WO2024139692A1 - Light-emitting apparatus and manufacturing method therefor, and display device - Google Patents

Light-emitting apparatus and manufacturing method therefor, and display device Download PDF

Info

Publication number
WO2024139692A1
WO2024139692A1 PCT/CN2023/128816 CN2023128816W WO2024139692A1 WO 2024139692 A1 WO2024139692 A1 WO 2024139692A1 CN 2023128816 W CN2023128816 W CN 2023128816W WO 2024139692 A1 WO2024139692 A1 WO 2024139692A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
electrode
polymer
electronic functional
functional layer
Prior art date
Application number
PCT/CN2023/128816
Other languages
French (fr)
Chinese (zh)
Inventor
侯文军
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Publication of WO2024139692A1 publication Critical patent/WO2024139692A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers

Definitions

  • the ureidopyrimidone-containing polyurethane comprises polyurethane side chain grafted 2-urea-4[1H]-pyrimidone; and/or
  • the light emitting device, the manufacturing method thereof and the display device of the present application add a polymer to the electronic functional layer containing metal oxide nanoparticles, and cracks appear in the electronic functional layer film formed by the metal oxide nanoparticles and the polymer.
  • the polymer When the polymer is used in a photosensitive layer, it can repair cracks in the electronic functional layer and restore the electron injection and transmission functions, thereby improving the luminescence efficiency and device life.
  • FIG. 3 is a flow chart of a method for manufacturing a light-emitting device provided in one embodiment of the present application.
  • the so-called “on” is a broad concept, which may mean that the formed another layer is adjacent to the certain layer, or that there are other intervening structural layers between the another layer and the certain layer, for example,
  • the first electrode is formed “on” the carrier functional layer.
  • the so-called “on” may mean that the formed first electrode is adjacent to the first carrier functional layer, or may mean that there are other spacing structure layers between the first electrode and the first carrier functional layer, such as a light-emitting layer.
  • the embodiment of the present application provides a light-emitting device 100, which includes a first electrode 10, a second electrode 20 disposed opposite to the first electrode 10, a light-emitting layer 30 disposed between the first electrode 10 and the second electrode 20, and an electronic functional layer 40 disposed between the second electrode 20 and the light-emitting layer 30.
  • the electronic functional layer 40 includes metal oxide nanoparticles and a polymer.
  • the present application adds a polymer to the electronic functional layer 40 containing metal oxide nanoparticles.
  • the polymer can repair the cracks in the electronic functional layer 40 and restore the electron injection and transmission functions, thereby improving the luminous efficiency and device life.
  • the polymer includes one or more of a supramolecular compound of a fatty acid reacted with a nitrogen-containing compound, a polyurethane containing ureidopyrimidone, a polyamide containing ureidopyrimidone, and a polyacrylamide containing ureidopyrimidone.
  • Supramolecular generally refers to two or more molecules combined by intermolecular interactions to form complex, organized aggregates, and maintain a certain integrity so that it has a clear microstructure and macroscopic characteristics.
  • the fatty acid is selected from oxalic acid, malonic acid, 1,7-pimelic acid, octadecanedioic acid, trisaccharic acid, 2-hydroxybutyric acid, citric acid, oxalosuccinic acid;
  • the nitrogen-containing compound is selected from one or more of urea, melamine, acetylguanidine, benzoguanidine, cyanamide, dicyandiamide, thiourea, isocyanate, pyrimidone or aminopyridine.
  • the polymer in the electronic functional layer 40 of the present application is not limited to polymers with multiple hydrogen bonds, and it can also be a polymer that uses ⁇ - ⁇ stacking, host-guest interaction, metal-ligand interaction, ion interaction, etc. to repair cracks.
  • the first electrode 10 is an anode
  • the second electrode 20 is a cathode
  • the electronic functional layer 40 is an electron transport layer.
  • the electronic functional layer 40 may also be an electron injection layer.
  • the present application further provides a method for manufacturing a light emitting device, which comprises the following steps:
  • the second electrode, the electronic functional layer, the light-emitting layer and the first electrode are sequentially stacked;
  • the electronic functional layer is formed by the following steps:
  • an electronic functional material solution comprising metal oxide nanoparticles, a polymer and a solvent; wherein the polymer comprises one or more of a supramolecular compound of a fatty acid reacted with a nitrogen-containing compound, a polyurethane containing ureidopyrimidone, a polyamide containing ureidopyrimidone, and a polyacrylamide containing ureidopyrimidone; and the solvent comprises isopropanol, ethylene glycol, heptyl alcohol, ethylene glycol monomethyl ether, diethylene glycol monobutyl ether, ethyl benzoate, methyl benzoate, One or more of dimethyl sulfoxide, N,N-dimethylformamide, N,N-dimethylacetamide and tetrahydrofuran; forming a thin film by a solution method and drying the thin film to obtain the electronic functional layer.
  • the polymer comprises one or more of a supramolecular compound of a fatty
  • the polymer includes one or more of a supramolecular compound of a fatty acid reacted with a nitrogen-containing compound, a polyurethane containing ureidopyrimidone, a polyamide containing ureidopyrimidone, and a polyacrylamide containing ureidopyrimidone.
  • the ureidopyrimidone-containing polyurethane may include/be PU-g-UPy (polyurethane side chain grafted 2-urea-4[1H]-pyrimidone).
  • Supramolecular generally refers to two or more molecules combined by intermolecular interactions to form complex, organized aggregates, and maintain a certain integrity so that it has a clear microstructure and macroscopic characteristics.
  • the fatty acid is selected from oxalic acid, malonic acid, 1,7-pimelic acid, octadecanedioic acid, trisaccharic acid, 2-hydroxybutyric acid, citric acid, oxalosuccinic acid;
  • the nitrogen-containing compound is selected from one or more of urea, melamine, acetylguanidine, benzoguanidine, cyanamide, dicyandiamide, thiourea, isocyanate, pyrimidone or aminopyridine.
  • the metal oxide nanoparticles have hydroxyl dangling bonds on their surface and multiple hydrogen bonds in the polymer.
  • the metal oxide nanoparticles have a large number of hydroxyl dangling bonds on their surface, which is conducive to the formation of hydrogen bonds with the polymers having multiple hydrogen bonds, thereby increasing stability.
  • the self-healing temperature of the polymers having multiple hydrogen bonds is from room temperature to 120°C.
  • cracks can be repaired by heating the electronic functional layer 40 to 40°C, and the repair method is simple and low in cost.
  • polymers having hydroxyl dangling bonds include but are not limited to the polymers listed above.
  • the polymer in the electronic functional layer 40 of the present application is not limited to polymers with multiple hydrogen bonds, and it can also be a polymer that uses ⁇ - ⁇ stacking, host-guest interaction, metal-ligand interaction, ion interaction, etc. to repair cracks.
  • the electronic functional layer is an electron transport layer.
  • the electronic functional layer may also be an electron injection layer.
  • the mass percentage of the metal oxide nanoparticles is 90%-99%, and the mass percentage of the polymer is 1% to 10%.
  • the mass percentage of the polymer in the electronic functional layer 40 is 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9% or 10%.
  • the mass percentage of the polymer in the electronic functional layer 40 is greater than 10%, the content of the polymer is too high, which will affect the electron injection and cause the device performance to decrease; when the mass percentage of the polymer in the electronic functional layer 40 is less than 1%, the content of the polymer is too low to achieve the self-repairing effect.
  • the mass percentage of the polymer in the electronic functional layer 40 is 3% to 7%.
  • the mass percentage of the polymer in the electronic functional layer 40 is 3%, 4%, 5%, 6% or 7%.
  • the mass percentage of the polymer in the electronic functional layer 40 is 4% to 6%.
  • the mass percentage of the polymer in the electronic functional layer 40 is 4%, 5% or 6%.
  • the average particle size of the metal oxide nanoparticles is 3 nanometers to 15 nanometers.
  • the average particle size of the metal oxide nanoparticles is 3 nanometers, 4 nanometers, 5 nanometers, 6 nanometers, 7 nanometers, 8 nanometers, 9 nanometers, 10 nanometers, 11 nanometers, 12 nanometers, 13 nanometers, 14 nanometers or 15 nanometers.
  • the average particle size of the metal oxide nanoparticles is too small, the surface defects of the nanoparticles increase, which will increase the luminescence quenching of the quantum dots; at the same time, the size uniformity is difficult to control during material preparation.
  • the average particle size of the metal oxide nanoparticles is too large, the difficulty of solvent dispersion of the nanoparticles increases, and they are easy to agglomerate, affecting the uniformity of film formation.
  • the solution used in the step of forming the electronic functional layer is selected from at least one of isopropyl alcohol, ethylene glycol, heptanol, ethylene glycol monomethyl ether, diethylene glycol monobutyl ether, ethyl benzoate, methyl benzoate, dimethyl sulfoxide, N,N-dimethylformamide, N,N-dimethylacetamide and tetrahydrofuran.
  • the electronic functional layer can be prepared by mixing polymer and metal oxide nanoparticles in proportion, printing them into pixels by solution method, and drying them into films.
  • the solution method can be spin coating, printing, inkjet printing, blade coating, printing, dip-coating, immersion, spraying, roll coating, casting, slit coating, strip coating, etc.
  • the light-emitting device manufactured by the manufacturing method of the present application can be self-repaired at room temperature to 120°C.
  • the present application also provides a display device, which includes a light-emitting device as described in any one of the above items or a light-emitting device prepared by the method for manufacturing a light-emitting device as described in any one of the above items.
  • Example 1 After the light emitting device of Example 1 was bent 100 times with a bending radius of 20 mm, the light emitting device was heated for self-repair at a self-repair temperature of 40° C. The crack condition was observed through an electron microscope, as shown in FIG5 .
  • Test device current efficiency and device life Use FPD optical property measurement equipment from Foster to control the efficiency test system built by QE PRO spectrometer, Keithley 2400, and Keithley 6485 through LabView to measure and calculate the current efficiency. Use the 128-channel life test system customized by Guangzhou New Vision Company to test the life T95@1000nit.
  • the system architecture is a 2mA constant current source to drive the light-emitting device.
  • the photodiode detector and test system test the brightness (photocurrent) change of the light-emitting device.
  • the brightness meter tests and calibrates the brightness (photocurrent) of the electroluminescent device to obtain the time it takes for the initial brightness of the light-emitting device to decay to 95%. The time it takes for the initial brightness of the light-emitting device to decay to 95% is converted to the aging time under 1000nit to obtain the life T95@1000nit.
  • the device current efficiency is 15 cd/A, and the device life (5% attenuation at 1000 nits) is 6000 h.
  • This embodiment is substantially the same as Embodiment 1, except that the mass percentage of the polymer in the electronic functional layer in this embodiment is 1%.
  • This embodiment is substantially the same as Embodiment 1, except that the mass percentage of the polymer in the electronic functional layer in this embodiment is 4%.
  • This embodiment is substantially the same as Embodiment 1, except that the mass percentage of the polymer in the electronic functional layer in this embodiment is 6%.
  • the device current efficiency is 14 cd/A, and the device life (5% attenuation at 1000 nits) is 5700 h.
  • This embodiment is basically the same as Embodiment 1, except that the polymer in this embodiment is a polyurethane of ureidopyrimidone.
  • the polymer is a polymer synthesized by introducing 5 molar % of 2-ureido-4-pyrimidone (CAS No.: 108-53-2) into a polyurethane polymer.
  • the device current efficiency is 15.5 cd/A, and the device life (5% attenuation at 1000 nits) is 5900 h.
  • the light emitting device of the comparative example was bent 100 times with a bending radius of 20 mm, the light emitting device was also heated, and crack conditions were observed through an electron microscope, as shown in FIG6 .

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

Provided in the present application are a light-emitting apparatus and a manufacturing method therefor, and a display device. An electronic functional layer of the light-emitting apparatus comprises metal oxide nanoparticles and a polymer, wherein the polymer comprises one or more of a supramolecular compound that is obtained by reacting a fatty acid with a nitrogen-containing compound, a polyurethane containing ureido pyrimidinone, a polyamide containing ureido pyrimidinone and a polyacrylamide containing ureido pyrimidinone. When cracks appear in a thin film of the electronic functional layer, the polymer can repair the cracks.

Description

发光器件、其制造方法以及显示装置Light emitting device, method for manufacturing the same, and display device
本申请要求于2022年12月30日在中国专利局提交的、申请号为202211736046.0、申请名称为“发光器件、其制造方法以及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。This application claims priority to the Chinese patent application filed with the China Patent Office on December 30, 2022, with application number 202211736046.0 and application name “Light-emitting device, manufacturing method thereof and display device”, the entire contents of which are incorporated by reference in this application.
技术领域Technical Field
本申请涉及量子点发光技术领域,尤其涉及一种发光器件、其制造方法以及显示装置。The present application relates to the field of quantum dot luminescence technology, and in particular to a light-emitting device, a manufacturing method thereof, and a display device.
背景技术Background technique
由于量子点独特的光电性质,例如,发光波长随尺寸和成分连续可调、发光光谱窄、荧光效率高、稳定性好等,基于量子点的电致发光二极管(Quantum Dot Light Emitting Diodes,QLED)在显示领域得到广泛的关注和研究。此外,QLED显示还具有可视角大、对比度高、响应速度快、可挠性等诸多LCD所无法实现的优势,因而有望成为下一代的显示技术。Due to the unique optoelectronic properties of quantum dots, such as the continuously adjustable emission wavelength with size and composition, narrow emission spectrum, high fluorescence efficiency, and good stability, quantum dot-based electroluminescent diodes (QLED) have received extensive attention and research in the display field. In addition, QLED display also has many advantages that LCD cannot achieve, such as large viewing angle, high contrast, fast response speed, and flexibility, so it is expected to become the next generation of display technology.
QLED器件工作时需要注入电子和空穴,简单的QLED器件由阴极、电子传输层、量子点层、空穴传输层和阳极组成。在QLED器件中,量子点薄膜夹在电荷传输层中间,当正向偏压加到QLED器件两端时,电子和空穴分别通过电子传输层和空穴传输层进入量子点发光层,并在量子点发光层复合发光。When QLED devices work, they need to inject electrons and holes. Simple QLED devices are composed of cathode, electron transport layer, quantum dot layer, hole transport layer and anode. In QLED devices, quantum dot film is sandwiched between charge transport layer. When forward bias is applied to both ends of QLED devices, electrons and holes enter quantum dot light-emitting layer through electron transport layer and hole transport layer respectively, and then recombine and emit light in quantum dot light-emitting layer.
然而,由于QLED器件的电子功能层中包含金属氧化物纳米粒子,在QLED器件受到外力压迫时,这些金属氧化物纳米粒子容易导致电子功能层中产生裂纹,从而妨碍载流子传输,降低发光效率和器件寿命。However, since the electronic functional layer of the QLED device contains metal oxide nanoparticles, when the QLED device is subjected to external pressure, these metal oxide nanoparticles can easily cause cracks in the electronic functional layer, thereby hindering carrier transmission and reducing luminous efficiency and device life.
技术解决方案Technical Solutions
有鉴于此,本申请提供一种包含具有自修复功能的电子功能层的QLED器件,以保证发光效率和器件寿命。In view of this, the present application provides a QLED device including an electronic functional layer with a self-repairing function to ensure the luminous efficiency and device life.
本申请提供一种发光器件,其包括相对设置的第一电极和第二电极,设置于所述第一电极与所述第二电极之间发光层;以及设置于所述第二电极与所述发光层之间的电子功能层;其中,所述电子功能层包括金属氧化物纳米粒子和聚合物,所述聚合物包括脂肪酸与含氮化合物反应的超分子化合物、含脲基嘧啶酮的聚氨酯、含脲基嘧啶酮的聚酰胺、含脲 基嘧啶酮的聚丙烯酰胺中的一种或多种。The present application provides a light-emitting device, which comprises a first electrode and a second electrode arranged opposite to each other, a light-emitting layer arranged between the first electrode and the second electrode; and an electronic functional layer arranged between the second electrode and the light-emitting layer; wherein the electronic functional layer comprises metal oxide nanoparticles and a polymer, and the polymer comprises a supramolecular compound reacted by a fatty acid and a nitrogen-containing compound, a polyurethane containing ureido pyrimidone, a polyamide containing ureido pyrimidone, and a One or more of the polyacrylamides of pyrimidone.
可选的,在一些实施方式中,所述含脲基嘧啶酮的聚氨酯包括聚氨酯侧链接枝2-脲-4[1H]-嘧啶酮。Optionally, in some embodiments, the ureidopyrimidone-containing polyurethane comprises polyurethane side chain grafted 2-urea-4[1H]-pyrimidone.
可选的,在一些实施方式中,所述脂肪酸与含氮化合物反应的超分子化合物中,所述脂肪酸选自乙二酸,丙二酸、1,7-庚二酸、十八烷二酸、丙三酸、2羟基丁三酸、柠檬酸、草酰琥珀酸;所述含氮化合物选自尿素、三聚氰胺、乙酰胍、苯并胍、氰胺、双氰胺、硫脲、异氰酸酯、嘧啶酮或氨基吡啶中的一种或多种。Optionally, in some embodiments, in the supramolecular compound formed by the reaction of the fatty acid and the nitrogen-containing compound, the fatty acid is selected from oxalic acid, malonic acid, 1,7-heptanedioic acid, octadecanedioic acid, triacylglycerol, 2-hydroxybutanetriolic acid, citric acid, and oxalosuccinic acid; and the nitrogen-containing compound is selected from one or more of urea, melamine, acetylguanidine, benzoguanidine, cyanamide, dicyandiamide, thiourea, isocyanate, pyrimidone, or aminopyridine.
可选的,在一些实施方式中,所述金属氧化物纳米粒子表面具有羟基悬挂键;和/或Optionally, in some embodiments, the metal oxide nanoparticles have hydroxyl dangling bonds on their surfaces; and/or
所述聚合物具有多重氢键。The polymer has multiple hydrogen bonds.
可选的,在一些实施方式中,所述金属氧化物纳米粒子包括ZnO、Znx1Mgy1O、Znx1Aly1O、Znx2Mgy2Liz2O、SnO2、NiO、TiO2、Znx1Sny1O中的至少一种,其中,x1+y1=1或者x2+y2+z2=1。Optionally, in some embodiments, the metal oxide nanoparticles include at least one of ZnO, Znx1Mgy1O , Znx1Aly1O , Znx2Mgy2Liz2O , SnO2 , NiO, TiO2 , and Znx1Sny1O , wherein x1+y1=1 or x2 + y2 + z2 =1.
可选的,在一些实施方式中,所述电子功能层中,所述金属氧化物纳米粒子的质量百分比为90%-99%,所述聚合物的质量百分比为1%至10%。Optionally, in some embodiments, in the electronic functional layer, the mass percentage of the metal oxide nanoparticles is 90%-99%, and the mass percentage of the polymer is 1% to 10%.
可选的,在一些实施方式中,所述电子功能层中,所述聚合物的质量百分比为3%至7%。Optionally, in some embodiments, in the electronic functional layer, the mass percentage of the polymer is 3% to 7%.
可选的,在一些实施方式中,所述电子功能层中,所述聚合物的质量百分比为4%至6%。Optionally, in some embodiments, in the electronic functional layer, the mass percentage of the polymer is 4% to 6%.
可选的,在一些实施方式中,所述金属氧化物纳米粒子的平均粒径为3纳米至15纳米。Optionally, in some embodiments, the average particle size of the metal oxide nanoparticles is 3 nanometers to 15 nanometers.
可选的,在一些实施方式中,所述第一电极和所述第二电极分别独立选自掺杂金属氧化物颗粒电极、复合电极、石墨烯电极、碳纳米管电极、金属单质电极或合金电极,所述掺杂金属氧化物颗粒电极的材料选自铟掺杂氧化锡、氟掺杂氧化锡、锑掺杂氧化锡、铝掺杂氧化锌、镓掺杂氧化锌、铟掺杂氧化锌、镁掺杂氧化锌及铝掺杂氧化镁中的一种或多种,所述复合电极选自AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO2/Ag/TiO2、TiO2/Al/TiO2、ZnS/Ag/ZnS或ZnS/Al/ZnS,所述金属电极的材料选自Ag、Al、Cu、Au、Mo、Pt、Ca及Ba中的一种或多种;和/或Optionally, in some embodiments, the first electrode and the second electrode are independently selected from a doped metal oxide particle electrode, a composite electrode, a graphene electrode, a carbon nanotube electrode, a metal element electrode or an alloy electrode, the material of the doped metal oxide particle electrode is selected from one or more of indium-doped tin oxide, fluorine-doped tin oxide, antimony-doped tin oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, indium-doped zinc oxide, magnesium-doped zinc oxide and aluminum-doped magnesium oxide, the composite electrode is selected from AZO/Ag/AZO, AZO/Al/AZO, ITO/Ag/ITO, ITO/Al/ITO, ZnO/Ag/ZnO, ZnO/Al/ZnO, TiO 2 /Ag/TiO 2 , TiO 2 /Al/TiO 2 , ZnS/Ag/ZnS or ZnS/Al/ZnS, and the material of the metal electrode is selected from one or more of Ag, Al, Cu, Au, Mo, Pt, Ca and Ba; and/or
所述发光层的材料选自量子点发光材料,所述量子点发光材料选自单一结构量子点、核壳结构量子点及钙钛矿型半导体材料中的一种或多种,所述单一结构量子点的材料、核壳结构量子点的核材料及核壳结构量子点的壳层材料分别选自所述单一结构量子点选自II-VI族化合物、IV-VI族化合物、III-V族化合物和I-III-VI族化合物中的至少一种,所述II-VI 族化合物选自CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe及HgZnSTe中的至少一种,所述IV-VI族化合物选自SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe中的至少一种,所述III-V族化合物选自GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs及InAlPSb中的至少一种,所述I-III-VI族化合物选自CuInS2、CuInSe2及AgInS2中的至少一种,所述钙钛矿型半导体材料选自掺杂或非掺杂的无机钙钛矿型半导体、或有机-无机杂化钙钛矿型半导体,所述无机钙钛矿型半导体的结构通式为AMX3,其中A为Cs+离子,M为二价金属阳离子,选自Pb2+、Sn2+、Cu2+、Ni2+、Cd2+、Cr2+、Mn2+、Co2+、Fe2+、Ge2+、Yb2+、Eu2+中的至少一种,X为卤素阴离子,选自Cl-、Br-、I-中的至少一种,所述有机-无机杂化钙钛矿型半导体的结构通式为BMX3,其中B为有机胺阳离子,选自CH3(CH2)n-2NH3 +或[NH3(CH2)nNH3]2+,其中n≥2,M为二价金属阳离子,选自Pb2+、Sn2+、Cu2+、Ni2+、Cd2+、Cr2+、Mn2+、Co2+、Fe2+、Ge2+、Yb2+、Eu2+中的至少一种,X为卤素阴离子,选自Cl-、Br-、I-中的至少一种;和/或The material of the light-emitting layer is selected from quantum dot light-emitting materials, and the quantum dot light-emitting materials are selected from one or more of single-structure quantum dots, core-shell structure quantum dots and perovskite semiconductor materials. The material of the single-structure quantum dots, the core material of the core-shell structure quantum dots and the shell material of the core-shell structure quantum dots are respectively selected from at least one of the single-structure quantum dots selected from II-VI group compounds, IV-VI group compounds, III-V group compounds and I-III-VI group compounds. The II-VI The compound of the family is selected from CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, At least one of CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe and HgZnSTe, wherein the IV-VI group compound is selected from SnS, SnSe, SnTe, PbS, PbSe, PbTe, SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPb The III-V group compound is selected from at least one of GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs and InAlPSb; and the I-III-VI group compound is selected from at least one of CuInS 2 , CuInSe 2 and AgInS 2 , the perovskite semiconductor material is selected from doped or undoped inorganic perovskite semiconductors, or organic-inorganic hybrid perovskite semiconductors, the inorganic perovskite semiconductor has a general structural formula of AMX 3 , wherein A is a Cs + ion, M is a divalent metal cation selected from at least one of Pb 2+ , Sn 2+ , Cu 2+ , Ni 2+ , Cd 2+ , Cr 2+ , Mn 2+ , Co 2+ , Fe 2+ , Ge 2+ , Yb 2+ , and Eu 2+ , X is a halogen anion selected from at least one of Cl - , Br - , and I - , and the organic-inorganic hybrid perovskite semiconductor has a general structural formula of BMX 3 , wherein B is an organic amine cation selected from CH 3 (CH 2 ) n-2 NH 3 + or [NH 3 (CH 2 ) n- 2 NH 3 ] 2+ , wherein n ≥ 2, M is a divalent metal cation selected from at least one of Pb 2+ , Sn 2+ , Cu 2+ , Ni 2+ , Cd 2+ , Cr 2+ , Mn 2+ , Co 2+ , Fe 2+ , Ge 2+ , Yb 2+ , and Eu 2+ , and X is a halogen anion selected from at least one of Cl - , Br - , and I - ; and/or
发光器件还包括设置在第一电极和发光层之间的空穴传输层和/或空穴注入层;其中,空穴传输层的材料选自PTAA、spiro-omeTAD、TAPC、NPB、CBP、TFB、PVK、Poly-TPD、TCTA、MoS2、MoS3、MoSe2、MoSe3及WS3中的一种或多种;空穴注入层的材料选自HAT-CN、PEDOT:PSS、PEDOT:PSS掺有s-MoO3的衍生物、m-MTDATA、F4-TCQN及酞菁铜中的一种或多种。The light-emitting device also includes a hole transport layer and/or a hole injection layer arranged between the first electrode and the light-emitting layer; wherein the material of the hole transport layer is selected from one or more of PTAA, spiro-omeTAD, TAPC, NPB, CBP, TFB, PVK, Poly-TPD, TCTA, MoS2 , MoS3 , MoSe2 , MoSe3 and WS3 ; the material of the hole injection layer is selected from one or more of HAT-CN, PEDOT:PSS, a derivative of PEDOT:PSS doped with s- MoO3 , m-MTDATA, F4-TCQN and copper phthalocyanine.
本申请还提供一种发光器件的制造方法,其包括以下步骤:The present application also provides a method for manufacturing a light emitting device, which comprises the following steps:
依次层叠形成第一电极、发光层、电子功能层和第二电极;或者,依次层叠形成第二电极、电子功能层、发光层和第一电极;A first electrode, a light-emitting layer, an electronic functional layer, and a second electrode are sequentially stacked to form; or, a second electrode, an electronic functional layer, a light-emitting layer, and a first electrode are sequentially stacked to form;
其中,所述电子功能层是通过以下步骤形成的:Wherein, the electronic functional layer is formed by the following steps:
提供电子功能材料溶液,所述电子功能材料溶液包括金属氧化物纳米粒子、聚合物和 溶剂;其中,所述聚合物包括脂肪酸与含氮化合物反应的超分子化合物、含脲基嘧啶酮的聚氨酯、含脲基嘧啶酮的聚酰胺、含脲基嘧啶酮的聚丙烯酰胺中的一种或多种;所述溶剂包括异丙醇、乙二醇、庚醇、乙二醇单甲醚、二乙二醇单丁醚、苯甲酸乙酯、苯甲酸甲酯、二甲基亚砜、N,N-二甲基甲酰胺,N,N-二甲基乙酰胺、四氢呋喃中的一种或多种;An electronic functional material solution is provided, wherein the electronic functional material solution comprises metal oxide nanoparticles, a polymer and Solvent; wherein the polymer includes one or more of a supramolecular compound of a fatty acid reacted with a nitrogen-containing compound, a polyurethane containing ureidopyrimidone, a polyamide containing ureidopyrimidone, and a polyacrylamide containing ureidopyrimidone; the solvent includes one or more of isopropanol, ethylene glycol, heptyl alcohol, ethylene glycol monomethyl ether, diethylene glycol monobutyl ether, ethyl benzoate, methyl benzoate, dimethyl sulfoxide, N,N-dimethylformamide, N,N-dimethylacetamide, and tetrahydrofuran;
利用溶液法形成薄膜并干燥处理,以获得所述电子功能层。A thin film is formed by a solution method and dried to obtain the electronic functional layer.
可选的,在一些实施方式中,所述含脲基嘧啶酮的聚氨酯包括聚氨酯侧链接枝2-脲-4[1H]-嘧啶酮;和/或Optionally, in some embodiments, the ureidopyrimidone-containing polyurethane comprises polyurethane side chain grafted 2-urea-4[1H]-pyrimidone; and/or
所述溶剂包括异丙醇、乙二醇、庚醇、乙二醇单甲醚、二乙二醇单丁醚、苯甲酸乙酯、苯甲酸甲酯、二甲基亚砜、N,N-二甲基甲酰胺,N,N-二甲基乙酰胺、四氢呋喃中的一种或多种;和/或The solvent comprises one or more of isopropanol, ethylene glycol, heptanol, ethylene glycol monomethyl ether, diethylene glycol monobutyl ether, ethyl benzoate, methyl benzoate, dimethyl sulfoxide, N,N-dimethylformamide, N,N-dimethylacetamide, and tetrahydrofuran; and/or
所述脂肪酸与含氮化合物反应的超分子化合物中,所述脂肪酸选自乙二酸,丙二酸、1,7-庚二酸、十八烷二酸、丙三酸、2羟基丁三酸、柠檬酸、草酰琥珀酸;所述含氮化合物选自尿素、三聚氰胺、乙酰胍、苯并胍、氰胺、双氰胺、硫脲、异氰酸酯、嘧啶酮或氨基吡啶中的一种或多种。In the supramolecular compound formed by the reaction of the fatty acid and the nitrogen-containing compound, the fatty acid is selected from oxalic acid, malonic acid, 1,7-pimelic acid, octadecanedioic acid, triacylglycerol, 2-hydroxybutyric acid, citric acid, and oxalosuccinic acid; and the nitrogen-containing compound is selected from one or more of urea, melamine, acetylguanidine, benzoguanidine, cyanamide, dicyandiamide, thiourea, isocyanate, pyrimidone, or aminopyridine.
可选的,在一些实施方式中,所述金属氧化物纳米粒子表面具有羟基悬挂键;和/或Optionally, in some embodiments, the metal oxide nanoparticles have hydroxyl dangling bonds on their surfaces; and/or
所述聚合物具有多重氢键。The polymer has multiple hydrogen bonds.
可选的,在一些实施方式中,所述金属氧化物纳米粒子包括ZnO、Znx1Mgy1O、Znx1Aly1O、Znx2Mgy2Liz2O、SnO2、NiO、TiO2、Znx1Sny1O中的至少一种,其中,x1+y1=1或者x2+y2+z2=1。Optionally, in some embodiments, the metal oxide nanoparticles include at least one of ZnO, Znx1Mgy1O , Znx1Aly1O , Znx2Mgy2Liz2O , SnO2 , NiO, TiO2 , and Znx1Sny1O , wherein x1+y1=1 or x2 + y2 + z2 =1.
可选的,在一些实施方式中,所述电子功能层中,所述金属氧化物纳米粒子的质量百分比为90%-99%,所述聚合物的质量百分比为1%至10%。Optionally, in some embodiments, in the electronic functional layer, the mass percentage of the metal oxide nanoparticles is 90%-99%, and the mass percentage of the polymer is 1% to 10%.
可选的,在一些实施方式中,所述电子功能层中,所述聚合物的质量百分比为3%至7%。Optionally, in some embodiments, in the electronic functional layer, the mass percentage of the polymer is 3% to 7%.
可选的,在一些实施方式中,所述电子功能层中,所述聚合物的质量百分比为4%至6%。Optionally, in some embodiments, in the electronic functional layer, the mass percentage of the polymer is 4% to 6%.
可选的,在一些实施方式中,所述金属氧化物纳米粒子的平均粒径为3纳米至15纳米。Optionally, in some embodiments, the average particle size of the metal oxide nanoparticles is 3 nanometers to 15 nanometers.
本申请还提供一种显示装置,其包括如上任一项所述的发光器件或如上任一项所述发光器件的制造方法制备的发光器件。The present application also provides a display device, which includes a light-emitting device as described in any one of the above items or a light-emitting device prepared by the method for manufacturing a light-emitting device as described in any one of the above items.
本申请的发光器件、其制造方法以及显示装置通过在包含金属氧化物纳米粒子的电子功能层中添加聚合物,当金属氧化物纳米粒子和聚合物形成的电子功能层薄膜中出现裂纹 时,聚合物能够修复电子功能层中的裂纹,恢复电子注入和传输功能,从而提升发光效率和器件寿命。The light emitting device, the manufacturing method thereof and the display device of the present application add a polymer to the electronic functional layer containing metal oxide nanoparticles, and cracks appear in the electronic functional layer film formed by the metal oxide nanoparticles and the polymer. When the polymer is used in a photosensitive layer, it can repair cracks in the electronic functional layer and restore the electron injection and transmission functions, thereby improving the luminescence efficiency and device life.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本申请中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solution in the present application, the drawings required for use in the description of the implementation methods will be briefly introduced below. Obviously, the drawings described below are only some implementation methods of the present application. For those skilled in the art, other drawings can be obtained based on these drawings without paying any creative work.
图1为本申请一实施例提供的发光器件的结构示意图。FIG1 is a schematic diagram of the structure of a light-emitting device provided in one embodiment of the present application.
图2为本申请一实施例提供的显示装置的结构示意图。FIG. 2 is a schematic diagram of the structure of a display device provided in an embodiment of the present application.
图3为本申请一实施例提供的一种发光器件的制造方法流程图。FIG. 3 is a flow chart of a method for manufacturing a light-emitting device provided in one embodiment of the present application.
图4为本申请一实施例提供的另一种发光器件的制造方法流程图。FIG. 4 is a flow chart of another method for manufacturing a light-emitting device provided in an embodiment of the present application.
图5为本申请实施例1的发光器件经过弯折测试后的电子显微镜照片。FIG5 is an electron microscope photograph of the light-emitting device of Example 1 of the present application after a bending test.
图6为本申请对比例1的发光器件经过弯折测试后的电子显微镜照片。FIG6 is an electron microscope photograph of the light emitting device of comparative example 1 of the present application after a bending test.
本申请的实施方式Embodiments of the present application
下面将结合本申请实施方式中的附图,对本申请中的技术方案进行清楚、完整地描述。显然,所描述的实施方式仅仅是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。The technical solution in this application will be described clearly and completely below in conjunction with the drawings in the embodiments of this application. Obviously, the described embodiments are only part of the embodiments of this application, not all of them. Based on the embodiments in this application, all other embodiments obtained by those skilled in the art without creative work are within the scope of protection of this application.
在本申请中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A,B可以是单数或者复数。In this application, "and/or" describes the association relationship of associated objects, indicating that there may be three relationships. For example, A and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone. A and B can be singular or plural.
在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“至少一种”、“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,“a,b,或c中的至少一项(个)”,或,“a,b,和c中的至少一项(个)”,均可以表示:a,b,c,a-b(即a和b),a-c,b-c,或a-b-c,其中a,b,c分别可以是单个,也可以是多个。In the present application, "at least one" means one or more, and "plurality" means two or more. "At least one", "at least one of the following" or similar expressions refer to any combination of these items, including any combination of single items or plural items. For example, "at least one of a, b, or c", or "at least one of a, b, and c" can all mean: a, b, c, a-b (i.e. a and b), a-c, b-c, or a-b-c, where a, b, c can be single or multiple, respectively.
在本申请中,在某一层“上”形成另一层中,所谓的“上”为广义概念,可以表示形成的另一层与某一层相邻,也可以表示另一层与某一层之间存在其他间隔结构层,例如在第一 载流子功能层“上”形成第一电极,所谓的“上”可以表示形成的第一电极与第一载流子功能层相邻,也可以表示第一电极与第一载流子功能层之间存在其他间隔结构层,例如发光层。In the present application, when another layer is formed “on” a certain layer, the so-called “on” is a broad concept, which may mean that the formed another layer is adjacent to the certain layer, or that there are other intervening structural layers between the another layer and the certain layer, for example, The first electrode is formed “on” the carrier functional layer. The so-called “on” may mean that the formed first electrode is adjacent to the first carrier functional layer, or may mean that there are other spacing structure layers between the first electrode and the first carrier functional layer, such as a light-emitting layer.
请参考图1,本申请实施方式提供一种发光器件100,其包括第一电极10、与第一电极10相对设置的第二电极20、设置于第一电极10与第二电极20之间的发光层30以及设置于第二电极20与发光层30之间的电子功能层40。电子功能层40包括金属氧化物纳米粒子和聚合物。1 , the embodiment of the present application provides a light-emitting device 100, which includes a first electrode 10, a second electrode 20 disposed opposite to the first electrode 10, a light-emitting layer 30 disposed between the first electrode 10 and the second electrode 20, and an electronic functional layer 40 disposed between the second electrode 20 and the light-emitting layer 30. The electronic functional layer 40 includes metal oxide nanoparticles and a polymer.
本申请通过在包含金属氧化物纳米粒子的电子功能层40中添加聚合物,当金属氧化物纳米粒子和聚合物形成的电子功能层薄膜中出现裂纹时,聚合物能够修复电子功能层40中的裂纹,恢复电子注入和传输功能,从而提升发光效率和器件寿命。The present application adds a polymer to the electronic functional layer 40 containing metal oxide nanoparticles. When cracks appear in the electronic functional layer film formed by the metal oxide nanoparticles and the polymer, the polymer can repair the cracks in the electronic functional layer 40 and restore the electron injection and transmission functions, thereby improving the luminous efficiency and device life.
可选的,第一电极10和第二电极20分别独立选自掺杂金属氧化物颗粒电极、复合电极、石墨烯电极、碳纳米管电极、金属单质电极或合金电极,掺杂金属氧化物颗粒电极的材料选自铟掺杂氧化锡、氟掺杂氧化锡、锑掺杂氧化锡、铝掺杂氧化锌、镓掺杂氧化锌、铟掺杂氧化锌、镁掺杂氧化锌及铝掺杂氧化镁中的一种或多种,复合电极选自AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO2/Ag/TiO2、TiO2/Al/TiO2、ZnS/Ag/ZnS或ZnS/Al/ZnS,金属电极的材料选自Ag、Al、Cu、Au、Mo、Pt、Ca及Ba中的一种或多种。Optionally, the first electrode 10 and the second electrode 20 are independently selected from a doped metal oxide particle electrode, a composite electrode, a graphene electrode, a carbon nanotube electrode, a metal element electrode or an alloy electrode, the material of the doped metal oxide particle electrode is selected from one or more of indium-doped tin oxide, fluorine-doped tin oxide, antimony-doped tin oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, indium-doped zinc oxide, magnesium-doped zinc oxide and aluminum-doped magnesium oxide, the composite electrode is selected from AZO/Ag/AZO, AZO/Al/AZO, ITO/Ag/ITO, ITO/Al/ITO, ZnO/Ag/ZnO, ZnO/Al/ZnO, TiO2 / Ag/TiO2, TiO2 /Al/ TiO2 , ZnS/Ag/ZnS or ZnS/Al/ZnS, and the material of the metal electrode is selected from one or more of Ag, Al, Cu, Au, Mo, Pt, Ca and Ba.
可选的,发光层30的材料选自量子点发光材料中的一种或多种,量子点发光材料选自单一结构量子点、核壳结构量子点及钙钛矿型半导体材料中的一种或多种,单一结构量子点的材料、核壳结构量子点的核材料及核壳结构量子点的壳层材料分别选自单一结构量子点选自II-VI族化合物、IV-VI族化合物、III-V族化合物和I-III-VI族化合物中的至少一种,II-VI族化合物选自CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe及HgZnSTe中的至少一种,IV-VI族化合物选自SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe中的至少一种,III-V族化合物选自GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、 GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs及InAlPSb中的至少一种,I-III-VI族化合物选自CuInS2、CuInSe2及AgInS2中的至少一种,钙钛矿型半导体材料选自掺杂或非掺杂的无机钙钛矿型半导体、或有机-无机杂化钙钛矿型半导体,无机钙钛矿型半导体的结构通式为AMX3,其中A为Cs+离子,M为二价金属阳离子,选自Pb2+、Sn2+、Cu2+、Ni2+、Cd2+、Cr2+、Mn2+、Co2+、Fe2+、Ge2+、Yb2+、Eu2+中的至少一种,X为卤素阴离子,选自Cl-、Br-、I-中的至少一种,有机-无机杂化钙钛矿型半导体的结构通式为BMX3,其中B为有机胺阳离子,选自CH3(CH2)n-2NH3 +或[NH3(CH2)nNH3]2+,其中n≥2,M为二价金属阳离子,选自Pb2+、Sn2+、Cu2+、Ni2+、Cd2+、Cr2+、Mn2+、Co2+、Fe2+、Ge2+、Yb2+、Eu2+中的至少一种,X为卤素阴离子,选自Cl-、Br-、I-中的至少一种。具体地,量子点发光材料可以是含Cd的量子点材料,例如,CdSe/CdS、CdZnSe/CdS、CdSe/CdS/ZnS CdZnSe/ZnSe/ZnS等,也可以是非Cd的量子点材料,例如,InP/ZnS、ZnSe/ZnS等。红色、绿色和蓝色量子点材料的光致发光波长分别是615nm-635nm、535nm-555nm、465nm-480nm。Optionally, the material of the light-emitting layer 30 is selected from one or more quantum dot light-emitting materials, the quantum dot light-emitting materials are selected from one or more single-structure quantum dots, core-shell structure quantum dots and perovskite semiconductor materials, the material of the single-structure quantum dots, the core material of the core-shell structure quantum dots and the shell material of the core-shell structure quantum dots are respectively selected from at least one of the single-structure quantum dots selected from II-VI group compounds, IV-VI group compounds, III-V group compounds and I-III-VI group compounds, and the II-VI group compounds are selected from CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, At least one of CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe and HgZnSTe, and the IV-VI group compound is at least one of SnS, SnSe, SnTe, PbS, PbSe, PbTe, SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, SnPbSSe, SnPbSeTe and SnPbSTe , the III-V compound is selected from GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, At least one of GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs and InAlPSb, the I-III-VI group compound is selected from at least one of CuInS 2 , CuInSe 2 and AgInS 2 , the perovskite semiconductor material is selected from doped or undoped inorganic perovskite semiconductors, or organic-inorganic hybrid perovskite semiconductors, the inorganic perovskite semiconductor has a general structural formula of AMX 3 , wherein A is a Cs + ion, M is a divalent metal cation selected from at least one of Pb 2+ , Sn 2+ , Cu 2+ , Ni 2+ , Cd 2+ , Cr 2+ , Mn 2+ , Co 2+ , Fe 2+ , Ge 2+ , Yb 2+ , Eu 2+ , and X is a halogen anion selected from Cl - , Br - , I -, the general structural formula of the organic-inorganic hybrid perovskite semiconductor is BMX 3 , wherein B is an organic amine cation selected from CH 3 (CH 2 ) n-2 NH 3 + or [NH 3 (CH 2 ) n NH 3 ] 2+ , wherein n≥2, M is a divalent metal cation selected from at least one of Pb 2+ , Sn 2+ , Cu 2+ , Ni 2+ , Cd 2+ , Cr 2+ , Mn 2+ , Co 2+ , Fe 2+ , Ge 2+ , Yb 2+ , Eu 2+ , and X is a halogen anion selected from at least one of Cl - , Br - , and I - . Specifically, the quantum dot luminescent material can be a quantum dot material containing Cd, such as CdSe/CdS, CdZnSe/CdS, CdSe/CdS/ZnS CdZnSe/ZnSe/ZnS, etc., or a non-Cd quantum dot material, such as InP/ZnS, ZnSe/ZnS, etc. The photoluminescence wavelengths of the red, green and blue quantum dot materials are 615nm-635nm, 535nm-555nm and 465nm-480nm, respectively.
可选的,聚合物包括脂肪酸与含氮化合物反应的超分子化合物、含脲基嘧啶酮的聚氨酯、含脲基嘧啶酮的聚酰胺、含脲基嘧啶酮的聚丙烯酰胺中的一种或多种。Optionally, the polymer includes one or more of a supramolecular compound of a fatty acid reacted with a nitrogen-containing compound, a polyurethane containing ureidopyrimidone, a polyamide containing ureidopyrimidone, and a polyacrylamide containing ureidopyrimidone.
含脲基嘧啶酮的聚氨酯可以包括/为PU-g-UPy(聚氨酯侧链接枝2-脲-4[1H]-嘧啶酮)。具体结构式如下:
The polyurethane containing ureido-pyrimidone may include/be PU-g-UPy (polyurethane side chain grafted 2-urea-4[1H]-pyrimidone). The specific structural formula is as follows:
超分子通常是指由两种或两种以上分子依靠分子间相互作用结合在一起,组成复杂的、有组织的聚集体,并保持一定的完整性使其具有明确的微观结构和宏观特性。脂肪酸与含氮化合物反应的超分子化合物中,脂肪酸选自乙二酸,丙二酸、1,7-庚二酸、十八烷二酸、丙三酸、2羟基丁三酸、柠檬酸、草酰琥珀酸;含氮化合物选自尿素、三聚氰胺、乙酰胍、苯并胍、氰胺、双氰胺、硫脲、异氰酸酯、嘧啶酮或氨基吡啶中的一种或多种。Supramolecular generally refers to two or more molecules combined by intermolecular interactions to form complex, organized aggregates, and maintain a certain integrity so that it has a clear microstructure and macroscopic characteristics. In the supramolecular compound of the reaction of fatty acids and nitrogen-containing compounds, the fatty acid is selected from oxalic acid, malonic acid, 1,7-pimelic acid, octadecanedioic acid, trisaccharic acid, 2-hydroxybutyric acid, citric acid, oxalosuccinic acid; the nitrogen-containing compound is selected from one or more of urea, melamine, acetylguanidine, benzoguanidine, cyanamide, dicyandiamide, thiourea, isocyanate, pyrimidone or aminopyridine.
金属氧化物纳米粒子表面具有羟基悬挂键,而上述聚合物中具有多重氢键。金属氧化物纳米粒子表面具有大量的羟基悬挂键,有利于与具有多重氢键的聚合物之间形成氢键,增加稳定性。并且,具有多重氢键的聚合物的自修复温度为室温至120℃。例如,将电子 功能层40加热至40℃即可进行裂纹修复,修复方式简单,成本低。可选的,具有羟基悬挂键的聚合物包括但不限于上述列举的聚合物。The metal oxide nanoparticles have hydroxyl dangling bonds on their surface, while the above polymers have multiple hydrogen bonds. The metal oxide nanoparticles have a large number of hydroxyl dangling bonds on their surface, which is conducive to the formation of hydrogen bonds with the polymers with multiple hydrogen bonds, thus increasing stability. In addition, the self-healing temperature of the polymers with multiple hydrogen bonds is from room temperature to 120°C. For example, The cracks can be repaired by heating the functional layer 40 to 40° C. The repair method is simple and low in cost. Optionally, the polymer having hydroxyl dangling bonds includes but is not limited to the polymers listed above.
可以理解,本申请的电子功能层40中的聚合物不限于具有多重氢键的聚合物,其也可以是利用π-π堆叠、主客体作用、金属-配体作用、离子作用等进行裂纹修复的聚合物。It is understood that the polymer in the electronic functional layer 40 of the present application is not limited to polymers with multiple hydrogen bonds, and it can also be a polymer that uses π-π stacking, host-guest interaction, metal-ligand interaction, ion interaction, etc. to repair cracks.
可选的,第一电极10为阳极,第二电极20为阴极,电子功能层40为电子传输层。用于电子功能层40的金属氧化物纳米粒子包括ZnO、Znx1Mgy1O、Znx1Aly1O、Znx2Mgy2Liz2O、SnO2、NiO、TiO2、Znx1Sny1O中的至少一种,其中,x1+y1=1或者x2+y2+z2=1。在本申请的其他实施方式中,电子功能层40也可以为电子注入层。Optionally, the first electrode 10 is an anode, the second electrode 20 is a cathode, and the electronic functional layer 40 is an electron transport layer. The metal oxide nanoparticles used for the electronic functional layer 40 include at least one of ZnO, Zn x1 Mg y1 O, Zn x1 Al y1 O, Zn x2 Mg y2 Li z2 O, SnO 2 , NiO, TiO 2 , and Zn x1 Sn y1 O, wherein x1+y1=1 or x2+y2+z2=1. In other embodiments of the present application, the electronic functional layer 40 may also be an electron injection layer.
可选的,电子功能层40中,金属氧化物纳米粒子的质量百分比为90%-99%,聚合物的质量百分比为1%至10%。例如,电子功能层40中聚合物的质量百分比为1%、2%、3%、4%、5%、6%、7%、8%、9%或10%。当电子功能层40中聚合物的质量百分比大于10%时,聚合物的含量过高,会影响电子注入,导致器件性能下降;当电子功能层40中聚合物的质量百分比小于1%时,聚合物的含量过低起不到自修复效果。Optionally, in the electronic functional layer 40, the mass percentage of the metal oxide nanoparticles is 90%-99%, and the mass percentage of the polymer is 1% to 10%. For example, the mass percentage of the polymer in the electronic functional layer 40 is 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9% or 10%. When the mass percentage of the polymer in the electronic functional layer 40 is greater than 10%, the content of the polymer is too high, which will affect the electron injection and cause the device performance to decrease; when the mass percentage of the polymer in the electronic functional layer 40 is less than 1%, the content of the polymer is too low to achieve the self-repairing effect.
具体的,电子功能层40中聚合物的质量百分比为3%至7%。例如,电子功能层40中聚合物的质量百分比为3%、4%、5%、6%或7%。Specifically, the mass percentage of the polymer in the electronic functional layer 40 is 3% to 7%. For example, the mass percentage of the polymer in the electronic functional layer 40 is 3%, 4%, 5%, 6% or 7%.
更具体的,电子功能层40中聚合物的质量百分比为4%至6%。例如,电子功能层40中聚合物的质量百分比为4%、5%或6%。More specifically, the mass percentage of the polymer in the electronic functional layer 40 is 4% to 6%. For example, the mass percentage of the polymer in the electronic functional layer 40 is 4%, 5% or 6%.
在一些实施方式中,金属氧化物纳米粒子的平均粒径为3纳米至15纳米。例如,金属氧化物纳米粒子的平均粒径为3纳米、4纳米、5纳米、6纳米、7纳米、8纳米、9纳米、10纳米、11纳米、12纳米、13纳米、14纳米或者15纳米。当金属氧化物纳米粒子的平均粒径过小时,纳米粒子表面缺陷增加,会增加量子点发光淬灭;同时材料制备时尺寸均匀性难以控制。当金属氧化物纳米粒子的平均粒径过大,纳米粒子的溶剂分散难度增加,容易团聚,影响成膜均匀性。In some embodiments, the average particle size of the metal oxide nanoparticles is 3 nanometers to 15 nanometers. For example, the average particle size of the metal oxide nanoparticles is 3 nanometers, 4 nanometers, 5 nanometers, 6 nanometers, 7 nanometers, 8 nanometers, 9 nanometers, 10 nanometers, 11 nanometers, 12 nanometers, 13 nanometers, 14 nanometers or 15 nanometers. When the average particle size of the metal oxide nanoparticles is too small, the surface defects of the nanoparticles increase, which will increase the luminescence quenching of the quantum dots; at the same time, the size uniformity is difficult to control during material preparation. When the average particle size of the metal oxide nanoparticles is too large, the difficulty of solvent dispersion of the nanoparticles increases, and they are easy to agglomerate, affecting the uniformity of film formation.
发光器件100还包括空穴传输层50和空穴注入层60。空穴传输层50设置于第一电极10与发光层30之间,空穴注入层60设置于空穴传输层50与第一电极10之间。The light emitting device 100 further includes a hole transport layer 50 and a hole injection layer 60. The hole transport layer 50 is disposed between the first electrode 10 and the light emitting layer 30, and the hole injection layer 60 is disposed between the hole transport layer 50 and the first electrode 10.
空穴传输层40的材料可以选自但不限于聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)、2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(spiro-omeTAD)、4,4'-环己基二[N,N-二(4-甲基苯基)苯胺](TAPC)、N,N′-双(1-奈基)-N,N′-二苯基-1,1′-二苯基-4,4′-二胺(NPB)、4,4'-双(N-咔唑)-1,1'-联苯(CBP)、聚[(9,9-二辛基芴基-2,7-二基)-co-(4,4'-(N-(对丁基苯基)) 二苯胺)](TFB)、聚(9-乙烯基咔唑)(PVK)、聚三苯胺(Poly-TPD)及4,4',4”-三(咔唑-9-基)三苯胺(TCTA)、MoS2、MoS3、MoSe2、MoSe3、及WS3中的一种或多种。The material of the hole transport layer 40 may be selected from, but is not limited to, poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA), 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (spiro-omeTAD), 4,4'-cyclohexylbis[N,N-di(4-methylphenyl)aniline] (TAPC), N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-diphenyl-4,4'-diamine (NPB), 4,4'-bis(N-carbazole)-1,1'-biphenyl (CBP), poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(p-butylphenyl))-1,1'-biphenyl)-2,4'-diamine] (PTAA ... One or more of triphenylamine (TFB), poly(9-vinylcarbazole) (PVK), polytriphenylamine (Poly-TPD), 4,4',4"-tri(carbazol-9-yl)triphenylamine (TCTA), MoS2 , MoS3 , MoSe2 , MoSe3 , and WS3 .
空穴注入层50的材料可以选自但不限于2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲(HAT-CN)、PEDOT:PSS、PEDOT:PSS掺有s-MoO3的衍生物(PEDOT:PSS:s-MoO3)、4,4',4'-三(N-3-甲基苯基-N-苯基氨基)三苯胺(m-MTDATA)、四氟四氰基醌二甲烷(F4-TCQN)、及酞菁铜中的一种或多种。The material of the hole injection layer 50 can be selected from, but not limited to, one or more of 2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaazatriphenylene (HAT-CN), PEDOT:PSS, a derivative of PEDOT:PSS doped with s-MoO 3 (PEDOT:PSS:s-MoO 3 ), 4,4',4'-tris(N-3-methylphenyl-N-phenylamino)triphenylamine (m-MTDATA), tetrafluorotetracyanoquinodimethane (F4-TCQN), and copper phthalocyanine.
在一些实施方式中,发光器件为柔性发光器件。由于量子点发光层和电子传输层同为金属氧化物纳米粒子,两层无机纳米颗粒之间、两层无机纳米颗粒与喷墨打印像素定义层的边缘均存在应力,致使在弯折过程中出现裂纹,影响量子点发光器件在柔性显示中的应用效果。因此,通过在柔性发光器件中使用本申请的电子功能层,能够修复由于柔性发光器件弯折或者折叠产生的裂纹。In some embodiments, the light-emitting device is a flexible light-emitting device. Since the quantum dot light-emitting layer and the electron transport layer are both metal oxide nanoparticles, stress exists between the two layers of inorganic nanoparticles and at the edges of the two layers of inorganic nanoparticles and the inkjet-printed pixel definition layer, which causes cracks to appear during the bending process, affecting the application effect of the quantum dot light-emitting device in the flexible display. Therefore, by using the electronic functional layer of the present application in the flexible light-emitting device, cracks caused by bending or folding the flexible light-emitting device can be repaired.
请参考图2,本申请还提供一种显示装置1,其包括如上所述的发光器件100以及如下制造方法制造出的发光器件。Please refer to FIG. 2 , the present application further provides a display device 1 , which includes the light-emitting device 100 as described above and a light-emitting device manufactured by the following manufacturing method.
请参阅图3,本申请还提供一种发光器件的制造方法,其包括以下步骤:Referring to FIG. 3 , the present application further provides a method for manufacturing a light emitting device, which comprises the following steps:
依次层叠形成第一电极、发光层、电子功能层和第二电极;sequentially stacking a first electrode, a light-emitting layer, an electronic functional layer, and a second electrode;
其中,所述电子功能层是通过以下步骤形成的:Wherein, the electronic functional layer is formed by the following steps:
提供电子功能材料溶液,所述电子功能材料溶液包括金属氧化物纳米粒子、聚合物和溶剂,所述聚合物包括脂肪酸与含氮化合物反应的超分子化合物、含脲基嘧啶酮的聚氨酯、含脲基嘧啶酮的聚酰胺、含脲基嘧啶酮的聚丙烯酰胺中的一种或多种;所述溶剂包括异丙醇、乙二醇、庚醇、乙二醇单甲醚、二乙二醇单丁醚、苯甲酸乙酯、苯甲酸甲酯、二甲基亚砜、N,N-二甲基甲酰胺,N,N-二甲基乙酰胺、四氢呋喃中的一种或多种;利用溶液法形成薄膜并干燥处理,以获得所述电子功能层。An electronic functional material solution is provided, the electronic functional material solution comprising metal oxide nanoparticles, a polymer and a solvent, the polymer comprising one or more of a supramolecular compound of a fatty acid reacted with a nitrogen-containing compound, a polyurethane containing ureidopyrimidone, a polyamide containing ureidopyrimidone, and a polyacrylamide containing ureidopyrimidone; the solvent comprising one or more of isopropanol, ethylene glycol, heptanol, ethylene glycol monomethyl ether, diethylene glycol monobutyl ether, ethyl benzoate, methyl benzoate, dimethyl sulfoxide, N,N-dimethylformamide, N,N-dimethylacetamide, and tetrahydrofuran; a thin film is formed by a solution method and dried to obtain the electronic functional layer.
请参阅图4,本申请还提供另外一种发光器件的制造方法,其包括以下步骤:Referring to FIG. 4 , the present application also provides another method for manufacturing a light emitting device, which comprises the following steps:
依次层叠形成第二电极、电子功能层、发光层和第一电极;The second electrode, the electronic functional layer, the light-emitting layer and the first electrode are sequentially stacked;
其中,所述电子功能层是通过以下步骤形成的:Wherein, the electronic functional layer is formed by the following steps:
提供电子功能材料溶液,所述电子功能材料溶液包括金属氧化物纳米粒子、聚合物和溶剂;其中,所述聚合物包括脂肪酸与含氮化合物反应的超分子化合物、含脲基嘧啶酮的聚氨酯、含脲基嘧啶酮的聚酰胺、含脲基嘧啶酮的聚丙烯酰胺中的一种或多种;所述溶剂包括异丙醇、乙二醇、庚醇、乙二醇单甲醚、二乙二醇单丁醚、苯甲酸乙酯、苯甲酸甲酯、 二甲基亚砜、N,N-二甲基甲酰胺,N,N-二甲基乙酰胺、四氢呋喃中的一种或多种;利用溶液法形成薄膜并干燥处理,以获得所述电子功能层。An electronic functional material solution is provided, wherein the electronic functional material solution comprises metal oxide nanoparticles, a polymer and a solvent; wherein the polymer comprises one or more of a supramolecular compound of a fatty acid reacted with a nitrogen-containing compound, a polyurethane containing ureidopyrimidone, a polyamide containing ureidopyrimidone, and a polyacrylamide containing ureidopyrimidone; and the solvent comprises isopropanol, ethylene glycol, heptyl alcohol, ethylene glycol monomethyl ether, diethylene glycol monobutyl ether, ethyl benzoate, methyl benzoate, One or more of dimethyl sulfoxide, N,N-dimethylformamide, N,N-dimethylacetamide and tetrahydrofuran; forming a thin film by a solution method and drying the thin film to obtain the electronic functional layer.
在上述形成电子功能层的步骤中,可选的,聚合物包括脂肪酸与含氮化合物反应的超分子化合物、含脲基嘧啶酮的聚氨酯、含脲基嘧啶酮的聚酰胺、含脲基嘧啶酮的聚丙烯酰胺中的一种或多种。In the above step of forming the electronic functional layer, optionally, the polymer includes one or more of a supramolecular compound of a fatty acid reacted with a nitrogen-containing compound, a polyurethane containing ureidopyrimidone, a polyamide containing ureidopyrimidone, and a polyacrylamide containing ureidopyrimidone.
含脲基嘧啶酮的聚氨酯可以包括/为PU-g-UPy(聚氨酯侧链接枝2-脲-4[1H]-嘧啶酮)。The ureidopyrimidone-containing polyurethane may include/be PU-g-UPy (polyurethane side chain grafted 2-urea-4[1H]-pyrimidone).
超分子通常是指由两种或两种以上分子依靠分子间相互作用结合在一起,组成复杂的、有组织的聚集体,并保持一定的完整性使其具有明确的微观结构和宏观特性。脂肪酸与含氮化合物反应的超分子化合物中,脂肪酸选自乙二酸,丙二酸、1,7-庚二酸、十八烷二酸、丙三酸、2羟基丁三酸、柠檬酸、草酰琥珀酸;含氮化合物选自尿素、三聚氰胺、乙酰胍、苯并胍、氰胺、双氰胺、硫脲、异氰酸酯、嘧啶酮或氨基吡啶中的一种或多种。Supramolecular generally refers to two or more molecules combined by intermolecular interactions to form complex, organized aggregates, and maintain a certain integrity so that it has a clear microstructure and macroscopic characteristics. In the supramolecular compound of the reaction of fatty acids and nitrogen-containing compounds, the fatty acid is selected from oxalic acid, malonic acid, 1,7-pimelic acid, octadecanedioic acid, trisaccharic acid, 2-hydroxybutyric acid, citric acid, oxalosuccinic acid; the nitrogen-containing compound is selected from one or more of urea, melamine, acetylguanidine, benzoguanidine, cyanamide, dicyandiamide, thiourea, isocyanate, pyrimidone or aminopyridine.
金属氧化物纳米粒子表面具有羟基悬挂键,聚合物中具有多重氢键。金属氧化物纳米粒子表面具有大量的羟基悬挂键,有利于与具有多重氢键的聚合物之间形成氢键,增加稳定性。并且,具有多重氢键的聚合物的自修复温度为室温至120℃。例如,将电子功能层40加热至40℃即可进行裂纹修复,修复方式简单,成本低。可选的,具有羟基悬挂键的聚合物包括但不限于上述列举的聚合物。The metal oxide nanoparticles have hydroxyl dangling bonds on their surface and multiple hydrogen bonds in the polymer. The metal oxide nanoparticles have a large number of hydroxyl dangling bonds on their surface, which is conducive to the formation of hydrogen bonds with the polymers having multiple hydrogen bonds, thereby increasing stability. Moreover, the self-healing temperature of the polymers having multiple hydrogen bonds is from room temperature to 120°C. For example, cracks can be repaired by heating the electronic functional layer 40 to 40°C, and the repair method is simple and low in cost. Optionally, polymers having hydroxyl dangling bonds include but are not limited to the polymers listed above.
可以理解,本申请的电子功能层40中的聚合物不限于具有多重氢键的聚合物,其也可以是利用π-π堆叠、主客体作用、金属-配体作用、离子作用等进行裂纹修复的聚合物。It is understood that the polymer in the electronic functional layer 40 of the present application is not limited to polymers with multiple hydrogen bonds, and it can also be a polymer that uses π-π stacking, host-guest interaction, metal-ligand interaction, ion interaction, etc. to repair cracks.
可选的,电子功能层为电子传输层。用于电子功能层的金属氧化物纳米粒子包括ZnO、Znx1Mgy1O、Znx1Aly1O、Znx2Mgy2Liz2O、SnO2、NiO、TiO2、Znx1Sny1O中的至少一种,其中,x1+y1=1或者x2+y2+z2=1。在本申请的其他实施方式中,电子功能层也可以为电子注入层。Optionally, the electronic functional layer is an electron transport layer. The metal oxide nanoparticles used for the electronic functional layer include at least one of ZnO, Zn x1 Mg y1 O, Zn x1 Al y1 O, Zn x2 Mg y2 Li z2 O, SnO 2 , NiO, TiO 2 , and Zn x1 Sn y1 O, wherein x1+y1=1 or x2+y2+z2=1. In other embodiments of the present application, the electronic functional layer may also be an electron injection layer.
可选的,电子功能层40中,金属氧化物纳米粒子的质量百分比为90%-99%,聚合物的质量百分比为1%至10%。例如,电子功能层40中聚合物的质量百分比为1%、2%、3%、4%、5%、6%、7%、8%、9%或10%。当电子功能层40中聚合物的质量百分比大于10%时,聚合物的含量过高,会影响电子注入,导致器件性能下降;当电子功能层40中聚合物的质量百分比小于1%时,聚合物的含量过低起不到自修复效果。Optionally, in the electronic functional layer 40, the mass percentage of the metal oxide nanoparticles is 90%-99%, and the mass percentage of the polymer is 1% to 10%. For example, the mass percentage of the polymer in the electronic functional layer 40 is 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9% or 10%. When the mass percentage of the polymer in the electronic functional layer 40 is greater than 10%, the content of the polymer is too high, which will affect the electron injection and cause the device performance to decrease; when the mass percentage of the polymer in the electronic functional layer 40 is less than 1%, the content of the polymer is too low to achieve the self-repairing effect.
具体的,电子功能层40中聚合物的质量百分比为3%至7%。例如,电子功能层40中聚合物的质量百分比为3%、4%、5%、6%或7%。 Specifically, the mass percentage of the polymer in the electronic functional layer 40 is 3% to 7%. For example, the mass percentage of the polymer in the electronic functional layer 40 is 3%, 4%, 5%, 6% or 7%.
更具体的,电子功能层40中聚合物的质量百分比为4%至6%。例如,电子功能层40中聚合物的质量百分比为4%、5%或6%。More specifically, the mass percentage of the polymer in the electronic functional layer 40 is 4% to 6%. For example, the mass percentage of the polymer in the electronic functional layer 40 is 4%, 5% or 6%.
在一些实施方式中,金属氧化物纳米粒子的平均粒径为3纳米至15纳米。例如,金属氧化物纳米粒子的平均粒径为3纳米、4纳米、5纳米、6纳米、7纳米、8纳米、9纳米、10纳米、11纳米、12纳米、13纳米、14纳米或者15纳米。当金属氧化物纳米粒子的平均粒径过小时,纳米粒子表面缺陷增加,会增加量子点发光淬灭;同时材料制备时尺寸均匀性难以控制。当金属氧化物纳米粒子的平均粒径过过大,纳米粒子的溶剂分散难度增加,容易团聚,影响成膜均匀性。In some embodiments, the average particle size of the metal oxide nanoparticles is 3 nanometers to 15 nanometers. For example, the average particle size of the metal oxide nanoparticles is 3 nanometers, 4 nanometers, 5 nanometers, 6 nanometers, 7 nanometers, 8 nanometers, 9 nanometers, 10 nanometers, 11 nanometers, 12 nanometers, 13 nanometers, 14 nanometers or 15 nanometers. When the average particle size of the metal oxide nanoparticles is too small, the surface defects of the nanoparticles increase, which will increase the luminescence quenching of the quantum dots; at the same time, the size uniformity is difficult to control during material preparation. When the average particle size of the metal oxide nanoparticles is too large, the difficulty of solvent dispersion of the nanoparticles increases, and they are easy to agglomerate, affecting the uniformity of film formation.
形成电子功能层的步骤中使用的溶液选自异丙醇、乙二醇、庚醇、乙二醇单甲醚、二乙二醇单丁醚、苯甲酸乙酯、苯甲酸甲酯、二甲基亚砜、N,N-二甲基甲酰胺,N,N-二甲基乙酰胺、四氢呋喃中的至少一种。The solution used in the step of forming the electronic functional layer is selected from at least one of isopropyl alcohol, ethylene glycol, heptanol, ethylene glycol monomethyl ether, diethylene glycol monobutyl ether, ethyl benzoate, methyl benzoate, dimethyl sulfoxide, N,N-dimethylformamide, N,N-dimethylacetamide and tetrahydrofuran.
电子功能层可以通过将聚合物和金属氧化物纳米粒子按照比例共混,通过溶液法打印到像素内,干燥成膜制得。溶液法可以为旋涂法、印刷法、喷墨打印法、刮涂法、打印法、浸渍提拉法、浸泡法、喷涂法、滚涂法、浇铸法、狭缝式涂布法及条状涂布法等。The electronic functional layer can be prepared by mixing polymer and metal oxide nanoparticles in proportion, printing them into pixels by solution method, and drying them into films. The solution method can be spin coating, printing, inkjet printing, blade coating, printing, dip-coating, immersion, spraying, roll coating, casting, slit coating, strip coating, etc.
可以理解,本申请的发光器件的制造方法在电子功能层形成之后,还包括形成其他膜层的步骤。It can be understood that the manufacturing method of the light-emitting device of the present application further includes the step of forming other film layers after the electronic functional layer is formed.
通过本申请的制造方法制造出的发光器件在室温至120℃下就可以进行自修复。The light-emitting device manufactured by the manufacturing method of the present application can be self-repaired at room temperature to 120°C.
本申请还提供一种显示装置,其包括如上任一项所述的发光器件或如上任一项所述发光器件的制造方法制备的发光器件。The present application also provides a display device, which includes a light-emitting device as described in any one of the above items or a light-emitting device prepared by the method for manufacturing a light-emitting device as described in any one of the above items.
下面通过具体实施例来对本申请进行具体说明,以下实施例仅是本申请的部分实施例,不是对本申请的限定。The present application is described in detail below through specific embodiments. The following embodiments are only partial embodiments of the present application and are not limitations of the present application.
实施例1Example 1
提供ITO作为第一电极,第一电极厚度为100nm。在第一电极上通过喷墨打印制备空穴注入层,空穴注入材料包括PEDOT:PSS,烘烤温度为150℃,厚度为40nm。在空穴注入层上制备空穴传输层,材料为TFB,厚度为40nm。在空穴传输层上制备量子点发光层,量子点材料为CdZnSe/ZnSe/ZnS,波长是630nm,厚度为50nm。在量子点发光层上制备电子传输层,电子传输层是金属氧化物纳米颗粒和聚合物形成的薄膜,金属氧化物纳米颗粒是ZnxMgyO,其中,x是0.9,y是0.1。聚合物是由1,2,4-环己烷三羧酸(CAS No.:76784-95-7)和尿素(CAS No.:57-13-6)合成的超分子化合物,1,2,4-环己烷三羧酸与尿素的摩尔比为 1:1.5,超分子化合物的分子量为4650。电子功能层中聚合物的质量百分比是5%,烘烤温度是80℃,厚度为40nm。在电子传输层上蒸镀第二电极,材料是Ag,第二电极的厚度为100nm,得到发光器件。ITO is provided as a first electrode, and the thickness of the first electrode is 100 nm. A hole injection layer is prepared on the first electrode by inkjet printing, and the hole injection material includes PEDOT:PSS, the baking temperature is 150°C, and the thickness is 40 nm. A hole transport layer is prepared on the hole injection layer, and the material is TFB, and the thickness is 40 nm. A quantum dot light-emitting layer is prepared on the hole transport layer, and the quantum dot material is CdZnSe/ZnSe/ZnS, the wavelength is 630 nm, and the thickness is 50 nm. An electron transport layer is prepared on the quantum dot light-emitting layer, and the electron transport layer is a thin film formed by metal oxide nanoparticles and polymers, and the metal oxide nanoparticles are Zn x Mg y O, wherein x is 0.9 and y is 0.1. The polymer is a supramolecular compound synthesized from 1,2,4-cyclohexanetricarboxylic acid (CAS No.: 76784-95-7) and urea (CAS No.: 57-13-6), and the molar ratio of 1,2,4-cyclohexanetricarboxylic acid to urea is 1:1.5, the molecular weight of the supramolecular compound is 4650. The mass percentage of the polymer in the electronic functional layer is 5%, the baking temperature is 80°C, and the thickness is 40nm. The second electrode is evaporated on the electron transport layer, the material is Ag, and the thickness of the second electrode is 100nm to obtain a light-emitting device.
将实施例1的发光器件以弯折半径20mm弯折100次以后,对发光器件加热进行自修复,自修复温度为40℃,通过电子显微镜观察裂纹情况,如图5所示。After the light emitting device of Example 1 was bent 100 times with a bending radius of 20 mm, the light emitting device was heated for self-repair at a self-repair temperature of 40° C. The crack condition was observed through an electron microscope, as shown in FIG5 .
测试器件电流效率和器件寿命。采用弗士达FPD光学特性测量设备,通过LabView控制QE PRO光谱仪、Keithley 2400、Keithley 6485搭建的效率测试系统,测量并计算得到电流效率。采用广州新视界公司定制的128路寿命测试系统对寿命T95@1000nit进行测试,系统架构为2mA恒流源驱动发光器件,光电二极管探测器和测试系统测试发光器件的亮度(光电流)变化,亮度计测试校准电致发光器件的亮度(光电流),得到发光器件的初始亮度衰减至95%所经历的时间,将发光器件的初始亮度衰减至95%所经历的时间换算至1000nit下的老化时间,得到寿命T95@1000nit。Test device current efficiency and device life. Use FPD optical property measurement equipment from Foster to control the efficiency test system built by QE PRO spectrometer, Keithley 2400, and Keithley 6485 through LabView to measure and calculate the current efficiency. Use the 128-channel life test system customized by Guangzhou New Vision Company to test the life T95@1000nit. The system architecture is a 2mA constant current source to drive the light-emitting device. The photodiode detector and test system test the brightness (photocurrent) change of the light-emitting device. The brightness meter tests and calibrates the brightness (photocurrent) of the electroluminescent device to obtain the time it takes for the initial brightness of the light-emitting device to decay to 95%. The time it takes for the initial brightness of the light-emitting device to decay to 95% is converted to the aging time under 1000nit to obtain the life T95@1000nit.
器件电流效率为15cd/A,器件寿命(1000nits下衰减5%)为6000h。The device current efficiency is 15 cd/A, and the device life (5% attenuation at 1000 nits) is 6000 h.
实施例2Example 2
本实施例与实施例1基本相同,区别在于,本实施例中电子功能层中聚合物的质量百分比是10%。This embodiment is substantially the same as Embodiment 1, except that the mass percentage of the polymer in the electronic functional layer in this embodiment is 10%.
器件电流效率为12cd/A,器件寿命(1000nits下衰减5%)5200h。The device current efficiency is 12cd/A, and the device life (5% attenuation at 1000nits) is 5200h.
实施例3Example 3
本实施例与实施例1基本相同,区别在于,本实施例中电子功能层中聚合物的质量百分比是1%。This embodiment is substantially the same as Embodiment 1, except that the mass percentage of the polymer in the electronic functional layer in this embodiment is 1%.
器件电流效率为13cd/A,器件寿命(1000nits下衰减5%)4700h。The device current efficiency is 13cd/A, and the device life (5% attenuation at 1000nits) is 4700h.
实施例4Example 4
本实施例与实施例1基本相同,区别在于,本实施例中电子功能层中聚合物的质量百分比是3%。This embodiment is substantially the same as Embodiment 1, except that the mass percentage of the polymer in the electronic functional layer in this embodiment is 3%.
器件电流效率为14cd/A,器件寿命(1000nits下衰减5%)5100h。The device current efficiency is 14 cd/A, and the device life (5% attenuation at 1000 nits) is 5100 h.
实施例5Example 5
本实施例与实施例1基本相同,区别在于,本实施例中电子功能层中聚合物的质量百分比是4%。This embodiment is substantially the same as Embodiment 1, except that the mass percentage of the polymer in the electronic functional layer in this embodiment is 4%.
器件电流效率为14.5cd/A,器件寿命(1000nits下衰减5%)5600h。 The device current efficiency is 14.5 cd/A, and the device life (5% attenuation at 1000 nits) is 5600 h.
实施例6Example 6
本实施例与实施例1基本相同,区别在于,本实施例中电子功能层中聚合物的质量百分比是6%。This embodiment is substantially the same as Embodiment 1, except that the mass percentage of the polymer in the electronic functional layer in this embodiment is 6%.
器件电流效率为14cd/A,器件寿命(1000nits下衰减5%)5700h。The device current efficiency is 14 cd/A, and the device life (5% attenuation at 1000 nits) is 5700 h.
实施例7Example 7
本实施例与实施例1基本相同,区别在于,本实施例中电子功能层中聚合物的质量百分比是7%。This embodiment is substantially the same as Embodiment 1, except that the mass percentage of the polymer in the electronic functional layer in this embodiment is 7%.
器件电流效率为13.5cd/A,器件寿命(1000nits下衰减5%)5400h。The device current efficiency is 13.5 cd/A, and the device life (5% attenuation at 1000 nits) is 5400 h.
实施例8Example 8
本实施例与实施例1基本相同,区别在于,本实施例中聚合物为脲基嘧啶酮的聚氨酯,具体地,聚合物为在聚氨酯聚合物中引入摩尔比5%的2-脲基-4-嘧啶酮(CAS No.:108-53-2)合成的聚合物。This embodiment is basically the same as Embodiment 1, except that the polymer in this embodiment is a polyurethane of ureidopyrimidone. Specifically, the polymer is a polymer synthesized by introducing 5 molar % of 2-ureido-4-pyrimidone (CAS No.: 108-53-2) into a polyurethane polymer.
器件电流效率为15.5cd/A,器件寿命(1000nits下衰减5%)5900h。The device current efficiency is 15.5 cd/A, and the device life (5% attenuation at 1000 nits) is 5900 h.
对比例1Comparative Example 1
对比例与实施例1基本相同,区别在于,对比例1中的电子传输层仅包含无机纳米颗粒,不包含聚合物。The comparative example is substantially the same as Example 1, except that the electron transport layer in Comparative Example 1 contains only inorganic nanoparticles but no polymer.
将对比例的发光器件以弯折半径20mm弯折100次以后,也对发光器件进行加热,通过电子显微镜观察裂纹情况,如图6所示。After the light emitting device of the comparative example was bent 100 times with a bending radius of 20 mm, the light emitting device was also heated, and crack conditions were observed through an electron microscope, as shown in FIG6 .
器件电流效率为10cd/A,器件寿命(1000nits下衰减5%)4000h。The device current efficiency is 10 cd/A, and the device life (5% attenuation at 1000 nits) is 4000 h.
对比例2Comparative Example 2
对比例与实施例1基本相同,区别在于,本实施例中电子功能层中聚合物的质量百分比是15%。The comparative example is substantially the same as Example 1, except that the mass percentage of the polymer in the electronic functional layer in this example is 15%.
器件电流效率为6cd/A,器件寿命(1000nits下衰减5%)1200h。The device current efficiency is 6 cd/A, and the device life (5% attenuation at 1000 nits) is 1200 h.
从图5和图6的对比可以看出,具有添加了聚合物的电子功能层在40℃下进行自修复,电子显微镜中观察不到明显裂纹。而没有添加聚合物的电子功能层在电子显微镜中观察到明显裂纹。From the comparison between Figure 5 and Figure 6, it can be seen that the electronic functional layer with added polymer undergoes self-repair at 40°C, and no obvious cracks are observed under an electron microscope. However, obvious cracks are observed under an electron microscope in the electronic functional layer without added polymer.
另外,从实施例1至7与对比例1和2的比较可以看出,具有添加了聚合物的电子功能层的器件电流效率更高,且器件寿命大大提升。当聚合物的质量百分比为1%时,电流效率和器件寿命稍有提升,但不明显。随着聚合物的质量百分比提升至6%,电流效率和器件寿命 有所提升,但随着聚合物的质量百分比提升至7%以上,电流效率和器件寿命反而有所下降。而当聚合物的质量比提升至10%以上,例如15%时,电流效率和器件寿命反而,剧烈下降。推测是因为聚合物的比例过高,阻碍了载流子传输。In addition, from the comparison between Examples 1 to 7 and Comparative Examples 1 and 2, it can be seen that the device with the electronic functional layer added with polymer has higher current efficiency and greatly improves the device life. When the mass percentage of the polymer is 1%, the current efficiency and device life are slightly improved, but not significantly. As the mass percentage of the polymer increases to 6%, the current efficiency and device life are However, as the mass percentage of polymer increases to more than 7%, the current efficiency and device life decrease. When the mass ratio of polymer increases to more than 10%, for example, 15%, the current efficiency and device life decrease sharply. It is speculated that this is because the proportion of polymer is too high, which hinders carrier transmission.
以上对本申请实施方式提供了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施方式的说明只是用于帮助理解本申请。同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。 The above provides a detailed introduction to the implementation methods of the present application. Specific examples are used herein to illustrate the principles and implementation methods of the present application. The above description of the implementation methods is only used to help understand the present application. At the same time, for those skilled in the art, according to the ideas of the present application, there will be changes in the specific implementation methods and application scopes. In summary, the content of this specification should not be understood as limiting the present application.

Claims (20)

  1. 一种发光器件,其中,包括:A light emitting device, comprising:
    第一电极;a first electrode;
    第二电极,与所述第一电极相对设置;a second electrode, arranged opposite to the first electrode;
    发光层,设置于所述第一电极与所述第二电极之间;以及a light-emitting layer, disposed between the first electrode and the second electrode; and
    电子功能层,设置于所述第二电极与所述发光层之间;An electronic functional layer, disposed between the second electrode and the light-emitting layer;
    其中,所述电子功能层包括金属氧化物纳米粒子和聚合物,所述聚合物包括脂肪酸与含氮化合物反应的超分子化合物、含脲基嘧啶酮的聚氨酯、含脲基嘧啶酮的聚酰胺、含脲基嘧啶酮的聚丙烯酰胺中的一种或多种。The electronic functional layer comprises metal oxide nanoparticles and polymers, wherein the polymer comprises one or more of supramolecular compounds of fatty acids reacting with nitrogen-containing compounds, polyurethanes containing ureidopyrimidone, polyamides containing ureidopyrimidone, and polyacrylamides containing ureidopyrimidone.
  2. 如权利要求1所述的发光器件,其中,所述含脲基嘧啶酮的聚氨酯包括聚氨酯侧链接枝2-脲-4[1H]-嘧啶酮。The light-emitting device according to claim 1, wherein the polyurethane containing ureido-pyrimidone comprises polyurethane side chain grafted 2-urea-4[1H]-pyrimidone.
  3. 如权利要求1所述的发光器件,其中,所述脂肪酸与含氮化合物反应的超分子化合物中,所述脂肪酸选自乙二酸,丙二酸、1,7-庚二酸、十八烷二酸、丙三酸、2羟基丁三酸、柠檬酸、草酰琥珀酸;所述含氮化合物选自尿素、三聚氰胺、乙酰胍、苯并胍、氰胺、双氰胺、硫脲、异氰酸酯、嘧啶酮或氨基吡啶中的一种或多种。The light-emitting device according to claim 1, wherein in the supramolecular compound of the reaction of the fatty acid and the nitrogen-containing compound, the fatty acid is selected from oxalic acid, malonic acid, 1,7-pimelic acid, octadecanedioic acid, triacylglycerol, 2-hydroxybutyric acid, citric acid, oxalosuccinic acid; and the nitrogen-containing compound is selected from one or more of urea, melamine, acetylguanidine, benzoguanidine, cyanamide, dicyandiamide, thiourea, isocyanate, pyrimidone or aminopyridine.
  4. 如权利要求1~3任一项所述的发光器件,其中,所述金属氧化物纳米粒子表面具有羟基悬挂键。The light-emitting device according to any one of claims 1 to 3, wherein the surface of the metal oxide nanoparticles has hydroxyl dangling bonds.
  5. 如权利要求1~3任一项所述的发光器件,其中,所述聚合物具有多重氢键。The light emitting device according to any one of claims 1 to 3, wherein the polymer has multiple hydrogen bonds.
  6. 如权利要求1所述的发光器件,其中,所述金属氧化物纳米粒子包括ZnO、Znx1Mgy1O、Znx1Aly1O、Znx2Mgy2Liz2O、SnO2、NiO、TiO2、Znx1Sny1O中的至少一种,其中,x1+y1=1或者x2+y2+z2=1。The light emitting device according to claim 1 , wherein the metal oxide nanoparticles include at least one of ZnO, Znx1Mgy1O , Znx1Aly1O , Znx2Mgy2Liz2O, SnO2, NiO, TiO2, and Znx1Sny1O , wherein x1 + y1 =1 or x2 + y2 +z2=1.
  7. 如权利要求1所述的发光器件,其中,所述电子功能层中,所述金属氧化物纳米粒子的质量百分比为90%-99%,所述聚合物的质量百分比为1%至10%。The light-emitting device according to claim 1, wherein in the electronic functional layer, the mass percentage of the metal oxide nanoparticles is 90%-99%, and the mass percentage of the polymer is 1% to 10%.
  8. 如权利要求1所述的发光器件,其中,所述电子功能层中,所述聚合物的质量百分比为3%至7%。The light-emitting device according to claim 1, wherein the mass percentage of the polymer in the electronic functional layer is 3% to 7%.
  9. 如权利要求1所述的发光器件,其中,所述电子功能层中,所述聚合物的质量百分比为4%至6%。The light-emitting device according to claim 1, wherein the mass percentage of the polymer in the electronic functional layer is 4% to 6%.
  10. 如权利要求1所述的发光器件,其中,所述金属氧化物纳米粒子的平均粒径为3纳米至15纳米。 The light-emitting device according to claim 1, wherein the average particle size of the metal oxide nanoparticles is 3 nanometers to 15 nanometers.
  11. 如权利要求1所述的发光器件,其中,所述第一电极和所述第二电极分别独立选自掺杂金属氧化物颗粒电极、复合电极、石墨烯电极、碳纳米管电极、金属单质电极或合金电极,所述掺杂金属氧化物颗粒电极的材料选自铟掺杂氧化锡、氟掺杂氧化锡、锑掺杂氧化锡、铝掺杂氧化锌、镓掺杂氧化锌、铟掺杂氧化锌、镁掺杂氧化锌及铝掺杂氧化镁中的一种或多种,所述复合电极选自AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO2/Ag/TiO2、TiO2/Al/TiO2、ZnS/Ag/ZnS或ZnS/Al/ZnS,所述金属电极的材料选自Ag、Al、Cu、Au、Mo、Pt、Ca及Ba中的一种或多种;和/或The light-emitting device according to claim 1, wherein the first electrode and the second electrode are independently selected from a doped metal oxide particle electrode, a composite electrode, a graphene electrode, a carbon nanotube electrode, a metal element electrode or an alloy electrode, the material of the doped metal oxide particle electrode is selected from one or more of indium-doped tin oxide, fluorine-doped tin oxide, antimony-doped tin oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, indium-doped zinc oxide, magnesium-doped zinc oxide and aluminum-doped magnesium oxide, the composite electrode is selected from AZO/Ag/AZO, AZO/Al/AZO, ITO/Ag/ITO, ITO/Al/ITO, ZnO/Ag/ZnO, ZnO/Al/ZnO, TiO2 /Ag/ TiO2 , TiO2 /Al/ TiO2 , ZnS/Ag/ZnS or ZnS/Al/ZnS, and the material of the metal electrode is selected from one or more of Ag, Al, Cu, Au, Mo, Pt, Ca and Ba; and/or
    所述发光层的材料选自量子点发光材料,所述量子点发光材料选自单一结构量子点、核壳结构量子点及钙钛矿型半导体材料中的一种或多种,所述单一结构量子点的材料、核壳结构量子点的核材料及核壳结构量子点的壳层材料分别选自所述单一结构量子点选自II-VI族化合物、IV-VI族化合物、III-V族化合物和I-III-VI族化合物中的至少一种,所述II-VI族化合物选自CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe及HgZnSTe中的至少一种,所述IV-VI族化合物选自SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe中的至少一种,所述III-V族化合物选自GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs及InAlPSb中的至少一种,所述I-III-VI族化合物选自CuInS2、CuInSe2及AgInS2中的至少一种,所述钙钛矿型半导体材料选自掺杂或非掺杂的无机钙钛矿型半导体、或有机-无机杂化钙钛矿型半导体,所述无机钙钛矿型半导体的结构通式为AMX3,其中A为Cs+离子,M为二价金属阳离子,选自Pb2+、Sn2+、Cu2+、Ni2+、Cd2+、Cr2+、Mn2+、Co2+、Fe2+、Ge2+、Yb2+、Eu2+中的至少一种,X为卤素阴离子,选自Cl-、Br-、I-中的至少一种,所述有机-无机杂化钙钛矿型半导体的结构通式为BMX3,其中B为有机胺阳离子,选自CH3(CH2)n-2NH3 +或[NH3(CH2)nNH3]2+,其中n≥2,M为二价金属阳离子,选自Pb2+、Sn2+、Cu2+、Ni2+、Cd2+、Cr2+、Mn2+、Co2+、Fe2+、Ge2+、Yb2+、Eu2+中的至少一种,X为卤素阴离子,选自Cl-、Br-、 I-中的至少一种;和/或The material of the light-emitting layer is selected from quantum dot light-emitting materials, and the quantum dot light-emitting materials are selected from one or more of single-structure quantum dots, core-shell quantum dots and perovskite semiconductor materials. The material of the single-structure quantum dots, the core material of the core-shell quantum dots and the shell material of the core-shell quantum dots are respectively selected from at least one of the single-structure quantum dots selected from II-VI compounds, IV-VI compounds, III-V compounds and I-III-VI compounds. The II-VI compounds are selected from CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, At least one of HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe and HgZnSTe, wherein the IV The group VI compound is selected from at least one of SnS, SnSe, SnTe, PbS, PbSe, PbTe, SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, SnPbSSe, SnPbSeTe, and SnPbSTe, and the group III-V compound is selected from at least one of GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, GaNP, GaNAs, GaNSb, Ga At least one of PAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs and InAlPSb, wherein the I-III-VI group compound is selected from CuInS 2 , CuInSe 2 and AgInS 2 , the perovskite semiconductor material is selected from doped or undoped inorganic perovskite semiconductors, or organic-inorganic hybrid perovskite semiconductors, the inorganic perovskite semiconductor has a general structural formula of AMX 3 , wherein A is a Cs + ion, M is a divalent metal cation selected from at least one of Pb 2+ , Sn 2+ , Cu 2+ , Ni 2+ , Cd 2+ , Cr 2+ , Mn 2+ , Co 2+ , Fe 2+ , Ge 2+ , Yb 2+ , and Eu 2+ , X is a halogen anion selected from at least one of Cl - , Br - , and I - , and the organic-inorganic hybrid perovskite semiconductor has a general structural formula of BMX 3 , wherein B is an organic amine cation selected from CH 3 (CH 2 ) n-2 NH 3 + or [NH 3 (CH 2 ) n- 2 NH 3 ] 2+ , wherein n ≥ 2, M is a divalent metal cation selected from at least one of Pb 2+ , Sn 2+ , Cu 2+ , Ni 2+ , Cd 2+ , Cr 2+ , Mn 2+ , Co 2+ , Fe 2+ , Ge 2+ , Yb 2+ , and Eu 2+ , and X is a halogen anion selected from Cl - , Br - , I - at least one; and/or
    发光器件还包括设置在第一电极和发光层之间的空穴传输层和/或空穴注入层;其中,空穴传输层的材料选自PTAA、spiro-omeTAD、TAPC、NPB、CBP、TFB、PVK、Poly-TPD、TCTA、MoS2、MoS3、MoSe2、MoSe3及WS3中的一种或多种;空穴注入层的材料选自HAT-CN、PEDOT:PSS、PEDOT:PSS掺有s-MoO3的衍生物、m-MTDATA、F4-TCQN及酞菁铜中的一种或多种。The light-emitting device also includes a hole transport layer and/or a hole injection layer arranged between the first electrode and the light-emitting layer; wherein the material of the hole transport layer is selected from one or more of PTAA, spiro-omeTAD, TAPC, NPB, CBP, TFB, PVK, Poly-TPD, TCTA, MoS2 , MoS3 , MoSe2 , MoSe3 and WS3 ; the material of the hole injection layer is selected from one or more of HAT-CN, PEDOT:PSS, a derivative of PEDOT:PSS doped with s- MoO3 , m-MTDATA, F4-TCQN and copper phthalocyanine.
  12. 一种发光器件的制造方法,其中,包括以下步骤:A method for manufacturing a light emitting device, comprising the following steps:
    依次层叠形成第一电极、发光层、电子功能层和第二电极;或者,依次层叠形成第二电极、电子功能层、发光层和第一电极;A first electrode, a light-emitting layer, an electronic functional layer, and a second electrode are sequentially stacked to form; or, a second electrode, an electronic functional layer, a light-emitting layer, and a first electrode are sequentially stacked to form;
    其中,所述电子功能层是通过以下步骤形成的:Wherein, the electronic functional layer is formed by the following steps:
    提供电子功能材料溶液,所述电子功能材料溶液包括金属氧化物纳米粒子、聚合物和溶剂;其中,所述聚合物包括脂肪酸与含氮化合物反应的超分子化合物、含脲基嘧啶酮的聚氨酯、含脲基嘧啶酮的聚酰胺、含脲基嘧啶酮的聚丙烯酰胺中的一种或多种一种或多种;Providing an electronic functional material solution, the electronic functional material solution comprising metal oxide nanoparticles, a polymer and a solvent; wherein the polymer comprises one or more of a supramolecular compound of a fatty acid reacted with a nitrogen-containing compound, a polyurethane containing ureidopyrimidone, a polyamide containing ureidopyrimidone, and a polyacrylamide containing ureidopyrimidone;
    利用溶液法形成薄膜并干燥处理,以获得所述电子功能层。A thin film is formed by a solution method and dried to obtain the electronic functional layer.
  13. 如权利要求12所述的制造方法,其中,所述含脲基嘧啶酮的聚氨酯包括聚氨酯侧链接枝2-脲-4[1H]-嘧啶酮;和/或The manufacturing method according to claim 12, wherein the polyurethane containing ureidopyrimidone comprises a polyurethane side chain grafted with 2-urea-4[1H]-pyrimidone; and/or
    所述溶剂包括异丙醇、乙二醇、庚醇、乙二醇单甲醚、二乙二醇单丁醚、苯甲酸乙酯、苯甲酸甲酯、二甲基亚砜、N,N-二甲基甲酰胺,N,N-二甲基乙酰胺、四氢呋喃中的一种或多种;和/或The solvent comprises one or more of isopropanol, ethylene glycol, heptanol, ethylene glycol monomethyl ether, diethylene glycol monobutyl ether, ethyl benzoate, methyl benzoate, dimethyl sulfoxide, N,N-dimethylformamide, N,N-dimethylacetamide, and tetrahydrofuran; and/or
    所述脂肪酸与含氮化合物反应的超分子化合物中,所述脂肪酸选自乙二酸,丙二酸、1,7-庚二酸、十八烷二酸、丙三酸、2羟基丁三酸、柠檬酸、草酰琥珀酸;所述含氮化合物选自尿素、三聚氰胺、乙酰胍、苯并胍、氰胺、双氰胺、硫脲、异氰酸酯、嘧啶酮或氨基吡啶中的一种或多种。In the supramolecular compound formed by the reaction of the fatty acid and the nitrogen-containing compound, the fatty acid is selected from oxalic acid, malonic acid, 1,7-pimelic acid, octadecanedioic acid, triacylglycerol, 2-hydroxybutyric acid, citric acid, and oxalosuccinic acid; and the nitrogen-containing compound is selected from one or more of urea, melamine, acetylguanidine, benzoguanidine, cyanamide, dicyandiamide, thiourea, isocyanate, pyrimidone, or aminopyridine.
  14. 如权利要求12~13任一项所述的制造方法,其中,所述金属氧化物纳米粒子表面具有羟基悬挂键;和/或The production method according to any one of claims 12 to 13, wherein the metal oxide nanoparticles have hydroxyl dangling bonds on their surfaces; and/or
    所述聚合物具有多重氢键。The polymer has multiple hydrogen bonds.
  15. 如权利要求12所述的制造方法,其中,所述金属氧化物纳米粒子包括ZnO、Znx1Mgy1O、Znx1Aly1O、Znx2Mgy2Liz2O、SnO2、NiO、TiO2、Znx1Sny1O中的至少一种,其中,x1+y1=1或者x2+y2+z2=1。 The manufacturing method according to claim 12, wherein the metal oxide nanoparticles include at least one of ZnO, Znx1Mgy1O, Znx1Aly1O, Znx2Mgy2Liz2O, SnO2 , NiO , TiO2 , and Znx1Sny1O , wherein x1 +y1=1 or x2 + y2 +z2=1.
  16. 如权利要求12所述的制造方法,其中,所述电子功能层中,所述金属氧化物纳米粒子的质量百分比为90%-99%,所述聚合物的质量百分比为1%至10%。The manufacturing method according to claim 12, wherein in the electronic functional layer, the mass percentage of the metal oxide nanoparticles is 90%-99%, and the mass percentage of the polymer is 1% to 10%.
  17. 如权利要求12所述的制造方法,其中,所述电子功能层中,所述聚合物的质量百分比为3%至7%。The manufacturing method according to claim 12, wherein the mass percentage of the polymer in the electronic functional layer is 3% to 7%.
  18. 如权利要求12所述的制造方法,其中,所述电子功能层中,所述聚合物的质量百分比为4%至6%。The manufacturing method according to claim 12, wherein the mass percentage of the polymer in the electronic functional layer is 4% to 6%.
  19. 如权利要求12所述的制造方法,其中,所述金属氧化物纳米粒子的平均粒径为3纳米至15纳米。The manufacturing method according to claim 12, wherein the average particle size of the metal oxide nanoparticles is 3 nm to 15 nm.
  20. 一种显示装置,其中,包括如权利要求1至11任一项所述的发光器件,或如权利要求12至19任一项所述发光器件的制造方法制备的发光器件。 A display device, comprising a light-emitting device as claimed in any one of claims 1 to 11, or a light-emitting device manufactured by the method for manufacturing a light-emitting device as claimed in any one of claims 12 to 19.
PCT/CN2023/128816 2022-12-30 2023-10-31 Light-emitting apparatus and manufacturing method therefor, and display device WO2024139692A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211736046.0A CN118284106A (en) 2022-12-30 2022-12-30 Light emitting device, method of manufacturing the same, and display apparatus
CN202211736046.0 2022-12-30

Publications (1)

Publication Number Publication Date
WO2024139692A1 true WO2024139692A1 (en) 2024-07-04

Family

ID=91643705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/128816 WO2024139692A1 (en) 2022-12-30 2023-10-31 Light-emitting apparatus and manufacturing method therefor, and display device

Country Status (2)

Country Link
CN (1) CN118284106A (en)
WO (1) WO2024139692A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017194520A (en) * 2016-04-19 2017-10-26 株式会社半導体エネルギー研究所 Display device
CN110165058A (en) * 2018-03-26 2019-08-23 京东方科技集团股份有限公司 Array substrate and preparation method thereof, restorative procedure, display device
CN111244295A (en) * 2018-11-28 2020-06-05 Tcl集团股份有限公司 Quantum dot light-emitting diode and preparation method thereof
CN113659088A (en) * 2021-08-16 2021-11-16 北京京东方技术开发有限公司 Quantum dot light-emitting diode, preparation method thereof and display device
CN114335365A (en) * 2020-11-18 2022-04-12 广东聚华印刷显示技术有限公司 Core-shell material for electron transmission, preparation method thereof and electroluminescent device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017194520A (en) * 2016-04-19 2017-10-26 株式会社半導体エネルギー研究所 Display device
CN110165058A (en) * 2018-03-26 2019-08-23 京东方科技集团股份有限公司 Array substrate and preparation method thereof, restorative procedure, display device
CN111244295A (en) * 2018-11-28 2020-06-05 Tcl集团股份有限公司 Quantum dot light-emitting diode and preparation method thereof
CN114335365A (en) * 2020-11-18 2022-04-12 广东聚华印刷显示技术有限公司 Core-shell material for electron transmission, preparation method thereof and electroluminescent device
CN113659088A (en) * 2021-08-16 2021-11-16 北京京东方技术开发有限公司 Quantum dot light-emitting diode, preparation method thereof and display device

Also Published As

Publication number Publication date
CN118284106A (en) 2024-07-02

Similar Documents

Publication Publication Date Title
WO2024139692A1 (en) Light-emitting apparatus and manufacturing method therefor, and display device
CN116987298A (en) Thin film, light emitting device and display device
CN113054122B (en) Preparation method of inorganic nano material, inorganic nano material and light-emitting diode
WO2024120060A1 (en) Composite material and preparation method therefor, and light-emitting device and preparation method therefor
WO2024067203A1 (en) Composite material, photoelectric device, and preparation method therefor
US20230023840A1 (en) Quantum dot film, method for preparing the same, and quantum dot light emitting diode
WO2024139449A1 (en) Core-shell quantum dot and preparation method therefor, and quantum-dot electroluminescent device
CN113801470B (en) Preparation method of composite material and light-emitting diode
WO2024093747A1 (en) Composite material, preparation method for the composite material, and photoelectric device containing the composite material
WO2024139580A1 (en) Composite material and preparation method therefor, and manufacturing method for light-emitting device
CN117186871B (en) Composite material, film, light-emitting device, preparation method of light-emitting device, mini-LED backlight module and display device
CN113809248B (en) Composite material, preparation method thereof and quantum dot light emitting diode
WO2024109341A1 (en) Composite electrode, manufacturing method therefor, and light-emitting component
WO2024139714A1 (en) Preparation method for doped metal oxide, and light-emitting device containing doped metal oxide
WO2023082967A1 (en) Quantum dot film, and quantum dot light-emitting diode and preparation method therefor
WO2024139475A1 (en) Quantum dot, light-emitting module, and quantum dot synthesizing method
WO2024061102A1 (en) Composite material, composition and light-emitting diode
WO2023078138A1 (en) Photoelectric device and preparation method therefor, and display apparatus
WO2024114056A1 (en) Composite material and preparation method therefor, and light-emitting device
WO2024131279A1 (en) Light-emitting device and display apparatus
CN118198214A (en) Light emitting device and display apparatus
CN118256248A (en) Composite material, preparation method thereof, light-emitting device and display device
CN118265338A (en) Composite material, preparation method thereof and light-emitting device
CN117651435A (en) Photoelectric device, preparation method thereof and display device
CN118284105A (en) Composite material, preparation method thereof, light-emitting device and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23909625

Country of ref document: EP

Kind code of ref document: A1