WO2024152191A1 - Mems开关及其驱动方法、电子设备 - Google Patents

Mems开关及其驱动方法、电子设备 Download PDF

Info

Publication number
WO2024152191A1
WO2024152191A1 PCT/CN2023/072585 CN2023072585W WO2024152191A1 WO 2024152191 A1 WO2024152191 A1 WO 2024152191A1 CN 2023072585 W CN2023072585 W CN 2023072585W WO 2024152191 A1 WO2024152191 A1 WO 2024152191A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
signal line
substrate surface
anchor point
substrate
Prior art date
Application number
PCT/CN2023/072585
Other languages
English (en)
French (fr)
Inventor
史迎利
李延钊
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2023/072585 priority Critical patent/WO2024152191A1/zh
Publication of WO2024152191A1 publication Critical patent/WO2024152191A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H59/00Electrostatic relays; Electro-adhesion relays

Definitions

  • the present application relates to the field of semiconductor technology, and in particular to a MEMS switch and a driving method thereof, and an electronic device.
  • Radio Frequency-Micro-Electro-Mechanical Systems are RF products processed using MEMS technology.
  • RF-MEMS technology is expected to achieve high integration with MMIC, making it possible to produce a system-on-chip (SOC) that integrates information collection, processing, transmission, processing and execution.
  • SOC system-on-chip
  • RF MEMS switches are widely used in electronic devices.
  • RF-MEMS switches can be divided into fixed beam structures and cantilever beam structures according to their structures, and can be divided into electrostatic drive, electromagnetic drive, electrothermal drive and piezoelectric drive according to their driving methods.
  • electrostatic drive technology is relatively mature, the most widely studied, and is currently the most widely used driving mechanism.
  • RF-MEMS switches have the advantages of low loss, low power consumption, good linearity, high isolation, small size, and easy integration. They avoid the ohmic loss and IV nonlinearity caused by the PN junction and metal semiconductor junction of traditional FET and PIN switches, overcome the large size, high power consumption and parasitic effects of component connections caused by traditional external discrete components, and can replace traditional semiconductor devices in microwave systems.
  • RF-MEMS switches are easily affected by internal and external factors such as stress, humidity, high temperature and high pressure, and the structural characteristics of the components themselves. When the switch is working, it is easy to fail due to "adhesion", resulting in the switch being unable to rebound. There is a defect of low reliability, which in turn leads to high device depreciation costs.
  • the present application provides a MEMS switch and a driving method thereof, and an electronic device.
  • a MEMS switch comprises: a substrate, an anchor point, a first signal line, a first drive electrode, a switch beam, and a second signal line.
  • the anchor point is arranged on one side of the substrate.
  • the first signal line and the first drive electrode are both located on the same side of the substrate as the anchor point, and are arranged alternately on both sides of the anchor point in a first direction, and the first direction is parallel to the substrate surface.
  • the distance between the side of the anchor point away from the substrate surface and the substrate surface is respectively greater than the distance between the side of the first signal line away from the substrate surface and the substrate surface, and the distance between the side of the first drive electrode away from the substrate surface and the substrate surface.
  • the second signal line is arranged on the side of the anchor point close to the substrate.
  • the switch beam is connected to the anchor point, and both ends are suspended and arranged on the side of the anchor point away from the substrate, and the orthographic projection of the switch beam on the substrate surface at least partially overlaps with the orthographic projection of the first signal line on the substrate surface and the orthographic projection of the first drive electrode on the substrate surface.
  • the switch beam includes a plurality of switch beam sections with the anchor point as a dividing point, and the switch beam sections correspond to the first signal lines and the first driving electrodes arranged alternately, respectively.
  • the MEMS switch further includes a first insulating layer disposed on a side of the first driving electrode away from the substrate surface.
  • a distance between a side of the first insulating layer away from the substrate surface and the substrate surface is smaller than a distance between a side of the anchor point away from the substrate surface and the substrate surface.
  • the MEMS switch further includes a dielectric layer disposed on a side of the first signal line away from the substrate surface.
  • a distance between a side of the dielectric layer away from the substrate surface and the substrate surface is smaller than a distance between a side of the anchor point away from the substrate surface and the substrate surface.
  • the MEMS switch further includes a second driving electrode disposed on the surface of the substrate and located between the first signal line and the adjacent second signal line.
  • the distance between the substrate surface and a side of the second driving electrode away from the substrate surface is smaller than the distance between the substrate surface and a side of the anchor point away from the substrate surface.
  • adjacent switch beam sections respectively correspond to the first driving electrodes and the second driving electrodes that are alternately arranged.
  • the MEMS switch further includes a second insulating layer disposed on a side of the second driving electrode away from the substrate surface.
  • a distance between a side of the second insulating layer away from the substrate surface and the substrate surface is smaller than a distance between a side of the anchor point away from the substrate surface and the substrate surface.
  • the switch beam section includes a plurality of first switch support beams located between the second signal line and adjacent first drive electrodes.
  • the first driving electrode includes a plurality of first sub-driving electrodes, the first sub-driving electrodes correspond to the first switch support beams, and the orthographic projection of the first switch support beam on the substrate surface at least partially overlaps with the orthographic projection of the corresponding first sub-driving electrode on the substrate surface.
  • the switch beam section includes a plurality of second switch support beams located between the second signal line and adjacent second drive electrodes.
  • the second driving electrode includes a plurality of second sub-driving electrodes, the second sub-driving electrodes correspond to the second switch support beam, and the orthographic projections of the second switch support beam on the substrate surface at least partially overlap with the orthographic projections of the second driving electrode and the first signal line on the substrate surface.
  • a driving method of a MEMS switch based on the aforementioned embodiment comprising:
  • a voltage is applied between the first signal line and the switch beam, so that the switch beam contacts the first signal line, and the switch is in a closed state.
  • the voltage applied between the first signal line and the switch beam is stopped, and a voltage is applied between the first drive electrode and the switch beam, so that the switch beam is separated from the first signal line, and the switch is in an open state.
  • a driving method of the MEMS switch based on the above-mentioned embodiments comprising:
  • a voltage is applied between the second drive electrode and the switch beam, so that the interval between the switch beam and the second drive electrode is reduced, the switch beam contacts the first signal line, and the switch is in a closed state.
  • the voltage application between the first signal line and the switch beam is stopped, and at the same time, a voltage is applied between the first drive electrode and the switch beam, so that the interval between the switch beam and the first signal line is increased, the switch beam is separated from the first signal line, and the switch is in an open state.
  • a driving method of the MEMS switch based on the above-mentioned embodiments comprising:
  • a driving method of the MEMS switch based on the above embodiments comprising:
  • a voltage is applied between any one of the second switch beams and the corresponding second sub-driving electrode, so that the second switch beam contacts the corresponding first signal line, and the switch is in a closed state.
  • the voltage application between the second switch beam and the corresponding second sub-driving electrode is stopped, and a voltage is applied between another switch beam portion adjacent to the second switch beam and the corresponding first sub-driving electrode, so that the second switch beam is separated from the first signal line, and the switch is in an open state.
  • FIG1 is a schematic structural diagram of a MEMS switch according to an embodiment of the present application.
  • FIG2 is a schematic structural diagram of a MEMS switch according to another embodiment of the present application.
  • FIG3 is a top view of the MEMS switch shown in FIG2 ;
  • FIG4 is a switch in an off state when a voltage is applied between the first signal line and the switch beam of the MEMS switch shown in FIG2 ;
  • FIG5 is a perspective view of the MEMS switch shown in FIG4 ;
  • FIG6 is an electrostatic field distribution diagram of the MEMS switch when a voltage is applied between the first drive electrode and the switch beam of the MEMS switch shown in FIG2 ;
  • FIG7 is a finite element simulation experiment diagram of the MEMS switch when a voltage is applied between the first driving electrode and the switch beam of the MEMS switch shown in FIG2 ;
  • FIG8 is a side view showing the configuration comparison before and after a voltage is applied between the first driving electrode and the switch beam of the MEMS switch shown in FIG2 ;
  • FIG9 is a schematic structural diagram of a MEMS switch according to another embodiment of the present application.
  • FIG10 is a top view of the MEMS switch shown in FIG8 ;
  • FIG11 is a schematic structural diagram of a MEMS switch according to another embodiment of the present application.
  • FIG12 is a top view of the MEMS switch shown in FIG11 ;
  • FIG13 is a schematic structural diagram of a MEMS switch according to another embodiment of the present application.
  • FIG14 is a top view of the MEMS switch shown in FIG13 ;
  • FIG15 is a schematic structural diagram of a MEMS switch according to another embodiment of the present application.
  • FIG16 is a side view of the MEMS switch A-A′ section in FIG15 ;
  • FIG17 is a side view of a section B-B′ of the MEMS switch in FIG16 ;
  • FIG. 18 is a MEMS single-pole multi-throw switch or a MEMS switch array based on the MEMS switch provided by the present application.
  • the traditional electrostatically driven RF MEMS switch includes a substrate and a metal beam arranged on the substrate, a signal line located under the metal beam, and a ground line connected to the metal beam.
  • the application of RF-MEMS switches in circuits can be divided into a resistive contact series switch with metal-metal contact and a capacitive coupling parallel switch with metal-insulation-metal contact.
  • the working principle of the resistive contact series switch is to apply a DC bias voltage between the metal beam and the signal line. The electrostatic force generated by this bias voltage between the metal beam and the signal line will cause the metal beam to bend and pull down and eventually contact the signal line.
  • the signal forms a microwave path between the ground line and the signal line through the metal beam, and the contact electrode conducts the signal line in series to achieve switch closure.
  • the metal beam will return to its initial position, the metal beam and the signal line will separate, and the microwave path will be disconnected, thereby achieving switch disconnection.
  • the capacitive coupling parallel switch is provided with a dielectric layer on the side of the signal line close to the metal beam to achieve insulation and block the electrical signal. Its working principle is to apply a DC bias voltage between the metal beam and the signal line.
  • the metal beam when the bias voltage is removed, due to the elastic restoring force of the metal beam itself, the metal beam will return to its initial position, the spacing between the metal beam and the signal line will increase, the capacitance will decrease, and the RF signal will not be coupled to the ground line but will continue to be transmitted along the signal line, and the switch will be disconnected.
  • the metal beam and signal line in the resistive contact series switch will collide with each other repeatedly. This causes pitting and hardening of the metal beam, which reduces the actual contact area between the metal beam and the signal line, reducing the reliability of the switch.
  • the design of the capacitively coupled parallel switch avoids the point contact degradation problem of the DC voltage switch, but due to the easy accumulation of charge in the switch dielectric layer, electrostatic attraction is generated, which causes the metal beam to easily fail with the signal line due to "sticking", reducing the reliability of the switch.
  • the MEMS switch 100 and its driving method and electronic device provided in the present application are intended to solve the above technical problems in the prior art.
  • the embodiment of the present application provides a MEMS switch 100 and a driving method thereof, and an electronic device.
  • the MEMS switch 100 and a driving method thereof, and an electronic device in the embodiment of the present application are described in detail below in conjunction with the accompanying drawings. In the absence of conflict, the features in the following embodiments can complement or be combined with each other.
  • the MEMS switch 100 includes: a substrate 1, an anchor point 2, a first signal line 3, a first drive electrode 4, a switch beam 5, and a second signal line 7.
  • the anchor point 2 is arranged on one side of the substrate 1.
  • the first signal line 3 and the first drive electrode 4 are both located on the same side of the substrate 1 as the anchor point 2, and are arranged alternately on both sides of the anchor point 2 in a first direction, and the first direction is parallel to the surface of the substrate 1; the distance between the side of the anchor point 2 away from the surface of the substrate 1 and the surface of the substrate 1 is respectively greater than the distance between the side of the first signal line 3 away from the surface of the substrate 1 and the surface of the substrate 1, and the distance between the side of the first drive electrode 4 away from the surface of the substrate 1 and the surface of the substrate 1.
  • the second signal line 7 is arranged on the side of the anchor point 2 close to the substrate 1.
  • the switch beam 5 is connected to the anchor point 2, and both ends are suspended and arranged on the side of the anchor point 2 away from the substrate 1, and the orthographic projection of the switch beam 5 on the surface of the substrate 1 is at least partially overlapped with the orthographic projection of the first signal line 3 on the surface of the substrate 1 and the orthographic projection of the first drive electrode 4 on the surface of the substrate 1.
  • a first driving electrode 4 is added to the electrostatically driven MEMS switch 100 as an auxiliary electrode to assist the switch beam 5 in realizing rebound, and is arranged on a side of the anchor point 2 connecting the switch beam 5 and the substrate 1 away from the first signal line 3.
  • a driving voltage is applied between the switch beam 5 and the first signal line 3, and the electrostatic force generated between the switch beam 5 and the first signal line 3 causes the switch beam 5 to contact the first signal line 3.
  • the electrostatic force generated between the switch beam 5 and the first signal line 3 causes the switch beam 5 to contact the first signal line 3.
  • a DC bias driving voltage is applied between the first driving electrode 4 and the switch beam 5, so that the interval between the switch beam 5 and the first driving electrode 4 is reduced, and the interval between the switch beam 5 and the first signal line 3 is increased, so that the switch can be freely switched between the "closed” and “open” states.
  • the reliability of the MEMS switch 100 is improved, the service life of the switch is extended, and the product performance is improved.
  • the conventional MEMS switch 100 needs a certain rebound time to rebound due to the structural characteristics of the switch beam 5 itself.
  • the embodiment of the present application adds a first driving electrode 4, and the rebound under the action of electrostatic force can shorten the response time of the MEMS switch 100 and improve the overall performance of the switch.
  • the first signal line 3 and the second signal line 7 in the MEMS switch are both microstrip lines.
  • the anchor point 2 is connected to the second signal line 7 correspondingly.
  • the second signal line 7 in the MEMS switch can be a ground line, which is located on both sides of the first signal line 3 and forms a coplanar waveguide (CPW) line with the first signal line 3.
  • CPW coplanar waveguide
  • coplanar waveguide lines have the advantages of easy integration and low loss.
  • the substrate 1 in this embodiment can be a rigid substrate, such as a silicon-based substrate and a glass-based substrate; it can also be a bendable flexible substrate, such as LCP (Liquid Crystal Polymer), PI (Polyimide), COP (Cyclo Olefin Polymer).
  • LCP Liquid Crystal Polymer
  • PI Polyimide
  • COP Cyclo Olefin Polymer
  • the switch beam 5, the anchor point 2, the first signal line 3 and the second signal line 7 are all made of metal, which can be aluminum, copper, silver, gold or nickel, as long as the current is conducted.
  • the switch beam 5 and the anchor point 2 are made of the same material, and the switch beam 5 and the anchor point 2 are an integrally formed structure, which can improve the mechanical structural stability of the switch beam 5 .
  • the number of anchor points 2 is n, where n is a positive integer greater than zero. Generally, the more anchor points 2 there are, the longer the length of the switch beam 5 is, so as to avoid contact between the two ends of the switch beam 5 and the first signal line 3 when no driving voltage is applied.
  • n is a positive integer greater than zero.
  • the MEMS switch 100 is provided with an anchor point 2
  • the switch beam 5 is a T-shaped cantilever beam in the related art
  • the first signal line 3 and the first drive electrode 4 are respectively arranged on both sides of the anchor point 2 to achieve control of the motion state of the switch beam 5.
  • the anchor point 2 is set at half of the total length of the switch beam 5, that is, the midpoint of the switch beam 5.
  • the voltage applied between the switch beam 5 and the first signal line 3 is balanced with the voltage applied between the switch beam 5 and the first drive electrode 4, so that the movement trend of the switch beam 5 can be controlled.
  • the anchor point 2 is set at two-thirds of the total length of the switch beam 5
  • the first signal line 3 and the first drive electrode 4 correspond to the two ends of the switch beam 5 respectively
  • the distance between the anchor point 2 and the first signal line 3 is smaller than the distance between the switch beam 5 and the first drive electrode 4.
  • the voltage applied to the first drive electrode 4 is smaller than the voltage applied between the switch beam 5 and the first signal line 3, so that the movement trend of the switch beam 5 can be controlled.
  • the MEMS switch 100 is provided with two anchor points 2, and the switch beam 5 is a double-ended fixed beam in the related art.
  • the first signal line 3 is provided between the two anchor points 2.
  • the switch beam 5 can be supported more stably by the two anchor points 2, thereby enhancing the reliability and mechanical stability of the switch to a certain extent.
  • the MEMS switch 100 is provided with a first anchor point 2 and a second anchor point 2, a first signal line 3 is provided between the first anchor point 2 and the second anchor point 2, and a first driving electrode 4 is provided on a side of the first anchor point 2 away from the first signal line 3, for generating a certain rebound electrostatic force.
  • the MEMS switch 100 has a first anchor point 2 and a second anchor point 2.
  • the signal line 3 is arranged between the first anchor point 2 and the second anchor point 2
  • the first driving electrode 4 is arranged on a side of the second anchor point 2 away from the first signal line 3 , for generating a certain rebound electrostatic force.
  • the MEMS switch 100 is provided with a first anchor point 2 and a second anchor point 2, the first signal line 3 is arranged between the first anchor point 2 and the second anchor point 2, and there are two first driving electrodes 4, which are respectively arranged on the side of the first anchor point 2 away from the first signal line 3 and the side of the second anchor point 2 away from the first signal line 3.
  • the two work together on both sides to produce a better rebound effect.
  • the number of the first driving electrodes 4 is n, where n is a positive integer greater than zero.
  • n is a positive integer greater than zero.
  • the switch beam 5 includes a plurality of switch beam sections with the anchor point 2 as the dividing point; the switch beam sections correspond to the first signal lines 3 and the first drive electrodes 4 arranged alternately, respectively; when the interval between the switch beam section on one side of the anchor point 2 and the corresponding first signal line 3 decreases, the interval between the switch beam section on the other side of the anchor point 2 and the corresponding first drive electrode 4 increases; when the interval between the switch beam section on one side of the anchor point 2 and the corresponding first signal line 3 increases, the interval between the switch beam section on the other side of the anchor point 2 and the corresponding first drive electrode 4 decreases.
  • the movement trend of multiple switch beam sections can be controlled, wherein the arrangement of the first signal line 3 on the substrate 1 can be coordinated with the relative position of the anchor point 2 to achieve array arrangement control of multiple MEMS switches 100.
  • the MEMS switch 100 further includes a first insulating layer 6 disposed on a side of the first driving electrode 4 away from the surface of the substrate 1 ;
  • the distance between the side of the first insulating layer 6 away from the surface of the substrate 1 and the surface of the substrate 1 is smaller than the distance between the side of the anchor point 2 away from the surface of the substrate 1 and the surface of the substrate 1 .
  • the first insulating layer 6 covers the first driving electrode 4, and its main function is to The first driving electrode 4 is prevented from directly contacting the switch beam 5, so that the DC isolation between the two is achieved, and the first insulating layer 6 is non-sticky, so as to prevent adhesion and improve isolation. Furthermore, the first insulating layer 6 can be made of a smooth material to reduce the friction between the switch beam 5 and the first insulating layer 6, protect the switch beam 5 from wear, and improve the anti-adhesion effect between the first insulating layer 6 and the switch beam 5.
  • the orthographic projection area of the first insulating layer 6 on the substrate 1 is less than or equal to the orthographic projection area of the first driving electrode 4 on the substrate 1.
  • the first insulating layer 6 has a certain thickness, which is not particularly limited, and can prevent the switch beam 5 from contacting the first driving electrode 4.
  • the orthographic projection area of the first insulating layer 6 on the substrate 1 is larger than the orthographic projection area of the first driving electrode 4 on the substrate 1, so as to achieve full coverage of the first driving electrode 4 by the first insulating layer 6, and ensure that the switch beam 5 and the first driving electrode 4 are not in contact.
  • the specific size and shape of the first insulating layer 6 are not particularly limited, as long as the electrical insulation between the switch beam 5 and the first driving electrode 4 can be achieved.
  • the MEMS switch 100 further includes a dielectric layer 8 disposed on a side of the first signal line 3 away from the surface of the substrate 1 ;
  • the distance between the side of the dielectric layer 8 away from the surface of the substrate 1 and the surface of the substrate 1 is smaller than the distance between the side of the anchor point 2 away from the surface of the substrate 1 and the surface of the substrate 1 .
  • the dielectric layer 8 is made of an insulating material, which may be silicon nitride or silicon oxynitride. This application does not make any specific limitation, and those skilled in the art may make a selection according to actual design requirements.
  • a finite element simulation is performed on the MEMS switch 100 provided in FIGS. 2 to 5 of the present application.
  • the corresponding electrostatic field distribution diagram is shown in FIG6 .
  • FIG7 When a voltage is applied between the switch beam 5 and the first drive electrode 4 to separate the switch beam 5 from the first signal line 3 , the distribution stereogram of the gap size between the switch beam 5 and the first signal line 3 and the first drive electrode 4 under the action of the electrostatic field is shown in FIG7 .
  • the configuration comparison side view of the switch beam 5 of the MEMS switch 100 before and after rebound under the action of the electrostatic field is shown in FIG8 .
  • the switch beam 5 with adhesion failure is separated from the dielectric layer 8 , and the end of the switch beam 5 close to the first signal line 3 is displaced by 1.55 ⁇ m in the direction of the switch beam 5 away from the substrate 1 , and the end close to the drive electrode is displaced by 2.06 ⁇ m in the direction of the switch beam 5 close to the substrate 1 .
  • the MEMS switch 100 further includes a second driving electrode 9 disposed on the surface of the substrate 1 and located between the first signal line 3 and the adjacent second signal line 7 ;
  • the distance between the side of the second driving electrode 9 away from the surface of the substrate 1 and the surface of the substrate 1 is smaller than the distance between the side of the anchor point 2 away from the surface of the substrate 1 and the surface of the substrate 1 .
  • a second driving electrode 9 is added to the MEMS switch 100, and a DC voltage is applied between the second driving electrode 9 and the switch beam 5.
  • the switch beam 5 approaches the first signal line 3 and contacts the first signal line 3.
  • the signal forms a microwave path along the first signal line 3-metal beam-anchor point 2-second signal line 7, and the switch beam 5 connects the first signal line 3 in series.
  • the switch beam 5 and the first signal line 3 are prone to pitting and hardening after repeated collisions between each other.
  • an auxiliary electrode is added to enhance the electrostatic driving force between the switch beam 5 and the first signal line 3, so that the gap between the switch beam 5 and the first signal line 3 is further reduced, the actual contact area between the switch beam 5 and the first signal line 3 is increased, and the reliability of the MEMS switch 100 is improved.
  • adjacent switch beam segments correspond to the first drive electrodes 4 and the second drive electrodes 9 that are alternately arranged, respectively;
  • adjacent switch beam sections correspond to the alternatingly arranged first drive electrodes 4 and second drive electrodes 9 respectively.
  • the first drive electrode 4 is used to avoid adhesion between the switch beam section and the first signal line 3
  • the second drive electrode 9 is used to assist the contact between the switch beam section and the first signal line 3.
  • the MEMS switch 100 further includes a second insulating layer 10 disposed on a side of the second driving electrode 9 away from the surface of the substrate 1 ;
  • the distance between the side of the second insulating layer 10 away from the surface of the substrate 1 and the surface of the substrate 1 is smaller than the distance between the side of the anchor point 2 away from the surface of the substrate 1 and the surface of the substrate 1 .
  • the second insulating layer 10 in this embodiment covers the second driving electrode 9, and its main function is to prevent the second driving electrode 9 from directly contacting the switch beam 5, so as to achieve DC isolation between the two.
  • the second insulating layer 10 is non-sticky, and can play a role in preventing adhesion and improving isolation.
  • the second insulating layer 10 can be made of a smooth material to reduce the friction between the switch beam 5 and the second insulating layer 10, protect the switch beam 5, and prevent the switch beam 5 from being worn, so as to improve the anti-adhesion effect between the second insulating layer 10 and the switch beam 5.
  • the area of the orthographic projection of the second insulating layer 10 on the substrate 1 is less than or equal to the area of the orthographic projection of the second driving electrode 9 on the substrate 1.
  • the second insulating layer 10 has a certain thickness, which is not particularly limited, and can prevent the switch beam 5 from contacting the second driving electrode 9.
  • the orthographic projection area of the second insulating layer 10 on the substrate 1 is larger than the orthographic projection area of the second driving electrode 9 on the substrate 1, so as to achieve full coverage of the second driving electrode 9 by the second insulating layer 10, and ensure that the switch beam 5 and the second driving electrode 9 are not in contact.
  • the specific size and shape of the second insulating layer 10 are not particularly limited, as long as the electrical insulation between the switch beam 5 and the second driving electrode 9 can be achieved.
  • the switch beam division includes a plurality of first switch support beams 51 located between the second signal line 7 and the adjacent first drive electrode 4 ;
  • the first driving electrode 4 includes a plurality of first sub-driving electrodes 41 , which correspond to the first switch support beam 51 , and the orthographic projection of the first switch support beam 51 on the surface of the substrate 1 at least partially overlaps with the orthographic projection of the corresponding first sub-driving electrode 41 on the surface of the substrate 1 .
  • the switch beam 5 is decomposed into a plurality of first switch support beams 51, and the first drive electrode 4 includes a plurality of first sub-drive electrodes 41.
  • Different first switch support beams 51 correspond to different first sub-drive electrodes 41, and if any of the first drive electrodes 4 fails, the MEMS switch 100 is still provided with other first sub-drive electrodes for controlling the rebound of the switch beam 5, thereby improving the reliability and fault tolerance of the MEMS switch.
  • the switch beam section includes a plurality of second switch support beams located between the second signal line 7 and the adjacent second drive electrode 9;
  • the second driving electrode 9 includes a plurality of second sub-driving electrodes, which correspond to the second switch support beams.
  • the orthographic projections of the second switch support beams on the surface of the substrate 1 at least partially overlap with the orthographic projections of the second driving electrode 9 and the first signal line 3 on the surface of the substrate 1 .
  • an embodiment of the present application provides a driving method of the MEMS switch 100 based on the aforementioned embodiment, and the driving method includes:
  • a voltage is applied between the first signal line 3 and the switch beam 5 to make the switch beam 5 contact with the first signal line 3, and the switch is in a closed state; the voltage applied between the first signal line 3 and the switch beam 5 is stopped, and at the same time, a voltage is applied between the first drive electrode 4 and the switch beam 5 to separate the switch beam 5 from the first signal line 3, and the switch is in an open state.
  • the embodiment of the present application provides a second driving method of the MEMS switch 100 based on the aforementioned embodiment, and the driving method includes:
  • a voltage is applied between the second drive electrode 9 and the switch beam 5 to reduce the gap between the switch beam 5 and the second drive electrode 9, the switch beam 5 contacts the first signal line 3, and the switch is in a closed state; the voltage applied between the first signal line 3 and the switch beam 5 is stopped, and at the same time, a voltage is applied between the first drive electrode 4 and the switch beam 5 to increase the gap between the switch beam 5 and the first signal line 3, the switch beam 5 is separated from the first signal line 3, and the switch is in an open state.
  • the embodiment of the present application provides a third driving method of the MEMS switch 100 based on the aforementioned embodiment, and the driving method includes:
  • a voltage is applied between any switch beam division and the corresponding first signal line 3 to make the switch beam division and the corresponding first signal line 3 contact each other, and the switch is in a closed state; the voltage application between the switch beam division and the corresponding first signal line 3 is stopped, and at the same time, a voltage is applied between any first switch support beam 51 of another switch beam division adjacent to the switch beam division and the corresponding first sub-driving electrode 41 to separate the switch beam division and the first signal line 3, and the switch is in an open state.
  • the embodiment of the present application provides a fourth driving method of the MEMS switch 100 based on the above embodiment, and the driving method includes:
  • a voltage is applied between any second switch support beam and the corresponding second sub-driving electrode to make the second switch support beam contact with the corresponding first signal line 3, and the switch is in a closed state; the voltage application between the second switch support beam and the corresponding second sub-driving electrode is stopped, and at the same time, a voltage is applied between another switch beam portion adjacent to the second switch support beam and the corresponding first sub-driving electrode 41 to separate the second switch support beam from the first signal line 3, and the switch is in an open state.
  • the above driving methods can be implemented to effectively prevent the MEMS switch 100 from failing due to "sticking" during operation, which may cause the switch to be unable to rebound. Therefore, the driving method can be used to control the MEMS switch 100 in the above embodiment to improve the reliability of the switch.
  • an embodiment of the present application provides an electronic device.
  • the electronic device includes the aforementioned MEMS device. Therefore, the electronic device has all the features and advantages of the aforementioned flexible MEMS device, which will not be described in detail here.
  • the embodiment of the present application also provides an RF MEMS single-pole multi-throw switch or an RF MEMS switch 100 array based on a MEMS switch 100, wherein each MEMS switch 100 is provided with a first drive electrode 4, which can improve the adhesion problem of the switch beam 5 in the single-pole multi-throw switch or the MEMS switch 100 array, and at the same time can shorten the response time of the single-pole multi-throw switch or the MEMS switch 100 array.
  • the embodiment of the present application does not limit the number of output terminals of the single-pole multi-throw switch and the number of switch arrays.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Thus, a feature defined as “first” or “second” may explicitly or implicitly include one or more of the features. In the description of this application, unless otherwise specified, “plurality” means two or more.

Landscapes

  • Micromachines (AREA)

Abstract

本申请提供一种MEMS开关及其驱动方法、电子设备。该MEMS开关包括:衬底、锚点、第一信号线、第一驱动电极、开关梁和第二信号线。其中,锚点设置于衬底的一侧。第一信号线和第一驱动电极均位于衬底上与锚点所在的同一侧,并且沿平行于衬底表面的方向依次交替排列于锚点的两侧。第二信号线设置于锚点靠近衬底的一端。开关梁与锚点连接,设置于锚点远离衬底的一端,开关梁两端悬空,开关梁在衬底表面的正投影分别与第一信号线在衬底表面的正投影、第一驱动电极在衬底表面的正投影至少部分重合,该MEMS开关的结构提升了MEMS开关的可靠性。

Description

MEMS开关及其驱动方法、电子设备 技术领域
本申请涉及半导体技术领域,具体涉及一种MEMS开关及其驱动方法、电子设备。
背景技术
射频微机电系统(Radio Frequency-Micro-Electro-Mechanical Systems,简称:RF-MEMS)是用MEMS技术加工的RF产品,RF-MEMS技术可望实现和MMIC的高度集成,使制作集信息的采集、处理、传输、处理和执行于一体的系统集成芯片(SOC)成为可能。其中,RF MEMS开关在电子设备中应用较为广泛。
RF-MEMS开关根据结构可分为固定梁结构和悬臂梁结构,根据驱动方式可分为静电驱动、电磁驱动、电热驱动和压电驱动。其中,静电驱动方式技术较为成熟,研究最为广泛,是目前应用最多的驱动机制。RF-MEMS开关与传统开关相比具有损耗低、功耗低、线性度好、隔离度高、尺寸小、易集成等优势,避免了传统FET、PIN开关由于P-N结和金属半导体结带来的欧姆损耗、I-V非线性,克服了传统外置分立元件带来的体积大、功耗大和元件连线带来的寄生影响,可代替传统半导体器件应用于微波系统中。但是RF-MEMS开关易受到应力、潮湿、高温高压以及元件本身的结构特性等内外界因素的影响,开关工作时容易发生“粘连”失效,导致开关无法回弹,存在可靠性较低的缺陷,进而导致器件折损成本较高。
发明内容
本申请提出一种MEMS开关及其驱动方法、电子设备。
根据本申请实施例的第一方面,提供一种MEMS开关。MEMS开关包括:衬底、锚点、第一信号线、第一驱动电极、开关梁和第二信号线。其中,锚点设置于所述衬底的一侧。第一信号线和第一驱动电极均位于所述衬底上与所述锚点所在的同一侧,并且沿第一方向依次交替排列于所述锚点的两侧,所述第一方向平行于所述衬底表面。所述锚点远离所述衬底表面的一侧与所述衬底表面之间的距离分别大于所述第一信号线远离所述衬底表面的一侧与所述衬底表面之间、以及所述第一驱动电极远离所述衬底表面的一侧与所述衬底表面之间的距离。第二信号线设置于所述锚点靠近所述衬底的一侧。开关梁与所述锚点连接,两端悬空设置于所述锚点远离所述衬底的一侧,所述开关梁在所述衬底表面的正投影分别与所述第一信号线在所述衬底表面的正投影、以及所述第一驱动电极在所述衬底表面的正投影至少部分重合。
在一个实施例中,所述开关梁包括以所述锚点为分界点的多个开关梁分部。所述开关梁分部分别与交替排列的所述第一信号线以及所述第一驱动电极相对应。
当所述锚点的一侧的开关梁分部与相对应的所述第一信号线之间的间隔减小时,所述锚点的另一侧的开关梁分部与相对应的所述第一驱动电极之间的间隔增大。当所述锚点的一侧的开关梁分部与相对应的所述第一信号线之间的间隔增大时,所述锚点的另一侧的开关梁分部与相对应的所述第一驱动电极之间的间隔减小。
在一个实施例中,MEMS开关还包括设置于所述第一驱动电极远离所述衬底表面的一侧的第一绝缘层。
所述第一绝缘层远离所述衬底表面的一侧与所述衬底表面之间的距离小于所述锚点远离所述衬底表面的一侧与所述衬底表面之间的距离。
在一个实施例中,MEMS开关还包括设置于所述第一信号线远离所述衬底表面的一侧的介电层。
所述介电层远离所述衬底表面的一侧与所述衬底表面之间的距离小于所述锚点远离所述衬底表面的一侧与所述衬底表面之间的距离。
在一个实施例中,MEMS开关还包括设置于所述衬底表面并且位于所述第一信号线与相邻的所述第二信号线之间的第二驱动电极。
所述第二驱动电极远离所述衬底表面的一侧与所述衬底表面之间的距离小于所述锚点远离所述衬底表面的一侧与所述衬底表面之间的距离。
在一个实施例中,相邻的所述开关梁分部分别与交替排列的所述第一驱动电极和所述第二驱动电极相对应。
当所述锚点的一侧的开关梁分部与相对应的所述第一驱动电极之间的间隔减小时,所述锚点的另一侧的开关梁分部与相对应的所述第二驱动电极之间的间隔增大。当所述锚点的一侧的开关梁分部与相对应的所述第一驱动电极之间的间隔增大时,所述锚点的另一侧的开关梁分部与相对应的所述第二驱动电极之间的间隔减小。
在一个实施例中,MEMS开关还包括设置于所述第二驱动电极远离所述衬底表面的一侧的第二绝缘层。
所述第二绝缘层远离所述衬底表面的一侧与所述衬底表面之间的距离小于所述锚点远离所述衬底表面的一侧与所述衬底表面之间的距离。
在一个实施例中,所述开关梁分部包括位于所述第二信号线与相邻的所述第一驱动电极之间的多个第一开关支梁。
所述第一驱动电极包括多个第一子驱动电极,所述第一子驱动电极与所述第一开关支梁相对应,所述第一开关支梁在所述衬底表面的正投影与相对应的所述第一子驱动电极在所述衬底表面的正投影至少部分重合。
在一个实施例中,所述开关梁分部包括位于所述第二信号线与相邻的所述第二驱动电极之间的多个第二开关支梁。
所述第二驱动电极包括多个第二子驱动电极,所述第二子驱动电极与所述第二开关支梁相对应,所述第二开关支梁在所述衬底表面的正投影分别与所述第二驱动电极、所述第一信号线在所述衬底表面的正投影至少部分重合。
根据本申请实施例的第二方面,提供一种基于前述实施例的MEMS开关的驱动方法,所述驱动方法包括:
对所述第一信号线和所述开关梁之间加载电压,使所述开关梁与所述第一信号线之间接触,开关处于闭合状态。停止对所述第一信号线与所述开关梁之间加载电压,同时对所述第一驱动电极和所述开关梁之间加载电压,使所述开关梁与所述第一信号线之间分离,开关处于断开状态。
根据本申请实施例的第三方面,提供一种基于前述实施例的MEMS开关的驱动方法,所述驱动方法包括:
对所述第二驱动电极和所述开关梁之间加载电压,使所述开关梁与所述第二驱动电极之间的间隔减小,所述开关梁与所述第一信号线之间接触,开关处于闭合状态。停止对所述第一信号线与所述开关梁之间加载电压,同时对所述第一驱动电极和所述开关梁之间加载电压,使所述开关梁与所述第一信号线之间的间隔增大,所述开关梁与所述第一信号线之间分离,开关处于断开状态。
根据本申请实施例的第四方面,提供一种基于前述实施例的MEMS开关的驱动方法,所述驱动方法包括:
对任一个所述开关梁分部和相对应的所述第一信号线之间加载电压,使所述开关梁分部和相对应的所述第一信号线之间接触,开关处于闭合状态。停止对所述开关梁分部和相对应的所述第一信号线之间加载电压,同时对与 所述开关梁分部相邻的另一所述开关梁分部的任一所述第一开关支梁和相对应的所述第一子驱动电极之间加载电压,使所述开关梁分部与所述第一信号线之间分离,开关处于断开状态。
根据本申请实施例的第五方面,提供一种基于前述实施例的MEMS开关的驱动方法,所述驱动方法包括:
对任一个所述第二开关支梁和相对应的所述第二子驱动电极之间加载电压,使所述第二开关支梁和相对应的所述第一信号线之间接触,开关处于闭合状态。停止对所述第二开关支梁和相对应的所述第二子驱动电极之间加载电压,同时对与所述第二开关支梁相邻的另一所述开关梁分部和相对应的所述第一子驱动电极之间加载电压,使所述第二开关支梁与所述第一信号线之间分离,开关处于断开状态。
本申请附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
图1是本申请提供的一种实施例的MEMS开关的结构示意图;
图2是本申请提供的另一种实施例的MEMS开关的结构示意图;
图3是图2所示的MEMS开关的俯视图;
图4是对图2所示的MEMS开关的第一信号线与开关梁之间施加电压时处于断开状态的开关;
图5是图4所示的MEMS开关的立体图;
图6是对图2所示的MEMS开关的第一驱动电极与开关梁之间施加电压时MEMS开关的静电场分布图;
图7是对图2所示的MEMS开关的第一驱动电极与开关梁之间施加电压时MEMS开关的有限元仿真实验图;
图8是对图2所示的MEMS开关的第一驱动电极与开关梁之间施加电压前后的构型对比侧视图;
图9是本申请提供的又一种实施例的MEMS开关的结构示意图;
图10是图8所示的MEMS开关的俯视图;
图11是本申请提供的又一种实施例的MEMS开关的结构示意图;
图12是图11所示的MEMS开关的俯视图;
图13是本申请提供的又一种实施例的MEMS开关的结构示意图;
图14是图13所示的MEMS开关的俯视图;
图15是本申请提供的又一种实施例的MEMS开关的结构示意图;
图16是图15中的MEMS开关A-A’截面的侧视图;
图17是图16中的MEMS开关B-B’截面的侧视图;
图18是基于本申请提供的MEMS开关的MEMS单刀多掷开关或MEMS开关阵列。
图中:
1-衬底;2-锚点;3-第一信号线;4-第一驱动电极;41-第一子驱动电极;5-开关梁;51-第一开关支梁;6-第一绝缘层;7-第二信号线;8-介电层;9-第二驱动电极;10-第二绝缘层;100-MEMS开关。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施例并不代表与本申请相一致的所 有实施例。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
本申请的研发思路包括:传统的静电驱动RF MEMS开关包括基底以及设置于基底上的金属梁、位于金属梁下方的信号线以及与金属梁连接的地线。RF-MEMS开关在电路中的应用可分成金属-金属接触的电阻接触串联开关和金属-绝缘-金属接触的电容耦合并联开关。电阻接触串联开关的工作原理是往金属梁和信号线之间施加直流偏置电压,此偏置电压在金属梁和信号线之间产生的静电力将会使金属梁弯曲下拉并最终与信号线接触,信号通过金属梁在地线和信号线之间形成微波通路,接触电极以串联的形式将信号线导通,实现开关闭合。相反,当撤去偏置电压之后,由于金属梁自身的弹性恢复力,金属梁将回到初始位置,金属梁和信号线之间分离,微波通路断开,从而实现开关断开。电容耦合并联开关在信号线靠近金属梁的一侧设置有介电层实现绝缘以阻隔电信号,其工作原理是往金属梁和信号线之间施加直流偏置电压,此偏置电压在金属梁和信号线之间产生的静电力将会使金属梁弯曲下拉并最终与信号线上的介电层接触,由于金属梁和信号线之间初始间距较大,电容很小,射频信号会沿着信号线传递,但随着他们之间距离的减小,电容将会变大,此时射频信号就会通过金属梁被耦合到地线,实现开关闭合。相反,当撤去偏置电压后,由于金属梁自身的弹性恢复力,金属梁将回到初始位置,金属梁和信号线之间的间距增大,电容减小,射频信号就不会耦合到地线而是继续沿信号线传输,实现开关断开。
然而,电阻接触串联开关中金属梁和信号线之间相互反复撞击之后会 导致金属梁产生点蚀和硬化,从而减小金属梁和信号线之间的实际接触面积,降低了开关的可靠性。电容耦合并联开关的设计避免了直流电压开关的点接触退化问题,但是由于开关介电层中容易形成电荷积累,产生静电引力,导致金属梁容易和信号线之间容易发生“粘连”失效,降低了开关的可靠性。
本申请提供的MEMS开关100及其驱动方法、电子设备,旨在解决现有技术的如上技术问题。
本申请实施例提供了一种MEMS开关100及其驱动方法、电子设备。下面结合附图,对本申请实施例中的MEMS开关100及其驱动方法、电子设备进行详细说明。在不冲突的情况下,下述的实施例中的特征可以相互补充或相互组合。
本申请实施例提供了一种MEMS开关100,如图1所示,该MEMS开关100包括:衬底1、锚点2、第一信号线3、第一驱动电极4、开关梁5和第二信号线7。其中,锚点2,设置于衬底1的一侧。第一信号线3和第一驱动电极4均位于衬底1上与锚点2所在的同一侧,并且沿第一方向依次交替排列于锚点2的两侧,第一方向平行于衬底1表面;锚点2远离衬底1表面的一侧与衬底1表面之间的距离分别大于第一信号线3远离衬底1表面的一侧与衬底1表面之间、以及第一驱动电极4远离衬底1表面的一侧与衬底1表面之间的距离。第二信号线7设置于锚点2靠近衬底1的一侧。开关梁5与锚点2连接,两端悬空设置于锚点2远离衬底1的一侧,开关梁5在衬底1表面的正投影分别与第一信号线3在衬底1表面的正投影、以及第一驱动电极4在衬底1表面的正投影至少部分重合。
本申请实施例在静电驱动MEMS开关100中增加了第一驱动电极4作为辅助开关梁5实现回弹的辅助电极,设置于连接开关梁5与衬底1之间的锚点2远离第一信号线3的一侧。向开关梁5和第一信号线3之间施加驱动电压,开关梁5和第一信号线3之间产生的静电力使开关梁5与第一信号线3之间接触,当开关梁5和第一信号线3之间由于环境因素以及结构特性等原 因发生粘连,产生无法正常回弹的现象时,向第一驱动电极4和开关梁5之间施加直流偏置驱动电压,令开关梁5和第一驱动电极4之间的间隔减小,开关梁5和第一信号线3之间的间隔增大,从而使开关在“闭合”和“断开”状态之间自由切换。提高了MEMS开关100的可靠性,并且延长了开关的使用寿命,提升产品性能。
同时,传统的MEMS开关100通过开关梁5自身的结构特性回弹,需要一定的回弹时间,本申请实施例增设第一驱动电极4,在静电力的作用下回弹可以缩短MEMS开关100的响应时间,提升开关整体的性能。
在一个示例中,如图1所示,MEMS开关中的第一信号线3和第二信号线7均为微带线,当MEMS开关100设有一个锚点2时,锚点2与第二信号线7对应连接。
在一个示例中,如图2~18所示,MEMS开关中的第二信号线7可以为地线,分别位于第一信号线3的两侧,与第一信号线3组成共面波导线(CPW),相比于微带线而言,共面波导线具有易于集成和低损耗的优点。当MEMS开关100设有一个锚点2时,锚点2与两条第二信号线7中的任意一条对应连接;当MEMS开关100设有两个锚点2时,两条第二信号线7分别与两个锚点2对应连接。
需要说明的是,本实施例中的衬底1可以为刚性衬底,例如硅基和玻璃基;也可以为可弯曲柔性衬底,例如LCP(液晶高分子聚合物,Liquid Crystal Polymer)、PI(聚酰亚胺,Polyimide)、COP(Cyclo Olefin Polymer,环丙烯聚合物)。开关梁5、锚点2、第一信号线3和第二信号线7的材质均为金属,可以为铝、铜、银、金或镍,实现电流导通即可,本领域的技术人员可以根据实际设计需求进行选择,本申请不做特别限定。
在一些实施例中,开关梁5和锚点2的材质相同,开关梁5和锚点2之间为一体成型结构,可提高开关梁5的机械结构稳定性。
在一些实施例中,锚点2的数量为n个,其中,n为大于零的正整数。一般地,锚点2的数量越多,开关梁5的长度越长,以避免在未施加驱动电压时,开关梁5的两端与第一信号线3之间发生接触。本领域的技术人员可以根据实际设计需求进行选择,本申请不做特别限定。
在一些实施例中,如图1~10所示,MEMS开关100设有一个锚点2,开关梁5即为相关技术中的T形悬臂梁,第一信号线3和第一驱动电极4分别设置于锚点2的两侧,以实现对开关梁5的运动状态的控制。
在一个示例中,MEMS开关100设置一个锚点2时,将锚点2设置于开关梁5的总长度的二分之一处,即开关梁5的中点,则此时施加在开关梁5和第一信号线3之间的电压与施加在开关梁5和第一驱动电极4之间的电压相平衡即可控制开关梁5的运动趋势。
在一个示例中,MEMS开关100设置一个锚点2时,将锚点2设置于开关梁5的总长度的三分之二处,第一信号线3和第一驱动电极4分别与开关梁5的两端相对应,锚点2与第一信号线3之间的距离小于开关梁5与第一驱动电极4之间的距离。此时当开关梁5发生粘连需要回弹时,对第一驱动电极4施加的电压小于对开关梁5和第一信号线3之间施加的电压,即可控制开关梁5的运动趋势。
在一些实施例中,如图11~12所示,MEMS开关100设有两个锚点2,开关梁5即为相关技术中的双端固支梁。此时第一信号线3设置于两个锚点2之间,相比仅设置一个锚点2的方案,通过两个锚点2可以更加稳固的支撑开关梁5,因此在一定程度上可以增强开关的可靠性和机械稳定性。
在一个示例中,MEMS开关100设有第一锚点2和第二锚点2,第一信号线3设置于第一锚点2和第二锚点2之间,第一驱动电极4设置于第一锚点2远离第一信号线3的一侧,用于产生一定的回弹静电力。
在一个示例中,MEMS开关100设有第一锚点2和第二锚点2,第一 信号线3设置于第一锚点2和第二锚点2之间,第一驱动电极4设置于第二锚点2远离第一信号线3的一侧,用于产生一定的回弹静电力。
在一个示例中,MEMS开关100设有第一锚点2和第二锚点2,第一信号线3设置于第一锚点2和第二锚点2之间,第一驱动电极4有两个,分别设置于第一锚点2远离第一信号线3的一侧和第二锚点2远离第一信号线3的一侧,两者在两侧共同作用,可产生更好的回弹效果。
需要说明的是,第一驱动电极4的数量为n个,n为大于零的正整数。开关梁5的两端距离锚点2的长度较长时,可设置多个驱动电极以实现对开关梁5的控制。本领域的技术人员可以根据实际设计需求进行选择,本申请不做特别限定。
在一些实施例中,开关梁5包括以锚点2为分界点的多个开关梁分部;开关梁分部分别与交替排列的第一信号线3以及第一驱动电极4相对应;当锚点2的一侧的开关梁分部与相对应的第一信号线3之间的间隔减小时,锚点2的另一侧的开关梁分部与相对应的第一驱动电极4之间的间隔增大;当锚点2的一侧的开关梁分部与相对应的第一信号线3之间的间隔增大时,锚点2的另一侧的开关梁分部与相对应的第一驱动电极4之间的间隔减小。
本实施例中,通过对开关梁5分别和第一信号线3、第一驱动电极4之间施加电压,可实现控制多个开关梁分部的运动趋势,其中第一信号线3在衬底1上的排列方式可与锚点2的相对位置相配合,以实现对多个MEMS开关100的阵列式排布控制。
在一些实施例中,如图2~18所示,MEMS开关100还包括设置于第一驱动电极4远离衬底1表面的一侧的第一绝缘层6;
第一绝缘层6远离衬底1表面的一侧与衬底1表面之间的距离小于锚点2远离衬底1表面的一侧与衬底1表面之间的距离。
本实施例中的第一绝缘层6覆盖于第一驱动电极4上,其主要作用是 避免第一驱动电极4与开关梁5发生直接接触,实现两者的直流隔离,并且第一绝缘层6不具有粘性,可起到防粘附和提高隔离度的作用。更进一步地,第一绝缘层6可选用光滑材料,减小开关梁5和第一绝缘层6之间的摩擦力,保护开关梁5避免开关梁5产生磨损,以提高第一绝缘层6和开关梁5之间防粘附的效果。
在一些实施例中,第一绝缘层6在衬底1上正投影的面积小于或等于第一驱动电极4在衬底1上的正投影的面积。第一绝缘层6有一定厚度,厚度不做特别限定,可实现避免开关梁5与第一驱动电极4之间接触即可。
在一些实施例中,第一绝缘层6在衬底1上正投影的面积大于第一驱动电极4在衬底1上的正投影的面积。以实现第一绝缘层6对第一驱动电极4的全面覆盖,确保开关梁5与第一驱动电极4之间不相接触。
需要说明的是,第一绝缘层6的具体大小和形状不做特别限定,只要能够实现开关梁5与第一驱动电极4之间的电绝缘作用即可。
在一个实施例中,如图2~18所示,MEMS开关100还包括设置于第一信号线3远离衬底1表面的一侧的介电层8;
介电层8远离衬底1表面的一侧与衬底1表面之间的距离小于锚点2远离衬底1表面的一侧与衬底1表面之间的距离。
需要说明的是,当MEMS开关100中第一信号线3靠近开关梁5的一侧不设置介电层8时,形成金属-金属接触的电阻接触串联开关,如图13~17所示。当MEMS开关100中第一信号线3靠近开关梁5的一侧设有介电层8时,形成金属-绝缘-金属接触的电容耦合并联开关,如图2~12所示。
本实施例中介电层8由绝缘材料构成,可以为氮化硅或氮氧化硅,本申请不做具体限定,本领域技术人员可根据实际设计需求进行选择。
在一个示例中,对本申请图2~5提供的MEMS开关100进行有限元仿 真实验,得到对应的静电场分布图如图6所示,当向开关梁5和第一驱动电极4之间施加电压令开关梁5与第一信号线3分离时,在静电场作用下开关梁5与第一信号线3、第一驱动电极4之之间的间隙尺寸的分布立体图如图7所示,在静电场作用下MEMS开关100的开关梁5回弹前后的构型对比侧视图如图8所示。在静电力驱动作用下,发生粘连失效的开关梁5与介电层8分离,开关梁5靠近第一信号线3的一端沿开关梁5远离衬底1的方向上发生位移1.55μm,靠近驱动电极的一端沿开关梁5靠近衬底1的方向上发生位移2.06μm。
在一些实施例中,如图9所示,MEMS开关100还包括设置于衬底1表面并且位于第一信号线3与相邻的第二信号线7之间的第二驱动电极9;
第二驱动电极9远离衬底1表面的一侧与衬底1表面之间的距离小于锚点2远离衬底1表面的一侧与衬底1表面之间的距离。
本实施例在MEMS开关100上增加设有第二驱动电极9,在第二驱动电极9和开关梁5之间施加直流电压,开关梁5在静电力的驱动下靠近第一信号线3并与第一信号线3之间接触,信号沿第一信号线3-金属梁-锚点2-第二信号线7构成一个微波通路,开关梁5以串联的形式将第一信号线3接通。电阻接触串联开关中开关梁5和第一信号线3之间相互反复撞击之后容易导致开关梁5产生点蚀和硬化,因此增设一个辅助电极增强开关梁5与第一信号线3之间的静电驱动力,以使开关梁5与第一信号线3之间的间隙进一步减小,增大开关梁5和第一信号线3之间的实际接触面积,提高MEMS开关100的可靠性。
在一个实施例中,相邻的开关梁分部分别与交替排列的第一驱动电极4和第二驱动电极9相对应;
当锚点2的一侧的开关梁分部与相对应的第一驱动电极4之间的间隔减小时,锚点2的另一侧的开关梁分部与相对应的第二驱动电极9之间的间 隔增大;当锚点2的一侧的开关梁分部与相对应的第一驱动电极4之间的间隔增大时,锚点2的另一侧的开关梁分部与相对应的第二驱动电极9之间的间隔减小。
本实施例中,相邻的开关梁分部分别与交替排列的第一驱动电极4和第二驱动电极9相对应,第一驱动电极4用于避免开关梁分部与第一信号线3之间发生粘连,第二驱动电极9用于辅助开关梁分部与第一信号线3之间接触。
在一些实施例中,如图9所示,MEMS开关100还包括设置于第二驱动电极9远离衬底1表面的一侧的第二绝缘层10;
第二绝缘层10远离衬底1表面的一侧与衬底1表面之间的距离小于锚点2远离衬底1表面的一侧与衬底1表面之间的距离。
本实施例中的第二绝缘层10覆盖于第二驱动电极9上,其主要作用是避免第二驱动电极9与开关梁5发生直接接触,实现两者的直流隔离,并且第二绝缘层10不具有粘性,可起到防粘附和提高隔离度的作用。更进一步地,第二绝缘层10可选用光滑材料,减小开关梁5和第二绝缘层10之间的摩擦力,保护开关梁5,避免开关梁5产生磨损,以提高第二绝缘层10和开关梁5之间防粘附的效果。
在一些实施例中,第二绝缘层10在衬底1上正投影的面积小于或等于第二驱动电极9在衬底1上的正投影的面积。第二绝缘层10有一定厚度,厚度不做特别限定,可实现避免开关梁5与第二驱动电极9之间接触即可。
在一些实施例中,第二绝缘层10在衬底1上正投影的面积大于第二驱动电极9在衬底1上的正投影的面积。以实现第二绝缘层10对第二驱动电极9的全面覆盖,确保开关梁5与第二驱动电极9之间不相接触。
需要说明的是,第二绝缘层10的具体大小和形状不做特别限定,只要能够实现开关梁5与第二驱动电极9之间的电绝缘作用即可。
在一些实施例中,如图15~17所示,开关梁分部包括位于第二信号线7与相邻的第一驱动电极4之间的多个第一开关支梁51;
第一驱动电极4包括多个第一子驱动电极41,第一子驱动电极41与第一开关支梁51相对应,第一开关支梁51在衬底1表面的正投影与相对应的第一子驱动电极41在衬底1表面的正投影至少部分重合。
本实施例中,将开关梁5分解为多个第一开关支梁51,第一驱动电极4包括多个第一子驱动电极41。不同的第一开关支梁51对应不同的第一子驱动电极41,若其中任一个第一驱动电极4发生故障,则该MEMS开关100仍设有其他的第一子去哦驱动电极用于控制开关梁5的回弹,提高了MEMS开关的可靠性和容错性。
在一些实施例中,开关梁分部包括位于第二信号线7与相邻的第二驱动电极9之间的多个第二开关支梁;
第二驱动电极9包括多个第二子驱动电极,第二子驱动电极与第二开关支梁相对应,第二开关支梁在衬底1表面的正投影分别与第二驱动电极9、第一信号线3在衬底1表面的正投影至少部分重合。
本实施例的有益效果与前述实施例中的第一开关支梁51同理,此处不再赘述。
基于同一发明构思,本申请实施例提供一种基于前述实施例的MEMS开关100的驱动方法,驱动方法包括:
对第一信号线3和开关梁5之间加载电压,使开关梁5与第一信号线3之间接触,开关处于闭合状态;停止对第一信号线3与开关梁5之间加载电压,同时对第一驱动电极4和开关梁5之间加载电压,使开关梁5与第一信号线3之间分离,开关处于断开状态。
基于同一发明构思,本申请实施例提供第二种基于前述实施例的MEMS开关100的驱动方法,驱动方法包括:
对第二驱动电极9和开关梁5之间加载电压,使开关梁5与第二驱动电极9之间的间隔减小,开关梁5与第一信号线3之间接触,开关处于闭合状态;停止对第一信号线3与开关梁5之间加载电压,同时对第一驱动电极4和开关梁5之间加载电压,使开关梁5与第一信号线3之间的间隔增大,开关梁5与第一信号线3之间分离,开关处于断开状态。
基于同一发明构思,本申请实施例提供第三种基于前述实施例的MEMS开关100的驱动方法,驱动方法包括:
对任一个开关梁分部和相对应的第一信号线3之间加载电压,使开关梁分部和相对应的第一信号线3之间接触,开关处于闭合状态;停止对开关梁分部和相对应的第一信号线3之间加载电压,同时对与开关梁分部相邻的另一开关梁分部的任一第一开关支梁51和相对应的第一子驱动电极41之间加载电压,使开关梁分部与第一信号线3之间分离,开关处于断开状态。
基于同一发明构思,本申请实施例提供第四种基于前述实施例的MEMS开关100的驱动方法,驱动方法包括:
对任一个第二开关支梁和相对应的第二子驱动电极之间加载电压,使第二开关支梁和相对应的第一信号线3之间接触,开关处于闭合状态;停止对第二开关支梁和相对应的第二子驱动电极之间加载电压,同时对与第二开关支梁相邻的另一开关梁分部和相对应的第一子驱动电极41之间加载电压,使第二开关支梁与第一信号线3之间分离,开关处于断开状态。
上述驱动方法均可实现,有效防止MEMS开关100工作时容易发生“粘连”失效造成开关无法回弹的问题,故使用该驱动方法对前述实施例中的MEMS开关100进行控制,可提高开关的可靠性。
基于同一发明构思,本申请实施例提供了一种电子设备。该电子设备包括前述的MEMS器件。由此,该电子设备具备前面的柔性MEMS器件的全部特征以及优点,在此不再赘述。
基于同一发明构思,如图18所示,本申请实施例还提供了一种基于MEMS开关100的RF MEMS单刀多掷开关或者RF MEMS开关100阵列,其中,每一个MEMS开关100,均设有第一驱动电极4,可改善单刀多掷开关或者MEMS开关100阵列中开关梁5的黏连问题,同时可以缩短单刀多掷开关或者MEMS开关100阵列的响应时间。需要说明的是,本申请实施例对于单刀多掷开关的输出端的数量、开关阵列的个数不做限定。
本申请的上述实施例,在不产生冲突的情况下,可互为补充。
需要指出的是,在附图中,为了图示的清晰可能夸大了层和区域的尺寸。而且可以理解,当元件或层被称为在另一元件或层“上”时,它可以直接在其他元件上,或者可以存在中间的层。另外,可以理解,当元件或层被称为在另一元件或层“下”时,它可以直接在其他元件下,或者可以存在一个以上的中间的层或元件。另外,还可以理解,当层或元件被称为在两层或两个元件“之间”时,它可以为两层或两个元件之间唯一的层,或还可以存在一个以上的中间层或元件。通篇相似的参考标记指示相似的元件。
术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应 性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (14)

  1. 一种MEMS开关,其特征在于,包括:
    衬底;
    锚点,设置于所述衬底的一侧;
    第一信号线和第一驱动电极,位于所述衬底上与所述锚点所在的同一侧,沿第一方向依次交替排列于所述锚点的两侧,所述第一方向平行于所述衬底表面;所述锚点远离所述衬底表面的一侧与所述衬底表面之间的距离分别大于所述第一信号线远离所述衬底表面的一侧与所述衬底表面之间、以及所述第一驱动电极远离所述衬底表面的一侧与所述衬底表面之间的距离;
    第二信号线,设置于所述锚点靠近所述衬底的一侧;
    开关梁,与所述锚点连接,两端悬空设置于所述锚点远离所述衬底的一侧,所述开关梁在所述衬底表面的正投影分别与所述第一信号线在所述衬底表面的正投影、以及所述第一驱动电极在所述衬底表面的正投影至少部分重合。
  2. 根据权利要求1所述的MEMS开关,其特征在于,所述开关梁包括以所述锚点为分界点的多个开关梁分部;所述开关梁分部分别与交替排列的所述第一信号线以及所述第一驱动电极相对应;
    当所述锚点的一侧的开关梁分部与相对应的所述第一信号线之间的间隔减小时,所述锚点的另一侧的开关梁分部与相对应的所述第一驱动电极之间的间隔增大;当所述锚点的一侧的开关梁分部与相对应的所述第一信号线之间的间隔增大时,所述锚点的另一侧的开关梁分部与相对应的所述第一驱动电极之间的间隔减小。
  3. 根据权利要求2所述的MEMS开关,其特征在于,还包括:设置于所述第一驱动电极远离所述衬底表面的一侧的第一绝缘层;
    所述第一绝缘层远离所述衬底表面的一侧与所述衬底表面之间的距离小于所述锚点远离所述衬底表面的一侧与所述衬底表面之间的距离。
  4. 根据权利要求3所述的MEMS开关,其特征在于,还包括:设置于所述第一信号线远离所述衬底表面的一侧的介电层;
    所述介电层远离所述衬底表面的一侧与所述衬底表面之间的距离小于所述锚点远离所述衬底表面的一侧与所述衬底表面之间的距离。
  5. 根据权利要求4所述的MEMS开关,其特征在于,还包括:设置于所述衬底表面并且位于所述第一信号线与相邻的所述第二信号线之间的第二驱动电极;
    所述第二驱动电极远离所述衬底表面的一侧与所述衬底表面之间的距离小于所述锚点远离所述衬底表面的一侧与所述衬底表面之间的距离。
  6. 根据权利要求5所述的MEMS开关,其特征在于,相邻的所述开关梁分部分别与交替排列的所述第一驱动电极和所述第二驱动电极相对应;
    当所述锚点的一侧的开关梁分部与相对应的所述第一驱动电极之间的间隔减小时,所述锚点的另一侧的开关梁分部与相对应的所述第二驱动电极之间的间隔增大;当所述锚点的一侧的开关梁分部与相对应的所述第一驱动电极之间的间隔增大时,所述锚点的另一侧的开关梁分部与相对应的所述第二驱动电极之间的间隔减小。
  7. 根据权利要求6所述的MEMS开关,其特征在于,还包括:设置于所述第二驱动电极远离所述衬底表面的一侧的第二绝缘层;
    所述第二绝缘层远离所述衬底表面的一侧与所述衬底表面之间的距离小于所述锚点远离所述衬底表面的一侧与所述衬底表面之间的距离。
  8. 根据权利要求4所述的MEMS开关,其特征在于,所述开关梁分部包括位于所述第二信号线与相邻的所述第一驱动电极之间的多个第一开关支梁;
    所述第一驱动电极包括多个第一子驱动电极,所述第一子驱动电极与所述第一开关支梁相对应,所述第一开关支梁在所述衬底表面的正投影与相对应的所述第一子驱动电极在所述衬底表面的正投影至少部分重合。
  9. 根据权利要求5所述的MEMS开关,其特征在于,所述开关梁分部包括位于所述第二信号线与相邻的所述第二驱动电极之间的多个第二开关支梁;
    所述第二驱动电极包括多个第二子驱动电极,所述第二子驱动电极与所述第二开关支梁相对应,所述第二开关支梁在所述衬底表面的正投影分别与所述第二驱动电极、所述第一信号线在所述衬底表面的正投影至少部分重合。
  10. 一种MEMS开关的驱动方法,其特征在于,基于权利要求1~4任一项所述的MEMS开关,所述驱动方法包括:
    对所述第一信号线和所述开关梁之间加载电压,使所述开关梁与所述第一信号线之间接触,开关处于闭合状态;停止对所述第一信号线与所述开关梁之间加载电压,同时对所述第一驱动电极和所述开关梁之间加载电压,使所述开关梁与所述第一信号线之间分离,开关处于断开状态。
  11. 一种MEMS开关的驱动方法,其特征在于,基于权利要求5~7任一项所述的MEMS开关,所述驱动方法包括:
    对所述第二驱动电极和所述开关梁之间加载电压,使所述开关梁与所述第二驱动电极之间的间隔减小,所述开关梁与所述第一信号线之间接触,开关处于闭合状态;停止对所述第一信号线与所述开关梁之间加载电压,同时对所述第一驱动电极和所述开关梁之间加载电压,使所述开关梁与所述第一信号线之间的间隔增大,所述开关梁与所述第一信号线之间分离,开关处于断开状态。
  12. 一种MEMS开关的驱动方法,其特征在于,基于权利要求8所述的MEMS开关,所述驱动方法包括:
    对任一个所述开关梁分部和相对应的所述第一信号线之间加载电压,使所述开关梁分部和相对应的所述第一信号线之间接触,开关处于闭合状态;停止对所述开关梁分部和相对应的所述第一信号线之间加载电压,同时对与所述开关梁分部相邻的另一所述开关梁分部的任一所述第一开关支梁和相对应的所述第一子驱动电极之间加载电压,使所述开关梁分部与所述第一信号线之间分离,开关处于断开状态。
  13. 一种MEMS开关的驱动方法,其特征在于,基于权利要求9所述的MEMS开关,所述驱动方法包括:
    对任一个所述第二开关支梁和相对应的所述第二子驱动电极之间加载电压,使所述第二开关支梁和相对应的所述第一信号线之间接触,开关处于闭合状态;停止对所述第二开关支梁和相对应的所述第二子驱动电极之间加载电压,同时对与所述第二开关支梁相邻的另一所述开关梁分部和相对应的所述第一子驱动电极之间加载电压,使所述第二开关支梁与所述第一信号线之间分离,开关处于断开状态。
  14. 一种电子设备,其特征在于,包括如权利要求1~9任一项所述的MEMS开关。
PCT/CN2023/072585 2023-01-17 2023-01-17 Mems开关及其驱动方法、电子设备 WO2024152191A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/072585 WO2024152191A1 (zh) 2023-01-17 2023-01-17 Mems开关及其驱动方法、电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/072585 WO2024152191A1 (zh) 2023-01-17 2023-01-17 Mems开关及其驱动方法、电子设备

Publications (1)

Publication Number Publication Date
WO2024152191A1 true WO2024152191A1 (zh) 2024-07-25

Family

ID=91955080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072585 WO2024152191A1 (zh) 2023-01-17 2023-01-17 Mems开关及其驱动方法、电子设备

Country Status (1)

Country Link
WO (1) WO2024152191A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105575734A (zh) * 2015-12-23 2016-05-11 北京时代民芯科技有限公司 一种射频mems开关及其制造方法
CN107393767A (zh) * 2017-07-24 2017-11-24 中北大学 一种t型双悬臂梁式单刀双掷开关
CN110137634A (zh) * 2019-05-09 2019-08-16 中北大学 一种k型单刀四掷射频mems开关
US20200343067A1 (en) * 2019-04-23 2020-10-29 Qorvo Us, Inc. High isolation series switch
CN115249601A (zh) * 2022-07-29 2022-10-28 京东方科技集团股份有限公司 微型机电系统开关及微型机电系统开关的制备方法
US20220371882A1 (en) * 2021-05-18 2022-11-24 Analog Devices International Unlimited Company Microelectromechanical systems (mems) switch and related methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105575734A (zh) * 2015-12-23 2016-05-11 北京时代民芯科技有限公司 一种射频mems开关及其制造方法
CN107393767A (zh) * 2017-07-24 2017-11-24 中北大学 一种t型双悬臂梁式单刀双掷开关
US20200343067A1 (en) * 2019-04-23 2020-10-29 Qorvo Us, Inc. High isolation series switch
CN110137634A (zh) * 2019-05-09 2019-08-16 中北大学 一种k型单刀四掷射频mems开关
US20220371882A1 (en) * 2021-05-18 2022-11-24 Analog Devices International Unlimited Company Microelectromechanical systems (mems) switch and related methods
CN115249601A (zh) * 2022-07-29 2022-10-28 京东方科技集团股份有限公司 微型机电系统开关及微型机电系统开关的制备方法

Similar Documents

Publication Publication Date Title
US7027284B2 (en) Variable capacitance element
US4742263A (en) Piezoelectric switch
US4697118A (en) Piezoelectric switch
US20050189204A1 (en) Microengineered broadband electrical switches
JP2005528751A (ja) 微小電気機械スイッチ
USRE45704E1 (en) MEMS millimeter wave switches
CN109155221B (zh) 一种具有集成传输线的mems膜
US6949985B2 (en) Electrostatically actuated microwave MEMS switch
US11742556B2 (en) MEMS phase shifter including a substrate with a coplanar waveguide signal structure formed thereon and electrically insulated from a metal film bridge
JP2017120785A (ja) マイクロ波memsのための高性能スイッチ
KR100678346B1 (ko) 멤스 알에프 스위치
US20090026880A1 (en) Micromechanical device with piezoelectric and electrostatic actuation and method therefor
WO2024152191A1 (zh) Mems开关及其驱动方法、电子设备
US8723061B2 (en) MEMS switch and communication device using the same
CN115662846A (zh) 高隔离度低启动电压串联接触式双臂悬梁mems开关
CN101770899A (zh) 多重驱动的微机电高频切换器
CN111584310B (zh) 一种可重构驱动电压rf mems开关及其制造方法
US6624367B1 (en) Micromachine switch
KR101030549B1 (ko) 마이크로전자기계시스템을 이용한 알에프 스위치
CN112151312B (zh) 基于结构超滑的电极开关
CN1979714A (zh) 开关
US20140191616A1 (en) Mems switch
CN109950063B (zh) 基于杠杆原理的双稳态rf mems接触式开关
JP2003217421A (ja) マイクロマシンスイッチ
KR100997685B1 (ko) 압전형 rf mems 스위치 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23916681

Country of ref document: EP

Kind code of ref document: A1