WO2024136254A1 - Lipid nanoparticles comprising low-concentration ionizable lipids, and preparation method therefor - Google Patents

Lipid nanoparticles comprising low-concentration ionizable lipids, and preparation method therefor Download PDF

Info

Publication number
WO2024136254A1
WO2024136254A1 PCT/KR2023/020315 KR2023020315W WO2024136254A1 WO 2024136254 A1 WO2024136254 A1 WO 2024136254A1 KR 2023020315 W KR2023020315 W KR 2023020315W WO 2024136254 A1 WO2024136254 A1 WO 2024136254A1
Authority
WO
WIPO (PCT)
Prior art keywords
lipid
lipid nanoparticles
ionized
lipids
phase solution
Prior art date
Application number
PCT/KR2023/020315
Other languages
French (fr)
Korean (ko)
Inventor
박효찬
전찬희
김주희
Original Assignee
(주)인벤티지랩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230171950A external-priority patent/KR20240099028A/en
Application filed by (주)인벤티지랩 filed Critical (주)인벤티지랩
Publication of WO2024136254A1 publication Critical patent/WO2024136254A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles

Definitions

  • the present invention relates to lipid nanoparticles containing low concentration ionized lipids and a method for producing the same.
  • Nucleic acid-based medicines which started about 40 years ago by injecting plasmid DNA into the human body to help produce deficient proteins, have since been reported in various types such as antigene, decoy, antisense, siRNA, and miRNA that inhibit gene transcription and translation.
  • Nucleic acid-based medicines target DNA or RNA rather than proteins and have received attention as personalized treatments through complementary binding to DNA or RNA of a specific sequence. Nucleic acid-based medicines are used not only as therapeutic agents but also as preventive agents that protect against diseases by injecting genes that can express antigens for specific diseases.
  • RNA vaccines are viral vector-based vaccines that inject mRNA encoding an antigen into the human body to express the antigen within the body and induce the formation of antibodies against it. It has been spotlighted as an effective response to COVID-19, which broke out in 2019, as it has no concerns about infection with vaccines or the potential risk of genetic mutation with DNA vaccines, and has the advantage of being able to be developed quickly.
  • nucleic acid-based medicines are easily degraded by nucleic acid hydrolyzing enzymes in the human body and are negatively charged macromolecules, so they have the disadvantage of not being easily delivered into cells, so a method of delivering them to the desired location stably and efficiently is needed.
  • lipids As delivery systems for nucleic acids, delivery techniques based on various materials such as lipids, polymers, dendrimer, and inorganic metal materials have been reported, including patisiran, the first siRNA new drug approved by the FDA in 2018, as well as COVID-19 approved for emergency use in 2020.
  • the mRNA vaccine for Korea also used lipid nanoparticles.
  • the lipid nanoparticle contains mRNA inside, and the lipid nanoparticle protects the mRNA from being decomposed by enzymes in vivo and neutralizes the negative charge of the mRNA to increase cell membrane penetration efficiency. Additionally, lipid nanoparticles that enter the cell are separated from the mRNA and decomposed, and the mRNA participates in the protein expression process in the cytoplasm.
  • lipid nanoparticle-based carriers necessarily contain positively charged ionized lipids in order to contain negatively charged mRNA, but the toxicity of the ionized lipids may be a problem.
  • the object of the present invention relates to lipid nanoparticles containing low concentration ionized lipids and a method for producing the same.
  • Another object of the present invention is to provide lipid nanoparticles that can reduce cytotoxicity due to the low content of ionized lipids in the lipid nanoparticles.
  • Another object of the present invention is that it has a uniform spherical shape, has an excellent encapsulation rate of nucleic acids, and increases the content of non-ionized lipids and fusible lipids when producing lipid nanoparticles, thereby increasing the content of the same nucleic acid compared to conventional lipid nanoparticles. It provides a method for producing lipid nanoparticles that can be manufactured into a large number of lipid nanoparticles using , and when the same nucleic acid is injected, the number of lipid nanoparticles injected into the body increases, thereby increasing the protein expression level of the nucleic acid.
  • the ionized lipid and the fusible lipid may be included in a molar ratio of 1:1 to 1:10.
  • the lipid nanoparticles may have a uniform spherical shape and have a polydispersity index of 0.05 to 0.1.
  • nucleic acids include RNA, DNA, short interfering RNA (siRNA), messenger RNA (mRNA), aptamer, antisense oligodeoxynucleotide (ODN), antisense RNA, ribozyme, and DNA enzyme. (DNAzyme) and mixtures thereof.
  • non-ionized lipids include distearoylphosphatidylcholine (DSPC), dioleolphosphatidyl ethanolamine (DOPE), bis(diphenylphosphino)ethane (DPPE), diacyl phosphatidylcholine, diacylphosphatidylethanolamine, and diacylphosphatidylethanolamine. sphatidylserine ) and mixtures thereof.
  • the fusible lipid may be selected from the group consisting of phospholipids, cholesterol, tocopherol, and mixtures thereof.
  • a method for producing lipid nanoparticles containing a low concentration of ionized lipid includes ionizable lipid in an organic solvent; non-ionizable lipid; neutral lipid; and dissolving the fusible lipid to prepare an oily solution; Preparing an aqueous solution containing nucleic acids; and manufacturing lipid nanoparticles by injecting the oil phase solution and the aqueous solution into a chip for producing lipid nanoparticles, wherein the chip for producing lipid nanoparticles includes an oil phase solution supply unit, an aqueous solution supply unit, a mixer unit, and a discharge unit; , the oil phase solution is injected into the oil phase solution supply section, the aqueous phase solution is injected into the aqueous phase solution supply section, the oil phase solution is injected into the mixer section through the oil phase solution supply section, and the aqueous phase solution is injected into the mixer section through the aqueous phase solution supply section.
  • the oil phase solution and the aqueous phase solution are mixed in the mixer unit to form lipid nanoparticles, and the ionized lipid may be included in an amount of 25 mol% or less based on the total weight of lipids in the lipid nanoparticles.
  • the spherical shape is uniform and the encapsulation rate of nucleic acids is excellent, and when producing lipid nanoparticles, the content of non-ionized lipids and fusible lipids is increased to replace conventional lipid nanoparticles.
  • lipid nanoparticles can be manufactured into multiple lipid nanoparticles using the same nucleic acid content, and when the same nucleic acid is injected, the number of lipid nanoparticles injected into the body increases, thereby increasing the protein expression level of nucleic acids. It relates to a manufacturing method.
  • Figure 1 is a schematic diagram for comparison between the lipid nanoparticles of the present invention and conventional lipid nanoparticles.
  • Figure 2 is an example of a chip for producing lipid nanoparticles that can produce lipid nanoparticles of the present invention.
  • Figure 3 is an example of a chip for producing lipid nanoparticles that can produce lipid nanoparticles of the present invention.
  • Figure 4 is an example of a chip for producing lipid nanoparticles that can produce lipid nanoparticles of the present invention.
  • Figure 5 shows the average diameter and PDI measurement results of lipid nanoparticles according to an embodiment of the present invention.
  • Figure 6 shows the results of the encapsulation rate of lipid nanoparticles according to an embodiment of the present invention.
  • Figure 7 shows the results of a test on the shape change of cells treated with lipid nanoparticles according to an embodiment of the present invention.
  • Figure 8 shows the results of a cytotoxicity test of lipid nanoparticles according to an embodiment of the present invention.
  • Figure 9 shows the results of a cytotoxicity test on conventional lipid nanoparticles and lipid nanoparticles containing low concentration ionized lipid according to an embodiment of the present invention.
  • Figure 10 shows the results of a test on the level of protein expression for conventional lipid nanoparticles and lipid nanoparticles containing low concentration ionized lipid according to an embodiment of the present invention.
  • Figure 11 is a test result of the number of lipid nanoparticles formed depending on the concentration of ionized lipid according to an embodiment of the present invention.
  • Figure 12 is a test result of the number of lipid nanoparticles formed depending on the concentration of ionized lipid according to an embodiment of the present invention.
  • the present invention relates to nucleic acids; Ionizable lipid; non-ionizable lipid; neutral lipid; and a fusible lipid, wherein the ionized lipid is contained in an amount of 25 mol% or less based on the total weight of the lipid in the lipid nanoparticle.
  • mRNA is short for messenger ribonucleic acid, and is an intermediate that connects DNA and proteins in the process where DNA containing genetic information becomes mRNA and proteins are synthesized using this.
  • mRNA vaccines have several advantages over other types of vaccines.
  • the biggest advantage of mRNA vaccines is that lipid nanoparticles (LNPs) containing mRNA are a platform technology, enabling rapid technology development against viruses that frequently mutate, such as COVID-19.
  • LNPs lipid nanoparticles
  • mRNA can be produced by identifying a protective protein antigen and sequencing the gene for the antigen.
  • a protective protein antigen When new mRNA is manufactured using this method and the formulation design and manufacturing process of conventional mRNA vaccines are used, rapid production of mRNA vaccines is possible. This means that since mRNA encoding different antigens is chemically and physically very similar, the formulation design and manufacturing process of a new mRNA vaccine can proceed in the same steps as the formulation and manufacturing process of a conventional mRNA vaccine.
  • lipid nanoparticles can be manufactured using positively charged ionisable lipids (or cationic lipids), using the electrical properties of negatively charged mRNA.
  • ionized lipids are positively charged lipids that bind strongly to negatively charged mRNA through electrical attraction.
  • lipid nanoparticles are formed by additionally including non-ionizable lipids, neutral lipids, and fusion lipids.
  • the nucleic acid-lipid particle of US 9364435 B2 comprises (a) nucleic acid, (b) cationic lipid, (c) non-cationic lipid and (d) fusible lipid, wherein, based on the total content of lipids in the particle, the above It is disclosed as comprising 50 mol% to 85 mol% of cationic lipid, 13 mol% to 49.5 mol% of non-cationic lipid, and 0.5 mol% to 2 mol% of fusible lipid. .
  • nucleic acid-lipid particle of EP 2279254 B1 contains 50 mol% to 65 mol% of the cationic lipid and 49.5 mol% or less of the non-cationic lipid, based on the total content of lipids in the particle.
  • cholesterol or its derivatives are included at 30 mol% to 40 mol%, and fusion lipids are disclosed at 0.5 mol% to 2 mol%.
  • lipid nanoparticles containing mRNA have been confirmed to contain a large amount of ionized lipids (cationic lipids) within the particles.
  • LNPs lipid nanoparticles
  • the produced lipid nanoparticles do not release mRNA well after entering the cell, leading to a decrease in protein expression rate.
  • the lipid nanoparticles containing low concentration ionized lipids of the present invention the number of nucleic acids and ionized lipids contained in one lipid nanoparticle is reduced in order to reduce the toxicity of ionized lipids, but the lipid nanoparticles are made using the same amount of nucleic acids.
  • the overall number of lipid nanoparticles produced is increased, thereby increasing the number of lipid nanoparticles entering cells.
  • the amount of ionized lipid generated when the lipid nanoparticles escape the endosome within the cell is reduced, resulting in less cytotoxicity.
  • the present invention relates to lipid nanoparticles containing a low concentration of ionized lipids.
  • concentration of ionized lipids in the lipid nanoparticles is low, the lipid nanoparticles are of uniform size and have a low content of ionized lipids, which can reduce cytotoxicity. It is characterized by being able to increase the protein expression level of nucleic acids contained in lipid nanoparticles.
  • lipid nanoparticles containing low concentration ionized lipids include nucleic acids; Ionizable lipid; non-ionizable lipid; neutral lipid; and fusible lipids, wherein the ionized lipids may be included in an amount of 25 mol% or less based on the total weight of lipids in the lipid nanoparticles.
  • conventional lipid nanoparticles containing nucleic acids are known to contain about 50 mol% of ionized lipids, which means that during the formation process of lipid nanoparticles, the negative and positive ionized lipids of nucleic acids are self-assembled.
  • a large amount of positively charged ionized lipids must be included in order to produce lipid nanoparticles through electrostatic attraction with nucleic acids.
  • the lipid nanoparticles of the present invention contain ionized lipids based on the total weight of lipids in the lipid nanoparticles. In comparison, it may be included at 25 mol% or less, 8 mol% to 22 mol%, and 8.1 mol% to 20 mol%.
  • ionized lipids are included in lipid nanoparticles within the above range, the protein expression level of nucleic acids can be increased.
  • ionized lipids in the lipid nanoparticles are low as described above, unlike the prior art, it is possible to produce uniform lipid nanoparticles because the ionized lipids and non-ionized lipids are 1:0.3 to 1:3. and the ionized lipid and fusible lipid are included in a molar ratio of 1:1 to 1:10.
  • Figure 1 is a conceptual diagram for comparison between the lipid nanoparticles (200) of the present invention and the conventional lipid nanoparticles (100).
  • Figure 1 shows the lipid nanoparticles (100, 200) formed when producing lipid nanoparticles (100, 200) using 5 mRNAs (1) and 25 ionized lipids (2) among nucleic acids, which are conventional lipid nanoparticles (100, 200). It can be confirmed that the nanoparticle 100 contains all 5 mRNAs (1) and 25 ionized lipids (2) in one particle. In other words, the conventional lipid nanoparticle 100 contains a plurality of mRNAs (1) in one particle, and as it contains a plurality of mRNAs (1), the negatively charged mRNA (1) has a positive charge around it. Ionized lipid (2) is located adjacent to each other by electrostatic attraction and is contained within the lipid nanoparticle (100).
  • the lipid nanoparticles (200) of the present invention are formed when producing lipid nanoparticles (200) using 5 identical mRNAs (1) and 25 ionized lipids (2). It can be seen that the number of mRNAs (1) contained in the lipid nanoparticles (200) is small, unlike the conventional lipid nanoparticles (100), and as a result, the number of ionized lipids (2) contained in the lipid nanoparticles (200) is 5. You can see the difference in the number of others.
  • ionized lipids and non-ionized lipids are included in a molar ratio of 1:0.3 to 1:3, 1:0.6 to 1:2.8, and 1:0.7 to 1. :2.5, and may be included in a molar ratio of 1:0.8 to 1:2.4.
  • the ionized lipid and the fusible lipid are included in a molar ratio of 1:1 to 1:10, included in a molar ratio of 1:2 to 1:9.5, included in a molar ratio of 1:2.5 to 1:9, and 1 It may be included at a molar ratio of :3 to 1:8.9.
  • lipid nanoparticles are formed by including a high concentration of non-ionized lipids and fusible lipids included to produce lipid nanoparticles as described above, a high concentration of non-ionized lipids and fusible lipids are included, making them relatively It enabled the formation of uniform lipid nanoparticles even when small nucleic acids and ionized lipids were included.
  • the lipid nanoparticles have a uniform spherical shape, have a polydispersity index of 0.05 to 0.1, and the average diameter of the lipid nanoparticles may be 70 nm to 100 nm.
  • the polydispersity index of the lipid nanoparticles is 0.05 to 0.1, 0.05 to 0.09, and is formed within a uniform diameter range, and the average diameter of the lipid nanoparticles is 70 nm to 100 nm, and may be 70 nm to 95 nm.
  • the lipid nanoparticles of the present invention may be nanoparticles with a small diameter and a uniform spherical shape.
  • the lipid nanoparticles of the present invention may have a nucleic acid encapsulation rate of 90% or more, 92% or more, 93% to 100%, or 93% to 99%.
  • the lipid nanoparticles not only have a uniform spherical shape, but can also exhibit an excellent encapsulation rate for nucleic acids used to produce lipid nanoparticles.
  • the nucleic acids include RNA, DNA, short interfering RNA (siRNA), messenger RNA (mRNA) aptamer, antisense oligodeoxynucleotide (ODN), antisense RNA, ribozyme, and DNAzyme. and mixtures thereof, preferably mRNA, but is not limited to the above examples.
  • the nucleic acid is used to prevent or treat disease, and as an example, it synthesizes a spike protein to combat the COVID-19 virus, such as the COVID-19 vaccine. Without being limited to the above examples, any nucleic acid for preventing or treating disease can be used.
  • the ionized lipid may be ALC-0315 (Genevant), ALC-0159 (Genevant), DLinDAP, Dlin-MC3-DMA, or SM102 (Arbutus).
  • the ionized lipid is not limited to examples, and any ionized lipid that can be used in the production of lipid nanoparticles can be used without limitation.
  • the non-ionized lipids include distearoylphosphatidylcholine (DSPC), dioleolphosphatidyl ethanolamine (DOPE), bis(diphenylphosphino)ethane (DPPE), diacyl phosphatidylcholine, diacylphosphatidylethanolamine, and diacylphosphatidylserine. tidylserine) and It is selected from the group consisting of mixtures thereof, preferably DSPC, but is not limited to the above examples.
  • the fusion lipid may be selected from the group consisting of cholesterol, tocopherol, and mixtures thereof, preferably cholesterol, but is not limited to the above examples.
  • the neutral lipids can act as a steric barrier to prevent aggregation during storage, and reduce the protein adsorption of lipid nanoparticles in-vivo, thereby reducing immunogenic reactions and reducing the attack of lipid nanoparticles by macrophages. It plays a role in giving, specifically polyethylene glycol 2000 distearoylphosphatidylethanolamine (PEG (2000) DSPE), DMG-PEG, PEG-DMPE, DPPE-PEG, DPG-PEG, PEG-DOPE and mixtures thereof. It may be selected from the group consisting of DMG-PEG, but is not limited to the above examples.
  • a method for producing lipid nanoparticles containing a low concentration of ionized lipid includes ionizable lipid in an organic solvent; non-ionizable lipid; neutral lipid; and dissolving the fusible lipid to prepare an oily solution; Preparing an aqueous solution containing nucleic acids; and manufacturing lipid nanoparticles by injecting the oil phase solution and the aqueous solution into a chip for producing lipid nanoparticles, wherein the chip for producing lipid nanoparticles includes an oil phase solution supply unit, an aqueous solution supply unit, a mixer unit, and a discharge unit; , the oil phase solution is injected into the oil phase solution supply section, the aqueous phase solution is injected into the aqueous phase solution supply section, the oil phase solution is injected into the mixer section through the oil phase solution supply section, and the aqueous phase solution is injected into the mixer section through the aqueous phase solution supply section.
  • the oil phase solution and the aqueous phase solution are mixed in the mixer unit to form lipid nanoparticles, and the ionized lipid may be included in an amount of 25 mol% or less based on the total weight of lipids in the lipid nanoparticles.
  • ionized lipids, non-ionizable lipids, neutral lipids, and fusible lipids are dissolved in an organic solution to prepare an oil phase solution.
  • the organic solution is alcohol, and may specifically be methanol, ethanol, isopropanol, n-propanol, etc., preferably ethanol, but is not limited to the above examples and may be any organic solvent capable of uniformly dissolving ionized lipids without limitation. Available.
  • ionizable lipids specific types of ionizable lipids, non-ionizable lipids, neutral lipids, and fusible lipids are as described above.
  • nucleic acid is mixed with a solvent to prepare an aqueous solution.
  • the solvent is a citric acid solution at pH 3.0, but is not limited to the above example, and any solvent capable of producing lipid nanoparticles by mixing nucleic acids can be used without limitation.
  • the prepared oil phase solution and aqueous solution can be injected into the oil phase solution supply section and the aqueous phase solution supply section of the lipid nanoparticle production chip to form lipid nanoparticles within the lipid nanoparticle production chip.
  • a chip for producing lipid nanoparticles described in KR 10-2361123 B1, including a fluid mixing unit with a bifurcated fluid flow through toric mixing elements as shown in FIG. 2, can be used.
  • a chip for producing lipid nanoparticles may have the same structure as FIG. 3.
  • the mixer unit within the chip for producing lipid nanoparticles of FIG. 3 may include at least one pair of stabilizing units and mixing units arranged alternately.
  • the mixer unit of the chip for producing lipid nanoparticles in FIG. 3 divides and pulverizes the flow of fluid by transporting particles or substances in the main flow direction of the fluid through advection using laminar flow.
  • the fluid flow channel was designed based on the operating principle of chaotic advection with added chaos effects.
  • the chaotic advection method overcomes the biggest disadvantage of the existing advection phenomenon, which is that transport is limited to the unidirectional nature of the main fluid flow, and can achieve higher efficiency mixing between solutions.
  • the chip for producing lipid nanoparticles has a channel design carefully adjusted to increase mixing efficiency and maximize self-assembly at the contact surface of two different solutions so that lipid nanoparticles can be manufactured with high efficiency.
  • symmetric and asymmetric structures are applied to not only efficiently mix solution fluids but also more stably and efficiently manufacture lipid nanoparticles with uniform diameters. It was designed and engineered in a way that can be done.
  • a chip for producing lipid nanoparticles according to another embodiment may have the same structure as FIG. 4.
  • the chip for producing lipid nanoparticles according to FIG. 4 includes an oily solution supply unit; aqueous solution supply unit; and a mixer unit including a spiral structure, wherein the mixer unit is connected to the oil phase solution supply unit and the aqueous solution supply unit, and includes an oil phase solution supplied through the oil phase solution supply unit and an aqueous solution supplied through the aqueous solution supply unit. They can be mixed to form lipid nanoparticles.
  • the mixer unit is structurally characterized in that it includes a spiral structure.
  • the spiral structure is characterized by including peaks and valleys alternately formed along a spiral trajectory on the circumferential surface.
  • the shape of the chip for producing lipid nanoparticles is not limited to the above examples, and any chip capable of producing lipid nanoparticles can be used.
  • the chip for producing lipid nanoparticles may be formed on a material selected from the group consisting of a glass substrate, silicon wafer, or polymer film, but examples of the material are not limited to the above examples, and any material capable of forming a channel can be used. .
  • the polymer film is polyimide, polyethylene, fluorinated ethylene propylene, polypropylene, polyethylene terephthalate, polyethylene naphthalate, polysulfone ( Polysulfone) and mixtures thereof, but is not limited to the above examples.
  • aluminum is deposited on a silicon wafer using an e-beam evaporator, and photoresist is patterned on the aluminum using a photolithography technique. Afterwards, aluminum is etched using the photoresist as a mask, and after removing the photoresist, the silicon is etched using DRIE (deep ion reactive etching) using aluminum as a mask. After removing the aluminum, glass is anodized on the wafer to seal it. Thus, the above liposome manufacturing chip can be manufactured.
  • DRIE deep ion reactive etching
  • the chip for producing lipid nanoparticles of the present invention can be printed and manufactured by a 3D printer.
  • the prepared oil phase solution is injected into the oil phase solution supply section, the aqueous solution is injected into the aqueous phase solution supply section, and the oil phase solution supply section
  • the oil phase solution is injected into the mixer unit through the aqueous solution supply unit, and the aqueous solution is injected into the mixer unit through the aqueous solution supply unit.
  • the oil phase solution and the aqueous solution are mixed within the mixer unit to form lipid nanoparticles.
  • the aqueous solution and the oil phase solution injected into the oil phase solution supply unit and the aqueous solution supply unit form a laminar flow at the intersection point and flow through the stirring channel.
  • the solution fluid be mixed efficiently, but lipid nanoparticles with a uniform diameter can be manufactured more stably and efficiently.
  • the prepared oil phase solution is injected into the oil phase solution supply section, the aqueous phase solution is injected into the aqueous phase solution supply section, and the oil phase solution is injected into the oil phase solution supply section.
  • the oil phase solution is injected into the mixer unit through the supply unit, and the aqueous solution is injected into the mixer unit through the aqueous solution supply unit.
  • the oil phase solution and the aqueous solution move in directions facing each other when injected into the mixer unit, and the oil phase solution and It is injected into the mixer unit at the point where the aqueous solution meets.
  • the oil phase solution and the aqueous phase solution form an interface and flow into the mixer unit, lipid nanoparticles are formed on the interface, and at the same time, the oil phase solution and the aqueous phase solution are mixed to form a mixed solution.
  • the mixer part of the chip for producing lipid nanoparticles in FIG. 4 is characterized in that it has a spiral structure as described above, and a flow of fluid occurs along the circumference of the mixer part, which has a spiral structure, and the flow of fluid includes an oily solution and It can increase the mixing efficiency of the aqueous solution and promote the formation of uniform lipid nanoparticles at the interface.
  • lipid nanoparticles containing a low concentration of ionized lipid can be formed.
  • the lipid nanoparticles can be manufactured into a larger number of lipid nanoparticles when producing lipid nanoparticles using the same nucleic acid, even if they contain a low concentration of ionized lipid.
  • Lipid nanoparticles can be produced if the above-described molar ratio of the ionized lipid and non-ionized lipid and the molar ratio of the ionized lipid and fusible lipid are met.
  • the prepared lipid nanoparticles have a low content of ionized lipids in the lipid nanoparticles, which can reduce cytotoxicity.
  • the spherical shape is uniform, the encapsulation rate of nucleic acids is excellent, and when manufacturing lipid nanoparticles, the content of non-ionized lipids and fusible lipids is increased to increase the content of nucleic acids compared to conventional lipid nanoparticles. It can be manufactured from lipid nanoparticles, and when the same nucleic acid is injected, the number of lipid nanoparticles injected into the body increases, thereby increasing the protein expression level of the nucleic acid.
  • ALC0315 ionized lipid
  • DSPC non-ionized lipid
  • cholesterol fuusible lipid
  • PEG neutral lipid
  • An aqueous solution was prepared by mixing mRNA (CleanCap® EGFP mRNA, ⁇ 1,000 nucleotides) with citrate solution (pH 3).
  • each raw material was injected at a flow rate of 51 ml/min for the water phase solution and 17 ml/min for the oil phase solution.
  • step “4) Each sample whose mixing was completed in step “4)” was placed in a dialysis cassette (Mw 10k) and dialyzed with 3L of 1x PBS for 2 hours. After the 2-hour dialysis process, it was replaced with fresh 1x PBS, and additional dialysis was performed overnight (approximately 17 hours overnight), and lipid nanoparticles were obtained.
  • the parentheses relate to the molar ratio of each lipid component to the total lipid content.
  • the 20x TE buffer contained in the kit was diluted into 1x TE buffer using RNase free buffer. Using 1x TE buffer, 100x Triton was diluted into 1x Triton.
  • a sample to create a standard curve of EGFP-mRNA was prepared using 1x Triton. The measurement sample was diluted 50 times using 1x TE buffer and 1x Triton, respectively. The sample was loaded at 100 ul each into a 96 well black plate. The 96-well black plate loaded with all samples was incubated at 37°C for 10 minutes. Ribogreen included in the kit was diluted 200 times with 1x TE buffer.
  • the supernatant was removed and the cells were resuspended in 10ml of fresh media.
  • the resuspended cells were transferred to a 100 ⁇ culture dish and cultured for 2 days. After 2 days, the cells in culture were subcultured in a 100 ⁇ culture dish (cell stabilization process). When the confluency of subcultured cells reached 90%, cells were seeded in a 24-well culture plate in the following manner.
  • Seeded cells were cultured in a CO 2 -incubator at 37°C for 24 hours. Afterwards, each lipid nanoparticle was treated according to the experimental concentration (test concentration: 500ng). After treatment with lipid nanoparticles, the cells were cultured in a CO 2 -incubator at 37°C for 48 hours, and the morphology of the cells was observed using a microscope.
  • Lipid nanoparticles were treated in the same manner as the cell shape confirmation test described above, and cultured in a CO 2 -incubator at 37°C for 72 hours.
  • the reagent of the CCK-8 assay kit was prepared by diluting it 10 times with media. Afterwards, the media of the cells that had been cultured for 72 hours was removed, 0.5ml of the above-prepared reagent was added, and the cells were incubated in a CO 2 -incubator at 37°C for 3 hours.
  • Figure 8 shows the results of the evaluation of cytotoxicity, confirming that the group treated with lipid nanoparticles containing 10 mol% of ionized lipid had lower toxicity compared to the group treated with lipid nanoparticles containing 50 mol% of ionized lipid. .
  • RNA concentration 500ng/ml
  • 1ml 1ml was added to each well. Processed. Afterwards, the cells were cultured at 37°C in a CO 2 -incubator for 48 hours. Afterwards, the GFP expression rate was confirmed using a microscope.
  • lipid nanoparticles 1ml of lipid nanoparticles was loaded into the cuvette for DLS measurement. Afterwards, the cuvette was placed in the DLS equipment, the particle concentration function was selected in the software, and measurements were made by pressing the start button.
  • Lipid nanoparticles were concentrated at 5000 rpm, 1 hour, and 15°C. Afterwards, encapsulated mRNA was quantified in the same manner as the encapsulation rate measurement method described above, and all of the lipid nanoparticles were diluted so that the encapsulated mRNA concentration was 25ug/ml. Afterwards, using a 200kV JEOL 2100P cryogenic electron microscope, lipid nanoparticles of the same concentration were imaged to confirm the number of particles.
  • the present invention relates to lipid nanoparticles containing low concentration ionized lipids and a method for producing the same.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Dispersion Chemistry (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention relates to lipid nanoparticles comprising low-concentration ionizable lipids, and a preparation method therefor, and has a low amount of ionizable lipids in the lipid nanoparticles such that cytotoxicity can be reduced. In addition, according to the preparation method for lipid nanoparticles, of the present invention, the lipid nanoparticles have a uniform spherical shape and an excellent nucleic acid encapsulation rate, and, when lipid nanoparticles are prepared, amounts of non-ionized lipids and fusogenic lipids are increased such that a plurality of lipid nanoparticles can be prepared using an amount of nucleic acids which are the same as those used for conventional lipid nanoparticles, and, when the same nucleic acids are injected, the number of lipid nanoparticles to be injected into the body is increased such that the protein expression level of the nucleic acids can be increased.

Description

저농도 이온화 지질을 포함하는 지질나노입자 및 이의 제조 방법Lipid nanoparticles containing low concentration ionized lipids and method for producing the same
본 발명은 저농도 이온화 지질을 포함하는 지질나노입자 및 이의 제조 방법에 관한 것이다.The present invention relates to lipid nanoparticles containing low concentration ionized lipids and a method for producing the same.
40여 년 전 플라스미드 DNA를 인체에 주입하여 결핍된 단백질의 생산을 돕는 방식으로 시작된 핵산 기반 의약품 은 이후 유전자의 전사와 번역을 억제하는 antigene, decoy, antisense, siRNA, miRNA 등 다양한 종류가 보고되었다. Nucleic acid-based medicines, which started about 40 years ago by injecting plasmid DNA into the human body to help produce deficient proteins, have since been reported in various types such as antigene, decoy, antisense, siRNA, and miRNA that inhibit gene transcription and translation.
핵산 기반 의약품은 단백질이 아닌 DNA나 RNA를 표적으로 하여 특정 서열의 DNA 또는 RNA와의 상보적인 결합을 통해 개인 맞춤형 치료제로 주목을 받아왔다. 핵산 기반 의약품은 치료적 제제뿐 아니라 특정 질병에 대한 항원을 발현할 수 있는 유전자를 주입하여 질병을 방어하는 예방적 제제로도 활용되고 있다. Nucleic acid-based medicines target DNA or RNA rather than proteins and have received attention as personalized treatments through complementary binding to DNA or RNA of a specific sequence. Nucleic acid-based medicines are used not only as therapeutic agents but also as preventive agents that protect against diseases by injecting genes that can express antigens for specific diseases.
유전자 기반 백신은 DNA 백신, RNA 백신 및 바이러스 벡터 백신으로 구분되는데, 이중 RNA 백신은 항원을 코딩하는 mRNA를 인체에 주입하여 인체 내에서 항원을 발현시키고 이에 대한 항체 형성을 유발하는 형식으로 바이러스 벡터 기반 백신이 가지는 감염에 대한 우려나 DNA 백신이 가지는 유전자 변이 등에 대한 잠재적인 위험이 없고, 신속개발이 가능하다는 장점을 가지고 있어 2019년 발병한 코로나 19의 효과적인 대응책으로서 각광을 받았다.Gene-based vaccines are divided into DNA vaccines, RNA vaccines, and viral vector vaccines. Among these, RNA vaccines are viral vector-based vaccines that inject mRNA encoding an antigen into the human body to express the antigen within the body and induce the formation of antibodies against it. It has been spotlighted as an effective response to COVID-19, which broke out in 2019, as it has no concerns about infection with vaccines or the potential risk of genetic mutation with DNA vaccines, and has the advantage of being able to be developed quickly.
그러나 핵산 기반 의약품은 인체 내에서 핵산 가수분해 효소에 의해 쉽게 분해되고 음전하를 띄는 거대분자로서 세포 내로 쉽게 전달하지 못하는 단점이 있어 이를 안정적이고 효율적으로 원하는 곳에 전달하는 방법이 필요하다. However, nucleic acid-based medicines are easily degraded by nucleic acid hydrolyzing enzymes in the human body and are negatively charged macromolecules, so they have the disadvantage of not being easily delivered into cells, so a method of delivering them to the desired location stably and efficiently is needed.
핵산의 전달시스템으로는 지질, 고분자, 덴드리머, 무기금속 재료 등 다양한 소재를 기반으로 한 전달 기법이 보고되었는데, 2018년 최초로 FDA 승인을 받은 siRNA 신약인 patisiran 뿐 아니라 2020년 긴급사용 승인된 코로나 19에 대한 mRNA 백신 또한 지질나노입자를 사용하였다. As delivery systems for nucleic acids, delivery techniques based on various materials such as lipids, polymers, dendrimer, and inorganic metal materials have been reported, including patisiran, the first siRNA new drug approved by the FDA in 2018, as well as COVID-19 approved for emergency use in 2020. The mRNA vaccine for Korea also used lipid nanoparticles.
현재의 지질나노입자는 이온화 지질, 인지질(헬퍼 지질), 콜레스테롤(구조유지지질), PEG-지질의 4개의 구성성분이 일정한 비율로 혼합된 형태가 일반적으로 쓰이고 있다.Current lipid nanoparticles are generally used in the form of a mixture of four components: ionized lipid, phospholipid (helper lipid), cholesterol (structure-maintaining lipid), and PEG-lipid in a certain ratio.
상기 지질나노입자는 내부에 mRNA를 포함하고 있으며, 상기 지질나노입자는 mRNA가 생체 내 효소 등에 의해 분해되지 않도록 보호하고 mRNA가 가진 음전하를 중화시켜 세포막 투과 효율을 높인다. 또한, 세포 내로 들어간 지질나노입자는 mRNA와 분리되어 분해되고 mRNA는 세포질에서 단백질 발현 과정에 참여하게 된다. The lipid nanoparticle contains mRNA inside, and the lipid nanoparticle protects the mRNA from being decomposed by enzymes in vivo and neutralizes the negative charge of the mRNA to increase cell membrane penetration efficiency. Additionally, lipid nanoparticles that enter the cell are separated from the mRNA and decomposed, and the mRNA participates in the protein expression process in the cytoplasm.
이러한, 지질나노입자 기반의 전달체는 음전하인 mRNA를 내부에 포함하기 위해, 양전하인 이온화 지질을 필수로 포함하나, 상기 이온화 지질의 독성이 문제가 되기도 한다. These lipid nanoparticle-based carriers necessarily contain positively charged ionized lipids in order to contain negatively charged mRNA, but the toxicity of the ionized lipids may be a problem.
이에 신규한 지질나노입자에 대한 개발이 필요하다. Therefore, the development of new lipid nanoparticles is necessary.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Document]
KR 10-2569192 B1KR 10-2569192 B1
본 발명의 목적은 저농도 이온화 지질을 포함하는 지질나노입자 및 이의 제조 방법에 관한 것이다. The object of the present invention relates to lipid nanoparticles containing low concentration ionized lipids and a method for producing the same.
본 발명의 다른 목적은 지질나노입자 내 이온화 지질의 함량이 낮아, 세포 독성을 낮출 수 있는 지질나노입자를 제공하는 것이다. Another object of the present invention is to provide lipid nanoparticles that can reduce cytotoxicity due to the low content of ionized lipids in the lipid nanoparticles.
본 발명의 다른 목적은 균일한 구 형상이며, 핵산의 봉입률이 우수하고, 지질나노입자를 제조할 때, 비이온화 지질 및 융합성 지질의 함량을 증가시켜 종래 지질나노입자과 비교하여 동일한 핵산의 함량을 이용하여 다수의 지질나노입자로 제조할 수 있고, 동일한 핵산을 주사할 때, 체내 주입되는 지질나노입자의 수가 증가하여 핵산의 단백질 발현도를 높일 수 있는 지질나노입자의 제조 방법을 제공하는 것이다.Another object of the present invention is that it has a uniform spherical shape, has an excellent encapsulation rate of nucleic acids, and increases the content of non-ionized lipids and fusible lipids when producing lipid nanoparticles, thereby increasing the content of the same nucleic acid compared to conventional lipid nanoparticles. It provides a method for producing lipid nanoparticles that can be manufactured into a large number of lipid nanoparticles using , and when the same nucleic acid is injected, the number of lipid nanoparticles injected into the body increases, thereby increasing the protein expression level of the nucleic acid.
상기 목적을 달성하기 위하여, 본 발명은 저농도 이온화 지질을 포함하는 지질나노입자에 관한 것으로 핵산, 이온화 지질(Ionizable lipid), 비이온화 지질(non-Ionizable lipid), 중성지질 및 융합성 지질을 포함하며, 상기 이온화 지질은 지질나노입자 내 지질 총 중량 대비하여 25 mol% 이하로 포함할 수 있다. In order to achieve the above object, the present invention relates to lipid nanoparticles containing low concentration ionized lipids, including nucleic acids, ionizable lipids, non-ionizable lipids, neutral lipids, and fusion lipids. , the ionized lipid may be included in an amount of 25 mol% or less based on the total weight of lipid in the lipid nanoparticle.
또한, 상기 이온화 지질 및 비이온화 지질은 1:0.3 내지 1:3의 몰비로 포함할 수 있다.Additionally, the ionized lipid and the non-ionized lipid may be included in a molar ratio of 1:0.3 to 1:3.
또한, 상기 이온화 지질 및 융합성 지질은 1:1 내지 1:10의 몰비로 포함할 수 있다. Additionally, the ionized lipid and the fusible lipid may be included in a molar ratio of 1:1 to 1:10.
또한, 상기 지질나노입자는 균일한 구 형상으로, 다분산 지수(Polydispersity index)가 0.05 내지 0.1일 수 있다. Additionally, the lipid nanoparticles may have a uniform spherical shape and have a polydispersity index of 0.05 to 0.1.
또한, 상기 지질나노입자의 평균 직경은 70nm 내지 100nm일 수 있다. Additionally, the average diameter of the lipid nanoparticles may be 70 nm to 100 nm.
또한, 상기 핵산은 RNA, DNA, siRNA(short interfering RNA), mRNA(messenger RNA), 압타머(aptamer), 안티센스 ODN(antisense oligodeoxynucleotide), 안티센스 RNA(antisense RNA), 리보자임(ribozyme), 디엔에이자임(DNAzyme) 및 이들의 혼합으로 이루어진 군으로부터 선택될 수 있다. In addition, the nucleic acids include RNA, DNA, short interfering RNA (siRNA), messenger RNA (mRNA), aptamer, antisense oligodeoxynucleotide (ODN), antisense RNA, ribozyme, and DNA enzyme. (DNAzyme) and mixtures thereof.
또한, 상기 비이온화 지질은 DSPC(distearoylphosphatidylcholine), DOPE(dioleolphosphatidyl ethanolamine), DPPE(bis(diphenylphosphino)ethane), 디아실포스파티딜콜린(diacyl phosphatidylcholine), 디아실포스파티딜에탄올아민(diacylphosphatidylethanolamine), 디아실포스파티딜세린(diacylphosphatidylserine) 및 이들의 혼합으로 이루어진 군으로부터 선택될 수 있다. In addition, the non-ionized lipids include distearoylphosphatidylcholine (DSPC), dioleolphosphatidyl ethanolamine (DOPE), bis(diphenylphosphino)ethane (DPPE), diacyl phosphatidylcholine, diacylphosphatidylethanolamine, and diacylphosphatidylethanolamine. sphatidylserine ) and mixtures thereof.
또한, 상기 중성지질은 폴리에틸렌글리콜 2000 디스테아로일포스파티딜에탄올아민(PEG(2000) DSPE), DMG-PEG, PEG-DMPE, DPPE-PEG, DPG-PEG, PEG-DOPE 및 이들의 혼합으로 이루어진 군으로부터 선택될 수 있다. In addition, the neutral lipid is a group consisting of polyethylene glycol 2000 distearoylphosphatidylethanolamine (PEG (2000) DSPE), DMG-PEG, PEG-DMPE, DPPE-PEG, DPG-PEG, PEG-DOPE, and mixtures thereof. can be selected from
또한, 상기 융합성 지질은 인지질, 콜레스테롤, 토코페롤 및 이들의 혼합으로 이루어진 군으로부터 선택될 수 있다. Additionally, the fusible lipid may be selected from the group consisting of phospholipids, cholesterol, tocopherol, and mixtures thereof.
본 발명의 다른 일 실시예에 따른 저농도 이온화 지질을 포함하는 지질나노입자의 제조 방법은 유기 용매에 이온화 지질(Ionizable lipid); 비이온화 지질(non-Ionizable lipid); 중성지질; 및 융합성 지질을 용해하여 유상 용액을 제조하는 단계; 핵산을 포함하는 수상 용액을 제조하는 단계; 및 상기 유상 용액 및 수상 용액을 지질 나노 입자 제조용 칩에 주입하여 지질 나노 입자를 제조하는 단계를 포함하며, 상기 지질 나노 입자 제조용 칩은, 유상 용액 공급부, 수상 용액 공급부, 믹서부 및 배출부를 포함하며, 상기 유상 용액은 유상 용액 공급부로 주입되고, 상기 수상 용액은 수상 용액 공급부로 주입되며, 상기 유상 용액 공급부를 통해 유상 용액이 믹서부로 주입되고, 상기 수상 용액 공급부를 통해 수상 용액이 믹서부로 주입되며, 상기 믹서부 내에서 유상 용액 및 수상 용액이 혼합되어 지질나노입자를 형성하며, 상기 이온화 지질은 지질나노입자 내 지질 총 중량 대비하여 25 mol% 이하로 포함할 수 있다.A method for producing lipid nanoparticles containing a low concentration of ionized lipid according to another embodiment of the present invention includes ionizable lipid in an organic solvent; non-ionizable lipid; neutral lipid; and dissolving the fusible lipid to prepare an oily solution; Preparing an aqueous solution containing nucleic acids; and manufacturing lipid nanoparticles by injecting the oil phase solution and the aqueous solution into a chip for producing lipid nanoparticles, wherein the chip for producing lipid nanoparticles includes an oil phase solution supply unit, an aqueous solution supply unit, a mixer unit, and a discharge unit; , the oil phase solution is injected into the oil phase solution supply section, the aqueous phase solution is injected into the aqueous phase solution supply section, the oil phase solution is injected into the mixer section through the oil phase solution supply section, and the aqueous phase solution is injected into the mixer section through the aqueous phase solution supply section. , the oil phase solution and the aqueous phase solution are mixed in the mixer unit to form lipid nanoparticles, and the ionized lipid may be included in an amount of 25 mol% or less based on the total weight of lipids in the lipid nanoparticles.
본 발명은 지질나노입자 내 이온화 지질의 함량이 낮아, 세포 독성을 낮출 수 있다. The present invention has a low content of ionized lipids in lipid nanoparticles, which can reduce cytotoxicity.
또한, 본 발명의 지질나노입자의 제조 방법에 의하면, 구 형상이 균일하며, 핵산의 봉입률이 우수하고, 지질나노입자를 제조할 때, 비이온화 지질 및 융합성 지질의 함량을 증가시켜 종래 지질나노입자과 비교하여 동일한 핵산의 함량을 이용하여 다수의 지질나노입자로 제조할 수 있고, 동일한 핵산을 주사할 때, 체내 주입되는 지질나노입자의 수가 증가하여 핵산의 단백질 발현도를 높일 수 있는 지질나노입자의 제조 방법에 관한 것이다.In addition, according to the method for producing lipid nanoparticles of the present invention, the spherical shape is uniform and the encapsulation rate of nucleic acids is excellent, and when producing lipid nanoparticles, the content of non-ionized lipids and fusible lipids is increased to replace conventional lipid nanoparticles. Compared to nanoparticles, lipid nanoparticles can be manufactured into multiple lipid nanoparticles using the same nucleic acid content, and when the same nucleic acid is injected, the number of lipid nanoparticles injected into the body increases, thereby increasing the protein expression level of nucleic acids. It relates to a manufacturing method.
도 1은 본 발명의 지질나노입자와 종래 지질나노입자에 대한 비교를 위한 관념도이다. Figure 1 is a schematic diagram for comparison between the lipid nanoparticles of the present invention and conventional lipid nanoparticles.
도 2는 본 발명의 지질나노입자를 제조할 수 있는 지질나노입자 제조용 칩에 대한 예시이다. Figure 2 is an example of a chip for producing lipid nanoparticles that can produce lipid nanoparticles of the present invention.
도 3은 본 발명의 지질나노입자를 제조할 수 있는 지질나노입자 제조용 칩에 대한 예시이다. Figure 3 is an example of a chip for producing lipid nanoparticles that can produce lipid nanoparticles of the present invention.
도 4는 본 발명의 지질나노입자를 제조할 수 있는 지질나노입자 제조용 칩에 대한 예시이다. Figure 4 is an example of a chip for producing lipid nanoparticles that can produce lipid nanoparticles of the present invention.
도 5는 본 발명의 일 실시예에 따른 지질나노입자의 평균직경 및 PDI 측정 결과이다. Figure 5 shows the average diameter and PDI measurement results of lipid nanoparticles according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 지질나노입자의 봉입률에 대한 결과이다. Figure 6 shows the results of the encapsulation rate of lipid nanoparticles according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 지질나노입자를 처리한 세포의 형태 변화 양상 시험 결과이다. Figure 7 shows the results of a test on the shape change of cells treated with lipid nanoparticles according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 지질나노입자의 세포 독성 시험 결과이다. Figure 8 shows the results of a cytotoxicity test of lipid nanoparticles according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따른 종래 지질나노입자 및 저농도 이온화 지질을 포함하는 지질나노입자에 대한 세포독성시험에 대한 결과이다. Figure 9 shows the results of a cytotoxicity test on conventional lipid nanoparticles and lipid nanoparticles containing low concentration ionized lipid according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따른 종래 지질나노입자 및 저농도 이온화 지질을 포함하는 지질나노입자에 대한 단백질 발현 정도에 대한 시험 결과이다. Figure 10 shows the results of a test on the level of protein expression for conventional lipid nanoparticles and lipid nanoparticles containing low concentration ionized lipid according to an embodiment of the present invention.
도 11은 본 발명의 일 실시예에 따른 이온화 지질의 농도의 차이에 의한 지질나노입자의 형성 개수에 대한 시험 결과이다.Figure 11 is a test result of the number of lipid nanoparticles formed depending on the concentration of ionized lipid according to an embodiment of the present invention.
도 12는 본 발명의 일 실시예에 따른 이온화 지질의 농도의 차이에 의한 지질나노입자의 형성 개수에 대한 시험 결과이다.Figure 12 is a test result of the number of lipid nanoparticles formed depending on the concentration of ionized lipid according to an embodiment of the present invention.
본 발명은 핵산; 이온화 지질(Ionizable lipid); 비이온화 지질(non-Ionizable lipid); 중성지질; 및 융합성 지질을 포함하며, 상기 이온화 지질은 지질나노입자 내 지질 총 중량 대비하여 25 mol% 이하로 포함하는 저농도 이온화 지질을 포함하는 지질나노입자에 관한 것이다. The present invention relates to nucleic acids; Ionizable lipid; non-ionizable lipid; neutral lipid; and a fusible lipid, wherein the ionized lipid is contained in an amount of 25 mol% or less based on the total weight of the lipid in the lipid nanoparticle.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily implement it. However, the present invention may be implemented in many different forms and is not limited to the embodiments described herein.
mRNA는 전령 리보핵산(messenger RiboNucleic Acid)의 줄임말로 유전정보를 가진 DNA가 mRNA가 되고 이를 이용하여 단백질이 합성되는 과정에서 DNA와 단백질을 연결해주는 중간체이다.mRNA is short for messenger ribonucleic acid, and is an intermediate that connects DNA and proteins in the process where DNA containing genetic information becomes mRNA and proteins are synthesized using this.
코로나 19에 의해 mRNA 백신의 관심 및 개발이 집중되고 있다. mRNA 백신은 다른 유형의 백신에 비해 몇 가지 이점이 있다. mRNA 백신의 가장 큰 장점은 mRNA를 포함하는 지질 나노입자(LNP)가 플랫폼 기술에 해당되어, 코로나 19와 같이 변이가 많이 발생하는 바이러스에 대항하여, 빠른 기술 개발이 가능하다는 것이다. Interest in and development of mRNA vaccines is focused due to COVID-19. mRNA vaccines have several advantages over other types of vaccines. The biggest advantage of mRNA vaccines is that lipid nanoparticles (LNPs) containing mRNA are a platform technology, enabling rapid technology development against viruses that frequently mutate, such as COVID-19. 
구체적으로, 보호 단백질 항원(protective protein antigen)을 식별하고 상기 항원에 대한 유전자를 시퀀싱하여, mRNA를 제조할 수 있다. 이러한 방식을 이용하여 신규 mRNA를 제조하고, 종래 mRNA 백신의 제형 설계 및 제조 공정을 이용할 경우, 신속한 mRNA 백신의 제조가 가능하다. 이는 서로 다른 항원을 코딩하는 mRNA가 화학적, 물리적으로 매우 유사하기 때문에 새로운 mRNA 백신의 제형 설계 및 제조 공정은 종래 mRNA 백신의 제형 및 제조 공정과 동일한 단계로 진행될 수 있음을 의미한다. Specifically, mRNA can be produced by identifying a protective protein antigen and sequencing the gene for the antigen. When new mRNA is manufactured using this method and the formulation design and manufacturing process of conventional mRNA vaccines are used, rapid production of mRNA vaccines is possible. This means that since mRNA encoding different antigens is chemically and physically very similar, the formulation design and manufacturing process of a new mRNA vaccine can proceed in the same steps as the formulation and manufacturing process of a conventional mRNA vaccine.
인산염 그룹의 음전하 때문에 mRNA는 일반적으로 비경구용으로 사용되는 pH 범위에서 다가 음이온성 거대분자이다. 상기와 같이, 음전하를 띠는 mRNA의 전기적인 성질을 이용해, 양전하를 띠는 이온화 지질(ionisable lipid 또는 cationic lipid)를 이용하여 지질 나노입자를 제조할 수 있다. 구체적으로, 이온화 지질은 양전하를 띠는 지질로, 음전하를 띠는 mRNA와 전기적인 인력을 통해 서로 강하게 결합하게 된다. 상기 이온화 지질 이외에, 추가로 비이온화 지질(non-Ionizable lipid), 중성지질 및 융합성 지질을 포함하여 지질 나노입자를 형성하게 된다. Because of the negative charge of the phosphate group, mRNA is a polyanionic macromolecule in the pH range commonly used for parenteral use. As described above, lipid nanoparticles can be manufactured using positively charged ionisable lipids (or cationic lipids), using the electrical properties of negatively charged mRNA. Specifically, ionized lipids are positively charged lipids that bind strongly to negatively charged mRNA through electrical attraction. In addition to the ionized lipids, lipid nanoparticles are formed by additionally including non-ionizable lipids, neutral lipids, and fusion lipids.
US 9364435 B2의 핵산-지질 입자는 (a) 핵산, (b) 양이온성 지질, (c) 비양이온성 지질 및 (d) 융합성 지질을 포함하며, 입자 내 지질의 총 함량을 기준으로, 상기 양이온성 지질을 50 mol% 내지 85 mol%로 포함하고, 상기 비양이온성 지질을 13 mol% 내지 49.5 mol%로 포함하고, 융합성 지질을 0.5 mol% 내지 2 mol%로 포함하는 것으로 개시하고 있다. The nucleic acid-lipid particle of US 9364435 B2 comprises (a) nucleic acid, (b) cationic lipid, (c) non-cationic lipid and (d) fusible lipid, wherein, based on the total content of lipids in the particle, the above It is disclosed as comprising 50 mol% to 85 mol% of cationic lipid, 13 mol% to 49.5 mol% of non-cationic lipid, and 0.5 mol% to 2 mol% of fusible lipid. .
또한, EP 2279254 B1의 핵산-지질 입자는 입자 내 지질의 총 함량을 기준으로, 상기 양이온성 지질을 50 mol% 내지 65 mol%로 포함하고, 상기 비양이온성 지질을 49.5 mol% 이하로 포함하고, 콜레스테롤 또는 이의 유도체를 30 mol% 내지 40 mol%로 포함하며, 융합성 지질을 0.5 mol% 내지 2 mol%로 포함하는 것으로 개시하고 있다. In addition, the nucleic acid-lipid particle of EP 2279254 B1 contains 50 mol% to 65 mol% of the cationic lipid and 49.5 mol% or less of the non-cationic lipid, based on the total content of lipids in the particle. , cholesterol or its derivatives are included at 30 mol% to 40 mol%, and fusion lipids are disclosed at 0.5 mol% to 2 mol%.
상기와 같이 mRNA를 포함하는 지질나노입자는 이온화 지질(양이온성 지질)을 입자 내 다량 포함하는 것으로 확인되고 있다. As described above, lipid nanoparticles containing mRNA have been confirmed to contain a large amount of ionized lipids (cationic lipids) within the particles.
다만, 상기와 같이 mRNA를 포함하는 지질나노입자(LNP)는 체외 및 체내 독성으로 인하여 치료용 안전성에 대한 일부 우려는 여전히 남아 있다. 이러한 독성은 주로 비특이적인 전하 상호작용에 기초하여 발생한다. 즉 양전하를 띠는 이온화 지질의 독성 문제가 이슈화되고 있으며, 이를 보완하기 위한 연구가 지속되고 있다. However, some concerns still remain regarding the safety of lipid nanoparticles (LNPs) containing mRNA as described above due to their toxicity in vitro and in vivo. This toxicity occurs primarily based on non-specific charge interactions. In other words, the toxicity problem of positively charged ionized lipids is becoming an issue, and research to supplement this is continuing.
양이온성의 이온화 지질의 사용량을 줄이는 시도가 가장 직관적이나, 한계점 이하의 저농도의 이온화 지질을 사용할 경우 제조된 지질나노입자(LNP)는 세포내로 유입 후 mRNA의 방출이 잘 되지 않아 단백질 발현율이 떨어지는 문제가 있다. 이에 반해 본 발명의 저농도 이온화 지질을 포함하는 지질나노입자는 이온화 지질의 독성을 떨어뜨리기 위해 지질 나노 입자 1개에 포함되는 핵산과 이온화 지질의 수를 감소되나, 동일한 함량의 핵산을 이용하여 지질나노입자를 제조 시, 종래 지질나노입자를 제조하는 방법에 비해, 제조된 전체적인 지질나노입자의 수가 증가되어, 세포에 들어가는 지질나노입자의 수를 증가시킬 수 있다. 이와 같이 세포 내로 주입되는 지질나노입자의 수가 증가하면, 세포 내에서 지질나노입자가 엔도좀을 탈출할 때 발생하는 이온화 지질의 양이 적어, 세포 독성이 적을 것이다.It is most intuitive to attempt to reduce the amount of cationic ionized lipids used, but when low concentrations of ionized lipids below the threshold are used, the produced lipid nanoparticles (LNPs) do not release mRNA well after entering the cell, leading to a decrease in protein expression rate. there is. On the other hand, in the lipid nanoparticles containing low concentration ionized lipids of the present invention, the number of nucleic acids and ionized lipids contained in one lipid nanoparticle is reduced in order to reduce the toxicity of ionized lipids, but the lipid nanoparticles are made using the same amount of nucleic acids. When producing particles, compared to the conventional method of producing lipid nanoparticles, the overall number of lipid nanoparticles produced is increased, thereby increasing the number of lipid nanoparticles entering cells. As the number of lipid nanoparticles injected into the cell increases, the amount of ionized lipid generated when the lipid nanoparticles escape the endosome within the cell is reduced, resulting in less cytotoxicity.
이에 본 발명에서는 저농도의 이온화 지질을 포함하는 지질나노입자에 관한 것으로, 지질나노입자 내 이온화 지질의 농도가 낮으나, 균일한 크기의 지질나노입자로, 이온화 지질의 함량이 낮아, 세포 독성을 낮출 수 있고, 지질나노입자 내 포함된 핵산의 단백질 발현도를 높일 수 있는 것을 특징으로 한다.Accordingly, the present invention relates to lipid nanoparticles containing a low concentration of ionized lipids. Although the concentration of ionized lipids in the lipid nanoparticles is low, the lipid nanoparticles are of uniform size and have a low content of ionized lipids, which can reduce cytotoxicity. It is characterized by being able to increase the protein expression level of nucleic acids contained in lipid nanoparticles.
구체적으로, 본 발명의 일 실시예에 따른 저농도 이온화 지질을 포함하는 지질나노입자는 핵산; 이온화 지질(Ionizable lipid); 비이온화 지질(non-Ionizable lipid); 중성지질; 및 융합성 지질을 포함하며, 상기 이온화 지질은 지질나노입자 내 지질 총 중량 대비하여 25 mol% 이하로 포함할 수 있다. Specifically, lipid nanoparticles containing low concentration ionized lipids according to an embodiment of the present invention include nucleic acids; Ionizable lipid; non-ionizable lipid; neutral lipid; and fusible lipids, wherein the ionized lipids may be included in an amount of 25 mol% or less based on the total weight of lipids in the lipid nanoparticles.
상술한 바와 같이, 종래 핵산을 포함하는 지질나노입자는 이온화 지질을 50mol% 정도 포함하는 것으로 알려져 있고, 이는 지질나노입자의 형성 과정 상에서, 핵산의 음전하와 양전하를 띠는 이온화 지질이 자가 조립에 의해 지질나노 입자를 형성하기 때문에, 양전하를 띠는 이온화 지질이 다량 포함되어야, 핵산과의 정전기적 인력에 의해 지질나노입자의 제조가 가능하다.As described above, conventional lipid nanoparticles containing nucleic acids are known to contain about 50 mol% of ionized lipids, which means that during the formation process of lipid nanoparticles, the negative and positive ionized lipids of nucleic acids are self-assembled. To form lipid nanoparticles, a large amount of positively charged ionized lipids must be included in order to produce lipid nanoparticles through electrostatic attraction with nucleic acids.
다만, 상술한 바와 같이 지질나노입자는 독성의 우려가 존재하고 있고, 이러한 독성의 문제는 이온화 지질에 의한 것으로 추측되고 있는 바, 본 발명의 지질나노입자는 이온화 지질을 지질나노입자 내 지질 총 중량 대비하여 25 mol% 이하로 포함하며, 8 mol% 내지 22 mol%로 포함하며, 8.1mol% 내지 20mol%로 포함할 수 있다. 상기 범위 내에서 지질나노입자 내에 이온화 지질을 포함하는 경우, 핵산의 단백질 발현도를 높일 수 있다. However, as mentioned above, there is a risk of toxicity in lipid nanoparticles, and it is presumed that this toxicity problem is caused by ionized lipids. Therefore, the lipid nanoparticles of the present invention contain ionized lipids based on the total weight of lipids in the lipid nanoparticles. In comparison, it may be included at 25 mol% or less, 8 mol% to 22 mol%, and 8.1 mol% to 20 mol%. When ionized lipids are included in lipid nanoparticles within the above range, the protein expression level of nucleic acids can be increased.
상기와 같이 지질나노입자 내 이온화 지질의 함량을 저농도로 포함하더라도, 종래 기술과 달리 균일한 지질나노입자로의 제조가 가능하게 된 것은, 상기 이온화 지질 및 비이온화 지질은 1:0.3 내지 1:3의 몰비로 포함하고, 상기 이온화 지질 및 융합성 지질은 1:1 내지 1:10의 몰비로 포함함에 따른 것이다. Even if the content of ionized lipids in the lipid nanoparticles is low as described above, unlike the prior art, it is possible to produce uniform lipid nanoparticles because the ionized lipids and non-ionized lipids are 1:0.3 to 1:3. and the ionized lipid and fusible lipid are included in a molar ratio of 1:1 to 1:10.
도 1은 본 발명의 지질나노입자(200)와 종래 지질나노입자(100)에 대한 비교를 위한 관념도이다. Figure 1 is a conceptual diagram for comparison between the lipid nanoparticles (200) of the present invention and the conventional lipid nanoparticles (100).
상기 도 1은 핵산 중 mRNA(1) 5개와 이온화 지질(2) 25개를 이용하여 지질나노입자(100, 200)를 생성할 때, 형성된 지질나노입자(100, 200)에 대한 것으로, 종래 지질나노입자(100)는 하나의 입자 내에 5개의 mRNA(1)와 25개의 이온화 지질(2)이 모두 포함된 형태임을 확인할 수 있다. 즉, 종래 지질나노입자(100)는 하나의 입자 내에 복수의 mRNA(1)를 포함하고 있고, 복수의 mRNA(1)를 포함함에 따라, 음전하를 띠는 mRNA(1)의 주변에 양전하를 띠는 이온화 지질(2)이 정전기적 인력에 의해 인접하게 위치하며 지질나노입자(100)의 내부에 포함된 형태이다. Figure 1 shows the lipid nanoparticles (100, 200) formed when producing lipid nanoparticles (100, 200) using 5 mRNAs (1) and 25 ionized lipids (2) among nucleic acids, which are conventional lipid nanoparticles (100, 200). It can be confirmed that the nanoparticle 100 contains all 5 mRNAs (1) and 25 ionized lipids (2) in one particle. In other words, the conventional lipid nanoparticle 100 contains a plurality of mRNAs (1) in one particle, and as it contains a plurality of mRNAs (1), the negatively charged mRNA (1) has a positive charge around it. Ionized lipid (2) is located adjacent to each other by electrostatic attraction and is contained within the lipid nanoparticle (100).
이에 반해, 본 발명의 지질나노입자(200)는, 동일한 mRNA(1) 5개와 이온화 지질(2) 25개를 이용하여 지질나노입자(200)를 생성할 때, 형성된 지질나노입자(200)의 수가 5개로, 지질나노입자(200) 내 포함되는 mRNA(1)의 수가 종래 지질나노입자(100)와 달리 적은 것을 확인할 수 있고, 이로 인해 지질나노입자(200) 내 포함되는 이온화 지질(2)의 수도 차이가 남을 확인할 수 있다. On the other hand, the lipid nanoparticles (200) of the present invention are formed when producing lipid nanoparticles (200) using 5 identical mRNAs (1) and 25 ionized lipids (2). It can be seen that the number of mRNAs (1) contained in the lipid nanoparticles (200) is small, unlike the conventional lipid nanoparticles (100), and as a result, the number of ionized lipids (2) contained in the lipid nanoparticles (200) is 5. You can see the difference in the number of others.
상기 본 발명의 지질나노입자를 제조하기 위해선, 이온화 지질 및 비이온화 지질을 1:0.3 내지 1:3의 몰비로 포함하며, 1:0.6 내지 1:2.8의 몰비로 포함하며, 1:0.7 내지 1:2.5의 몰비로 포함하며, 1:0.8 내지 1:2.4의 몰비로 포함할 수 있다. To prepare the lipid nanoparticles of the present invention, ionized lipids and non-ionized lipids are included in a molar ratio of 1:0.3 to 1:3, 1:0.6 to 1:2.8, and 1:0.7 to 1. :2.5, and may be included in a molar ratio of 1:0.8 to 1:2.4.
또한, 상기 이온화 지질 및 융합성 지질은 1:1 내지 1:10의 몰비로 포함하며, 1:2 내지 1:9.5의 몰비로 포함하며, 1:2.5 내지 1:9의 몰비로 포함하며, 1:3 내지 1:8.9의 몰비로 포함할 수 있다. In addition, the ionized lipid and the fusible lipid are included in a molar ratio of 1:1 to 1:10, included in a molar ratio of 1:2 to 1:9.5, included in a molar ratio of 1:2.5 to 1:9, and 1 It may be included at a molar ratio of :3 to 1:8.9.
즉, 상기와 같이 지질나노입자를 제조하기 위해 포함되는 비이온화 지질 및 융합성 지질을 고농도로 포함시켜, 지질나노입자가 형성될 때, 고농도의 비이온화 지질 및 융합성 지질이 포함되어, 상대적으로 적은 핵산 및 이온화 지질이 포함되더라도 균일한 지질나노입자의 형성이 가능하게 하였다. In other words, when lipid nanoparticles are formed by including a high concentration of non-ionized lipids and fusible lipids included to produce lipid nanoparticles as described above, a high concentration of non-ionized lipids and fusible lipids are included, making them relatively It enabled the formation of uniform lipid nanoparticles even when small nucleic acids and ionized lipids were included.
상기 지질나노입자는 균일한 구 형상으로, 다분산 지수(Polydispersity index)가 0.05 내지 0.1이며, 상기 지질나노입자의 평균 직경은 70nm 내지 100nm일 수 있다. The lipid nanoparticles have a uniform spherical shape, have a polydispersity index of 0.05 to 0.1, and the average diameter of the lipid nanoparticles may be 70 nm to 100 nm.
구체적으로, 상기 지질나노입자의 다분산 지수는 0.05 내지 0.1이며, 0.05 내지 0.09로, 균일한 직경 범위 내에 형성되며, 지질나노입자의 평균 직경은 70nm 내지 100nm이며, 70nm 내지 95nm일 수 있다. 상술한 바와 같이 본 발명의 지질나노입자는, 직경이 작고 균일한 구 형상의 나노입자일 수 있다. Specifically, the polydispersity index of the lipid nanoparticles is 0.05 to 0.1, 0.05 to 0.09, and is formed within a uniform diameter range, and the average diameter of the lipid nanoparticles is 70 nm to 100 nm, and may be 70 nm to 95 nm. As described above, the lipid nanoparticles of the present invention may be nanoparticles with a small diameter and a uniform spherical shape.
본 발명의 지질나노입자는 핵산의 봉입률이 90% 이상이며, 92% 이상이며, 93% 내지 100%이며, 93% 내지 99%일 수 있다. 상기 지질나노입자는, 균일한 구 형상일 뿐 아니라, 지질나노입자의 제조를 위해 이용된 핵산에 대한 우수한 봉입률을 나타낼 수 있다. The lipid nanoparticles of the present invention may have a nucleic acid encapsulation rate of 90% or more, 92% or more, 93% to 100%, or 93% to 99%. The lipid nanoparticles not only have a uniform spherical shape, but can also exhibit an excellent encapsulation rate for nucleic acids used to produce lipid nanoparticles.
상기 핵산은 RNA, DNA, siRNA(short interfering RNA), mRNA(messenger RNA) 압타머(aptamer), 안티센스 ODN(antisense oligodeoxynucleotide), 안티센스 RNA(antisense RNA), 리보자임(ribozyme), 디엔에이자임(DNAzyme) 및 이들의 혼합으로 이루어진 군으로부터 선택될 수 있고, 바람직하게는 mRNA이나, 상기 예시에 국한되지 않는다. The nucleic acids include RNA, DNA, short interfering RNA (siRNA), messenger RNA (mRNA) aptamer, antisense oligodeoxynucleotide (ODN), antisense RNA, ribozyme, and DNAzyme. and mixtures thereof, preferably mRNA, but is not limited to the above examples.
상기 핵산은 질병을 예방 또는 치료하기 위한 용도이며, 일 예시로, 코로나 19 백신과 같이 코로나 19 바이러스에 대항하기 위한 스파이크 단백질을 합성하게 한다. 상기 예시에 국한되지 않고, 질병의 예방 또는 치료를 위한 핵산은 모두 사용이 가능하다. The nucleic acid is used to prevent or treat disease, and as an example, it synthesizes a spike protein to combat the COVID-19 virus, such as the COVID-19 vaccine. Without being limited to the above examples, any nucleic acid for preventing or treating disease can be used.
상기 이온화 지질은 ALC-0315(제네반트), ALC-0159(제네반트), DLinDAP, Dlin-MC3-DMA 또는 SM102(알뷰투스) 등을 이용할 수 있다. 상기 이온화 지질은 예시에 국한되지 않고 지질 나노입자의 제조에 이용될 수 있는 이온화 지질은 제한 없이 모두 사용 가능하다. The ionized lipid may be ALC-0315 (Genevant), ALC-0159 (Genevant), DLinDAP, Dlin-MC3-DMA, or SM102 (Arbutus). The ionized lipid is not limited to examples, and any ionized lipid that can be used in the production of lipid nanoparticles can be used without limitation.
상기 비이온화 지질은 DSPC(distearoylphosphatidylcholine), DOPE(dioleolphosphatidyl ethanolamine), DPPE(bis(diphenylphosphino)ethane), 디아실포스파티딜콜린(diacyl phosphatidylcholine), 디아실포스파티딜에탄올아민(diacylphosphatidylethanolamine), 디아실포스파티딜세린(diacylphosphatidylserine) 및 이들의 혼합으로 이루어진 군으로부터 선택되며, 바람직하게는 DSPC이지만, 상기 예시에 국한되지 않는다. The non-ionized lipids include distearoylphosphatidylcholine (DSPC), dioleolphosphatidyl ethanolamine (DOPE), bis(diphenylphosphino)ethane (DPPE), diacyl phosphatidylcholine, diacylphosphatidylethanolamine, and diacylphosphatidylserine. tidylserine) and It is selected from the group consisting of mixtures thereof, preferably DSPC, but is not limited to the above examples.
상기 융합성 지질은 콜레스테롤, 토코페롤 및 이들의 혼합으로 이루어진 군으로부터 선택될 수 있으며, 바람직하게는 콜레스테롤이나 상기 예시에 국한되지 않는다. The fusion lipid may be selected from the group consisting of cholesterol, tocopherol, and mixtures thereof, preferably cholesterol, but is not limited to the above examples.
상기 중성지질은 보관 중 응집을 방지하는 입체 장벽 역할을 할 수 있고, 체내 (In-vivo)에서 지질나노입자의 단백질 흡착을 저하시켜 면역원성 반응을 줄여 대식세포로부터 지질나노입자가 공격받는 것을 줄여 주는 역할을 하는 것이며, 구체적으로 폴리에틸렌글리콜 2000 디스테아로일포스파티딜에탄올아민(PEG(2000) DSPE), DMG-PEG, PEG-DMPE, DPPE-PEG, DPG-PEG, PEG-DOPE 및 이들의 혼합으로 이루어진 군으로부터 선택될 수 있으며, 바람직하게는 DMG-PEG이지만, 상기 예시에 국한되지 않는다. The neutral lipids can act as a steric barrier to prevent aggregation during storage, and reduce the protein adsorption of lipid nanoparticles in-vivo, thereby reducing immunogenic reactions and reducing the attack of lipid nanoparticles by macrophages. It plays a role in giving, specifically polyethylene glycol 2000 distearoylphosphatidylethanolamine (PEG (2000) DSPE), DMG-PEG, PEG-DMPE, DPPE-PEG, DPG-PEG, PEG-DOPE and mixtures thereof. It may be selected from the group consisting of DMG-PEG, but is not limited to the above examples.
본 발명의 다른 일 실시예에 따른 저농도 이온화 지질을 포함하는 지질나노입자의 제조 방법은 유기 용매에 이온화 지질(Ionizable lipid); 비이온화 지질(non-Ionizable lipid); 중성지질; 및 융합성 지질을 용해하여 유상 용액을 제조하는 단계; 핵산을 포함하는 수상 용액을 제조하는 단계; 및 상기 유상 용액 및 수상 용액을 지질 나노 입자 제조용 칩에 주입하여 지질 나노 입자를 제조하는 단계를 포함하며, 상기 지질 나노 입자 제조용 칩은, 유상 용액 공급부, 수상 용액 공급부, 믹서부 및 배출부를 포함하며, 상기 유상 용액은 유상 용액 공급부로 주입되고, 상기 수상 용액은 수상 용액 공급부로 주입되며, 상기 유상 용액 공급부를 통해 유상 용액이 믹서부로 주입되고, 상기 수상 용액 공급부를 통해 수상 용액이 믹서부로 주입되며, 상기 믹서부 내에서 유상 용액 및 수상 용액이 혼합되어 지질나노입자를 형성하며, 상기 이온화 지질은 지질나노입자 내 지질 총 중량 대비하여 25 mol% 이하로 포함될 수 있다. A method for producing lipid nanoparticles containing a low concentration of ionized lipid according to another embodiment of the present invention includes ionizable lipid in an organic solvent; non-ionizable lipid; neutral lipid; and dissolving the fusible lipid to prepare an oily solution; Preparing an aqueous solution containing nucleic acids; and manufacturing lipid nanoparticles by injecting the oil phase solution and the aqueous solution into a chip for producing lipid nanoparticles, wherein the chip for producing lipid nanoparticles includes an oil phase solution supply unit, an aqueous solution supply unit, a mixer unit, and a discharge unit; , the oil phase solution is injected into the oil phase solution supply section, the aqueous phase solution is injected into the aqueous phase solution supply section, the oil phase solution is injected into the mixer section through the oil phase solution supply section, and the aqueous phase solution is injected into the mixer section through the aqueous phase solution supply section. , the oil phase solution and the aqueous phase solution are mixed in the mixer unit to form lipid nanoparticles, and the ionized lipid may be included in an amount of 25 mol% or less based on the total weight of lipids in the lipid nanoparticles.
구체적으로, 상기 유상 용액을 제조하는 단계는, 이온화 지질, 비이온화 지질(non-Ionizable lipid), 중성지질 및 융합성 지질을 유기 용액에 용해하여 유상 용액을 제조한다. Specifically, in the step of preparing the oil phase solution, ionized lipids, non-ionizable lipids, neutral lipids, and fusible lipids are dissolved in an organic solution to prepare an oil phase solution.
상기 유기 용액은 알코올이며, 구체적으로 메탄올, 에탄올, 이소프로판올, n-프로판올 등 일 수 있으나, 바람직하게는 에탄올이지만, 상기 예시에 국한되지 않고 이온화 지질을 균일하게 용해시킬 수 있는 유기 용매는 제한 없이 모두 사용 가능하다. The organic solution is alcohol, and may specifically be methanol, ethanol, isopropanol, n-propanol, etc., preferably ethanol, but is not limited to the above examples and may be any organic solvent capable of uniformly dissolving ionized lipids without limitation. Available.
상기 이온화 지질, 비이온화 지질(non-Ionizable lipid), 중성지질 및 융합성 지질의 구체적인 종류는 상술한 바와 같다.Specific types of ionizable lipids, non-ionizable lipids, neutral lipids, and fusible lipids are as described above.
상기 수상 용액을 제조하는 단계는, 핵산을 용매에 혼합하여, 수상 용액을 제조한다. 상기 용매는 시트르산 용액으로, pH 3.0인 것이나, 상기 예시에 제한되지 않고, 핵산을 혼합하여, 지질 나노입자를 제조할 수 있는 용매는 제한 없이 모두 사용 가능하다.In the step of preparing the aqueous solution, nucleic acid is mixed with a solvent to prepare an aqueous solution. The solvent is a citric acid solution at pH 3.0, but is not limited to the above example, and any solvent capable of producing lipid nanoparticles by mixing nucleic acids can be used without limitation.
상기 제조된 유상 용액 및 수상 용액은 지질나노입자 제조용 칩의 유상 용액 공급부 및 수상 용액 공급부로 주입하여, 지질나노입자 제조용 칩 내에서 지질나노입자를 형성할 수 있다. The prepared oil phase solution and aqueous solution can be injected into the oil phase solution supply section and the aqueous phase solution supply section of the lipid nanoparticle production chip to form lipid nanoparticles within the lipid nanoparticle production chip.
상기 지질나노입자 제조용 칩에 대한 일 예시는 하기와 같다. An example of the chip for producing lipid nanoparticles is as follows.
KR 10-2361123 B1에 기재된, 도 2와 같은 원환체 혼합 엘리먼트들을 통해 분기된(bifurcated) 유체 흐름을 갖는 유체 혼합부를 포함하는 지질나노입자 제조용 칩을 이용할 수 있다.A chip for producing lipid nanoparticles, described in KR 10-2361123 B1, including a fluid mixing unit with a bifurcated fluid flow through toric mixing elements as shown in FIG. 2, can be used.
또한, 다른 일 실시예에 따른 지질나노입자 제조용 칩은 도 3과 같은 구조일 수 있다. 상기 도 3의 지질나노입자 제조용 칩 내 믹서부는 서로 번갈아 배치되는 적어도 한쌍 이상의 안정화부 및 혼합부를 포함할 수 있다. 상기 도 3의 지질나노입자 제조용 칩의 믹서부는 라미나 플로우(Laminar Flow)를 이용한 이류(Advection)로 유체 주요 흐름 방향으로 파티클 또는 물질(Substance)을 이송시키는 현상에 유체의 흐름을 나누고, 분쇄시키는 혼돈 효과를 추가한 혼돈 이류(Chaotic advection)의 작동원리에 기반해 유체 흐름 채널을 설계한 것이다. Additionally, a chip for producing lipid nanoparticles according to another embodiment may have the same structure as FIG. 3. The mixer unit within the chip for producing lipid nanoparticles of FIG. 3 may include at least one pair of stabilizing units and mixing units arranged alternately. The mixer unit of the chip for producing lipid nanoparticles in FIG. 3 divides and pulverizes the flow of fluid by transporting particles or substances in the main flow direction of the fluid through advection using laminar flow. The fluid flow channel was designed based on the operating principle of chaotic advection with added chaos effects.
상기 혼돈 이류 방식은 기존의 이류 현상의 가장 큰 단점인 운송이 주요 유체 흐름의 한방향성으로 제약되는 단점을 극복하고, 보다 더 높은 효율의 용액간 혼합(Mixing)을 구현할 수 있다.The chaotic advection method overcomes the biggest disadvantage of the existing advection phenomenon, which is that transport is limited to the unidirectional nature of the main fluid flow, and can achieve higher efficiency mixing between solutions.
상기 도 3과 같은 지질나노입자 제조용 칩은 혼합의 효율을 높이는 방안과 서로 다른 두 용액의 접촉면에서의 자기 조립을 극대화하여 높은 효율로 지질나노입자가 제조될 수 있도록 채널 디자인 설계를 정밀하게 조율하였다. 구체적으로, 혼돈 이류를 이용한 위 언급된 일반적인 특성이외에 대칭(Symmetric)과 비대칭(Asymmetric) 구조를 적용하여, 용액 유체의 효율적인 혼합뿐만 아니라, 균일한 직경을 갖는 지질나노입자를 보다 안정적이고 효율적으로 제조할 수 있는 방향으로 디자인 및 설계되었다.The chip for producing lipid nanoparticles, as shown in FIG. 3, has a channel design carefully adjusted to increase mixing efficiency and maximize self-assembly at the contact surface of two different solutions so that lipid nanoparticles can be manufactured with high efficiency. . Specifically, in addition to the above-mentioned general characteristics using chaotic advection, symmetric and asymmetric structures are applied to not only efficiently mix solution fluids but also more stably and efficiently manufacture lipid nanoparticles with uniform diameters. It was designed and engineered in a way that can be done.
또한, 다른 일 실시예에 따른 지질나노입자 제조용 칩은 도 4과 같은 구조일 수 있다. 상기 도 4에 따른 지질나노입자 제조용 칩은 유상 용액 공급부; 수상 용액 공급부; 및 스파이럴 구조를 포함하는 믹서부를 포함하고, 상기 믹서부는 상기 유상 용액 공급부 및 상기 수상 용액 공급부에 연결되고, 상기 유상 용액 공급부를 통해 공급되는 유상 용액과, 상기 수상 용액 공급부를 통해 공급되는 수상 용액이 혼합되어 지질 나노 입자를 형성할 수 있다. Additionally, a chip for producing lipid nanoparticles according to another embodiment may have the same structure as FIG. 4. The chip for producing lipid nanoparticles according to FIG. 4 includes an oily solution supply unit; aqueous solution supply unit; and a mixer unit including a spiral structure, wherein the mixer unit is connected to the oil phase solution supply unit and the aqueous solution supply unit, and includes an oil phase solution supplied through the oil phase solution supply unit and an aqueous solution supplied through the aqueous solution supply unit. They can be mixed to form lipid nanoparticles.
상기 믹서부는 상술한 바와 같이 스파이럴 구조를 포함하는 것을 구조적인 특징으로 하며, 구체적으로 상기 스파이럴 구조는, 둘레면에 나선 궤적을 따라 교대로 형성된 산부와 골부를 포함하는 것을 특징으로 한다. As described above, the mixer unit is structurally characterized in that it includes a spiral structure. Specifically, the spiral structure is characterized by including peaks and valleys alternately formed along a spiral trajectory on the circumferential surface.
다만, 상기 지질나노입자 제조용 칩의 형상은 상기 예시에 제한되지 않고, 지질나노입자를 제조할 수 있는 칩은 모두 사용이 가능하다. However, the shape of the chip for producing lipid nanoparticles is not limited to the above examples, and any chip capable of producing lipid nanoparticles can be used.
상기 지질나노입자 제조용 칩은 유리 기판, 실리콘 웨이퍼 또는 고분자 필름으로 이루어진 군으로부터 선택된 소재에 형성될 수 있으나, 상기 소재의 예시는 상기 예시에 국한되지 않고, 채널의 형성이 가능한 소재는 모두 사용 가능하다. The chip for producing lipid nanoparticles may be formed on a material selected from the group consisting of a glass substrate, silicon wafer, or polymer film, but examples of the material are not limited to the above examples, and any material capable of forming a channel can be used. .
상기 고분자 필름은 폴리이미드(Polyimide), 폴리에틸렌(Polyethylene), 플루오르화에틸렌프로필렌(Fluorinated ethylene propylene), 폴리프로필렌(Polypropylene), 폴리에틸렌 테레프탈레이트(Polyethylene terephthalate), 폴리에틸렌 나프탈레이트(Polyethylene naphthalate), 폴리술폰(Polysulfone) 및 이들의 혼합으로 이루어진 군으로부터 선택될 수 있으나, 상기 예시에 국한되지 않는다. The polymer film is polyimide, polyethylene, fluorinated ethylene propylene, polypropylene, polyethylene terephthalate, polyethylene naphthalate, polysulfone ( Polysulfone) and mixtures thereof, but is not limited to the above examples.
일 예시로, 실리콘 웨이퍼에 e-beam evaporator를 이용하여 알루미늄을 증착하며, 포토리소그래피(photolithography) 기법을 이용하여 포토레지스트(photoresist)를 알루미늄 위에 패터닝한다. 이후, 포토레지스트를 마스크로 이용하여 알루미늄 식각(etching)하고, 포토레지스트를 제거한 후 알루미늄을 마스크로 하여 실리콘을 DRIE(deep ion reactive etching)로 에칭하고, 알루미늄 제거 후 웨이퍼 위에 유리를 양극 접합하여 밀봉하여, 상기의 리포좀 제조용 칩을 제조할 수 있다. As an example, aluminum is deposited on a silicon wafer using an e-beam evaporator, and photoresist is patterned on the aluminum using a photolithography technique. Afterwards, aluminum is etched using the photoresist as a mask, and after removing the photoresist, the silicon is etched using DRIE (deep ion reactive etching) using aluminum as a mask. After removing the aluminum, glass is anodized on the wafer to seal it. Thus, the above liposome manufacturing chip can be manufactured.
다른 일 실시예로, 본 발명의 지질나노입자 제조용 칩은 3D 프린터에 의해 출력되어 제조될 수 있다. In another example, the chip for producing lipid nanoparticles of the present invention can be printed and manufactured by a 3D printer.
상기 도 3의 지질나노입자 제조용 칩을 이용하여 지질나노입자를 제조하는 경우, 상기 제조된 상기 유상 용액은 유상 용액 공급부로 주입되고, 상기 수상 용액은 수상 용액 공급부로 주입되며, 상기 유상 용액 공급부를 통해 유상 용액이 믹서부로 주입되고, 상기 수상 용액 공급부를 통해 수상 용액이 믹서부로 주입되며, 상기 믹서부 내에서 유상 용액 및 수상 용액이 혼합되어 지질나노입자를 형성할 수 있다. When manufacturing lipid nanoparticles using the chip for producing lipid nanoparticles of FIG. 3, the prepared oil phase solution is injected into the oil phase solution supply section, the aqueous solution is injected into the aqueous phase solution supply section, and the oil phase solution supply section The oil phase solution is injected into the mixer unit through the aqueous solution supply unit, and the aqueous solution is injected into the mixer unit through the aqueous solution supply unit. The oil phase solution and the aqueous solution are mixed within the mixer unit to form lipid nanoparticles.
상기 유상 용액 공급부 및 수상 용액 공급부로 각 주입된 수상 용액 및 유상 용액은 교차점에서 층류(laminar flow)를 형성하여 교반 채널을 흐르게 된다. 또한, 도 3에 나타낸 바와 같이, 대칭(Symmetric)과 비대칭(Asymmetric) 구조를 적용하여, 용액 유체의 효율적인 혼합뿐만 아니라, 균일한 직경을 갖는 지질나노입자를 보다 안정적이고 효율적으로 제조할 수 있다.The aqueous solution and the oil phase solution injected into the oil phase solution supply unit and the aqueous solution supply unit form a laminar flow at the intersection point and flow through the stirring channel. In addition, as shown in Figure 3, by applying symmetric and asymmetric structures, not only can the solution fluid be mixed efficiently, but lipid nanoparticles with a uniform diameter can be manufactured more stably and efficiently.
또한, 상기 도 4의 지질나노입자 제조용 칩을 이용하여 지질나노입자를 제조하는 경우, 상기 제조된 상기 유상 용액은 유상 용액 공급부로 주입되고, 상기 수상 용액은 수상 용액 공급부로 주입되며, 상기 유상 용액 공급부를 통해 유상 용액이 믹서부로 주입되고, 상기 수상 용액 공급부를 통해 수상 용액이 믹서부로 주입되며, 이때 상기 유상 용액 및 수상 용액은 믹서부로 주입 시, 서로 마주보는 방향에서 이동하고, 상기 유상 용액 및 수상 용액이 만나는 지점에서 믹서부로 주입되게 된다. 이에, 상기 유상 용액 및 수상 용액은 계면을 형성하며 믹서부로 흐르게 되고, 상기 계면 상에서 지질 나노 입자가 형성되고, 동시에 유상 용액 및 수상 용액은 혼합되어, 혼합 용액을 형성하게 된다. 상기 도 4의 지질나노입자 제조용 칩의 믹서부는 상술한 바와 같이 스파이럴 구조인 것을 특징으로 하며, 스파이럴 구조인 믹서부의 둘레부를 따라, 유체의 흐름이 발생하게 되며, 상기 유체의 흐름은, 유상 용액 및 수상 용액의 혼합 효율을 높여줄 수 있고, 계면 상에서 균일한 지질 나노 입자의 형성을 촉진할 수 있다. In addition, when producing lipid nanoparticles using the chip for producing lipid nanoparticles of FIG. 4, the prepared oil phase solution is injected into the oil phase solution supply section, the aqueous phase solution is injected into the aqueous phase solution supply section, and the oil phase solution is injected into the oil phase solution supply section. The oil phase solution is injected into the mixer unit through the supply unit, and the aqueous solution is injected into the mixer unit through the aqueous solution supply unit. At this time, the oil phase solution and the aqueous solution move in directions facing each other when injected into the mixer unit, and the oil phase solution and It is injected into the mixer unit at the point where the aqueous solution meets. Accordingly, the oil phase solution and the aqueous phase solution form an interface and flow into the mixer unit, lipid nanoparticles are formed on the interface, and at the same time, the oil phase solution and the aqueous phase solution are mixed to form a mixed solution. The mixer part of the chip for producing lipid nanoparticles in FIG. 4 is characterized in that it has a spiral structure as described above, and a flow of fluid occurs along the circumference of the mixer part, which has a spiral structure, and the flow of fluid includes an oily solution and It can increase the mixing efficiency of the aqueous solution and promote the formation of uniform lipid nanoparticles at the interface.
상술한 지질나노입자 제조용 칩을 이용하여 저농도의 이온화 지질이 포함하고, 균일한 지질나노입자를 형성할 수 있다. 상기 지질나노입자는 상술한 바와 같이, 종래 지질나노입자에 비해, 동일한 핵산을 이용하여 지질나노입자를 생산할 때, 더 다수의 지질나노입자로 제조할 수 있고, 이는, 저농도의 이온화 지질을 포함하더라도, 상술한 상기 이온화 지질 및 비이온화 지질의 몰비 및 상기 이온화 지질 및 융합성 지질의 몰비를 충족하는 경우 지질나노입자를 제조할 수 있다. Using the above-described chip for producing lipid nanoparticles, uniform lipid nanoparticles containing a low concentration of ionized lipid can be formed. As described above, compared to conventional lipid nanoparticles, the lipid nanoparticles can be manufactured into a larger number of lipid nanoparticles when producing lipid nanoparticles using the same nucleic acid, even if they contain a low concentration of ionized lipid. , Lipid nanoparticles can be produced if the above-described molar ratio of the ionized lipid and non-ionized lipid and the molar ratio of the ionized lipid and fusible lipid are met.
상기 제조된 지질나노입자는, 지질나노입자 내 이온화 지질의 함량이 낮아, 세포 독성을 낮출 수 있다.The prepared lipid nanoparticles have a low content of ionized lipids in the lipid nanoparticles, which can reduce cytotoxicity.
또한, 구 형상이 균일하며, 핵산의 봉입률이 우수하고, 지질나노입자를 제조할 때, 비이온화 지질 및 융합성 지질의 함량을 증가시켜 종래 지질나노입자과 비교하여 동일한 핵산의 함량을 이용하여 다수의 지질나노입자로 제조할 수 있고, 동일한 핵산을 주사할 때, 체내 주입되는 지질나노입자의 수가 증가하여 핵산의 단백질 발현도를 높일 수 있다.In addition, the spherical shape is uniform, the encapsulation rate of nucleic acids is excellent, and when manufacturing lipid nanoparticles, the content of non-ionized lipids and fusible lipids is increased to increase the content of nucleic acids compared to conventional lipid nanoparticles. It can be manufactured from lipid nanoparticles, and when the same nucleic acid is injected, the number of lipid nanoparticles injected into the body increases, thereby increasing the protein expression level of the nucleic acid.
제조예Manufacturing example
지질나노입자의 제조Manufacturing of lipid nanoparticles
1) LNP 제조를 위한 ALC0315(이온화 지질), DSPC(비이온화 지질), 콜레스테롤(융합성 지질) 및 PEG(중성 지질)를 각각 다음과 같은 농도로 Absolute ethanol에 녹여 유상 용액을 제조하였다.1) For LNP production, ALC0315 (ionized lipid), DSPC (non-ionized lipid), cholesterol (fusible lipid), and PEG (neutral lipid) were each dissolved in absolute ethanol at the following concentrations to prepare an oily solution.
2) mRNA (CleanCap® EGFP mRNA, ~1,000 nucleotides)를 Citrate solution(pH 3)에 혼합하여 수상 용액을 제조하였다. 2) An aqueous solution was prepared by mixing mRNA (CleanCap® EGFP mRNA, ~1,000 nucleotides) with citrate solution (pH 3).
3) "2)"의 수상 용액 및 유상 용액을 시린지(Syringe)에 채운 후 도 3와 같은 미세유체칩(Microfluidic mixer)에 연결하였다.3) The aqueous and oily solutions of “2)” were filled into a syringe and then connected to a microfluidic mixer as shown in FIG. 3.
4) 시린지 펌프(Syringe pump)를 이용하여 수상 용액은 51ml/min, 유상 용액은 17ml/min의 유속으로 각 원료들을 주입하였다.4) Using a syringe pump, each raw material was injected at a flow rate of 51 ml/min for the water phase solution and 17 ml/min for the oil phase solution.
5) 상기 "4)"과정으로 혼합이 완료된 각각의 sample을 dialysis cassette (Mw 10k)에 넣고, 1x PBS 3L로 2시간 동안 dialysis시켜 주었다. 2시간의 dialysis 과정 이후 fresh한 1x PBS로 교체한 후 overnight으로 dialysis를 추가 진행하고(overnight기준 대략 17시간), 지질나노입자를 수득하였다.5) Each sample whose mixing was completed in step “4)” was placed in a dialysis cassette (Mw 10k) and dialyzed with 3L of 1x PBS for 2 hours. After the 2-hour dialysis process, it was replaced with fresh 1x PBS, and additional dialysis was performed overnight (approximately 17 hours overnight), and lipid nanoparticles were obtained.
상기 수상 용액 및 유상 용액에 포함된 구성 성분의 함량 및 몰비는 하기 표 1과 같다:The content and molar ratio of components contained in the aqueous solution and the oil phase solution are shown in Table 1 below:
용량(ug)Capacity (ug)
8.1% LNP8.1% LNP 10% LNP10% LNP 15% LNP15% LNP 20% LNP20% LNP 25% LNP25% LNP 50% LNP50% LNP
mRNAmRNA EGFP (ug)EGFP (ug) 300300 300300 300300 300300 300300 300300
LipidLipid 이온화 지질(ug)Ionized lipid (ug) 5,001
(8.1)
5,001
(8.1)
5,001
(10.0)
5,001
(10.0)
5,001
(15.0)
5,001
(15.0)
5,001
(20.0)
5,001
(20.0)
5,001
(25.0)
5,001
(25.0)
5,001
(50.0)
5,001
(50.0)
비이온화 지질(ug)Non-ionized lipids (ug) 11,970
(18.8)
11,970
(18.8)
9,541
(18.5)
9,541
(18.5)
6,017
(17.5)
6,017
(17.5)
4,229
(16.4)
4,229
(16.4)
3,177
(15.4)
3,177
(15.4)
1,031
(10.0)
1,031
(10.0)
융합성 지질(ug)Fusible lipids (ug) 22,309
(71.6)
22,309
(71.6)
17,666
(70.0)
17,666
(70.0)
11,105
(66.0)
11,105
(66.0)
7,836
(62.1)
7,836
(62.1)
5,865
(58.1)
5,865
(58.1)
1,943
(38.5)
1,943
(38.5)
중성 지질(ug)Neutral lipid (ug) 3,032
(1.5)
3,032
(1.5)
2,456
(1.5)
2,456
(1.5)
1,637
(1.5)
1,637
(1.5)
1,228
(1.5)
1,228
(1.5)
982
(1.5)
982
(1.5)
491
(1.5)
491
(1.5)
이온화 지질 및 비이온화 지질의 중량비Weight ratio of ionized and non-ionized lipids 2.392.39 1.911.91 1.201.20 0.850.85 0.640.64 0.210.21
이온화 지질 및 중성 지질의 중량비Weight ratio of ionized lipid and neutral lipid 1.861.86 1.851.85 1.851.85 1.851.85 1.851.85 1.881.88
상기 괄호는 전체 지질 함량 대비 각 지질 성분의 몰비에 관한 것이다. The parentheses relate to the molar ratio of each lipid component to the total lipid content.
실험예Experiment example
평균직경 및 PDI 분석(Malvern Ultra-red DLS장비 사용)Average diameter and PDI analysis (using Malvern Ultra-red DLS equipment)
상기 표 1에서 제조한 지질나노입자를 DLS측정용 cuvette에 1ml을 loading해 주었다. Cuvette을 DLS장비에 넣고 측정하였다. 1ml of the lipid nanoparticles prepared in Table 1 above was loaded into a cuvette for DLS measurement. The cuvette was placed in the DLS equipment and measured.
실험 결과는 도 5와 같다. 도 5에 의하면, 이온화 지질을 8.1 mol%, 10 mol%, 15 mol%, 20 mol%, 25 mol% 및 50 mol%로 포함한 경우, 평균직경이 90nm, 87.5nm, 80.5nm, 75.6nm, 72.2nm 및 73.5nm이고, PDI 측정 결과 역시, 0.06, 0.08, 0.07, 0.08, 0.08 및 0.07로 확인되어 균일한 입자로 제조됨을 확인하였다. The experimental results are shown in Figure 5. According to Figure 5, when ionized lipid is included at 8.1 mol%, 10 mol%, 15 mol%, 20 mol%, 25 mol% and 50 mol%, the average diameter is 90nm, 87.5nm, 80.5nm, 75.6nm, 72.2nm. nm and 73.5 nm, and the PDI measurement results were also confirmed to be 0.06, 0.08, 0.07, 0.08, 0.08, and 0.07, confirming that they were manufactured as uniform particles.
봉입률 측정(Ribogreen assay kit 사용)Measurement of encapsulation rate (using Ribogreen assay kit)
Kit에 들어있는 20x TE buffer를 RNase free buffer를 사용하여 1x TE buffer로 희석하였다. 1x TE buffer를 사용하여, 100x Triton을 1x Triton으로 희석하였다. LNP에 봉입된 mRNA의 정량분석을 위해 1x Triton을 이용하여 EGFP-mRNA의 standard curve만들 시료를 준비하였다. 측정 sample은 1x TE buffer와 1x Triton를 각각 사용하여 50배 희석하였다. 상기 시료를 96well black plate에 100ul씩 loading하였다. 시료가 모두 loading된 96well black plate를 37℃에서 10분간 incubation 시켜주었다. Kit에 들어 있는 Ribogreen을 1x TE buffer로 200배 희석하였다. 상기 incubation 과정이 끝난 96well black plate에 희석한 Ribogreen을 각 100ul씩 넣었다. Room temperature(대략 25℃)에서 10분간 incubation 시켜주었다. 이후 microplate reader장비를 사용하여 490~520nm 파장에서 형광도를 측정하였다. 측정된 형광수치를 EGFP-mRNA standard curve에 대입하여, LNP 내부 및 외부의 mRNA양을 정량 하였다(아래와 같은 수식 1과 수식 2을 이용하여 봉입율과 봉입된 RNA의 양을 산정한다.). The 20x TE buffer contained in the kit was diluted into 1x TE buffer using RNase free buffer. Using 1x TE buffer, 100x Triton was diluted into 1x Triton. For quantitative analysis of mRNA encapsulated in LNP, a sample to create a standard curve of EGFP-mRNA was prepared using 1x Triton. The measurement sample was diluted 50 times using 1x TE buffer and 1x Triton, respectively. The sample was loaded at 100 ul each into a 96 well black plate. The 96-well black plate loaded with all samples was incubated at 37°C for 10 minutes. Ribogreen included in the kit was diluted 200 times with 1x TE buffer. 100ul of diluted Ribogreen was added to each 96-well black plate after the incubation process was completed. Incubation was performed for 10 minutes at room temperature (approximately 25°C). Afterwards, fluorescence was measured at a wavelength of 490 to 520 nm using microplate reader equipment. The measured fluorescence value was substituted into the EGFP-mRNA standard curve to quantify the amount of mRNA inside and outside the LNP (calculate the encapsulation rate and amount of encapsulated RNA using Equation 1 and Equation 2 below.)
[수식 1][Formula 1]
[규칙 제91조에 의한 정정 15.02.2024]
Figure WO-DOC-FIGURE-1
[Correction 15.02.2024 pursuant to Rule 91]
Figure WO-DOC-FIGURE-1
[수식 2][Formula 2]
[규칙 제91조에 의한 정정 15.02.2024]
Figure WO-DOC-FIGURE-2
[Correction 15.02.2024 pursuant to Rule 91]
Figure WO-DOC-FIGURE-2
실험 결과는 도 6과 같다. 이온화 지질을 8.1 mol%, 10 mol%, 15 mol%, 20 mol%, 25 mol% 및 50 mol%로 포함한 경우, 봉입률이 97%, 98%, 99%, 98%, 97% 및 92%로 확인되었는 바, 종래 지질나노입자와 같이 이온화 지질을 50mol%로 포함한 지질나노입자의 봉입률이 상대적으로 떨어지는 것을 확인할 수 있다. The experimental results are shown in Figure 6. When ionized lipids were included at 8.1 mol%, 10 mol%, 15 mol%, 20 mol%, 25 mol%, and 50 mol%, the encapsulation ratios were 97%, 98%, 99%, 98%, 97%, and 92%. As confirmed, it can be seen that the encapsulation rate of lipid nanoparticles containing 50 mol% of ionized lipid, like conventional lipid nanoparticles, is relatively low.
세포 독성 평가Cytotoxicity evaluation
세포 형태(Cell morphology) 확인 시험 Cell morphology confirmation test
Stock된 HeLa세포를 1분 동안 37℃ water bath에서 해동(thawing)시켰다. 해동된 HeLa세포에 fresh한 media 4ml을 넣고 원심분리(centrifuge)를 돌려 세포를 아래로 모아주었다. 원심분리 조건은 1500rpm, 3분 및 4℃이다.Stocked HeLa cells were thawed in a 37°C water bath for 1 minute. 4ml of fresh media was added to the thawed HeLa cells and centrifuged to collect the cells downward. Centrifugation conditions were 1500 rpm, 3 minutes, and 4°C.
상기 원심 분리가 끝난 후 상층액을 제거하고 fresh한 media 10ml에 세포를 재부유(resuspension) 시켜주었다. 상기 재부유된 세포를 100 ф 배양접시(culture dish)에 옮겨 주고 2일간 배양하였다. 2일 후 100 ф 배양접시에서 배양중인 세포를 계대배양(subculture) 해줬다(세포안정화 과정). 계대배양 세포의 밀집(confluency)이 90%가 되면, 하기와 같은 방법으로 24well culture plate에 cell seeding을 해주었다. After the centrifugation was completed, the supernatant was removed and the cells were resuspended in 10ml of fresh media. The resuspended cells were transferred to a 100 ф culture dish and cultured for 2 days. After 2 days, the cells in culture were subcultured in a 100 ф culture dish (cell stabilization process). When the confluency of subcultured cells reached 90%, cells were seeded in a 24-well culture plate in the following manner.
- 밀집이 90%가 넘은 세포의 culture media를 제거하였다. DPBS 10ml을 넣고 잔류중인 media를 2회 세척하였다. 트립신(Trypsin) 5ml을 넣고 37℃에서 3분간 인큐베이션하였다. 이후 dish를 살짝 쳐서 dish 바닥에 붙어있는 세포를 떨어뜨려 주었다. 5ml의 media를 넣어 trypsin을 중화시킨 다음 원심분리를 이용하여 media를 fresh한 media로 교체하였다. 이때 원심분리 조건은 1500rpm, 3분 및 4℃ 이다. 상기 과정을 거쳐 재부유된 세포를 현미경으로 카운팅하여 24well culture plate에 7 x 10^(4) cells/well의 농도로 세포를 seeding하였다.- Culture media of cells with a density exceeding 90% were removed. 10ml of DPBS was added and the remaining media was washed twice. 5ml of trypsin was added and incubated at 37°C for 3 minutes. Afterwards, the dish was lightly hit to dislodge the cells attached to the bottom of the dish. Trypsin was neutralized by adding 5ml of media, and then the media was replaced with fresh media using centrifugation. At this time, centrifugation conditions were 1500 rpm, 3 minutes, and 4°C. The cells resuspended through the above process were counted under a microscope, and the cells were seeded at a concentration of 7 x 10^(4) cells/well in a 24-well culture plate.
Seeding한 세포는, 37℃, CO2-incubator에서 24시간 배양하였다. 이후, 각각의 지질나노입자를 실험 농도에 맞게 처리하였다(실험농도: 500ng). 지질나노입자를 처리한 후, 37℃, CO2-incubator에서 48시간 배양하고, 현미경을 이용하여 세포의 형태를 관찰하였다.Seeded cells were cultured in a CO 2 -incubator at 37°C for 24 hours. Afterwards, each lipid nanoparticle was treated according to the experimental concentration (test concentration: 500ng). After treatment with lipid nanoparticles, the cells were cultured in a CO 2 -incubator at 37°C for 48 hours, and the morphology of the cells was observed using a microscope.
상기 실험 결과는 도 7과 같다. 무처리군(NC)과 비교하여 이온화 지질 10 mol%, 15 mol% 및 20 mol% 처리한 군에서 세포의 형태가 크게 변화되지 않은 것을 확인하였으며, 이온화 지질 25 mol% 및 50 mol%를 처리한 군에서는 세포의 형태에 대한 변화 양상이 크게 나타남을 확인할 수 있다. The results of the experiment are shown in Figure 7. Compared to the untreated group (NC), it was confirmed that the cell morphology was not significantly changed in the group treated with 10 mol%, 15 mol%, and 20 mol% of ionized lipid, and in the group treated with 25 mol% and 50 mol% of ionized lipid, It can be seen that there is a significant change in cell shape in the group.
세포 증식 분석Cell proliferation assay
상술한 세포 형태 확인 시험과 동일한 방법으로 지질나노입자를 처리하고, 37℃, CO2-incubator에서 72시간 배양하였다. CCK-8 assay kit의 시약을 media로 10배 희석하여 준비하였다. 이후, 72시간 동안 배양을 완료한 세포의 media를 제거해주고 상기 제조한 시약을 0.5ml 넣어주고 3시간 37℃ CO2-incubator에서 인큐베이션하였다.Lipid nanoparticles were treated in the same manner as the cell shape confirmation test described above, and cultured in a CO 2 -incubator at 37°C for 72 hours. The reagent of the CCK-8 assay kit was prepared by diluting it 10 times with media. Afterwards, the media of the cells that had been cultured for 72 hours was removed, 0.5ml of the above-prepared reagent was added, and the cells were incubated in a CO 2 -incubator at 37°C for 3 hours.
이후, microplate reader장비를 사용하여 450nm에서의 흡광도를 측정하였다. 세포의 증식(proliferation)을 아래와 같은 수식 3을 이용하여 산정하였다.Afterwards, the absorbance at 450 nm was measured using a microplate reader device. Cell proliferation was calculated using Equation 3 below.
[수식 3][Formula 3]
Figure PCTKR2023020315-appb-img-000003
Figure PCTKR2023020315-appb-img-000003
도 8은 세포 독성에 대한 평가 결과로, 이온화 지질 10 mol%를 포함하는 지질나노입자를 처리한 군에서 이온화 지질 50 mol%를 포함하는 지질나노입자를 처리한 군 대비, 독성이 낮음을 확인하였다. Figure 8 shows the results of the evaluation of cytotoxicity, confirming that the group treated with lipid nanoparticles containing 10 mol% of ionized lipid had lower toxicity compared to the group treated with lipid nanoparticles containing 50 mol% of ionized lipid. .
또한, 세포의 형태 변화를 확인한 결과는 도 9와 같다. 이온화 지질 10 mol%를 포함하는 지질나노입자를 처리한 세포에서는 세포 형태의 변화가 관찰되지 않았으나, 이온화 지질 50 mol%를 포함하는 지질나노입자를 처리한 세포에서는, 표시한 부분과 같이 형태의 변화가 나타남을 확인할 수 있어, 이온화 지질의 농도에 따라 세포 독성에 영향을 미침을 확인하였다. In addition, the results of confirming the change in cell shape are shown in Figure 9. No change in cell shape was observed in cells treated with lipid nanoparticles containing 10 mol% of ionized lipid, but in cells treated with lipid nanoparticles containing 50 mol% of ionized lipid, a change in shape was observed as indicated. It was confirmed that the concentration of ionized lipid affects cytotoxicity.
mRNA 단백질 발현에 대한 효율성 평가 시험 Efficiency evaluation test for mRNA protein expression
상술한 세포 형태(Cell morphology) 확인 시험과 동일한 방식으로 세포를 seeding하고, 24시간 동안 배양을 완료한 후, 지질나노입자의 RNA 농도가 500ng/ml이 되도록 media에 희석한 후 각 well에 1ml씩 처리하였다. 이후, 37℃, CO2-incubator에서 48시간 배양하였다. 이후, 현미경을 이용하여 GFP발현율을 확인하였다. Cells were seeded in the same manner as the cell morphology confirmation test described above, and after culturing for 24 hours, the lipid nanoparticles were diluted in media so that the RNA concentration was 500ng/ml, and then 1ml was added to each well. Processed. Afterwards, the cells were cultured at 37°C in a CO 2 -incubator for 48 hours. Afterwards, the GFP expression rate was confirmed using a microscope.
실험 결과는 도 10과 같다. 이온화 지질 50 mol%를 포함하는 지질나노입자를 처리한 군에 비해, 이온화 지질 10 mol%를 포함하는 지질나노입자를 처리한 군에서 GFP 발현율이 더 높은 것을 확인할 수 있다. 이는 본 발명의 지질나노입자에 포함된 mRNA가 종래 이온화 지질을 50mol% 포함하는 지질나노입자에 비해 단백질 발현 정도에서 큰 차이가 남을 확인하였다. The experimental results are shown in Figure 10. It can be seen that the GFP expression rate was higher in the group treated with lipid nanoparticles containing 10 mol% of ionized lipid compared to the group treated with lipid nanoparticles containing 50 mol% of ionized lipid. This confirmed that the mRNA contained in the lipid nanoparticles of the present invention had a significant difference in protein expression level compared to the lipid nanoparticles containing 50 mol% of conventional ionized lipid.
지질나노입자 농도에 대한 정량적 분석 시험Quantitative analysis test on lipid nanoparticle concentration
지질나노입자를 DLS측정용 cuvette에 1ml을 loading하였다. 이후, Cuvette을 DLS장비에 넣고 소프트웨어에서 입자 농도(Particle concentration)기능을 선택한 뒤, 시작 버튼을 눌러 측정하였다.1ml of lipid nanoparticles was loaded into the cuvette for DLS measurement. Afterwards, the cuvette was placed in the DLS equipment, the particle concentration function was selected in the software, and measurements were made by pressing the start button.
시험 결과는 도 11과 같다. 도 11에 의하면, 이온화 지질의 농도가 낮아질수록 지질나노입자의 형성 개수가 증가하는 것을 확인할 수 있으며, 특히 이온화 지질 50 mol%로 포함하는 지질나노입자와 이온화 지질 10 mol%를 포함하는 지질나노입자의 경우, 이온화 지질 10 mol%를 포함하는 지질나노입자의 형성 개수가 2.5배 차이 나는 것을 확인할 수 있다. The test results are shown in Figure 11. According to Figure 11, it can be seen that as the concentration of ionized lipid decreases, the number of lipid nanoparticles formed increases, especially lipid nanoparticles containing 50 mol% of ionized lipid and lipid nanoparticles containing 10 mol% of ionized lipid. In the case of , it can be seen that the number of lipid nanoparticles formed containing 10 mol% of ionized lipid differs by 2.5 times.
이는, 상술한 바와 같이 이온화 지질의 농도가 낮아짐에 따라, 비이온화 지질 및 융합성 지질의 농도가 높아지게 되고, 이로 인해 형성된 지질나노입자의 수가 증가하는 것을 뒷받침하는 실험 결과라 할 것이다. This is an experimental result that supports the fact that as the concentration of ionized lipids decreases, as described above, the concentration of non-ionized lipids and fusible lipids increases, and the number of lipid nanoparticles formed increases.
지질나노입자 농도에 대한 정성적 분석 시험Qualitative analysis test on lipid nanoparticle concentration
지질나노입자를 5000 rpm, 1시간 및 15℃ 조건하에서 농축하였다. 이후, 상술한 봉입률 측정 방법과 동일한 방법으로 진행하여 encapsulated mRNA를 정량 하고, 상기 지질나노입자를 전부 encapsulated mRNA 농도가 25ug/ml이 되도록 희석하였다. 이후, 200kV JEOL 2100P 초저온 전자현미경 사용하여, 동일한 농도의 지질나노입자를 이미지화하여 입자의 개수를 확인하였다.Lipid nanoparticles were concentrated at 5000 rpm, 1 hour, and 15°C. Afterwards, encapsulated mRNA was quantified in the same manner as the encapsulation rate measurement method described above, and all of the lipid nanoparticles were diluted so that the encapsulated mRNA concentration was 25ug/ml. Afterwards, using a 200kV JEOL 2100P cryogenic electron microscope, lipid nanoparticles of the same concentration were imaged to confirm the number of particles.
실험 결과는 도 12와 같고, 이온화 지질 50 mol%를 포함하는 지질나노입자 대비, 이온화 지질 10 mol%를 포함하는 지질나노입자의 형성 개수가 더 많음을 이미지를 통해 확인할 수 있다. The experimental results are shown in FIG. 12, and it can be seen from the image that the number of lipid nanoparticles containing 10 mol% of ionized lipids is greater than that of lipid nanoparticles containing 50 mol% of ionized lipids.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the preferred embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements made by those skilled in the art using the basic concept of the present invention defined in the following claims are also possible. falls within the scope of rights.
본 발명은 저농도 이온화 지질을 포함하는 지질나노입자 및 이의 제조 방법에 관한 것이다.The present invention relates to lipid nanoparticles containing low concentration ionized lipids and a method for producing the same.

Claims (10)

  1. 핵산;nucleic acid;
    이온화 지질(Ionizable lipid);Ionizable lipid;
    비이온화 지질(non-Ionizable lipid); non-ionizable lipid;
    중성지질; 및 neutral lipid; and
    융합성 지질을 포함하며,Contains fusible lipids,
    상기 이온화 지질은 지질나노입자 내 지질 총 중량 대비하여 25 mol% 이하로 포함하는The ionized lipid contains 25 mol% or less compared to the total weight of lipid in the lipid nanoparticle.
    저농도 이온화 지질을 포함하는 지질나노입자.Lipid nanoparticles containing low concentration of ionized lipids.
  2. 제1항에 있어서, According to paragraph 1,
    상기 이온화 지질 및 비이온화 지질은 1:0.3 내지 1:3의 몰비로 포함하는The ionized lipid and the non-ionized lipid are contained in a molar ratio of 1:0.3 to 1:3.
    저농도 이온화 지질을 포함하는 지질나노입자.Lipid nanoparticles containing low concentration of ionized lipids.
  3. 제1항에 있어서, According to paragraph 1,
    상기 이온화 지질 및 융합성 지질은 1:1 내지 1:10의 몰비로 포함하는The ionized lipid and fusible lipid are contained in a molar ratio of 1:1 to 1:10.
    저농도 이온화 지질을 포함하는 지질나노입자.Lipid nanoparticles containing low concentration of ionized lipids.
  4. 제1항에 있어서,According to paragraph 1,
    상기 지질나노입자는 균일한 구 형상으로, 다분산 지수(Polydispersity index)가 0.05 내지 0.1인The lipid nanoparticles have a uniform spherical shape and have a polydispersity index of 0.05 to 0.1.
    저농도 이온화 지질을 포함하는 지질나노입자.Lipid nanoparticles containing low concentration of ionized lipids.
  5. 제1항에 있어서,According to paragraph 1,
    상기 지질나노입자의 평균 직경은 70nm 내지 100nm인The average diameter of the lipid nanoparticles is 70nm to 100nm.
    저농도 이온화 지질을 포함하는 지질나노입자. Lipid nanoparticles containing low concentration of ionized lipids.
  6. 제1항에 있어서,According to paragraph 1,
    상기 핵산은 RNA, DNA, siRNA(short interfering RNA), mRNA(messenger RNA), 압타머(aptamer), 안티센스 ODN(antisense oligodeoxynucleotide), 안티센스 RNA(antisense RNA), 리보자임(ribozyme), 디엔에이자임(DNAzyme) 및 이들의 혼합으로 이루어진 군으로부터 선택되는The nucleic acids include RNA, DNA, short interfering RNA (siRNA), messenger RNA (mRNA), aptamer, antisense oligodeoxynucleotide (ODN), antisense RNA, ribozyme, and DNAzyme. ) and mixtures thereof.
    저농도 이온화 지질을 포함하는 지질나노입자.Lipid nanoparticles containing low concentration of ionized lipids.
  7. 제1항에 있어서,According to paragraph 1,
    상기 비이온화 지질은 DSPC(distearoylphosphatidylcholine), DOPE(dioleolphosphatidyl ethanolamine), DPPE(bis(diphenylphosphino)ethane), 디아실포스파티딜콜린(diacyl phosphatidylcholine), 디아실포스파티딜에탄올아민(diacylphosphatidylethanolamine), 디아실포스파티딜세린(diacylphosphatidylserine) 및 이들의 혼합으로 이루어진 군으로부터 선택되는The non-ionized lipids include distearoylphosphatidylcholine (DSPC), dioleolphosphatidyl ethanolamine (DOPE), bis(diphenylphosphino)ethane (DPPE), diacyl phosphatidylcholine, diacylphosphatidylethanolamine, and diacylphosphatidylserine. tidylserine) and selected from the group consisting of mixtures thereof
    저농도 이온화 지질을 포함하는 지질나노입자.Lipid nanoparticles containing low concentration of ionized lipids.
  8. 제1항에 있어서, According to paragraph 1,
    상기 중성지질은 폴리에틸렌글리콜 2000 디스테아로일포스파티딜에탄올아민(PEG(2000) DSPE), DMG-PEG, PEG-DMPE, DPPE-PEG, DPG-PEG, PEG-DOPE 및 이들의 혼합으로 이루어진 군으로부터 선택되는The neutral lipid is selected from the group consisting of polyethylene glycol 2000 distearoylphosphatidylethanolamine (PEG (2000) DSPE), DMG-PEG, PEG-DMPE, DPPE-PEG, DPG-PEG, PEG-DOPE, and mixtures thereof. felled
    저농도 이온화 지질을 포함하는 지질나노입자Lipid nanoparticles containing low concentration of ionized lipids
  9. 제1항에 있어서, According to paragraph 1,
    상기 융합성 지질은 인지질, 콜레스테롤, 토코페롤 및 이들의 혼합으로 이루어진 군으로부터 선택되는The fusion lipid is selected from the group consisting of phospholipids, cholesterol, tocopherol, and mixtures thereof.
    저농도 이온화 지질을 포함하는 지질나노입자.Lipid nanoparticles containing low concentration of ionized lipids.
  10. 유기 용매에 이온화 지질(Ionizable lipid); 비이온화 지질(non-Ionizable lipid); 중성지질; 및 융합성 지질을 용해하여 유상 용액을 제조하는 단계; Ionizable lipids in organic solvents; non-ionizable lipid; neutral lipid; and dissolving the fusible lipid to prepare an oily solution;
    핵산을 포함하는 수상 용액을 제조하는 단계; 및Preparing an aqueous solution containing nucleic acids; and
    상기 유상 용액 및 수상 용액을 지질 나노 입자 제조용 칩에 주입하여 지질 나노 입자를 제조하는 단계를 포함하며, Including the step of producing lipid nanoparticles by injecting the oil phase solution and the aqueous phase solution into a chip for producing lipid nanoparticles,
    상기 지질 나노 입자 제조용 칩은, 유상 용액 공급부, 수상 용액 공급부, 믹서부 및 배출부를 포함하며,The chip for producing lipid nanoparticles includes an oil phase solution supply section, an aqueous phase solution supply section, a mixer section, and a discharge section,
    상기 유상 용액은 유상 용액 공급부로 주입되고, The oily solution is injected into the oily solution supply part,
    상기 수상 용액은 수상 용액 공급부로 주입되며, The aqueous solution is injected into the aqueous solution supply section,
    상기 유상 용액 공급부를 통해 유상 용액이 믹서부로 주입되고, 상기 수상 용액 공급부를 통해 수상 용액이 믹서부로 주입되며, The oil phase solution is injected into the mixer section through the oil phase solution supply section, and the aqueous phase solution is injected into the mixer section through the aqueous phase solution supply section,
    상기 믹서부 내에서 유상 용액 및 수상 용액이 혼합되어 지질나노입자를 형성하며,In the mixer unit, the oil phase solution and the aqueous phase solution are mixed to form lipid nanoparticles,
    상기 이온화 지질은 지질나노입자 내 지질 총 중량 대비하여 25 mol% 이하로 포함되는The ionized lipid is contained in an amount of 25 mol% or less compared to the total weight of lipids in the lipid nanoparticles.
    저농도 이온화 지질을 포함하는 지질나노입자의 제조 방법.Method for producing lipid nanoparticles containing low concentration of ionized lipid.
PCT/KR2023/020315 2022-12-20 2023-12-11 Lipid nanoparticles comprising low-concentration ionizable lipids, and preparation method therefor WO2024136254A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0179913 2022-12-20
KR20220179913 2022-12-20
KR10-2023-0171950 2023-12-01
KR1020230171950A KR20240099028A (en) 2022-12-20 2023-12-01 Lipid nanoparticles containing low concentration ionized lipids and method for producing the same

Publications (1)

Publication Number Publication Date
WO2024136254A1 true WO2024136254A1 (en) 2024-06-27

Family

ID=91589424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/020315 WO2024136254A1 (en) 2022-12-20 2023-12-11 Lipid nanoparticles comprising low-concentration ionizable lipids, and preparation method therefor

Country Status (1)

Country Link
WO (1) WO2024136254A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102056702B1 (en) * 2011-11-04 2019-12-17 닛토덴코 가부시키가이샤 Method of producing lipid nanoparticles for drug delivery
KR102198736B1 (en) * 2020-01-15 2021-01-05 이화여자대학교 산학협력단 Lipid nanoparticles for in vivo drug delivery and uses thereof
WO2021250263A1 (en) * 2020-06-11 2021-12-16 Etherna Immunotherapies Nv Lipid nanoparticles
KR20220145788A (en) * 2021-04-22 2022-10-31 (주)인벤티지랩 Method for producing nano lipid particle and an apparatus for producing the same
KR102465349B1 (en) * 2022-02-25 2022-11-11 주식회사 테르나테라퓨틱스 Novel Ionizable Lipids and Lipid Nanoparticles Comprising Thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102056702B1 (en) * 2011-11-04 2019-12-17 닛토덴코 가부시키가이샤 Method of producing lipid nanoparticles for drug delivery
KR102198736B1 (en) * 2020-01-15 2021-01-05 이화여자대학교 산학협력단 Lipid nanoparticles for in vivo drug delivery and uses thereof
WO2021250263A1 (en) * 2020-06-11 2021-12-16 Etherna Immunotherapies Nv Lipid nanoparticles
KR20220145788A (en) * 2021-04-22 2022-10-31 (주)인벤티지랩 Method for producing nano lipid particle and an apparatus for producing the same
KR102465349B1 (en) * 2022-02-25 2022-11-11 주식회사 테르나테라퓨틱스 Novel Ionizable Lipids and Lipid Nanoparticles Comprising Thereof

Similar Documents

Publication Publication Date Title
Kim et al. pH‐induced Micelle Formation of Poly (histidine‐co‐phenylalanine)‐block‐Poly (ethylene glycol) in Aqueous Media
CN104936620B (en) Enhance the nanoparticle composite of transmucosal
CA2358505C (en) Novel hydrogel isolated cochleate formulations, process of preparation and their use for the delivery of biologically relevant molecules
Sato et al. Neutralization of negative charges of siRNA results in improved safety and efficient gene silencing activity of lipid nanoparticles loaded with high levels of siRNA
US20240207186A1 (en) Nanolipoprotein particles and related compositions methods and systems for loading rna
Hu et al. Aggregation-induced emission (AIE) dye loaded polymer nanoparticles for gene silencing in pancreatic cancer and their in vitro and in vivo biocompatibility evaluation
Sharifnia et al. In-vitro transcribed mRNA delivery using PLGA/PEI nanoparticles into human monocyte-derived dendritic cells
CN113058042B (en) Preparation method of lipid nanoparticle capable of being subjected to nasal spraying and used for stably delivering RNA molecules
WO2022035243A1 (en) Oral composition comprising milk exosomes encapsulating therapeutic agent, and method for producing same
CN112142972A (en) Modified polyethyleneimine derivative and synthesis method and application thereof
EP4303176A1 (en) Lipid nanoparticle preparation method and preparation apparatus therefor
Ionov et al. Biophysical characterization of glycodendrimers as nano-carriers for HIV peptides
CN116763757A (en) Preparation method and application of wrapped compound and preparation thereof
Cosco et al. Meglumine Antimoniate‐Loaded Aqueous‐Core PLA Nanocapsules: Old Drug, New Formulation against Leishmania‐Related Diseases
WO2024136254A1 (en) Lipid nanoparticles comprising low-concentration ionizable lipids, and preparation method therefor
CN116549667B (en) PAS modified lipid nanoparticle, pharmaceutical preparation containing PAS modified lipid nanoparticle, and preparation method and application of PAS modified lipid nanoparticle
CN113968968B (en) Amino lipid compound, preparation method and application thereof
US11560575B2 (en) High efficient delivery of plasmid DNA into human and vertebrate primary cells in vitro and in vivo by nanocomplexes
WO2022225368A1 (en) Lipid nanoparticle preparation method and preparation apparatus therefor
KR20240099028A (en) Lipid nanoparticles containing low concentration ionized lipids and method for producing the same
Eusébio et al. Mannosylated polyethylenimine-cholesterol-based nanoparticles for targeted delivery of minicircle DNA vaccine against COVID-19 to antigen-presenting cells
WO2024147456A1 (en) Spiral-structured chip for preparing lipid nanoparticles, and method for preparing lipid nanoparticles by using same
WO2023204384A1 (en) Lipid nanoparticle-based drug delivery system using recombinant protamine and method for preparing same
WO2023149775A1 (en) Oligonucleotide for gene delivery and lipid nanoparticle for gene delivery comprising same
CN113197859B (en) Preparation method of polymersome

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23907540

Country of ref document: EP

Kind code of ref document: A1