 Alternatively, while the light-emitting element 3 is emitting light, in the light-receiving circuit C2, the write transistor T21, read transistor T23, and initialization transistor T25 may be made non-conductive, and the light-receiving transistor T24 may be made conductive. This allows the charge generated in the light-receiving sensor 4 to be stored in the opposite electrode of the storage capacitor M21 through the sensor electrode SE and the light-receiving transistor T24. After the light-emitting element 3 emits light, the read transistor T23 can be made conductive, and the charge stored in the storage capacitor M21 can be output to the data signal line DL through the read transistor T23.
 画素回路C1および受光回路C2は、回路素子の一部を共有してもよい。例えば、画素回路C1および受光回路C2が、1つのトランジスタを、初期化トランジスタT15,T25として共有してもよい。 The pixel circuit C1 and the light receiving circuit C2 may share some of the circuit elements. For example, the pixel circuit C1 and the light receiving circuit C2 may share one transistor as the initialization transistors T15 and T25.
 画素回路C1および受光回路C2は、接続される配線の一部を共有してもよい。例えば、発光装置1は、画素回路C1に発光素子3の発光輝度を指定するデータを供給するデータ信号線DLをさらに備え、受光回路C2は、データ信号線DLを通じて、受光センサ4の検出結果を出力してよい。 The pixel circuit C1 and the light receiving circuit C2 may share a portion of the wiring that connects them. For example, the light emitting device 1 may further include a data signal line DL that supplies data specifying the light emission brightness of the light emitting element 3 to the pixel circuit C1, and the light receiving circuit C2 may output the detection result of the light receiving sensor 4 through the data signal line DL.
 図6は、図2に示した画素回路および受光回路の回路構成が異なる一例を示す回路図である。図6に示すように、画素回路C1は、初期化トランジスタT31,T37と、書き込みトランジスタT32,T33と、増幅トランジスタT34と、発光トランジスタT35,T36と、記憶容量M3と、を備えてよい。受光回路C2は、初期化トランジスタT41,T45と、増幅トランジスタT43と、読出しトランジスタT42と、受光トランジスタT44と、を備えてよい。 FIG. 6 is a circuit diagram showing an example in which the pixel circuit and light receiving circuit shown in FIG. 2 have different circuit configurations. As shown in FIG. 6, the pixel circuit C1 may include initialization transistors T31 and T37, write transistors T32 and T33, an amplification transistor T34, light emitting transistors T35 and T36, and a storage capacitor M3. The light receiving circuit C2 may include initialization transistors T41 and T45, an amplification transistor T43, a readout transistor T42, and a light receiving transistor T44.
 図7は、図6に示した回路構成において、データ線から画素回路にデータを書き込むときの動作の一例を示す回路図である。図8は、図6に示した回路構成において、受光素子が発光しているときの動作の一例を示す回路図である。図9は、図6に示した回路構成において、受光回路からデータ線にデータを読み出すときの動作の一例を示す回路図である。図7、図8および図9は、初期化トランジスタT31,T37,T41,T45と、書き込みトランジスタT32,T33と、発光トランジスタT35,T36と、読出しトランジスタT42と、受光トランジスタT44とをスイッチング素子として示す。 FIG. 7 is a circuit diagram showing an example of the operation when data is written from the data line to the pixel circuit in the circuit configuration shown in FIG. 6. FIG. 8 is a circuit diagram showing an example of the operation when the light receiving element is emitting light in the circuit configuration shown in FIG. 6. FIG. 9 is a circuit diagram showing an example of the operation when data is read from the light receiving circuit to the data line in the circuit configuration shown in FIG. 6. FIGS. 7, 8 and 9 show initialization transistors T31, T37, T41, T45, write transistors T32, T33, light emitting transistors T35, T36, read transistor T42 and light receiving transistor T44 as switching elements.
 図7に示すように、画素回路C1および受光回路C2を初期化した後、画素回路C1において、書き込みトランジスタT32,T33を通電状態にし、初期化トランジスタT31および発光トランジスタT35,T36を非通電状態にする。これによって、データ信号線DLからデータを、書き込みトランジスタT33、増幅トランジスタT34および書き込みトランジスタT21を通じて増幅トランジスタT34のゲート電極および記憶容量M3の一方側電極に書き込むことができる。記憶容量M3への書き込み中、受光回路C2において読出しトランジスタT42を非通電状態にしてよい。 As shown in FIG. 7, after the pixel circuit C1 and the light receiving circuit C2 are initialized, in the pixel circuit C1, the write transistors T32 and T33 are brought into a conducting state, and the initialization transistor T31 and the light emitting transistors T35 and T36 are brought into a non-conducting state. This allows data to be written from the data signal line DL through the write transistor T33, the amplifying transistor T34, and the write transistor T21 to the gate electrode of the amplifying transistor T34 and one electrode of the memory capacitor M3. During writing to the memory capacitor M3, the read transistor T42 in the light receiving circuit C2 may be brought into a non-conducting state.
 図8に示すように、続いて、画素回路C1において、初期化トランジスタT31,T37および書き込みトランジスタT32,33を非通電状態にし、発光トランジスタT35,T36を通電状態にする。これによって、ドレイン側電源電位ELVDDを、発光トランジスタT35、増幅トランジスタT34および発光トランジスタT36を通じて、画素電極PEに印加し、発光素子3を発光させることができる。発光素子3の発光中、受光回路C2において、初期化トランジスタT41,T45および読出しトランジスタT42を非通電状態にし、受光トランジスタT44を通電状態にしてよい。これによって、受光センサ4で発生した電荷を、センサ電極SE、受光トランジスタT44を通じて増幅トランジスタT43のゲート電極に蓄積できる。 As shown in FIG. 8, next, in pixel circuit C1, initialization transistors T31, T37 and write transistors T32, T33 are turned off, and light-emitting transistors T35, T36 are turned on. This allows the drain-side power supply potential ELVDD to be applied to pixel electrode PE through light-emitting transistor T35, amplification transistor T34, and light-emitting transistor T36, causing light-emitting element 3 to emit light. While light-emitting element 3 is emitting light, in light-receiving circuit C2, initialization transistors T41, T45 and read transistor T42 may be turned off, and light-receiving transistor T44 may be turned on. This allows charge generated in light-receiving sensor 4 to be accumulated in the gate electrode of amplification transistor T43 through sensor electrode SE and light-receiving transistor T44.
 図9に示すように、発光素子3の発光後、受光回路C2において、読出しトランジスタT42を通電状態にして、ドレイン側電源電位ELVDDを、読出しトランジスタT42および増幅トランジスタT43を通じて、データ線DLに出力できる。データ線DLへの出力電圧は、増幅トランジスタT43のゲート電圧、すなわち、増幅トランジスタT43のゲート電極に蓄積された電荷量に応じて決定される。 As shown in FIG. 9, after the light-emitting element 3 emits light, in the light-receiving circuit C2, the read transistor T42 is turned on, and the drain power supply potential ELVDD can be output to the data line DL through the read transistor T42 and the amplification transistor T43. The output voltage to the data line DL is determined according to the gate voltage of the amplification transistor T43, i.e., the amount of charge stored in the gate electrode of the amplification transistor T43.
 画素回路C1および受光回路C2は、回路素子の一部を共有してもよい。例えば、画素回路C1および受光回路C2が、1つのトランジスタを、初期化トランジスタT37,T41として共有してもよい。画素回路C1および受光回路C2は、接続される配線の一部を共有してもよい。例えば、画素回路C1および受光回路C2は、データ信号線DLを共有してよい。 The pixel circuit C1 and the light receiving circuit C2 may share some of the circuit elements. For example, the pixel circuit C1 and the light receiving circuit C2 may share one transistor as the initialization transistors T37 and T41. The pixel circuit C1 and the light receiving circuit C2 may share some of the wiring that connects them. For example, the pixel circuit C1 and the light receiving circuit C2 may share the data signal line DL.
 〔実施形態2〕
 本開示の他の実施形態について、以下に説明する。なお、説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
[Embodiment 2]
Other embodiments of the present disclosure will be described below. For convenience of explanation, the same reference numerals will be given to components having the same functions as those described in the above embodiment, and the description thereof will not be repeated.
 図10は、本開示の一実施形態に係る発光装置の構成の一例を示す概略断面図である。図10に示すように、光導波路2は、平面視で受光センサ4と重畳する散乱体SPを含んでよい。散乱体SPは、平面視で、発光素子3と重畳しないように、分布してよい。例えば、有機封止膜O1が、複数の散乱体SPと、散乱体SPの間を充たす充填材料FMとを含んでよい。 FIG. 10 is a schematic cross-sectional view showing an example of the configuration of a light-emitting device according to an embodiment of the present disclosure. As shown in FIG. 10, the optical waveguide 2 may include a scatterer SP that overlaps with the light-receiving sensor 4 in a planar view. The scatterers SP may be distributed so as not to overlap with the light-emitting element 3 in a planar view. For example, the organic sealing film O1 may include a plurality of scatterers SP and a filling material FM that fills the spaces between the scatterers SP.
 〔実施形態3〕
 図11は、本開示の一実施形態に係る発光装置の構成の一例を示す概略断面図である。図11に示すように、光導波路2は、平面視で発光素子3と重畳する第1部分P1と、平面視で受光センサ4と重畳し、第1部分P1より屈折率が大きい第2部分P2とを含んでよい。
[Embodiment 3]
11 is a schematic cross-sectional view showing an example of the configuration of a light emitting device according to an embodiment of the present disclosure. As shown in Fig. 11, the optical waveguide 2 may include a first portion P1 overlapping with the light emitting element 3 in a plan view, and a second portion P2 overlapping with the light receiving sensor 4 in a plan view and having a refractive index larger than that of the first portion P1.
 例えば、有機封止膜O1が、第1部分P1に含まれ、第1透明材料からなる部分P3と、第2部分P2に含まれ、第1透明材料よりも屈折率が大きい第2透明材料からなる部分P4とを有してよい。第1無機封止膜N1および第2無機封止膜N2が各々、第1部分P1および第2部分P2に亘って、同一材料から構成されてよい。この例において、第1部分P1の平均屈折率より、第2部分P2の平均屈折率が大きい。 For example, the organic sealing film O1 may have a portion P3 included in the first portion P1 and made of a first transparent material, and a portion P4 included in the second portion P2 and made of a second transparent material having a higher refractive index than the first transparent material. The first inorganic sealing film N1 and the second inorganic sealing film N2 may each be made of the same material across the first portion P1 and the second portion P2. In this example, the average refractive index of the second portion P2 is higher than the average refractive index of the first portion P1.
 本実施形態3は、前述の実施形態2と組み合わせ可能である。例えば、光導波路2の第2部分P2(または、有機封止膜O1の部分P4)中に、散乱体SPが分布してよい。 This embodiment 3 can be combined with the above-described embodiment 2. For example, the scatterers SP may be distributed in the second portion P2 of the optical waveguide 2 (or the portion P4 of the organic sealing film O1).
 〔実施形態4〕
 図12は、本開示の一実施形態に係る発光装置の構成の一例を示す概略断面図である。図12に示すように、発光装置1は、平面視で受光センサ4と重畳し、光導波路2の伝播光を反射する光反射部RFをさらに備えてよい。光反射部RFは、平面視で、発光素子3と重畳しないように、設けられる。
[Embodiment 4]
Fig. 12 is a schematic cross-sectional view showing an example of the configuration of a light-emitting device according to an embodiment of the present disclosure. As shown in Fig. 12, the light-emitting device 1 may further include a light reflecting portion RF that overlaps with the light-receiving sensor 4 in a plan view and reflects the propagating light of the optical waveguide 2. The light reflecting portion RF is provided so as not to overlap with the light-emitting element 3 in a plan view.
 本実施形態4は、前述の実施形態1~3の何れか1つ以上と組み合わせ可能である。 This embodiment 4 can be combined with one or more of the above-mentioned embodiments 1 to 3.
 〔実施形態5〕
 図13は、本開示の一実施形態に係る発光装置の構成の一例を示す概略断面図である。図13に示すように、発光装置1は、平面視で受光センサ4と重畳し、外光を遮蔽する遮光部SHをさらに備えてよい。遮光部SHは、平面視で、発光素子3と重畳しないように、設けられる。
[Embodiment 5]
Fig. 13 is a schematic cross-sectional view showing an example of the configuration of a light-emitting device according to an embodiment of the present disclosure. As shown in Fig. 13, the light-emitting device 1 may further include a light-shielding part SH that overlaps with the light-receiving sensor 4 in a plan view and blocks external light. The light-shielding part SH is provided so as not to overlap with the light-emitting element 3 in a plan view.
 本実施形態5は、前述の実施形態1~3の何れか1つ以上と組み合わせ可能である。さらに、本実施形態5は、前述の実施形態4と組み合わせ可能である。例えば、遮光部SHが、光反射部RFとして機能してよい。また例えば、遮光部SHと光導波路2との間に、光反射部RFが位置してよい。 This embodiment 5 can be combined with any one or more of the above-mentioned embodiments 1 to 3. Furthermore, this embodiment 5 can be combined with the above-mentioned embodiment 4. For example, the light shielding portion SH may function as the light reflecting portion RF. Also, for example, the light reflecting portion RF may be located between the light shielding portion SH and the optical waveguide 2.
 〔実施形態6〕
 図14は、本開示の一実施形態に係る発光装置の構成の一例を示す概略断面図である。図14に示すように、発光装置1は、平面視で発光素子3および受光センサ4を囲み、外光を遮蔽する遮光バンクSBをさらに備えてよい。遮光バンクSBは、エッジカバー膜ECに含まれてよい。遮光バンクSBは、光を吸収する黒色バンクであってよく、顔料を添加した樹脂から形成されてよい。顔料は、炭素粉末を含んでよい。
[Embodiment 6]
14 is a schematic cross-sectional view showing an example of the configuration of a light-emitting device according to an embodiment of the present disclosure. As shown in FIG. 14, the light-emitting device 1 may further include a light-shielding bank SB that surrounds the light-emitting element 3 and the light-receiving sensor 4 in a plan view and blocks external light. The light-shielding bank SB may be included in the edge cover film EC. The light-shielding bank SB may be a black bank that absorbs light, and may be formed from a resin to which a pigment is added. The pigment may include carbon powder.
 加えて、または或いは、発光装置1は、発光素子3と受光センサ4との間に位置し、発光素子3が発光した光が透過可能な透光バンクTBをさらに備えてよい。透光バンクTBは、エッジカバー膜ECに含まれてよい。 In addition, or alternatively, the light emitting device 1 may further include a light-transmitting bank TB that is located between the light emitting element 3 and the light receiving sensor 4 and allows the light emitted by the light emitting element 3 to pass through. The light-transmitting bank TB may be included in the edge cover film EC.
 本実施形態6は、前述の実施形態1~5の何れか1つ以上と組み合わせ可能である。 This embodiment 6 can be combined with one or more of the above-mentioned embodiments 1 to 5.
 〔実施形態7〕
 図15は、本開示の一実施形態に係る表示装置の構成の一例を示す模式図である。図15に示すように、表示装置100は、少なくとも1つの発光装置1を備える。表示装置100は、例えば、複数のサブ画素PXを有する表示部10と、表示部10を駆動する駆動回路20とを備える。サブ画素PXの少なくとも1つは、発光装置1を含む。表示装置100が備える発光装置1は、上述の実施形態1~6の何れかに係る発光装置1であっても、上述の実施形態1~6の幾つかの組合せに係る発光装置1であっても、それらに変更または改良を施した発光装置1であってもよい。
[Embodiment 7]
15 is a schematic diagram showing an example of the configuration of a display device according to an embodiment of the present disclosure. As shown in FIG. 15, the display device 100 includes at least one light-emitting device 1. The display device 100 includes, for example, a display unit 10 having a plurality of sub-pixels PX and a drive circuit 20 that drives the display unit 10. At least one of the sub-pixels PX includes a light-emitting device 1. The light-emitting device 1 included in the display device 100 may be the light-emitting device 1 according to any one of the above-mentioned embodiments 1 to 6, the light-emitting device 1 according to some combination of the above-mentioned embodiments 1 to 6, or a light-emitting device 1 modified or improved therefrom.
 表示装置100は、受光センサ4の検出結果に基づき、発光素子3の劣化を補償するように発光素子3に印加する電圧または電流を制御する制御部CTをさらに備えてよい。これによって、発光素子3の輝度低下が補償され、表示装置100の表示品位の維持向上を図ることができる。制御部CTは、駆動回路20に内蔵されてよい。 The display device 100 may further include a control unit CT that controls the voltage or current applied to the light-emitting element 3 so as to compensate for deterioration of the light-emitting element 3 based on the detection result of the light-receiving sensor 4. This compensates for the decrease in luminance of the light-emitting element 3, and the display quality of the display device 100 can be maintained and improved. The control unit CT may be built into the drive circuit 20.
 図16は、図15に示した表示部の構成の一例を示す概略平面図である。図16に示すように、表示部10は、赤色サブ画素RXと緑色サブ画素GXと青色サブ画素BXとを備えてよい。赤色サブ画素RXは、赤色に発光する発光素子3Rと、発光素子3Rの発光を検知する受光センサ4Rと、光導波路2(不図示)とを備える。緑色サブ画素GXは、緑色に発光する発光素子3Gと、発光素子3Gの発光を検知する受光センサ4Gと、光導波路2(不図示)とを備える。青色サブ画素BXは、青色に発光する発光素子3Bと、発光素子3Bの発光を検知する受光センサ4Bと、光導波路2(不図示)とを備える。 FIG. 16 is a schematic plan view showing an example of the configuration of the display unit shown in FIG. 15. As shown in FIG. 16, the display unit 10 may include a red subpixel RX, a green subpixel GX, and a blue subpixel BX. The red subpixel RX includes a light-emitting element 3R that emits red light, a light-receiving sensor 4R that detects the light emitted by the light-emitting element 3R, and an optical waveguide 2 (not shown). The green subpixel GX includes a light-emitting element 3G that emits green light, a light-receiving sensor 4G that detects the light emitted by the light-emitting element 3G, and an optical waveguide 2 (not shown). The blue subpixel BX includes a light-emitting element 3B that emits blue light, a light-receiving sensor 4B that detects the light emitted by the light-emitting element 3B, and an optical waveguide 2 (not shown).
 赤色サブ画素RX、緑色サブ画素GXおよび青色サブ画素BXは、エッジカバー膜ECを備えてよく、各々のエッジカバー膜ECが互いと連続していてよい。エッジカバー膜ECは、透光バンクTBおよび遮光バンクSBを含んでよい。 The red subpixel RX, the green subpixel GX, and the blue subpixel BX may have edge cover films EC, and each edge cover film EC may be continuous with each other. The edge cover film EC may include a light-transmitting bank TB and a light-shielding bank SB.
 図17は、図15に示した表示部の構成の別の一例を示す概略平面図である。図17に示すように、赤色サブ画素RXと緑色サブ画素GXと青色サブ画素BXとが配置されてもよい。図18は、図15に示した表示部の構成のさらに別の一例を示す概略平面図である。図18に示すように、発光素子3R,3G,3Bがそれぞれ、対応する受光センサ4R,4G,4Bを囲んでもよい。表示部10の構成は、図16~図18に示した例に限らない。 FIG. 17 is a schematic plan view showing another example of the configuration of the display unit shown in FIG. 15. As shown in FIG. 17, a red subpixel RX, a green subpixel GX, and a blue subpixel BX may be arranged. FIG. 18 is a schematic plan view showing yet another example of the configuration of the display unit shown in FIG. 15. As shown in FIG. 18, light-emitting elements 3R, 3G, and 3B may surround corresponding light-receiving sensors 4R, 4G, and 4B, respectively. The configuration of the display unit 10 is not limited to the examples shown in FIGS. 16 to 18.
 〔実施形態8〕
 図19は、本開示の一実施形態に係る表示装置の構成の一例を示す模式図である。図19に示すように、表示装置100は、少なくとも1つの発光装置1を備える。表示装置100は、外光センサLSと、受光センサ4の検出結果および外光センサSLの検出結果に基づき、発光素子3の劣化を補償するように発光素子3に印加する電圧または電流を制御する制御部CTとをさらに備えてよい。これによって、外光を考慮して発光素子3の輝度低下が補償され、表示装置100の表示品位の維持向上を図ることができる。制御部CTは、駆動回路20に内蔵されてよい。
[Embodiment 8]
19 is a schematic diagram showing an example of the configuration of a display device according to an embodiment of the present disclosure. As shown in FIG. 19, the display device 100 includes at least one light-emitting device 1. The display device 100 may further include an external light sensor LS and a control unit CT that controls the voltage or current applied to the light-emitting element 3 so as to compensate for deterioration of the light-emitting element 3 based on the detection result of the light receiving sensor 4 and the detection result of the external light sensor SL. This compensates for the decrease in luminance of the light-emitting element 3 in consideration of external light, and the display quality of the display device 100 can be maintained and improved. The control unit CT may be built into the drive circuit 20.
 本開示は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 This disclosure is not limited to the above-described embodiments, and various modifications are possible within the scope of the claims. The technical scope of this disclosure also includes embodiments obtained by appropriately combining the technical means disclosed in different embodiments. Furthermore, new technical features can be formed by combining the technical means disclosed in each embodiment.
1 発光装置
2 光導波路
3 発光素子
4 受光センサ
100 表示装置
AP 開口
C1 画素回路
C2 受光回路
CP 基板
CT 制御部
DL データ信号線
E1 第1電極
E2 第2電極
EC エッジカバー膜
G1 第1発生層
G2 第2発生層
EM 発光層
LS 外光センサ
P1 第1部分
P2 第2部分
PE 画素電極
RF 光反射部
SB 遮光バンク
SE センサ電極
SP 散乱体
SH 遮光部
T1 第1輸送層
T2 第2輸送層
T37、T41 初期化トランジスタ
TFE 封止層
1 Light emitting device 2 Optical waveguide 3 Light emitting element 4 Light receiving sensor 100 Display device AP Opening C1 Pixel circuit C2 Light receiving circuit CP Substrate CT Control unit DL Data signal line E1 First electrode E2 Second electrode EC Edge cover film G1 First generation layer G2 Second generation layer EM Light emitting layer LS External light sensor P1 First portion P2 Second portion PE Pixel electrode RF Light reflecting portion SB Light shielding bank SE Sensor electrode SP Scatterer SH Light shielding portion T1 First transport layer T2 Second transport layer T37, T41 Initialization transistor TFE Sealing layer

Claims (27)

  1.  光導波路と、
     平面視で前記光導波路と重畳する発光素子と、
     平面視で、前記光導波路と重畳し、かつ、前記発光素子と重畳しない受光センサと、を備える発光装置。
    An optical waveguide;
    a light emitting element overlapping the optical waveguide in a plan view;
    a light receiving sensor that overlaps the optical waveguide but does not overlap the light emitting element in a plan view.
  2.  前記発光素子は、平面視で前記光導波路と重畳する画素電極と、前記光導波路および前記画素電極の間に位置する第1電極と、前記画素電極および前記第1電極の間に位置する発光層と、を含み、
     前記受光センサは、平面視で前記光導波路と重畳し、平面視で前記画素電極と重畳しないセンサ電極と、前記光導波路および前記センサ電極の間に位置する第2電極と、前記センサ電極および前記第2電極の間に位置し、第1キャリアが発生する第1発生層と、前記センサ電極および前記第2電極の間に位置し、前記第1キャリアと逆極性の第2キャリアが発生する第2発生層とを含む、請求項1に記載の発光装置。
    the light-emitting element includes a pixel electrode overlapping the optical waveguide in a plan view, a first electrode positioned between the optical waveguide and the pixel electrode, and a light-emitting layer positioned between the pixel electrode and the first electrode;
    2. The light-emitting device of claim 1, wherein the light-receiving sensor includes a sensor electrode that overlaps with the optical waveguide in a planar view but does not overlap with the pixel electrode in a planar view, a second electrode located between the optical waveguide and the sensor electrode, a first generation layer located between the sensor electrode and the second electrode and in which first carriers are generated, and a second generation layer located between the sensor electrode and the second electrode and in which second carriers of opposite polarity to the first carriers are generated.
  3.  前記第1発生層は、前記第2発生層に直接接触している、請求項2に記載の発光装置。 The light emitting device of claim 2, wherein the first generation layer is in direct contact with the second generation layer.
  4.  前記発光素子は、前記画素電極および前記第1電極の間に位置し、前記第1キャリアを輸送する第1輸送層と、前記画素電極および前記第1電極の間に位置し、前記第2キャリアを輸送する第2輸送層と、を含み、
     前記第1輸送層は、前記第1発生層と同一材料から成る同一層から形成されており、
     前記第2輸送層は、前記第2発生層と同一材料から成る同一層から形成されている、請求項2または3に記載の発光装置。
    the light-emitting element includes a first transport layer located between the pixel electrode and the first electrode and transporting the first carriers, and a second transport layer located between the pixel electrode and the first electrode and transporting the second carriers;
    the first transport layer is formed from the same layer of the same material as the first generation layer;
    4. The light emitting device according to claim 2, wherein the second transport layer is formed from the same layer made of the same material as the second generation layer.
  5.  前記第1輸送層は、前記第1発生層と連続しており、
     前記第2輸送層は、前記第2発生層と連続している、請求項4に記載の発光装置。
    the first transport layer is continuous with the first generation layer;
    5. The light emitting device of claim 4, wherein said second transport layer is contiguous with said second generation layer.
  6.  前記第1発生層および前記第2発生層はそれぞれ、前記画素電極および前記第1電極の間に延在している、請求項2または3に記載の発光装置。 The light-emitting device according to claim 2 or 3, wherein the first generation layer and the second generation layer extend between the pixel electrode and the first electrode, respectively.
  7.  前記第1輸送層は、前記画素電極と前記発光層との間に位置し、前記画素電極および前記第1輸送層の間の第1構造は、前記センサ電極および前記第1発生層の間の第2構造と同一であり、
     前記第2輸送層は、前記第1電極と前記発光層との間に位置し、前記第1電極および前記第2輸送層の間の第3構造は、前記第2電極および前記第2発生層の間の第4構造と同一である、請求項4または5に記載の発光装置。
    the first transport layer is located between the pixel electrode and the light emitting layer, a first structure between the pixel electrode and the first transport layer being identical to a second structure between the sensor electrode and the first generation layer;
    6. The light-emitting device of claim 4, wherein the second transport layer is located between the first electrode and the light-emitting layer, and a third structure between the first electrode and the second transport layer is identical to a fourth structure between the second electrode and the second generation layer.
  8.  前記第1構造は、前記第2構造と連続しており、
     前記第3構造は、前記第4構造と連続している、請求項7に記載の発光装置。
    the first structure is continuous with the second structure;
    The light emitting device of claim 7 , wherein the third structure is contiguous with the fourth structure.
  9.  前記センサ電極は、前記画素電極と電気的に分離しており、
     前記第2電極は、前記第1電極と電気的に接続している、請求項2~8の何れか1項に記載の発光装置。
    the sensor electrode is electrically isolated from the pixel electrode;
    9. The light emitting device according to claim 2, wherein the second electrode is electrically connected to the first electrode.
  10.  前記センサ電極は、前記画素電極と同層から形成されている請求項2~9の何れか1項に記載の発光装置。 The light-emitting device according to any one of claims 2 to 9, wherein the sensor electrode is formed from the same layer as the pixel electrode.
  11.  前記画素電極のエッジの少なくとも一部を覆い、平面視で前記画素電極の一部および前記センサ電極の少なくとも一部と重畳する開口を有するエッジカバー膜をさらに備える請求項2~10の何れか1項に記載の発光装置。 The light-emitting device according to any one of claims 2 to 10, further comprising an edge cover film that covers at least a portion of the edge of the pixel electrode and has an opening that overlaps with at least a portion of the pixel electrode and the sensor electrode in a plan view.
  12.  前記発光素子は、発光ダイオードであり、
     前記受光センサは、フォトダイオードである、請求項1~11の何れか1項に記載の発光装置。
    the light emitting element is a light emitting diode,
    The light emitting device according to any one of claims 1 to 11, wherein the light receiving sensor is a photodiode.
  13.  基板をさらに備え、前記発光素子および前記受光センサは、前記基板および前記光導波路の間に位置する請求項1~12の何れか1項に記載の発光装置。 The light-emitting device according to any one of claims 1 to 12, further comprising a substrate, the light-emitting element and the light-receiving sensor being positioned between the substrate and the optical waveguide.
  14.  前記光導波路は、前記発光素子が発光した光の一部を、前記受光センサに導く請求項1~13の何れか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 13, wherein the optical waveguide guides a portion of the light emitted by the light emitting element to the light receiving sensor.
  15.  前記光導波路は、前記発光素子および前記受光センサを封止する封止層の少なくとも一部を含む請求項1~14の何れか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 14, wherein the optical waveguide includes at least a portion of a sealing layer that seals the light emitting element and the light receiving sensor.
  16.  前記光導波路は、平面視で前記受光センサと重畳する散乱体を含む請求項1~15の何れか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 15, wherein the optical waveguide includes a scatterer that overlaps with the light receiving sensor in a plan view.
  17.  前記光導波路は、平面視で前記発光素子と重畳する第1部分と、平面視で前記受光センサと重畳し、前記第1部分よりも屈折率が大きい第2部分と、を含む請求項1~16の何れか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 16, wherein the optical waveguide includes a first portion that overlaps with the light emitting element in a planar view, and a second portion that overlaps with the light receiving sensor in a planar view and has a refractive index greater than that of the first portion.
  18.  平面視で前記受光センサと重畳し、前記光導波路の伝播光を反射する光反射部をさらに備える請求項1~17の何れか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 17, further comprising a light reflecting section that overlaps with the light receiving sensor in a plan view and reflects the light propagating through the optical waveguide.
  19.  平面視で前記受光センサと重畳し、外光を遮蔽する遮光部をさらに備える請求項1~18の何れか1項に記載の発光装置。 The light-emitting device according to any one of claims 1 to 18, further comprising a light-shielding portion that overlaps the light-receiving sensor in a plan view and blocks external light.
  20.  平面視で前記発光素子および前記受光センサを囲み、外光を遮蔽する遮光バンクをさらに備える請求項1~19の何れか1項に記載の発光装置。 The light emitting device according to any one of claims 1 to 19, further comprising a light shielding bank that surrounds the light emitting element and the light receiving sensor in a plan view and blocks external light.
  21.  前記発光素子の発光を制御する画素回路と、前記受光センサの受光を検出する受光回路と、をさらに備え、
     前記受光回路の回路構成が、前記画素回路の回路構成と同一である請求項1~20の何れか1項に記載の発光装置。
    A pixel circuit that controls the emission of the light emitting element and a light receiving circuit that detects the reception of light by the light receiving sensor,
    21. The light emitting device according to claim 1, wherein the circuit configuration of the light receiving circuit is the same as the circuit configuration of the pixel circuit.
  22.  前記発光素子の発光を制御する画素回路と、前記受光センサの受光を検出する受光回路と、をさらに備え、
     前記受光回路の回路構成が、前記画素回路の回路構成と異なる請求項1~20の何れか1項に記載の発光装置。
    A pixel circuit that controls the emission of the light emitting element and a light receiving circuit that detects the reception of light by the light receiving sensor,
    21. The light emitting device according to claim 1, wherein a circuit configuration of the light receiving circuit is different from a circuit configuration of the pixel circuit.
  23.  前記画素回路および前記受光回路は、1つのトランジスタを、初期化トランジスタとして共有している請求項21または22に記載の発光装置。 The light-emitting device according to claim 21 or 22, wherein the pixel circuit and the light-receiving circuit share one transistor as an initialization transistor.
  24.  前記画素回路に、前記発光素子の発光輝度を指定するデータを供給するデータ信号線をさらに備え、
     前記受光回路は、前記データ信号線を通じて、前記受光センサの検出結果を出力する請求項21~23の何れか1項に記載の発光装置。
    a data signal line for supplying data for designating a light emission luminance of the light emitting element to the pixel circuit;
    24. The light emitting device according to claim 21, wherein the light receiving circuit outputs a detection result of the light receiving sensor through the data signal line.
  25.  請求項1~24の何れか1項に記載の発光装置を備える表示装置。 A display device comprising a light-emitting device according to any one of claims 1 to 24.
  26.  前記受光センサの検出結果に基づき、前記発光素子の劣化を補償するように前記発光素子に印加する電圧または電流を制御する制御部をさらに備える請求項25に記載の表示装置。 The display device according to claim 25, further comprising a control unit that controls the voltage or current applied to the light-emitting element so as to compensate for deterioration of the light-emitting element based on the detection result of the light-receiving sensor.
  27.  外光センサと、
     前記受光センサの検出結果および前記外光センサの検出結果に基づき、前記発光素子の劣化を補償するように前記発光素子に印加する電圧または電流を制御する制御部と、をさらに備える請求項25に記載の表示装置。
    An external light sensor;
    26. The display device according to claim 25, further comprising: a control unit that controls a voltage or current applied to the light-emitting element so as to compensate for deterioration of the light-emitting element based on a detection result of the light receiving sensor and a detection result of the external light sensor.
PCT/JP2023/000992 2023-01-16 2023-01-16 Light emitting device and display device WO2024154195A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/000992 WO2024154195A1 (en) 2023-01-16 2023-01-16 Light emitting device and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/000992 WO2024154195A1 (en) 2023-01-16 2023-01-16 Light emitting device and display device

Publications (1)

Publication Number Publication Date
WO2024154195A1 true WO2024154195A1 (en) 2024-07-25

Family

ID=91955502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000992 WO2024154195A1 (en) 2023-01-16 2023-01-16 Light emitting device and display device

Country Status (1)

Country Link
WO (1) WO2024154195A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151015A (en) * 2003-11-13 2005-06-09 Sony Corp Display and its driving method
JP2005165251A (en) * 2003-11-10 2005-06-23 Sony Corp Active-matrix type organic el display device
JP2010087245A (en) * 2008-09-30 2010-04-15 Casio Computer Co Ltd Light-emitting device, method of manufacturing light-emitting device, and image forming apparatus
JP2010250171A (en) * 2009-04-17 2010-11-04 Seiko Epson Corp Self-light-emitting display device and electronic equipment
US20150349027A1 (en) * 2012-12-06 2015-12-03 Osram Oled Gmbh Organic Optoelectronic Component
US20160064411A1 (en) * 2014-08-28 2016-03-03 Samsung Display Co., Ltd. Thin film transistor substrate and display apparatus including the same
JP2017208173A (en) * 2016-05-16 2017-11-24 株式会社ジャパンディスプレイ Display device
WO2020165686A1 (en) * 2019-02-15 2020-08-20 株式会社半導体エネルギー研究所 Display device, display module, and electronic apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005165251A (en) * 2003-11-10 2005-06-23 Sony Corp Active-matrix type organic el display device
JP2005151015A (en) * 2003-11-13 2005-06-09 Sony Corp Display and its driving method
JP2010087245A (en) * 2008-09-30 2010-04-15 Casio Computer Co Ltd Light-emitting device, method of manufacturing light-emitting device, and image forming apparatus
JP2010250171A (en) * 2009-04-17 2010-11-04 Seiko Epson Corp Self-light-emitting display device and electronic equipment
US20150349027A1 (en) * 2012-12-06 2015-12-03 Osram Oled Gmbh Organic Optoelectronic Component
US20160064411A1 (en) * 2014-08-28 2016-03-03 Samsung Display Co., Ltd. Thin film transistor substrate and display apparatus including the same
JP2017208173A (en) * 2016-05-16 2017-11-24 株式会社ジャパンディスプレイ Display device
WO2020165686A1 (en) * 2019-02-15 2020-08-20 株式会社半導体エネルギー研究所 Display device, display module, and electronic apparatus

Similar Documents

Publication Publication Date Title
US7068246B2 (en) Light emitting module and method of driving the same, and optical sensor
US20160247452A1 (en) Organic light-emitting diode display
US20070210303A1 (en) Thin film transistor and organic electroluminescent display device
US11985874B2 (en) Display substrate and display device
TW201301937A (en) Organic light emitting diode display
CN111261106A (en) Display panel and manufacturing method thereof, pixel luminescence compensation method and display device
KR20180052166A (en) Photo sensor and display device having the same
CN112567446A (en) Display device and electronic apparatus
US8987773B2 (en) Organic light emitting diode display
WO2019092549A1 (en) Display device, drive method for display device, and electronic device
CN107492567B (en) Display substrate and display device
JP2023084700A (en) Display device
US20240290252A1 (en) Display apparatus, its operating method, and electronic device
US10101619B2 (en) Display device and driving method for the same
WO2024154195A1 (en) Light emitting device and display device
US10923557B2 (en) Active-matrix light-emitting diode (AMOLED) free of TFT within an active area
US11950466B2 (en) Display substrate, method of manufacturing the same, and display apparatus
KR20220052657A (en) Display panel and display device including the same
KR20220010958A (en) Display Device and Repairing Method thereof
US20240221618A1 (en) Pixel Circuit and Display Device Including the Same
US20230217760A1 (en) Display apparatus
US20230172016A1 (en) Display device
US20240251622A1 (en) Display apparatus, display panel and manufacturing method thereof
US20230263022A1 (en) Display apparatus and method of manufacturing the same
US20230059858A1 (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23917410

Country of ref document: EP

Kind code of ref document: A1