WO2024135770A1 - Catalyst for producing aromatic compound, method for producing catalyst for producing aromatic compound, and method for producing aromatic compound - Google Patents

Catalyst for producing aromatic compound, method for producing catalyst for producing aromatic compound, and method for producing aromatic compound Download PDF

Info

Publication number
WO2024135770A1
WO2024135770A1 PCT/JP2023/045857 JP2023045857W WO2024135770A1 WO 2024135770 A1 WO2024135770 A1 WO 2024135770A1 JP 2023045857 W JP2023045857 W JP 2023045857W WO 2024135770 A1 WO2024135770 A1 WO 2024135770A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
producing
aromatic compounds
zeolite
sapo
Prior art date
Application number
PCT/JP2023/045857
Other languages
French (fr)
Japanese (ja)
Inventor
秀之 村田
孝彦 大坪
彰志 今村
アシマ スルタナ
功 中村
Original Assignee
Dic株式会社
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社, 国立研究開発法人産業技術総合研究所 filed Critical Dic株式会社
Publication of WO2024135770A1 publication Critical patent/WO2024135770A1/en

Links

Definitions

  • the present invention relates to a catalyst for producing aromatic compounds, a method for producing a catalyst for producing aromatic compounds, and a method for producing aromatic compounds.
  • Non-Patent Document 1 a method for producing methanol by contacting carbon monoxide and hydrogen with a catalyst such as copper or zinc oxide (for example, Non-Patent Document 1) is known. Also, a method for obtaining aromatic compounds by contacting the methanol thus obtained with an acid catalyst such as zeolite (for example, Patent Document 1) is known. Thus, a method for synthesizing aromatic compounds in two stages from carbon monoxide and hydrogen via methanol is known. Also, a method for synthesizing aromatic compounds in one stage using a composite catalyst consisting of an active metal oxide and one or more of ZSM-5 zeolite and metal-modified ZSM-5 is known (for example, Patent Document 2). Furthermore, a method for synthesizing paraxylene in one stage from carbon dioxide and hydrogen instead of carbon monoxide is known (for example, Patent Document 3).
  • the metal catalyst preparation step requires immersing the metal oxide in an etching agent selected from hexamethylenetetramine, ethylenediamine, ammonia, hydrazine hydrate, etc., which places a significant burden on the environment.
  • an etching agent selected from hexamethylenetetramine, ethylenediamine, ammonia, hydrazine hydrate, etc.
  • the zeolite catalyst is limited to one type, ZSM-5 zeolite, so it is not possible to obtain a wide variety of hydrocarbons, including aromatics.
  • the zeolite catalyst is limited to one type, ZSM-5 zeolite, and a process of coating this with silicalite-1 is required, making the catalyst preparation process complicated.
  • aromatic hydrocarbons synthesized using the catalyst are limited to paraxylene, and various industrially useful aromatics such as benzene and orthoxylene cannot be obtained.
  • the present invention aims to provide a catalyst for producing aromatic compounds that can efficiently produce aromatic compounds in one step using carbon monoxide and hydrogen as raw materials, a method for producing the catalyst for producing aromatic compounds, and a method for producing aromatic compounds using the catalyst for producing aromatic compounds.
  • a first catalyst containing at least one of zinc, manganese, cobalt, and iron a second catalyst comprising a ZSM-5 zeolite; a third catalyst comprising one or more selected from SAPO zeolite, FER zeolite, and chabazite-type zeolite (CHA);
  • a catalyst for producing aromatic compounds comprising: (2) The catalyst for producing aromatic compounds according to (1), wherein the SAPO zeolite in the third catalyst is one or more zeolites selected from SAPO-5, SAPO-11, SAPO-17, SAPO-18, SAPO-31, SAPO-34, SAPO-35, SAPO-41, SAPO-42, and SAPO-44.
  • the catalyst for producing aromatic compounds according to (1) or (2) further comprising a fourth catalyst containing one or more selected from the group consisting of V, Cr, Zr, Cu, Ni, Ce, Pd, Ru, Rh, Mg, Al, Si, Pt, Mo, and Ga.
  • a method for producing a catalyst for producing aromatic compounds according to any one of (1) to (3) comprising the steps of: (i) the first catalyst, or, when the aromatic compound production catalyst further comprises a fourth catalyst, a mixture comprising the first catalyst and the fourth catalyst; (ii) the second catalyst and the third catalyst; A method for producing a catalyst for aromatic compound production, comprising a step of mixing (5) A method for producing the catalyst for producing aromatic compounds according to (3), comprising the steps of: A method for producing a catalyst for aromatic compound production, comprising a step of mixing the first catalyst, the second catalyst, the third catalyst, and the fourth catalyst. (6) A method for producing an aromatic compound, comprising the steps of: A method for producing an aromatic compound, comprising contacting a feed gas containing carbon monoxide and hydrogen with the catalyst for producing an aromatic compound according to any one of (1) to (3).
  • the present invention provides a catalyst for producing aromatic compounds that can efficiently produce aromatic compounds in one step using carbon monoxide and hydrogen as raw materials, a method for producing the catalyst for producing aromatic compounds, and a method for producing aromatic compounds using the catalyst for producing aromatic compounds.
  • the catalyst for producing aromatic compounds of the present invention catalyzes a synthesis reaction of aromatic compounds using carbon monoxide and hydrogen as raw materials.
  • the present inventors have found that by combining the first catalyst, the second catalyst, and the third catalyst by mixing or the like, it is possible to produce aromatic compounds from carbon monoxide and hydrogen even at reaction temperatures of 400°C or less, and even 300°C or less, which are lower than those of conventional techniques. This has led to the development of a catalyst that can suppress coke deposition on the catalyst, maintains catalytic activity for long periods of time, is practical and economical, and also reduces the environmental impact.
  • the catalyst for producing aromatic compounds of the present invention includes a first catalyst containing at least one of zinc (Zn), manganese (Mn), cobalt (Co) and iron (Fe), a second catalyst containing ZSM-5 zeolite, and a third catalyst containing at least one selected from SAPO zeolite, FER zeolite and chabazite-type zeolite (CHA).
  • the catalyst for producing aromatic compounds of the present invention may further include a fourth catalyst containing one or more metals selected from vanadium (V), chromium (Cr), zirconium (Zr), copper (Cu), nickel (Ni), cerium (Ce), palladium (Pd), ruthenium (Ru), rhodium (Rh), magnesium (Mg), aluminum (Al), silicon (Si), platinum (Pt), molybdenum (Mo), and gallium (Ga).
  • a fourth catalyst containing one or more metals selected from vanadium (V), chromium (Cr), zirconium (Zr), copper (Cu), nickel (Ni), cerium (Ce), palladium (Pd), ruthenium (Ru), rhodium (Rh), magnesium (Mg), aluminum (Al), silicon (Si), platinum (Pt), molybdenum (Mo), and gallium (Ga).
  • the first catalyst catalyzes the conversion of carbon monoxide and hydrogen into methanol and/or low molecular weight hydrocarbons mainly having 3 or less carbon atoms (hereinafter simply referred to as low molecular weight hydrocarbons).
  • the second catalyst and the third catalyst catalyze the conversion of mainly methanol and/or low molecular weight hydrocarbons into hydrocarbons having 4 or more carbon atoms, including aromatic compounds.
  • the catalyst for producing aromatic compounds of the present invention is a composite catalyst containing the first, second, and third catalysts, and an optional fourth catalyst as a co-catalyst. This makes it possible to efficiently produce aromatic compounds in one step using carbon monoxide and hydrogen as raw materials.
  • aromatic compound refers to aromatic hydrocarbons such as benzene, alkylbenzenes, naphthalene, and alkylnaphthalenes
  • aromatic compounds include benzene, toluene, xylene, trimethylbenzene, tetramethylbenzene, ethylbenzene, propylbenzene, butylbenzene, phenol, cresol, catechol, styrene, benzaldehyde, benzoic acid, naphthalene, and methylnaphthalene.
  • the aromatic compounds produced using the aromatic compound production catalyst of the present invention are preferably monocyclic aromatic compounds such as benzene, toluene, xylene, trimethylbenzene, tetramethylbenzene, ethylbenzene, propylbenzene, butylbenzene, phenol, cresol, catechol, styrene, benzaldehyde, and benzoic acid, and more preferably benzene, toluene, and xylene.
  • monocyclic aromatic compounds such as benzene, toluene, xylene, trimethylbenzene, tetramethylbenzene, ethylbenzene, propylbenzene, butylbenzene, phenol, cresol, catechol, styrene, benzaldehyde, and benzoic acid, and more preferably benzene, toluene, and xylene.
  • the composition of the first catalyst is not particularly limited as long as it contains at least one of zinc, manganese, cobalt, and iron as a catalytic component, and oxides, halides, nitrates, carbonates, acetates, ammonium salts, oxoacids, oxoacid salts, and the like can be used alone or in combination of two or more thereof.
  • examples of the catalyst include zinc(II), zinc oxide(II), zinc chloride(II), zinc bromide(II), zinc iodide(II), zinc acetate(II), zinc nitrate(II), zinc sulfate(II), zinc carbonate(II), zinc perchlorate(II), zinc stearate(II), zinc tetrafluoroborate(II), zinc borate(II), zinc trifluoromethanesulfonate(II), zinc dimethyldithiocarbamate(II), zinc diethyldithiocarbamate(II), (N,N,N',N'-tetramethylethylenediamine)zinc(II) chloride, zinc(II) acetylacetonate, zinc(II) methoxide, and zinc bis[bis(trimethylsilyl)amide], and any one of these may be used alone or in combination of two or more.
  • manganese examples include manganese oxide (II), manganese oxide (IV), manganese chloride (II), manganese fluoride (II), manganese bromide (II), manganese iodide (II), manganese acetate (II), manganese nitrate (II), manganese sulfate (II), manganese carbonate (II), manganese phosphate (II), manganese perchlorate (II), manganese borate (II), potassium permanganate, manganese (II) acetylacetonate, manganese (II) acetate, manganese (III) acetylacetonate, manganese (III) acetate, etc., and one of these can be used alone or two or more can be used in combination.
  • examples of the catalyst include cobalt(II) oxide, cobalt(III) oxide, cobalt(II,III) oxide, cobalt(II) acetate, cobalt(II) chloride, cobalt(II) bromide, cobalt(II) iodide, cobalt(II) fluoride, cobalt(III) fluoride, cobalt(II) sulfate, cobalt(II) nitrate, cobalt(II) hydroxide, cobalt(II) phosphate, cobalt(II) carbonate, cobalt(II) cyanide, sodium tris(carbonate)cobalt(III)ate, cobalt(II) acetylacetonate hydrate, cobalt(III) acetylacetonate, etc., and one of these may be used alone or two or more may be used in combination.
  • the first catalyst contains iron, for example, iron (II), iron oxide (II), iron oxide (III), iron oxide (II, III), iron chloride (II), iron chloride (III), iron fluoride (III), iron bromide (II), iron bromide (III), iron iodide (II), iron acetate (II), iron nitrate (III), iron sulfate (II), iron sulfate (III), iron carbonate (II), iron phosphate (III), iron perchlorate (II), iron perchlorate (III), iron stearate (II), iron tetrafluoroboron (IV), iron tetrafluoroboron (III), iron tetrafluoroboron (II ...
  • iron(II) acid iron(II) borate, iron(II) trifluoromethanesulfonate
  • iron(II) dimethyldithiocarbamate iron(II) diethyldithiocarbamate
  • iron(II) diethyldithiocarbamate iron(II) diethyldithiocarbamate
  • iron(II) acetylacetonate iron(II) methoxide
  • bis[bis(trimethylsilyl)amide]iron among which one can be used alone or two or more can be used in combination.
  • the first catalyst is mainly composed of the compounds listed above, which contain at least one of zinc, manganese, cobalt, and iron, but the first catalyst may also contain other compounds resulting from the production of the first catalyst.
  • the form of the first catalyst is not particularly limited, and may be, for example, granular or film-like.
  • the particle size is small. The small particle size increases the surface area of the catalyst, and allows efficient conversion of carbon monoxide and hydrogen to methanol and/or low molecular weight hydrocarbons.
  • the average particle size of the first catalyst is not particularly limited, and is, for example, 1 nm to 100 ⁇ m, preferably 2 nm to 10 ⁇ m, and more preferably 5 nm to 1 ⁇ m. If the average particle size is within the above range, the mass transfer between the first to fourth catalysts is accelerated and the flow resistance of the raw material gas can be maintained low.
  • the average particle size can be determined, for example, by X-ray diffraction.
  • the specific surface area of the first catalyst is not particularly limited, and is, for example, 0.01 m 2 /g or more and 2000 m 2 /g or less, preferably 0.1 m 2 /g or more and 1000 m 2 /g or less, and more preferably 0.5 m 2 /g or more and 500 m 2 /g or less. If the specific surface area is within the above range, active sites for the reaction of hydrogen and carbon monoxide can be sufficiently supplied, and the occurrence of a partial pressure difference between carbon monoxide and hydrogen in the first catalyst can be suppressed. This allows efficient conversion of carbon monoxide and hydrogen to methanol and/or low molecular weight hydrocarbons.
  • the specific surface area of the catalyst can be calculated, for example, by the Brunauer-Emmett-Teller (BET) method.
  • the content of the first catalyst is not particularly limited, and is, for example, 1.0% by mass or more and 95% by mass or less, preferably 2.0% by mass or more and 80% by mass or less, based on the total amount of the catalyst for producing aromatic compounds. It is more preferably 10.0% by mass or more and 70% by mass or less.
  • first catalysts When two or more types of first catalysts are used as the catalyst of the present invention, it is preferable to compound the metal salts by means of coprecipitation or other methods to compound the metal salts at the molecular or nano level.
  • the metal salts By compounding the first catalyst at the molecular or nano level, it is possible to efficiently convert carbon monoxide and hydrogen into methanol and/or low molecular weight hydrocarbons.
  • the average particle size of the catalyst in which two or more types of first catalysts are composited by means of coprecipitation or the like is not particularly limited, but is, for example, 1 nm or more and 1000 ⁇ m or less, and preferably 10 nm or more and 500 ⁇ m or less.
  • the second catalyst contains ZSM-5 (Zeolite Socony Mobil-5) zeolite.
  • ZSM-5 zeolite is an aluminosilicate zeolite having three-dimensional pores composed of 10-membered rings, and has a framework structure code of MFI type as compiled in the database of the International Zeolite Association.
  • the molar ratio of silica atoms to aluminum atoms (Si/Al ratio) of the second catalyst is not particularly limited, and is, for example, 10 to 1000, and preferably 20 to 900. If the Si/Al ratio is within the above range, the catalyst has excellent heat resistance and reaction selectivity, and can efficiently convert methanol and/or low molecular weight hydrocarbons to aromatic compounds.
  • the average particle size of the second catalyst is not particularly limited, and is, for example, 0.01 ⁇ m to 1000 ⁇ m, preferably 0.02 ⁇ m to 200 ⁇ m, and more preferably 0.05 ⁇ m to 100 ⁇ m. If the average particle size is within the above range, the mass transfer between the first to fourth catalysts is accelerated, and the flow resistance of the raw material gas can be maintained low.
  • the specific surface area of the second catalyst is not particularly limited and is, for example, 1 m2/g to 1000 m2 /g, preferably 10 m2/g to 800 m2 /g, and more preferably 100 m2 /g to 700 m2 /g. If the specific surface area is within the above range, a sufficient number of active sites can be supplied for the reaction of methanol and/or low molecular weight hydrocarbons and the synthesis of organic compounds.
  • the content of the second catalyst is not particularly limited, and is, for example, 5% by mass or more and 99% by mass or less, preferably 20% by mass or more and 98% by mass or less, and more preferably 30% by mass or more and 90% by mass or less, based on the total amount of catalyst for producing aromatic compounds.
  • the third catalyst is a zeolite catalyst containing one or more selected from SAPO zeolite, FER zeolite, and chabazite-type zeolite (CHA).
  • SAPO zeolite is a silicoaluminophosphate type zeolite.
  • SAPO zeolite There are no particular limitations on the SAPO zeolite, and examples include zeolites such as SAPO-5, SAPO-11, SAPO-17, SAPO-18, SAPO-31, SAPO-34, SAPO-35, SAPO-41, SAPO-42, and SAPO-44. One of these can be used alone, or two or more can be used in combination.
  • FER zeolite is an aluminosilicate zeolite whose skeleton structure code is FER type, as listed in the database of the International Zeolite Association.
  • Chabazite-type zeolite is an aluminosilicate zeolite whose skeletal structure code is CHA type, as listed in the International Zeolite Association database.
  • the Si/Al ratio, average particle size, and specific surface area of the third catalyst are not particularly limited, and can be, for example, within the preferred ranges described for the second catalyst.
  • the content of the third catalyst is not particularly limited, and is, for example, from 0.01% by mass to 99% by mass, preferably from 0.1% by mass to 80% by mass, and more preferably from 1% by mass to 50% by mass, based on the total weight of the second catalyst and the third catalyst.
  • the catalyst for producing aromatic compounds of the present invention may further contain, in addition to the first, second, and third catalysts described above, a fourth catalyst that catalyzes the conversion of mainly methanol and/or low molecular weight hydrocarbons into aromatic compounds having 4 or more carbon atoms, including aromatic compounds.
  • the fourth catalyst includes, as a catalytic component, one or more of vanadium (V), chromium (Cr), zirconium (Zr), copper (Cu), nickel (Ni), cerium (Ce), palladium (Pd), ruthenium (Ru), rhodium (Rh), magnesium (Mg), aluminum (Al), silicon (Si), platinum (Pt), molybdenum (Mo), and gallium (Ga).
  • the V, Cr, Zr, Cu, Ni, Ce, Pd, Ru, Rh, Mg, Al, Si, Pt, Mo, and Ga contained in the fourth catalyst are not particularly limited, and may be metals, metal-containing oxides, halides, nitrates, carbonates, acetates, ammonium salts, oxoacids, oxoacid salts, etc., used alone or in combination of two or more kinds.
  • catalytic components of the fourth catalyst include chromium (III) oxide, zirconium (IV) oxide, copper (II) oxide, nickel (II) oxide, cerium (IV) oxide, palladium (II) oxide, ruthenium (V) oxide, rhodium (III) oxide, magnesium (II) oxide, aluminum (III) oxide, silicon dioxide, platinum (IV) oxide, molybdenum (VI) oxide, gallium (III) oxide, platinum, etc., and one of these can be used alone or two or more can be used in combination.
  • the fourth catalyst is mainly composed of the above-mentioned metal compounds containing one or more of V, Cr, Zr, Cu, Ni, Ce, Pd, Ru, Rh, Mg, Al, Si, Pt, Mo, and Ga, but other compounds resulting from the production of the fourth catalyst may also be contained in the fourth catalyst.
  • the form of the fourth catalyst is not particularly limited, and may be, for example, granular or film-like.
  • the fourth catalyst is granular, it is preferable that the particle size is small. The small particle size allows a sufficient supply of active sites, and allows efficient conversion of carbon monoxide and hydrogen to methanol and/or low molecular weight hydrocarbons.
  • the average particle size and specific surface area of the fourth catalyst are not particularly limited, and can be, for example, within the preferred ranges described for the first catalyst.
  • the content of the fourth catalyst is not particularly limited and is, for example, 0.01 mass% or more and 99 mass% or less, preferably 0.1 mass% or more and 80 mass% or less, and more preferably 1 mass% or more and 50 mass% or less, relative to the total weight of the first catalyst and the fourth catalyst.
  • the fourth catalyst is preferably composited with the first catalyst by means of coprecipitation or the like, thereby forming a composite at a molecular or nano level. By forming a composite of the first and fourth catalysts at a molecular or nano level, carbon monoxide and hydrogen can be efficiently converted into methanol and/or low molecular weight hydrocarbons.
  • the average particle size of the catalyst obtained by combining the first catalyst and the fourth catalyst by means of coprecipitation or the like is not particularly limited, but is, for example, from 1 nm to 1000 ⁇ m, and preferably from 10 nm to 500 ⁇ m.
  • the catalyst for producing aromatic compounds may contain other optional components such as a molding aid, as long as the effects of the present invention are not impaired.
  • the molding aid may be, for example, at least one selected from the group consisting of a thickener, a surfactant, a water retention agent, a plasticizer, a binder raw material, etc.
  • the catalyst for producing aromatic compounds may contain other useful components as long as the effects of the present invention are not impaired.
  • the catalyst for producing aromatic compounds of the present invention includes the first, second and third catalysts.
  • the catalyst for producing aromatic compounds of the present invention includes the first to fourth catalysts.
  • the composite state of the catalysts is not particularly limited, and for example, when the first to fourth catalysts are granular, they may be physically mixed. Alternatively, when the first to fourth catalysts are film-like, the first to fourth catalysts may be laminated.
  • a core-shell type configuration may be used, in which the second and third catalysts are the core and the first catalyst is the shell. Note that even when the catalyst for producing aromatic compounds of the present invention contains an optional fourth catalyst, it can be in the composite state described above.
  • the ratio of the zeolite catalyst content (total amount of the second catalyst and the third catalyst) to the metal catalyst content (total amount of the first catalyst and any fourth catalyst) during production can be optimized by adjusting the masses of the first to fourth catalysts when mixed.
  • the ratio can be determined, for example, using a scanning inductively coupled plasma method (ICP).
  • the catalyst for producing aromatic compounds of the present invention described above can efficiently produce aromatic compounds in one step using carbon monoxide and hydrogen as raw materials.
  • hydrocarbons containing aromatic compounds and having 4 or more carbon atoms the methanol and/or low molecular weight hydrocarbons produced are immediately converted, improving the yield compared to the conventional two-step synthesis method.
  • the methanol and/or low molecular weight hydrocarbons produced by the aromatic compound production catalyst of the present invention can be isolated as products. Furthermore, the produced methanol and/or low molecular weight hydrocarbons such as methanol, ethylene, and ethane can be recycled and reintroduced into the reactor as intermediate products of aromatic compounds, and ultimately converted into the desired aromatic compounds.
  • the catalyst of the present invention can produce aromatic compounds containing at least one aromatic compound at low temperatures of 400°C or less, and even 300°C or less.
  • the catalyst of the present invention can produce aromatic compounds even at low pressures of 5 MPa or less, or even 1 MPa or less.
  • Aromatic compounds produced using the catalyst of the present invention can be easily separated into their individual components using known and commonly used liquid separation techniques such as distillation.
  • the method for producing a catalyst for producing aromatic compounds of the present invention is not particularly limited, and may, for example, include a step of mixing one or more types of first catalysts with a second and a third catalyst. Alternatively, it may include a step of mixing one or more types of first catalysts with a second, a third, and a fourth catalyst. Alternatively, it may include a step of mixing a mixture containing two or more types of first catalysts with a second and a third catalyst. Alternatively, it may include a step of mixing a mixture containing two or more types of first catalysts with a second, a third, and a fourth catalyst.
  • it may include a step of mixing a mixture containing one or more types of first catalysts and one or more types of fourth catalysts with a second and a third catalyst.
  • it may include a step of mixing a mixture containing two or more types of first catalysts and one or more types of fourth catalysts with a second and a third catalyst.
  • a solution containing two or more types of a first catalyst, a solution containing a second catalyst, and a solution containing a third catalyst are mixed together, and after removing the solvent, the catalyst for producing aromatic compounds can be obtained by a method including a step of calcining the remaining solid material containing the first, second, and third catalysts.
  • a poor solvent, or an acid or an alkali may be added to a solution containing two or more types of first catalysts to co-precipitate the two or more types of first catalysts to form a composite, which is then mixed with the second and third catalysts and further calcined to obtain the catalyst for producing aromatic compounds of the present invention.
  • a poor solvent, or an acid or an alkali may be added to a solution containing two or more types of first catalysts to co-precipitate the two or more types of first catalysts to form a composite, which is then mixed with the second, third, and fourth catalysts and further calcined to obtain the catalyst for producing aromatic compounds of the present invention.
  • a solution containing one or more types of a first catalyst can be mixed with a solution containing one or more types of a fourth catalyst, and then a poor solvent, or an acid or an alkali can be added to co-precipitate the first and fourth catalysts to form a composite, which can then be mixed with the second and third catalysts and further calcined to obtain the catalyst for producing aromatic compounds of the present invention.
  • a solution containing one or more types of a first catalyst, a solution containing one or more types of a second catalyst, and a solution containing one or more types of a third catalyst can be mixed together, and then a poor solvent, or an acid or an alkali can be added to co-precipitate the first, second, and third catalysts to form a composite, which can then be mixed with a fourth catalyst and further calcined to obtain the catalyst for producing aromatic compounds of the present invention.
  • the catalyst for producing aromatic compounds of the present invention can be obtained by preparing a metal catalyst containing the first catalyst, a zeolite catalyst containing the second catalyst, and a zeolite catalyst containing the third catalyst, and mixing these metal catalysts and zeolite catalysts.
  • the metal catalyst can be obtained, for example, by adding a poor solvent, an acid, or an alkali to a solution containing two or more types of the first catalyst, or the first catalyst and the fourth catalyst, co-precipitating the first catalyst to form a composite, and then calcining the resulting mixture.
  • the zeolite catalyst can be obtained by using a commonly known preparation method, for example, by subjecting a mixed solution containing various desired components to a drying and calcination process, or by adding an acid to the resulting solid matter and filtering, drying, and calcining the resulting mixture.
  • the zeolite catalyst has a second catalyst and a third catalyst.
  • the obtained metal catalyst and zeolite catalyst are mixed, for example, in a mortar, to prepare the catalyst for producing aromatic compounds of the present invention.
  • the solution containing the catalyst of the present invention is preferably an aqueous solution.
  • the aqueous solution may contain an organic solvent compatible with water.
  • the organic solvent compatible with water include alcohols having 1 to 4 carbon atoms.
  • the solution may contain, in addition to the solvent, for example, a ligand and the like.
  • the mixing can be carried out, for example, using a mortar, a ball mill, an automatic kneader, or the like.
  • the calcination temperature when calcining the solid is not particularly limited, and may be 300°C or higher and 600°C or lower. If the calcination temperature is 300°C or higher, it is easy to obtain a catalyst with thermal stability that can withstand long-term use and high catalytic activity. Furthermore, if the calcination temperature is 600°C or lower, the catalyst tends to easily form porous structures.
  • the calcination time is not particularly limited, and may be 0.1 hours or higher and 24 hours or lower.
  • the resulting fired product may be subjected to an appropriate post-treatment.
  • a post-treatment for example, the obtained fired product may be washed and filtered. The washing can be carried out, for example, with water or a mixture of water and alcohol.
  • the mixture can be dried as appropriate.
  • the drying can be performed under normal pressure or under reduced pressure, but it is preferable to perform the drying under reduced pressure in terms of improving efficiency.
  • the temperature during drying can be, for example, 20°C or higher and 100°C or lower.
  • the drying time during drying can be, for example, 0.1 hours or higher and 24 hours or lower.
  • the method for producing the catalyst for producing aromatic compounds can be the following method.
  • aqueous solutions containing zinc and manganese as the first catalyst are prepared separately, and then mixed together to form a mixed solution.
  • an alkali such as sodium carbonate (Na 2 CO 3 ) is added to co-precipitate the first catalyst to obtain a precipitate.
  • the precipitate is filtered and recovered, then dried and calcined to obtain a metal catalyst consisting of a zinc-manganese composite powder.
  • the drying of the precipitate may be performed under normal pressure or under reduced pressure, but it is preferable to perform the drying under reduced pressure from the viewpoint of improving efficiency.
  • the temperature during drying may be, for example, 20° C.
  • the drying time during drying may be, for example, 0.1 hours or higher and 24 hours or lower.
  • the calcination temperature performed after drying the precipitate is not particularly limited, and may be 300° C. or higher and 600° C. or lower. If the calcination temperature is 300° C. or higher, it is easy to obtain a catalyst with thermal stability that can withstand long-term use and high catalytic activity. If the calcination temperature is 600° C. or lower, the catalyst tends to form porosity.
  • the calcination time is not particularly limited, and may be 0.1 hours or higher and 24 hours or lower.
  • the zeolite catalyst containing the second catalyst and the zeolite catalyst containing the third catalyst are prepared by synthesizing the zeolite catalyst using a commonly known method or by purchasing the zeolite catalyst.
  • the metal catalyst and the zeolite catalyst are then mixed and composited to obtain a catalyst for producing aromatic compounds.
  • the mixing can be carried out using, for example, a mortar, a ball mill, an automatic kneader, or the like.
  • the production of aromatic compounds can be carried out by contacting a feed gas containing carbon monoxide and hydrogen with the catalyst for producing aromatic compounds of the present invention.
  • the carbon monoxide as the raw material gas is not particularly limited, but is preferably carbon monoxide obtained by electrolytic reduction of carbon dioxide using electricity derived from renewable energy.
  • the hydrogen as the raw material gas is not particularly limited, but is preferably hydrogen obtained by electrolysis of water using electricity derived from renewable energy. This makes it possible to further reduce greenhouse gas emissions overall.
  • carbon monoxide and hydrogen in the exhaust gas generated by incomplete combustion of combustible waste such as waste plastics or biomass, or carbon monoxide and hydrogen obtained by steam reforming or dry reforming low molecular weight hydrocarbons such as methane contained in natural gas can also be used as raw material gas.
  • the raw material gases carbon monoxide and hydrogen may be supplied separately, but are usually supplied as a mixed gas.
  • the raw material gas may contain compounds other than carbon monoxide and hydrogen.
  • it may further contain inert gases such as nitrogen and argon, and carbon dioxide.
  • the raw material gas of carbon monoxide and hydrogen it is preferable for the raw material gas of carbon monoxide and hydrogen to be a gas in which the total of carbon monoxide and hydrogen is 50 volume % or more of the total.
  • the volume ratio of hydrogen to carbon monoxide (hydrogen/carbon monoxide) in the raw material gas is preferably from 0.2 to 5, and more preferably from 1 to 4.
  • the volume ratio of hydrogen/carbon monoxide is within the above range, the hydrogenation reaction of carbon monoxide tends to proceed sufficiently.
  • the volume ratio of hydrogen to carbon dioxide in the raw material gas is preferably 0.1 or more and 10 or less.
  • the reactor used for contacting the raw material gas with the catalyst for producing aromatic compounds is not particularly limited, and examples include general reactors for gas phase synthesis processes such as fixed beds, entrained beds, and fluidized beds, reactors for liquid phase synthesis processes such as slurry beds, and microchannel reactors.
  • a reducing gas such as hydrogen gas can be circulated to reduce the catalyst before the raw material gas is supplied to produce the aromatic compounds.
  • This type of reduction can be carried out, for example, at a temperature of 150 to 600°C for 1 to 48 hours, although there are no particular limitations.
  • the conditions for producing the aromatic compound are not particularly limited, and the conditions can be set depending on the type of reactor.
  • the product gas obtained by contacting the raw material gas with the catalyst for producing aromatic compounds may be contacted again with the catalyst for producing aromatic compounds. This can increase the yield of conversion of the raw material gas to aromatic compounds.
  • ethylene, propylene, and methanol contained in the product gas are further converted into aromatic compounds by repeatedly reacting with the catalyst, so that the yield and selectivity of aromatic compounds can be increased.
  • the product gas is contacted with the catalyst multiple times, the product gas alone may be used, or the product gas may be mixed with the raw material gas.
  • the reaction temperature during the reaction to produce aromatic compounds is not particularly limited, and can be 150 to 700°C, preferably 200 to 600°C, and more preferably 200°C to 500°C.
  • the pressure in the system during the reaction is not particularly limited, and can be, for example, 0.1 to 10.0 MPa, preferably 0.5 to 8.0 MPa, and more preferably 0.8 MPa to 6.0 MPa.
  • the reaction time during the reaction to produce aromatic compounds using the catalyst of the present invention is not particularly limited, as long as it is at least 1 second, and preferably 5 seconds or more.
  • the gas hourly space velocity (GHSV) during the reaction for producing aromatic compounds is not particularly limited, and is preferably 10 h ⁇ 1 or more, more preferably 100 h ⁇ 1 or more. If the GHSV is 10 h ⁇ 1 or more, the reactor size can be made smaller. In addition, the GHSV is preferably 100,000 h ⁇ 1 or less, and more preferably 50,000 h ⁇ 1 or less. If the GHSV is 100,000 h ⁇ 1 or less, the selectivity of aromatic compounds tends to be higher.
  • the GHSV is the ratio (F/V) of the feed rate (feed amount/time) F of the raw material gas to the volume V of the catalyst for producing aromatic compounds in the reactor.
  • the amounts of gas and catalyst used may be appropriately selected from more preferable ranges depending on the reaction conditions, the activity of the catalyst, etc., and the GHSV is not limited to the above range.
  • Preparation of catalyst for producing aromatic compounds ⁇ Preparation Example 1: Preparation of zinc-manganese composite catalyst and catalyst for producing aromatic compounds> Zinc nitrate hexahydrate (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) and manganese (II) nitrate hexahydrate (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) were each dissolved in 200 g of water to prepare aqueous solutions containing zinc and manganese. Next, the two types of aqueous solutions were separated and mixed so that the mass ratio of zinc and manganese was the mass ratio shown in Table 1 to prepare 200 g of a zinc and manganese mixed solution.
  • aqueous sodium carbonate solution was dropped into the aqueous solution to co-precipitate zinc and manganese, and the precipitate was filtered and collected.
  • the precipitate was dried in air at 110° C. for 12 hours and then calcined at 400° C. to obtain a zinc-manganese composite powder.
  • the zinc-manganese composite powder, ZSM-5 zeolite (manufactured by ZEOLYST, model number: CBV 5524G), and CHA zeolite (manufactured by Clariant, product name: CZC) were weighed out in the mass ratios shown in Table 1, and a composite treatment was carried out using an agate mortar to prepare a catalyst for producing aromatic compounds as shown in Preparation Example 1 in Table 1.
  • Comparative Preparation Example 1 Preparation of zinc-manganese composite catalyst and catalyst for producing aromatic compounds Zinc nitrate hexahydrate (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) and manganese (II) nitrate hexahydrate (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) were each dissolved in 200 g of water to prepare aqueous solutions containing zinc and manganese. Next, the two types of aqueous solutions were separated and mixed so that the mass ratio of zinc and manganese was the mass ratio shown in Table 1 to prepare 200 g of a zinc and manganese mixed solution.
  • Aromatic compounds were continuously synthesized from carbon monoxide and hydrogen using the aromatic compound production catalysts shown in Table 1, and the catalytic performance of the aromatic compound production catalysts was evaluated by measuring the CO conversion and the selectivity of each aromatic compound.
  • the product was injected into a gas chromatograph (Shimadzu, product number GC-2014) and then analyzed with a detector (Shimadzu, hydrogen flame ionization detector, SH-Alumina BOND/Na 2 SO 4 30 m ⁇ 0.32 mm capillary column).
  • the CO conversion rate (%) and aromatic compound selectivity (%) were calculated using the following formula to evaluate the catalytic function of the catalyst for aromatic compound production.
  • the organic compounds to be measured were methane (CH 4 ), ethylene (C 2 H 4 ), ethane (C 2 H 6 ), propylene (C 3 H 6 ), propane (C 3 H 8 ), butane (C 4 H 10 ), methanol (CH 3 OH), benzene, toluene, p-xylene, m-xylene, and o-xylene, and the selectivity (%) of each aromatic compound was calculated from the total volume of these aromatic compounds to be measured. The results are shown in Tables 3 and 4.
  • the catalysts of Examples 1 to 4 were capable of producing aromatic compounds in one stage using carbon monoxide and hydrogen as raw materials. Furthermore, the catalysts of Examples 1 to 4 showed excellent CO conversion rates and selectivities for each aromatic compound, and were particularly excellent in selectivity for aromatic compounds among aromatic compounds. On the other hand, the catalysts of Comparative Examples 1 to 4 were inferior in CO conversion rate and selectivity for each aromatic compound.
  • the catalysts of Examples 1 to 4 have high selectivity for ethylene, propylene, and methanol, and it is expected that the yield of aromatic compounds will be as high as 50% or more by repeatedly contacting the reaction gas from which these ethylene, propylene, and methanol are recovered with the catalyst.

Abstract

Provided is a catalyst which is for producing an aromatic compound, and with which it is possible to efficiently produce an aromatic compound in a single step by using carbon monoxide and hydrogen as raw materials. The catalyst for producing an aromatic compound comprises: a first catalyst containing at least one among zinc, manganese, cobalt, and iron; a second catalyst containing ZSM-5 zeolite; and a third catalyst containing at least one selected from among SAPO zeolite, FER zeolite, and chabazite-type zeolite (CHA).

Description

芳香族化合物製造用触媒、芳香族化合物製造用触媒の製造方法、及び芳香族化合物の製造方法CATALYST FOR PRODUCING AROMATIC COMPOUNDS, PROCESS FOR PRODUCING CATALYST FOR PRODUCING AROMATIC COMPOUNDS, AND PROCESS FOR PRODUCING AROMATIC COMPOUNDS
 本発明は、芳香族化合物製造用触媒、芳香族化合物製造用触媒の製造方法、及び芳香族化合物の製造方法に関する。 The present invention relates to a catalyst for producing aromatic compounds, a method for producing a catalyst for producing aromatic compounds, and a method for producing aromatic compounds.
 持続可能な社会を構築するため、有機合成化学の分野においては、環境への負荷を軽減するクリーンな分子変換技術の開発が強く求められている。特に、高効率な物質変換・エネルギー変換に繋がる触媒の開発は、地球温暖化や資源の枯渇問題を克服する上で重要である。 In order to build a sustainable society, there is a strong demand in the field of organic synthetic chemistry for the development of clean molecular conversion technologies that reduce the burden on the environment. In particular, the development of catalysts that lead to highly efficient material and energy conversion is important in overcoming the problems of global warming and resource depletion.
 このような背景の下、再生可能エネルギーにより水を電気分解するなどして得られた水素と地球温暖化の原因となる二酸化炭素からメタンへ高効率で変換する触媒や、一酸化炭素と水素からメタノールへ高効率で変換する触媒の開発が行われてきた。また、このメタノールを原料として、現在は石油や天然ガス等の化石資源から製造されている有機物質に変換することは、持続可能な有機物質の生産を可能にする。このため、一酸化炭素と水素から変換されたメタノールを原料として、石油や天然ガス等の化石資源から製造されている有機物質、特に工業的に有用な芳香族化合物へ変換する触媒の開発が求められてきた。 Against this background, efforts have been made to develop catalysts that can convert hydrogen obtained by electrolyzing water using renewable energy and carbon dioxide, a cause of global warming, into methane with high efficiency, as well as catalysts that can convert carbon monoxide and hydrogen into methanol with high efficiency. Furthermore, using this methanol as a raw material to convert organic substances currently produced from fossil resources such as petroleum and natural gas would enable the sustainable production of organic substances. For this reason, there has been a demand for the development of catalysts that can convert methanol, which is converted from carbon monoxide and hydrogen, into organic substances produced from fossil resources such as petroleum and natural gas, particularly aromatic compounds that are useful industrially.
 従来、一酸化炭素と水素を銅、酸化亜鉛等の触媒と接触させてメタノールを製造する方法(例えば、非特許文献1)が知られている。また、このようにして得られたメタノールをゼオライト等の酸触媒と接触させて芳香族化合物を得る方法(例えば、特許文献1)も知られている。このため、一酸化炭素と水素からメタノールを経て、芳香族化合物を2段階で合成する方法は知られている。また、活性金属酸化物と、ZSM-5ゼオライト並びに金属修飾ZSM-5のうちの1種以上とからなる複合触媒を用いて芳香族化合物を1段階で合成する方法は知られている(例えば、特許文献2)。更に、一酸化炭素ではなく二酸化炭素と水素からパラキシレンを1段階で合成する方法は知られている(例えば、特許文献3)。  Conventionally, a method for producing methanol by contacting carbon monoxide and hydrogen with a catalyst such as copper or zinc oxide (for example, Non-Patent Document 1) is known. Also, a method for obtaining aromatic compounds by contacting the methanol thus obtained with an acid catalyst such as zeolite (for example, Patent Document 1) is known. Thus, a method for synthesizing aromatic compounds in two stages from carbon monoxide and hydrogen via methanol is known. Also, a method for synthesizing aromatic compounds in one stage using a composite catalyst consisting of an active metal oxide and one or more of ZSM-5 zeolite and metal-modified ZSM-5 is known (for example, Patent Document 2). Furthermore, a method for synthesizing paraxylene in one stage from carbon dioxide and hydrogen instead of carbon monoxide is known (for example, Patent Document 3).
特開昭59-136386号公報Japanese Unexamined Patent Publication No. 59-136386 特表2019-513541号公報Special Publication No. 2019-513541 特開2019-205969号公報JP 2019-205969 A
 しかしながら、特許文献2の方法では、金属触媒調製工程において、キサメチレンテトラミン、エチレンジアミン、アンモニア、ヒドラジン水和物などから選択されるエッチング剤に金属酸化物を浸漬する必要があり、環境負荷が極めて大きい。さらに、ゼオライト触媒はZSM-5ゼオライトの1種類に限定されるため、芳香族を含む多種類の炭化水素を得ることができない。 However, in the method of Patent Document 2, the metal catalyst preparation step requires immersing the metal oxide in an etching agent selected from hexamethylenetetramine, ethylenediamine, ammonia, hydrazine hydrate, etc., which places a significant burden on the environment. Furthermore, the zeolite catalyst is limited to one type, ZSM-5 zeolite, so it is not possible to obtain a wide variety of hydrocarbons, including aromatics.
 また、特許文献3の方法でも、ゼオライト触媒はZSM-5ゼオライトの1種類に限定され、かつ、これをシリカライト―1で被覆する処理が必要となり、触媒調製工程が煩雑であること、および当該触媒を用いて合成される芳香族炭化水素がパラキシレンに限定され、ベンゼン、オルトキシレンなど、産業上有用な各種の芳香族を得ることができない点も課題である。 In addition, even in the method of Patent Document 3, the zeolite catalyst is limited to one type, ZSM-5 zeolite, and a process of coating this with silicalite-1 is required, making the catalyst preparation process complicated. In addition, aromatic hydrocarbons synthesized using the catalyst are limited to paraxylene, and various industrially useful aromatics such as benzene and orthoxylene cannot be obtained.
 このため、一酸化炭素と水素から産業上有用なベンゼン、トルエン、キシレンなどの芳香族化合物を効率よく製造可能な方法については、未だ十分に検討されていない。 For this reason, methods for efficiently producing industrially useful aromatic compounds such as benzene, toluene, and xylene from carbon monoxide and hydrogen have yet to be fully explored.
 そこで、本発明は、一酸化炭素及び水素を原料として用い、芳香族化合物を1段階で効率よく製造可能な芳香族化合物製造用触媒、当該芳香族化合物製造用触媒の製造方法、及び当該芳香族化合物製造用触媒を用いた芳香族化合物の製造方法を提供することを目的とする。 The present invention aims to provide a catalyst for producing aromatic compounds that can efficiently produce aromatic compounds in one step using carbon monoxide and hydrogen as raw materials, a method for producing the catalyst for producing aromatic compounds, and a method for producing aromatic compounds using the catalyst for producing aromatic compounds.
 本発明者らは、上記の課題を解決する為、鋭意検討を行った結果、上記の課題を解決出来ることを見出し、以下の要旨を有する本発明を完成させた。すなわち、本発明は以下を包含する。
(1)亜鉛、マンガン、コバルト、鉄のうち少なくとも1種以上を含む第1の触媒と、
 ZSM-5ゼオライトを含む第2の触媒と、
 SAPOゼオライト、FERゼオライト及びチャバサイト型ゼオライト(CHA)から選択される1種以上を含む第3の触媒と、
を含む、芳香族化合物製造用触媒。
(2)前記第3の触媒における前記SAPOゼオライトが、SAPO-5、SAPO-11、SAPO-17、SAPO-18、SAPO-31、SAPO-34、SAPO-35、SAPO-41、SAPO-42、及びSAPO-44から選択される1種以上のゼオライトである、(1)に記載の芳香族化合物製造用触媒。
(3)前記芳香族化合物製造用触媒が、V、Cr、Zr、Cu、Ni、Ce、Pd、Ru、Rh、Mg、Al、Si、Pt、Mo、及びGaから選択される1種以上を含む第4の触媒を更に含む、(1)又は(2)に記載の芳香族化合物製造用触媒。
(4)(1)~(3)のいずれかに記載の芳香族化合物製造用触媒を製造する方法であって、
 (i)前記第1の触媒、または前記芳香族化合物製造用触媒が第4の触媒を更に含む場合には前記第1の触媒及び前記4の触媒を含む混合物と、
 (ii)前記第2の触媒及び前記第3の触媒と、
を混合する工程を含む、芳香族化合物製造用触媒の製造方法。
(5)(3)に記載の芳香族化合物製造用触媒を製造する方法であって、
 前記第1の触媒、前記第2の触媒、前記第3の触媒、及び前記第4の触媒を混合する工程を含む、芳香族化合物製造用触媒の製造方法。
(6)芳香族化合物を製造するための方法であって、
 一酸化炭素及び水素を含む原料ガスを、(1)~(3)のいずれかに記載の芳香族化合物製造用触媒に接触させる、芳香族化合物の製造方法。
The present inventors have conducted extensive research to solve the above problems, and as a result have found that the above problems can be solved, and have completed the present invention having the following gist.
(1) a first catalyst containing at least one of zinc, manganese, cobalt, and iron;
a second catalyst comprising a ZSM-5 zeolite;
a third catalyst comprising one or more selected from SAPO zeolite, FER zeolite, and chabazite-type zeolite (CHA);
A catalyst for producing aromatic compounds comprising:
(2) The catalyst for producing aromatic compounds according to (1), wherein the SAPO zeolite in the third catalyst is one or more zeolites selected from SAPO-5, SAPO-11, SAPO-17, SAPO-18, SAPO-31, SAPO-34, SAPO-35, SAPO-41, SAPO-42, and SAPO-44.
(3) The catalyst for producing aromatic compounds according to (1) or (2), further comprising a fourth catalyst containing one or more selected from the group consisting of V, Cr, Zr, Cu, Ni, Ce, Pd, Ru, Rh, Mg, Al, Si, Pt, Mo, and Ga.
(4) A method for producing a catalyst for producing aromatic compounds according to any one of (1) to (3), comprising the steps of:
(i) the first catalyst, or, when the aromatic compound production catalyst further comprises a fourth catalyst, a mixture comprising the first catalyst and the fourth catalyst;
(ii) the second catalyst and the third catalyst;
A method for producing a catalyst for aromatic compound production, comprising a step of mixing
(5) A method for producing the catalyst for producing aromatic compounds according to (3), comprising the steps of:
A method for producing a catalyst for aromatic compound production, comprising a step of mixing the first catalyst, the second catalyst, the third catalyst, and the fourth catalyst.
(6) A method for producing an aromatic compound, comprising the steps of:
A method for producing an aromatic compound, comprising contacting a feed gas containing carbon monoxide and hydrogen with the catalyst for producing an aromatic compound according to any one of (1) to (3).
 本発明によれば、一酸化炭素及び水素を原料として用い、芳香族化合物を1段階で効率よく製造可能な芳香族化合物製造用触媒、当該芳香族化合物製造用触媒の製造方法、及び当該芳香族化合物製造用触媒を用いた機化合物の製造方法を提供することができる。 The present invention provides a catalyst for producing aromatic compounds that can efficiently produce aromatic compounds in one step using carbon monoxide and hydrogen as raw materials, a method for producing the catalyst for producing aromatic compounds, and a method for producing aromatic compounds using the catalyst for producing aromatic compounds.
(芳香族化合物製造用触媒)
 本発明の芳香族化合物製造用触媒は、一酸化炭素および水素を原料とした芳香族化合物の合成反応を触媒する。
(Catalyst for producing aromatic compounds)
The catalyst for producing aromatic compounds of the present invention catalyzes a synthesis reaction of aromatic compounds using carbon monoxide and hydrogen as raw materials.
 本発明者らは第1の触媒、第2の触媒、及び第3の触媒を混合等により複合化することにより、400℃以下、さらには300℃以下の従来技術に比べて低い反応温度であっても、一酸化炭素および水素から、芳香族化合物を製造できることを見出した。
 これにより当該触媒上へのコークス堆積を抑制することができ、長時間にわたって触媒活性を維持できる実用性、経済性を有し、かつ、環境負荷低減を実現できる触媒開発に至った。
The present inventors have found that by combining the first catalyst, the second catalyst, and the third catalyst by mixing or the like, it is possible to produce aromatic compounds from carbon monoxide and hydrogen even at reaction temperatures of 400°C or less, and even 300°C or less, which are lower than those of conventional techniques.
This has led to the development of a catalyst that can suppress coke deposition on the catalyst, maintains catalytic activity for long periods of time, is practical and economical, and also reduces the environmental impact.
 すなわち、本発明の芳香族化合物製造用触媒は、亜鉛(Zn)、マンガン(Mn)、コバルト(Co)、鉄(Fe)のうち、少なくとも1種以上を含む第1の触媒と、ZSM-5ゼオライトを含む第2の触媒と、SAPOゼオライト、FERゼオライト及びチャバサイト型ゼオライト(CHA)から選択される1種以上を含む第3の触媒とを含む。 In other words, the catalyst for producing aromatic compounds of the present invention includes a first catalyst containing at least one of zinc (Zn), manganese (Mn), cobalt (Co) and iron (Fe), a second catalyst containing ZSM-5 zeolite, and a third catalyst containing at least one selected from SAPO zeolite, FER zeolite and chabazite-type zeolite (CHA).
 さらに本発明の芳香族化合物製造用触媒は、バナジウム(V)、クロム(Cr)、ジルコニウム(Zr)、銅(Cu)、ニッケル(Ni)、セリウム(Ce)、パラジウム(Pd)、ルテニウム(Ru)、ロジウム(Rh)、マグネシウム(Mg)、アルミニウム(Al)、ケイ素(Si)、白金(Pt)、モリブデン(Mo)、及びガリウム(Ga)から選択される1種以上の金属を含む第4の触媒を更に含むことができる。 Furthermore, the catalyst for producing aromatic compounds of the present invention may further include a fourth catalyst containing one or more metals selected from vanadium (V), chromium (Cr), zirconium (Zr), copper (Cu), nickel (Ni), cerium (Ce), palladium (Pd), ruthenium (Ru), rhodium (Rh), magnesium (Mg), aluminum (Al), silicon (Si), platinum (Pt), molybdenum (Mo), and gallium (Ga).
 第1の触媒は、一酸化炭素及び水素から、メタノール及び/又は主として炭素数3以下の低分子炭化水素(以下、単に低分子炭化水素ともいう)への変換を触媒する。一方で、第2の触媒及び第3の触媒は、主としてメタノール及び/又は低分子炭化水素から、芳香族化合物を含む炭素数4以上の炭化水素への変換を触媒する。すなわち、本発明の芳香族化合物製造用触媒は、第1、第2、第3の触媒、及び助触媒として任意の第4の触媒とを含む複合触媒である。これにより、一酸化炭素及び水素を原料として用い、芳香族化合物を1段階で効率よく製造することができる。 The first catalyst catalyzes the conversion of carbon monoxide and hydrogen into methanol and/or low molecular weight hydrocarbons mainly having 3 or less carbon atoms (hereinafter simply referred to as low molecular weight hydrocarbons). On the other hand, the second catalyst and the third catalyst catalyze the conversion of mainly methanol and/or low molecular weight hydrocarbons into hydrocarbons having 4 or more carbon atoms, including aromatic compounds. In other words, the catalyst for producing aromatic compounds of the present invention is a composite catalyst containing the first, second, and third catalysts, and an optional fourth catalyst as a co-catalyst. This makes it possible to efficiently produce aromatic compounds in one step using carbon monoxide and hydrogen as raw materials.
 本明細書において「芳香族化合物」とは、ベンゼン、アルキルベンゼン類、ナフタレン、アルキルナフタレン類等の芳香族炭化水素であり、さらに具体的な芳香族化合物としては、例えばベンゼン、トルエン、キシレン、トリメチルベンゼン、テトラメチルベンゼン、エチルベンゼン、プロピルベンゼン、ブチルベンゼン、フェノール、クレゾール、カテコール、スチレン、ベンズアルデヒド、安息香酸、ナフタレン、メチルナフタレン等を例示することができる。これらの中でも、本発明の芳香族化合物製造用触媒を用いて製造される芳香族化合物としては、産業上有用な観点からは、ベンゼン、トルエン、キシレン、トリメチルベンゼン、テトラメチルベンゼン、エチルベンゼン、プロピルベンゼン、ブチルベンゼン、フェノール、クレゾール、カテコール、スチレン、ベンズアルデヒド、安息香酸等の単環芳香族化合物が好ましく、ベンゼン、トルエン、キシレンがより好ましい。 In this specification, "aromatic compound" refers to aromatic hydrocarbons such as benzene, alkylbenzenes, naphthalene, and alkylnaphthalenes, and more specific examples of aromatic compounds include benzene, toluene, xylene, trimethylbenzene, tetramethylbenzene, ethylbenzene, propylbenzene, butylbenzene, phenol, cresol, catechol, styrene, benzaldehyde, benzoic acid, naphthalene, and methylnaphthalene. Among these, from the viewpoint of industrial usefulness, the aromatic compounds produced using the aromatic compound production catalyst of the present invention are preferably monocyclic aromatic compounds such as benzene, toluene, xylene, trimethylbenzene, tetramethylbenzene, ethylbenzene, propylbenzene, butylbenzene, phenol, cresol, catechol, styrene, benzaldehyde, and benzoic acid, and more preferably benzene, toluene, and xylene.
<第1の触媒>
 第1の触媒は、触媒成分として亜鉛、マンガン、コバルト、鉄のいずれかを少なくとも1種以上を含むものであれば、第1の触媒の組成は特に限定されず、酸化物、ハロゲン化物、硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、オキソ酸、オキソ酸塩等を単独で又は2種以上を組み合わせて使用することができる。
<First Catalyst>
The composition of the first catalyst is not particularly limited as long as it contains at least one of zinc, manganese, cobalt, and iron as a catalytic component, and oxides, halides, nitrates, carbonates, acetates, ammonium salts, oxoacids, oxoacid salts, and the like can be used alone or in combination of two or more thereof.
 具体的には、第1の触媒に亜鉛が含まれる場合は、例えば、亜鉛(II)、酸化亜鉛(II)、塩化亜鉛(II)、臭化亜鉛(II)、ヨウ化亜鉛(II)、酢酸亜鉛(II)、硝酸亜鉛(II)、硫酸亜鉛(II)、炭酸亜鉛(II)、過塩素酸亜鉛(II)、ステアリン酸亜鉛(II)、テトラフルオロホウ酸亜鉛(II)、ホウ酸亜鉛(II)、トリフルオロメタンスルホン酸亜鉛(II)、ジメチルジチオカルバミン酸亜鉛(II)、ジエチルジチオカルバミン酸亜鉛(II)、塩化(N,N,N’,N’-テトラメチルエチレンジアミン)亜鉛(II)、亜鉛(II)アセチルアセトナート、亜鉛(II)メトキシド、及びビス[ビス(トリメチルシリル)アミド]亜鉛等が挙げられ、これらのうち1種を単独で、または2種以上を組み合わせて用いることができる。 Specifically, when the first catalyst contains zinc, examples of the catalyst include zinc(II), zinc oxide(II), zinc chloride(II), zinc bromide(II), zinc iodide(II), zinc acetate(II), zinc nitrate(II), zinc sulfate(II), zinc carbonate(II), zinc perchlorate(II), zinc stearate(II), zinc tetrafluoroborate(II), zinc borate(II), zinc trifluoromethanesulfonate(II), zinc dimethyldithiocarbamate(II), zinc diethyldithiocarbamate(II), (N,N,N',N'-tetramethylethylenediamine)zinc(II) chloride, zinc(II) acetylacetonate, zinc(II) methoxide, and zinc bis[bis(trimethylsilyl)amide], and any one of these may be used alone or in combination of two or more.
 第1の触媒にマンガンが含まれる場合は、例えば、酸化マンガン(II)、酸化マンガン(IV)、塩化マンガン(II)、フッ化マンガン(II)、臭化マンガン(II)、ヨウ化マンガン(II)、酢酸マンガン(II)、硝酸マンガン(II)、硫酸マンガン(II)、炭酸マンガン(II)、リン酸マンガン(II)、過塩素酸マンガン(II)、ホウ酸マンガン(II)、過マンガン酸カリウム、マンガン(II)アセチルアセトナート、マンガン(II)アセタート、マンガン(III)アセチルアセトナート、マンガン(III)アセタート等が挙げられ、これらのうち1種を単独で、または2種以上を組み合わせて用いることができる。 When the first catalyst contains manganese, examples of the manganese include manganese oxide (II), manganese oxide (IV), manganese chloride (II), manganese fluoride (II), manganese bromide (II), manganese iodide (II), manganese acetate (II), manganese nitrate (II), manganese sulfate (II), manganese carbonate (II), manganese phosphate (II), manganese perchlorate (II), manganese borate (II), potassium permanganate, manganese (II) acetylacetonate, manganese (II) acetate, manganese (III) acetylacetonate, manganese (III) acetate, etc., and one of these can be used alone or two or more can be used in combination.
 第1の触媒にコバルトが含まれる場合は、例えば、酸化コバルト(II)、酸化コバルト(III)、酸化コバルト(II,III)、酢酸コバルト(II)、塩化コバルト(II)、臭化コバルト(II)、ヨウ化コバルト(II)、フッ化コバルト(II)、フッ化コバルト(III)、硫酸コバルト(II)、硝酸コバルト(II)、水酸化コバルト(II)、リン酸コバルト(II)、炭酸コバルト(II)、シアン化コバルト(II)、トリス(カルボネート)コバルト(III)酸ナトリウム、コバルト(II)アセチルアセトネート水和物、コバルト(III)アセチルアセトネート等が挙げられ、これらのうち1種を単独で、または2種以上を組み合わせて用いることができる。 When the first catalyst contains cobalt, examples of the catalyst include cobalt(II) oxide, cobalt(III) oxide, cobalt(II,III) oxide, cobalt(II) acetate, cobalt(II) chloride, cobalt(II) bromide, cobalt(II) iodide, cobalt(II) fluoride, cobalt(III) fluoride, cobalt(II) sulfate, cobalt(II) nitrate, cobalt(II) hydroxide, cobalt(II) phosphate, cobalt(II) carbonate, cobalt(II) cyanide, sodium tris(carbonate)cobalt(III)ate, cobalt(II) acetylacetonate hydrate, cobalt(III) acetylacetonate, etc., and one of these may be used alone or two or more may be used in combination.
 第1の触媒に鉄が含まれる場合は、例えば鉄(II)、酸化鉄(II)、酸化鉄(III)、酸化鉄(II,III)、塩化鉄(II)、塩化鉄(III)、フッ化鉄(III)、臭化鉄(II)、臭化鉄(III)、ヨウ化鉄(II)、酢酸鉄(II)、硝酸鉄(III)、硫酸鉄(II)、硫酸鉄(III)、炭酸鉄(II)、リン酸鉄(III)、過塩素酸鉄(II)、過塩素酸鉄(III)ステアリン酸鉄(II)、テトラフルオロホウ酸鉄(II)、ホウ酸鉄(II)、トリフルオロメタンスルホン酸鉄(II)、ジメチルジチオカルバミン酸鉄(II)、ジエチルジチオカルバミン酸鉄(II)、塩化(N,N,N’,N’-テトラメチルエチレンジアミン)鉄(II)、鉄(II)アセチルアセトナート、鉄(II)メトキシド、及びビス[ビス(トリメチルシリル)アミド]鉄等が挙げられ、これらのうち1種を単独で、または2種以上を組み合わせて用いることができる。 When the first catalyst contains iron, for example, iron (II), iron oxide (II), iron oxide (III), iron oxide (II, III), iron chloride (II), iron chloride (III), iron fluoride (III), iron bromide (II), iron bromide (III), iron iodide (II), iron acetate (II), iron nitrate (III), iron sulfate (II), iron sulfate (III), iron carbonate (II), iron phosphate (III), iron perchlorate (II), iron perchlorate (III), iron stearate (II), iron tetrafluoroboron (IV), iron tetrafluoroboron (III), iron tetrafluoroboron (II ... Examples of iron(II) acid, iron(II) borate, iron(II) trifluoromethanesulfonate, iron(II) dimethyldithiocarbamate, iron(II) diethyldithiocarbamate, (N,N,N',N'-tetramethylethylenediamine)iron(II) chloride, iron(II) acetylacetonate, iron(II) methoxide, and bis[bis(trimethylsilyl)amide]iron, among which one can be used alone or two or more can be used in combination.
 第1の触媒は、亜鉛、マンガン、コバルト、鉄を少なくとも1種以上含む前記に例示したそれぞれの化合物を主体として構成されるが、例えば、第1の触媒の製造に起因した他の化合物等が、第1の触媒中に含まれていてもよい。 The first catalyst is mainly composed of the compounds listed above, which contain at least one of zinc, manganese, cobalt, and iron, but the first catalyst may also contain other compounds resulting from the production of the first catalyst.
 第1の触媒の形態は、特に限定されず、例えば、粒状であってもよいし、膜状であってもよい。第1の触媒は、粒状である場合は、小粒径であることが好ましい。小粒径であることにより、触媒の表面積が増大し、一酸化炭素及び水素からメタノール及び/又は低分子炭化水素への変換を効率よく行うことができる。 The form of the first catalyst is not particularly limited, and may be, for example, granular or film-like. When the first catalyst is granular, it is preferable that the particle size is small. The small particle size increases the surface area of the catalyst, and allows efficient conversion of carbon monoxide and hydrogen to methanol and/or low molecular weight hydrocarbons.
 第1の触媒が粒状である場合、第1の触媒の平均粒子径は、特に限定されず、例えば、1nm以上100μm以下、好ましくは2nm以上10μm以下、さらに好ましくは5nm以上1μm以下である。平均粒子径が上記範囲内であれば、第1~第4の触媒間の物質移動が加速されるとともに、原料ガスの流通抵抗を低く維持することができる。平均粒子径は、例えば、X線回折法によって求めることができる。 When the first catalyst is granular, the average particle size of the first catalyst is not particularly limited, and is, for example, 1 nm to 100 μm, preferably 2 nm to 10 μm, and more preferably 5 nm to 1 μm. If the average particle size is within the above range, the mass transfer between the first to fourth catalysts is accelerated and the flow resistance of the raw material gas can be maintained low. The average particle size can be determined, for example, by X-ray diffraction.
 第1の触媒の比表面積は、特に限定されず、例えば、0.01m/g以上2000m/g以下、好ましくは0.1m/g以上1000m/g以下、さらに好ましくは0.5m/g以上500m/g以下である。比表面積が上記範囲内であれば、水素と一酸化炭素との反応のための活性点を十分に供給することができるとともに、第1の触媒内で一酸化炭素と水素との分圧差が生じることを抑制できる。これにより、一酸化炭素及び水素からメタノール及び/又は低分子炭化水素への変換を効率よく行うことができる。触媒の比表面積は、例えば、Brunauer-Emmett-Teller(BET)法により算出することができる。 The specific surface area of the first catalyst is not particularly limited, and is, for example, 0.01 m 2 /g or more and 2000 m 2 /g or less, preferably 0.1 m 2 /g or more and 1000 m 2 /g or less, and more preferably 0.5 m 2 /g or more and 500 m 2 /g or less. If the specific surface area is within the above range, active sites for the reaction of hydrogen and carbon monoxide can be sufficiently supplied, and the occurrence of a partial pressure difference between carbon monoxide and hydrogen in the first catalyst can be suppressed. This allows efficient conversion of carbon monoxide and hydrogen to methanol and/or low molecular weight hydrocarbons. The specific surface area of the catalyst can be calculated, for example, by the Brunauer-Emmett-Teller (BET) method.
 第1の触媒の含有量は、特に限定されず、芳香族化合物製造用触媒全量基準で、例えば、1.0質量%以上95質量%以下、好ましくは2.0質量%以上80質量%以下である。さらに好ましくは10.0質量%以上70質量%以下である。 The content of the first catalyst is not particularly limited, and is, for example, 1.0% by mass or more and 95% by mass or less, preferably 2.0% by mass or more and 80% by mass or less, based on the total amount of the catalyst for producing aromatic compounds. It is more preferably 10.0% by mass or more and 70% by mass or less.
 第1の触媒を2種類以上、本発明の触媒として用いる場合は、当該金属の塩類などを共沈などの手段を用いて複合化することにより、分子レベル又はナノレベルで複合化することが好ましい。第1の触媒を分子レベル又はナノレベルで複合化することにより、一酸化炭素及び水素からメタノール及び/又は低分子炭化水素への変換を効率よく行うことができる。 When two or more types of first catalysts are used as the catalyst of the present invention, it is preferable to compound the metal salts by means of coprecipitation or other methods to compound the metal salts at the molecular or nano level. By compounding the first catalyst at the molecular or nano level, it is possible to efficiently convert carbon monoxide and hydrogen into methanol and/or low molecular weight hydrocarbons.
 2種類以上の第1の触媒を共沈などの手段で複合化した触媒の平均粒子径は、特に限定されないが、例えば1nm以上1000μm以下、好ましくは10nm以上500μm以下である。 The average particle size of the catalyst in which two or more types of first catalysts are composited by means of coprecipitation or the like is not particularly limited, but is, for example, 1 nm or more and 1000 μm or less, and preferably 10 nm or more and 500 μm or less.
<第2の触媒>
 第2の触媒は、ZSM-5(Zeolite Socony Mobil-5)ゼオライトを含む。ZSM-5ゼオライトは、10員環から構成される3次元細孔を有する、国際ゼオライト学会(International Zeolite Association)でデータベース化されている骨格の構造コードがMFI型のアルミノシリケートゼオライトである。
<Second Catalyst>
The second catalyst contains ZSM-5 (Zeolite Socony Mobil-5) zeolite. ZSM-5 zeolite is an aluminosilicate zeolite having three-dimensional pores composed of 10-membered rings, and has a framework structure code of MFI type as compiled in the database of the International Zeolite Association.
 第2の触媒のアルミニウム原子に対するシリカ原子のモル比(Si/Al比)は、特に限定されず、例えば、10以上1000以下、好ましくは20以上900以下である。Si/Al比が上記範囲内であれば、耐熱性、反応選択性に優れ、特にメタノール及び/又は低分子炭化水素から芳香族化合物への変換を効率よく行うことができる。 The molar ratio of silica atoms to aluminum atoms (Si/Al ratio) of the second catalyst is not particularly limited, and is, for example, 10 to 1000, and preferably 20 to 900. If the Si/Al ratio is within the above range, the catalyst has excellent heat resistance and reaction selectivity, and can efficiently convert methanol and/or low molecular weight hydrocarbons to aromatic compounds.
 第2の触媒の平均粒子径は、特に限定されず、例えば、0.01μm以上1000μm以下、好ましくは0.02μm以上200μm以下、さらに好ましくは0.05μm以上100μm以下である。平均粒子径が上記範囲内であれば、第1~第4の触媒間の物質移動が加速され、且つ原料ガスの流通抵抗を低く維持することができる。 The average particle size of the second catalyst is not particularly limited, and is, for example, 0.01 μm to 1000 μm, preferably 0.02 μm to 200 μm, and more preferably 0.05 μm to 100 μm. If the average particle size is within the above range, the mass transfer between the first to fourth catalysts is accelerated, and the flow resistance of the raw material gas can be maintained low.
 第2の触媒の比表面積は、特に限定されず、例えば、1m/g以上1000m/g以下、好ましくは10m/g以上800m/g以下、さらに好ましくは100m/g以上700m/g以下である。比表面積が上記範囲内であれば、メタノール及び/又は低分子炭化水素の反応および有機化合物の合成のための活性点を十分に供給することができる。 The specific surface area of the second catalyst is not particularly limited and is, for example, 1 m2/g to 1000 m2 /g, preferably 10 m2/g to 800 m2 /g, and more preferably 100 m2 /g to 700 m2 /g. If the specific surface area is within the above range, a sufficient number of active sites can be supplied for the reaction of methanol and/or low molecular weight hydrocarbons and the synthesis of organic compounds.
 第2の触媒の含有量は、特に限定されず、芳香族化合物製造用触媒全量基準で、例えば5質量%以上99質量%以下、好ましくは20質量%以上98質量%以下、さらに好ましくは30質量%以上90質量%以下である。 The content of the second catalyst is not particularly limited, and is, for example, 5% by mass or more and 99% by mass or less, preferably 20% by mass or more and 98% by mass or less, and more preferably 30% by mass or more and 90% by mass or less, based on the total amount of catalyst for producing aromatic compounds.
<第3の触媒>
 第3の触媒は、SAPOゼオライト、FERゼオライト、及びチャバサイト型ゼオライト(CHA)から選択される1種以上を含むゼオライト触媒である。
<Third Catalyst>
The third catalyst is a zeolite catalyst containing one or more selected from SAPO zeolite, FER zeolite, and chabazite-type zeolite (CHA).
 SAPOゼオライトは、シリコアルミノホスフェート型ゼオライトである。SAPOゼオライトは、特に限定されず、例えば、SAPO-5、SAPO-11、SAPO-17、SAPO-18、SAPO-31、SAPO-34、SAPO-35、SAPO-41、SAPO-42、及びSAPO-44等のゼオライトが挙げられ、これらのうち1種を単独で、または2種以上を組み合わせて用いることができる。 SAPO zeolite is a silicoaluminophosphate type zeolite. There are no particular limitations on the SAPO zeolite, and examples include zeolites such as SAPO-5, SAPO-11, SAPO-17, SAPO-18, SAPO-31, SAPO-34, SAPO-35, SAPO-41, SAPO-42, and SAPO-44. One of these can be used alone, or two or more can be used in combination.
 FERゼオライトは、国際ゼオライト学会(International Zeolite Association)でデータベース化されている骨格の構造コードがFER型のアルミノシリケートゼオライトである。 FER zeolite is an aluminosilicate zeolite whose skeleton structure code is FER type, as listed in the database of the International Zeolite Association.
 チャバサイト型ゼオライト(CHA)は、国際ゼオライト学会(International Zeolite Association)でデータベース化されている骨格の構造コードがCHA型のアルミノシリケートゼオライトである。 Chabazite-type zeolite (CHA) is an aluminosilicate zeolite whose skeletal structure code is CHA type, as listed in the International Zeolite Association database.
 第3の触媒のSi/Al比、平均粒子径、及び比表面積は、特に限定されず、例えば第2の触媒で説明した好ましい範囲の値とすることができる。 The Si/Al ratio, average particle size, and specific surface area of the third catalyst are not particularly limited, and can be, for example, within the preferred ranges described for the second catalyst.
 第3の触媒の含有量は特に限定されず、第2の触媒と第3の触媒との総重量に対して、例えば0.01質量%以上99質量%以下、好ましくは0.1質量%以上80質量%以下、さらに好ましくは1質量%以上50質量%以下である。 The content of the third catalyst is not particularly limited, and is, for example, from 0.01% by mass to 99% by mass, preferably from 0.1% by mass to 80% by mass, and more preferably from 1% by mass to 50% by mass, based on the total weight of the second catalyst and the third catalyst.
(任意の触媒成分)
 本発明の芳香族化合物製造用触媒は、触媒活性をより高める観点から、上述した第1、第2、及び第3の触媒以外に、主としてメタノール及び/又は低分子炭化水素から芳香族化合物を含む炭素数が4以上の芳香族化合物への変換を触媒する第4の触媒を更に含んでもよい。
Optional Catalyst Components
In order to further enhance catalytic activity, the catalyst for producing aromatic compounds of the present invention may further contain, in addition to the first, second, and third catalysts described above, a fourth catalyst that catalyzes the conversion of mainly methanol and/or low molecular weight hydrocarbons into aromatic compounds having 4 or more carbon atoms, including aromatic compounds.
<第4の触媒>
 第4の触媒は、触媒成分として、バナジウム(V)、クロム(Cr)、ジルコニウム(Zr)、銅(Cu)、ニッケル(Ni)、セリウム(Ce)、パラジウム(Pd)、ルテニウム(Ru)、ロジウム(Rh)、マグネシウム(Mg)、アルミニウム(Al)、ケイ素(Si)、白金(Pt)、モリブデン(Mo)、ガリウム(Ga)のうちの1種以上を含む。
<The Fourth Catalyst>
The fourth catalyst includes, as a catalytic component, one or more of vanadium (V), chromium (Cr), zirconium (Zr), copper (Cu), nickel (Ni), cerium (Ce), palladium (Pd), ruthenium (Ru), rhodium (Rh), magnesium (Mg), aluminum (Al), silicon (Si), platinum (Pt), molybdenum (Mo), and gallium (Ga).
 第4の触媒に含まれるV、Cr、Zr、Cu、Ni、Ce、Pd、Ru、Rh、Mg、Al、Si、Pt、Mo、及びGaは、特に限定されず、金属、金属を含む酸化物、ハロゲン化物、硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、オキソ酸、オキソ酸塩等を単独で又は2種以上を組み合わせて使用することができる。 The V, Cr, Zr, Cu, Ni, Ce, Pd, Ru, Rh, Mg, Al, Si, Pt, Mo, and Ga contained in the fourth catalyst are not particularly limited, and may be metals, metal-containing oxides, halides, nitrates, carbonates, acetates, ammonium salts, oxoacids, oxoacid salts, etc., used alone or in combination of two or more kinds.
 具体的には、第4の触媒の触媒成分としては、例えば、酸化クロム(III)、酸化ジルコニウム(IV)、酸化銅(II)、酸化ニッケル(II)、酸化セリウム(IV)、酸化パラジウム(II)、酸化ルテニウム(V)、酸化ロジウム(III)、酸化マグネシウム(II)、酸化アルミニウム(III)、二酸化ケイ素、酸化白金(IV)、酸化モリブデン(VI)、酸化ガリウム(III)、白金等が挙げられ、これらのうち1種を単独で、または2種以上を組み合わせて用いることができる。 Specific examples of the catalytic components of the fourth catalyst include chromium (III) oxide, zirconium (IV) oxide, copper (II) oxide, nickel (II) oxide, cerium (IV) oxide, palladium (II) oxide, ruthenium (V) oxide, rhodium (III) oxide, magnesium (II) oxide, aluminum (III) oxide, silicon dioxide, platinum (IV) oxide, molybdenum (VI) oxide, gallium (III) oxide, platinum, etc., and one of these can be used alone or two or more can be used in combination.
 第4の触媒は、V、Cr、Zr、Cu、Ni、Ce、Pd、Ru、Rh、Mg、Al、Si、Pt、Mo、及びGaのうちの1種以上を含む上述した金属化合物を主体として構成されるが、第4の触媒の製造に起因した他の化合物等が、第4の触媒中に含まれていてもよい。 The fourth catalyst is mainly composed of the above-mentioned metal compounds containing one or more of V, Cr, Zr, Cu, Ni, Ce, Pd, Ru, Rh, Mg, Al, Si, Pt, Mo, and Ga, but other compounds resulting from the production of the fourth catalyst may also be contained in the fourth catalyst.
 第4の触媒の形態は、特に限定されず、例えば、粒状であってもよいし、膜状であってもよい。第4の触媒が粒状の場合は、小粒径であるのが好ましい。小粒径であることにより、活性点を十分に供給することができ、一酸化炭素及び水素からメタノール及び/又は低分子炭化水素への変換を効率よく行うことができる。 The form of the fourth catalyst is not particularly limited, and may be, for example, granular or film-like. When the fourth catalyst is granular, it is preferable that the particle size is small. The small particle size allows a sufficient supply of active sites, and allows efficient conversion of carbon monoxide and hydrogen to methanol and/or low molecular weight hydrocarbons.
 第4の触媒の平均粒子径、及び比表面積は、特に限定されず、例えば第1の触媒で説明した好ましい範囲の値とすることができる。 The average particle size and specific surface area of the fourth catalyst are not particularly limited, and can be, for example, within the preferred ranges described for the first catalyst.
 第4の触媒が含まれる場合、第4の触媒の含有量は特に限定されず、第1の触媒と第4の触媒の総重量に対して、例えば、0.01質量%以上99質量%以下、好ましくは0.1質量%以上80質量%以下、さらに好ましくは1質量%以上50質量%以下である。
 さらに第4の触媒は第1の触媒と共沈などの手段を用いて複合化することにより、分子レベル又はナノレベルで複合化することが好ましい。第1および第4の触媒を分子レベル又はナノレベルで複合化することにより、一酸化炭素及び水素からメタノール及び/又は低分子炭化水素への変換を効率よく行うことができる。
When a fourth catalyst is included, the content of the fourth catalyst is not particularly limited and is, for example, 0.01 mass% or more and 99 mass% or less, preferably 0.1 mass% or more and 80 mass% or less, and more preferably 1 mass% or more and 50 mass% or less, relative to the total weight of the first catalyst and the fourth catalyst.
Furthermore, the fourth catalyst is preferably composited with the first catalyst by means of coprecipitation or the like, thereby forming a composite at a molecular or nano level. By forming a composite of the first and fourth catalysts at a molecular or nano level, carbon monoxide and hydrogen can be efficiently converted into methanol and/or low molecular weight hydrocarbons.
 なお、第1の触媒と第4の触媒を共沈などの手段で複合化した触媒の平均粒子径は、特に限定されないが、例えば1nm以上1000μm以下、好ましくは10nm以上500μm以下である。 The average particle size of the catalyst obtained by combining the first catalyst and the fourth catalyst by means of coprecipitation or the like is not particularly limited, but is, for example, from 1 nm to 1000 μm, and preferably from 10 nm to 500 μm.
(その他の任意の成分)
 芳香族化合物製造用触媒は、成形性を向上させる観点から、本発明の効果を損なわない限り、成形助剤等のその他の任意の成分を含有していてもよい。成型助剤は、例えば、増粘剤、界面活性剤、保水剤、可塑剤、バインダー原料等からなる群より選択される少なくとも1種であってよい。また、芳香族化合物製造用触媒は、本発明の効果を損なわない限り、他の有用な成分を含有してもよい。
(Other optional ingredients)
From the viewpoint of improving moldability, the catalyst for producing aromatic compounds may contain other optional components such as a molding aid, as long as the effects of the present invention are not impaired. The molding aid may be, for example, at least one selected from the group consisting of a thickener, a surfactant, a water retention agent, a plasticizer, a binder raw material, etc. In addition, the catalyst for producing aromatic compounds may contain other useful components as long as the effects of the present invention are not impaired.
 上述したように、本発明の芳香族化合物製造用触媒は、第1、第2及び第3の触媒を含む。芳香族化合物製造用触媒中において、あるいは第1~第4の触媒を含む。
 芳香族化合物製造用触媒中において、触媒の複合状態は特に限定されず、例えば、第1~第4の触媒が粒状である場合、物理的に混合されていることができる。あるいは、第1~第4の触媒が膜状である場合、第1~4の触媒は積層されていてもよい。さらに、例えば、第2及び第3の触媒をコアとし、第1の触媒をシェルとした、コアシェル型の構成であってもよい。なお、本発明の芳香族化合物製造用触媒が任意の第4の触媒を含む場合であっても、上述した複合状態であることができる。
As described above, the catalyst for producing aromatic compounds of the present invention includes the first, second and third catalysts. Alternatively, the catalyst for producing aromatic compounds of the present invention includes the first to fourth catalysts.
In the catalyst for producing aromatic compounds, the composite state of the catalysts is not particularly limited, and for example, when the first to fourth catalysts are granular, they may be physically mixed. Alternatively, when the first to fourth catalysts are film-like, the first to fourth catalysts may be laminated. Furthermore, for example, a core-shell type configuration may be used, in which the second and third catalysts are the core and the first catalyst is the shell. Note that even when the catalyst for producing aromatic compounds of the present invention contains an optional fourth catalyst, it can be in the composite state described above.
 製造時に金属触媒の含有量(第1の触媒と任意の第4の触媒の合計量)に対するゼオライト触媒の含有量(第2の触媒と第3の触媒の合計量)の割合を適正化するには、第1~第4の触媒の混合時の質量を調整することで、行うことができる。混合された後の触媒において、当該割合は、例えば、走査型高周波誘導結合プラズマ法(ICP)を用いて求めることができる。 The ratio of the zeolite catalyst content (total amount of the second catalyst and the third catalyst) to the metal catalyst content (total amount of the first catalyst and any fourth catalyst) during production can be optimized by adjusting the masses of the first to fourth catalysts when mixed. In the catalyst after mixing, the ratio can be determined, for example, using a scanning inductively coupled plasma method (ICP).
 以上説明した本発明の芳香族化合物製造用触媒は、一酸化炭素と水素を原料として用い、1段階で効率よく芳香族化合物を得ることができるものである。芳香族化合物を含む炭素数4以上の炭化水素においては、生成したメタノール及び/又は低分子炭化水素が直ちに変換されることにより、従来の2段階合成法と比較して収率向上が図れる。 The catalyst for producing aromatic compounds of the present invention described above can efficiently produce aromatic compounds in one step using carbon monoxide and hydrogen as raw materials. In hydrocarbons containing aromatic compounds and having 4 or more carbon atoms, the methanol and/or low molecular weight hydrocarbons produced are immediately converted, improving the yield compared to the conventional two-step synthesis method.
 なお、本発明の芳香族化合物製造用触媒により生成したメタノール及び/又は低分子炭化水素は、生成物として単離することも可能である。さらに、生成したメタノール及び/又はメタノール、エチレン及びエタン等の低分子炭化水素は、芳香族化合物の中間生成物として、反応装置に循環、再投入させることにより、最終的に目的とする芳香族化合物に変換することも可能である。 The methanol and/or low molecular weight hydrocarbons produced by the aromatic compound production catalyst of the present invention can be isolated as products. Furthermore, the produced methanol and/or low molecular weight hydrocarbons such as methanol, ethylene, and ethane can be recycled and reintroduced into the reactor as intermediate products of aromatic compounds, and ultimately converted into the desired aromatic compounds.
 また、一酸化炭素と水素を原料とするメタノール合成反応は発熱反応であることから、この発熱をメタノール及び/又は低分子炭化水素から芳香族化合物への変換に利用することにより、従来の2段階合成法と比較して、熱の効率的な利用が図れるため、環境負荷低減に資する芳香族化合物の製造方法を提供できる。 In addition, since the methanol synthesis reaction using carbon monoxide and hydrogen as raw materials is an exothermic reaction, by utilizing this heat generation to convert methanol and/or low molecular weight hydrocarbons into aromatic compounds, heat can be used more efficiently than in the conventional two-stage synthesis method, providing a method for producing aromatic compounds that contributes to reducing the environmental burden.
 さらに、本発明の触媒は従来技術と比較して、400℃以下、さらには300℃以下の低温で芳香族化合物を少なくとも1種含む芳香族化合物を製造できる。 Furthermore, compared to conventional techniques, the catalyst of the present invention can produce aromatic compounds containing at least one aromatic compound at low temperatures of 400°C or less, and even 300°C or less.
 また、本発明の触媒は5MPa以下、さらには1MPa以下の低い圧力であっても、芳香族化合物を製造できる。 Furthermore, the catalyst of the present invention can produce aromatic compounds even at low pressures of 5 MPa or less, or even 1 MPa or less.
 本発明の触媒を用いて製造した芳香族化合物は、蒸留操作等の公知公用の液体分離技術を用いて、容易に各成分に分離することができる。 Aromatic compounds produced using the catalyst of the present invention can be easily separated into their individual components using known and commonly used liquid separation techniques such as distillation.
(芳香族化合物製造用触媒の製造方法)
 本発明の芳香族化合物製造用触媒の製造方法は、特に限定されず、例えば、1種類以上の第1の触媒と、第2、及び第3の触媒とを混合する工程を含む。あるいは1種類以上の第1の触媒と第2、第3、及び第4の触媒とを混合する工程を含む。あるいは2種類以上の第1の触媒を含む混合物と、第2、及び第3の触媒とを混合する工程を含む。あるいは2種類以上の第1の触媒を含む混合物と第2、第3、及び第4の触媒とを混合する工程を含む。あるいは1種類以上の第1の触媒及び1種類以上の第4の触媒を含む混合物と第2及び第3の触媒とを混合する工程を含む。あるいは2種類以上の第1の触媒及び1種類以上の第4の触媒を含む混合物と第2及び第3の触媒とを混合する工程を含む。
(Method for producing a catalyst for producing aromatic compounds)
The method for producing a catalyst for producing aromatic compounds of the present invention is not particularly limited, and may, for example, include a step of mixing one or more types of first catalysts with a second and a third catalyst. Alternatively, it may include a step of mixing one or more types of first catalysts with a second, a third, and a fourth catalyst. Alternatively, it may include a step of mixing a mixture containing two or more types of first catalysts with a second and a third catalyst. Alternatively, it may include a step of mixing a mixture containing two or more types of first catalysts with a second, a third, and a fourth catalyst. Alternatively, it may include a step of mixing a mixture containing one or more types of first catalysts and one or more types of fourth catalysts with a second and a third catalyst. Alternatively, it may include a step of mixing a mixture containing two or more types of first catalysts and one or more types of fourth catalysts with a second and a third catalyst.
 具体的には、例えば、2種類以上の第1の触媒を含む溶液と、第2の触媒を含む溶液と、第3の触媒を含む溶液とを混合する。溶媒を除去した後、残留した第1、第2、及び第3の触媒を含む固形物を焼成する工程を含む方法によって、芳香族化合物製造用触媒を得ることができる。
 あるいは、2種類以上の第1の触媒を含む溶液に貧溶媒、あるいは酸、アルカリを添加して前記2種類以上の第1の触媒を共沈させて複合化し、第2及び第3の触媒と混合して、さらに焼成して本発明の芳香族化合物製造用触媒を得ることができる。
 あるいは、2種類以上の第1の触媒を含む溶液に貧溶媒、あるいは酸、アルカリを添加して前記2種類以上の第1の触媒を共沈させて複合化し、第2、第3、及び第4の触媒と混合して、さらに焼成して本発明の芳香族化合物製造用触媒を得ることができる。
Specifically, for example, a solution containing two or more types of a first catalyst, a solution containing a second catalyst, and a solution containing a third catalyst are mixed together, and after removing the solvent, the catalyst for producing aromatic compounds can be obtained by a method including a step of calcining the remaining solid material containing the first, second, and third catalysts.
Alternatively, a poor solvent, or an acid or an alkali may be added to a solution containing two or more types of first catalysts to co-precipitate the two or more types of first catalysts to form a composite, which is then mixed with the second and third catalysts and further calcined to obtain the catalyst for producing aromatic compounds of the present invention.
Alternatively, a poor solvent, or an acid or an alkali may be added to a solution containing two or more types of first catalysts to co-precipitate the two or more types of first catalysts to form a composite, which is then mixed with the second, third, and fourth catalysts and further calcined to obtain the catalyst for producing aromatic compounds of the present invention.
 また例えば、1種類以上の第1の触媒を含む溶液と1種類以上の第4の触媒を含む溶液を混合し、しかる後に貧溶媒、あるいは酸、アルカリを添加して第1、及び第4の触媒を共沈させて複合化し、第2及び第3の触媒と混合して、さらに焼成して本発明の芳香族化合物製造用触媒を得ることができる。 Also, for example, a solution containing one or more types of a first catalyst can be mixed with a solution containing one or more types of a fourth catalyst, and then a poor solvent, or an acid or an alkali can be added to co-precipitate the first and fourth catalysts to form a composite, which can then be mixed with the second and third catalysts and further calcined to obtain the catalyst for producing aromatic compounds of the present invention.
 また例えば、1種類以上の第1の触媒を含む溶液と、1種類以上の第2の触媒を含む溶液と、1種以上の第3の触媒を含む溶液とを混合し、しかる後に貧溶媒、あるいは酸、アルカリを添加して第1、第2、及び第3の触媒を共沈させて複合化し、第4の触媒と混合して、さらに焼成して本発明の芳香族化合物製造用触媒を得ることができる。 For example, a solution containing one or more types of a first catalyst, a solution containing one or more types of a second catalyst, and a solution containing one or more types of a third catalyst can be mixed together, and then a poor solvent, or an acid or an alkali can be added to co-precipitate the first, second, and third catalysts to form a composite, which can then be mixed with a fourth catalyst and further calcined to obtain the catalyst for producing aromatic compounds of the present invention.
 あるいは、第1の触媒を含む金属触媒と、第2の触媒、及び第3の触媒を含むゼオライト触媒とをそれぞれ用意し、これら金属触媒とゼオライト触媒とを混合することにより、本発明の芳香族化合物製造用触媒を得ることができる。この場合、金属触媒は、例えば、2種類以上の第1の触媒、又は第1の触媒と第4の触媒とを含む溶液に、貧溶媒、あるいは酸、アルカリを添加して第1の触媒を共沈させて複合化し、焼成することにより得ることができる。一方、ゼオライト触媒は、通常知られている作製方法を用いることができ、例えば、所望の各種構成成分を含む混合溶液に対し、乾燥、焼成工程を施したり、酸を添加して得られた固形物をろ過、乾燥、焼成工程を施したりして、得ることができる。ゼオライト触媒は、第2の触媒と、第3の触媒とを有する。得られた金属触媒とゼオライト触媒とは、例えば、乳鉢混合することで、本発明の芳香族化合物製造用触媒を調製する。 Alternatively, the catalyst for producing aromatic compounds of the present invention can be obtained by preparing a metal catalyst containing the first catalyst, a zeolite catalyst containing the second catalyst, and a zeolite catalyst containing the third catalyst, and mixing these metal catalysts and zeolite catalysts. In this case, the metal catalyst can be obtained, for example, by adding a poor solvent, an acid, or an alkali to a solution containing two or more types of the first catalyst, or the first catalyst and the fourth catalyst, co-precipitating the first catalyst to form a composite, and then calcining the resulting mixture. On the other hand, the zeolite catalyst can be obtained by using a commonly known preparation method, for example, by subjecting a mixed solution containing various desired components to a drying and calcination process, or by adding an acid to the resulting solid matter and filtering, drying, and calcining the resulting mixture. The zeolite catalyst has a second catalyst and a third catalyst. The obtained metal catalyst and zeolite catalyst are mixed, for example, in a mortar, to prepare the catalyst for producing aromatic compounds of the present invention.
 本発明の触媒を含む溶液は、水溶液であることが好ましい。水溶液は、水と相溶する有機溶媒を含有していてもよい。水と相溶する有機溶媒としては、例えば、炭素数1~4のアルコールなどが挙げられる。
 溶液は、溶媒以外に、例えば、配位子などが含有されていてもよい。
 混合(複合化処理)は、例えば乳鉢、ボールミル、自動混練器等により行うことができる。
The solution containing the catalyst of the present invention is preferably an aqueous solution. The aqueous solution may contain an organic solvent compatible with water. Examples of the organic solvent compatible with water include alcohols having 1 to 4 carbon atoms.
The solution may contain, in addition to the solvent, for example, a ligand and the like.
The mixing (composite processing) can be carried out, for example, using a mortar, a ball mill, an automatic kneader, or the like.
 固形物を焼成する際の焼成温度は、特に限定されず、300℃以上600℃以下であってよい。焼成温度が300℃以上であれば、長期間の使用に耐えられる熱安定性が得られ易く、高い触媒活性を有する触媒が得られ易い。また、焼成温度が600℃以下であれば、触媒が多孔質を形成し易い傾向がある。焼成時間は特に限定されず、0.1時間以上24時間以下であってよい。 The calcination temperature when calcining the solid is not particularly limited, and may be 300°C or higher and 600°C or lower. If the calcination temperature is 300°C or higher, it is easy to obtain a catalyst with thermal stability that can withstand long-term use and high catalytic activity. Furthermore, if the calcination temperature is 600°C or lower, the catalyst tends to easily form porous structures. The calcination time is not particularly limited, and may be 0.1 hours or higher and 24 hours or lower.
 焼成する工程終了後、得られた焼成物に対して、適宜に後処理を行ってよい。
 後処理として、例えば、得られた焼成物を洗浄及びろ過することを行ってよい。
 洗浄は、例えば、水、又は水とアルコールとの混合液を用いて行うことができる。
After the firing step is completed, the resulting fired product may be subjected to an appropriate post-treatment.
As a post-treatment, for example, the obtained fired product may be washed and filtered.
The washing can be carried out, for example, with water or a mixture of water and alcohol.
 ろ過後は適宜に乾燥させることができる。ここで、乾燥は、常圧下で行ってもよく、減圧下で行ってもよいが、効率向上の観点から減圧下で行うことが好ましい。また、乾燥する場合の温度は、例えば20℃以上100℃以下であってよい。乾燥する場合の乾燥時間は、例えば0.1時間以上24時間以下であってよい。 After filtration, the mixture can be dried as appropriate. The drying can be performed under normal pressure or under reduced pressure, but it is preferable to perform the drying under reduced pressure in terms of improving efficiency. The temperature during drying can be, for example, 20°C or higher and 100°C or lower. The drying time during drying can be, for example, 0.1 hours or higher and 24 hours or lower.
 芳香族化合物製造用触媒の製造方法として、より具体的には、以下の方法を挙げることができる。
 例えば、第1の触媒の亜鉛、及びマンガン含有水溶液をそれぞれ調製し、それらを一緒に混合して混合溶液を作製する。
 混合溶液を得た後、例えば、炭酸ナトリウム(NaCO)のようなアルカリを添加し、第1の触媒を共沈させて沈殿物を得る。
 次に、沈殿物を濾別、回収した後、該沈殿物を乾燥させ、続いて焼成することにより亜鉛-マンガンの複合粉末からなる金属触媒を得る。
 ここで、沈殿物の乾燥は、常圧下で行ってもよく、減圧下で行ってもよいが、効率向上の観点から減圧下で行うことが好ましい。また、乾燥する場合の温度は、例えば20℃以上120℃以下であってよい。乾燥する場合の乾燥時間は、例えば0.1時間以上24時間以下であってよい。
 沈殿物を乾燥した後行う焼成は、特に限定されず、300℃以上600℃以下であってよい。焼成温度が300℃以上であれば、長期間の使用に耐えられる熱安定性が得られ易く、高い触媒活性を有する触媒が得られ易い。また、焼成温度が600℃以下であれば、触媒が多孔質を形成し易い傾向がある。焼成時間は特に限定されず、0.1時間以上24時間以下であってよい。
 一方、ゼオライト触媒については、通常知られている方法を用いて合成したり購入するなどして、第2の触媒を含むゼオライト触媒と第3の触媒を含むゼオライト触媒とを用意する。
 そして、金属触媒とゼオライト触媒とを混合し、複合化することにより、芳香族化合物製造用触媒を得る。
 ここで、混合(複合化処理)は、例えば乳鉢、ボールミル、自動混練器等により行うことができる。
More specifically, the method for producing the catalyst for producing aromatic compounds can be the following method.
For example, aqueous solutions containing zinc and manganese as the first catalyst are prepared separately, and then mixed together to form a mixed solution.
After obtaining the mixed solution, an alkali such as sodium carbonate (Na 2 CO 3 ) is added to co-precipitate the first catalyst to obtain a precipitate.
Next, the precipitate is filtered and recovered, then dried and calcined to obtain a metal catalyst consisting of a zinc-manganese composite powder.
Here, the drying of the precipitate may be performed under normal pressure or under reduced pressure, but it is preferable to perform the drying under reduced pressure from the viewpoint of improving efficiency. The temperature during drying may be, for example, 20° C. or higher and 120° C. or lower. The drying time during drying may be, for example, 0.1 hours or higher and 24 hours or lower.
The calcination temperature performed after drying the precipitate is not particularly limited, and may be 300° C. or higher and 600° C. or lower. If the calcination temperature is 300° C. or higher, it is easy to obtain a catalyst with thermal stability that can withstand long-term use and high catalytic activity. If the calcination temperature is 600° C. or lower, the catalyst tends to form porosity. The calcination time is not particularly limited, and may be 0.1 hours or higher and 24 hours or lower.
On the other hand, the zeolite catalyst containing the second catalyst and the zeolite catalyst containing the third catalyst are prepared by synthesizing the zeolite catalyst using a commonly known method or by purchasing the zeolite catalyst.
The metal catalyst and the zeolite catalyst are then mixed and composited to obtain a catalyst for producing aromatic compounds.
Here, the mixing (composite processing) can be carried out using, for example, a mortar, a ball mill, an automatic kneader, or the like.
(芳香族化合物の製造方法)
 芳香族化合物の製造は、一酸化炭素および水素を含む原料ガスを、本発明の芳香族化合物製造用触媒と接触させることにより行うことができる。
(Method for producing aromatic compounds)
The production of aromatic compounds can be carried out by contacting a feed gas containing carbon monoxide and hydrogen with the catalyst for producing aromatic compounds of the present invention.
 原料ガスである一酸化炭素は、特に限定されないが、二酸化炭素を再生可能エネルギー由来の電力を用いて電解還元して得られた一酸化炭素であるのが好ましい。また、原料ガスである水素は、特に限定されないが、水を再生可能エネルギー由来の電力を用いて電解して得られた水素であるのが好ましい。これにより、温室効果ガスの排出を全体としてより一層抑えることが可能となる。
 その他、廃プラスチックなどの可燃性廃棄物や、バイオマスを不完全燃焼することにより、発生する排ガス中の一酸化炭素と水素、または天然ガスに含まれるメタンなどの低分子炭化水素を水蒸気改質やドライリフォーミングすることにより、得られる一酸化炭素および水素を原料ガスとして用いることもできる。
The carbon monoxide as the raw material gas is not particularly limited, but is preferably carbon monoxide obtained by electrolytic reduction of carbon dioxide using electricity derived from renewable energy. The hydrogen as the raw material gas is not particularly limited, but is preferably hydrogen obtained by electrolysis of water using electricity derived from renewable energy. This makes it possible to further reduce greenhouse gas emissions overall.
In addition, carbon monoxide and hydrogen in the exhaust gas generated by incomplete combustion of combustible waste such as waste plastics or biomass, or carbon monoxide and hydrogen obtained by steam reforming or dry reforming low molecular weight hydrocarbons such as methane contained in natural gas can also be used as raw material gas.
 原料ガスである一酸化炭素および水素は別個に供給されてもよいが、通常これらの混合ガスとして供給される。原料ガスは、一酸化炭素と水素以外の他の化合物が含有されていてもよい。例えば、窒素、アルゴン等の不活性ガス、二酸化炭素等が更に含有されていてもよい。一酸化炭素と水素の原料ガスは、一酸化炭素と水素の合計が全体の50体積%以上であるガスが生産性の観点から好ましい。 The raw material gases carbon monoxide and hydrogen may be supplied separately, but are usually supplied as a mixed gas. The raw material gas may contain compounds other than carbon monoxide and hydrogen. For example, it may further contain inert gases such as nitrogen and argon, and carbon dioxide. From the viewpoint of productivity, it is preferable for the raw material gas of carbon monoxide and hydrogen to be a gas in which the total of carbon monoxide and hydrogen is 50 volume % or more of the total.
 原料ガス中の水素と一酸化炭素の体積比(水素/一酸化炭素)は、常温常圧の標準状態において、0.2以上5以下が好ましく、1以上4以下がより好ましい。水素/一酸化炭素の体積比が上記範囲内であれば、一酸化炭素の水素化反応が十分に進行し易い。
 また、二酸化炭素が原料ガスに含まれる場合、原料ガス中の水素と二酸化炭素の体積比(水素/二酸化炭素)は、0.1以上10以下が好ましい。
The volume ratio of hydrogen to carbon monoxide (hydrogen/carbon monoxide) in the raw material gas, under standard conditions of room temperature and normal pressure, is preferably from 0.2 to 5, and more preferably from 1 to 4. When the volume ratio of hydrogen/carbon monoxide is within the above range, the hydrogenation reaction of carbon monoxide tends to proceed sufficiently.
When carbon dioxide is contained in the raw material gas, the volume ratio of hydrogen to carbon dioxide in the raw material gas (hydrogen/carbon dioxide) is preferably 0.1 or more and 10 or less.
 原料ガスと芳香族化合物製造用触媒との接触に用いられる反応器としては、特に限定されず、例えば、固定床、噴流床、流動床等の一般的な気相合成プロセス用反応器、スラリー床等の液相合成プロセス用反応器およびマイクロチャネル反応器等が挙げられる。 The reactor used for contacting the raw material gas with the catalyst for producing aromatic compounds is not particularly limited, and examples include general reactors for gas phase synthesis processes such as fixed beds, entrained beds, and fluidized beds, reactors for liquid phase synthesis processes such as slurry beds, and microchannel reactors.
 芳香族化合物を製造する反応を行う際には、原料ガスを供給して芳香族化合物を製造する前に、水素ガス等の還元性ガスを流通させて当該触媒の還元処理を行うことができる。このような還元処理は、特に限定されないが、例えば150~600℃の温度で、1~48時間行うことができる。 When carrying out a reaction to produce aromatic compounds, a reducing gas such as hydrogen gas can be circulated to reduce the catalyst before the raw material gas is supplied to produce the aromatic compounds. This type of reduction can be carried out, for example, at a temperature of 150 to 600°C for 1 to 48 hours, although there are no particular limitations.
 芳香族化合物の製造時における条件は、特に限定されず、反応器の種類に応じて条件を設定することができる。
 また芳香族化合物を製造する反応を行う際には、原料ガスを芳香族化合物製造用触媒と接触して得られた生成ガスを再度、芳香族化合物製造用触媒に接触させても構わない。これにより原料ガスが芳香族化合物に転化する収率を高くすることが出来る。また、生成ガスに含まれるエチレン、プロピレン、メタノールが繰り返し触媒と反応することで、芳香族化合物に更に変換されるため、芳香族化合物の収率や選択率を高くすることが出来る。なお、本生成ガスを本触媒に複数回接触する際は、生成ガス単独でも構わないし、本生成ガスと原料ガスを混合しても構わない。
The conditions for producing the aromatic compound are not particularly limited, and the conditions can be set depending on the type of reactor.
In addition, when carrying out a reaction to produce aromatic compounds, the product gas obtained by contacting the raw material gas with the catalyst for producing aromatic compounds may be contacted again with the catalyst for producing aromatic compounds. This can increase the yield of conversion of the raw material gas to aromatic compounds. In addition, ethylene, propylene, and methanol contained in the product gas are further converted into aromatic compounds by repeatedly reacting with the catalyst, so that the yield and selectivity of aromatic compounds can be increased. When the product gas is contacted with the catalyst multiple times, the product gas alone may be used, or the product gas may be mixed with the raw material gas.
 例えば、芳香族化合物を製造する反応時における反応温度は、特に限定されず、150~700℃、好ましくは200~600℃、さらに好ましくは200℃~500℃であることができる。また、反応時における系内の圧力は、特に限定されないが、例えば、0.1~10.0MPa、好ましくは0.5~8.0MPa、さらに好ましくは0.8MPa~6.0MPaであることができる。さらに、本発明の触媒を用いて芳香族化合物を製造する反応時における反応時間は、少なくとも1秒以上、好ましくは5秒以上であれば、特に限定されない。 For example, the reaction temperature during the reaction to produce aromatic compounds is not particularly limited, and can be 150 to 700°C, preferably 200 to 600°C, and more preferably 200°C to 500°C. The pressure in the system during the reaction is not particularly limited, and can be, for example, 0.1 to 10.0 MPa, preferably 0.5 to 8.0 MPa, and more preferably 0.8 MPa to 6.0 MPa. Furthermore, the reaction time during the reaction to produce aromatic compounds using the catalyst of the present invention is not particularly limited, as long as it is at least 1 second, and preferably 5 seconds or more.
 例えば、芳香族化合物を製造する反応時におけるガス空間速度(GHSV)は、特に限定されず、10h-1以上が好ましく、100h-1以上がより好ましい。GHSVが10h-1以上であれば、反応器サイズをより小さくできる。また、GHSVは100,000h-1以下が好ましく、50,000h-1以下が好ましい。GHSVが100,000h-1以下であれば、芳香族化合物の選択率がより高くなる傾向がある。ここで、GHSVとは、反応器における、芳香族化合物製造用触媒の容量Vに対する原料ガスの供給速度(供給量/時間)Fの比(F/V)である。なお、ガス及び触媒の使用量は、反応条件、触媒の活性等に応じて更に好ましい範囲を適宜選定してよく、GHSVは上記範囲に限定されるものではない。 For example, the gas hourly space velocity (GHSV) during the reaction for producing aromatic compounds is not particularly limited, and is preferably 10 h −1 or more, more preferably 100 h −1 or more. If the GHSV is 10 h −1 or more, the reactor size can be made smaller. In addition, the GHSV is preferably 100,000 h −1 or less, and more preferably 50,000 h −1 or less. If the GHSV is 100,000 h −1 or less, the selectivity of aromatic compounds tends to be higher. Here, the GHSV is the ratio (F/V) of the feed rate (feed amount/time) F of the raw material gas to the volume V of the catalyst for producing aromatic compounds in the reactor. The amounts of gas and catalyst used may be appropriately selected from more preferable ranges depending on the reaction conditions, the activity of the catalyst, etc., and the GHSV is not limited to the above range.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明は、これらの実施例に限定されるものではない。なお、実施例中の「部」、「%」等の記載は、断りのない限り、質量基準の記載を意味する。 The present invention will be specifically explained below with reference to examples, but the present invention is not limited to these examples. In the examples, the terms "parts", "%", etc. are based on mass unless otherwise specified.
(芳香族化合物製造用触媒の調製)
<調製例1:亜鉛-マンガン複合触媒、及び芳香族化合物製造用触媒の調製>
 硝酸亜鉛六水和物(富士フイルム和光純薬製)、及び硝酸マンガン(II)六水和物(富士フイルム和光純薬製)をそれぞれ水200gに溶解し、亜鉛、及びマンガン含有水溶液をそれぞれ、調製した。次いで、前記の2種類の水溶液を亜鉛、およびマンガンの質量比が表1記載の質量比になるように、分取、混合して200gの亜鉛、マンガン混合溶液を調製した。その後、該水溶液に0.5M炭酸ナトリウム水溶液を滴下し、亜鉛とマンガンを共沈させて、該沈殿物を濾別、回収した。該沈殿物を110℃で12時間空気中で乾燥した後、続いて400℃で焼成して、亜鉛-マンガンの複合粉末を得た。次に、該亜鉛-マンガン複合粉末、ZSM-5ゼオライト(ZEOLYST社製、型番:CBV 5524G)、及びCHAゼオライト(Clariant社製、製品名:CZC)を表1記載の質量比で秤量し、メノウ乳鉢を用いて複合化処理を行い、表1の調製例1に記載の芳香族化合物製造用触媒を調製した。
(Preparation of catalyst for producing aromatic compounds)
<Preparation Example 1: Preparation of zinc-manganese composite catalyst and catalyst for producing aromatic compounds>
Zinc nitrate hexahydrate (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) and manganese (II) nitrate hexahydrate (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) were each dissolved in 200 g of water to prepare aqueous solutions containing zinc and manganese. Next, the two types of aqueous solutions were separated and mixed so that the mass ratio of zinc and manganese was the mass ratio shown in Table 1 to prepare 200 g of a zinc and manganese mixed solution. Then, 0.5 M aqueous sodium carbonate solution was dropped into the aqueous solution to co-precipitate zinc and manganese, and the precipitate was filtered and collected. The precipitate was dried in air at 110° C. for 12 hours and then calcined at 400° C. to obtain a zinc-manganese composite powder. Next, the zinc-manganese composite powder, ZSM-5 zeolite (manufactured by ZEOLYST, model number: CBV 5524G), and CHA zeolite (manufactured by Clariant, product name: CZC) were weighed out in the mass ratios shown in Table 1, and a composite treatment was carried out using an agate mortar to prepare a catalyst for producing aromatic compounds as shown in Preparation Example 1 in Table 1.
<比較調製例1:亜鉛-マンガン複合触媒、及び芳香族化合物製造用触媒の調製>
 硝酸亜鉛六水和物(富士フイルム和光純薬製)、及び硝酸マンガン(II)六水和物(富士フイルム和光純薬製)をそれぞれ水200gに溶解し、亜鉛、及びマンガン含有水溶液をそれぞれ、調製した。次いで、前記の2種類の水溶液を亜鉛、およびマンガンの質量比が表1記載の質量比になるように、分取、混合して200gの亜鉛、マンガン混合溶液を調製した。その後、該水溶液に0.5M炭酸ナトリウム水溶液を滴下し、亜鉛とマンガンを共沈させて、該沈殿物を濾別、回収した。該沈殿物を110℃で12時間空気中で乾燥した後、続いて400℃で焼成して、表1の比較調製例1に記載の芳香族化合物製造用触媒を調製した。
Comparative Preparation Example 1: Preparation of zinc-manganese composite catalyst and catalyst for producing aromatic compounds
Zinc nitrate hexahydrate (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) and manganese (II) nitrate hexahydrate (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) were each dissolved in 200 g of water to prepare aqueous solutions containing zinc and manganese. Next, the two types of aqueous solutions were separated and mixed so that the mass ratio of zinc and manganese was the mass ratio shown in Table 1 to prepare 200 g of a zinc and manganese mixed solution. Then, 0.5 M aqueous sodium carbonate solution was dropped into the aqueous solution to co-precipitate zinc and manganese, and the precipitate was filtered and collected. The precipitate was dried in air at 110° C. for 12 hours, and then calcined at 400° C. to prepare a catalyst for producing aromatic compounds described in Comparative Preparation Example 1 in Table 1.
(芳香族化合物の製造)
(実施例1~4、比較例1~4)
 表1に記載の芳香族化合物製造用触媒を用いて、一酸化炭素および水素から、芳香族化合物を連続的に合成し、CO転化率と、各芳香族化合物の選択率を測定することにより、芳香族化合物製造用触媒の触媒性能を評価した。
(Production of aromatic compounds)
(Examples 1 to 4, Comparative Examples 1 to 4)
Aromatic compounds were continuously synthesized from carbon monoxide and hydrogen using the aromatic compound production catalysts shown in Table 1, and the catalytic performance of the aromatic compound production catalysts was evaluated by measuring the CO conversion and the selectivity of each aromatic compound.
 表1及び表2に記載の芳香族化合物製造用触媒500mgを、反応装置の内径12mmの石英製反応管(固定床反応器)の中央に設置し、石炭ウールで触媒の位置を固定した。反応管を窒素雰囲気に置換した後、次いで水素ガスを40mL/minで流しながら300℃に昇温した。続いて、水素ガスと一酸化炭素ガスとをそれぞれ表3及び表4の反応条件に記載の原料ガス比、および空間速度(GHSV)で供給し、前記反応管の供給ガスの温度、ならびに圧力を表3及び表4の反応条件に記載の値に制御した。 500 mg of the catalyst for producing aromatic compounds shown in Tables 1 and 2 was placed in the center of a quartz reaction tube (fixed-bed reactor) with an inner diameter of 12 mm, and the position of the catalyst was fixed with coal wool. After replacing the atmosphere in the reaction tube with nitrogen, the temperature was raised to 300°C while hydrogen gas was flowed at 40 mL/min. Next, hydrogen gas and carbon monoxide gas were supplied at the feed gas ratio and space velocity (GHSV) shown in the reaction conditions in Tables 3 and 4, respectively, and the temperature and pressure of the gas supplied to the reaction tube were controlled to the values shown in the reaction conditions in Tables 3 and 4.
 生成物は、ガスクロマトグラフィー(島津製、品番GC-2014)に注入した後、検出器(島津製、水素炎イオン化検出器、SH-Alumina BOND/NaSO 30m×0.32mmキャピラリーカラム)で分析した。 The product was injected into a gas chromatograph (Shimadzu, product number GC-2014) and then analyzed with a detector (Shimadzu, hydrogen flame ionization detector, SH-Alumina BOND/Na 2 SO 4 30 m×0.32 mm capillary column).
 分析による各成分の濃度より、以下の式でCO転化率(%)および芳香族化合物選択率(%)を算出し、芳香族化合物製造用触媒が有する触媒としての機能を評価した。なお、測定対象の有機化合物は、メタン(CH)、エチレン(C)、エタン(C)、プロピレン(C)、プロパン(C)、ブタン(C10)、メタノール(CHOH)、ベンゼン(Benzene)、トルエン(Toluene)、p-キシレン(p-Xylene)、m-キシレン(m-Xylene)、o-キシレン(o-Xylene)とし、各芳香族化合物の選択率(%)は、これら測定対象の芳香族化合物の合計体積量から算出した。その結果を表3及び表4に示す。 From the concentration of each component by analysis, the CO conversion rate (%) and aromatic compound selectivity (%) were calculated using the following formula to evaluate the catalytic function of the catalyst for aromatic compound production. The organic compounds to be measured were methane (CH 4 ), ethylene (C 2 H 4 ), ethane (C 2 H 6 ), propylene (C 3 H 6 ), propane (C 3 H 8 ), butane (C 4 H 10 ), methanol (CH 3 OH), benzene, toluene, p-xylene, m-xylene, and o-xylene, and the selectivity (%) of each aromatic compound was calculated from the total volume of these aromatic compounds to be measured. The results are shown in Tables 3 and 4.
 表2に示すように、実施例1~4の触媒は、一酸化炭素及び水素を原料として用い、芳香族化合物を1段階で製造できるものであった。また、実施例1~4の触媒は、優れたCO転化率および各芳香族化合物の選択率を示すものであり、芳香族化合物の中でも特に芳香族化合物の選択率に優れるものであった。一方、比較例1~4の触媒は、CO転化率および各芳香族化合物の選択率に劣るものであった。 As shown in Table 2, the catalysts of Examples 1 to 4 were capable of producing aromatic compounds in one stage using carbon monoxide and hydrogen as raw materials. Furthermore, the catalysts of Examples 1 to 4 showed excellent CO conversion rates and selectivities for each aromatic compound, and were particularly excellent in selectivity for aromatic compounds among aromatic compounds. On the other hand, the catalysts of Comparative Examples 1 to 4 were inferior in CO conversion rate and selectivity for each aromatic compound.
 また、実施例1~4の触媒は、エチレン、プロピレン、及びメタノールの選択率が高く、これらを回収した反応ガスを繰り返し触媒と接触させることにより、芳香族化合物の収率は50%以上と高くなると想定される。

 
In addition, the catalysts of Examples 1 to 4 have high selectivity for ethylene, propylene, and methanol, and it is expected that the yield of aromatic compounds will be as high as 50% or more by repeatedly contacting the reaction gas from which these ethylene, propylene, and methanol are recovered with the catalyst.

Claims (6)

  1.  亜鉛、マンガン、コバルト、鉄のうち少なくとも1種以上を含む第1の触媒と、
     ZSM-5ゼオライトを含む第2の触媒と、
     SAPOゼオライト、FERゼオライト及びチャバサイト型ゼオライト(CHA)から選択される1種以上を含む第3の触媒と、
    を含む、芳香族化合物製造用触媒。
    A first catalyst containing at least one of zinc, manganese, cobalt, and iron;
    a second catalyst comprising a ZSM-5 zeolite;
    a third catalyst comprising one or more selected from SAPO zeolite, FER zeolite, and chabazite-type zeolite (CHA);
    A catalyst for producing aromatic compounds comprising:
  2.  前記第3の触媒における前記SAPOゼオライトが、SAPO-5、SAPO-11、SAPO-17、SAPO-18、SAPO-31、SAPO-34、SAPO-35、SAPO-41、SAPO-42、及びSAPO-44から選択される1種以上のゼオライトである、請求項1に記載の芳香族化合物製造用触媒。 The catalyst for producing aromatic compounds according to claim 1, wherein the SAPO zeolite in the third catalyst is one or more zeolites selected from SAPO-5, SAPO-11, SAPO-17, SAPO-18, SAPO-31, SAPO-34, SAPO-35, SAPO-41, SAPO-42, and SAPO-44.
  3.  前記芳香族化合物製造用触媒が、V、Cr、Zr、Cu、Ni、Ce、Pd、Ru、Rh、Mg、Al、Si、Pt、Mo、及びGaから選択される1種以上を含む第4の触媒を更に含む、請求項1に記載の芳香族化合物製造用触媒。 The catalyst for producing aromatic compounds according to claim 1, further comprising a fourth catalyst containing one or more selected from V, Cr, Zr, Cu, Ni, Ce, Pd, Ru, Rh, Mg, Al, Si, Pt, Mo, and Ga.
  4.  請求項1~3のいずれか一項に記載の芳香族化合物製造用触媒を製造する方法であって、
     (i)前記第1の触媒、または前記芳香族化合物製造用触媒が第4の触媒を更に含む場合には前記第1の触媒及び前記4の触媒を含む混合物と、
     (ii)前記第2の触媒及び前記第3の触媒と、
    を混合する工程を含む、芳香族化合物製造用触媒の製造方法。
    A method for producing the catalyst for producing aromatic compounds according to any one of claims 1 to 3, comprising the steps of:
    (i) the first catalyst, or, when the aromatic compound production catalyst further comprises a fourth catalyst, a mixture comprising the first catalyst and the fourth catalyst;
    (ii) the second catalyst and the third catalyst;
    A method for producing a catalyst for aromatic compound production, comprising a step of mixing
  5.  請求項3に記載の芳香族化合物製造用触媒を製造する方法であって、
     前記第1の触媒、前記第2の触媒、前記第3の触媒、及び前記第4の触媒を混合する工程を含む、芳香族化合物製造用触媒の製造方法。
    A method for producing the catalyst for producing aromatic compounds according to claim 3, comprising the steps of:
    A method for producing a catalyst for aromatic compound production, comprising a step of mixing the first catalyst, the second catalyst, the third catalyst, and the fourth catalyst.
  6.  芳香族化合物を製造するための方法であって、
     一酸化炭素及び水素を含む原料ガスを、請求項1~3のいずれか一項に記載の芳香族化合物製造用触媒に接触させる、芳香族化合物の製造方法。

     
    1. A method for producing aromatic compounds, comprising:
    A method for producing an aromatic compound, comprising contacting a feed gas containing carbon monoxide and hydrogen with the catalyst for producing an aromatic compound according to any one of claims 1 to 3.

PCT/JP2023/045857 2022-12-23 2023-12-21 Catalyst for producing aromatic compound, method for producing catalyst for producing aromatic compound, and method for producing aromatic compound WO2024135770A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022-206431 2022-12-23

Publications (1)

Publication Number Publication Date
WO2024135770A1 true WO2024135770A1 (en) 2024-06-27

Family

ID=

Similar Documents

Publication Publication Date Title
Sharma et al. Recent advances in hydrogenation of CO 2 into hydrocarbons via methanol intermediate over heterogeneous catalysts
Yang et al. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons
US7592291B2 (en) Method of fabricating a catalytic structure
CN109772435B (en) Method for directly preparing aromatic hydrocarbon and co-producing low-carbon olefin from synthesis gas
WO2018045652A1 (en) Production of lower olefins from hydrogenation of co2
CN104192794A (en) Catalytic hydrogenation of carbon dioxide into syngas mixture
CN107970988B (en) Catalyst for synthesizing aromatic hydrocarbon and preparation method thereof
US10815162B2 (en) Method for directly preparing aromatics from syngas
CN113748098A (en) For production of C2To C4Catalyst for olefins comprising zirconium oxide and gallium oxide components
WO2018119195A1 (en) Process to convert synthesis gas to olefins using a bifunctional chromium / zinc oxide-sapo-34 catalyst
CN110743611B (en) Nano composite catalyst, preparation method and application thereof
CN106334563A (en) Preparation method for alkane dehydrogenation catalyst and application thereof
CA2898175C (en) A catalyst and a process for catalytic conversion of carbon dioxide-containing gas and hydrogen streams to hydrocarbons
CN110496640B (en) Catalyst for synthesizing paraxylene and preparation method and application thereof
Liu et al. Dry gel assisting crystallization of bifunctional CuO–ZnO–Al2O3/SiO2–Al2O3 catalysts for CO2 hydrogenation
WO2014174107A1 (en) Production of hydrocarbons from synthesis gas
CN111111757B (en) Monolithic catalyst, preparation method and use method thereof
WO2024135770A1 (en) Catalyst for producing aromatic compound, method for producing catalyst for producing aromatic compound, and method for producing aromatic compound
EP3853190A1 (en) Process for preparing c2-c5 hydrocarbons using a hybrid catalyst
CA3095560A1 (en) Light hydrocarbon partial oxidation catalyst and carbon monoxide production method using same
WO2024135771A1 (en) Catalyst for organic compound production, method of producing catalyst for organic compound production, and method of producing organic compound
WO2024135773A1 (en) Organic-compound-producing catalyst, method for producing organic-compound-producing catalyst, and method for producing organic compound
JP7029346B2 (en) Indene manufacturing method
CN110028375B (en) Method for dehydrogenation of methylcyclohexane by reverse water gas conversion coupling
CN111111752B (en) Binder-free monolithic catalyst, preparation method and application thereof