WO2024141689A1 - Composite material comprising material from wind turbine blades for the production of profiles by pultrusion - Google Patents

Composite material comprising material from wind turbine blades for the production of profiles by pultrusion Download PDF

Info

Publication number
WO2024141689A1
WO2024141689A1 PCT/ES2023/070768 ES2023070768W WO2024141689A1 WO 2024141689 A1 WO2024141689 A1 WO 2024141689A1 ES 2023070768 W ES2023070768 W ES 2023070768W WO 2024141689 A1 WO2024141689 A1 WO 2024141689A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
profile
resin
weight
polymer matrix
Prior art date
Application number
PCT/ES2023/070768
Other languages
Spanish (es)
French (fr)
Inventor
Marcos ROS MARTIN
Pedro Miguel Basail Izcue
María Luz REYES GARCIA
María Asunción PADRÓS RAZQUIN
Eva MARTÍNEZ BARRIGÜETE
Stefano Primi
Mónica SÁNCHEZ HERNÁNDEZ
Araceli GÁLVEZ MORENO
Susana QUILES DÍAZ
Enrique NAVARRO LERA
Alfredo GARCÍA FARRE
Original Assignee
Acciona Construccion, S.A.
Acciona Generación Renovable, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acciona Construccion, S.A., Acciona Generación Renovable, S.A. filed Critical Acciona Construccion, S.A.
Publication of WO2024141689A1 publication Critical patent/WO2024141689A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/02Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising combinations of reinforcements, e.g. non-specified reinforcements, fibrous reinforcing inserts and fillers, e.g. particulate fillers, incorporated in matrix material, forming one or more layers and with or without non-reinforced or non-filled layers
    • B29C70/021Combinations of fibrous reinforcement and non-fibrous material
    • B29C70/025Combinations of fibrous reinforcement and non-fibrous material with particular filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/0026Recovery of plastics or other constituents of waste material containing plastics by agglomeration or compacting
    • B29B17/0042Recovery of plastics or other constituents of waste material containing plastics by agglomeration or compacting for shaping parts, e.g. multilayered parts with at least one layer containing regenerated plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B17/0404Disintegrating plastics, e.g. by milling to powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • B29C70/521Pultrusion, i.e. forming and compressing by continuously pulling through a die and impregnating the reinforcement before the die
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B2017/042Mixing disintegrated particles or powders with other materials, e.g. with virgin materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • B29L2031/085Wind turbine blades

Definitions

  • the present invention refers to a new composite material that comprises material from wind turbine blades, its production process based on a micronized mechanical treatment and its use for the manufacture of structural profiles of pultrusion fiber-reinforced polymers (prf), and more specifically in the structure of the followers of a photovoltaic plant.
  • prf pultrusion fiber-reinforced polymers
  • the blades are made up of different areas with different material compositions.
  • the design and typology of the blades varies from one supplier to another, as well as due to the adaptations and improvements made over time.
  • the level of filler incorporation is quite limited (less than 10% by weight with respect to the polymer matrix) due to the following reasons: deterioration of mechanical properties and increase in processing problems with higher contents (due to the higher viscosity of the compound) [Geraldine Oliveux, Luke O. Dandy, and Gary A. Leeke. "Current status of recycling of fiber reinforced polymers: Review of technologies, reuse and resulting properties” Progress in Materials Science, vol. 72, 2015.]
  • the inventors have developed a method to incorporate between 10% and 100% by weight with respect to the polymer matrix of a recycled load from a wind turbine blade, as one of the components of the material used to manufacture a pultruded profile, as a filler material in powder state after grinding since there is an improvement in terms of the aging behavior of the composite material compared to the equivalent galvanized steel material used in equivalent profiles;
  • the recycled material from the wind turbine blade that replaces part of the resin avoiding the use of quarry material, reduces the carbon footprint of the whole.
  • said profile improves the behavior of an equivalent metallic or steel profile, in terms of their weight because it is lighter.
  • the present invention refers to a composite material of pultruded profiles characterized in that it comprises
  • the polymeric matrix is a resin with a viscosity of between 100 cps and 4000 cps. Viscosity measurement is performed using a parallel plate rheometer (AR200EX, TA Instruments) operating in rotational mode. It works in inthermal flow mode using 25 mm diameter plates and carrying out the test at a temperature of 23 °C, atmospheric pressure and a rotation speed of 1 rad/s.
  • the selected resin is a thermostable resin.
  • the polymeric matrix is a modified polyester resin.
  • the modified polyester resin is a prepolymer dissolved in methyl methaclate and styrene. Said resin is a resin with the lowest possible viscosity of the commercial ones, which helps to be able to add the greatest amount of filler material and which after adding that filler continues with a low viscosity for use in pultrusion.
  • fiberglass is understood as any material that includes all formats and compositions of glass fibers composed of: loose or joint filaments, continuous or discontinuous, in thread or woven format in any format forming fabrics or woven and/or nonwoven.
  • Said filaments are composed of a formulation preferably with Silicon oxide combined with any other material in any proportion, and spun by any method to obtain a filament.
  • carbon fiber is understood as any material formed by grouped filaments of carbon in any combination formed by threads, woven and/or non-woven
  • the reinforcement material is glass fiber and/or carbon selected from continuous fiberglass, continuous carbon fiber, unidirectional reinforcements or multidirectional composite fabrics or any combination of the above.
  • the reinforcing material is a combination of all of the above.
  • between 51% and 95% of the filler material has a particle size distribution between 10 pm and 40 pm. Due to the characteristics of the material to be crushed, achieving this granulometry is complex due to its mixed composition. All particle size analyzes of the present invention have been carried out using laser diffraction technology, being able to cover a measurement range between 10 nm and 4 mm and based on the ISO 13320 standard “Particle size analysis - Laser diffraction methods”.
  • the percentage of additive filler material is between 29% and 31% by weight on the matrix. polymeric. With this particle size distribution, when more than 31% is incorporated, the viscosity greatly increases and prevents processing.
  • Another aspect of the invention is a procedure for obtaining the pultruded composite material described above, characterized in that it comprises the following steps: a) separate the debris from the composite material of a wind turbine blade and micronize and grind the separated composite material to a smaller size of between 2 pm and 500 pm; b) prepare the polymeric matrix and; c) add the mixture obtained in a) to the mixture obtained in b) and mix between 200 and 1000 rpm, preferably 400 rpm for 10-20 min, preferably 15 min, until a uniform mixture is formed, and add the cross-linking initiation catalysts.
  • step (d) heating a pultrusion mold between a temperature of 60°C and 150°C; e) put the mixture obtained in c) in a bath and impregnate a reinforcing material in said mixture continuously, passing it through the heated pultrusion mold of step (d); and f) curing the material obtained from the mold of step (d).
  • the pultrusion process is described to obtain the specific profile.
  • the mixture is prepared, it is incorporated into the pultrusion process.
  • This consists of different phases, as can be seen in the following image.
  • the different types of glass and carbon fiber are placed at the beginning of the line (1).
  • an open bath (2) is used, where the reinforcement is introduced into the impregnation bath where it is mixed with the matrix and the rest of the additives.
  • the fiber is impregnated, it passes through a mold where, through the application of temperature, between 60°C and 150°C, the curing of the piece is achieved (3). So that this manufacturing process can work continuously, the profile is extracted from the mold by pulling two presses (4).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Moulding By Coating Moulds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Wind Motors (AREA)

Abstract

The present invention relates to a novel pultruded composite material comprising material from wind turbine blades, as well as the method of producing said material, which is based on a mechanical micronising treatment, and the use of same in the manufacture of structural profiles made of pultrusion fibre-reinforced polymers (frp), and more specifically in the structure of the followers of a photovoltaic plant.

Description

DESCRIPCIÓN DESCRIPTION
COMPOSITE MATERIAL COMPRISING MATERIAL FROM WIND TURBINE BLADES FOR THE PRODUCTION OF PROFILES BY PULTRUSION COMPOSITE MATERIAL COMPRISING MATERIAL FROM WIND TURBINE BLADES FOR THE PRODUCTION OF PROFILES BY PULTRUSION
La presente invención se refiere a un material composite nuevo que comprende material procedente de palas de aerogenerador, su procedimiento de obtención basado en un tratamiento mecánico de micronizado y su uso para la fabricación de perfiles estructurales de polímeros reforzados con fibra (prf) de pultrusion, y más en concreto en la estructura de los seguidores de una planta fotovoltaica. The present invention refers to a new composite material that comprises material from wind turbine blades, its production process based on a micronized mechanical treatment and its use for the manufacture of structural profiles of pultrusion fiber-reinforced polymers (prf), and more specifically in the structure of the followers of a photovoltaic plant.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
El creciente uso de energía renovables y la explotación de numerosos parques (eólicos, fotovoltaicos, etc) pone de manifiesto la necesidad de afrontar cómo tratar los materiales al final de su vida útil. En concreto, el desmantelamiento o la repotenciación (o repowering en inglés) de los parques eólicos ha puesto en alerta la necesidad de dar una solución a los residuos. The growing use of renewable energy and the exploitation of numerous parks (wind, photovoltaic, etc.) highlights the need to address how to treat materials at the end of their useful life. Specifically, the dismantling or repowering (or repowering in English) of wind farms has raised awareness of the need to provide a solution to waste.
La previsión de la patronal europea WindEurope es que en la UE queden obsoletas unas 25.000 toneladas de palas anuales desde ahora hasta 2025, fecha del primer pico. Alemania y España serán los países con un mayor número de componentes retirados al ser los primeros en instalar esta tecnología, seguidos de Dinamarca. Italia, Francia y Portugal empezarán a hacerlo a finales de la década, por lo que la patronal pronostica que el monto se duplique hasta las 52.000 toneladas en 2030. The forecast of the European employers' association WindEurope is that in the EU about 25,000 tons of blades will become obsolete annually between now and 2025, the date of the first peak. Germany and Spain will be the countries with the highest number of components removed as they are the first to install this technology, followed by Denmark. Italy, France and Portugal will begin to do so at the end of the decade, so the employers' association predicts that the amount will double to 52,000 tons in 2030.
Dentro de los materiales utilizados en los parques eólicos, es el material compuesto el que representa el mayor problema para su reciclado, debido a la naturaleza de sus componentes (normalmente resinas termoestables y fibras de vidrio continuas). Among the materials used in wind farms, it is the composite material that represents the biggest problem for recycling, due to the nature of its components (normally thermostable resins and continuous glass fibers).
Las palas están formadas por diferentes zonas con composiciones de materiales diferentes. El diseño y tipología de las palas varía de unos proveedores a otros, así como debido a las adaptaciones y mejoras realizadas lo largo del tiempo. Una vez descartada la zona de la raíz donde están lo insertos metálicos, principalmente quedaría dividida, en dos tipos de combinaciones de materiales: laminados de fibra de vidrio (spar caps) y paneles sandwich con un núcleo de espuma de distintos materiales que pueden incluir PVC, PET o madera de balsa (shear Webs and Shell Panels). Existen diferentes estrategias para para reciclar los materiales presentes en las palas de molinos eólicos [Daniel Martinez- Marquez et al., State-of-the-art review of product stewardship strategies for large composite wind turbine blades, Resources, Conservation & Recycling Advances, Volume 15, (2022) 200109, 444] entre ellas existe la utilización de la fibra de vidrio como aditivo de carga en cemento para abaratar los costes de la carga así como debido a bajo costo operacional y energético y no usar materiales peligrosos, una vez que el polímero reforzado que forma parte de la pala es separado y triturado. Sin embargo, actualmente dicho material en polvo se encuentra con dos problemas para su reutilización como carga, en primer lugar, no es comercialmente viable debido al bajo coste de las cargas vírgenes, como el carbonato cálcico o la sílice. Y, en segundo lugar, el nivel de incorporación de material de relleno es bastante limitado (menos del 10 % en peso con respecto a la matriz polimérica) debido a las siguientes razones: deterioro de las propiedades mecánicas y el aumento de los problemas de procesamiento con contenidos más elevados (debido a la mayor viscosidad del compuesto) [Géraldine Oliveux, Luke O. Dandy, and Gary A. Leeke. "Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties" Progress in Materials Science, vol. 72, 2015.] The blades are made up of different areas with different material compositions. The design and typology of the blades varies from one supplier to another, as well as due to the adaptations and improvements made over time. Once the root area where the metal inserts are located is discarded, it would mainly be divided into two types of material combinations: fiberglass laminates (spar caps) and sandwich panels with a foam core made of different materials that can include PVC. , PET or balsa wood (shear Webs and Shell Panels). There are different strategies to recycle the materials present in wind turbine blades [Daniel Martinez-Marquez et al., State-of-the-art review of product stewardship strategies for large composite wind turbine blades, Resources, Conservation & Recycling Advances, Volume 15, (2022) 200109, 444] among them there is the use of fiberglass as a filler additive in cement to reduce loading costs as well as due to low operational and energy costs and not using dangerous materials, once that the reinforced polymer that is part of the blade is separated and crushed. However, currently said powder material faces two problems for its reuse as a filler, firstly, it is not commercially viable due to the low cost of virgin fillers, such as calcium carbonate or silica. And secondly, the level of filler incorporation is quite limited (less than 10% by weight with respect to the polymer matrix) due to the following reasons: deterioration of mechanical properties and increase in processing problems with higher contents (due to the higher viscosity of the compound) [Géraldine Oliveux, Luke O. Dandy, and Gary A. Leeke. "Current status of recycling of fiber reinforced polymers: Review of technologies, reuse and resulting properties" Progress in Materials Science, vol. 72, 2015.]
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
Los inventores han desarrollado un método para conseguir incorporar entre un 10% y un 100% en peso con respecto a la matriz polimérica de una carga reciclada procedente de una pala de aerogenerador, como uno de los componentes del material utilizado para fabricar un perfil pultruído, como material de carga en estado polvo tras molienda ya que existe una mejora en cuanto al comportamiento del envejecimiento del material compuesto frente al material de acero galvanizado equivalente utilizado en perfiles equivalentes; a la par que el material reciclado proveniente de la pala del aerogenerador y que remplaza parte de la resina, evitando utilizar material de cantera, disminuye la huella de carbono del conjunto. Además, una vez utilizado el material para la obtención de un perfil estructural mediante pultrusion, dicho perfil, mejora el comportamiento de un perfil equivalente metálico o de acero, en el peso de estos por ser más liviano. The inventors have developed a method to incorporate between 10% and 100% by weight with respect to the polymer matrix of a recycled load from a wind turbine blade, as one of the components of the material used to manufacture a pultruded profile, as a filler material in powder state after grinding since there is an improvement in terms of the aging behavior of the composite material compared to the equivalent galvanized steel material used in equivalent profiles; At the same time, the recycled material from the wind turbine blade that replaces part of the resin, avoiding the use of quarry material, reduces the carbon footprint of the whole. Furthermore, once the material is used to obtain a structural profile through pultrusion, said profile improves the behavior of an equivalent metallic or steel profile, in terms of their weight because it is lighter.
En un primer aspecto, la presente invención se refiere a material composite de perfiles pultruídos caracterizado por que comprende In a first aspect, the present invention refers to a composite material of pultruded profiles characterized in that it comprises
• una matriz polimérica en un porcentaje en peso de entre 25% y 40% con respecto al total del material composite; • a polymer matrix in a weight percentage of between 25% and 40% with regarding the total composite material;
• un material de refuerzo en un porcentaje en peso de entre 75% y 60% con respecto al total del material composite; • a reinforcing material in a percentage by weight of between 75% and 60% with respect to the total composite material;
• un material de carga que comprende un compuesto triturado procedente de palas de turbina eólica con un tamaño de grano de entre 2 pm y 500 pm, formado por fibra de vidrio y/o carbono y una fracción orgánica de naturaleza poliméñca, donde el porcentaje de material de carga es de entre 10% y 100% en peso con respecto a la matriz poliméñca del perfil pultruído; y donde el material de refuerzo se encuentra embebido en la matriz poliméñca; el material de carga está dispersado por todo el volumen de la matriz poliméñca de manera homogénea; y donde la matriz poliméñca, es un polímero entrecruzado. • a filler material that comprises a crushed compound from wind turbine blades with a grain size between 2 pm and 500 pm, formed by glass and/or carbon fiber and an organic fraction of a polymeric nature, where the percentage of filler material is between 10% and 100% by weight with respect to the polymeric matrix of the pultruded profile; and where the reinforcing material is embedded in the polymeric matrix; the filler material is dispersed throughout the volume of the polymer matrix homogeneously; and where the polymer matrix is a cross-linked polymer.
En una realización preferida la matriz poliméñca es una resina de una viscosidad de entre 100 cps y 4000 cps. La medida de la viscosidad se realiza mediante reómetro de platos paralelos (AR200EX, TA Instruments) operando en modo rotacional. Se trabaja en modo flujo ¡sotermo empleando platos de 25 mm de diámetro y realizando el ensayo a una temperatura de 23 °C, presión atmosférica y una velocidad de giro de 1 rad/s En una realización más preferida la resina seleccionada es una resina termoestable. En una realización todavía más preferida la matriz poliméñca es una resina poliéster modificada. En una realización todavía aún más preferida la resina poliéster modificada es un prepolímero disuelto en metilmetacñlato y estireno. Dicha resina es una resina con la viscosidad más baja posible de las comerciales, que ayuda para poder aditivar con la mayor cantidad de material de carga y que después de sumarle esa carga sigue con una viscosidad baja como para utilizar en pultrusion. In a preferred embodiment, the polymeric matrix is a resin with a viscosity of between 100 cps and 4000 cps. Viscosity measurement is performed using a parallel plate rheometer (AR200EX, TA Instruments) operating in rotational mode. It works in inthermal flow mode using 25 mm diameter plates and carrying out the test at a temperature of 23 °C, atmospheric pressure and a rotation speed of 1 rad/s. In a more preferred embodiment, the selected resin is a thermostable resin. . In an even more preferred embodiment, the polymeric matrix is a modified polyester resin. In an even more preferred embodiment, the modified polyester resin is a prepolymer dissolved in methyl methaclate and styrene. Said resin is a resin with the lowest possible viscosity of the commercial ones, which helps to be able to add the greatest amount of filler material and which after adding that filler continues with a low viscosity for use in pultrusion.
En otra realización preferida el material de refuerzo es una fibra de vidrio. In another preferred embodiment the reinforcing material is a glass fiber.
En la presente invención se entiende por “fibra de vidrio” a cualquier material que comprenda todos los formatos y composiciones de fibras de vidrios compuesto por: filamentos sueltos o en conjunto, continuo o discontinuo, en formato hilo o tejido en cualquier formato formando telas o tejidos y/o no tejidos. Dichos filamentos están compuestos de una formulación preferentemente con óxido de Silicio combinado con cualquier otro material en cualquier proporción, e hilado por cualquier método para obtener un filamento. In the present invention, “fiberglass” is understood as any material that includes all formats and compositions of glass fibers composed of: loose or joint filaments, continuous or discontinuous, in thread or woven format in any format forming fabrics or woven and/or nonwoven. Said filaments are composed of a formulation preferably with Silicon oxide combined with any other material in any proportion, and spun by any method to obtain a filament.
En la presente invención se entiende por “fibra de carbono” a cualquier material formado por filamentos agrupados de carbono en cualquier combinación formados por hilos, tejido y/o no tejidos In the present invention, “carbon fiber” is understood as any material formed by grouped filaments of carbon in any combination formed by threads, woven and/or non-woven
En una realización más preferida el material de refuerzo es fibra de vidrio y/o carbono seleccionado de entre fibra de vidrio continua, fibra de carbono continua, refuerzos unidireccionales o tejidos compuestos multidireccionales o cualquier combinación de los anteriores. En una realización más preferida el material de refuerzo es una combinación de todos los anteriores. In a more preferred embodiment the reinforcement material is glass fiber and/or carbon selected from continuous fiberglass, continuous carbon fiber, unidirectional reinforcements or multidirectional composite fabrics or any combination of the above. In a more preferred embodiment, the reinforcing material is a combination of all of the above.
En otra realización preferida, entre un 51% y un 95% del material de carga tiene una distribución de tamaño de partícula comprendida entre 10 pm y 40 pm. Por las características del material a triturar, alcanzar esta granulometría es complejo debido a su composición mixta. Todos los análisis de tamaños de partícula de la presente invención se han llevado a cabo mediante la tecnología de difracción laser, pudiendo abarcar un rango de medida de entre 10 nm y 4 mm y basándose en la norma ISO 13320 “Particle size análisis - Laser diffraction methods”. In another preferred embodiment, between 51% and 95% of the filler material has a particle size distribution between 10 pm and 40 pm. Due to the characteristics of the material to be crushed, achieving this granulometry is complex due to its mixed composition. All particle size analyzes of the present invention have been carried out using laser diffraction technology, being able to cover a measurement range between 10 nm and 4 mm and based on the ISO 13320 standard “Particle size analysis - Laser diffraction methods”.
En otra realización preferida la fibra de vidrio proveniente de la pala de aerogenerador para el material de carga es de una “fibra de vidrio” según la definición anterior. In another preferred embodiment, the fiberglass from the wind turbine blade for the loading material is a “fiberglass” according to the previous definition.
En otra realización preferida la cantidad de fracción orgánica de naturaleza polimérica proveniente de la pala de aerogenerador para el material de carga es una resina seleccionada de entre resina epoxi y resina poliéster. Más preferiblemente es resina epoxi. In another preferred embodiment, the amount of organic fraction of a polymeric nature from the wind turbine blade for the loading material is a resin selected from epoxy resin and polyester resin. More preferably it is epoxy resin.
En otra realización preferida el porcentaje de material de carga es de entre 10% y 80% en peso con respecto a la matriz polimérica del perfil pultruído. In another preferred embodiment, the percentage of filler material is between 10% and 80% by weight with respect to the polymer matrix of the pultruded profile.
En otra realización preferida si entre un 51% y un 95% del material de carga tiene un tamaño de partícula comprendido entre 10 pm y 40 pm, el porcentaje de material de carga aditivado es de entre 29% y 31 % en peso sobre la matriz polimérica. Con dicha distribución de tamaño de partícula, cuando se incorpora más del 31% aumenta mucho la viscosidad e impide su procesado. In another preferred embodiment, if between 51% and 95% of the filler material has a particle size between 10 pm and 40 pm, the percentage of additive filler material is between 29% and 31% by weight on the matrix. polymeric. With this particle size distribution, when more than 31% is incorporated, the viscosity greatly increases and prevents processing.
Otro aspecto de la invención es un procedimiento para la obtención del material composite pultruído descrito anteriormente caracterizado por que comprende las siguientes etapas: a) separar los impropios del material composite de una pala de turbina eólica y micronizar y moler el material composite separado hasta un tamaño menor de entre 2 pm y 500 pm; b) preparar la matriz poliméhca y; c) añadir la mezcla obtenida en a) sobre la mezcla obtenida en b) y mezclar entre 200 y 1000 rpm, preferible 400 rpm durante 10-20min, preferible 15min, hasta formación de una mezcla uniforme, y añadir los catalizadores de iniciación de entrecruzamiento entre 0,5% y un 2% en peso respecto al total de la mezcla y el dispersante hasta un 5% en peso respecto al total de la mezcla; d) calentar un molde de pultrusion entre una temperatura de 60°C y 150°C; e) poner en un baño la mezcla obtenida en c) e impregnar un material de refuerzo en dicha mezcla de manera en continuo haciéndolo pasar por el molde de pultrusion calentado de la etapa (d); y f) realizar un curado del material obtenido del molde de la etapa (d). Another aspect of the invention is a procedure for obtaining the pultruded composite material described above, characterized in that it comprises the following steps: a) separate the debris from the composite material of a wind turbine blade and micronize and grind the separated composite material to a smaller size of between 2 pm and 500 pm; b) prepare the polymeric matrix and; c) add the mixture obtained in a) to the mixture obtained in b) and mix between 200 and 1000 rpm, preferably 400 rpm for 10-20 min, preferably 15 min, until a uniform mixture is formed, and add the cross-linking initiation catalysts. between 0.5% and 2% by weight with respect to the total mixture and the dispersant up to 5% by weight with respect to the total mixture; d) heating a pultrusion mold between a temperature of 60°C and 150°C; e) put the mixture obtained in c) in a bath and impregnate a reinforcing material in said mixture continuously, passing it through the heated pultrusion mold of step (d); and f) curing the material obtained from the mold of step (d).
En la presente invención se entiende por “separar los impropios del material composite de una pala de turbina eólica” a descartar la zona de la raíz donde están lo insertos metálicos, donde queda dividida en dos tipos de combinaciones de materiales: laminados de fibra de vidrio (spar caps) y paneles sandwich con un núcleo de espuma de distintos materiales que pueden incluir PVC, PET o madera de balsa (shear Webs and Shell Panels) y de entre ambas se selecciona la zona spar caps In the present invention, it is understood by “separating the improper composite material of a wind turbine blade” to discard the root area where the metal inserts are, where it is divided into two types of material combinations: fiberglass laminates (spar caps) and sandwich panels with a foam core made of different materials that can include PVC, PET or balsa wood (shear Webs and Shell Panels) and from both the spar caps area is selected.
En una realización preferida del procedimiento el tamaño de la trituración de la etapa (a) es de entre 10 pm y 60 pm. Más preferiblemente de 10 pm y 40 pm. In a preferred embodiment of the procedure the grinding size of step (a) is between 10 pm and 60 pm. More preferably from 10 pm and 40 pm.
En otra realización preferida la matriz poliméhca de la etapa (b) es una resina de una viscosidad de entre 100 cps y 4000 cps. En una realización más preferida la resina seleccionada es una resina termoestable. En una realización todavía más preferida la matriz poliméhca es una resina poliéster modificada. En una realización todavía aún más preferida la resina poliéster modificada es un prepolímero disuelto en metachlato y estireno. In another preferred embodiment, the polymeric matrix of step (b) is a resin with a viscosity of between 100 cps and 4000 cps. In a more preferred embodiment the selected resin is a thermosetting resin. In an even more preferred embodiment, the polymer matrix is a modified polyester resin. In an even more preferred embodiment, the modified polyester resin is a prepolymer dissolved in methalate and styrene.
En otra realización preferida el material de refuerzo de la etapa (d) es fibra de vidrio y/o carbono. En una realización más preferida es seleccionada de entre fibra de vidrio continua, fibra de carbono continua, refuerzos unidireccionales o tejidos compuestos multidireccionales o cualquier combinación de los anteriores. En una realización más preferida el material de refuerzo es una combinación de todos los anteriores. In another preferred embodiment the reinforcing material of step (d) is glass and/or carbon fiber. In a more preferred embodiment it is selected from continuous fiberglass, continuous carbon fiber, unidirectional reinforcements or composite fabrics. multidirectional or any combination of the above. In a more preferred embodiment, the reinforcing material is a combination of all of the above.
En otra realización preferida el material composite proveniente de la pala de aerogenerador de la etapa (a) comprende una fibra de vidrio y/o carbono y una fracción orgánica de naturaleza polimérica, preferiblemente es una resina seleccionada de entre resina epoxi y resina poliéster. Más preferiblemente es resina epoxi. In another preferred embodiment, the composite material from the wind turbine blade in step (a) comprises a glass and/or carbon fiber and an organic fraction of a polymeric nature, preferably it is a resin selected from epoxy resin and polyester resin. More preferably it is epoxy resin.
En otra realización más preferida la fibra de vidrio y/o carbono es seleccionado de entre vidrio continua, fibra de carbono continua, refuerzos unidireccionales o tejidos compuestos multidireccionales o cualquier combinación de los anteriores. In another more preferred embodiment, the glass and/or carbon fiber is selected from continuous glass, continuous carbon fiber, unidirectional reinforcements or multidirectional composite fabrics or any combination of the above.
En otra realización preferida para preparar la matriz polimérica de la etapa (b) se mezcla los componentes de una resina poliéster modificada. En otra realización más preferida para preparar la matriz polimérica de la etapa (b) se realiza mezclando prepolímero disuelto en metilmetacrilato y estireno. In another preferred embodiment, to prepare the polymer matrix of step (b), the components of a modified polyester resin are mixed. In another more preferred embodiment, preparing the polymer matrix of step (b) is carried out by mixing prepolymer dissolved in methylmethacrylate and styrene.
En otra realización preferida el mezclado de la etapa (c) es mediante un proceso mecánico. In another preferred embodiment, the mixing of step (c) is through a mechanical process.
Un tercer aspecto de la presente invención es un perfil o elemento de carga caracterizado por que comprende el material composite pultruido descrito anteriormente. A third aspect of the present invention is a profile or load-bearing element characterized in that it comprises the pultruded composite material described above.
En una realización preferida el perfil pultruido en material compuesto sustituye a los perfiles de acero que forman de la estructura de los seguidores de una planta fotovoltaica. En otra realización más preferida el seguidor es un eje horizontal. En otra realización aún más preferida el perfil tiene unas dimensiones de entre 250x250x25 mm3 y 100x100x10 mm3, pudiendo utilizar con cualquier combinación de fibra de vidrio y/o fibra de carbono. In a preferred embodiment, the pultruded composite profile replaces the steel profiles that form the structure of the followers of a photovoltaic plant. In another more preferred embodiment the follower is a horizontal axis. In another even more preferred embodiment, the profile has dimensions between 250x250x25 mm 3 and 100x100x10 mm 3 , and can be used with any combination of fiberglass and/or carbon fiber.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus vahantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y figuras se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. Throughout the description and claims the word "comprises" and its meanings are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will emerge partly from the description and partly from the practice of the invention. The following examples and figures are provided by way of illustration, and are not intended that are limiting of the present invention.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Fig. 1. Representación esquemática de los distintos elementos que componen la zona de refuerzo. Fig. 1. Schematic representation of the different elements that make up the reinforcement zone.
Fig. 2. Curva de distribución de tamaños una vez micronizado. Fig. 2. Size distribution curve once micronized.
Fig. 3. Esquema de una línea de pultrusion. Fig. 3. Scheme of a pultrusion line.
EJEMPLOS EXAMPLES
A continuación, se ¡lustrará la invención mediante unos ensayos realizados por los inventores, que pone de manifiesto la efectividad del producto de la invención. Next, the invention will be illustrated through tests carried out by the inventors, which demonstrate the effectiveness of the product of the invention.
Ejemplo 1 Example 1
Una vez separados los impropios y seleccionado la parte estructural (Fig. 1) de la zona “spar caps" se realiza el proceso de micronizado/molturado, dicha molienda de esta pieza se ha llevado a cabo mediante dos vías: una vía con medios de laboratorio y otra vía de moledores profesionales a gran escala. Once the improper parts have been separated and the structural part (Fig. 1) of the “spar caps” area has been selected, the micronizing/grinding process is carried out. This grinding of this piece has been carried out in two ways: one way with means of laboratory and another avenue of large-scale professional grinders.
Se consigue un tamaño de partícula preferente del material entre 40 y 10 pm para que no afecte a la viscosidad de la resina, donde un aumento excesivo de la misma impide el procesado por pultrusion. A preferred particle size of the material is achieved between 40 and 10 pm so that it does not affect the viscosity of the resin, where an excessive increase in it prevents pultrusion processing.
El compendio de resultados obtenidos nos permite concluir que la viscosidad de la mezcla depende tanto de la composición de la carga como de su granulometría. En términos de composición de la carga, se ha demostrado que el empleo de cargas con menores contenidos de fracción orgánica genera la obtención de mezclas menos viscosas, lo que permitirá la incorporación de mayores porcentajes de carga en la mezcla manteniendo su procesabilidad. En cuanto a la granulometría de la carga empleada, se ha demostrado la necesidad de emplear cargas con perfiles granulométricos anchos, con tamaños comprendidos entre 2 pm y 500 pm, donde más del 80% de la carga presente un tamaño inferior a los 75 pm y cuya granulometría mayohtaha se centre entre los 10 y los 40 pm (Fig. 2). Por otro lado, se ha comprobado que el proceso de curado de la resina depende de la cantidad de carga incorporada a la mezcla y de la granulometría de esta. En general, se ha observado un desplazamiento del curado hacia mayores temperaturas conforme aumentamos el contenido de carga incorporado a la mezcla. Este desplazamiento a mayores temperaturas podría dificultar el correcto curado de la pieza durante el proceso de pultrusion, siendo este uno de los factores que motivan la preparación de perfiles pultruídos. con un 30% de carga. Por tanto, se prepara la mezcla combinando la matriz polimérica con el resto de los componentes por medios electromecánicos. La mezcla se compone de una resina poliéster modificada de fabricante IN EOS. Para ello se mezcla en las proporciones dentro de la horquilla marcadas por el fabricante en torno a un 95- 99% de componente A (Modar™ NX 801 P resina, un 0,5-3% del peróxido PB y 0,5-2% de peróxido BCC, que corresponden a un grado de fluidez y densidad adecuados para poder incorporar polvo de otros materiales como “carga”. Entonces se le añadirá una carga con el material de refuerzo micronizado/pulvurentado, el polvo de pala, de un 30% de carga con respecto al total del material obtenido anteriormente, esta se va incorporando poco a poco mientras con los medios electromecánicos se va batiendo la mezcla para su mezcla uniforme. The compendium of results obtained allows us to conclude that the viscosity of the mixture depends on both the composition of the load and its granulometry. In terms of filler composition, it has been shown that the use of fillers with lower organic fraction content generates less viscous mixtures, which will allow the incorporation of higher percentages of filler in the mixture while maintaining its processability. Regarding the granulometry of the load used, the need to use loads with wide granulometric profiles has been demonstrated, with sizes between 2 pm and 500 pm, where more than 80% of the load has a size less than 75 pm and whose granulometry may be centered between 10 and 40 pm (Fig. 2). On the other hand, it has been proven that the resin curing process depends on the amount of filler incorporated into the mixture and its granulometry. In general, a shift in curing towards higher temperatures has been observed as we increase the filler content incorporated into the mixture. This displacement to higher temperatures could hinder the correct curing of the piece during the pultrusion process, this being one of the factors that motivate the preparation of pultruded profiles. with 30% load. Therefore, the mixture is prepared by combining the polymer matrix with the rest of the components by electromechanical means. The mixture is composed of a modified polyester resin from manufacturer IN EOS. To do this, mix in the proportions within the range marked by the manufacturer around 95-99% of component A (Modar™ NX 801 P resin, 0.5-3% of the PB peroxide and 0.5-2 % BCC peroxide, which correspond to a degree of fluidity and density suitable for incorporating powder from other materials as a “filler”. Then a load with the micronized/powdered reinforcement material, the shovel powder, of 30 will be added. % load with respect to the total of the material obtained previously, this is incorporated little by little while the mixture is beaten with electromechanical means for its uniform mixing.
Por otro lado, se han observado cambios los procesos de curado radicalario en función de la granulometría, donde el empleo de granulometrías más finas genera la aparición de un nuevo proceso de curado radicalario a temperaturas próximas a los 130°C, que en el caso de incorporar contenidos de carga ¡guales o superiores al 50% se convierte en el proceso de curado predominante. On the other hand, changes have been observed in the radical curing processes depending on the granulometry, where the use of finer granulometries generates the appearance of a new radical curing process at temperatures close to 130°C, which in the case of Incorporating filler contents equal to or greater than 50% becomes the predominant curing process.
A continuación, se describe el proceso de pultrusion para obtención del perfil específico Una vez preparada la mezcla se incorpora en el proceso de pultrusion. Este consta de diferentes fases, tal y como se puede apreciar en la siguiente imagen. Los diferentes tipos de fibra de vidrio y carbono se colocan al inicio de la línea (1). Para llevar a cabo la impregnación de la fibra con la matriz se utiliza un baño abierto (2), donde el refuerzo es introducido en el baño de impregnación donde se mezcla con la matriz y el resto de aditivos. Una vez impregnada la fibra, pasa a través de un molde donde mediante la aplicación de temperatura, entre 60°C y 150°C, se consigue el curado de la pieza (3). Para que este proceso de fabricación pueda trabajar de forma continua el perfil se extrae del molde mediante el tiro de dos prensas (4). Finalmente, el perfil se corta a las dimensiones finales necesarias (8-10m de longitud) (5). A continuación, se muestra una tabla con las propiedades mecánicas del perfil obtenidas, donde A= sección del perfil, 1= Momento de inercia, lT= Momento de Torsión, E= Modulo de elasticidad, G= Modulo de Torsión: Next, the pultrusion process is described to obtain the specific profile. Once the mixture is prepared, it is incorporated into the pultrusion process. This consists of different phases, as can be seen in the following image. The different types of glass and carbon fiber are placed at the beginning of the line (1). To carry out the impregnation of the fiber with the matrix, an open bath (2) is used, where the reinforcement is introduced into the impregnation bath where it is mixed with the matrix and the rest of the additives. Once the fiber is impregnated, it passes through a mold where, through the application of temperature, between 60°C and 150°C, the curing of the piece is achieved (3). So that this manufacturing process can work continuously, the profile is extracted from the mold by pulling two presses (4). Finally, the profile is cut to the necessary final dimensions (8-10m length) (5). Below is a table with the mechanical properties of the profile obtained, where A= section of the profile, 1= Moment of inertia, l T = Moment of Torsion, E= Modulus of elasticity, G= Modulus of Torsion:
Tabla 1. Propiedades mecánicas y geométricas del perfil
Figure imgf000011_0001
Table 1. Mechanical and geometric properties of the profile
Figure imgf000011_0001

Claims

REIVINDICACIONES
1. Un material composite de perfiles pultruídos caracterizado por que comprende1. A composite material of pultruded profiles characterized in that it comprises
• una matriz polimérica en un porcentaje en peso de entre 25% y 40% con respecto al total del material composite; • a polymer matrix in a weight percentage of between 25% and 40% with respect to the total composite material;
• un material de refuerzo en un porcentaje en peso de entre 75% y 60% con respecto al total del material composite; • a reinforcing material in a percentage by weight of between 75% and 60% with respect to the total composite material;
• un material de carga que comprende un compuesto triturado procedente de palas de turbina eólica con un tamaño de grano de entre 2 pm y 500 pm, formado por fibra de vidrio y/o carbono y una fracción orgánica de naturaleza polimérica, donde el porcentaje de material de carga es de entre 10% y 100% en peso con respecto a la matriz polimérica del perfil pultruído; y donde el material de refuerzo se encuentra embebido en la matriz polimérica; el material de carga está dispersado por todo el volumen de la matriz polimérica de manera homogénea; y donde la matriz polimérica es un polímero entrecruzado. • a filler material that comprises a crushed compound from wind turbine blades with a grain size between 2 pm and 500 pm, formed by glass and/or carbon fiber and an organic fraction of a polymeric nature, where the percentage of filler material is between 10% and 100% by weight with respect to the polymer matrix of the pultruded profile; and where the reinforcing material is embedded in the polymer matrix; the filler material is dispersed throughout the volume of the polymer matrix homogeneously; and where the polymer matrix is a cross-linked polymer.
2. Material composite según la reivindicación 1 , donde la matriz polimérica es una resina de una viscosidad de entre 100 cps y 4000 cps. 2. Composite material according to claim 1, wherein the polymer matrix is a resin with a viscosity of between 100 cps and 4000 cps.
3. Material composite según la reivindicación 2, donde la resina es seleccionada de entre una resina termoestable. 3. Composite material according to claim 2, wherein the resin is selected from a thermostable resin.
4. Material composite según la reivindicación 3, donde la matriz polimérica es una resina poliéster modificada. 4. Composite material according to claim 3, wherein the polymer matrix is a modified polyester resin.
5. Material composite según la reivindicación 3, donde la resina poliéster modificada está disuelta en metilmetacrilato y estireno. 5. Composite material according to claim 3, wherein the modified polyester resin is dissolved in methylmethacrylate and styrene.
6. Material composite según cualquiera de las reivindicaciones 1 a 4, donde el material de refuerzo es fibra de vidrio y/o carbono. 6. Composite material according to any of claims 1 to 4, where the reinforcing material is fiberglass and/or carbon.
7. Material composite según la reivindicación 6, donde la fibra de vidrio y/o carbono es seleccionada de entre vidrio continua, fibra de carbono continua, refuerzos unidireccionales o tejidos compuestos multidireccionales o cualquier combinación de los anteriores. 7. Composite material according to claim 6, wherein the glass and/or carbon fiber is selected from continuous glass, continuous carbon fiber, unidirectional reinforcements or multidirectional composite fabrics or any combination of the above.
8. Material composite según cualquiera de las reivindicaciones 1 a 7, donde entre un 51% y un 95% del material de carga tiene una distribución granulométrica de un tamaño de partícula entre 10 pm y 40 pm. 8. Composite material according to any of claims 1 to 7, where between 51% and 95% of the filler material has a granulometric distribution of a particle size between 10 pm and 40 pm.
9. Material composite según cualquiera de las reivindicaciones 1 a 8, donde la fibra de vidrio proveniente de la pala de aerogenerador para el material de carga es de una fibra de vidrio y/o carbono seleccionada de entre fibra de vidrio continua, fibra de carbono continua, refuerzos unidireccionales o tejidos compuestos multidireccionales o cualquier combinación de los anteriores. 9. Composite material according to any of claims 1 to 8, wherein the glass fiber coming from the wind turbine blade for the loading material is a glass and/or carbon fiber selected from continuous fiberglass, carbon fiber continuous, unidirectional reinforcements or multidirectional composite fabrics or any combination of the above.
10. Material composite según cualquiera de las reivindicaciones 1 a 9, donde la fracción orgánica proveniente de la pala de aerogenerador para el material de carga es resina epoxi. 10. Composite material according to any of claims 1 to 9, wherein the organic fraction from the wind turbine blade for the filler material is epoxy resin.
11. Material composite según cualquiera de las reivindicaciones 1 a 10, donde el porcentaje de material de carga es de entre 10% y 60% en peso con respecto a la matriz poliméñca del perfil pultruído. 11. Composite material according to any of claims 1 to 10, where the percentage of filler material is between 10% and 60% by weight with respect to the polymeric matrix of the pultruded profile.
12. Material composite según la reivindicación 11 , donde si entre un 51% y un 95% del material de carga tiene un tamaño de partícula comprendido entre 10 pm y 40 pm, el porcentaje de material de carga aditivado es de entre 29% y 31% en peso sobre la matriz poliméñca. 12. Composite material according to claim 11, where if between 51% and 95% of the filler material has a particle size between 10 pm and 40 pm, the percentage of additive filler material is between 29% and 31 % by weight on the polymeric matrix.
13. Procedimiento para la obtención del material composite pultruído descrito en cualquiera de las reivindicaciones 1 a 12, caracterizado por que comprende las siguientes etapas: a) separar los impropios del material composite de una pala de turbina eólica y micronizar y moler el material composite separado hasta un tamaño menor de entre 2 pm y 500 pm; b) preparar la matriz poliméñca y; c) añadir la mezcla obtenida en a) sobre la mezcla obtenida en b) y mezclar entre 200 y 1000 rpm, preferible 400 rpm durante 10-20min, preferible 15min, hasta formación de una mezcla uniforme, y añadir los catalizadores de iniciación de entrecruzamiento entre 0,5% y un 2% en peso respecto al total de la mezcla y el dispersante hasta un 5% en peso respecto al total de la mezcla; d) calentar un molde de pultrusion entre una temperatura de 60°C y 150°C; e) poner en un baño la mezcla obtenida en c) e impregnar un material de refuerzo en dicha mezcla de manera en continuo haciéndolo pasar por el molde de pultrusion calentado de la etapa (d); y f) realizar un curado del material obtenido del molde de la etapa (d). 13. Procedure for obtaining the pultruded composite material described in any of claims 1 to 12, characterized in that it comprises the following steps: a) separating the improper composite material from a wind turbine blade and micronizing and grinding the separated composite material up to a smaller size of between 2 pm and 500 pm; b) prepare the polymeric matrix and; c) add the mixture obtained in a) to the mixture obtained in b) and mix between 200 and 1000 rpm, preferably 400 rpm for 10-20 min, preferably 15 min, until a uniform mixture is formed, and add the cross-linking initiation catalysts. between 0.5% and 2% by weight with respect to the total mixture and the dispersant up to 5% by weight with respect to the total mixture; d) heating a pultrusion mold between a temperature of 60°C and 150°C; e) put the mixture obtained in c) in a bath and impregnate a material of reinforcement in said mixture continuously by passing it through the heated pultrusion mold of step (d); and f) curing the material obtained from the mold of step (d).
14. Procedimiento según la reivindicación 13, donde el tamaño de la trituración de la etapa (a) es de entre 10 pm y 60 pm. 14. Method according to claim 13, wherein the grinding size of step (a) is between 10 pm and 60 pm.
15. Procedimiento según cualquiera de las reivindicaciones 9 o 10, de la etapa (b) es una resina de una viscosidad de entre 100 cps y 4000 cps. 15. Method according to any of claims 9 or 10, step (b) is a resin with a viscosity between 100 cps and 4000 cps.
16. Perfil o elemento de carga caracterizado por que comprende el material composite según cualquiera de las reivindicaciones 1 a 12. 16. Profile or load element characterized in that it comprises the composite material according to any of claims 1 to 12.
17. Perfil según la reivindicación 16, donde el perfil tiene estructura de los seguidores de una planta fotovoltaica. 17. Profile according to claim 16, wherein the profile has the structure of the followers of a photovoltaic plant.
18. Perfil según la reivindicación 17, donde el seguidor es un eje horizontal. 18. Profile according to claim 17, where the follower is a horizontal axis.
19. Perfil según la reivindicación 18, donde el perfil tiene unas dimensiones de entre 250x250x25 mm3 y 100x100x10 mm3, pudiendo utilizar con cualquier combinación de fibra de vidrio y/o fibra de carbono. 19. Profile according to claim 18, wherein the profile has dimensions between 250x250x25 mm 3 and 100x100x10 mm 3 , and can be used with any combination of fiberglass and/or carbon fiber.
PCT/ES2023/070768 2022-12-28 2023-12-20 Composite material comprising material from wind turbine blades for the production of profiles by pultrusion WO2024141689A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES202231113A ES2977135A1 (en) 2022-12-28 2022-12-28 COMPOSITE MATERIAL THAT INCLUDES MATERIAL FROM WIND TURBINE BLADES FOR OBTAINING PROFILES BY PULTRUSION (Machine-translation by Google Translate, not legally binding)
ESP202231113 2022-12-28

Publications (1)

Publication Number Publication Date
WO2024141689A1 true WO2024141689A1 (en) 2024-07-04

Family

ID=89768522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2023/070768 WO2024141689A1 (en) 2022-12-28 2023-12-20 Composite material comprising material from wind turbine blades for the production of profiles by pultrusion

Country Status (2)

Country Link
ES (1) ES2977135A1 (en)
WO (1) WO2024141689A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5688867A (en) * 1995-05-01 1997-11-18 Ferro Corporation Low VOC unsaturated polyester systems and uses thereof
US20160214278A1 (en) * 2013-11-05 2016-07-28 Bayerische Motoren Werke Aktiengesellschaft Method for Producing a Semi-Finished Product to be Made into a CFRP Component, from Carbon-Fiber Scrap
US20210260793A1 (en) * 2020-02-21 2021-08-26 Palo Alto Research Center Incorporated Recyclable enhanced performance carbon fiber reinforced polymers
US20210320616A1 (en) * 2018-08-29 2021-10-14 C.I. Corporation Pty Ltd Single axis solar tracker assembly
WO2023088951A1 (en) * 2021-11-16 2023-05-25 Wingbeam As Method for producing a structural element based on used wind turbine blades and structural element made of used wind turbine blades

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10227470B2 (en) * 2010-03-15 2019-03-12 Washington State University Recycled composite materials and related methods
ITMI20121357A1 (en) * 2012-08-01 2014-02-02 Giacomo Filippo Maria Bonaiti RECYCLING PROCESS OF THERMO-COMPOSITE COMPOSITE MATERIALS

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5688867A (en) * 1995-05-01 1997-11-18 Ferro Corporation Low VOC unsaturated polyester systems and uses thereof
US20160214278A1 (en) * 2013-11-05 2016-07-28 Bayerische Motoren Werke Aktiengesellschaft Method for Producing a Semi-Finished Product to be Made into a CFRP Component, from Carbon-Fiber Scrap
US20210320616A1 (en) * 2018-08-29 2021-10-14 C.I. Corporation Pty Ltd Single axis solar tracker assembly
US20210260793A1 (en) * 2020-02-21 2021-08-26 Palo Alto Research Center Incorporated Recyclable enhanced performance carbon fiber reinforced polymers
WO2023088951A1 (en) * 2021-11-16 2023-05-25 Wingbeam As Method for producing a structural element based on used wind turbine blades and structural element made of used wind turbine blades

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Fabrication de profilés en composites par pultrusion", TECHNIQUES DE L'INGÉNIEUR, 10 February 1995 (1995-02-10), XP055257480, Retrieved from the Internet <URL:https://www.techniques-ingenieur.fr/base-documentaire/archives-th12/archives-plastiques-et-composites-tiaam/archive-1/fabrication-de-profiles-en-composites-par-pultrusion-a3730/> [retrieved on 20160311] *
DANIEL MARTINEZ-MARQUEZ ET AL.: "State-of-the-art review of product stewardship strategies for large composite wind turbine blades", RESOURCES, CONSERVATION & RECYCLING ADVANCES, vol. 15, no. 200109, 2022, pages 444
GÉRALDINE OLIVEUXLUKE O. DANDYGARY A. LEEKE: "Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties", PROGRESS IN MATERIALS SCIENCE, vol. 72, 2015, XP002785270, DOI: 10.1016/j.pmatsci.2015.01.004

Also Published As

Publication number Publication date
ES2977135A1 (en) 2024-08-19

Similar Documents

Publication Publication Date Title
Cohades et al. Thermal mending in immiscible poly (ε-caprolactone)/epoxy blends
CN105018014B (en) A kind of quick epoxy construction gluing agent and preparation method thereof
CN106830871A (en) The fibre-reinforced superhigh tenacity geopolymer based composites of PVA and preparation method
WO2024141689A1 (en) Composite material comprising material from wind turbine blades for the production of profiles by pultrusion
Musil et al. Green composite: sodium‐based geopolymer reinforced with chemically extracted corn husk fibers
CN109206646A (en) A kind of degradable epoxy chopped carbon fiber felt prepreg and its production technology
Artemenko et al. Polymer composite materials based on carbon, basalt, and glass fibres
US4225353A (en) Reinforced sulphur-asphalt composites of two continuous phases
CN105907040A (en) Epoxy resin composition suitable for being adopted at low temperature and preparation method thereof
Radziszewski et al. Properties of asphalt concrete with basalt-polymer fibers
CN102205649A (en) Method for producing glass fiber reinforced plastic anchor pole
Suganya et al. Performance of concrete using waste fiber reinforced polymer powder as a partial replacement for fine aggregate
JP2014227423A (en) Prepreg and epoxy resin composition for prepreg
CN106192993A (en) Modified GFRP muscle and reinforcing bar Concrete Structure anticorrosion stake and preparation method
US20150050156A1 (en) Infused spar cap using a low viscosity matrix material
Achukwu et al. Fabrication of palm kernel shell epoxy composites and study of their mechanical properties
Moller An investigation of sustainable and recyclable composites for structural applications
Darmawan et al. The effect of composition on hardness and wear resistance of rice plant fiber reinforced composite as a material of brake lining
JP2010059300A (en) Carbon fiber reinforced composite material and method for producing the same
Ribeiro et al. A case study undertaken recycling & reuse of glass fiber reinforced thermoset polumer wastes of composite materials industry
CN117125925B (en) Double-effect application method of waste wind power blade as asphalt road building material
Kumar et al. Performance of coconut shell particulate filled polyester composites
Basumatary et al. Investigation into mechanical properties of Ipomoea carnea reinforced epoxy composite
Abdo et al. EVALUATION OF MECHANICAL PROPERTIES OF CONCRETE WITH RECYCLED FRP WIND BLADE WASTE MATERIAL
Bhagat Effect of filler parameter on microstructure and mechanical properties of titanium dioxide reinforced epoxy composites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23847895

Country of ref document: EP

Kind code of ref document: A1