WO2024150394A1 - Magnesium-air battery and manufacturing method therefor - Google Patents

Magnesium-air battery and manufacturing method therefor Download PDF

Info

Publication number
WO2024150394A1
WO2024150394A1 PCT/JP2023/000730 JP2023000730W WO2024150394A1 WO 2024150394 A1 WO2024150394 A1 WO 2024150394A1 JP 2023000730 W JP2023000730 W JP 2023000730W WO 2024150394 A1 WO2024150394 A1 WO 2024150394A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
positive electrode
air
electrode
electrolyte
Prior art date
Application number
PCT/JP2023/000730
Other languages
French (fr)
Japanese (ja)
Inventor
博章 田口
政彦 林
正也 野原
匠 大久保
周平 阪本
淳 荒武
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2023/000730 priority Critical patent/WO2024150394A1/en
Publication of WO2024150394A1 publication Critical patent/WO2024150394A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to a magnesium-air battery and a method for manufacturing the same.
  • the laws governing chemical substance management include the Chemical Substances Control Law, the Chemical Substances Management Law, the Agricultural Chemicals Control Law, the Air Pollution Prevention Law, the Water Pollution Prevention Law, the Soil Contamination Countermeasures Law, the Waste Disposal Law, the Poisonous and Hazardous Substances Control Law, the Ozone Layer Protection Law, and the Fluorocarbons Recovery and Destruction Law.
  • the classification of substances under the Chemical Substances Control Law includes Type 1 and Type 2 Specified Chemicals, Monitoring Chemicals, and Priority Assessment Chemicals, which are substances with high risks such as long-term toxicity and persistence, while there are also general chemicals, which are general chemicals for which the risks are less of a concern.
  • General chemicals present in the city should not be designated as chemicals that pose environmental concerns under these laws (Non-Patent Documents 1 and 2).
  • Zinc is used as a constituent element in the magnesium alloy of the negative electrode of commercially available magnesium-air batteries, or as the negative electrode material of commercially available dry batteries.
  • zinc is designated as a Class 1 designated chemical substance in the Act on Reporting, etc. of Releases of Chemical Substances and Promotion of Their Management (Non-Patent Documents 3 and 4). It is described that zinc metal, zinc oxide, etc. dissolve in acidic and basic aqueous solutions.
  • next-generation batteries In order to solve the above environmental problems, the research and development of next-generation batteries is being promoted, and one of these is the air battery.
  • air batteries oxygen in the air used as the positive electrode active material is supplied from outside the battery, so the inside of the battery cell can be filled with a metal anode.
  • Metals such as magnesium, aluminum, or zinc can be used for the anode.
  • zinc-air batteries that use zinc for the anode have been commercialized as a power source for hearing aids
  • magnesium-air batteries that use magnesium for the anode are being researched and developed as primary batteries with a low environmental impact (Non-Patent Documents 5 and 6).
  • a fluororesin is used as a binder. Carbon particles alone cannot form and hold a positive electrode, so a fluororesin is used to bind the carbon particles together to form an electric bus and a positive electrode that can also diffuse gas.
  • the positive electrode which is composed of a gas diffusion layer through which air (oxygen) diffuses and a catalyst layer where the reduction reaction of oxygen occurs, the fluororesin allows for a smooth supply of air and plays a role in preventing the intrusion of water from the outside air and the leakage of electrolyte into the outside air.
  • Fluorine and fluorine compounds are designated as hazardous substances under the Soil Contamination Countermeasures Act and the Water Pollution Prevention Act.
  • metals containing lead and indium are used for the negative electrode, which is a material composition that raises concerns about its impact on the natural environment, such as soil contamination.
  • the chlorine contained in sodium chloride which is simply and widely used as an electrolyte, can cause corrosion inside the furnace and become a component of toxic substances such as dioxins when mixed into general waste incineration facilities, etc.
  • a primary battery with low environmental impact that uses a positive electrode that is a bicontinuous body with a three-dimensional network structure without using fluororesin as a binder is promising.
  • a positive electrode that does not have a water-repellent effect is used, there is a concern that a large amount of electrolyte will cause the positive electrode to become submerged in the liquid, resulting in a decrease in battery performance.
  • This disclosure has been made in light of the above circumstances, and the purpose of this disclosure is to provide a battery that is made of materials that have a low environmental impact and that can smoothly supply air even when there is an excess of electrolyte.
  • the magnesium-air battery of one embodiment of the present disclosure comprises a positive electrode composed of an air electrode, a negative electrode composed of magnesium or a magnesium alloy containing one or more of the group consisting of magnesium and iron, calcium, and aluminum, and a separator disposed between the positive electrode and the negative electrode, providing insulation between the positive electrode and the negative electrode and absorbing an electrolyte composed of salt, and at least one of the positive electrode and the separator is coated with a silica-containing material.
  • the manufacturing method of a magnesium-air battery includes the steps of obtaining a positive electrode made of an air electrode, coating the positive electrode with a silica-containing material, obtaining a negative electrode made of magnesium or a magnesium alloy containing at least one of the group consisting of magnesium and iron, calcium, and aluminum, and disposing an electrolyte made of a salt between the positive electrode and the negative electrode, and the air electrode is composed of a co-continuum having a three-dimensional network structure made of a plurality of nanostructures integrated together by non-covalent bonds, and the step of obtaining the positive electrode includes the steps of causing a specific bacterium to produce a sol or gel in which nanofibers of any one of iron oxide, manganese oxide, and cellulose are dispersed, freezing the dispersed sol or gel to obtain a frozen body, and drying the frozen body in a vacuum to obtain the co-continuum.
  • FIG. 1 is a diagram illustrating a magnesium-air battery according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram for explaining the appearance of the magnesium-air battery according to the embodiment.
  • FIG. 3 is a schematic diagram illustrating a cross section of a magnesium-air battery according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating the battery voltage and discharge capacity during discharge in the magnesium-air battery according to the embodiment.
  • the magnesium-air battery 100 includes a positive electrode 101, a negative electrode 102, an electrolyte 103, a positive electrode current collector 104, a negative electrode current collector 105, a separator 106, and a housing 110.
  • the positive electrode 101 is composed of a gas diffusion type air electrode for oxygen, etc.
  • the positive electrode 101 is composed of a bicontinuum with a three-dimensional network structure made up of multiple nanostructures that are integrated by non-covalent bonds. No binder, especially no fluororesin, is used in the air electrode.
  • the negative electrode 102 contains magnesium (Mg).
  • the negative electrode 102 may be made of magnesium or a magnesium alloy containing one or more of the group consisting of magnesium and iron (Fe), calcium (Ca), aluminum (Al), etc. However, magnesium alloys containing zinc components such as AZ31 are excluded.
  • the electrolyte 103 is disposed between the positive electrode 101 and the negative electrode 102 and is composed of a salt.
  • the electrolyte 103 is an aqueous solution or gel containing magnesium acetate.
  • the electrolyte 103 is preferably composed only of an aqueous solution or gel containing a salt such as magnesium acetate.
  • the electrolyte 103 may be composed of, for example, an aqueous solution of any of magnesium acetate, potassium chloride, and sodium chloride, or a mixture of these salts. Since the electrolyte 103 is composed of salt, it is easy to dispose of, has no concerns about the impact on the surrounding environment, and is easy to handle.
  • the electrolyte 103 may be either an electrolytic solution or a solid electrolyte.
  • the electrolytic solution refers to the electrolyte 103 in a liquid form.
  • the solid electrolyte refers to the electrolyte 103 in a gel form or a solid form.
  • the solid electrolyte may be enclosed with agar, cellulose, water-absorbing polymer, etc. to have a role of retaining water.
  • the electrolyte 103 does not have to be initially disposed when the magnesium-air battery 100 is not operating as a battery. When operating as a battery, the electrolyte 103 may be supplied, for example, from the outside through the separator 106.
  • a known material can be used for the positive electrode collector 104.
  • a carbon sheet, carbon cloth, Fe, or Al plate can be used for the positive electrode collector 104.
  • a known negative electrode current collector 105 can be used. If a metal is used for the negative electrode 102, a terminal may be taken out directly from the negative electrode 102 without using the negative electrode current collector 105.
  • the separator 106 is disposed between the positive electrode 101 and the negative electrode 102, provides insulation between the positive electrode 101 and the negative electrode 102, and absorbs the electrolyte 103 composed of salt.
  • the separator 106 may be any insulator that has water absorption properties. For example, coffee filters, kitchen paper, or paper can be used for the separator 106. Using a sheet of a material that decomposes naturally while maintaining its strength, such as a cellulose-based separator made from plant fibers, for the separator 106 reduces the environmental impact. Note that the separator 106 does not need to be installed if insulation between the positive and negative electrodes can be guaranteed.
  • the positive electrode 101 is in contact with the positive electrode collector 104.
  • the positive electrode 101 is also exposed to the atmosphere.
  • the positive electrode 101 is in contact with the electrolyte 103 on a surface other than the surface in contact with the positive electrode collector 104.
  • the negative electrode 102 is in contact with the negative electrode current collector 105.
  • the negative electrode 102 is in contact with the electrolyte 103 on a surface other than the surface in contact with the negative electrode current collector 105.
  • a positive electrode current collector 104 and a negative electrode current collector 105 are provided in the embodiment of the present disclosure, but this is not limited to the above. If the strength of the positive electrode 101 and the negative electrode 102 is guaranteed when connected to an external load, the positive electrode current collector 104 and the negative electrode current collector 105 can be omitted.
  • the housing 110 contains the positive electrode 101, the negative electrode 102, and the electrolyte 103.
  • the electrolyte 103 may be contained inside the housing 110 when the magnesium-air battery 100 is in operation.
  • the housing 110 has an air hole that exposes the positive electrode 101 (air electrode) to the atmosphere.
  • a portion of the positive electrode current collector 104 and a portion of the negative electrode current collector 105 are exposed from the housing 110 in order to supply power.
  • the housing 110 can be, for example, a known laminate film type.
  • the housing 110 may be made of any of natural, microbial, and chemically synthesized materials, such as polylactic acid, polycaprolactone, polyhydroxyalkanoate, polyglycolic acid, and modified starch.
  • chemically synthesized materials such as plant-derived polylactic acid are preferable.
  • a 3D printer is used as a processing means for the housing 110.
  • the housing 110 can be molded or cut using a 3D printer or the like, and the shape is not limited.
  • the housing 110 can also be made of paper coated with a resin such as polyethylene used in milk cartons, or agar film.
  • the positive electrode 101 can be made of a conductive material that is used in the positive electrodes of common, well-known metal-air batteries.
  • a typical example is a carbon material, but it is not limited to this.
  • the positive electrode 101 can be made by a known process, such as forming carbon powder with a binder. In a primary battery, it is important to generate a large number of reaction sites inside the positive electrode, and it is desirable for the positive electrode 101 to have a high specific surface area.
  • a bicontinuum having a three-dimensional network structure may be used as the positive electrode 101.
  • a bicontinuum having a three-dimensional network structure for the positive electrode 101, it is not necessary to use a binder, and the discharge capacity can be increased.
  • a cocontinuum for example, multiple nanostructures are integrated together through non-covalent bonds to form a three-dimensional network structure.
  • the cocontinuum is a porous body that has an integrated structure.
  • the nanostructure is a nanosheet or nanofiber.
  • the bonds between the nanostructures are deformable, giving the structure flexibility.
  • a nanosheet is a compound that contains carbon or iron oxide, and is mainly composed of carbon or iron oxide.
  • a nanosheet is composed of at least one of carbon and iron oxide. It is important that the nanosheet is conductive.
  • a nanosheet is defined as a sheet-like material with a thickness of 1 nm to 1 um, and with a planar length and width of 100 times or more the thickness.
  • graphene is an example of a carbon nanosheet.
  • a nanosheet may be rolled or wavy, curved or bent, or of any other shape.
  • Nanofibers are compounds that contain carbon, iron oxide, or cellulose, and are primarily composed of carbon, iron oxide, or cellulose. Nanofibers are composed of at least one of carbon, iron oxide, and cellulose. It is important that nanofibers also have electrical conductivity. Nanofibers are defined as fibrous materials with a diameter of 1 nm to 1 ⁇ m and a length of 100 times or more the diameter. Nanofibers may be hollow or coiled, and may have any shape. As for cellulose, it is made electrically conductive by carbonization, as described later.
  • At least one of the positive electrode 101 and the separator 106 is coated with a silica-containing material.
  • the silica-containing material may be coated with a silane coupling agent.
  • the surface of the positive electrode 101 or the cellulose forming the separator 106 is coated with the silica-containing material by a gas layer method using a silane coupling agent. This allows for a smooth supply of air even when the electrolyte 103 is in an excess state.
  • the interface between the positive electrode 101 and the electrolyte 103 can play a role in preventing the intrusion of water from the outside air and the leakage of the electrolyte into the outside air.
  • the manufacturing method includes a step of obtaining a positive electrode 101 composed of an air electrode, a step of coating the positive electrode 101 with a silica-containing material, a step of obtaining a negative electrode 102 composed of magnesium or a magnesium alloy containing at least one of a group consisting of magnesium and iron, calcium, and aluminum, and a step of disposing an electrolyte 103 composed of a salt between the positive electrode 101 and the negative electrode 102.
  • the positive electrode 101 is composed of a bicontinuum having a three-dimensional network structure composed of a plurality of nanostructures integrated by non-covalent bonds.
  • the process for obtaining the positive electrode 101 includes a production step of causing a specific bacterium with nanostructures to produce a sol or gel in which nanofibers of either iron oxide, manganese oxide, or cellulose are dispersed, a freezing step of freezing the dispersed sol or gel to obtain a frozen body, and a drying step of drying the frozen body in a vacuum to obtain the co-continuum.
  • the co-continuum that serves as the positive electrode 101 may be created by the freezing step of freezing the sol or gel in which the nanostructures are dispersed to obtain a frozen body and the drying step of drying the frozen body in a vacuum to obtain a co-continuum.
  • the positive electrode 101 is composed of the co-continuum obtained in the drying step.
  • the sol or gel has dispersed nanofibers made of any of iron oxide, manganese oxide, silicon, and cellulose, it may be produced by a specific bacterium (sol or gel production process).
  • the process of obtaining the positive electrode 101 includes a production process of producing a sol or gel with dispersed cellulose nanofibers by a specific bacterium, and a carbonization process of heating and carbonizing the sol or gel in an inert gas atmosphere to obtain a co-continuum.
  • the positive electrode 101 is composed of the co-continuum obtained in the carbonization process.
  • the co-continuum constituting the positive electrode 101 preferably has an average pore size of, for example, 0.1 to 50 ⁇ m, and more preferably 0.1 to 2 ⁇ m.
  • the average pore size is a value determined by mercury intrusion porosimetry. In this case, there is no need to use additional materials such as binders as in the case of using carbon powder, which is advantageous in terms of cost and also in terms of the environment.
  • Electrochemical reaction the electrochemical reactions at the positive electrode 101 and the negative electrode 102 will be described taking as an example a primary battery using magnesium metal for the negative electrode.
  • the positive electrode reaction proceeds as shown in "1/2O2 + H2O + 2e- ⁇ 2OH- ... (1)” when oxygen in the air and the electrolyte come into contact with the surface of the conductive positive electrode 101.
  • the negative electrode reaction proceeds as shown in "Mg ⁇ Mg2+ + 2e- ... (2)" at the negative electrode 102 in contact with the electrolyte 103, and the magnesium constituting the negative electrode 102 releases electrons and dissolves into the electrolyte as magnesium ions.
  • the overall reaction is "Mg + 1/2O2 + H2O + 2e- ⁇ Mg(OH)2 ... (3)", which is the reaction that produces (precipitates) magnesium hydroxide.
  • the theoretical electromotive force is approximately 2.7 V.
  • the reaction shown in formula (1) proceeds on the surface of the positive electrode 101, so it is considered better to produce a large number of reaction sites inside the positive electrode 101.
  • the magnesium-air battery 100 is made of materials with low environmental impact and does not pollute waste treatment facilities or the natural environment. Furthermore, the magnesium-air battery 100 is made only of materials that do not contain regulated substances specified by various laws and regulations. Such a magnesium-air battery 100 places an extremely low burden on the living environment and the natural environment, even when used in a disposable device such as a soil moisture sensor, and when it is not collected or is discarded as general waste.
  • At least one of the positive electrode 101 and the separator 106 is coated with a silica-containing material. This allows for a smooth supply of air even when the electrolyte 103 is in excess. Furthermore, the interface between the positive electrode 101 and the electrolyte 103 can serve to prevent the intrusion of water from the outside air and the leakage of the electrolyte into the outside air.
  • Examples 1-1 to 1-4 are examples in which a bicontinuum having a three-dimensional network structure made up of multiple nanosheets bound together by non-covalent bonds is used as an air electrode (positive electrode 101).
  • the magnesium air battery 100a includes a positive electrode 101, a negative electrode 102, an electrolyte 103, a positive electrode current collector 104, a negative electrode current collector 105, a separator 106, a housing 110, a housing cover 111, and a fastener 112.
  • the cathode (air electrode) 101 was synthesized as follows. In the following explanation, a manufacturing method using graphene as a nanosheet is shown as a representative example, but by changing the graphene to a nanosheet of another material, it is possible to prepare a bicontinuum having a three-dimensional network structure.
  • a commercially available carbon nanofiber sol [dispersion medium: water (H 2 O), 0.4 wt %, manufactured by Sigma-Aldrich] was placed in a test tube, and the test tube was immersed in liquid nitrogen for 30 minutes to completely freeze the carbon nanofiber sol. After completely freezing the carbon nanofiber sol, the frozen carbon nanofiber sol was taken out into an eggplant flask, and this was dried in a vacuum of 10 Pa or less using a freeze dryer (manufactured by Tokyo Rikakikai Co., Ltd.), to obtain an elastic bicontinuum having a three-dimensional network structure containing carbon nanosheets.
  • a freeze dryer manufactured by Tokyo Rikakikai Co., Ltd.
  • the obtained co-continuum was evaluated by X-ray diffraction (XRD) measurement, scanning electron microscope (SEM) observation, porosity measurement, tensile test, and BET (Brunauer Emmett Teller) specific surface area measurement.
  • the prepared co-continuum was confirmed to be a single phase of carbon (C, PDF card No. 01-075-0444) by XRD measurement.
  • the PDF card No. is the card number of the PDF (Powder Diffraction File), a database collected by the International Centre for Diffraction Data (ICDD), and the same applies below.
  • the obtained co-continuum was a co-continuum with an average pore size of 1 ⁇ m in which nanosheets (graphene pieces) were continuously connected.
  • the BET specific surface area of the co-continuum was measured by mercury intrusion porosimetry, and it was found to be 510 m 2 /g.
  • the porosity of the co-continuum was measured by mercury intrusion porosimetry and found to be over 90%.
  • the results of a tensile test confirmed that the co-continuum did not exceed its elastic region and restored its shape before the application of stress even when a 20% strain was applied due to tensile stress.
  • the above-mentioned co-continuum was cut into a square shape with a side length of 9 mm using a punching blade or a laser cutter, etc., to obtain a gas diffusion type air electrode (positive electrode 101).
  • the air electrodes of Examples 2-1 to 2-5 and 3-1 to 3-6 are explained below.
  • the molded air electrodes were sealed in the same container and subjected to the gas phase method, in which they were maintained at a specified temperature for a specified time.
  • the reagent used was methyltrimethoxysilane (Tokyo Chemical Industry Co., Ltd.), and the coating process was carried out with silica-containing silica at 100°C for 1 to 24 hours.
  • the positive electrode current collector 104 was made by compressing commercially available carbon paper and a PLA film of about 100 ⁇ m, which was made by melting and laminating PLA (Poly-Lactic Acid) filaments using the FFF (Fused Filament Fabrication) method with a 3D printer, at 180°C for 10 seconds at 5 kPa to integrate them.
  • the positive electrode current collector 104 was processed into a convex shape for connection to an external load. Specifically, the part that contacts the positive electrode 101 was processed into a square shape with one side measuring 10 mm, and the part that connects to the external load was processed into a rectangle measuring 2 mm x 10 mm.
  • the negative electrode 102 was obtained by cutting commercially available magnesium metal (thickness 100 ⁇ m) into a square shape with each side measuring 10 mm using a punching blade or laser cutter.
  • the negative electrode current collector 105 is made of the same material as the negative electrode 102, but is processed into the same shape as the positive electrode current collector.
  • the electrolyte 103 was a solution of magnesium acetate tetrahydrate dissolved in pure water at a concentration of 1 mol/L.
  • Separator 106 is a cellulose-based separator for batteries.
  • the cellulose-based separator for batteries used in Examples 2-1 to 2-8 will be described.
  • the molded air electrode was sealed in the same container and subjected to the gas layer method, which involved maintaining the electrode at a specified temperature for a specified period of time.
  • the reagent used was methyltrimethoxysilane, and the coating process was carried out with a silica-containing solvent at 100°C for 1 to 24 hours, just like the positive electrode.
  • the housing 110 is designed to accommodate each component, with inner dimensions of 10.1 mm square and outer dimensions of 20 mm, with two gaps for the positive and negative electrode collectors for connection to an external load, and one gap at the bottom for the separator to be exposed.
  • the housing lid 111 is a lid for the housing 110.
  • the housing lid 111 fixes the positive electrode collector 104 from above.
  • the housing lid 111 has an air hole 111a for supplying air to the positive electrode collector 104.
  • the fixture 112 is used to fix the positive electrode 101.
  • the fixture 112 has a rectangular shape with inner dimensions of 9 mm and outer dimensions of 10 mm, and is formed so that the positive electrode 101 can be accommodated inside.
  • the housing 110, housing lid 111, and fixture 112 were produced by melting and stacking PLA filament using the FFF (Fused Filament Fabrication) method with a 3D printer.
  • the negative electrode collector 105, the negative electrode 102, and the separator 106 are placed in the housing 110.
  • a part of the negative electrode collector 105 is exposed to the outside of the housing 110 from the gap for the negative electrode collector in the housing 110, and a part of the separator 106 is exposed to the outside of the housing 110 from the gap for the separator provided at the bottom of the housing 110.
  • a fixing device 112 for improving insulation and fixing the positive electrode is placed on the separator 106.
  • the positive electrode 101 is stored inside the fixing device 112, and the positive electrode collector 104 is placed on top of it. At this time, a part of the positive electrode collector 104 is exposed from the gap for the positive electrode collector.
  • the battery material is fixed from above with the housing lid 111, and the housing 110 and the housing lid 111 are fixed using heat generated by vibrations from an ultrasonic cutter or the like.
  • the magnesium-air battery 100a was produced by injecting the electrolyte 103 into the separator 106 exposed to the outside.
  • the battery performance of the prepared magnesium-air battery 100a was measured. First, a discharge test was performed. The discharge test of the air battery was performed using a commercially available charge/discharge measurement system (SD8 charge/discharge system, manufactured by Hokuto Denko Corporation). In the discharge test, a current density of 0.5 mA/ cm2 was applied per effective area of the air electrode, and measurements were performed in a thermostatic chamber at 25°C (atmosphere: normal living environment) until the battery voltage decreased from the open circuit voltage to 0V. The discharge capacity was expressed as a value (mAh/g) per weight of the air electrode made of a bicontinuum.
  • SD8 charge/discharge system manufactured by Hokuto Denko Corporation
  • Example 1-1 The initial discharge curve when the negative electrode is made of magnesium in Example 1-1 is shown in Figure 4.
  • the average discharge voltage is 1.15 V and the discharge capacity is 1200 mAh/g.
  • the average discharge voltage is the battery voltage when the discharge capacity is 1/2 of the battery's discharge capacity.
  • the battery discharge capacity is 1200 mAh/g and the discharge capacity in the experiment is 600 mAh/g.
  • Table 1 shows the results of Examples 1-1 to 1-4, in which only the amount of electrolyte was changed. As the amount of electrolyte increased, the discharge capacity and average discharge voltage decreased. This is presumably because the electrolyte seeped into the positive electrode, reducing the length of the three-phase interface, which is the reaction site at the positive electrode.
  • Table 2 shows the results of Examples 2-1 to 2-8, which used a positive electrode made of an elastic bicontinuum that had been coated with silica-containing electrolyte. It can be seen that all of the batteries 2-1 to 2-4 exhibit average voltages and discharge capacities equal to or greater than those of Example 1-1, which had the same amount of electrolyte. It can also be seen that batteries 2-5 to 2-8, which had an increased amount of electrolyte, had higher battery performance than Examples 1-2 and 1-3.
  • Table 3 shows the results of examples using an elastic bicontinuous positive electrode coated with a silica-containing electrolyte for 6 hours and a separator coated with a silica-containing electrolyte. It can be seen that all of the batteries 3-1 to 3-4 show average voltage and discharge capacity values equal to or greater than those of Examples 1-1 and 2-1, which have the same amount of electrolyte. Also, batteries 3-5 to 3-6, which have an increased amount of electrolyte, show values equal to or greater than those of Examples 1-2, 1-3, 2-5, and 2-7.
  • the magnesium-air battery 100 has an air electrode made of a co-continuum with a three-dimensional network structure consisting of multiple nanostructures that are integrated by non-covalent bonds.
  • a silane coupling agent is applied to the separator 106 and the positive electrode 101 by a gas layer method, and the cellulose and positive electrode surface are coated with silica-containing material.
  • a magnesium-air battery 100 that does not pollute waste treatment facilities or the natural environment and is made only of materials with low environmental impact, without using regulated substances that are of concern for their impact on human health and the environment via the environment.
  • Such a magnesium-air battery 100 can be effectively used as a variety of power sources, including disposable batteries in everyday environments and sensors used in soil.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)

Abstract

A magnesium-air battery 100 comprises: a positive electrode 101 that is constituted by an air electrode; a negative electrode 102 that is formed of magnesium, or a magnesium alloy which contains magnesium and one or more elements selected from the group consisting of iron, calcium and aluminium; and a separator 106 that is disposed between the positive electrode 101 and the negative electrode 102, that provides insulation between the positive electrode 101 and the negative electrode 102, and that absorbs moisture from an electrolyte 103 which is formed of a salt. A silica-containing coating is applied to at least one of the positive electrode 101 and the separator 106.

Description

マグネシウム空気電池およびその製造方法Magnesium air battery and its manufacturing method
 本開示は、マグネシウム空気電池およびその製造方法に関する。 This disclosure relates to a magnesium-air battery and a method for manufacturing the same.
 従来、使い捨て一次電池としてアルカリ電池やマンガン電池が広く使用されている。また、近年IoT(Internet of Things)の発展において、土壌や森の中など自然界のあらゆる所に存在するばらまき型センサーの開発も進んでおり、従来のモバイル機器のみならずこれらのセンサーなど様々な用途に対応した小型の高性能なリチウムイオン電池が普及している。 Traditionally, alkaline batteries and manganese batteries have been widely used as disposable primary batteries. Furthermore, with the recent development of the IoT (Internet of Things), the development of scattered sensors that can be found all over nature, such as in soil and forests, has progressed, and small, high-performance lithium-ion batteries that can be used for a variety of purposes, including these sensors as well as conventional mobile devices, are becoming widespread.
 しかしながら、従来の使い捨て電池は、リチウム、ニッケル、マンガンまたはコバルト等の資源で構成されている場合が多く、資源枯渇問題があった。また、電解液として、水酸化ナトリウム水溶液などの強アルカリや有害な有機電解液が使用されているため、最終処分場の土壌汚染の問題がある。さらに例えば土壌に埋め込むようなセンサーの駆動源として使用する場合など、使い捨て電池を使用する環境によっては、周辺環境に悪影響を及ぼし得るという問題がある。 However, conventional disposable batteries are often made from resources such as lithium, nickel, manganese, or cobalt, which poses the problem of resource depletion. In addition, strong alkalis such as sodium hydroxide aqueous solution or harmful organic electrolytes are used as electrolytes, which poses the problem of soil contamination at final disposal sites. Furthermore, depending on the environment in which disposable batteries are used, such as when used as a power source for sensors that are embedded in the soil, there is the problem that they may have a negative impact on the surrounding environment.
 これらの環境影響を考慮し体系化した法整備が進められている。 Systematic legislation is being developed that takes these environmental impacts into consideration.
 環境経由で人の健康や環境への影響が懸念される化学物質管理の法律がある。化学物質管理の法律は、環境の保全に係る化学物質の管理に関する国際的協調の動向に配慮しつつ、化学物質に関する科学的知見及び化学物質の製造、使用その他の取扱いに関する状況を踏まえ、事業者及び国民の理解の下に、特定の化学物質の環境への排出量等の把握に関する措置並びに事業者による特定の化学物質の性状及び取扱いに関する情報の提供に関する措置等を講ずることにより、事業者による化学物質の自主的な管理の改善を促進し、環境の保全上の支障を未然に防止することを目的とする。 There are laws governing the management of chemical substances that are of concern for their impact on human health and the environment via the environment. The purpose of these laws is to promote improvements in the voluntary management of chemical substances by businesses and prevent impediments to environmental conservation by taking into consideration trends in international cooperation regarding the management of chemical substances related to environmental conservation, scientific knowledge about chemical substances, and the circumstances surrounding the manufacture, use, and other handling of chemical substances, with the understanding of businesses and the public, and by taking measures to grasp the amount of specific chemical substances emitted into the environment, etc., and measures for businesses to provide information on the properties and handling of specific chemical substances.
 化学物質管理の法律として、化学物質審査規制法、化管法、農薬取締法、大気物汚染防止法、水質汚染防止法、土壌汚染対策法、廃棄物処理法、毒劇法、オゾン層保護法およびフロン回収破壊法が指定されている。 The laws governing chemical substance management include the Chemical Substances Control Law, the Chemical Substances Management Law, the Agricultural Chemicals Control Law, the Air Pollution Prevention Law, the Water Pollution Prevention Law, the Soil Contamination Countermeasures Law, the Waste Disposal Law, the Poisonous and Hazardous Substances Control Law, the Ozone Layer Protection Law, and the Fluorocarbons Recovery and Destruction Law.
 これらの法令の中で指定された物質を含む電池がリサイクル等されることなく、廃棄または忘失されることによって発生する環境問題が懸念される。 There are concerns about environmental problems that may arise if batteries containing substances specified in these laws are discarded or forgotten without being recycled.
 また一例として、上記化学物質審査規制法による分類として、長期毒性や残留性等のリスクが高い物質第1,2種特定化学/監視化学/優先評価化学物質がある一方、そのリスクが懸念されにくい一般的な化学物質として一般化学物質もある。市中に存在する一般的な化学物質が、これらの法令において環境問題が懸念される化学物質と指定されるべきではない(非特許文献1および非特許文献2)。 As another example, the classification of substances under the Chemical Substances Control Law includes Type 1 and Type 2 Specified Chemicals, Monitoring Chemicals, and Priority Assessment Chemicals, which are substances with high risks such as long-term toxicity and persistence, while there are also general chemicals, which are general chemicals for which the risks are less of a concern. General chemicals present in the city should not be designated as chemicals that pose environmental concerns under these laws (Non-Patent Documents 1 and 2).
 市販マグネシウム空気電池の負極のマグネシウム合金の中に含まれる構成元素として、あるいは、市販乾電池の負極材料として亜鉛が使われる。しかしながら、亜鉛は、例えば、化学物質排出把握管理促進法に、第一種指定化学物質リストに亜鉛の水溶性化合物の形での影響指定がなされている(非特許文献3および非特許文献4)。金属亜鉛、酸化亜鉛などが、酸性および塩基性水溶液に溶解すると記載されている。 Zinc is used as a constituent element in the magnesium alloy of the negative electrode of commercially available magnesium-air batteries, or as the negative electrode material of commercially available dry batteries. However, zinc is designated as a Class 1 designated chemical substance in the Act on Reporting, etc. of Releases of Chemical Substances and Promotion of Their Management (Non-Patent Documents 3 and 4). It is described that zinc metal, zinc oxide, etc. dissolve in acidic and basic aqueous solutions.
 上記、環境問題を解決するために、次世代電池として研究開発がすすめられている電池の1つとして、空気電池がある。空気電池は、正極活物質として用いる空気中の酸素が電池外部から供給されるため、電池セル内を金属負極で満たすことができる。負極にはマグネシウム、アルミニウムまたは亜鉛等の金属を用いることができる。資源的に豊富な材料を用いれば、コストおよび環境負荷ともに低い電池を構成することが可能である。特に、亜鉛を負極に用いた亜鉛空気電池は、補聴器などの駆動源として商用化されているほか、マグネシウムを負極に用いたマグネシウム空気電池は、環境負荷の低い一次電池として研究開発が進められている(非特許文献5および非特許文献6)。 In order to solve the above environmental problems, the research and development of next-generation batteries is being promoted, and one of these is the air battery. In air batteries, oxygen in the air used as the positive electrode active material is supplied from outside the battery, so the inside of the battery cell can be filled with a metal anode. Metals such as magnesium, aluminum, or zinc can be used for the anode. By using abundant materials, it is possible to construct a battery that is both low cost and has a low environmental impact. In particular, zinc-air batteries that use zinc for the anode have been commercialized as a power source for hearing aids, and magnesium-air batteries that use magnesium for the anode are being researched and developed as primary batteries with a low environmental impact (Non-Patent Documents 5 and 6).
 しかしながら、非特許文献5が開示する空気極に、結着剤としてふっ素樹脂が使用されている。カーボン粒子単体では、正極を形成および保持できないので、カーボン粒子を結着し電動バスを形成するとともにガス拡散も行える正極を形成するために、ふっ素樹脂が用いられる。ふっ素樹脂は、空気(酸素)が拡散するガス拡散層と酸素の還元反応が起こる触媒層から構成される正極において、ガス拡散層は、空気のスムーズな供給を可能にするとともに、外気からの水の浸入や電解液の外気への漏出を防ぐ役割を担う。 However, in the air electrode disclosed in Non-Patent Document 5, a fluororesin is used as a binder. Carbon particles alone cannot form and hold a positive electrode, so a fluororesin is used to bind the carbon particles together to form an electric bus and a positive electrode that can also diffuse gas. In the positive electrode, which is composed of a gas diffusion layer through which air (oxygen) diffuses and a catalyst layer where the reduction reaction of oxygen occurs, the fluororesin allows for a smooth supply of air and plays a role in preventing the intrusion of water from the outside air and the leakage of electrolyte into the outside air.
 このふっ素は、土壌汚染対策法あるいは水質汚濁防止法等によりふっ素およびフッ素化合物として有害物質として指定されている。また、非特許文献6では負極に鉛やインジウムを含む金属が用いられており、土壌汚染等、自然環境への影響が懸念される材料構成である。なお、電解質として簡便かつ広く使用される塩化ナトリウム中に含まれる塩素は、一般ごみ焼却施設等に混入した際、炉内腐食やダイオキシン類等の毒性物質の構成要素となり得る。 Fluorine and fluorine compounds are designated as hazardous substances under the Soil Contamination Countermeasures Act and the Water Pollution Prevention Act. In addition, in Non-Patent Document 6, metals containing lead and indium are used for the negative electrode, which is a material composition that raises concerns about its impact on the natural environment, such as soil contamination. The chlorine contained in sodium chloride, which is simply and widely used as an electrolyte, can cause corrosion inside the furnace and become a component of toxic substances such as dioxins when mixed into general waste incineration facilities, etc.
 結着剤としてフッ素樹脂を使用することなく、三次元ネットワーク構造を有する共連続体となった正極を用いた環境負荷の低い一次電池が有望である。しかしながら、撥水効果を持たない正極を用いる場合、電解液量が多量となると、正極が液没することにより、電池性能の低下が懸念される。 A primary battery with low environmental impact that uses a positive electrode that is a bicontinuous body with a three-dimensional network structure without using fluororesin as a binder is promising. However, if a positive electrode that does not have a water-repellent effect is used, there is a concern that a large amount of electrolyte will cause the positive electrode to become submerged in the liquid, resulting in a decrease in battery performance.
 このように、法令で規定された環境経由で人の健康や環境への影響が懸念される規制物質を使うことなく、低環境負荷な材料のみで構成された廃棄物処理施設や自然環境を汚染しない電池であって、電解質が過剰な状態においても空気のスムーズな供給が可能な電池が求められている。 As such, there is a demand for batteries that do not use regulated substances stipulated by law that are of concern for their impact on human health and the environment, that are made only of materials with a low environmental impact, that do not pollute waste disposal facilities or the natural environment, and that can smoothly supply air even when there is an excess of electrolyte.
 本開示は、上記事情に鑑みてなされたものであり、本開示の目的は、低環境負荷な材料で構成され、電解質が過剰な状態においても空気のスムーズな供給が可能な電池を提供することである。 This disclosure has been made in light of the above circumstances, and the purpose of this disclosure is to provide a battery that is made of materials that have a low environmental impact and that can smoothly supply air even when there is an excess of electrolyte.
 本開示の一態様のマグネシウム空気電池は、空気極で構成される正極と、マグネシウム、または、マグネシウムと、鉄、カルシウムおよびアルミニウムから構成されるグループのうち、いずれか1つ以上を含むマグネシウム合金で構成される負極と、前記正極と前記負極との間に配置され、前記正極と前記負極の間で絶縁し、塩で構成される電解質を吸水するセパレータを備え、前記正極およびセパレータのうちの少なくとも一方は、シリカ含有其でコーティングされる。 The magnesium-air battery of one embodiment of the present disclosure comprises a positive electrode composed of an air electrode, a negative electrode composed of magnesium or a magnesium alloy containing one or more of the group consisting of magnesium and iron, calcium, and aluminum, and a separator disposed between the positive electrode and the negative electrode, providing insulation between the positive electrode and the negative electrode and absorbing an electrolyte composed of salt, and at least one of the positive electrode and the separator is coated with a silica-containing material.
 本開示の一態様のマグネシウム空気電池の製造方法は、空気極で構成される正極を得る工程と、前記正極を、シリカ含有其でコーティングする工程と、マグネシウム、または、マグネシウムと、鉄、カルシウムおよびアルミニウムから構成されるグループのうち、いずれか1つ以上を含むマグネシウム合金で構成される負極を得る工程と、前記正極と前記負極との間に、塩で構成される電解質を配置する工程を備え、前記空気極は、非共有結合によって一体とされた複数のナノ構造体からなる三次元ネットワーク構造とされた共連続体から構成され、前記正極を得る工程は、前記ナノ構造体が所定のバクテリアに、鉄酸化物、マンガン酸化物、およびセルロースのいずれかのナノファイバーが分散したゾルまたはゲルを生産させる生産工程と、分散したゾルまたはゲルを凍結させて凍結体を得る凍結工程と、前記凍結体を真空中で乾燥させて前記共連続体を得る乾燥工程を備える。 The manufacturing method of a magnesium-air battery according to one embodiment of the present disclosure includes the steps of obtaining a positive electrode made of an air electrode, coating the positive electrode with a silica-containing material, obtaining a negative electrode made of magnesium or a magnesium alloy containing at least one of the group consisting of magnesium and iron, calcium, and aluminum, and disposing an electrolyte made of a salt between the positive electrode and the negative electrode, and the air electrode is composed of a co-continuum having a three-dimensional network structure made of a plurality of nanostructures integrated together by non-covalent bonds, and the step of obtaining the positive electrode includes the steps of causing a specific bacterium to produce a sol or gel in which nanofibers of any one of iron oxide, manganese oxide, and cellulose are dispersed, freezing the dispersed sol or gel to obtain a frozen body, and drying the frozen body in a vacuum to obtain the co-continuum.
 本開示によれば、低環境負荷な材料で構成され、電解質が過剰な状態においても空気のスムーズな供給が可能な電池を提供することができる。 According to the present disclosure, it is possible to provide a battery that is made of materials with low environmental impact and that can smoothly supply air even when there is an excess of electrolyte.
図1は、本開示の実施の形態に係るマグネシウム空気電池を模式的に説明する図である。FIG. 1 is a diagram illustrating a magnesium-air battery according to an embodiment of the present disclosure. 図2は、実施例に係るマグネシウム空気電池の外観を模式的に説明する図である。FIG. 2 is a diagram for explaining the appearance of the magnesium-air battery according to the embodiment. 図3は、実施例に係るマグネシウム空気電池の断面を模式的に説明する図である。FIG. 3 is a schematic diagram illustrating a cross section of a magnesium-air battery according to an embodiment of the present invention. 図4は、実施例に係るマグネシウム空気電池における放電時の電池電圧と放電容量を説明する図である。FIG. 4 is a diagram illustrating the battery voltage and discharge capacity during discharge in the magnesium-air battery according to the embodiment.
 以下、図面を参照して、本開示の実施形態を説明する。図面の記載において同一部分には同一符号を付し説明を省略する。 Below, an embodiment of the present disclosure will be described with reference to the drawings. In the description of the drawings, the same parts are given the same reference numerals and the description will be omitted.
 (マグネシウム空気電池)
 図1を参照して、本開示の実施の形態に係るマグネシウム空気電池100を説明する。本開示の実施の形態に係るマグネシウム空気電池100は、正極101、負極102、電解質103、正極集電体104、負極集電体105、セパレータ106および筐体110を備える。
(Magnesium air battery)
A magnesium-air battery 100 according to an embodiment of the present disclosure will be described with reference to Fig. 1. The magnesium-air battery 100 according to the embodiment of the present disclosure includes a positive electrode 101, a negative electrode 102, an electrolyte 103, a positive electrode current collector 104, a negative electrode current collector 105, a separator 106, and a housing 110.
 正極101は、酸素等のガス拡散型の空気極で構成される。正極101は、非共有結合によって一体とされた複数のナノ構造体からなる三次元ネットワーク構造とされた共連続体から構成される。空気極に、結着剤、特に結着剤としてのふっ素樹脂は、用いられない。 The positive electrode 101 is composed of a gas diffusion type air electrode for oxygen, etc. The positive electrode 101 is composed of a bicontinuum with a three-dimensional network structure made up of multiple nanostructures that are integrated by non-covalent bonds. No binder, especially no fluororesin, is used in the air electrode.
 負極102は、マグネシウム(Mg)を含む。負極102は、マグネシウム、または、マグネシウムと、鉄(Fe)、カルシウム(Ca)およびアルミニウム(Al)などから構成されるグループのうち、いずれか1つ以上を含むマグネシウム合金で構成されてもよい。ただし、AZ31等の亜鉛成分を含むマグネシウム合金は、除外される。 The negative electrode 102 contains magnesium (Mg). The negative electrode 102 may be made of magnesium or a magnesium alloy containing one or more of the group consisting of magnesium and iron (Fe), calcium (Ca), aluminum (Al), etc. However, magnesium alloys containing zinc components such as AZ31 are excluded.
 電解質103は、正極101と負極102との間に配置され、塩で構成される。電解質103は、酢酸マグネシウムを含む水溶液またはゲルである。電解質103は、酢酸マグネシウムなどの塩を含む水溶液またはゲルのみで構成されることが好ましい。具体的には電解質103は、例えば、酢酸マグネシウム、塩化カリウムおよび塩化ナトリウムのいずれかの塩、またはこれらの塩の混合物の水溶液から構成されればよい。電解質103は、塩から構成されるので、処分が容易かつ、周辺環境への影響の懸念がなく、取り扱いが容易である。なお、電解質103は、電解液または固体電解質のいずれであってもよい。電解液は、電解質103が液体形態である場合をいう。また、固体電解質は、電解質103がゲル形態または固体形態である場合をいう。固体電解質は、保水する役割を持たせるため、寒天、セルロース、吸水ポリマーなどが同封されても良い。電解質103は、マグネシウム空気電池100が電池として動作させていない状態において、初期配置されなくてもよい。電解質103は、電池として動作する際に、例えば、外部からセパレータ106を通じて供給されてもよい。 The electrolyte 103 is disposed between the positive electrode 101 and the negative electrode 102 and is composed of a salt. The electrolyte 103 is an aqueous solution or gel containing magnesium acetate. The electrolyte 103 is preferably composed only of an aqueous solution or gel containing a salt such as magnesium acetate. Specifically, the electrolyte 103 may be composed of, for example, an aqueous solution of any of magnesium acetate, potassium chloride, and sodium chloride, or a mixture of these salts. Since the electrolyte 103 is composed of salt, it is easy to dispose of, has no concerns about the impact on the surrounding environment, and is easy to handle. The electrolyte 103 may be either an electrolytic solution or a solid electrolyte. The electrolytic solution refers to the electrolyte 103 in a liquid form. The solid electrolyte refers to the electrolyte 103 in a gel form or a solid form. The solid electrolyte may be enclosed with agar, cellulose, water-absorbing polymer, etc. to have a role of retaining water. The electrolyte 103 does not have to be initially disposed when the magnesium-air battery 100 is not operating as a battery. When operating as a battery, the electrolyte 103 may be supplied, for example, from the outside through the separator 106.
 正極集電体104は、公知のものを使用することができる。正極集電体104は、例えば、カーボンシートやカーボンクロス、Fe、Al板を使用すればよい。 A known material can be used for the positive electrode collector 104. For example, a carbon sheet, carbon cloth, Fe, or Al plate can be used for the positive electrode collector 104.
 負極集電体105は、公知のものを使用することができる。負極102に金属を用いる場合、負極集電体105を用いず負極102から直接端子を外部に取り出しても良い。 A known negative electrode current collector 105 can be used. If a metal is used for the negative electrode 102, a terminal may be taken out directly from the negative electrode 102 without using the negative electrode current collector 105.
 セパレータ106は、正極101と負極102との間に配置され、正極101および負極102の間で絶縁し、塩で構成される電解質103を吸水する。セパレータ106は、吸水性を有する絶縁体であればよい。セパレータ106は、例えば、コーヒーフィルタやキッチンペーパー、紙を用いることが可能である。植物繊維からつくられるセルロース系セパレータのような、強度を保ちつつ自然分解される材料のシートを、セパレータ106に用いると低環境負荷である。なお、セパレータ106は、正極負極間の絶縁性が担保できるのであれば、設置されなくても良い。 The separator 106 is disposed between the positive electrode 101 and the negative electrode 102, provides insulation between the positive electrode 101 and the negative electrode 102, and absorbs the electrolyte 103 composed of salt. The separator 106 may be any insulator that has water absorption properties. For example, coffee filters, kitchen paper, or paper can be used for the separator 106. Using a sheet of a material that decomposes naturally while maintaining its strength, such as a cellulose-based separator made from plant fibers, for the separator 106 reduces the environmental impact. Note that the separator 106 does not need to be installed if insulation between the positive and negative electrodes can be guaranteed.
 正極101は、正極集電体104に接する。正極集電体104が大気に曝されることにより、正極101も、大気に曝される。また正極101は、正極集電体104に接する面以外の面で、電解質103と接する。 The positive electrode 101 is in contact with the positive electrode collector 104. When the positive electrode collector 104 is exposed to the atmosphere, the positive electrode 101 is also exposed to the atmosphere. In addition, the positive electrode 101 is in contact with the electrolyte 103 on a surface other than the surface in contact with the positive electrode collector 104.
 負極102は、負極集電体105に接する。負極102は、負極集電体105に接する面以外の面で、電解質103と接する。 The negative electrode 102 is in contact with the negative electrode current collector 105. The negative electrode 102 is in contact with the electrolyte 103 on a surface other than the surface in contact with the negative electrode current collector 105.
 本開示の実施の形態において、正極集電体104および負極集電体105を備える場合を説明するがこれに限らない。外部負荷との接続の際に正極101および負極102の強度が担保される場合、正極集電体104および負極集電体105は、省略することも可能である。 In the embodiment of the present disclosure, a case in which a positive electrode current collector 104 and a negative electrode current collector 105 are provided will be described, but this is not limited to the above. If the strength of the positive electrode 101 and the negative electrode 102 is guaranteed when connected to an external load, the positive electrode current collector 104 and the negative electrode current collector 105 can be omitted.
 筐体110は、正極101、負極102および電解質103を収容する。電解質103は、マグネシウム空気電池100が稼働する際に、筐体110内部に収容されれば良い。筐体110は、正極101(空気極)を大気に曝す空気孔を有する。筐体110は、電池セルを内部に維持することが可能かつ規制物質を含まない材料であれば材質や形状は特に限定はされない。但し、正極集電体104の一部と負極集電体105の一部は、給電のために筐体110から露出する。 The housing 110 contains the positive electrode 101, the negative electrode 102, and the electrolyte 103. The electrolyte 103 may be contained inside the housing 110 when the magnesium-air battery 100 is in operation. The housing 110 has an air hole that exposes the positive electrode 101 (air electrode) to the atmosphere. There are no particular limitations on the material or shape of the housing 110, so long as it is capable of maintaining a battery cell inside and is made of a material that does not contain regulated substances. However, a portion of the positive electrode current collector 104 and a portion of the negative electrode current collector 105 are exposed from the housing 110 in order to supply power.
 筐体110に、例えば、公知のラミネートフィルム型を使用することができる。筐体110が自然分解される材料から構成を使用する場合、天然物系、微生物系、化学合成系のいずれの材料でも良く、例えば、ポリ乳酸、ポリカプロラクトン、ポリヒドロキシアルカノエート、ポリグリコール酸、変性澱粉などから構成することができる。特に、植物由来のポリ乳酸などの化学合成系が好ましい。また、筐体110は、加工手段として3Dプリンタが用いられる。筐体110は、3Dプリンタ等によって成型または切断加工等が可能で、形状は限定されない。筐体110に、市販の生分解性プラスチックおよびそのフィルムの他、牛乳パックなどに用いられるポリエチレンなどの、樹脂の被膜が形成されている用紙や寒天フィルムなども適用可能である。 The housing 110 can be, for example, a known laminate film type. When the housing 110 is made of a naturally degradable material, it may be made of any of natural, microbial, and chemically synthesized materials, such as polylactic acid, polycaprolactone, polyhydroxyalkanoate, polyglycolic acid, and modified starch. In particular, chemically synthesized materials such as plant-derived polylactic acid are preferable. A 3D printer is used as a processing means for the housing 110. The housing 110 can be molded or cut using a 3D printer or the like, and the shape is not limited. In addition to commercially available biodegradable plastics and their films, the housing 110 can also be made of paper coated with a resin such as polyethylene used in milk cartons, or agar film.
 ここで正極101について詳述する。正極101には、一般的な良く知られた金属空気電池の正極に用いられる導電性材料を用いることが出来る。代表例として、炭素材料が挙げられるがこれに限定はされない。正極101は、カーボン粉末をバインダーで成形するといった公知のプロセスで作製することができる。一次電池では、正極内部に反応サイトを多量に生成することが重要であり、正極101は、高比表面積であることが望ましい。 The positive electrode 101 will now be described in detail. The positive electrode 101 can be made of a conductive material that is used in the positive electrodes of common, well-known metal-air batteries. A typical example is a carbon material, but it is not limited to this. The positive electrode 101 can be made by a known process, such as forming carbon powder with a binder. In a primary battery, it is important to generate a large number of reaction sites inside the positive electrode, and it is desirable for the positive electrode 101 to have a high specific surface area.
 カーボン粉末をバインダーで成形してペレット化することで作製している一般的な正極の場合、高比表面積化した際に、カーボン粉末同士の結着強度が低下し、構造が劣化することで、安定して放電することが困難であり、放電容量が低下する。 In the case of typical positive electrodes, which are made by molding carbon powder with a binder and forming it into pellets, when the specific surface area is increased, the bonding strength between the carbon powder particles decreases and the structure deteriorates, making it difficult to discharge stably and reducing the discharge capacity.
 そこで、正極101として、三次元ネットワーク構造とされた共連続体を用いても良い。正極101に三次元ネットワーク構造を有する共連続体を用いることにより、バインダーを使用する必要がなく、放電容量を高くできるようになる。 Therefore, a bicontinuum having a three-dimensional network structure may be used as the positive electrode 101. By using a bicontinuum having a three-dimensional network structure for the positive electrode 101, it is not necessary to use a binder, and the discharge capacity can be increased.
 共連続体は、例えば、複数のナノ構造体が非共有結合によって一体とされて三次元ネットワーク構造とされる。共連続体は、多孔体であり、一体構造とされている。ナノ構造体は、ナノシートあるいはナノファイバーである。複数のナノ構造体が非共有結合によって一体とされている三次元ネットワーク構造の共連続体は、ナノ構造体同士の結合部が変形可能とされており、伸縮性を有した構造となっている。 In a cocontinuum, for example, multiple nanostructures are integrated together through non-covalent bonds to form a three-dimensional network structure. The cocontinuum is a porous body that has an integrated structure. The nanostructure is a nanosheet or nanofiber. In a cocontinuum of a three-dimensional network structure in which multiple nanostructures are integrated together through non-covalent bonds, the bonds between the nanostructures are deformable, giving the structure flexibility.
 ナノシートは、カーボンまたは鉄酸化物を含み、カーボンまたは鉄酸化物を主とする化合物である。ナノシートは、カーボンおよび鉄酸化物のうちの少なくとも一つから構成される。ナノシートは、導電性を有することが重要である。ナノシートは、厚さが1nmから1umであり、平面縦横長さが、厚さの100倍以上のシート状物質と定義する。例えば、カーボンによるナノシートとしてグラフェンがある。また、ナノシートは、ロール状または波状であっても良く、ナノシートが湾曲や屈曲していても良く、どのような形状であってもよい。  A nanosheet is a compound that contains carbon or iron oxide, and is mainly composed of carbon or iron oxide. A nanosheet is composed of at least one of carbon and iron oxide. It is important that the nanosheet is conductive. A nanosheet is defined as a sheet-like material with a thickness of 1 nm to 1 um, and with a planar length and width of 100 times or more the thickness. For example, graphene is an example of a carbon nanosheet. A nanosheet may be rolled or wavy, curved or bent, or of any other shape.
 ナノファイバーは、カーボン、鉄酸化物、またはセルロースを含み、カーボン、鉄酸化物、またはセルロースを主とする化合物である。ナノファイバーは、カーボン、鉄酸化物、およびセルロースのうちの少なくとも1つから構成される。ナノファイバーも、導電性を有することが重要である。ナノファイバーは、直径が1nmから1μmであり、長さが直径の100倍以上の繊維状物質と定義する。また、ナノファイバーは、中空状またはコイル状であっても良く、どのような形状であってもよい。なお、セルロースについては、後述するように、炭化により導電性を持たせて用いる。 Nanofibers are compounds that contain carbon, iron oxide, or cellulose, and are primarily composed of carbon, iron oxide, or cellulose. Nanofibers are composed of at least one of carbon, iron oxide, and cellulose. It is important that nanofibers also have electrical conductivity. Nanofibers are defined as fibrous materials with a diameter of 1 nm to 1 μm and a length of 100 times or more the diameter. Nanofibers may be hollow or coiled, and may have any shape. As for cellulose, it is made electrically conductive by carbonization, as described later.
 本開示において、正極101およびセパレータ106のうちの少なくとも一方は、シリカ含有其でコーティングされる。ここでシリカ含有其は、シランカップリング剤によりコーティングされても良い。正極101の表面、またはセパレータ106を形成するセルロースが、シランカップリング剤を気層法によって、シリカ含有其でコーティングされる。電解質103が過剰な状態においても空気のスムーズな供給を可能にする。さらに、正極101および電解質103の界面は、外気からの水の浸入や電解液の外気への漏出を防ぐ役割を果たすことができる。 In the present disclosure, at least one of the positive electrode 101 and the separator 106 is coated with a silica-containing material. Here, the silica-containing material may be coated with a silane coupling agent. The surface of the positive electrode 101 or the cellulose forming the separator 106 is coated with the silica-containing material by a gas layer method using a silane coupling agent. This allows for a smooth supply of air even when the electrolyte 103 is in an excess state. Furthermore, the interface between the positive electrode 101 and the electrolyte 103 can play a role in preventing the intrusion of water from the outside air and the leakage of the electrolyte into the outside air.
 (製造方法)
 次に、マグネシウム空気電池100の製造方法を説明する。製造方法は、空気極で構成される正極101を得る工程と、正極101を、シリカ含有其でコーティングする工程と、マグネシウム、または、マグネシウムと、鉄、カルシウムおよびアルミニウムから構成されるグループのうち、いずれか1つ以上を含むマグネシウム合金で構成される負極102を得る工程と、正極101と負極102との間に、塩で構成される電解質103を配置する工程を備える。ここで正極101は、非共有結合によって一体とされた複数のナノ構造体からなる三次元ネットワーク構造とされた共連続体から構成される。
(Production method)
Next, a manufacturing method of the magnesium-air battery 100 will be described. The manufacturing method includes a step of obtaining a positive electrode 101 composed of an air electrode, a step of coating the positive electrode 101 with a silica-containing material, a step of obtaining a negative electrode 102 composed of magnesium or a magnesium alloy containing at least one of a group consisting of magnesium and iron, calcium, and aluminum, and a step of disposing an electrolyte 103 composed of a salt between the positive electrode 101 and the negative electrode 102. Here, the positive electrode 101 is composed of a bicontinuum having a three-dimensional network structure composed of a plurality of nanostructures integrated by non-covalent bonds.
 正極101を得る工程は、ナノ構造体が所定のバクテリアに、鉄酸化物、マンガン酸化物、およびセルロースのいずれかのナノファイバーが分散したゾルまたはゲルを生産させる生産工程と、分散したゾルまたはゲルを凍結させて凍結体を得る凍結工程と、凍結体を真空中で乾燥させて前記共連続体を得る乾燥工程を備える。ナノ構造体が分散したゾルまたはゲルを凍結させて凍結体を得る凍結工程と、凍結体を真空中で乾燥させて共連続体を得る乾燥工程により、正極101とする共連続体を作成しても良い。乾燥工程で得た共連続体から、正極101が構成される。 The process for obtaining the positive electrode 101 includes a production step of causing a specific bacterium with nanostructures to produce a sol or gel in which nanofibers of either iron oxide, manganese oxide, or cellulose are dispersed, a freezing step of freezing the dispersed sol or gel to obtain a frozen body, and a drying step of drying the frozen body in a vacuum to obtain the co-continuum. The co-continuum that serves as the positive electrode 101 may be created by the freezing step of freezing the sol or gel in which the nanostructures are dispersed to obtain a frozen body and the drying step of drying the frozen body in a vacuum to obtain a co-continuum. The positive electrode 101 is composed of the co-continuum obtained in the drying step.
 鉄酸化物、マンガン酸化物、シリコンおよびセルロースのうちのいずれかによるナノファイバーが分散したゾルまたはゲルであれば、所定のバクテリアに生産させても良い(ゾルまたはゲル生産工程)。この場合、正極101を得る工程は、所定のバクテリアに、セルロースによるナノファイバーが分散したゾルまたはゲルを生産させる生産工程と、ゾルまたはゲルを不活性ガスの雰囲気で加熱して炭化することで、共連続体を得る炭化工程を備える。炭化工程で得た共連続体から、正極101が構成される。 If the sol or gel has dispersed nanofibers made of any of iron oxide, manganese oxide, silicon, and cellulose, it may be produced by a specific bacterium (sol or gel production process). In this case, the process of obtaining the positive electrode 101 includes a production process of producing a sol or gel with dispersed cellulose nanofibers by a specific bacterium, and a carbonization process of heating and carbonizing the sol or gel in an inert gas atmosphere to obtain a co-continuum. The positive electrode 101 is composed of the co-continuum obtained in the carbonization process.
 正極101を構成する共連続体は、例えば、平均孔径が0.1~50μmであることが好ましく、0.1~2μmであることが更に好ましい。ここで、平均孔径は、水銀圧入法により求めた値である。この場合、カーボン粉末を用いた場合のようなバインダーなどの追加の材料を用いる必要がなく、コスト的に有利であり環境面でも有利である。 The co-continuum constituting the positive electrode 101 preferably has an average pore size of, for example, 0.1 to 50 μm, and more preferably 0.1 to 2 μm. Here, the average pore size is a value determined by mercury intrusion porosimetry. In this case, there is no need to use additional materials such as binders as in the case of using carbon powder, which is advantageous in terms of cost and also in terms of the environment.
 (電気化学反応)
 ここで、正極101および負極102における電気化学反応について、負極にマグネシウム金属を用いた一次電池の場合を例にとって説明する。正極反応は、導電性を有する正極101の表面において、空気中の酸素および電解質が接することで、「1/2O2+H2O+2e-→2OH-・・・(1)」で示す反応が進行する。一方、負極反応は、電解質103に接している負極102において「Mg→Mg2++2e-・・・(2)」の反応が進行し、負極102を構成しているマグネシウムが電子を放出し、電解質中にマグネシウムイオンとして溶解する。
(Electrochemical reaction)
Here, the electrochemical reactions at the positive electrode 101 and the negative electrode 102 will be described taking as an example a primary battery using magnesium metal for the negative electrode. The positive electrode reaction proceeds as shown in "1/2O2 + H2O + 2e- → 2OH- ... (1)" when oxygen in the air and the electrolyte come into contact with the surface of the conductive positive electrode 101. Meanwhile, the negative electrode reaction proceeds as shown in "Mg → Mg2+ + 2e- ... (2)" at the negative electrode 102 in contact with the electrolyte 103, and the magnesium constituting the negative electrode 102 releases electrons and dissolves into the electrolyte as magnesium ions.
 これらの反応により、放電を行うことが可能である。全反応は、「Mg+1/2O2+H2O+2e-→Mg(OH)2・・・(3)」となり、水酸化マグネシウムが生成(析出)する反応である。理論起電力は約2.7Vである。このように、一次電池は、正極101の表面において式(1)で示す反応が進行するため、正極101の内部に反応サイトを多量に生成する方がよいものと考えられる。 These reactions make it possible to discharge the battery. The overall reaction is "Mg + 1/2O2 + H2O + 2e- → Mg(OH)2 ... (3)", which is the reaction that produces (precipitates) magnesium hydroxide. The theoretical electromotive force is approximately 2.7 V. Thus, in a primary battery, the reaction shown in formula (1) proceeds on the surface of the positive electrode 101, so it is considered better to produce a large number of reaction sites inside the positive electrode 101.
 本開示の実施の形態に係るマグネシウム空気電池100は、低環境負荷な材料で構成された廃棄物処理施設や自然環境を汚染しない。またマグネシウム空気電池100は、各種法令で指定された規制物質を含まない材料のみで構成される。このようなマグネシウム空気電池100は、例えば、土壌の水分センサーなどの使い捨てデバイスで使用した際に、非回収あるいは一般ごみとして廃棄した際にも、生活環境・自然環境に対する負荷が極めて低い。 The magnesium-air battery 100 according to the embodiment of the present disclosure is made of materials with low environmental impact and does not pollute waste treatment facilities or the natural environment. Furthermore, the magnesium-air battery 100 is made only of materials that do not contain regulated substances specified by various laws and regulations. Such a magnesium-air battery 100 places an extremely low burden on the living environment and the natural environment, even when used in a disposable device such as a soil moisture sensor, and when it is not collected or is discarded as general waste.
 さらに、正極101およびセパレータ106のうちの少なくとも一方は、シリカ含有其でコーティングされる。電解質103が過剰な状態においても空気のスムーズな供給を可能にする。さらに、正極101および電解質103の界面は、外気からの水の浸入や電解液の外気への漏出を防ぐ役割を果たすことができる。 Furthermore, at least one of the positive electrode 101 and the separator 106 is coated with a silica-containing material. This allows for a smooth supply of air even when the electrolyte 103 is in excess. Furthermore, the interface between the positive electrode 101 and the electrolyte 103 can serve to prevent the intrusion of water from the outside air and the leakage of the electrolyte into the outside air.
 本開示の実施の形態に係る実施例1-1から3-6について説明する。  We will explain examples 1-1 to 3-6 related to the embodiment of this disclosure.
 実施例1-1から1-4は、非共有結合によって一体とされた複数のナノシートからなる三次元ネットワーク構造とされた共連続体を空気極(正極101)として使用する例である。 Examples 1-1 to 1-4 are examples in which a bicontinuum having a three-dimensional network structure made up of multiple nanosheets bound together by non-covalent bonds is used as an air electrode (positive electrode 101).
 実施例に係るマグネシウム空気電池100aは、図2および図3に示すように、正極101、負極102、電解質103、正極集電体104、負極集電体105、セパレータ106、筐体110、筐体蓋111および固定具112を備える。 As shown in Figures 2 and 3, the magnesium air battery 100a according to the embodiment includes a positive electrode 101, a negative electrode 102, an electrolyte 103, a positive electrode current collector 104, a negative electrode current collector 105, a separator 106, a housing 110, a housing cover 111, and a fastener 112.
 正極101である空気極を、以下のようにして合成した。以下の説明では、代表として、グラフェンをナノシートとして使用する製造方法を示すが、グラフェンを他の材料によるナノシートに変えることで、三次元ネットワーク構造を有する共連続体を調整することができる。 The cathode (air electrode) 101 was synthesized as follows. In the following explanation, a manufacturing method using graphene as a nanosheet is shown as a representative example, but by changing the graphene to a nanosheet of another material, it is possible to prepare a bicontinuum having a three-dimensional network structure.
 まず、正極101の作製方法について説明する。市販のカーボンナノファイバーゾル[分散媒:水(HO)、0.4重量%、Sigma-Aldrich製]を試験管に入れ、この試験管を液体窒素中に30分間浸すことでカーボンナノファイバーゾルを完全に凍結させた。カーボンナノファイバーゾルを完全に凍結させた後、凍結させたカーボンナノファイバーゾルをナスフラスコに取り出し、これを凍結乾燥機(東京理科器械株式会社製)により10Pa以下の真空中で乾燥させることで、カーボンナノシートを含む三次元ネットワーク構造を有する伸縮性共連続体を得た。 First, a method for producing the positive electrode 101 will be described. A commercially available carbon nanofiber sol [dispersion medium: water (H 2 O), 0.4 wt %, manufactured by Sigma-Aldrich] was placed in a test tube, and the test tube was immersed in liquid nitrogen for 30 minutes to completely freeze the carbon nanofiber sol. After completely freezing the carbon nanofiber sol, the frozen carbon nanofiber sol was taken out into an eggplant flask, and this was dried in a vacuum of 10 Pa or less using a freeze dryer (manufactured by Tokyo Rikakikai Co., Ltd.), to obtain an elastic bicontinuum having a three-dimensional network structure containing carbon nanosheets.
 得られた共連続体について、X線回折(XRD:X-ray Diffraction)測定、走査型電子顕微鏡(SEM:Search Engine Marketing)観察、気孔率測定、引張試験、BET(Brunauer Emmett Teller)比表面積測定を行い、評価した。作製した共連続体はXRD測定よりカーボン(C, PDFカードNo.01-075-0444)単相であることを確認した。なお、PDFカードNo.は、国際回折データセンター(International Centre for Diffraction Data, ICDD)が収集したデータベースであるPDF(Powder Diffraction File)のカード番号であり、以下同様である。また、SEM観察および水銀圧入法により、得られた共連続体は、ナノシート(グラフェン片)が連続に連なった、平均孔径が1μmの共連続体であることを確認した。また、水銀圧入法により共連続体のBET比表面積測定を測定したところ、510m2/gであった。また、水銀圧入法により共連続体の気孔率を測定したところ、90%以上であった。更に、引張試験の結果から、得られた共連続体は、引張応力により歪が20%加えられても、弾性領域を超えず、応力印加前の形状に復元することを確認した。 The obtained co-continuum was evaluated by X-ray diffraction (XRD) measurement, scanning electron microscope (SEM) observation, porosity measurement, tensile test, and BET (Brunauer Emmett Teller) specific surface area measurement. The prepared co-continuum was confirmed to be a single phase of carbon (C, PDF card No. 01-075-0444) by XRD measurement. The PDF card No. is the card number of the PDF (Powder Diffraction File), a database collected by the International Centre for Diffraction Data (ICDD), and the same applies below. In addition, by SEM observation and mercury intrusion porosimetry, it was confirmed that the obtained co-continuum was a co-continuum with an average pore size of 1 μm in which nanosheets (graphene pieces) were continuously connected. In addition, the BET specific surface area of the co-continuum was measured by mercury intrusion porosimetry, and it was found to be 510 m 2 /g. The porosity of the co-continuum was measured by mercury intrusion porosimetry and found to be over 90%. Furthermore, the results of a tensile test confirmed that the co-continuum did not exceed its elastic region and restored its shape before the application of stress even when a 20% strain was applied due to tensile stress.
 上記共連続体を、打ち抜き刃またはレーザーカッター等により一辺が9mmの四角形状に切り抜き、ガス拡散型の空気極(正極101)を得た。 The above-mentioned co-continuum was cut into a square shape with a side length of 9 mm using a punching blade or a laser cutter, etc., to obtain a gas diffusion type air electrode (positive electrode 101).
 実施例2-1から2-5、および3-1から3-6の空気極について説明する。成型した空気極に対して、同一容器内に密封し、所定の温度と時間で保持する気層法を行った。試薬は、メチルトリメトキシシラン(東京化成工業株式会社製)を用いて行い、100℃で、1~24時間の間シリカ含有其でコーティング処理を実施した。 The air electrodes of Examples 2-1 to 2-5 and 3-1 to 3-6 are explained below. The molded air electrodes were sealed in the same container and subjected to the gas phase method, in which they were maintained at a specified temperature for a specified time. The reagent used was methyltrimethoxysilane (Tokyo Chemical Industry Co., Ltd.), and the coating process was carried out with silica-containing silica at 100°C for 1 to 24 hours.
 正極集電体104には、市販のカーボンペーパーと3Dプリンタを用いたFFF(Fused Filament Fabrication)方式により、PLA(Poly-Lactic Acid)フィラメントを溶解、積層することで作製した100μm程度のPLAフィルムとを180℃、10秒間かつ5kPaの条件で圧縮成型による一体化を図ったものを用いた。上記正極集電体104を外部負荷との接続のため凸型に加工した。具体的には正極101と接する箇所は一辺が10mmの四角形状に、外部負荷と接続する箇所は、2mm×10mmの長方形状に加工した。 The positive electrode current collector 104 was made by compressing commercially available carbon paper and a PLA film of about 100 μm, which was made by melting and laminating PLA (Poly-Lactic Acid) filaments using the FFF (Fused Filament Fabrication) method with a 3D printer, at 180°C for 10 seconds at 5 kPa to integrate them. The positive electrode current collector 104 was processed into a convex shape for connection to an external load. Specifically, the part that contacts the positive electrode 101 was processed into a square shape with one side measuring 10 mm, and the part that connects to the external load was processed into a rectangle measuring 2 mm x 10 mm.
 負極102は、市販のマグネシウム金属(厚さ100μm)を、打ち抜き刃またはレーザーカッター等により一辺が10mmの四角形状に切り抜くことで得た。 The negative electrode 102 was obtained by cutting commercially available magnesium metal (thickness 100 μm) into a square shape with each side measuring 10 mm using a punching blade or laser cutter.
 負極集電体105には正極集電体と同様の形に加工した、負極102と同材料を用いることとした。 The negative electrode current collector 105 is made of the same material as the negative electrode 102, but is processed into the same shape as the positive electrode current collector.
 電解質103は、酢酸マグネシウム四水和物を1mol/Lの濃度で純水に溶解した溶液を用いた。 The electrolyte 103 was a solution of magnesium acetate tetrahydrate dissolved in pure water at a concentration of 1 mol/L.
 セパレータ106は、電池用のセルロース系セパレータを用いた。 Separator 106 is a cellulose-based separator for batteries.
 実施例2-1ないし2-8で用いた電池用のセルロース系セパレータについて説明する。成型した空気極に対して、同一容器内に密封し、所定の温度と時間で保持する気層法を行った。試薬は、メチルトリメトキシシランを用いて行い、正極と同様に100℃で、1ないし24時間の間シリカ含有其でコーティング処理を実施した。 The cellulose-based separator for batteries used in Examples 2-1 to 2-8 will be described. The molded air electrode was sealed in the same container and subjected to the gas layer method, which involved maintaining the electrode at a specified temperature for a specified period of time. The reagent used was methyltrimethoxysilane, and the coating process was carried out with a silica-containing solvent at 100°C for 1 to 24 hours, just like the positive electrode.
 筐体110は、各部品を収容するよう、内寸10.1mm角、外寸20mmかつ外部負荷と接続のための正・負極集電体用の空隙2ヵ所と下部にセパレータを出すための空隙を1か所開けて、形成した。 The housing 110 is designed to accommodate each component, with inner dimensions of 10.1 mm square and outer dimensions of 20 mm, with two gaps for the positive and negative electrode collectors for connection to an external load, and one gap at the bottom for the separator to be exposed.
 筐体蓋111は、筐体110の蓋である。筐体蓋111は、正極集電体104を上から固定する。筐体蓋111は、正極集電体104に大気を供給するための空気孔111aを有する。 The housing lid 111 is a lid for the housing 110. The housing lid 111 fixes the positive electrode collector 104 from above. The housing lid 111 has an air hole 111a for supplying air to the positive electrode collector 104.
 固定具112は、正極101の固定に用いられる。固定具112は、内寸で9mm、外寸で10mmのそれぞれ四角形状を有し、内部に正極101を収容可能に形成される。 The fixture 112 is used to fix the positive electrode 101. The fixture 112 has a rectangular shape with inner dimensions of 9 mm and outer dimensions of 10 mm, and is formed so that the positive electrode 101 can be accommodated inside.
 筐体110、筐体蓋111および固定具112は、3Dプリンタを用いたFFF(Fused Filament Fabrication)方式により、PLAフィラメントを溶解し積層することで作製した。 The housing 110, housing lid 111, and fixture 112 were produced by melting and stacking PLA filament using the FFF (Fused Filament Fabrication) method with a 3D printer.
 図2に示す実施例に係るマグネシウム空気電池100aの組み立てを説明する。 The assembly of the magnesium-air battery 100a according to the embodiment shown in Figure 2 will now be described.
 まず、筐体110中に負極集電体105、負極102、その上にセパレータ106を設置する。筐体110の負極集電体用の空隙から、負極集電体105の一部を筐体110外に暴露し、筐体110の下方に設けられたセパレータ用の空隙からセパレータ106の一部を筐体110外に暴露する。セパレータ106上に絶縁性向上と正極固定のための固定具112を設置する。固定具112の内部に正極101を格納し、その上から正極集電体104を設置する。この際、正極集電体用の空隙から、正極集電体104の一部を暴露させる。上から筐体蓋111で電池材料を固定し、超音波カッター等の振動により発生する熱を利用して、筐体110および筐体蓋111を固定した。外部暴露しているセパレータ106に対し、電解質103を注入することで、マグネシウム空気電池100aを作製した。 First, the negative electrode collector 105, the negative electrode 102, and the separator 106 are placed in the housing 110. A part of the negative electrode collector 105 is exposed to the outside of the housing 110 from the gap for the negative electrode collector in the housing 110, and a part of the separator 106 is exposed to the outside of the housing 110 from the gap for the separator provided at the bottom of the housing 110. A fixing device 112 for improving insulation and fixing the positive electrode is placed on the separator 106. The positive electrode 101 is stored inside the fixing device 112, and the positive electrode collector 104 is placed on top of it. At this time, a part of the positive electrode collector 104 is exposed from the gap for the positive electrode collector. The battery material is fixed from above with the housing lid 111, and the housing 110 and the housing lid 111 are fixed using heat generated by vibrations from an ultrasonic cutter or the like. The magnesium-air battery 100a was produced by injecting the electrolyte 103 into the separator 106 exposed to the outside.
 作製したマグネシウム空気電池100aの電池性能を測定した。まず、放電試験を実施した。空気電池の放電試験は、市販の充放電測定システム(北斗電工社製、SD8充放電システム)を用い、放電試験を行った。放電試験では、空気極の有効面積当たりの電流密度で0.5mA/cm2を通電し、開回路電圧から電池電圧が、0Vに低下するまで、25℃の恒温槽内(雰囲気は通常の生活環境下)で測定を行った。放電容量は、共連続体からなる空気極の重量当たりの値(mAh/g)で表した。 The battery performance of the prepared magnesium-air battery 100a was measured. First, a discharge test was performed. The discharge test of the air battery was performed using a commercially available charge/discharge measurement system (SD8 charge/discharge system, manufactured by Hokuto Denko Corporation). In the discharge test, a current density of 0.5 mA/ cm2 was applied per effective area of the air electrode, and measurements were performed in a thermostatic chamber at 25°C (atmosphere: normal living environment) until the battery voltage decreased from the open circuit voltage to 0V. The discharge capacity was expressed as a value (mAh/g) per weight of the air electrode made of a bicontinuum.
 実施例1-1におけるマグネシウムから負極を構成した場合の初回の放電曲線を図4に示す。図4に示すように、負極102をマグネシウムから構成し、共連続体を空気極に用いたときの平均放電電圧は1.15Vであり、放電容量は1200mAh/gであることが分かる。なお、平均放電電圧は、電池の放電容量の1/2の放電容量の時の電池電圧とする。実施例1において、電池の放電容量は、1200mAh/gで、実験における放電容量は、600mAh/gである。 The initial discharge curve when the negative electrode is made of magnesium in Example 1-1 is shown in Figure 4. As shown in Figure 4, when the negative electrode 102 is made of magnesium and the co-continuum is used as the air electrode, the average discharge voltage is 1.15 V and the discharge capacity is 1200 mAh/g. The average discharge voltage is the battery voltage when the discharge capacity is 1/2 of the battery's discharge capacity. In Example 1, the battery discharge capacity is 1200 mAh/g and the discharge capacity in the experiment is 600 mAh/g.
 表1は、電解液量のみを変更した実施例1-1から1-4の結果を示す。電解液量の増加に伴い、放電容量および平均放電電圧が低下した。これは、正極に、電解液が滲出し、正極における反応場である三相界面長が減少したためと推測する。 Table 1 shows the results of Examples 1-1 to 1-4, in which only the amount of electrolyte was changed. As the amount of electrolyte increased, the discharge capacity and average discharge voltage decreased. This is presumably because the electrolyte seeped into the positive electrode, reducing the length of the three-phase interface, which is the reaction site at the positive electrode.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表2は、シリカ含有其でコーティング処理を実施した伸縮性共連続体の正極を用いた実施例2-1から2-8の結果を示す。2-1から2―4のいずれの電池も、電解液量が同等の、実施例1-1と比較し、平均電圧および放電容量が同等以上の値を示すことが分かる。また、電解液量が増えた、2-5から2-8においても、実施例1-2,1-3と比較し、高い電池性能を有することが分かる。 Table 2 shows the results of Examples 2-1 to 2-8, which used a positive electrode made of an elastic bicontinuum that had been coated with silica-containing electrolyte. It can be seen that all of the batteries 2-1 to 2-4 exhibit average voltages and discharge capacities equal to or greater than those of Example 1-1, which had the same amount of electrolyte. It can also be seen that batteries 2-5 to 2-8, which had an increased amount of electrolyte, had higher battery performance than Examples 1-2 and 1-3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表3は、シリカ含有其でコーティング処理を6時間実施した伸縮性共連続体の正極と、シリカ含有其でコーティング処理を実施したセパレータを用いた実施例の結果を示す。3-1から3-4のいずれの電池も、同一電解液量の実施例1-1および2-1と比較し、平均電圧および放電容量が同等以上の値を示すことが分かる。また、電解液量が増えた、3-5から3-6においても、実施例1-2,1-3、2-5、2-7と比較し、同等以上の値を示した。 Table 3 shows the results of examples using an elastic bicontinuous positive electrode coated with a silica-containing electrolyte for 6 hours and a separator coated with a silica-containing electrolyte. It can be seen that all of the batteries 3-1 to 3-4 show average voltage and discharge capacity values equal to or greater than those of Examples 1-1 and 2-1, which have the same amount of electrolyte. Also, batteries 3-5 to 3-6, which have an increased amount of electrolyte, show values equal to or greater than those of Examples 1-2, 1-3, 2-5, and 2-7.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本開示に係るマグネシウム空気電池100は、非共有結合によって一体とされた複数のナノ構造体からなる三次元ネットワーク構造とされた共連続体から空気極を構成する。セパレータ106および正極101に対して、シランカップリング剤を気層法によって、セルロースや正極表面をシリカ含有其でコーティングする。電解質103が過剰な状態においても空気のスムーズな供給を可能にするとともに、外気からの水の浸入や電解液の外気への漏出を防ぐ役割を有する正極/電解質界面を実現することで、高性能なマグネシウム空気電池を作製することができる。 The magnesium-air battery 100 according to the present disclosure has an air electrode made of a co-continuum with a three-dimensional network structure consisting of multiple nanostructures that are integrated by non-covalent bonds. A silane coupling agent is applied to the separator 106 and the positive electrode 101 by a gas layer method, and the cellulose and positive electrode surface are coated with silica-containing material. By realizing a positive electrode/electrolyte interface that allows for a smooth supply of air even when there is an excess of electrolyte 103 and prevents water from entering from the outside air and electrolyte from leaking into the outside air, a high-performance magnesium-air battery can be produced.
 従来の化学物質の自主的な管理の改善を促進し、環境の保全上の支障を未然に防止することを目的とする特に環境経由で人の健康や環境への影響が懸念される化学物質管理の法律に関する考慮がなされていない環境負荷の高い材料で形成された電池がある。これに対して、本開示によれば、法令で規定された環境経由で人の健康や環境への影響が懸念される規制物質を使うことなく、低環境負荷な材料のみで構成された廃棄物処理施設や自然環境を汚染しないマグネシウム空気電池100を提供することができる。  There are batteries made of environmentally hazardous materials that do not take into consideration laws governing chemical substance management, particularly those that are of concern for their impact on human health and the environment via the environment, with the aim of promoting improvements in conventional voluntary management of chemical substances and preventing impediments to environmental conservation. In contrast, according to the present disclosure, it is possible to provide a magnesium-air battery 100 that does not pollute waste treatment facilities or the natural environment and is made only of materials with low environmental impact, without using any regulated substances stipulated by laws and regulations that are of concern for their impact on human health and the environment via the environment.
 本開示の実施の形態によれば、環境経由で人の健康や環境への影響が懸念される規制物質を使うことなく、低環境負荷な材料のみで構成された廃棄物処理施設や自然環境を汚染しないマグネシウム空気電池100を提供することができる。このようなマグネシウム空気電池100は、日常環境の使い捨て電池を始め、土壌中で用いるセンサー等の様々な駆動源として有効利用することができる。 According to the embodiment of the present disclosure, it is possible to provide a magnesium-air battery 100 that does not pollute waste treatment facilities or the natural environment and is made only of materials with low environmental impact, without using regulated substances that are of concern for their impact on human health and the environment via the environment. Such a magnesium-air battery 100 can be effectively used as a variety of power sources, including disposable batteries in everyday environments and sensors used in soil.
 なお、本開示は上記実施形態に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。 Note that this disclosure is not limited to the above-described embodiments, and many variations are possible within the scope of the gist of the disclosure.
 100 マグネシウム空気電池
 101 正極
 102 負極
 103 電解質
 104 正極集電体
 105 負極集電体
 106 セパレータ
 111 筐体蓋
 111a 空気孔
 112 固定具
REFERENCE SIGNS LIST 100 Magnesium-air battery 101 Positive electrode 102 Negative electrode 103 Electrolyte 104 Positive electrode current collector 105 Negative electrode current collector 106 Separator 111 Housing cover 111a Air hole 112 Fixing device

Claims (7)

  1.  空気極で構成される正極と、
     マグネシウム、または、マグネシウムと、鉄、カルシウムおよびアルミニウムから構成されるグループのうち、いずれか1つ以上を含むマグネシウム合金で構成される負極と、
     前記正極と前記負極との間に配置され、前記正極と前記負極の間で絶縁し、塩で構成される電解質を吸水するセパレータを備え、
     前記正極およびセパレータのうちの少なくとも一方は、シリカ含有其でコーティングされるマグネシウム空気電池。
    a positive electrode composed of an air electrode;
    a negative electrode made of magnesium or a magnesium alloy containing at least one of the group consisting of magnesium and iron, calcium, and aluminum;
    a separator disposed between the positive electrode and the negative electrode, providing insulation between the positive electrode and the negative electrode and absorbing an electrolyte composed of a salt;
    At least one of the positive electrode and the separator is coated with a silica-containing material.
  2.  前記空気極は、非共有結合によって一体とされた複数のナノ構造体からなる三次元ネットワーク構造とされた共連続体から構成される
     請求項1に記載のマグネシウム空気電池。
    The magnesium-air battery according to claim 1 , wherein the air electrode is composed of a bicontinuous body having a three-dimensional network structure composed of a plurality of nanostructures bound together by non-covalent bonds.
  3.  前記シリカ含有其は、シランカップリング剤によりコーティングされる
     請求項1に記載のマグネシウム空気電池。
    The magnesium-air battery according to claim 1 , wherein the silica-containing material is coated with a silane coupling agent.
  4.  前記空気極の前記ナノ構造体は、
     カーボンまたは鉄酸化物を含む化合物であり、カーボンおよび鉄酸化物のうちの少なくとも一つから構成されたナノシート、または、
     カーボン、鉄酸化物、またはセルロースを含む化合物であり、カーボン、鉄酸化物、およびセルロースのうちの少なくとも1つから構成されたナノファイバーである
     請求項2に記載のマグネシウム空気電池。
    The nanostructure of the air electrode is
    A nanosheet made of at least one of carbon and iron oxide, which is a compound containing carbon or iron oxide; or
    The magnesium-air battery according to claim 2, wherein the compound is a compound containing carbon, iron oxide, or cellulose, and the compound is a nanofiber composed of at least one of carbon, iron oxide, and cellulose.
  5.  前記電解質は、酢酸マグネシウムを含む水溶液またはゲルである
     請求項1に記載のマグネシウム空気電池。
    The magnesium-air battery according to claim 1 , wherein the electrolyte is an aqueous solution or gel containing magnesium acetate.
  6.  前記正極、負極および電解質を収容する筐体をさらに備え、
     前記筐体は、前記空気極を大気に曝す空気孔を有する
     請求項1に記載のマグネシウム空気電池。
    Further comprising a housing for housing the positive electrode, the negative electrode, and an electrolyte;
    The magnesium-air battery according to claim 1 , wherein the housing has an air hole for exposing the air electrode to the atmosphere.
  7.  空気極で構成される正極を得る工程と、
     前記正極を、シリカ含有其でコーティングする工程と、
     マグネシウム、または、マグネシウムと、鉄、カルシウムおよびアルミニウムから構成されるグループのうち、いずれか1つ以上を含むマグネシウム合金で構成される負極を得る工程と、
     前記正極と前記負極との間に、塩で構成される電解質を配置する工程を備え、
     前記空気極は、非共有結合によって一体とされた複数のナノ構造体からなる三次元ネットワーク構造とされた共連続体から構成され、
     前記正極を得る工程は、
     前記ナノ構造体が所定のバクテリアに、鉄酸化物、マンガン酸化物、およびセルロースのいずれかのナノファイバーが分散したゾルまたはゲルを生産させる生産工程と、
     分散したゾルまたはゲルを凍結させて凍結体を得る凍結工程と、
     前記凍結体を真空中で乾燥させて前記共連続体を得る乾燥工程を備える
     マグネシウム空気電池の製造方法。
     
     
    obtaining a positive electrode composed of an air electrode;
    coating the positive electrode with a silica-containing coating;
    obtaining a negative electrode made of magnesium or a magnesium alloy containing at least one of the group consisting of magnesium and iron, calcium, and aluminum;
    A step of disposing an electrolyte composed of a salt between the positive electrode and the negative electrode,
    The air electrode is composed of a bicontinuous three-dimensional network structure composed of a plurality of nanostructures that are integrated by non-covalent bonds;
    The step of obtaining the positive electrode comprises:
    A production step in which the nanostructure causes a predetermined bacterium to produce a sol or gel in which nanofibers of any one of iron oxide, manganese oxide, and cellulose are dispersed;
    a freezing step of freezing the dispersed sol or gel to obtain a frozen body;
    The method for manufacturing a magnesium-air battery includes a drying step of drying the frozen body in a vacuum to obtain the co-continuum.

PCT/JP2023/000730 2023-01-13 2023-01-13 Magnesium-air battery and manufacturing method therefor WO2024150394A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/000730 WO2024150394A1 (en) 2023-01-13 2023-01-13 Magnesium-air battery and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2023/000730 WO2024150394A1 (en) 2023-01-13 2023-01-13 Magnesium-air battery and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2024150394A1 true WO2024150394A1 (en) 2024-07-18

Family

ID=91896661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000730 WO2024150394A1 (en) 2023-01-13 2023-01-13 Magnesium-air battery and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2024150394A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059506A (en) * 2005-08-23 2007-03-08 Toppan Printing Co Ltd Wiring board with spare solder
JP2008071579A (en) * 2006-09-13 2008-03-27 Matsushita Electric Ind Co Ltd Air battery
JP2013097968A (en) * 2011-10-31 2013-05-20 Showa Denko Packaging Co Ltd Air secondary battery packaging material, air secondary battery packaging material manufacturing method, and air secondary battery
JP2014120338A (en) * 2012-12-17 2014-06-30 Showa Denko Packaging Co Ltd Oxygen permeable membrane for air secondary battery, jacket material for air secondary battery, and air secondary battery
US20160079590A1 (en) * 2014-09-15 2016-03-17 Samsung Electronics Co., Ltd. Cathode, lithium air battery including the same, and method of preparing the cathode
JP2017117524A (en) * 2015-12-21 2017-06-29 日本電信電話株式会社 Air electrode for lithium air secondary battery and manufacturing method thereof, and lithium air secondary battery
JP2019200953A (en) * 2018-05-18 2019-11-21 日本電信電話株式会社 Metal-air battery and air electrode manufacturing method
JP2020102399A (en) * 2018-12-25 2020-07-02 日本電信電話株式会社 Metal-air battery and manufacturing method of air electrode

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059506A (en) * 2005-08-23 2007-03-08 Toppan Printing Co Ltd Wiring board with spare solder
JP2008071579A (en) * 2006-09-13 2008-03-27 Matsushita Electric Ind Co Ltd Air battery
JP2013097968A (en) * 2011-10-31 2013-05-20 Showa Denko Packaging Co Ltd Air secondary battery packaging material, air secondary battery packaging material manufacturing method, and air secondary battery
JP2014120338A (en) * 2012-12-17 2014-06-30 Showa Denko Packaging Co Ltd Oxygen permeable membrane for air secondary battery, jacket material for air secondary battery, and air secondary battery
US20160079590A1 (en) * 2014-09-15 2016-03-17 Samsung Electronics Co., Ltd. Cathode, lithium air battery including the same, and method of preparing the cathode
JP2017117524A (en) * 2015-12-21 2017-06-29 日本電信電話株式会社 Air electrode for lithium air secondary battery and manufacturing method thereof, and lithium air secondary battery
JP2019200953A (en) * 2018-05-18 2019-11-21 日本電信電話株式会社 Metal-air battery and air electrode manufacturing method
JP2020102399A (en) * 2018-12-25 2020-07-02 日本電信電話株式会社 Metal-air battery and manufacturing method of air electrode

Similar Documents

Publication Publication Date Title
CN109845006B (en) Primary battery and moisture sensor
EP3518338B1 (en) Battery and method for producing positive electrode for same
JP7025644B2 (en) Metal-air battery and air electrode manufacturing method
JP6951623B2 (en) Manufacturing method of magnesium water battery and its positive electrode
Wang et al. Challenges and prospects of Mg-air batteries: a review
WO2020137557A1 (en) Metal-air battery and production method for air electrode
WO2024150394A1 (en) Magnesium-air battery and manufacturing method therefor
JP5739831B2 (en) Air battery material and all-solid air battery using the same
Ma et al. Conductive TiN thin layer-coated nitrogen-doped anatase TiO2 as high-performance anode materials for sodium-ion batteries
WO2023233522A1 (en) Magnesium air battery and method for producing same
JP7068585B2 (en) Bipolar metal-air battery, air electrode manufacturing method, and current collector manufacturing method
JP7356053B2 (en) Air battery and method for manufacturing air battery
JP6870183B2 (en) Aluminum battery
EP3229297B1 (en) Air battery using a positive electrode, and method of manufacturing the positive electrode
Kishore et al. Graphene-based nanocatalysts for oxygen reduction and evolution reactions in metal-oxygen batteries
Zhao et al. Hierarchical porous ZnMn2O4 derived from cotton substance as high‐performance lithium ion battery anode
WO2022070393A1 (en) Metal-air battery
WO2021240602A1 (en) Metal-air battery and method for manufacturing air electrode
WO2022091267A1 (en) Metal-air battery
JP2018014259A (en) Electrolyte solution for metal air battery
WO2021111515A1 (en) Metal-air battery, method for manufacturing positive electrode for metal-air battery, and method for manufacturing metal-air battery
Maurya et al. Carbon-Based and TMDs-Based Air Cathode for Metal–Air Batteries
Soman et al. Green Technologies and Sustainable Energy Materials
Tan Design and development of novel polypropylene based aluminium-air battery system
JP2014149943A (en) Active material and secondary battery using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23916015

Country of ref document: EP

Kind code of ref document: A1