WO2024138683A1 - 集流体、电池单体、电池以及用电装置 - Google Patents
集流体、电池单体、电池以及用电装置 Download PDFInfo
- Publication number
- WO2024138683A1 WO2024138683A1 PCT/CN2022/144155 CN2022144155W WO2024138683A1 WO 2024138683 A1 WO2024138683 A1 WO 2024138683A1 CN 2022144155 W CN2022144155 W CN 2022144155W WO 2024138683 A1 WO2024138683 A1 WO 2024138683A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- current collector
- substrate layer
- separator
- electrode sheet
- layer
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/572—Means for preventing undesired use or discharge
- H01M50/574—Devices or arrangements for the interruption of current
- H01M50/581—Devices or arrangements for the interruption of current in response to temperature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the existing battery cell includes a positive electrode sheet, a negative electrode sheet and a separator.
- the separator is arranged between the positive electrode sheet and the negative electrode sheet.
- dendrites are deposited on the surface of the negative electrode sheet. After the dendrites pierce the separator, they come into contact with the active material layer on the positive electrode sheet, causing a short circuit in the battery cell, which can easily cause thermal runaway in the battery cell and reduce the reliability of the battery cell.
- the present application aims to solve at least one of the technical problems existing in the prior art.
- one purpose of the present application is to propose a current collector, which forms through holes on the current collector after the dendrites formed on the current collector pierce the isolation membrane during the battery charging process, causing the battery cell to short-circuit and generate heat, thereby reducing the risk of heat diffusion to the current collector and improving the reliability of the battery cell.
- the present application further proposes a battery.
- the present application further proposes an electrical device.
- an embodiment of the present application provides a current collector, including:
- a substrate layer attached to a portion of the conductive layer
- the melting point of the base material layer is lower than that of the conductive layer, and the base material layer is configured to shrink and break when heated, and to cause the conductive layer to break to form a through hole.
- the dendrites formed on the current collector pierce the isolation membrane, causing the battery cell to short-circuit and generate heat.
- the substrate layer shrinks and breaks when heated, causing the conductive layer to break to form a through hole, thereby disconnecting the short-circuited positive and negative electrodes, which can reduce the risk of thermal runaway of the battery cell and improve the reliability of the battery cell.
- the substrate layer can have a lower melting point. After the battery cell short-circuits and generates heat, the substrate layer can shrink and break, thereby forming a through hole on the current collector. Moreover, when the battery cell is working normally, the substrate layer will not break.
- the elastic modulus of the substrate layer is B, satisfying the relationship: B ⁇ 15 MPa.
- the substrate layer can have suitable shrinkage, which is conducive to the shrinkage and fracture of the substrate layer after the battery cell short-circuits and generates heat.
- the current collector further includes a separator, which is disposed on the substrate layer and is used to separate the substrate layer into a plurality of regions.
- the melting point of the separator is higher than that of the substrate layer.
- the separator is disposed on a surface of the substrate layer and is located between the substrate layer and the conductive layer.
- the separator can better prevent the heat from diffusing to other areas on the substrate layer, so that the heat is transferred to the position on the substrate layer opposite to the dendrites, reducing the heat transferred to other areas on the substrate layer, further reducing the risk of heat diffusion to the current collector, further reducing the spread of heat on the current collector, further reducing the spread of thermal runaway in the battery cell, and further improving the reliability of the battery cell.
- the separator will prevent the through hole from continuing to expand.
- the separator is formed as a coating; or the separator is glued to the substrate layer.
- the separator is coated on the outer surface of the substrate layer, thereby forming a separator coating on the outer surface of the substrate layer, thereby achieving the effect of assembling the separator on the substrate layer, making the assembly of the separator and the substrate layer simple and convenient.
- the separator is glued to the substrate layer, thereby fixing the separator to the outer surface of the substrate layer, reducing the risk of separation of the separator from the substrate layer.
- the separator is embedded inside the substrate layer.
- the separator better prevents the heat from diffusing to other areas on the substrate layer, so that the heat is concentrated on the position on the substrate layer opposite to the dendrite, thereby accelerating the shrinkage rate of this position and reducing the risk of heat transfer to other areas on the substrate layer.
- the risk of heat diffusion to the current collector is reduced, thereby further reducing the spread of heat on the current collector, reducing the spread of thermal runaway in the battery cell, and improving the reliability of the battery cell.
- the ratio of the thickness of the separator to the thickness of the substrate layer is C, which satisfies the relationship: 0.8 ⁇ C ⁇ 1.1.
- the proportion of the separator in the current collector can be made appropriate while ensuring the performance of the separator.
- the melting point of the separator is D, satisfying the relationship: 180° ⁇ D.
- the melting point of the separator by setting the melting point of the separator to D, it can be ensured that the melting point of the separator is higher than the melting point of the substrate layer. After a short circuit occurs in the battery cell, heat is transferred to the area on the current collector opposite to the dendrite, forming a through hole on the current collector. Since the melting point of the separator is higher than the melting point of the substrate layer, the risk of the separator melting can be reduced.
- the separator is a polyimide member.
- the conductive layer completely wraps around the outer peripheral wall of the substrate layer.
- the arrangement area of the conductive layer can be increased, and the output current capacity of the current collector can be improved.
- the conductive layer is a metal coating disposed on the substrate layer; or the conductive layer is adhered to the substrate layer.
- the conductive layer is coated on the outer surface of the substrate layer, thereby forming a conductive layer coating on the outer surface of the substrate layer, thereby achieving the effect of assembling the conductive layer on the substrate layer, making the assembly of the separator and the substrate layer simple and convenient.
- the conductive layer is adhered to the substrate layer, thereby fixing the conductive layer to the outer surface of the substrate layer, reducing the risk of separation of the conductive layer and the substrate layer.
- the current collector further includes a first insulating layer, which is disposed on a first surface of the conductive layer away from the substrate layer, and is used to divide the first surface into a plurality of regions.
- the melting point of the first insulating layer is higher than that of the conductive layer.
- the first insulating layer divides the first surface into multiple areas.
- the first insulating layer can reduce the diffusion of heat to other areas on the substrate layer, and transfer the heat to the position on the substrate layer opposite to the dendrites. At the same time, it further reduces the risk of heat diffusion to the current collector, thereby reducing the spread of thermal runaway in the battery cell and improving the reliability of the battery cell.
- a grid-like area is defined on the first surface by multiple insulating strips.
- the insulating strips better prevent the heat from diffusing to other areas on the conductive layer, so that the heat is transferred to the position on the conductive layer opposite to the dendrites, thereby transferring the heat to the position on the substrate layer opposite to the dendrites, reducing the heat transferred to other areas on the substrate layer, further reducing the risk of heat diffusion to the current collector, further reducing the spread of heat on the current collector, further reducing the spread of thermal runaway in the battery cell, and further improving the reliability of the battery cell.
- the first insulating layer is formed as a coating; or the first insulating layer is glued to the conductive layer.
- the first insulating layer is coated on the first surface of the conductive layer to form a first insulating layer coating on the first surface, thereby achieving the effect of assembling the first insulating layer on the conductive layer, making the assembly of the first insulating layer and the conductive layer simple and convenient.
- the first insulating layer is adhered to the conductive layer to fix the first insulating layer to the outer surface of the conductive layer, reducing the risk of separation of the conductive layer from the first insulating layer.
- the positive electrode sheet and the negative electrode sheet, at least one of the positive electrode sheet and the negative electrode sheet comprises the above-mentioned current collector.
- At least one of the positive electrode sheet and the negative electrode sheet includes the current collector of the above embodiment.
- the positive electrode sheet and the negative electrode sheet generate heat after the short circuit, and the heat is transferred to the current collector.
- the substrate layer shrinks and breaks when heated, and when the substrate layer breaks, the conductive layer breaks to form a through hole.
- the position of the substrate layer opposite to the dendrite shrinks and breaks when heated, and the conductive layer breaks at the position opposite to the dendrite to form a through hole on the current collector, disconnecting the short circuit connection between the positive electrode sheet and the negative electrode sheet.
- the through hole penetrates the current collector in the thickness direction of the current collector, reducing the risk of heat diffusion to the current collector, reducing the spread of heat on the current collector, reducing the spread of thermal runaway in the battery cell, and improving the reliability of the battery cell.
- the negative electrode sheet is provided with a current collector.
- a current collector is provided through the negative electrode sheet.
- the heat is transferred to the negative electrode sheet, and a through hole is formed in the negative electrode sheet, which reduces the risk of heat diffusion to the current collector, reduces the spread of heat on the negative electrode sheet, reduces the spread of thermal runaway in the battery cell, and improves the reliability of the battery cell.
- the elastic modulus of the substrate layer is greater than the elastic modulus of the isolation film.
- the cross-sectional area of the through hole can be made large enough to ensure that the positive electrode sheet and the negative electrode sheet are disconnected, thereby reducing the risk of short circuit between the positive electrode sheet and the negative electrode sheet, reducing the risk of heat diffusion to the current collector, reducing the spread of heat on the current collector, reducing the spread of thermal runaway in the battery cell, and further improving the reliability of the battery cell.
- FIG2 is a schematic diagram of a battery according to an embodiment of the present application.
- FIG8 is a schematic diagram of a through hole formed by heating a current collector according to a second embodiment of the present application.
- the terms “installed”, “connected”, “connected”, and “attached” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
- installed should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
- the battery cell may be a secondary battery.
- a secondary battery refers to a battery cell that can be continuously used by activating active materials by charging after the battery cell is discharged.
- the positive electrode may be a positive electrode sheet, and the positive electrode sheet may include a positive electrode current collector and a positive electrode active material disposed on at least one surface of the positive electrode current collector.
- dendrites are deposited on the surface of the electrode. After the dendrites pierce the isolation membrane, they connect the negative electrode and the positive electrode, causing a short circuit in the battery cell, which can easily cause thermal runaway in the battery cell and reduce the reliability of the battery cell.
- the battery disclosed in the embodiment of the present application can be used in, but not limited to, electrical devices such as vehicles, ships or aircraft.
- a power supply system comprising the battery thermal management system disclosed in the present application and batteries etc. can be used to form the electrical device, which is conducive to improving the application scope of the battery thermal management system and reducing the difficulty of assembling the battery thermal management system.
- FIG. 1 is a schematic diagram of the structure of a vehicle provided in some embodiments of the present application.
- the vehicle 400 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
- a battery 300 is provided inside the vehicle 400, and the battery 300 may be provided at the bottom, head or tail of the vehicle 400.
- the battery 300 may be used to power the vehicle 400, for example, the battery 300 may be used as an operating power source for the vehicle 1000, for the circuit system of the vehicle 400, for example, for the working power requirements during the startup, navigation and operation of the vehicle 400.
- FIG. 2 is an exploded view of a battery 300 provided in some embodiments of the present application.
- the battery 300 includes a box body 301 and a battery cell 200, and the battery cell 200 is contained in the box body 301.
- the box body 301 is used to provide a storage space for the battery cell 200, and the box body 301 can adopt a variety of structures.
- the box body 301 may include a first part 11 and a second part 12, and the first part 11 and the second part 12 cover each other, and the first part 11 and the second part 12 jointly define a storage space for accommodating the battery cell 200.
- the battery 300 there may be multiple battery cells 200, and the multiple battery cells 200 may be connected in series, in parallel, or in a mixed connection.
- a mixed connection means that the multiple battery cells 200 are both connected in series and in parallel.
- the multiple battery cells 200 may be directly connected in series, in parallel, or in a mixed connection, and then the whole formed by the multiple battery cells 200 is accommodated in the box 301; of course, the battery 300 may also be a battery module formed by connecting multiple battery cells 200 in series, in parallel, or in a mixed connection, and then the multiple battery modules are connected in series, in parallel, or in a mixed connection to form a whole, and accommodated in the box 301.
- the battery 300 may also include other structures, for example, the battery 300 may also include a busbar, which may be a plurality of electrical connectors for realizing electrical connection between the multiple battery cells 200.
- FIG3 is a schematic diagram of the exploded structure of a battery cell 200 provided in some embodiments of the present application.
- the battery cell 200 refers to the smallest unit constituting the battery 300.
- the battery cell 200 includes an end cap 201, a housing 206, an electrode assembly 202, and other functional components, such as a current collecting member.
- the shell 206 is a component used to cooperate with the end cap 201 to form the internal environment of the battery cell 200, wherein the formed internal environment can be used to accommodate the electrode assembly 202, the electrolyte and other components.
- the shell 206 and the end cap 201 can be independent components, and an opening can be set on the shell 206, and the internal environment of the battery cell 200 is formed by covering the opening with the end cap 201 at the opening.
- the end cap 201 and the shell 206 can also be integrated.
- the end cap 201 and the shell 206 can form a common connection surface before other components are put into the shell, and when it is necessary to encapsulate the interior of the shell 206, the end cap 201 covers the shell 206.
- the shell 206 can be of various shapes and sizes, such as a rectangular parallelepiped, a cylindrical shape, a hexagonal prism, etc. Specifically, the shape of the shell 206 can be determined according to the specific shape and size of the electrode assembly 202.
- the shell 206 can be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., and the embodiment of the present application does not impose any special limitation on this.
- the electrode assembly 202 is a component in the battery cell 200 where an electrochemical reaction occurs.
- One or more electrode assemblies 202 may be included in the housing 206.
- the electrode assembly 202 is mainly formed by winding or stacking a positive electrode sheet 203 and a negative electrode sheet 204, and a separator 205 is usually provided between the positive electrode sheet 203 and the negative electrode sheet 204.
- the portion of the electrode sheet having active materials or used to carry active materials constitutes the main body of the electrode assembly 202, and the portion of the electrode sheet that does not have active materials or is not used to carry active materials each constitutes a pole ear.
- the positive pole ear and the negative pole ear may be located together at one end of the main body or at both ends of the main body respectively.
- ions in the active material shuttle between the positive and negative electrodes, and the pole ears connect the electrode terminals 207 to form a current loop.
- the electrode assembly 202 is a component in the battery cell 200 where electrochemical reactions occur.
- the housing 206 may contain one or more electrode assemblies 202.
- the electrode assembly 202 is mainly formed by winding or stacking a positive electrode sheet 203 and a negative electrode sheet 204, and a separator is usually provided between the positive electrode sheet 203 and the negative electrode sheet 204.
- ions in the active material shuttle between the positive and negative electrodes to form a current loop.
- the current collector 100 according to an embodiment of the present application is described below with reference to FIGS. 1 to 10 .
- the current collector 100 is taken as an example to be described below, being the negative electrode sheet 204 of a battery cell 200 .
- the substrate layer 20 and the conductive layer 10 are connected, and the conductive layer 10 can be arranged on the outer surface of the substrate layer 20, and the current is output to the outside through the conductive layer 10. Since the melting point of the substrate layer 20 is lower than the melting point of the conductive layer 10, when the temperature of the substrate layer 20 reaches a certain temperature, the substrate layer 20 melts and breaks before the conductive layer 10, so that the substrate layer 20 is configured to shrink and break when heated and the conductive layer 10 breaks to form a through hole 21, and the through hole 21 can reduce the heat diffusion on the current collector 100. It should be noted that when the through hole 21 is formed on the current collector 100, the current collector 100 can also work normally.
- metal ions are deposited on the negative electrode sheet 204 to form dendrites.
- the dendrites pierce the isolation membrane 205, and the dendrites are connected between the positive electrode sheet 203 and the negative electrode sheet 204, causing a short circuit between the positive electrode sheet 203 and the negative electrode sheet 204.
- heat is generated, and the heat is transferred to the current collector 100.
- the substrate layer 20 shrinks and breaks when heated, and when the substrate layer 20 breaks, the conductive layer 10 breaks to form a through hole 21.
- the substrate layer 20 that is connected to the dendrites is The positions of the conductive layer 10 and the dendrites are fractured due to heat shrinkage, so that the conductive layer 10 is fractured at the positions opposite to the dendrites, so as to form a through hole 21 on the current collector 100.
- the through hole 21 penetrates the current collector 100 in the thickness direction of the current collector 100.
- the positive electrode sheet 203 and the negative electrode sheet 204 are disconnected, so as to prevent the positive electrode sheet 203 and the negative electrode sheet 204 from short-circuiting, reduce the risk of heat diffusion to the current collector 100, reduce the spread of heat on the current collector 100, reduce the spread of thermal runaway of the battery cell 200, and improve the reliability of the battery cell 200.
- the conductive layer 10 is used to conduct the current of the electrode, and can be made of aluminum or other conductive materials.
- the melting point of the substrate layer 20 by setting the melting point of the substrate layer 20 to be lower than the melting point of the conductive layer 10, during the charging process of the battery cell 200, the dendrites formed on the current collector 100 pierce the isolation membrane 205, causing the battery cell 200 to short-circuit and generate heat.
- the substrate layer 20 shrinks and breaks when heated, causing the conductive layer 10 to break to form a through hole 21, thereby reducing the risk of heat diffusion to the current collector 100, reducing the risk of thermal runaway of the battery cell 200, and improving the reliability of the battery cell 200.
- the melting point of the substrate layer 20 is A, satisfying the relationship: 110° C. ⁇ A ⁇ 130° C.
- the melting point of the substrate layer 20 may be 110° C., 115° C., 116° C., 120° C., 130° C., and the like.
- the substrate layer 20 can have a lower melting point. After the battery cell 200 generates heat due to a short circuit, the substrate layer 20 can shrink and break, thereby forming a through hole 21 on the current collector 100. Moreover, when the battery cell 200 works normally, the substrate layer 20 will not break.
- the elastic modulus of the substrate layer 20 may be 15 MPa, 20 MPa, 30 MPa, or the like.
- the substrate layer 20 can have appropriate shrinkage, which is conducive to the shrinkage and fracture of the substrate layer 20 after the battery cell 200 generates heat due to a short circuit.
- the current collector 100 further includes a separator 30 , which is disposed on the substrate layer 20 .
- the separator 30 is used to separate the substrate layer 20 into a plurality of regions, and the melting point of the separator 30 is higher than that of the substrate layer 20 .
- the area of the current collector 100 opposite to the dendrite shrinks and breaks when heated, causing the conductive layer 10 to break, so as to form a through hole 21 in the area of the current collector 100 opposite to the dendrite, thereby disconnecting the short-circuited positive and negative electrodes.
- the separator 30 can prevent the heat from diffusing to other areas on the substrate layer 20, so that the heat is transferred to the position on the substrate layer 20 opposite to the dendrite, reducing the heat transfer to other areas on the substrate layer 20, further reducing the risk of heat diffusion to the current collector 100, further reducing the spread of heat on the current collector 100, further reducing the spread of thermal runaway of the battery cell 200, and further improving the reliability of the battery cell 200. Since the separator 30 is arranged on the substrate layer 20, the separator 30 will block the continued expansion of the through hole 21.
- the separators 30 There may be a plurality of separators 30, and the plurality of separators 30 are cross-arranged, so as to divide the substrate layer 20 into grid-like regions. By dividing the substrate layer 20 into grid-like regions by the separators 30, at least one region can be surrounded by the separators 30.
- the positive electrode sheet 203 and the negative electrode sheet 204 generate heat after short-circuiting, and the heat is transferred to the current collector 100.
- the conductive layer 10 breaks, so as to form a through hole 21 in the region of the current collector 100 opposite to the dendrite, so that the positive electrode sheet 203 and the negative electrode sheet 204 are disconnected.
- the separator 30 is disposed on the outer surface of the substrate layer 20, and the separator 30 is located between the substrate layer 20 and the conductive layer 10.
- the separator 30 better prevents the heat from diffusing to other areas on the substrate layer 20, and transfers the heat to the position on the substrate layer 20 opposite to the dendrite, reducing the heat transfer to other areas on the substrate layer 20, further reducing the risk of heat diffusing to the current collector 100, further reducing the spread of heat on the current collector 100, further reducing the spread of thermal runaway of the battery cell 200, and further improving the reliability of the battery cell 200.
- the separator 30 by arranging the separator 30 between the substrate layer 20 and the conductive layer 10, when heat is transferred from the conductive layer 10 to the substrate layer 20, the separator 30 better prevents the heat from diffusing to other areas on the substrate layer 20, and transfers the heat to the position on the substrate layer 20 opposite to the dendrites, thereby reducing the heat transfer to other areas on the substrate layer 20, further reducing the risk of heat diffusion to the current collector 100, further reducing the spread of heat on the current collector 100, further reducing the spread of thermal runaway of the battery cell 200, and further improving the reliability of the battery cell 200. Moreover, after the heat is transferred to the substrate layer 20 to form a through hole 21 on the current collector 100, the separator 30 will prevent the through hole 21 from continuing to expand.
- the separator 30 is formed as a coating; or the separator 30 is glued to the substrate layer 20 .
- the separator 30 may be coated on the outer surface of the substrate layer 20, thereby forming a separator 30 coating on the outer surface of the substrate layer 20, thereby achieving the effect of assembling the separator 30 on the substrate layer 20.
- the separator 30 may be glued to the outer surface of the substrate layer 20, thereby fixing the separator 30 to the outer surface of the substrate layer 20, reducing the risk of separation of the separator 30 from the substrate layer 20.
- the separator 30 By embedding the separator 30 inside the substrate layer 20, the separator 30 better prevents heat from spreading to other regions on the substrate layer 20, so that the heat is concentrated at the position on the substrate layer 20 opposite to the dendrite, which accelerates the contraction speed of the position, and reduces the risk of heat transfer to other regions on the substrate layer 20, and reduces the risk of heat spreading to the current collector 100, thereby further reducing the spread of heat on the current collector 100, further reducing the spread of thermal runaway of the battery cell 200, and further improving the reliability of the battery cell 200.
- the melting point of the separator 30 may be 180°, 190°, 200°, etc.
- the melting point of the separator 30 is reasonably selected according to actual usage.
- the installation area of the conductive layer 10 can be increased, and the output current capacity of the current collector 100 can be improved.
- the conductive layer 10 may be coated on the outer surface of the substrate layer 20, thereby forming a conductive layer 10 coating on the outer surface of the substrate layer 20, thereby achieving the effect of assembling the conductive layer 10 on the substrate layer 20.
- the conductive layer 10 may be adhered to the outer surface of the substrate layer 20 by gluing, thereby fixing the conductive layer 10 to the outer surface of the substrate layer 20, thereby reducing the risk of separation of the conductive layer 10 from the substrate layer 20.
- the conductive layer 10 is coated on the outer surface of the substrate layer 20, thereby forming a conductive layer 10 coating on the outer surface of the substrate layer 20, thereby achieving the effect of assembling the conductive layer 10 on the substrate layer 20, making the assembly of the separator 30 and the substrate layer 20 simple and convenient.
- the conductive layer 10 is adhered to the substrate layer 20, thereby fixing the conductive layer 10 on the outer surface of the substrate layer 20, reducing the risk of separation of the conductive layer 10 from the substrate layer 20.
- the current collector 100 also includes a first insulating layer 40, which is disposed on a first surface of the conductive layer 10 that is away from the substrate layer 20, and is used to divide the first surface into a plurality of regions.
- the melting point of the first insulating layer 40 is higher than that of the conductive layer 10.
- the first insulating layer 40 has insulating and heat-insulating functions.
- the surface of the conductive layer 10 opposite to the isolation film 205 is the first surface of the conductive layer 10 away from the substrate layer 20.
- the first insulating layer 40 is arranged on the first surface.
- the first insulating layer 40 can be bonded to the first surface.
- the first insulating layer 40 can also be coated on the first surface.
- the first surface is divided into multiple areas by the first insulating layer 40.
- metal ions are deposited on the negative electrode sheet 204 to form dendrites.
- the dendrites pierce the isolation membrane 205 and are connected between the positive electrode sheet 203 and the negative electrode sheet 204, causing a short circuit between the positive electrode sheet 203 and the negative electrode sheet 204.
- heat is generated. The heat is transferred to the current collector 100.
- the conductive layer 10 breaks, so as to form a through hole 21 in the area of the current collector 100 opposite to the dendrite, thereby disconnecting the positive electrode sheet 203 and the negative electrode sheet 204.
- the melting point of the first insulating layer 40 is higher than that of the conductive layer 10, when heat is transferred to the substrate layer 20, the first insulating layer 40 is prevented from breaking.
- the first insulating layer 40 can prevent heat from diffusing to other areas on the substrate layer 20, so that heat is transferred to the position on the substrate layer 20 opposite to the dendrites, reducing the heat transfer to other areas on the substrate layer 20, further reducing the risk of heat diffusing to the current collector 100, further reducing the spread of heat on the current collector 100, further reducing the spread of thermal runaway of the battery cell 200, and further improving the reliability of the battery cell 200.
- the first insulating layer 40 since the first insulating layer 40 has insulating properties, if the first insulating layer 40 contacts the positive electrode sheet 203, the first insulating layer 40 is prevented from connecting the positive electrode sheet 203 and the negative electrode sheet 204, resulting in a short circuit between the positive electrode sheet 203 and the negative electrode sheet 204.
- a grid-like area is defined on the first surface by multiple insulating strips 41.
- the insulating strips 41 better prevent the heat from diffusing to other areas on the conductive layer 10, so that the heat is transferred to the position on the conductive layer 10 opposite to the dendrites, and the heat is transferred to the position on the substrate layer 20 opposite to the dendrites, thereby reducing the heat transferred to other areas on the substrate layer 20, further reducing the risk of heat diffusion to the current collector 100, further reducing the spread of heat on the current collector 100, further reducing the spread of thermal runaway of the battery cell 200, and further improving the reliability of the battery cell 200.
- the first insulating layer 40 may be coated on the first surface of the conductive layer 10, thereby forming a first insulating layer 40 coating on the first surface, thereby achieving the effect of assembling the first insulating layer 40 on the conductive layer 10.
- the first insulating layer 40 may be adhered to the outer surface of the conductive layer 10 by gluing, thereby fixing the first insulating layer 40 to the outer surface of the conductive layer 10, reducing the risk of separation of the conductive layer 10 from the first insulating layer 40.
- a separator 205 is disposed between the positive electrode sheet 203 and the negative electrode sheet 204 , and the elastic modulus of the substrate layer 20 is greater than the elastic modulus of the separator 205 .
- the cross-sectional area of the through hole 21 can be made large enough to ensure that the positive electrode sheet 203 and the negative electrode sheet 204 are disconnected, thereby reducing the risk of short circuit between the positive electrode sheet 203 and the negative electrode sheet 204, reducing the risk of heat diffusion to the current collector 100, reducing the spread of heat on the current collector 100, reducing the spread of thermal runaway in the battery cell 200, and further improving the reliability of the battery cell 200.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
一种集流体(100)、电池单体(200)、电池(300)以及用电装置(400),集流体(100)包括:导电层(10),用于输出电流;基材层(20),附着于部分所述导电层(10),其中,所述基材层(20)的熔点小于所述导电层(10)的熔点,所述基材层(20)被构造成在受热时收缩断裂且使得所述导电层(10)断裂以形成贯穿孔(21)。
Description
本申请涉及电池领域,尤其是涉及一种集流体、电池单体、电池以及用电装置。
相关技术中,现有电池单体包括正极片、负极片和隔离膜,隔离膜设置在正极片和负极片之间,在电池单体充电过程中,负极片表面沉积形成枝晶,枝晶刺破隔离膜后与正极片上的活性物质层接触,导致电池单体发生短路,容易引起电池单体发生热失控,降低了电池单体使用可靠性。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请的一个目的在于提出了一种集流体,在电池充电过程中,该集流体上形成的枝晶刺破隔离膜导致电池单体短路产生热量后,集流体上形成贯穿孔,降低热量向集流体扩散的风险,提升了电池单体使用可靠性。
本申请进一步地提出了一种电池单体。
本申请进一步地提出了一种电池。
本申请进一步地提出了一种用电装置。
第一方面,本申请实施例提供一种集流体,包括:
导电层,用于输出电流;
基材层,附着于部分导电层,
其中,基材层的熔点小于导电层的熔点,基材层被构造成在受热时收缩断裂且使得导电层断裂以形成贯穿孔。
在上述技术方案中,通过设置基材层的熔点小于导电层的熔点,在电池单体充电过程中,集流体上形成的枝晶刺破隔离膜导致电池单体短路产生热量后,基材层在受热时收缩断裂使导电层断裂以形成贯穿孔,从而将短路的正负极断开,可以降低电池单体发生热失控风险,提升了电池单体使用可靠性。
在一些实施例中,基材层的熔点为A,满足关系式:110℃≤A≤130℃。
在上述技术方案中,通过将基材层的熔点设置为A,能够使基材层具有较低的熔点,电池单体短路产生热量后,可以使基材层收缩断裂,从而在集流体上形成贯穿孔,并且,在 电池单体正常工作时,基材层不会发生断裂。
在一些实施例中,基材层的弹性模量为B,满足关系式:B≥15MPa。
在上述技术方案中,通过将基材层的弹性模量设置为B,能够使基材层具有适宜的收缩性,电池单体短路产生热量后,有利于基材层收缩断裂。
在一些实施例中,集流体,还包括分隔件,分隔件设于基材层,分隔件用于将基材层分隔成多个区域,分隔件的熔点高于基材层。
在上述技术方案中,通过设置分隔件,电池单体发生短路后,热量传递至集流体上与枝晶相对的区域,在集流体上形成贯穿孔,由于分隔件设于基材层,分隔件会阻挡贯穿孔的继续扩大,集流体上形成贯穿孔后可以继续使用,延长集流体使用寿命。
在一些实施例中,分隔件用于将基材层分割成网格状区域。
在上述技术方案中,通过分隔件将基材层分割成网格状区域,热量向基材层传递使集流体上形成贯穿孔后,分隔件会阻挡贯穿孔的继续扩大,集流体上形成贯穿孔后可以继续使用,进一步延长集流体使用寿命,并且,分隔件更好地阻止热量向基材层上的其他区域扩散,使热量向基材层上与枝晶相对的位置传递,减小热量传递至基材层上的其他区域,进一步降低热量向集流体扩散的风险,进一步降低热量在集流体上蔓延,进一步降低电池单体发生热失控蔓延,进一步提升了电池单体使用可靠性。
在一些实施例中,分隔件设于基材层的表面且位于基材层和导电层之间。
在上述技术方案中,通过将分隔件设置于基材层和导电层之间,热量从导电层向基材层传递时,分隔件更好地阻止热量向基材层上的其他区域扩散,使热量向基材层上与枝晶相对的位置传递,减小热量传递至基材层上的其他区域,进一步降低热量向集流体扩散的风险,进一步降低热量在集流体上蔓延,进一步降低电池单体发生热失控蔓延,进一步提升了电池单体使用可靠性,并且,热量向基材层传递使集流体上形成贯穿孔后,分隔件会阻挡贯穿孔的继续扩大。
在一些实施例中,分隔件形成为涂层;或分隔件胶粘于基材层。
在上述技术方案中,通过分隔件涂覆在基材层的外表面,从而在基材层的外表面形成分隔件涂层,进而实现将分隔件装配于基材层上的效果,使分隔件和基材层装配简单、方便。通过分隔件胶粘于基材层,从而将分隔件固定于基材层的外表面,降低分隔件与基材层分离的风险。
在一些实施例中,分隔件嵌设于基材层的内部。
在上述技术方案中,通过将分隔件嵌设于基材层的内部,分隔件更好地阻止热量向基材层上的其他区域扩散,使热量集中在基材层上与枝晶相对的位置,加快了该位置收缩的速度,同时减小热量传递至基材层上的其他区域风险,降低热量向集流体扩散的风险,从而 进一步降低热量在集流体上蔓延,降低电池单体发生热失控蔓延,提升了电池单体使用可靠性。
在一些实施例中,分隔件的厚度与基材层的厚度的比值为C,满足关系式:0.8≤C≤1.1。
在上述技术方案中,通过设置分隔件的厚度与基材层的厚度的比值为C,在保证分隔件性能的前提下,可以使集流体内分隔件的占比适宜。
在一些实施例中,分隔件的熔点为D,满足关系式:180°≤D。
在上述技术方案中,通过将分隔件的熔点设置为D,能够保证分隔件的熔点高于基材层的熔点,电池单体发生短路后,热量传递至集流体上与枝晶相对的区域,在集流体上形成贯穿孔,而由于分隔件的熔点高于基材层的熔点,可以降低分隔件熔断风险。
在一些实施例中,分隔件为聚酰亚胺件。
在上述技术方案中,通过将分隔件设置为聚酰亚胺件,受热不容易断裂,可以使分隔件具有可靠工作性能。
在一些实施例中,导电层完全包裹于基材层的外周壁。
在上述技术方案中,通过导电层完全包裹于基材层的外周壁,能够增加导电层的设置面积,可以提升集流体的输出电流能力。
在一些实施例中,导电层为设于基材层的金属涂层;或导电层粘贴于基材层。
在上述技术方案中,通过导电层涂覆在基材层的外表面,从而在基材层的外表面形成导电层涂层,进而实现将导电层装配于基材层上的效果,使分隔件和基材层装配简单、方便。通过导电层粘贴于基材层,从而将导电层固定于基材层的外表面,降低导电层与基材层分离的风险。
在一些实施例中,集流体,还包括第一绝缘层,第一绝缘层设于导电层的背离基材层的第一表面,第一绝缘层用于将第一表面分割成多个区域,第一绝缘层的熔点高于导电层。
在上述技术方案中,通过设置第一绝缘层,第一绝缘层将第一表面分割成多个区域,第一绝缘层能够减少热量向基材层上的其他区域扩散,使热量向基材层上与枝晶相对的位置传递,同时进一步降低热量向集流体扩散的风险,从而降低电池单体发生热失控蔓延,提升了电池单体使用可靠性。
在一些实施例中,第一绝缘层包括多个相交的绝缘条以限定出网格状区域。
在上述技术方案中,通过多个绝缘条在第一表面上限定出网格状区域,热量传递至导电层时,绝缘条更好地阻止热量向导电层上的其他区域扩散,使热量向导电层上与枝晶相对的位置传递,从而使热量向基材层上与枝晶相对的位置传递,减小热量传递至基材层上的其他区域,进一步降低热量向集流体扩散的风险,进一步降低热量在集流体上蔓延,进一步降低电池单体发生热失控蔓延,进一步提升了电池单体使用可靠性。
在一些实施例中,第一绝缘层形成为涂层;或第一绝缘层胶粘于导电层。
在上述技术方案中,通过第一绝缘层涂覆在导电层的第一表面上,从而在第一表面上形成第一绝缘层涂层,进而实现将第一绝缘层装配于导电层上的效果,使第一绝缘层和导电层装配简单、方便。通过第一绝缘层胶粘于导电层,从而将第一绝缘层固定于导电层的外表面,降低导电层与第一绝缘层分离的风险。
第二方面,本申请实施例提供一种电池单体,包括:
正极片和负极片,正极片和负极片中的至少一个包括上述的集流体。
在上述技术方案中,通过正极片和负极片中的至少一个包括上述实施例的集流体,在电池单体充电过程中,正极片和负极片发生短路时,正极片和负极片短路后产生热量,热量传递至集流体,基材层在受热时收缩断裂,且基材层断裂时使导电层断裂以形成贯穿孔,例如:热量传递至集流体后,基材层上与枝晶相对的位置处受热收缩断裂,使导电层与枝晶相对的位置处断裂,以在集流体上形成贯穿孔,断开正极片和负极片短路连接。贯穿孔在集流体的厚度方向贯穿集流体,降低热量向集流体扩散的风险,降低热量在集流体上蔓延,降低电池单体发生热失控蔓延,提升了电池单体使用可靠性。
在一些实施例中,负极片设有集流体。
在上述技术方案中,通过负极片设有集流体,在电池单体充电过程中,正极片和负极片短路后,热量传递至负极片,负极片形成贯穿孔,降低热量向集流体扩散的风险,降低热量在负极片上蔓延,降低电池单体发生热失控蔓延,提升了电池单体使用可靠性。
在一些实施例中,基材层的弹性模量大于隔离膜的弹性模量。
在上述技术方案中,通过基材层的弹性模量大于隔离膜的弹性模量,正极片和负极片短路时,可以使贯穿孔的横截面积足够大,保证正极片和负极片断开连接,降低正极片和负极片短路风险,降低热量向集流体扩散的风险,降低热量在集流体上蔓延,降低电池单体发生热失控蔓延,进一步提升了电池单体使用可靠性。
在一些实施例中,基材层的弹性模量为B,隔离膜的弹性模量为B1,满足关系式:0.8≤B/B1≤5。
在上述技术方案中,通过设置0.8≤B/B1≤5,能够使基材层具有适宜的收缩性,电池单体短路产生热量后,有利于基材层收缩断裂,并且,降低隔离膜的收缩性,使隔离膜可靠设置在正极片和负极片之间,隔离膜将正极片和负极片分隔开,从而降低正极片和负极片短路风险。
在一些实施例中,电池单体为钠金属电池单体。
在上述技术方案中,钠金属电池能够快速充电和放电,可以提升电池单体使用性能,并且,由于钠储量极为丰富和成本费用低,将电池单体设置为钠金属电池,能够降低电池单 体生产成本。同时钠金属电池具有很高的倍率性能,可以充分满足全部气候条件下的使用。
第三方面,本申请实施例提供一种电池,包括上述的电池单体。
第四方面,本申请实施例提供一种用电装置,包括上述的电池,电池用于提供电能。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
图1是根据本申请实施例的车辆示意图;
图2是根据本申请实施例的电池的示意图;
图3是根据本申请实施例的电池单体的示意图;
图4是根据本申请第一种实施例的集流体的导电层设置有第一绝缘层的示意图;
图5是根据本申请第一种实施例的集流体受热形成贯穿孔示意图;
图6是根据本申请第一种实施例的集流体的导电层表面形成网格区域示意图;
图7是根据本申请第二种实施例的集流体的基材层设置有分隔件的示意图;
图8是根据本申请第二种实施例的集流体受热形成贯穿孔示意图;
图9是根据本申请实施例的正极片、负极片和隔离膜卷绕形成电极组件的示意图;
图10是根据本申请实施例的正极片、负极片和隔离膜层叠形成电极组件的示意图。
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请实施例中,电池单体可以为二次电池,二次电池是指在电池单体放电后可通过充电的方式使活性材料激活而继续使用的电池单体。
本申请中,电池单体可以为锂离子电池、钠离子电池、钠锂离子电池、锂金属电池、钠金属电池、锂硫电池、镁离子电池、镍氢电池、镍镉电池、铅蓄电池等,本申请实施例对此并不限定。
电池单体一般包括电极组件。电极组件包括正极、负极以及隔离件。在电池单体充放电过程中,活性离子(例如锂离子)在正极和负极之间往返嵌入和脱出。隔离件设置在正极和负极之间,可以起到防止正负极短路的作用,同时可以使活性离子通过。
在一些实施例中,正极可以为正极片,正极片可以包括正极集流体以及设置在正极集流体至少一个表面的正极活性材料。
在一些实施例中,负极可以为负极片,负极片可以包括负极集流体以及设置在负极集流体至少一个表面上的负极活性材料。在一些实施例中,负极可以采用泡沫金属。泡沫金属可以为泡沫镍、泡沫铜、泡沫铝、泡沫合金、或泡沫碳等。泡沫金属作为负极片时,泡沫金属表面可以不设置负极活性材料,当然也可以设置负极活性材料。
作为示例,在负极集流体内还可以填充或/和沉积有锂源材料、钾金属或钠金属,锂源材料为锂金属和/或富锂材料。
在一些实施方式中,隔离件为隔离膜。本申请对隔离膜的种类没有特别的限制,可以选 用任意公知的具有良好的化学稳定性和机械稳定性的多孔结构隔离膜。
作为示例,隔离膜的主要材质可选自玻璃纤维、无纺布、聚乙烯、聚丙烯及聚偏二氟乙烯,陶瓷中的至少一种。隔离膜可以是单层薄膜,也可以是多层复合薄膜,没有特别限制。在隔离膜为多层复合薄膜时,各层的材料可以相同或不同,没有特别限制。隔离件可以是单独的一个部件位于正负极之间,也可以附着在正负极的表面。
本申请中,电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模组或电池包等。电池一般包括用于封装一个或多个电池单体或多个电池模组的箱体,箱体可以包括上箱体和下箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
近些年,新能源汽车有了飞跃式的发展,在电动汽车领域,动力电池作为电动汽车的动力源,起着不可替代的重要作用。电池由箱体和容纳于箱体内的多个电池单体组成。其中,电池作为新能源汽车核心零部件不论在安全性方面,还是循环使用寿命上均有着较高的要求。
在一般的动力电池中,在电池充电过程中,极片表面沉积形成枝晶,枝晶刺破隔离膜后将负极片和正极片连接,导致电池单体发生短路,容易引起电池单体发生热失控,降低了电池单体使用可靠性。
基于上述考虑,为了解决极片表面沉积的枝晶导致电池单体发生短路引起电池单体发生热失控的问题,发明人经过深入研究,设计了一种集流体,集流体可以为正极片的集流体,集流体也可以为负极片的集流体,集流体还可以为负极片,本申请以集流体为负极片为例进行说明,在本申请的实施例中,负极片未设置有活性物质层。在本申请中,通过设置基材层的熔点小于导电层的熔点,在电池充电过程中,集流体上形成的枝晶刺破隔离膜导致电池单体短路产生热量后,基材层在受热时收缩断裂使导电层断裂以形成贯穿孔,降低热量向集流体扩散的风险,可以降低电池单体发生热失控风险,提升了电池单体使用可靠性。
本申请实施例公开的电池可以但不限用于车辆、船舶或飞行器等用电装置中。可以使用具备本申请公开的电池热管理系统、电池等组成该用电装置的电源系统,这样,有利于提升电池热管理系统的适用范围,并降低电池热管理系统的装配难度。
本申请实施例提供一种使用电池作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船 玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电装置为车辆为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆的结构示意图。车辆400可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆400的内部设置有电池300,电池300可以设置在车辆400的底部或头部或尾部。电池300可以用于车辆400的供电,例如,电池300可以作为车辆1000的操作电源,用于车辆400的电路系统,例如用于车辆400的启动、导航和运行时的工作用电需求。
车辆400还可以包括控制器401和马达402,控制器401用来控制电池300为马达402供电,例如,用于车辆400的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池300不仅可以作为车辆400的操作电源,还可以作为车辆400的驱动电源,代替或部分地代替燃油或天然气为车辆400提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池300的爆炸图。电池300包括箱体301和电池单体200,电池单体200容纳于箱体301内。其中,箱体301用于为电池单体200提供容纳空间,箱体301可以采用多种结构。在一些实施例中,箱体301可以包括第一部分11和第二部分12,第一部分11与第二部分12相互盖合,第一部分11和第二部分12共同限定出用于容纳电池单体200的容纳空间。第二部分12可以为一端开口的空心结构,第一部分11可以为板状结构,第一部分11盖合于第二部分12的开口侧,以使第一部分11与第二部分12共同限定出容纳空间;第一部分11和第二部分12也可以是均为一侧开口的空心结构,第一部分11的开口侧盖合于第二部分12的开口侧。当然,第一部分11和第二部分12形成的箱体301可以是多种形状,比如,圆柱体、长方体等。
在电池300中,电池单体200可以是多个,多个电池单体200之间可串联或并联或混联,混联是指多个电池单体200中既有串联又有并联。多个电池单体200之间可直接串联或并联或混联在一起,再将多个电池单体200构成的整体容纳于箱体301内;当然,电池300也可以是多个电池单体200先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体301内。电池300还可以包括其他结构,例如,该电池300还可以包括汇流部件,汇流部件可以为多个电连接件,用于实现多个电池单体200之间的电连接。
请参照图3,图3为本申请一些实施例提供的电池单体200的分解结构示意图。电池单体200是指组成电池300的最小单元。如图3,电池单体200包括有端盖201、壳体206、电极组件202以及其他的功能性部件,例如集流构件。
端盖201是指盖合于壳体206的开口处以将电池单体200的内部环境隔绝于外部环境的部件。不限地,端盖201的形状可以与壳体206的形状相适应以配合壳体206。可选地,端 盖201可以由具有一定硬度和强度的材质(如铝合金)制成,这样,端盖201在受挤压碰撞时就不易发生形变,使电池单体200能够具备更高的结构强度,安全性能也可以有所提高。端盖201上可以设置有如电极端子207等的功能性部件。电极端子207可以用于与电极组件202电连接,以用于输出或输入电池单体200的电能。在一些实施例中,端盖201上还可以设置有用于在电池单体200的内部压力或温度达到阈值时泄放内部压力的泄压机构。端盖201的材质也可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。在一些实施例中,在端盖201的内侧还可以设置有绝缘件,绝缘件可以用于隔离壳体206内的电连接部件与端盖201,以降低短路的风险。示例性的,绝缘件可以是塑料、橡胶等。
壳体206是用于配合端盖201以形成电池单体200的内部环境的组件,其中,形成的内部环境可以用于容纳电极组件202、电解液质以及其他部件。壳体206和端盖201可以是独立的部件,可以于壳体206上设置开口,通过在开口处使端盖201盖合开口以形成电池单体200的内部环境。不限地,也可以使端盖201和壳体206一体化,具体地,端盖201和壳体206可以在其他部件入壳前先形成一个共同的连接面,当需要封装壳体206的内部时,再使端盖201盖合壳体206。壳体206可以是多种形状和多种尺寸的,例如长方体形、圆柱体形、六棱柱形等。具体地,壳体206的形状可以根据电极组件202的具体形状和尺寸大小来确定。壳体206的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
电极组件202是电池单体200中发生电化学反应的部件。壳体206内可以包含一个或更多个电极组件202。电极组件202主要由正极片203和负极片204卷绕或层叠放置形成,并且通常在正极片203与负极片204之间设有隔离膜205。极片具有活性物质或用于承载活性物质的部分构成电极组件202的主体部,极片不具有活性物质或不用于承载活性物质的部分各自构成极耳。正极极耳和负极极耳可以共同位于主体部的一端或是分别位于主体部的两端。在电池300的充放电过程中,活性物质中的离子穿梭于正负极之间,极耳连接电极端子207以形成电流回路。
其中,在一些示例中,电极组件202的极耳位于主体部的上侧,端盖201位于电极组件202的上方,使得电极端子207位于电池单体200的上端,极耳与电极端子207连接。在一些示例中,电极组件202的极耳位于主体部的上侧,端盖206位于电极组件202的右侧,使得电极端子207位于电池单体200的侧面,极耳与电极端子207通过集流构件连接,集流构件为折弯状,以将电极组件202上下端面的极耳与侧面的电极端子207连接。
电极组件202是电池单体200中发生电化学反应的部件。壳体206内可以包含一个或更多个电极组件202。电极组件202主要由正极片203和负极片204卷绕或层叠放置形成,并 且通常在正极片203与负极片204之间设有隔离件。在电池单体200的充放电过程中,活性物质中的离子穿梭于正负极之间,形成电流回路。
下面参考图1-图10描述根据本申请实施例的集流体100,下文以集流体100为电池单体200的负极片204为例进行说明。
如图4-图8所示,本申请提供了一种集流体100包括:导电层10和基材层20。导电层10用于输出电流。基材层20附着于部分导电层10,其中,基材层20的熔点小于导电层10的熔点,基材层20被构造成在受热时收缩断裂且使得导电层10断裂以形成贯穿孔21。
其中,基材层20和导电层10连接,导电层10可以设置在基材层20的外表面,电流通过导电层10向外输出。由于基材层20的熔点小于导电层10的熔点,当基材层20的温度达到一定温度时基材层20比导电层10先熔融断路,以使基材层20被构造成在受热时收缩断裂且使得导电层10断裂以形成贯穿孔21,贯穿孔21可以减小热量在集流体100上扩散。需要说明的是,当集流体100上形成贯穿孔21时,集流体100也可以正常工作。
在电池单体200充电过程中,负极片204上沉积金属离子形成枝晶,枝晶刺破隔离膜205,枝晶连接在正极片203和负极片204之间,使正极片203和负极片204发生短路,正极片203和负极片204短路后产生热量,热量传递至集流体100,基材层20在受热时收缩断裂,且基材层20断裂时使导电层10断裂以形成贯穿孔21,例如:热量传递至集流体100后,基材层20上与枝晶相对的位置处受热收缩断裂,使导电层10与枝晶相对的位置处断裂,以在集流体100上形成贯穿孔21,贯穿孔21在集流体100的厚度方向贯穿集流体100,形成贯穿孔21后正极片203和负极片204断开连接,防止正极片203和负极片204短路,降低热量向集流体100扩散的风险,降低热量在集流体100上蔓延,降低电池单体200发生热失控蔓延,提升了电池单体200使用可靠性。
导电层10是用于将极片的电流导出部分,可以是铝或其他可以导电的材质。
在上述技术方案中,通过设置基材层20的熔点小于导电层10的熔点,在电池单体200充电过程中,集流体100上形成的枝晶刺破隔离膜205导致电池单体200短路产生热量后,基材层20在受热时收缩断裂使导电层10断裂以形成贯穿孔21,降低热量向集流体100扩散的风险,可以降低电池单体200发生热失控风险,提升了电池单体200使用可靠性。
在一些实施例中,基材层20的熔点为A,满足关系式:110℃≤A≤130℃。
其中,基材层20的熔点可以为110℃、115℃、116℃、120℃、130℃等数值。
在上述技术方案中,通过将基材层20的熔点设置为A,能够使基材层20具有较低的熔点,电池单体200短路产生热量后,可以使基材层20收缩断裂,从而在集流体100上形成贯穿孔21,并且,在电池单体200正常工作时,基材层20不会发生断裂。
在一些实施例中,基材层20的弹性模量为B,满足关系式:B≥15MPa。
其中,基材层20的弹性模量可以为15MPa、20MPa、30MPa等数值。
在上述技术方案中,通过将基材层20的弹性模量设置为B,能够使基材层20具有适宜的收缩性,电池单体200短路产生热量后,有利于基材层20收缩断裂。
在一些实施例中,如图7和图8所示,集流体100还包括分隔件30,分隔件30设于基材层20,分隔件30用于将基材层20分隔成多个区域,分隔件30的熔点高于基材层20。
其中,分隔件30可以设置在基材层20的外表面,或者分隔件30可以设置在基材层20内部,或者基材层20的外表面和基材层20内部均设置有分隔件30,分隔件30将基材层20分隔成多个区域,分隔件30的熔点高于基材层20。
在电池单体200充电过程中,负极片204上沉积金属离子形成枝晶,枝晶刺破隔离膜205,枝晶连接在正极片203和负极片204之间,使正极片203和负极片204发生短路,正极片203和负极片204短路后产生热量,热量传递至集流体100,集流体100上与枝晶相对的区域受热时收缩断裂,使得导电层10断裂,以在集流体100上与枝晶相对的区域形成贯穿孔21,从而将短路的正负极断开。并且,由于分隔件30的熔点高于基材层20,热量向基材层20传递时,分隔件30能够阻止热量向基材层20上的其他区域扩散,使热量向基材层20上与枝晶相对的位置传递,减小热量传递至基材层20上的其他区域,进一步降低热量向集流体100扩散的风险,进一步降低热量在集流体100上蔓延,进一步降低电池单体200发生热失控蔓延,进一步提升了电池单体200使用可靠性,由于分隔件30设于基材层20,分隔件30会阻挡贯穿孔21的继续扩大,集流体100上形成贯穿孔21后可以继续使用,延长集流体100使用寿命。需要说明的是,集流体100上未直接受热的区域未形成贯穿孔21,未形成贯穿孔21的集流体100处是完整的,即使集流体100有部分区域形成贯穿孔21,集流体100也可以正常工作,从而延长集流体100使用寿命。
在上述技术方案中,通过设置分隔件30,电池单体200发生短路后,热量传递至集流体100上与枝晶相对的区域,在集流体100上形成贯穿孔21,由于分隔件30设于基材层20,分隔件30会阻挡贯穿孔21的继续扩大,集流体100上形成贯穿孔21后可以继续使用,延长集流体100使用寿命。
在一些实施例中,分隔件30用于将基材层20分割成网格状区域。
其中,分隔件30可以为多个,多个分隔件30交叉设置,从而将基材层20分割成网格状区域。通过分隔件30将基材层20分割成网格状区域,能够使至少一个区域被分隔件30包围。在电池单体200充电过程中,正极片203和负极片204短路后产生热量,热量传递至集流体100,集流体100上与枝晶相对的区域受热时收缩断裂,使得导电层10断裂,以在集流体100上与枝晶相对的区域形成贯穿孔21,使正极片203和负极片204断开连接。并且,热量向基材层20传递时,分隔件30更好地阻止热量向基材层20上的其他区域扩散, 使热量向基材层20上与枝晶相对的位置传递,减小热量传递至基材层20上的其他区域,进一步降低热量向集流体100扩散的风险,进一步降低热量在集流体100上蔓延,进一步降低电池单体200发生热失控蔓延,进一步提升了电池单体200使用可靠性,并且,热量向基材层20传递使集流体100上形成贯穿孔21后,分隔件30会阻挡贯穿孔21的继续扩大,集流体100上形成贯穿孔21后可以继续使用,进一步延长集流体100使用寿命。
在上述技术方案中,通过分隔件30将基材层20分割成网格状区域,热量向基材层20传递使集流体100上形成贯穿孔21后,分隔件30会阻挡贯穿孔21的继续扩大,集流体100上形成贯穿孔21后可以继续使用,进一步延长集流体100使用寿命,热量向基材层20传递时,分隔件30更好地阻止热量向基材层20上的其他区域扩散,使热量向基材层20上与枝晶相对的位置传递,减小热量传递至基材层20上的其他区域,进一步降低热量向集流体100扩散的风险,进一步降低热量在集流体100上蔓延,进一步降低电池单体200发生热失控蔓延,进一步提升了电池单体200使用可靠性。
在一些实施例中,分隔件30设于基材层20的表面且位于基材层20和导电层10之间。
其中,分隔件30设于基材层20的外表面,且分隔件30位于基材层20和导电层10之间。热量从导电层10向基材层20传递时,通过将分隔件30位于基材层20和导电层10之间,分隔件30更好地阻止热量向基材层20上的其他区域扩散,使热量向基材层20上与枝晶相对的位置传递,减小热量传递至基材层20上的其他区域,进一步降低热量向集流体100扩散的风险,进一步降低热量在集流体100上蔓延,进一步降低电池单体200发生热失控蔓延,进一步提升了电池单体200使用可靠性。
在上述技术方案中,通过将分隔件30设置于基材层20和导电层10之间,热量从导电层10向基材层20传递时,分隔件30更好地阻止热量向基材层20上的其他区域扩散,使热量向基材层20上与枝晶相对的位置传递,减小热量传递至基材层20上的其他区域,进一步降低热量向集流体100扩散的风险,进一步降低热量在集流体100上蔓延,进一步降低电池单体200发生热失控蔓延,进一步提升了电池单体200使用可靠性,并且,热量向基材层20传递使集流体100上形成贯穿孔21后,分隔件30会阻挡贯穿孔21的继续扩大。
在一些实施例中,分隔件30形成为涂层;或分隔件30胶粘于基材层20。
其中,分隔件30可以涂覆在基材层20的外表面,从而在基材层20的外表面形成分隔件30涂层,进而实现将分隔件30装配于基材层20上的效果。或者分隔件30胶粘于基材层20的外表面,从而将分隔件30固定于基材层20的外表面,降低分隔件30与基材层20分离的风险。
在上述技术方案中,通过分隔件30涂覆在基材层20的外表面,从而在基材层20的外表面形成分隔件30涂层,进而实现将分隔件30装配于基材层20上的效果,使分隔件30 和基材层20装配简单、方便。通过分隔件30胶粘于基材层20,从而将分隔件30固定于基材层20的外表面,降低分隔件30与基材层20分离的风险。
在一些实施例中,如图7和图8所示,分隔件30嵌设于基材层20的内部。
其中,分隔件30设置于基材层20的内部,基材层20的内部可以设置有多个分隔件30,如图8所示,多个分隔件30相互平行,且多个分隔件30依次间隔开,多个分隔件30将基材层20分隔成多个区域。热量从导电层10传递至基材层20上时,基材层20与枝晶相对的位置在受热时收缩断裂,且基材层20断裂时使导电层10断裂以形成贯穿孔21,通过将分隔件30嵌设于基材层20的内部,分隔件30更好地阻止热量向基材层20上的其他区域扩散,使热量集中在基材层20上与枝晶相对的位置,加快了该位置收缩的速度,同时减小热量传递至基材层20上的其他区域风险,降低热量向集流体100扩散的风险,从而进一步降低热量在集流体100上蔓延,进一步降低电池单体200发生热失控蔓延,进一步提升了电池单体200使用可靠性。
在上述技术方案中,通过将分隔件30嵌设于基材层20的内部,分隔件30更好地阻止热量向基材层20上的其他区域扩散,使热量集中在基材层20上与枝晶相对的位置,加快了该位置收缩的速度,同时减小热量传递至基材层20上的其他区域风险,进一步降低热量向集流体100扩散的风险,进一步降低热量在集流体100上蔓延,进一步降低电池单体200发生热失控蔓延,进一步提升了电池单体200使用可靠性。
在一些实施例中,分隔件30的厚度与基材层20的厚度的比值为C,满足关系式:0.8≤C≤1.1。
其中,分隔件30的厚度与基材层20的厚度的比值C可以为0.8、0.9、1.1等数值。
在上述技术方案中,通过设置分隔件30的厚度与基材层20的厚度的比值为C,0.8≤C≤1.1,在保证分隔件30性能的前提下,可以使集流体100内分隔件30的占比适宜。
在一些实施例中,分隔件30的熔点为D,满足关系式:180°≤D。
其中,分隔件30的熔点可以为180°、190°、200°等数值,分隔件30的熔点设置根据实际使用情况合理选择。
在上述技术方案中,通过将分隔件30的熔点设置为D,能够保证分隔件30的熔点高于基材层20的熔点,电池单体200发生短路后,热量传递至集流体100上与枝晶相对的区域,在集流体100上形成贯穿孔21,而由于分隔件30的熔点高于基材层20的熔点,可以降低分隔件30熔断风险。
在一些实施例中,分隔件30为聚酰亚胺件。
其中,聚酰亚胺件耐高温达400℃以上,聚酰亚胺件具有高绝缘性能,且聚酰亚胺件成本低。
在上述技术方案中,通过将分隔件30设置为聚酰亚胺件,受热不容易断裂,可以使分隔件30具有可靠工作性能,并且,也可以降低集流体100生产成本。
在一些实施例中,导电层10完全包裹于基材层20的外周壁。
其中,基材层20的外周壁是指基材层20的外表面,基材层20的整个外周壁均设置有导电层10。通过导电层10完全包裹于基材层20的外周壁,能够增加导电层10的设置面积,可以提升集流体100的输出电流能力。
在上述技术方案中,通过导电层10完全包裹于基材层20的外周壁,能够增加导电层10的设置面积,可以提升集流体100的输出电流能力。
在一些实施例中,导电层10为设于基材层20的金属涂层;或导电层10粘贴于基材层20。
其中,导电层10可以涂覆在基材层20的外表面上,从而在基材层20的外表面形成导电层10涂层,进而实现将导电层10装配于基材层20上的效果。或者导电层10通过胶粘贴于基材层20的外表面,从而将导电层10固定于基材层20的外表面,降低导电层10与基材层20分离的风险。
在上述技术方案中,通过导电层10涂覆在基材层20的外表面,从而在基材层20的外表面形成导电层10涂层,进而实现将导电层10装配于基材层20上的效果,使分隔件30和基材层20装配简单、方便。通过导电层10粘贴于基材层20,从而将导电层10固定于基材层20的外表面,降低导电层10与基材层20分离的风险。
在一些实施例中,如图4和图5所示,集流体100还包括第一绝缘层40,第一绝缘层40设于导电层10的背离基材层20的第一表面,第一绝缘层40用于将第一表面分割成多个区域,第一绝缘层40的熔点高于导电层10。
其中,如图4所示,第一绝缘层40具有绝缘、隔热作用,导电层10与隔离膜205相对的表面为导电层10的背离基材层20的第一表面,第一绝缘层40设置在第一表面,第一绝缘层40可以粘接于第一表面,第一绝缘层40也可以涂覆于第一表面,第一绝缘层40可以为多个,多个第一绝缘层40均设置在第一表面,通过第一绝缘层40将第一表面分割成多个区域。
在电池单体200充电过程中,负极片204上沉积金属离子形成枝晶,枝晶刺破隔离膜205,枝晶连接在正极片203和负极片204之间,使正极片203和负极片204发生短路,正极片203和负极片204短路后产生热量,热量传递至集流体100,集流体100上与枝晶相对的区域受热时收缩断裂,使得导电层10断裂,以在集流体100上与枝晶相对的区域形成贯穿孔21,断开正极片203和负极片204连接。并且,由于第一绝缘层40的熔点高于导电层10,热量向基材层20传递时,避免第一绝缘层40断裂,第一绝缘层40能够阻止热量向基 材层20上的其他区域扩散,使热量向基材层20上与枝晶相对的位置传递,减小热量传递至基材层20上的其他区域,进一步降低热量向集流体100扩散的风险,进一步降低热量在集流体100上蔓延,进一步降低电池单体200发生热失控蔓延,进一步提升了电池单体200使用可靠性。同时,由于第一绝缘层40具有绝缘性,如果第一绝缘层40与正极片203接触,避免第一绝缘层40将正极片203和负极片204连接导致正极片203和负极片204短路。
在上述技术方案中,通过设置第一绝缘层40,第一绝缘层40将第一表面分割成多个区域,第一绝缘层40能够减少热量向基材层20上的其他区域扩散,使热量向基材层20上与枝晶相对的位置传递,同时进一步降低热量向集流体100扩散的风险,从而降低电池单体200发生热失控蔓延,提升了电池单体200使用可靠性。
在一些实施例中,如图6所示,第一绝缘层40包括多个相交的绝缘条41以限定出网格状区域。
其中,如图7所示,第一绝缘层40包括多个相交的绝缘条41,多个绝缘条41交叉设置,在第一表面上限定出网格状区域。
通过多个绝缘条41在第一表面上限定出网格状区域,能够使至少一个区域被绝缘条41包围。在电池单体200充电过程中,枝晶形成在某区域位于绝缘条41之间,正极片203和负极片204短路后产生热量,热量传递至集流体100,集流体100上与枝晶相对的区域受热时收缩断裂,使得导电层10断裂,以在集流体100上与枝晶相对的区域形成贯穿孔21,断开正极片203和负极片204连接。并且,热量传递至导电层10时,绝缘条41更好地阻止热量向导电层10上的其他区域扩散,使热量向导电层10上与枝晶相对的位置传递,从而使热量向基材层20上与枝晶相对的位置传递,减小热量传递至基材层20上的其他区域,进一步降低热量向集流体100扩散的风险,进一步降低热量在集流体100上蔓延,进一步降低电池单体200发生热失控蔓延,进一步提升了电池单体200使用可靠性。
在上述技术方案中,通过多个绝缘条41在第一表面上限定出网格状区域,热量传递至导电层10时,绝缘条41更好地阻止热量向导电层10上的其他区域扩散,使热量向导电层10上与枝晶相对的位置传递,从而使热量向基材层20上与枝晶相对的位置传递,减小热量传递至基材层20上的其他区域,进一步降低热量向集流体100扩散的风险,进一步降低热量在集流体100上蔓延,进一步降低电池单体200发生热失控蔓延,进一步提升了电池单体200使用可靠性。
在一些实施例中,第一绝缘层40形成为涂层;或第一绝缘层40胶粘于导电层10。
其中,第一绝缘层40可以涂覆在导电层10的第一表面上,从而在第一表面上形成第一绝缘层40涂层,进而实现将第一绝缘层40装配于导电层10上的效果。或者第一绝缘层40通过胶粘贴于导电层10的外表面,从而将第一绝缘层40固定于导电层10的外表面,降低 导电层10与第一绝缘层40分离的风险。
在上述技术方案中,通过第一绝缘层40涂覆在导电层10的第一表面上,从而在第一表面上形成第一绝缘层40涂层,进而实现将第一绝缘层40装配于导电层10上的效果,使第一绝缘层40和导电层10装配简单、方便。通过第一绝缘层40胶粘于导电层10,从而将第一绝缘层40固定于导电层10的外表面,降低导电层10与第一绝缘层40分离的风险。
如图3、图4和图7所示,本申请还提供一种电池单体200,包括:正极片203和负极片204,正极片203和负极片204中的至少一个包括上述实施例的集流体100。
通过正极片203和负极片204中的至少一个包括上述实施例的集流体100,在电池单体200充电过程中,正极片203和负极片204发生短路时,正极片203和负极片204短路后产生热量,热量传递至集流体100,基材层20在受热时收缩断裂,且基材层20断裂时使导电层10断裂以形成贯穿孔21,例如:热量传递至集流体100后,基材层20上与枝晶相对的位置处受热收缩断裂,使导电层10与枝晶相对的位置处断裂,以在集流体100上形成贯穿孔21,断开正极片203和负极片204短路连接。贯穿孔21在集流体100的厚度方向贯穿集流体100,降低热量向集流体100扩散的风险,降低热量在集流体100上蔓延,降低电池单体200发生热失控蔓延,提升了电池单体200使用可靠性。
在一些实施例中,如图4和图7所示,负极片204设有集流体100。
其中,在该实施例中,负极片204设有集流体100,正极片203可以设置有上述实施例的集流体100,正极片203也可以不设置上述实施例的集流体100。
在电池单体200充电过程中,负极片204上沉积金属离子形成枝晶,枝晶刺破隔离膜205,枝晶连接在正极片203和负极片204之间,使正极片203和负极片204发生短路,正极片203和负极片204短路后产生热量,热量传递至负极片204,基材层20在受热时收缩断裂,且基材层20断裂时使导电层10断裂以形成贯穿孔21,且形成贯穿孔21后正极片203和负极片204断开。降低热量向集流体100扩散的风险,降低热量在负极片204上蔓延,降低电池单体200发生热失控蔓延,提升了电池单体200使用可靠性。
在上述技术方案中,通过负极片204设有集流体100,在电池单体200充电过程中,正极片203和负极片204短路后,热量传递至负极片204,负极片204形成贯穿孔21,降低热量向集流体100扩散的风险,降低热量在负极片204上蔓延,降低电池单体200发生热失控蔓延,提升了电池单体200使用可靠性。
在一些实施例中,正极片203和负极片204之间设有隔离膜205,基材层20的弹性模量大于隔离膜205的弹性模量。
其中,正极片203、负极片204和隔离膜205形成电极组件202,如图9所示,正极片203、负极片204和隔离膜205卷绕形成电极组件202,如图10所示,正极片203、负极片 204和隔离膜205层叠形成电极组件202。
如果基材层20的弹性模量小于隔离膜205的弹性模量,正极片203和负极片204短路后,热量传递至集流体100,基材层20上形成的贯穿孔21截面积小,无法保证正极片203和负极片204断开连接。而在本申请中,枝晶刺破隔离膜205,枝晶连接在正极片203和负极片204之间使正极片203和负极片204发生短路,正极片203和负极片204短路后产生热量,热量传递至集流体100,基材层20在受热时收缩断裂,且基材层20断裂时使导电层10断裂以形成贯穿孔21,通过基材层20的弹性模量大于隔离膜205的弹性模量,可以使贯穿孔21的横截面积足够大,保证正极片203和负极片204断开连接,降低正极片203和负极片204短路风险,降低热量向集流体100扩散的风险,降低热量在集流体100上蔓延,降低电池单体200发生热失控蔓延,提升了电池单体200使用可靠性。
在上述技术方案中,通过基材层20的弹性模量大于隔离膜205的弹性模量,正极片203和负极片204短路时,可以使贯穿孔21的横截面积足够大,保证正极片203和负极片204断开连接,降低正极片203和负极片204短路风险,降低热量向集流体100扩散的风险,降低热量在集流体100上蔓延,降低电池单体200发生热失控蔓延,进一步提升了电池单体200使用可靠性。
在一些实施例中,基材层20的弹性模量为B,隔离膜205的弹性模量为B1,满足关系式:0.8≤B/B1≤5。
其中,B/B1可以为0.8、0.9、5等数值。B/B1的比值可以根据实际使用需求进行合理选择设置。
在上述技术方案中,通过设置0.8≤B/B1≤5,能够使基材层20具有适宜的收缩性,电池单体200短路产生热量后,有利于基材层20收缩断裂,并且,降低隔离膜205的收缩性,使隔离膜205可靠设置在正极片203和负极片204之间,隔离膜205将正极片203和负极片204分隔开,从而降低正极片203和负极片204短路风险。
在一些实施例中,电池单体200为钠金属电池单体200。
其中,钠金属电池单体200能够快速充电和放电,可以提升电池单体200使用性能,并且,由于钠储量极为丰富和成本费用低,将电池单体200设置为钠金属电池单体200,能够降低电池单体200生产成本。同时钠金属电池单体200具有很高的倍率性能,可以充分满足全部气候条件下的使用。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互结合。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语 的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。
Claims (23)
- 一种集流体,其特征在于,包括:导电层,用于输出电流;基材层,附着于部分所述导电层,其中,所述基材层的熔点小于所述导电层的熔点,所述基材层被构造成在受热时收缩断裂且使得所述导电层断裂以形成贯穿孔。
- 根据权利要求1所述的集流体,其特征在于,所述基材层的熔点为A,满足关系式:110℃≤A≤130℃。
- 根据权利要求1所述的集流体,其特征在于,所述基材层的弹性模量为B,满足关系式:B≥15MPa。
- 根据权利要求1-3中任一项所述的集流体,其特征在于,还包括分隔件,所述分隔件设于所述基材层,所述分隔件用于将所述基材层分隔成多个区域,所述分隔件的熔点高于所述基材层。
- 根据权利要求4所述的集流体,其特征在于,所述分隔件用于将所述基材层分割成网格状区域。
- 根据权利要求4或5所述的集流体,其特征在于,所述分隔件设于所述基材层的表面且位于所述基材层和所述导电层之间。
- 根据权利要求6所述的集流体,其特征在于,所述分隔件形成为涂层;或所述分隔件胶粘于所述基材层。
- 根据权利要求4所述的集流体,其特征在于,所述分隔件嵌设于所述基材层的内部。
- 根据权利要求8所述的集流体,其特征在于,所述分隔件的厚度与所述基材层的厚度的比值为C,满足关系式:0.8≤C≤1.1。
- 根据权利要求4-9中任一项所述的集流体,其特征在于,所述分隔件的熔点为D,满足关系式:180°≤D。
- 根据权利要求4-9中任一项所述的集流体,其特征在于,所述分隔件为聚酰亚胺件。
- 根据权利要求1-11中任一项所述的集流体,其特征在于,所述导电层完全包裹于所述基材层的外周壁。
- 根据权利要求1所述的集流体,其特征在于,所述导电层为设于所述基材层的金属涂层;或所述导电层粘贴于所述基材层。
- 根据权利要求1-13中任一项所述的集流体,其特征在于,还包括第一绝缘层,所 述第一绝缘层设于所述导电层的背离所述基材层的第一表面,所述第一绝缘层用于将所述第一表面分割成多个区域,所述第一绝缘层的熔点高于所述导电层。
- 根据权利要求14所述的集流体,其特征在于,所述第一绝缘层包括多个相交的绝缘条以限定出网格状区域。
- 根据权利要求15所述的集流体,其特征在于,所述第一绝缘层形成为涂层;或所述第一绝缘层胶粘于所述导电层。
- 一种电池单体,其特征在于,包括:正极片和负极片,所述正极片和所述负极片中的至少一个包括根据权利要求1-16中任一项所述的集流体。
- 根据权利要求17所述的电池单体,其特征在于,所述负极片设有所述集流体。
- 根据权利要求17或18所述的电池单体,其特征在于,所述正极片和所述负极片之间设有隔离膜,所述基材层的弹性模量大于所述隔离膜的弹性模量。
- 根据权利要求19所述的电池单体,其特征在于,所述基材层的弹性模量为B,所述隔离膜的弹性模量为B1,满足关系式:0.8≤B/B1≤5。
- 根据权利要求17-20中任一项所述的电池单体,其特征在于,所述电池单体为钠金属电池单体。
- 一种电池,其特征在于,包括根据权利要求17-21中任一项所述的电池单体。
- 一种用电装置,其特征在于,包括根据权利要求22所述的电池,所述电池用于提供电能。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/144155 WO2024138683A1 (zh) | 2022-12-30 | 2022-12-30 | 集流体、电池单体、电池以及用电装置 |
EP22969825.3A EP4567937A1 (en) | 2022-12-30 | 2022-12-30 | Current collector, battery cell, battery, and electric device |
CN202280096457.XA CN119325654A (zh) | 2022-12-30 | 2022-12-30 | 集流体、电池单体、电池以及用电装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/144155 WO2024138683A1 (zh) | 2022-12-30 | 2022-12-30 | 集流体、电池单体、电池以及用电装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024138683A1 true WO2024138683A1 (zh) | 2024-07-04 |
Family
ID=91716245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/144155 WO2024138683A1 (zh) | 2022-12-30 | 2022-12-30 | 集流体、电池单体、电池以及用电装置 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4567937A1 (zh) |
CN (1) | CN119325654A (zh) |
WO (1) | WO2024138683A1 (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105742566A (zh) * | 2016-04-11 | 2016-07-06 | 宁德时代新能源科技股份有限公司 | 一种电极极片及锂离子电池 |
EP3467919A1 (en) * | 2017-10-09 | 2019-04-10 | Robert Bosch GmbH | Current collector with an improved security behavior and battery cell comprising the same |
CN216120659U (zh) * | 2021-10-28 | 2022-03-22 | 宁德时代新能源科技股份有限公司 | 集流体、电极片、电极组件、电池单体、电池和用电装置 |
-
2022
- 2022-12-30 CN CN202280096457.XA patent/CN119325654A/zh active Pending
- 2022-12-30 EP EP22969825.3A patent/EP4567937A1/en active Pending
- 2022-12-30 WO PCT/CN2022/144155 patent/WO2024138683A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105742566A (zh) * | 2016-04-11 | 2016-07-06 | 宁德时代新能源科技股份有限公司 | 一种电极极片及锂离子电池 |
EP3467919A1 (en) * | 2017-10-09 | 2019-04-10 | Robert Bosch GmbH | Current collector with an improved security behavior and battery cell comprising the same |
CN216120659U (zh) * | 2021-10-28 | 2022-03-22 | 宁德时代新能源科技股份有限公司 | 集流体、电极片、电极组件、电池单体、电池和用电装置 |
Also Published As
Publication number | Publication date |
---|---|
EP4567937A1 (en) | 2025-06-11 |
CN119325654A (zh) | 2025-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220344698A1 (en) | Battery cell, manufacturing method and manufacturing system therefor, battery and electric device | |
CN216720252U (zh) | 一种卷绕式电极组件、电池单体、电池及用电装置 | |
CN214203812U (zh) | 电池单体、电池以及用电装置 | |
CN217606982U (zh) | 电池和用电设备 | |
WO2025055319A1 (zh) | 电池单体、电池及用电装置 | |
WO2025050634A1 (zh) | 电池单体、电池以及用电装置 | |
WO2024212491A1 (zh) | 电池单体、电池以及用电装置 | |
CN118414746A (zh) | 电池单体、电池及用电设备 | |
WO2025102632A1 (zh) | 电池单体、电池及用电装置 | |
CN222483642U (zh) | 电池单体、电池及用电装置 | |
WO2024148507A1 (zh) | 电池单体、电池及用电装置 | |
WO2024138683A1 (zh) | 集流体、电池单体、电池以及用电装置 | |
CN220382284U (zh) | 用电装置、电池、电池单体及其端盖和盖板组件 | |
CN220544160U (zh) | 一种电池单体、电池和用电装置 | |
CN221427967U (zh) | 电池单体、电池以及用电装置 | |
CN221262547U (zh) | 电池单体、电池和用电设备 | |
US20250174779A1 (en) | Battery cell, battery and electricity-consuming device | |
CN216903255U (zh) | 电极组件、电池单体、电池及用电装置 | |
US20240363976A1 (en) | Connecting assembly, battery cell, battery, and power consumption device | |
US20240222818A1 (en) | Battery cell, method and system for manufacturing battery cell, battery and electrical apparatus | |
WO2024145827A1 (zh) | 电池单体、电池及用电装置 | |
EP4589754A1 (en) | End cover assembly, battery cell, battery, and electrical apparatus | |
US20250070430A1 (en) | Electrode assembly, battery cell, battery, and electrical device | |
WO2024138707A1 (zh) | 电极组件、电池单体、电池以及用电装置 | |
WO2025145303A1 (zh) | 电池单体、电池及用电装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22969825 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022969825 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022969825 Country of ref document: EP Effective date: 20250303 |
|
WWP | Wipo information: published in national office |
Ref document number: 2022969825 Country of ref document: EP |