WO2024135552A1 - Polypropylene film - Google Patents

Polypropylene film Download PDF

Info

Publication number
WO2024135552A1
WO2024135552A1 PCT/JP2023/044988 JP2023044988W WO2024135552A1 WO 2024135552 A1 WO2024135552 A1 WO 2024135552A1 JP 2023044988 W JP2023044988 W JP 2023044988W WO 2024135552 A1 WO2024135552 A1 WO 2024135552A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
stretching
polypropylene
polypropylene film
cyclic olefin
Prior art date
Application number
PCT/JP2023/044988
Other languages
French (fr)
Japanese (ja)
Inventor
利海 辰喜
正寿 大倉
聡士 藤原
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2024135552A1 publication Critical patent/WO2024135552A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors

Definitions

  • the present invention relates to a polypropylene film that is particularly suitable for use in film capacitors.
  • polypropylene film is said to have excellent heat resistance and voltage resistance.
  • it is important that the film has excellent dimensional stability at the operating temperature and stable electrical performance (voltage resistance, etc.) in a temperature range 10°C to 20°C higher than the operating temperature. From the perspective of heat resistance, it is said that the operating temperature will become even higher in the future when considering power semiconductor applications using silicon carbide (SiC).
  • Non-Patent Document 1 the upper limit of the usable temperature for polypropylene film is said to be approximately 110°C, and it has been extremely difficult for polypropylene film to stably maintain voltage resistance in such a temperature environment.
  • a laminate has been proposed in which two layers with different dielectric constants are alternately stacked, one layer being a cyclic olefin resin with a glass transition temperature exceeding 130°C, and the other being a polypropylene layer, thereby providing heat resistance and voltage resistance while maintaining a large electrostatic capacity (e.g., Patent Document 1).
  • a film has been proposed in which the processability is improved by co-extrusion and co-stretching when forming a laminate of a cyclic olefin resin and polypropylene (e.g., Patent Documents 2 and 3).
  • Motonobu Kawai "Film Capacitor Advances: From Cars to Energy”
  • Nikkei Electronics Nikkei BP, September 17, 2012, pp. 57-62
  • the film of Patent Document 1 is not a laminate by coextrusion, but a laminate in which a cyclic olefin resin layer is formed on a polypropylene film by a coating method. Therefore, the cyclic olefin resin layer is easily peeled off, and the processability in a high-temperature environment and the performance and reliability when used as a film capacitor are not sufficient.
  • the base layer of the laminated structure of the film of Patent Document 2 is also a single cyclic olefin resin. Therefore, it is difficult to increase the areal stretch ratio, and the voltage resistance in a high-temperature environment is insufficient, so the performance and reliability when used as a film capacitor are not sufficient.
  • the base layer of the laminated structure of the film of Patent Document 3 is also a cyclic olefin resin, and an elastomer is contained to improve the stretchability to increase the areal stretch ratio, but the voltage resistance in a high-temperature environment is not satisfactory, and the performance and reliability when used as a film capacitor are not sufficient.
  • the film of Patent Document 4 is a film simply made by blending a cyclic olefin resin and a polypropylene resin, so it is difficult to increase the areal stretch ratio. As a result, the voltage resistance in high-temperature environments was insufficient, and the performance and reliability of the film capacitors were not sufficient.
  • the present invention aims to provide a polypropylene film that has excellent processability in high-temperature environments, high voltage resistance regardless of the operating temperature, and excellent reliability when used as a film capacitor.
  • the inventors conducted extensive research to solve the above problems, and came to invent a polypropylene film in which, when a layer containing a cyclic olefin resin and a polypropylene resin is designated as layer A and a cross section obtained by cutting the polypropylene film along a plane parallel to the main orientation axis direction and the thickness direction is designated as cross section X, the polypropylene film has layer A and the orientation parameter I810/I840 measured by Raman spectroscopic analysis of cross section X is 2.2 or more and 20 or less.
  • the present invention provides a polypropylene film that has excellent processability in high-temperature environments, high voltage resistance regardless of the operating temperature, and excellent reliability when used as a film capacitor.
  • FIG. 1 is a schematic diagram showing a rectangle of 1 ⁇ m ⁇ 2 ⁇ m size defined so that a pair of short sides are parallel to the thickness direction within the cross section X of a polypropylene film of the present invention, and a domain of a cyclic olefin resin passing through a pair of sides of the rectangle parallel to the thickness direction.
  • FIG. 1 shows TEM images (magnification: 20,000 times) of the layer A portion of the cross section X of a polypropylene film according to an embodiment of the present invention (Example 5), in which the treatment described up to ii) of (16) was performed (left) and the treatment described up to v) of (16) was performed (right).
  • Patent Documents 1 to 4 above do not have sufficient dielectric breakdown voltage in high-temperature environments, sufficient voltage resistance and reliability in high-temperature environments when used as a film capacitor, and sufficient processability in high-temperature environments.
  • the film of Patent Document 1 is an unstretched film laminated by a coating method, and therefore it is considered to have problems such as peeling between layers in a high-temperature environment, insufficient mechanical properties, particularly breaking elongation, which makes it prone to breaking during processing of the film capacitor element, and reduced voltage resistance in a high-temperature environment.
  • the films of Patent Documents 2 and 3 have problems with voltage resistance in a high-temperature environment, the ratio of stretching in the vertical direction during film production is insufficient in both cases, and the film has a large amount of mobile amorphous components, resulting in a low breakdown voltage at high temperatures.
  • the polypropylene film of the present invention is a polypropylene film in which, when a layer containing a cyclic olefin resin and a polypropylene resin is designated as layer A and a cross section obtained by cutting the polypropylene film along a plane parallel to the main orientation axis direction and the thickness direction is designated as cross section X, the polypropylene film has layer A and has an orientation parameter I810/I840 of 2.2 or more and 20 or less as measured by Raman spectroscopic analysis of cross section X.
  • polypropylene film of the present invention will be described in detail below. Note that when the upper and lower limits of the preferred ranges are stated separately below, the combination can be arbitrary.
  • polypropylene film refers to a sheet-like molded product whose main component is polypropylene resin, and the main component refers to a component that is contained in an amount of more than 50% by mass and not more than 100% by mass when all components constituting the film are taken as 100% by mass. Note that when the film contains multiple components equivalent to polypropylene resin, even if each component is less than 50% by mass, as long as the total of these components exceeds 50% by mass, it is considered that the main component is polypropylene resin.
  • Polypropylene resin is a resin that contains more than 50 mol% and up to 100 mol% of propylene units when the total constituent units of the resin are taken as 100 mol%, and does not fall under the category of cyclic olefin resin.
  • Cyclic olefin resin refers to a polyolefin resin that contains 10 mol% to 100 mol% of cyclic olefin units when all the constituent units constituting the resin are taken as 100 mol%. Note that for resins that contain multiple types of constituent units equivalent to cyclic olefin units, even if each cyclic olefin unit is less than 10 mol%, as long as the total of these constituent units is 10 mol% or more, it is considered to be a cyclic olefin resin.
  • polypropylene film may be simply referred to as film.
  • the polypropylene film of the present invention is not a microporous film and does not have many pores.
  • the polypropylene film of the present invention means a polypropylene film other than a microporous film.
  • a microporous film is defined as a film that has a pore structure penetrating both surfaces of the film and has a degree of air permeability of 5,000 seconds/100 ml or less when measured at a temperature of 23°C and a relative humidity of 65% using a type B Gurley tester according to JIS P 8117 (1998).
  • the main orientation direction in the polypropylene film of the present invention is described below.
  • the main orientation direction refers to the direction in which the molecular chain orientation of the polypropylene resin is greatest within the film plane.
  • stretching is usually performed in the longitudinal and width directions, and generally, the direction of the larger stretching ratio becomes the main orientation direction. If the stretching directions (longitudinal and width directions) are specified but the ratio is unknown, the maximum load until breakage is measured for each direction in a tensile test at 23°C described below, and the direction with the larger measured value can be determined as the main orientation direction.
  • the main orientation axis direction can be easily identified if the stretch direction and stretch ratio are known, but in the case of a film whose stretch direction and stretch ratio are unknown or a film whose stretch ratios in two directions are almost equal, the main orientation axis direction can be identified by the following method. Specifically, a rectangle measuring 50 mm in length and 10 mm in width is cut out to form sample ⁇ 1>, and the direction of the long side of sample ⁇ 1> is defined as 0°.
  • each rectangular sample is set in a tensile tester with an initial chuck distance of 20 mm so that the long side direction is the pulling direction (measurement direction), and a tensile test is performed at a tensile speed of 300 mm/min in a room temperature atmosphere.
  • the maximum load until the sample breaks is read, and the maximum point strength stress is calculated by dividing the load by the cross-sectional area of the sample before the test (film thickness x width).
  • the direction of the long side of the sample where this value was maximum is defined as the main orientation axis of the polypropylene film, and the direction perpendicular to this in the film plane is defined as the direction perpendicular to the main orientation axis of the polypropylene film.
  • the polyolefin film of the present invention has a layer A containing a cyclic olefin resin and a polypropylene resin, and when a cross section X is a cross section obtained by cutting the polypropylene film in a plane parallel to the main orientation axis direction and the thickness direction, the polyolefin film has a layer A, and the orientation parameter I810/I840 measured by Raman spectroscopy analysis of the cross section X is 2.2 or more and 20 or less.
  • the thickness direction means the direction perpendicular to the film surface.
  • I810/I840 is a parameter that reflects the tension state of the polypropylene chains in the polypropylene film, and the higher it is, the more the polypropylene chains can be relaxed in a high-temperature environment and the lowering of the voltage resistance can be suppressed. If I810/I840 is less than 2.2, the polypropylene chains in the polypropylene film will relax when heated, causing a problem of a decrease in the voltage resistance when the film is used as a film capacitor in a high-temperature environment.
  • I810/I840 is preferably 2.8 or more, more preferably 3.5 or more, even more preferably 4.2 or more, particularly preferably 4.7 or more, and most preferably 5.0 or more.
  • the higher I810/I840 is the better, but from the viewpoint of feasibility, I810/I840 is 20 or less, preferably 15 or less, more preferably 10 or less, and even more preferably 7.0 or less.
  • I810/I840 can be measured by Raman spectroscopy, using polarized Raman measurement (beam diameter 1 ⁇ m, measured with polarized light parallel to the main orientation axis direction) from the surface of the polypropylene film.
  • the measurement position is the center position in the thickness direction of the polypropylene film, and details of the measurement device and method will be described later.
  • the method for making I810/I840 2.2 or more and 20 or less in a polypropylene film containing a cyclic olefin resin is not particularly limited, but for example, it is effective to manufacture the polypropylene film by a sequential biaxial stretching method, set the stretching ratio in the width direction to 8.5 times or more, and perform width direction stretching by the following two-stage stretching method (I). It is also effective to use a polypropylene resin with high stereoregularity and melting point (for example, a polypropylene resin with a high mesopentad fraction and a high melting point). These methods may be used in combination as appropriate.
  • the two-stage drawing method (I) refers to a drawing method in which the following second-stage drawing is performed after the following first-stage drawing. That is, in the two-stage drawing method (I), a ⁇ b times drawing is performed in total in the first-stage drawing and the second-stage drawing (both of which are described below).
  • Second-stage drawing The film is further drawn in the width direction at a draw ratio of b times at a temperature 1° C. to 20° C. lower than the temperature in the first-stage drawing.
  • the difference between the temperature of the second stretching stage and the temperature of the first stretching stage is preferably 5°C or more from the viewpoint of increasing I810/I840, and is preferably 10°C or less from the viewpoint of improving film formability.
  • the "final stretching ratio in the width direction” refers to the stretching ratio immediately after the second stretching stage is completed (i.e., the variation in stretching ratio due to the relaxation treatment is not taken into consideration).
  • the length in the main axis direction of the cyclic olefin resin domain in the cross section X is preferably 5.0 ⁇ m or more and 1 mm or less.
  • the length in the main axis direction of the cyclic olefin resin domain in the cross section X is preferably as long as possible from the viewpoint of shape stability when used as a film capacitor at high temperatures for a long time, but is 1 mm or less, preferably 30 ⁇ m or less from the viewpoint of realization.
  • the length in the main axis direction of the cyclic olefin resin domain in the cross section X is more preferably 7.0 ⁇ m or more, even more preferably 10.0 ⁇ m or more, and particularly preferably 10.5 ⁇ m or more, from the viewpoint of improving shape stability (reliability) and improving life when used as a film capacitor at high temperatures for a long time.
  • the method for keeping the length of the main axis direction of the domain of the cyclic olefin resin in the cross section X between 5.0 ⁇ m and 1 mm is not particularly limited, but a method of stretching by a sequential biaxial stretching method so that the stretch ratio in the width direction is 8.0 times or more, preferably 8.5 times or more, is effective.
  • the domain length can be measured from an image of the cross section X obtained using a transmission electron microscope (TEM), and the details will be described later.
  • the polypropylene film of the present invention preferably has a structure in which the cyclic olefin resin is diffused into the sea portion of the polypropylene resin in the A layer portion of the cross section X (hereinafter, sometimes referred to as a diffusion structure).
  • a diffusion structure When observing the A layer portion of the cross section X with a TEM, such a diffusion structure is observed as a brightness intermediate between the cyclic olefin resin, which is observed as black, and the polypropylene resin, which is observed as white.
  • the "diffusion structure" in the A layer portion of the cross section X means that when the observed image of the A layer portion of the cross section X is binarized using the method described below, the proportion of pixels with a brightness of 255 out of all pixels is 0.01% or more.
  • "pixels with a brightness of 255 when the observed image of the A layer portion of the cross section X is binarized using the method described below” may simply be referred to as white pixels in the A layer portion after binarization.
  • the proportion of white pixels in the A layer portion after binarization is preferably 5% or more of all pixels, and more preferably 15% or more.
  • the proportion of white pixels in the A layer portion after binarization is 50% or less.
  • the method of forming such a diffusion structure in the A layer of the polypropylene film of the present invention is not particularly limited, but includes a method in which the ratio of cyclic olefin resin to polypropylene resin in the A layer is set within the range described below, and the film is stretched at a suitable areal stretch ratio described below using a sequential biaxial stretching method, and then stretched in the width direction (transverse stretching) at a temperature at least 5°C higher than the glass transition temperature of the cyclic olefin resin used.
  • the polypropylene film of the present invention preferably has a dielectric loss tangent of 3 ⁇ 10 ⁇ 6 or more and 1 ⁇ 10 ⁇ 2 or less.
  • the dielectric loss tangent is preferably 1 ⁇ 10 ⁇ 2 or less, more preferably 1 ⁇ 10 ⁇ 3 or less, even more preferably 5 ⁇ 10 ⁇ 4 or less, and particularly preferably 3 ⁇ 10 ⁇ 4 or less.
  • the lower the dielectric loss tangent the more preferable it is, but from the viewpoint of feasibility, it is preferably 3 ⁇ 10 ⁇ 6 or more, more preferably 1 ⁇ 10 ⁇ 5 or more.
  • the dielectric loss tangent of the polypropylene film can be measured in accordance with JIS C2138-2007, and the details thereof will be described later.
  • the method for keeping the dielectric loss tangent of the polypropylene film of the present invention within the range of 3 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 2 is not particularly limited, but it is effective to reduce the content of components other than polypropylene contained in the polypropylene film.
  • the content of such components is preferably 40 mass% or less, more preferably 30 mass% or less, even more preferably 20 mass% or less, particularly preferably 9.5 mass% or less, and most preferably 9.0 mass% or less.
  • the polypropylene film of the present invention it is preferable that in a rectangle of 1 ⁇ m ⁇ 2 ⁇ m size defined in the A layer portion of the cross section X so that a pair of short sides are parallel to the thickness direction, there are 2.0 to 1000 domains of cyclic olefin resin passing through a pair of short sides.
  • Figure 1 is a schematic diagram showing a 1 ⁇ m x 2 ⁇ m rectangle with a pair of sides parallel to the thickness direction in the cross section X of the polypropylene film of the present invention, and a domain of a cyclic olefin resin passing through a pair of short sides of the rectangle.
  • References 1 to 5 in Figure 1 respectively represent a part of the cross section X, a sea part, an island part (domain), a 1 ⁇ m x 2 ⁇ m rectangle with a pair of sides parallel to the thickness direction in the cross section X, and a pair of short sides of the rectangle.
  • the left side of Figure 1 is a part of the cross section X, and the right side is an enlarged view of a 1 ⁇ m x 2 ⁇ m rectangle indicated by a dashed line in the cross section X with a pair of short sides parallel to the thickness direction.
  • the sea part is polypropylene resin
  • the island part is cyclic olefin resin.
  • the base of the rectangle When defining a rectangle of 1 ⁇ m x 2 ⁇ m size within cross section X so that a pair of short sides are parallel to the thickness direction, the base of the rectangle is set in the sea portion, and if a domain is located on the side opposite the base, it is considered not to exist and is not counted in the number (in the example of Figure 1, no such domain exists).
  • domains of cyclic olefin resin passing through a pair of short sides parallel to the thickness direction refers to domains of cyclic olefin resin passing through both a pair of short sides parallel to the thickness direction. That is, in the example of Figure 1 (right), the first, fifth, and seventh domains from the top fall into this category, but the second to fourth and sixth domains from the top do not, so there are three “domains of cyclic olefin resin passing through a pair of short sides parallel to the thickness direction" in this example.
  • the cyclic olefin resin is finely dispersed in a flatter shape within the plane.
  • the high thermal stability of the cyclic olefin resin and the high voltage resistance of the polypropylene resin can be reflected in the polypropylene film, and the dielectric breakdown voltage of the polypropylene film in a high-temperature environment can be increased.
  • short circuit breakdown is less likely to occur, even when used for long periods of time, especially in high-temperature environments, and the voltage resistance of the film capacitor is maintained, resulting in high reliability.
  • the method of keeping the number of domains of such cyclic olefin resin within a suitable range is not particularly limited, but for example, when the mass of the entire film is taken as 100 mass%, it is effective to set the content of cyclic olefin resin to 1.0 mass% or more and 30 mass% or less, set the temperature of the filter lower than the extrusion temperature in the process of extruding a resin composition containing polypropylene resin and cyclic olefin resin, and perform biaxial stretching so that the areal stretching ratio is 40 times or more.
  • the areal stretching ratio is more preferably 45 times or more, even more preferably 50 times or more, particularly preferably 54 times or more, and most preferably 60 times or more.
  • the number of domains of such cyclic olefin resin is preferably 4.0 or more, more preferably 6.0 or more, and even more preferably 7.0 or more from the above viewpoints.
  • the upper limit of the number of domains of the cyclic olefin resin is 1000 from the viewpoint of feasibility, and more preferably 20.
  • the content of the cyclic olefin resin when the mass of the entire film is taken as 100% by mass, is preferably 1.0% by mass or more and 40% by mass or less. From the viewpoint of suppressing film rupture during stretching and increasing productivity, and from the viewpoint of appropriately controlling the number of domains of the cyclic olefin resin passing through the pair of short sides, the content of the cyclic olefin resin in the polypropylene film is more preferably 30% by mass or less, even more preferably 20% by mass or less, particularly preferably 9.5% by mass or less, and most preferably 9.0% by mass or less.
  • cyclic olefin resins are more expensive than polypropylene, so it is industrially preferable to obtain the desired effect with a smaller content, particularly 9.5 mass% or less.
  • the content of cyclic olefin resin in the polypropylene film is 5.0 mass% or more.
  • the content of the cyclic olefin resin in layer A of the polypropylene film of the present invention is preferably 0.5% by mass or more, more preferably 1% by mass or more, even more preferably 4% by mass or more, and particularly preferably 7% by mass or more, when the total components of layer A are taken as 100% by mass, from the viewpoint of increasing the thermal dimensional stability at high temperatures and increasing the reliability of the film capacitor when used as a dielectric of the film capacitor.
  • the content of the cyclic olefin resin in layer A is preferably 38% by mass or less, more preferably 34% by mass or less, even more preferably 25% by mass or less, particularly preferably 19.5% by mass or less, and most preferably 9.8% by mass or less, when the total components of layer A are taken as 100% by mass, from the viewpoint of making it difficult for the film to break when the areal stretch ratio is increased during stretching.
  • the polypropylene film of the present invention is formed by laminating layers having different compositions of cyclic olefin resins, the layer with the highest content of cyclic olefin resin is taken as layer A.
  • the polypropylene film of the present invention preferably has a laminated structure in which a layer having a lower cyclic olefin resin content than layer A (hereinafter referred to as layer B) is laminated on at least one side of the outermost layer, and more preferably has layer B laminated on both sides.
  • layer B a layer having a lower cyclic olefin resin content than layer A
  • the cyclic olefin resin content of layer B is less than that of layer A, preferably 3 mass% or less, more preferably 1 mass% or less, and most preferably layer B does not contain cyclic olefin resin.
  • the composition of layer B may be the same or different.
  • a cyclic olefin polymer or a cyclic olefin copolymer can be preferably used.
  • a cyclic olefin copolymer in which a chain olefin monomer such as ethylene or propylene is copolymerized with a cyclic olefin such as norbornene, norbornadiene, tetracyclododecene, or a derivative thereof.
  • Cyclic olefin monomers that can be used to manufacture the cyclic olefin resin used in the polypropylene film of the present invention include monocyclic olefins such as cyclobutene, cyclopentene, cycloheptene, cyclooctene, cyclopentadiene, and 1,3-cyclohexadiene, bicyclo[2,2,1]hept-2-ene, 5-methyl-bicyclo[2,2,1]hept-2-ene, and 5,5-dimethyl-bicyclo[2,2,1]hept-2-ene.
  • monocyclic olefins such as cyclobutene, cyclopentene, cycloheptene, cyclooctene, cyclopentadiene, and 1,3-cyclohexadiene
  • bicyclo[2,2,1]hept-2-ene 5-methyl-bicyclo[2,2,1]hept-2-ene
  • the following cyclic olefin monomers are preferably used: tricyclic olefins having 10 carbon atoms, such as bicyclo[2,2,1]hept-2-ene (hereinafter referred to as norbornene), tricyclo[4,3,0,12.5]dec-3-ene (hereinafter referred to as tricyclodecene), tetracyclic olefins having 12 carbon atoms, such as tetracyclo[4,4,0,12.5,17.10]dodec-3-ene (hereinafter referred to as tetracyclododecene), cyclopentadiene, or 1,3-cyclohexadiene.
  • tricyclic olefins having 10 carbon atoms such as bicyclo[2,2,1]hept-2-ene (hereinafter referred to as norbornene), tricyclo[4,3,0,12.5]dec-3-ene (hereinafter referred to as tri
  • the cyclic olefin resin may be either a resin obtained by polymerizing only the above cyclic olefin monomer (hereinafter sometimes referred to as COP) or a resin obtained by copolymerizing the above cyclic olefin monomer with a chain olefin monomer (hereinafter sometimes referred to as COC).
  • COP cyclic olefin monomer
  • COC chain olefin monomer
  • COP can be produced by known methods such as addition polymerization or ring-opening polymerization of cyclic olefin monomers.
  • addition polymerization or ring-opening polymerization of cyclic olefin monomers there is a method of subjecting norbornene, tricyclodecene, tetracyclodecene, and their derivatives to ring-opening metathesis polymerization followed by hydrogenation, a method of addition polymerization of norbornene and its derivatives, and a method of subjecting cyclopentadiene and cyclohexadiene to 1,2-, 1,4-addition polymerization followed by hydrogenation.
  • preferred chain olefin monomers include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, 3-ethyl-1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, etc.
  • ethylene or both ethylene and propylene can be particularly preferably used from the viewpoints of productivity and cost.
  • methods for producing resins obtained by copolymerizing cyclic olefin monomers with chain olefin monomers include known methods such as addition polymerization of cyclic olefin monomers with chain olefin monomers, such as a method of addition polymerization of norbornene or its derivatives with ethylene.
  • a method of binary or terpolymerization of norbornene, tetracyclododecene, or a derivative thereof with ethylene and/or propylene can be used as a preferred method. That is, for example, binary polymerization of a tetracyclododecene derivative with ethylene, or terpolymerization of norbornene, ethylene, and propylene can be used as a preferred method.
  • the chain olefin monomer and the cyclic olefin monomer for obtaining the cyclic olefin copolymer may each be one type, or one or both may be two or more types.
  • the use of a cyclic olefin copolymer having ethylene and propylene as structural units is particularly preferred from the viewpoint of increasing the compatibility between the cyclic olefin resin and the polypropylene resin.
  • the cyclic olefin monomer it is preferred to use a norbornene derivative, norbornadiene, or a derivative thereof, from the viewpoint of increasing the heat resistance when made into a capacitor.
  • the polypropylene film of the present invention preferably has a crystallization temperature (Tmc) during the cooling process measured by differential scanning calorimetry of 110°C or more and 150°C or less, and more preferably a Tmc of 112°C or more and 150°C or less.
  • Tmc crystallization temperature
  • the upper limit of Tmc is 150°C or less from the viewpoint of feasibility. Tmc can be measured in accordance with JIS K7121-1987, and details will be described later.
  • the method of increasing the Tmc to 110°C or higher is not particularly limited, but includes a method of incorporating a crystal nucleating agent that promotes the crystallization of the polypropylene resin into the polypropylene film.
  • crystal nucleating agents that can be used in the polypropylene film of the present invention include sorbitol-based nucleating agents, nonitol-based nucleating agents, amide-based nucleating agents, metal salts of aromatic carboxylic acids, metal salts of phosphates, polypropylene resins having a crosslinked structure, and branched polypropylene resins. From the viewpoint of suppressing film rupture during production due to foreign matter, it is preferable to use branched polypropylene resin.
  • the branched polypropylene resin refers to a polypropylene resin containing a polypropylene molecular chain having at least one side chain with 6 or more carbon atoms in the molecular chain, and the presence of the branched structure can be confirmed by 13 C-NMR.
  • the branched polypropylene resin acts as a nucleating agent to accelerate crystallization when solidifying the molten polypropylene resin. Therefore, by incorporating the branched polypropylene resin, more uniform crystallization of the film is promoted, and it becomes easy to stretch at a high ratio while suppressing the formation of film breakage and voids during stretching.
  • the content of the branched polypropylene resin is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and even more preferably 0.3% by mass or more, when the mass of the film is taken as 100% by mass.
  • the content of the branched polypropylene resin is preferably 50% by mass or less, more preferably 30% by mass or less, even more preferably 10% by mass or less, and particularly preferably 7.0% by mass or less, when the mass of the film is taken as 100% by mass.
  • the thickness of the polypropylene film of the present invention is preferably 0.5 ⁇ m or more and 15 ⁇ m or less from the viewpoint of improving heat resistance and miniaturizing the film capacitor. From the above viewpoint, the thickness of the polypropylene film is more preferably 6.0 ⁇ m or less, even more preferably 5.0 ⁇ m or less, particularly preferably 3.5 ⁇ m or less, and most preferably 3.0 ⁇ m or less.
  • the thickness of the polypropylene film 15 ⁇ m or less By making the thickness of the polypropylene film 15 ⁇ m or less, the effect of increasing the heat resistance of the cyclic olefin resin can be increased, the voltage resistance in a high-temperature environment can be increased, and the element size can be reduced when made into a film capacitor.
  • the thickness of the polypropylene film can be measured with a known electronic micrometer, and details will be described later.
  • the polypropylene film of the present invention preferably has a value of tear strength in the direction perpendicular to the main orientation axis/tear strength in the main orientation axis direction (hereinafter sometimes referred to as tear strength ratio) of 0.10 or more and 10.0 or less.
  • tear strength ratio is more preferably 0.40 or more, even more preferably 0.50 or more, and particularly preferably 0.80 or more.
  • the upper limit of the tear strength ratio is not particularly limited, but from the viewpoint of feasibility, it is preferably 10.0, more preferably 2.0.
  • the method for achieving a tear strength of 0.10 or more it is effective to perform sequential biaxial stretching so that the stretch ratio in the width direction is 3.0 times or less, and preferably 2.0 times or less, relative to the stretch ratio in the longitudinal direction, and to keep the content of cyclic olefin resin within the preferred range mentioned above.
  • the tear strength ratio can be measured using a known tear tester in accordance with JIS K 7128-2:1998, and details will be described later.
  • the polypropylene film of the present invention preferably has an ash content of 0.0 ppm or more and 1000 ppm or less when the total mass of the polypropylene film of the present invention is taken as 100% by mass.
  • the ash content of the polypropylene film of the present invention within a suitable range, the reliability of the film capacitor can be improved when the film is used as a dielectric of the film capacitor.
  • the lower the ash content the more preferable, more preferably 500 ppm or less, even more preferably 200 ppm or less, particularly preferably 100 ppm or less, and most preferably 55 ppm.
  • the ash content is 0.0 ppm or more, and from the viewpoint of feasibility, it is preferably 10 ppm.
  • the ash content can be measured in accordance with JIS K 7250-1:2006, the details of which will be described later.
  • the method for controlling the ash content to the preferred range is not particularly limited, but it is effective to reduce the ash content of the polypropylene resin, which is the main component for producing the polypropylene film of the present invention.
  • the polypropylene film of the present invention may contain various additives, such as organic particles, inorganic particles, crystal nucleating agents, antioxidants, heat stabilizers, chlorine scavengers, slipping agents, antistatic agents, antiblocking agents, fillers, viscosity modifiers, and color inhibitors, as long as the additives do not impair the object of the present invention.
  • additives such as organic particles, inorganic particles, crystal nucleating agents, antioxidants, heat stabilizers, chlorine scavengers, slipping agents, antistatic agents, antiblocking agents, fillers, viscosity modifiers, and color inhibitors, as long as the additives do not impair the object of the present invention.
  • additives may be used alone or in combination, and when multiple layers are present, they may be added to any of the layers.
  • antioxidants are included among these additives, the type and amount of antioxidant added are important from the viewpoint of long-term heat resistance of polypropylene film. From the above viewpoint, it is preferable to use one or more sterically hindered phenolic antioxidants, and at least one of them is preferably a high molecular weight type with a molecular weight of 500 or more.
  • BHT 2,6-di-t-butyl-p-cresol
  • the total content of high molecular weight antioxidants with a molecular weight of 500 or more is preferably in the range of 0.1 to 1.0 parts by mass relative to the total amount of resin. If the amount of antioxidant is too small, the long-term heat resistance may be poor, and if the amount of antioxidant is too large, blocking at high temperatures due to bleed-out of these antioxidants may have an adverse effect on the film capacitor element. From the above perspective, the more preferred content is 0.2 to 0.7 parts by mass, and even more preferably 0.3 to 0.5 parts by mass, relative to 100 parts by mass of the total resin.
  • each layer contains 0.3 to 0.5 parts by mass of high molecular weight antioxidants with a molecular weight of 500 or more, from the viewpoint of suppressing defects such as fish eyes and improving quality and voltage resistance performance.
  • the polypropylene film of the present invention may contain resins other than polypropylene resin and cyclic olefin resin, as long as the object of the present invention is not impaired.
  • resins include vinyl polymer resins including various polyolefin resins, polyester resins, polyamide resins, polyphenylene sulfide resins, polyimide resins, polycarbonate resins, etc., and particularly preferred examples include polymethylpentene and syndiotactic polystyrene.
  • the content of these resins is preferably less than 3% by mass, more preferably 2% by mass or less, and even more preferably 1% by mass or less, assuming that the entire resin components constituting the polypropylene film are 100% by mass.
  • the polypropylene film of the present invention is preferably used as a dielectric for film capacitors, but the type of film capacitor is not limited. Specifically, from the viewpoint of electrode configuration, it may be either a laminated film capacitor of metal foil and film, or a metal vapor deposition film capacitor, and it is also preferably used in oil-immersed type film capacitors impregnated with insulating oil, and dry capacitors that do not use insulating oil at all. However, due to the characteristics of the polypropylene film of the present invention, it is particularly preferably used as a metal vapor deposition film capacitor. From the viewpoint of shape, it may be either a wound type or a laminated type (the film capacitor of the present invention will be described later).
  • polypropylene film usually has a low surface energy and it is difficult to stably apply metal vapor deposition to it, it is preferable to perform a surface treatment before vapor deposition in order to improve adhesion to the metal film.
  • surface treatments include corona discharge treatment, plasma treatment, glow discharge treatment, and flame treatment.
  • the polypropylene film of the present invention can be obtained by obtaining a polypropylene resin sheet using a resin composition containing a polypropylene resin as the main component and a cyclic olefin resin, and then biaxially stretching, heat treating and relaxing the sheet.
  • a method of biaxial stretching any of the inflation simultaneous biaxial stretching method, tenter simultaneous biaxial stretching method and tenter sequential biaxial stretching method can be used.
  • the tenter sequential biaxial stretching method and the tenter simultaneous biaxial stretching method are preferred in terms of controlling the mechanical properties and thermal dimensional stability while increasing the film forming stability, crystalline/amorphous structure, surface properties, and especially the stretch ratio of the present invention, and the tenter sequential biaxial stretching method is more preferred in terms of bringing the I810/I840 of the polypropylene film of the present invention into the preferred range described above.
  • the preferred method for producing the polypropylene film of the present invention comprises, in this order, a casting step in which a resin composition containing a polypropylene resin and a cyclic olefin resin is melt-extruded onto a support to form a polypropylene resin sheet, and a stretching step in which the polypropylene resin sheet is stretched in the longitudinal and width directions, and in the stretching step, stretching in the width direction is performed by a two-stage stretching method (I) described below.
  • having a casting step and a stretching step in this order means that the casting step and the stretching step are present in this order, regardless of whether there are other steps upstream of the casting step, between the casting step and the stretching step, or downstream of the stretching step.
  • the manufacturing method includes a casting step in which a resin composition containing polypropylene resin and a cyclic olefin resin is melt-extruded onto a support to form a polypropylene resin sheet.
  • the resin composition containing polypropylene resin and a cyclic olefin resin is not particularly limited as long as it contains polypropylene resin as the main component and the cyclic olefin resin, but in order to increase the dispersibility of the cyclic olefin resin, it is preferable to use a compound resin composition in which the cyclic olefin resin and the polypropylene resin are pre-kneaded in advance.
  • the support is not particularly limited as long as it can cool and solidify the resin composition melt-extruded into a sheet to obtain a polypropylene resin sheet, and for example, a cooling drum or the like can be used.
  • stretching in the longitudinal and width directions includes both a sequential biaxial stretching method in which stretching in the longitudinal direction is performed followed by stretching in the width direction, and a simultaneous biaxial stretching method in which stretching in the longitudinal and width directions is performed simultaneously, but the sequential biaxial stretching method is preferred from the viewpoint of individually and preferably controlling the temperature conditions in stretching in the longitudinal direction and stretching in the width direction.
  • Two-stage stretching method (I) First-stage stretching: When the final stretching ratio in the width direction is a ⁇ b times, the film is stretched in the width direction at a temperature of 160°C or higher and 185°C or lower (the lower limit is preferably 170°C, and the upper limit is preferably 180°C) and a stretching ratio of a times.
  • Second-stage drawing The film is further drawn in the width direction at a draw ratio of b times at a temperature 1° C. to 20° C. lower than the temperature in the first-stage drawing.
  • the difference between the temperature of the second stretching stage and the temperature of the first stretching stage is preferably 5°C or more from the viewpoint of increasing I810/I840, and is preferably 10°C or less from the viewpoint of improving film formability.
  • the "final stretching ratio in the width direction” refers to the stretching ratio immediately after the second stretching stage is completed (i.e., the variation in stretching ratio due to the relaxation treatment is not taken into consideration).
  • the two-stage stretching method (I) When the two-stage stretching method (I) is used for simultaneous biaxial stretching, it is preferable to perform simultaneous biaxial stretching in the first stage such that the width direction stretching satisfies the conditions for the first stage stretching, and then perform width direction stretching in the second stage such that the conditions for the second stage stretching are satisfied.
  • the preferred temperature range for the first stage stretching in simultaneous biaxial stretching is 150°C or higher and 180°C or lower, more preferably 165°C or higher and 180°C or lower.
  • the area stretch ratio is preferably 40 times or more from the viewpoint of adjusting the number of domains of the cyclic olefin resin passing through a pair of short sides within a suitable range.
  • the area stretch ratio refers to the longitudinal stretch ratio ⁇ width stretch ratio.
  • the method for producing the polypropylene film of the present invention will be described in more detail below.
  • the polypropylene film of the present invention is not limited to that obtained by the method below.
  • the cyclic olefin resin, polypropylene resin, and antioxidant in advance from the viewpoint of improving the dispersion state of the cyclic olefin resin and polypropylene resin and increasing the dielectric breakdown voltage of the resulting polypropylene film at high temperatures.
  • twin-screw extruders in particular from the viewpoint of achieving a good dispersion state.
  • the resin temperature during compounding is preferably within the following temperature range from the viewpoint of improving the dispersion state of the cyclic olefin resin and the polypropylene resin and further increasing the dielectric breakdown voltage at high temperatures of the resulting polypropylene film.
  • it is preferable that it is 300°C or less, and more preferably 280°C or less.
  • the content of the cyclic olefin resin in the resin composition obtained by compounding is preferably 0.5% by mass or more, more preferably 1% by mass or more, even more preferably 4% by mass or more, and particularly preferably 7% by mass or more, when the total amount of the compounded components is 100% by mass.
  • the content of the cyclic olefin resin in the compound resin is preferably 49% by mass or less, and more preferably 40% by mass or less.
  • the amount of antioxidant is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and even more preferably 0.4% by mass or more, when the total components in the resin raw material obtained by compounding are taken as 100% by mass.
  • the upper limit is 1.0 part by mass.
  • the resulting polypropylene film has a high melting point and is suitable for use at high temperatures, which is preferable.
  • the resin composition obtained by compounding with polypropylene resin is fed to a single screw extruder after adjusting the amount of cyclic olefin resin to the desired level, and after passing through a filter, is extruded into a sheet from a slit nozzle.
  • the temperature of the filter is preferably within the range of extrusion temperature -40°C or more and extrusion temperature or less, and more preferably extrusion temperature -40°C or more and extrusion temperature -20°C or less. By keeping the temperature of the filter within this range, it becomes easy to keep the number of domains of the cyclic olefin resin passing through the pair of short sides within a suitable range.
  • the molten sheet extruded from the slit nozzle is then solidified on a temperature-controlled casting drum (cooling drum) to obtain a polypropylene resin sheet.
  • the polypropylene film of the present invention is preferably laminated in order to increase the areal stretch ratio.
  • polypropylene resin and a resin composition obtained by compounding are mixed and fed to a single screw extruder as the raw material for layer A, and polypropylene resin is fed to another single screw extruder as the raw material for layer B.
  • the molten resin is then laminated in a two-layer structure of layer A/layer B or a three-layer structure of layer B/layer A/layer B using a feed block method with melt co-extrusion, and this is extruded into a sheet from a slit-shaped die and solidified on a temperature-controlled cooling drum to obtain an unstretched polypropylene film.
  • the temperature of the cooling drum is preferably 10°C or higher and 110°C or lower, and more preferably 10°C or higher and 95°C or lower.
  • the molten sheet may be adhered to the cooling drum by any of the following methods: electrostatic application, adhesion using the surface tension of water, air knife method, press roll method, underwater casting method, air chamber method, etc.
  • the air knife method is preferred because it provides good flatness and allows control of surface roughness. It is also preferable to appropriately adjust the position of the air knife so that air flows downstream of the film production in order to prevent vibration of the film.
  • the air temperature of the air knife depends on the temperature of the cooling drum, but is preferably 5°C or higher and 130°C or lower. From the viewpoint of preventing a large difference in the surface properties of both sides of the resulting polypropylene film, it is more preferable that the absolute value of the difference with the temperature of the cooling drum does not exceed 50°C.
  • the polypropylene resin sheet is biaxially stretched to obtain a biaxial orientation.
  • the polypropylene resin sheet is brought into contact with a roll set to a predetermined longitudinal stretching temperature, and stretched in the longitudinal direction at a predetermined ratio.
  • the longitudinal stretching temperature is preferably 100°C or higher, more preferably 120°C or higher, and even more preferably 140°C or higher, from the viewpoint of suppressing film rupture. On the other hand, it is preferably 170°C or lower, more preferably 165°C or lower, and even more preferably 160°C or lower.
  • the longitudinal stretching ratio is preferably 3.5 times or higher, more preferably 4.0 times or higher, even more preferably 5.0 times or higher, and particularly preferably 5.2 times or higher, from the viewpoint of increasing the areal stretching ratio and increasing the dielectric breakdown voltage at high temperatures.
  • the longitudinal stretching ratio is preferably 10 times or lower.
  • the obtained uniaxially oriented polypropylene film is introduced into a tenter while both ends in the width direction are held by clips.
  • the tenter atmosphere temperature (width direction preheating temperature) in the preheating process immediately before the width direction stretching is set to the width direction stretching temperature + 5°C or more (the width direction stretching temperature here is the first stage stretching temperature when the two-stage stretching method (I) described later is adopted).
  • the width direction preheating temperature is set to the width direction stretching temperature + 15°C or less, more preferably +12°C or less, and even more preferably +10°C or less.
  • the fibril structure highly oriented in the length direction can be further strengthened by the longitudinal stretching, and the dielectric breakdown voltage of the obtained polypropylene film can be increased.
  • the tenter atmosphere temperature (width direction stretching temperature) at this time is preferably 150°C or higher, more preferably 155°C or higher, and even more preferably 160°C or higher, from the viewpoint of uniformly stretching the cyclic olefin resin with a high glass transition temperature and improving the reliability of the film capacitor when used as a dielectric of the film capacitor.
  • the width direction stretching temperature is preferably 190°C or lower, more preferably 185°C or lower. Note that when the two-stage stretching method (I) described later is adopted, it is preferable that the temperature conditions in the second stage of stretching are within the above range.
  • the widthwise stretching ratio (the final stretching ratio when the widthwise stretching is performed in multiple stages, such as when the two-stage stretching method (I) is adopted) is preferably 8.5 times or more, more preferably 9.3 times or more, and even more preferably 10.0 times or more.
  • the widthwise stretching ratio is preferably 20.0 times or less, more preferably 17.0 times or less, and even more preferably 15.0 times or less.
  • the stretching in the width direction is preferably performed at a temperature lower than the preheating temperature, and is preferably performed by the following two-stage stretching method (I) in which the first stage stretching and the second stage stretching are performed in sequence.
  • Two-stage stretching method (I) First-stage stretching: When the final stretching ratio in the width direction is a ⁇ b times, the film is stretched in the width direction at a temperature of 160°C or higher and 185°C or lower (the lower limit is preferably 170°C, and the upper limit is preferably 180°C) and a stretching ratio of a times.
  • Second-stage drawing The film is further drawn in the width direction at a draw ratio of b times at a temperature 1° C. to 20° C. lower than the temperature in the first-stage drawing.
  • the difference between the temperature of the second stretching stage and the temperature of the first stretching stage is preferably 5°C or more from the viewpoint of increasing I810/I840, and is preferably 10°C or less from the viewpoint of improving film formability.
  • the "final stretching ratio in the width direction” refers to the stretching ratio immediately after the second stretching stage is completed (i.e., the variation in stretching ratio due to the relaxation treatment is not taken into consideration).
  • the stretching ratio a in the first stretching stage is preferably 1.8 to 13.3 times, more preferably 1.8 to 9.0 times.
  • the stretching ratio (b) in the second stretching stage is preferably 1.1 to 5.0 times, more preferably a>b, from the viewpoint of keeping I810/I840 within a suitable range and suppressing a decrease in voltage resistance when used at high temperatures.
  • the stretch ratio in the width direction is preferably 1.5 times or more relative to the stretch ratio in the longitudinal direction, and more preferably 1.7 times or more.
  • performing sequential stretching so that the stretch ratio in the width direction is 3.0 times or less relative to the stretch ratio in the longitudinal direction is more effective in keeping the tear strength ratio within a suitable range.
  • the areal stretching ratio is preferably 40 times or more. By setting the areal stretching ratio to 40 times or more, it becomes easy to keep the number of domains of the cyclic olefin resin passing through a pair of short sides in the cross section X within a suitable range. As a result, the obtained film has a high dielectric breakdown voltage, especially at high temperatures.
  • the areal stretching ratio is the longitudinal stretching ratio multiplied by the widthwise stretching ratio.
  • the widthwise stretching ratio refers to the stretching ratio after widthwise stretching and before relaxation treatment. From the above viewpoint, the areal stretching ratio is more preferably 45 times or more, even more preferably 50 times or more, particularly preferably 54 times or more, and most preferably 60 times or more. There is no particular limit to the upper limit of the areal stretching ratio, but from the viewpoint of feasibility, it is 90 times in the case of sequential biaxial stretching and 150 times in the case of simultaneous biaxial stretching.
  • the important point about the polypropylene film of the present invention is to increase I810/I840 while incorporating a cyclic olefin resin. That is, in the production of the polypropylene film of the present invention, for example, the dispersibility of the cyclic olefin resin domains dispersed in the polypropylene resin can be increased by pre-mixing, and a high areal stretching ratio can be achieved by using the two-stage stretching method described above, thereby increasing the withstand voltage at 135°C.
  • the heat treatment is performed at a temperature of 150°C to 190°C in the tenter atmosphere while providing 2 to 30% relaxation in the width direction while holding the film tensely with clips, from the viewpoint of improving the reliability of the film capacitor when it is used as a film capacitor, and more preferably 150°C to 164°C, and even more preferably 150°C to 159°C.
  • the relaxation treatment rate is preferably 5% or more, more preferably 7% or more, even more preferably 9% or more, and particularly preferably 13% or more.
  • the relaxation treatment is more preferably 25% or less, and even more preferably 18% or less.
  • the polypropylene film After undergoing heat treatment and relaxation treatment, the polypropylene film is guided to the outside of the tenter, and the clips on both ends in the width direction are released in a room temperature atmosphere. After that, the film edges are slit in the winder process, and the polypropylene film is wound into a roll. Before winding the polypropylene film, it is preferable to perform a surface treatment such as a corona discharge treatment on at least one side in air, nitrogen, carbon dioxide gas, or a mixture of these gases in order to improve the adhesion of the evaporated metal.
  • a surface treatment such as a corona discharge treatment on at least one side in air, nitrogen, carbon dioxide gas, or a mixture of these gases in order to improve the adhesion of the evaporated metal.
  • the production conditions to be considered in order to obtain the polypropylene film of the present invention are as follows. It is preferable to satisfy all of these production conditions, but they do not necessarily have to be all present and may be combined as appropriate.
  • the preheating temperature before the width direction stretching is the width direction stretching temperature +5°C or more and +15°C or less
  • simultaneous biaxial stretching may be adopted.
  • the mesopentad fraction of the main component, polypropylene resin is 0.960 or more.
  • - Contains a polypropylene resin having a crosslinked structure or a branched polypropylene resin.
  • the extruder filter temperature is set lower than the extrusion temperature.
  • the content of the cyclic olefin resin is from 1% by mass to 40% by mass.
  • the area stretch ratio of the biaxial stretching is 40 times or more.
  • the stretch ratio in the width direction is 8.5 times or more.
  • the stretching ratio in the width direction is 1.5 to 3.0 times, preferably 1.7 to 3.0 times, the stretching ratio in the longitudinal direction.
  • the preheating temperature before stretching in the width direction is from the width direction stretching temperature + 5°C to the width direction stretching temperature + 15°C.
  • the transverse stretching is carried out by the two-stage stretching method (I).
  • - Heat treatment and relaxation treatment are performed after biaxial stretching.
  • the heat treatment temperature after biaxial stretching is 150°C or higher.
  • the metal film laminated film of the present invention has a metal film on at least one side of the polypropylene film of the present invention.
  • This metal film laminated film can be obtained by providing a metal film on at least one side of the polypropylene film of the present invention described above.
  • the method of applying the metal film is not particularly limited, but a preferred method is to deposit aluminum or an alloy of aluminum and zinc on at least one side of the polypropylene film to provide a metal film such as a vapor deposition film that will become the internal electrode of the film capacitor.
  • a metal film such as a vapor deposition film that will become the internal electrode of the film capacitor.
  • other metal components such as nickel, copper, gold, silver, and chromium can also be deposited simultaneously with or successively to the aluminum.
  • a protective layer can be provided on the vapor deposition film using oil or the like. If the surface roughness of the polypropylene film differs between the front and back, it is preferable to provide a metal film on the front side, which has relatively less roughness, to form a metal film laminated film from the viewpoint of increasing voltage resistance.
  • the metal film laminated film can be annealed or heat treated at a specific temperature.
  • at least one side of the metal film laminated film can be coated with a resin such as polyphenylene oxide for insulation or other purposes.
  • the film capacitor of the present invention is made using the metal film laminated film of the present invention.
  • the film capacitor of the present invention has the metal film laminated film of the present invention.
  • the film capacitor of the present invention preferably has a capacitance density of 1.1 ⁇ F/cm 3 or more and 18 ⁇ F/cm 3 or less.
  • the higher the capacitance density of the film capacitor the smaller the volume of a capacitor element of the same capacitance is when it is manufactured, and therefore miniaturization is possible, so that the capacitance density is more preferably 1.5 ⁇ F/cm 3 or more.
  • the polypropylene film of the present invention formed to a thickness of 4.5 ⁇ m or less, it is easy to set the capacitance density to 1.1 ⁇ F/cm 3 or more, and by using the polypropylene film formed to a thickness of 3.5 ⁇ m or less, it is easy to set the capacitance density to 1.5 ⁇ F/cm 3 or more.
  • the capacitance density ( ⁇ F/cm 3 ) of a film capacitor can be calculated from the element capacitance ( ⁇ F) and element volume (cm 3 ) by the following formula.
  • the element capacitance can be measured in accordance with JIS C 4908:2007 at an ambient temperature of 23° C.
  • the element volume refers to the volume of the part where the vapor deposition film is wound, not including the exterior material, metallicon, and reel, and can be measured by a known 3D scanner type three-dimensional measuring machine. The method for measuring the capacitance density ( ⁇ F/cm 3 ) of a film capacitor will be described in detail later.
  • Capacitance density ( ⁇ F/cm 3 ) element capacitance ( ⁇ F)/element volume (cm 3 ).
  • the film capacitor of the present invention preferably has a withstand voltage of 0.60 kV or more at 135°C, more preferably 0.75 kV or more, and even more preferably 1.0 kV or more. Since the polypropylene film of the present invention has the above-mentioned characteristics and thus has a high withstand voltage at high temperatures, using this as the dielectric of a film capacitor makes it easy to achieve a withstand voltage of 0.60 kV or more at 135°C for the resulting film capacitor, and by using a preferred embodiment of the polypropylene film of the present invention, the withstand voltage at 135°C can be further increased.
  • the film capacitor of the present invention can be obtained by laminating or winding the metal film laminate film of the present invention described above in various ways.
  • Examples of preferred methods for manufacturing a wound film capacitor are as follows.
  • Aluminum is vapor-deposited under reduced pressure on one side of a polypropylene film. At this time, it is vapor-deposited in stripes with margins running in the longitudinal direction.
  • a blade is used to slit the center of each vapor-deposited section and the center of each margin on the surface, creating a tape-like take-up reel with a margin on one side of the surface.
  • Two tape-like take-up reels with a left margin and one with a right margin are stacked together and wound so that the vapor-deposited section extends beyond the margin in the width direction, to obtain a wound body.
  • one side is vapor deposited in stripes with a margin running in the longitudinal direction, and the other side is vapor deposited in stripes so that the longitudinal margin is located in the center of the vapor deposition area on the back side.
  • a blade is cut into the center of the margins on both sides to create a tape-like take-up reel with a margin on one side on each side (for example, if there is a margin on the right side of the front side, there will be a margin on the left side on the back side).
  • the resulting reel and one unvapor-deposited laminated film are then overlapped and wound in two so that the metallized film extends beyond the laminated film in the width direction to obtain a wound body.
  • a method for obtaining the film capacitor of the present invention from the metal layer laminated film of the present invention includes, for example, removing the core material from the wound body produced as described above, pressing it, spraying metallicon on both end faces to form external electrodes, and welding lead wires to the metallicon to form a wound film capacitor.
  • Film capacitors have a wide range of applications, including power control units for electric automobiles such as electric vehicles, hybrid vehicles, and fuel cell vehicles, electric aircraft such as drones, railway vehicles, solar power generation and wind power generation, and general home appliances, and the film capacitor of the present invention can also be suitably used for these applications.
  • the polypropylene film of the present invention can be used for various applications such as packaging films, release films, process films, sanitary products, agricultural products, construction products, and medical products, and can be particularly preferably used for applications that include a heating process in film processing.
  • the power control unit, electric automobile, and electric aircraft of the present invention will be described below.
  • the power control unit of the present invention has the film capacitor of the present invention.
  • the power control unit is a system that manages power in electric automobiles, electric aircraft, and the like that have mechanisms that are driven by electricity. By installing the film capacitor of the present invention in the power control unit, it is possible to reduce the size of the power control unit itself, improve its heat resistance, and increase its efficiency, resulting in improved fuel efficiency.
  • the electric vehicle of the present invention has the power control unit of the present invention.
  • the electric vehicle refers to a vehicle that has a mechanism that is driven by electric power, such as an electric vehicle, a hybrid vehicle, or a fuel cell vehicle.
  • the power control unit of the present invention can be made compact, and also has excellent heat resistance and efficiency, so that equipping an electric vehicle with the power control unit of the present invention leads to improved fuel efficiency, etc.
  • the electric aircraft of the present invention has the power control unit of the present invention.
  • the electric aircraft refers to an aircraft having a mechanism that is driven by electricity, such as a manned electric aircraft or a drone.
  • the power control unit of the present invention can be made compact and has excellent heat resistance and efficiency, so that equipping an electric aircraft with the power control unit of the present invention leads to improved fuel efficiency, etc.
  • the packaging material of the present invention is characterized by using the polypropylene film of the present invention.
  • the packaging material of the present invention has excellent structural stability against heat during deposition, and has good water vapor barrier properties and oxygen barrier properties, especially when a transparent deposition layer is laminated, so it can be suitably used for packaging items that are easily deteriorated by water vapor or oxygen.
  • ⁇ Tensile test> First, a rectangular sample ⁇ 1> with a length of 50 mm and a width of 10 mm was cut out, and the direction of the long side of the sample ⁇ 1> was defined as 0°. Next, a rectangular sample ⁇ 2> of the same size was taken so that the long side direction was rotated 15° to the right from the 0° direction, and rectangular samples ⁇ 3> to ⁇ 12> were taken by rotating the long side direction of the rectangular sample by 15° each in the same manner.
  • each rectangular sample was set in a tensile tester with an initial chuck distance of 20 mm so that the long side direction was the tensile direction (measurement direction), and a tensile test was performed at a tensile speed of 300 mm/min in an atmosphere at room temperature.
  • the maximum load until the rectangular sample broke was read, and the value divided by the cross-sectional area (film thickness x width) of the sample before the test was calculated as the stress of the maximum point strength.
  • the long side direction of the sample with the maximum value was determined as the main orientation axis direction of the polypropylene film.
  • Crystallization temperature (Tmc) during cooling of polypropylene film was measured in accordance with JIS K7121-1987. First, using a differential scanning calorimeter (EXSTAR DSC6220 manufactured by Seiko Instruments), 3 mg of the film was heated from 30 ° C. to 260 ° C. at 20 ° C./min in a nitrogen atmosphere. Next, after holding at 260 ° C. for 5 minutes, the temperature was lowered to 30 ° C. at 20 ° C./min, and the peak temperature of the exothermic peak obtained during the cooling process was measured.
  • EXSTAR DSC6220 manufactured by Seiko Instruments
  • the same measurement was performed three times, and the average value of the obtained peak temperatures was taken as the cooling crystallization temperature (Tmc) of the polypropylene film.
  • Tmc cooling crystallization temperature
  • the peak temperature of the exothermic peak with the highest peak temperature was taken as the peak temperature of the measurement.
  • I810/I840 Using the following equipment and conditions, a cross section X was cut out from a polypropylene film by a microtome method, and polarized Raman measurement (beam diameter 1 ⁇ m, parallel to the main orientation axis direction) was performed on the center position of the cross section X in the thickness direction by microscopic Raman spectroscopy. The Raman band intensities at 810 cm ⁇ 1 and 840 cm ⁇ 1 obtained by the measurement were taken as I810 and I840, respectively, and I810/I840 was calculated.
  • the measurement was performed at five locations that were 1 cm or more away from the edge of the film and 1 cm or more away from the center of the cross section that was previously measured, and the average of the measurements obtained for each cross section was used as the I810/I840 of the polypropylene film.
  • the polarized Raman spectrum was obtained by irradiating a linearly polarized light to the polypropylene film and detecting only the component of the scattered light parallel to the incident light. In order to eliminate this, a ⁇ /4 plate was placed after the analyzer and before the grating, and the scattered light was introduced to the grating in a state where the polarization state of the scattered light was eliminated.
  • Measuring device inVia (manufactured by RENISHAW) ⁇ Measurement conditions> Measurement mode: Raman microscope objective lens: ⁇ 100 Beam diameter: 1 ⁇ m Light source: Semiconductor laser / 532 nm Laser power: 300mW Diffraction grating: Single -3000 gr/mm Slit: 65 ⁇ m Detector: CCD/RENISHAW 1024x256.
  • the cyclic olefin resin was stained blacker than the polypropylene resin.
  • a rectangle was drawn on the collected cross-sectional X image, with a pair of sides of 1 ⁇ m in the thickness direction and 2 ⁇ m in the direction perpendicular to the thickness direction (main orientation axis direction), and the number of domains of the cyclic olefin resin passing through a pair of sides parallel to the thickness direction in the rectangle was counted.
  • the field of view was moved from one end to the other end to obtain multiple images, and the length of the main axis direction of the domain was determined from the images connected together. If 10 domains could not be selected in one field of view, the field of view was moved to another field of view, and the observation was continued until the measurement of 10 domains was completed.
  • Dielectric tangent of the polypropylene film was measured according to JIS C2138-2007. First, the film was cut into a square shape of 50 mm x 50 mm, and a conductive paste was applied to one side with a diameter of ⁇ 18 mm and the other side with a diameter of ⁇ 28 mm to form an electrode. The electrode-formed sample was stored in an environment of 22 ° C.
  • the dielectric tangent was measured five times using a precision LCR meter HP-4284A (manufactured by Agilent Technologies) under conditions of 22 ° C., 60% RH, and a frequency of 10 kHz, and the average value of the obtained values was taken as the dielectric tangent of the polypropylene film.
  • the measurement was performed in each of the main orientation axis direction and the direction perpendicular to the main orientation axis, and the tear strength in the direction perpendicular to the main orientation axis/tear strength in the direction of the main orientation axis of the film was calculated from the tear strength in each direction.
  • the obtained deposition films A and B were each slit to obtain deposition reels A and B with a film width of 50 mm (edge margin width of 2 mm).
  • the evaporation reels A and B were alternately stacked, and the capacitor elements were wound using a device winding machine (KAW-4NHB) manufactured by Kaito Manufacturing Co., Ltd., so that the element capacitance after finishing as a capacitor element would be 10 ⁇ F, and after metallicon processing, they were subjected to heat treatment for 12 hours while reducing the pressure in an atmosphere at 135°C, and lead wires were attached to finish the capacitor element.
  • KAW-4NHB device winding machine
  • step-up test was performed in which a voltage of 150 VDC was applied to the capacitor elements at an evaluation temperature, and after 10 minutes had elapsed at that voltage, the applied voltage was gradually increased in steps at 50 VDC/minute.
  • the evaluation temperatures were 23°C and 135°C, and the test was performed at each temperature.
  • ⁇ Voltage resistance evaluation> In the step-up test, the capacitance was measured and plotted on a graph, and the voltage at which the capacitance became 75% of the initial value was divided by the thickness of the polypropylene film (the value measured in (1) above) to determine the withstand voltage at each temperature. Similar measurements were performed on 10 capacitor elements, and the average value of the obtained values was calculated, and the withstand voltage reduction rate due to temperature change and the withstand voltage at 135°C were evaluated according to the following criteria.
  • ⁇ Voltage withstand voltage drop rate due to temperature change> The withstand voltage at 23° C. was rated as B (23), and the withstand voltage at 135° C. was rated as B (135), and the evaluation was based on the following evaluation criteria: "A” in the evaluation criteria means usable, “B” and “C” means usable under certain conditions, and “D” means poor practical performance and difficult to use.
  • A:B(135)/B(23) was greater than 0.70.
  • B: B(135)/B(23) was greater than 0.60 and not greater than 0.70.
  • A:B(135) was greater than 410 V/ ⁇ m.
  • B: B(135) was greater than 360 V/ ⁇ m and equal to or less than 410 V/ ⁇ m.
  • C: B(135) was greater than 330 V/ ⁇ m and equal to or less than 360 V/ ⁇ m.
  • D: B(135) was 330 V/ ⁇ m or less.
  • step-up test was performed using 10 capacitor elements, in which a voltage of 150 VDC was applied to the capacitor elements at a high temperature of 135°C, and after 10 minutes at that voltage, the applied voltage was gradually increased in steps of 50 VDC/minute, and this was repeated.
  • step-up test the change in capacitance was measured and plotted on a graph, and the voltage at which the capacitance became 75% of the initial value was recorded as the withstand voltage of the film capacitor at 135°C.
  • ⁇ Element size evaluation (index for miniaturization)> The average value of the volumes of 10 capacitor elements measured by the method in (12) was taken as the element volume, and evaluation was performed according to the following criteria: A and B indicate that the capacitor element can be miniaturized, and C indicates that it is difficult to miniaturize the capacitor element.
  • C The element volume is greater than 160 cm3 .
  • Ash Content The weighed resin or polypropylene film was burned in an electric furnace to evaluate the amount of ash content in accordance with JIS K 7250-1: 2006.
  • an electronic balance XP26 manufactured by Mettler Toledo was used, and an electric furnace FO510 manufactured by Yamato Scientific was used. The electric furnace was heated to 600°C for burning.
  • Polypropylene resin 1 Homopolypropylene having a mesopentad fraction of 0.970, a melting point of 166° C., a melt flow rate (MFR) of 3.3 g/10 min, and an ash content of 20 ppm (Borealis AG's “Borclean”® HC300BF).
  • Polypropylene resin 2 A homopolypropylene having a mesopentad fraction of 0.982, a melting point of 168° C., a melt flow rate (MFR) of 2.2 g/10 min, and an ash content of 15 ppm.
  • Branched polypropylene (B1) A branched polypropylene resin having a melt flow rate (MFR) of 2.4 g/10 min ("Daploy" (registered trademark) WB135HMS from Borealis AG).
  • Cyclic olefin resin (C1): Polyplastics "TOPAS” (registered trademark) 6013F-04 (a resin made by copolymerizing ethylene and norbornene (COC), with a glass transition temperature of 138°C and non-crystalline) Cyclic olefin resin (C2): Polyplastics “TOPAS” (registered trademark) 6017S-04 (a resin made by copolymerizing ethylene and norbornene (COC), with a glass transition temperature of 178°C and non-crystalline) Cyclic olefin resin (C3): Mitsui Chemicals'"APEL” (registered trademark) 5014CL (a resin (COC) made by copolymerizing ethylene and norbornadiene derivatives, with a glass transition temperature of 136°C and amorphous nature) Antioxidant: "IRGANOX” (registered trademark) 1010 manufactured by Ciba Specialty Chemicals.
  • Raw material (A1) The components were mixed so that the polypropylene resin 1 was 59.5 parts by mass, the cyclic olefin resin (C1) was 40 parts by mass, and the antioxidant was 0.5 parts by mass, and the components were kneaded and extruded in a twin-screw extruder set at 260°C. The strands were then water-cooled and chipped.
  • Raw material (A2) The components were mixed so that the polypropylene resin 2 was 59.5 parts by mass, the cyclic olefin resin (C3) was 40 parts by mass, and the antioxidant was 0.5 parts by mass, and the components were kneaded and extruded in a twin-screw extruder set at 260°C. The strands were then water-cooled and chipped.
  • Raw material (A3) The components were mixed so that the polypropylene resin 2 was 59.5 parts by mass, the cyclic olefin resin (C2) was 40 parts by mass, and the antioxidant was 0.5 parts by mass, and the mixture was kneaded and extruded in a twin-screw extruder set at 260°C. The strands were then water-cooled and chipped.
  • Raw material (D1) The components were mixed so that the polypropylene resin 1 was 89.5 parts by mass, the branched polypropylene (B1) was 10 parts by mass, and the antioxidant was 0.5 parts by mass, and the mixture was kneaded and extruded in a twin-screw extruder set at 260°C. The strands were then water-cooled and chipped.
  • Raw material (D2) The components were mixed so that the polypropylene resin 2 was 89.5 parts by mass, the branched polypropylene (B1) was 10 parts by mass, and the antioxidant was 0.5 parts by mass, and the mixture was kneaded and extruded in a twin-screw extruder set at 260°C. The strands were then water-cooled and chipped.
  • Example 1 A resin composition in which the raw material (A1) was mixed to 80.0 parts by mass, the polypropylene resin 1 was mixed to 19.7 parts by mass, and the antioxidant was mixed to 0.3 parts by mass was fed to a single-screw extruder for the A layer.
  • the resin composition was melted at a temperature of 250°C, and foreign matter was removed using a sintered filter with a cut of 80 ⁇ m and adjusted to 250°C.
  • the molten resin composition was then discharged from a T-die in the form of a sheet.
  • the molten sheet was adhered to a casting drum whose surface temperature was kept at 30°C by an air knife (air temperature: 23°C) and cooled and solidified to obtain an unstretched polypropylene film.
  • the unstretched polypropylene film was heated to a temperature of 155°C by a group of multiple rolls, and stretched 3.5 times in the longitudinal direction between rolls with a difference in peripheral speed to obtain a uniaxially oriented polypropylene film.
  • the uniaxially oriented polypropylene film was guided to a tenter by holding both ends in the width direction with multiple clips, and preheated at 185°C.
  • the uniaxially oriented polypropylene film was introduced into a transverse stretching chamber consisting of two chambers, the first chamber and the second chamber, and stretched 3.2 times in the width direction at 180°C in the first chamber, and then stretched 3.7 times in the width direction at 175°C in the second chamber (11.8 times stretched in the width direction in total in the two chambers). Further, as heat treatment and relaxation treatment, heat treatment was performed at 165°C while giving 12% relaxation in the width direction, and the clip was released by leading to the outside of the tenter. Furthermore, the surface of the film after heat treatment (the side contacting the casting drum) was subjected to corona discharge treatment in the atmosphere at a treatment intensity of 25 W ⁇ min/ m2 to obtain a polypropylene film. The evaluation results are shown in Table 1-1.
  • Example 2 The resin composition obtained by mixing the raw material (A1) at 48.0 parts by mass, the polypropylene resin 1 at 51.7 parts by mass, and the antioxidant at 0.3 parts by mass was fed to a single screw extruder for the A layer, and the polypropylene resin 1 was fed to a single screw extruder for the B layer. In each single screw extruder, the resin composition and the polypropylene resin 1 were melted at 260°C, and foreign matter was removed using a sintered filter with a cutoff of 80 ⁇ m and adjusted to 230°C.
  • the resin composition (for the A layer) and the polypropylene resin 1 (for the B layer) were laminated using a feed block so that the layer thickness ratio was 1/10/1 in a three-layer structure of the B layer/A layer/B layer.
  • the obtained molten laminate was discharged from a T die into a sheet shape, and the sheet was brought into close contact with a casting drum with a surface temperature maintained at 30°C by an air knife, and cooled and solidified to obtain an unstretched polypropylene film. Thereafter, a polypropylene film was obtained in the same manner as in Example 1, except that the film-forming conditions were as shown in Table 1-1. The evaluation results are shown in Table 1-1.
  • Examples 3 to 5, Comparative Examples 3, 4, and 6 A polypropylene film was obtained in the same manner as in Example 2, except that the raw material formulation and film-forming conditions were as shown in Tables 1-1 and 1-2. The evaluation results are shown in Tables 1-1 and 1-2. The film thickness was adjusted by increasing or decreasing the discharge rate of the extruder, and the lamination ratio was adjusted by the feed block.
  • the tenter had only the first transverse stretching chamber, and stretching was also performed in one stage (hereinafter, the same applies to examples in which a tenter having only the first transverse stretching chamber was used).
  • Comparative Example 6 when an attempt was made to obtain a 5.5 ⁇ m polypropylene film, film formation was not possible due to film breakage (since a polypropylene film was not obtained, the evaluation in Table 1-2 is indicated by diagonal lines).
  • Example 6 Comparative Examples 1, 5, 7, and 9
  • a polypropylene film was obtained in the same manner as in Example 1, except that the raw material formulation and film-forming conditions were as shown in Table 1.
  • the evaluation results are shown in Tables 1-1 and 1-2. Note that Comparative Example 5 was an unstretched film, and no steps after stretching were performed. In Comparative Example 9, an attempt was made to obtain a 4.6 ⁇ m polypropylene film, but film formation was not possible due to film breakage (since a polypropylene film could not be obtained, the evaluation in Table 1-2 is indicated by diagonal lines).
  • the obtained unstretched polypropylene film was guided to a simultaneous biaxial stretching machine with both ends in the width direction held by multiple clips, preheated at 163 ° C. while holding, and then simultaneously biaxially stretched at the same temperature at a magnification of 3.6 times in the longitudinal direction and 8.2 times in the width direction.
  • the film was guided to the outside of the simultaneous biaxial stretching machine without heat treatment and relaxation treatment, and the clips at both ends in the width direction were released, and then corona discharge treatment was performed in the same manner as in Example 1 to obtain a polypropylene film.
  • the evaluation results are shown in Table 1-2.
  • Comparative Example 8 A polypropylene film was obtained in the same manner as in Comparative Example 2, except that the raw material formulation and film-forming conditions were as shown in Table 1-2 and the film thickness after stretching was 4.5 ⁇ m. The evaluation results are shown in Table 1-2.
  • Example C1 On the corona discharge-treated surface of the polypropylene film obtained in Example 5, aluminum was vapor-deposited at a film resistance of 20 ⁇ /sq using a vacuum vapor deposition machine manufactured by ULVAC, Inc. During vapor deposition, a vapor deposition pattern having a so-called T-shaped margin (longitudinal pitch (period) of 17 mm, fuse width of 0.5 mm) in which a margin was provided in a direction perpendicular to the longitudinal direction using masking oil was produced as a vapor deposition film C1A, and a vapor deposition film C1B without a vapor deposition pattern having a T-shaped margin was produced.
  • T-shaped margin longitudinal pitch (period) of 17 mm, fuse width of 0.5 mm
  • the vapor deposition films C1A and C1B were each slit to obtain vapor deposition reels C1A and C1B with a film width of 50 mm (edge margin width of 2 mm).
  • the evaporation reels C1A and C1B were alternately stacked and the capacitor elements were wound on a device winding machine (KAW-4NHB) manufactured by Kaito Seisakusho Co., Ltd. so that the capacitance of the capacitor elements after finishing was 10 ⁇ F, and after metallicon treatment, the capacitor elements were subjected to heat treatment for 12 hours under reduced pressure at 135°C, and lead wires were attached to finish the capacitor elements.
  • KAW-4NHB device winding machine manufactured by Kaito Seisakusho Co., Ltd.
  • Example C2 Comparative Examples C1 and C2
  • a capacitor element was obtained in the same manner as in Example C1, except that the polypropylene film used was a polypropylene film shown in Table 2.
  • the evaluation results are shown in Table 2.
  • the polypropylene film of the present invention can be widely used for industrial purposes such as film capacitors, packaging, release agents, and tapes, and is particularly suitable for use in film capacitors that are used at high temperatures and voltages because of its excellent voltage resistance properties in high-temperature environments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

Disclosed is a polypropylene film which has a layer A that contains a cyclic olefin resin and a polypropylene resin, wherein if a cross-section X is a cross-section obtained by cutting the polypropylene film at a plane that is parallel to the main orientation axis direction and the thickness direction, the orientation parameter I810/I840 of the cross-section X as determined by Raman spectrometry is 2.2 to 20. The present invention addresses the problem of providing a polypropylene film which has excellent processability in a high temperature environment and high withstand voltage characteristics regardless of operating temperature, while exhibiting excellent reliability if used as a film capacitor.

Description

ポリプロピレンフィルムPolypropylene Film
 本発明は、特にフィルムコンデンサ用途に好適に用いられるポリプロピレンフィルムに関する。 The present invention relates to a polypropylene film that is particularly suitable for use in film capacitors.
 近年、各種電気設備の大半がインバーター化され、それに伴いフィルムコンデンサの小型化、大容量化の要求が一層強まってきている。特に自動車(電動自動車、ハイブリッドカーを含む。)、電動航空機、太陽光発電、及び風力発電等の分野では、当該要求を受けてフィルムコンデンサ用フィルムに対し、耐電圧性や生産性の向上、及びフィルムコンデンサ素子作製における加工適性の維持に加え、一層の薄膜化や耐熱性向上が求められている。 In recent years, the majority of electrical equipment has been converted to inverters, which has led to an even stronger demand for smaller, larger capacity film capacitors. In particular, in fields such as automobiles (including electric vehicles and hybrid cars), electric aircraft, solar power generation, and wind power generation, these demands have led to demands for films for film capacitors that not only have improved voltage resistance and productivity and maintain suitability for processing in the manufacture of film capacitor elements, but also require thinner films and improved heat resistance.
 ポリオレフィン系フィルムの中では、ポリプロピレンフィルムが耐熱性や耐電圧性に優れているとされている。前記の分野への適用に際しては、フィルムが使用環境温度での優れた寸法安定性と、使用環境温度より10℃~20℃高い温度領域での安定した電気的性能(耐電圧性など)を発揮することが重要である。ここで耐熱性という観点では、将来的に、シリコンカーバイト(SiC)を用いたパワー半導体用途を考えた場合、使用環境温度がより高温になるといわれている。 Among polyolefin-based films, polypropylene film is said to have excellent heat resistance and voltage resistance. When applying to the above fields, it is important that the film has excellent dimensional stability at the operating temperature and stable electrical performance (voltage resistance, etc.) in a temperature range 10°C to 20°C higher than the operating temperature. From the perspective of heat resistance, it is said that the operating temperature will become even higher in the future when considering power semiconductor applications using silicon carbide (SiC).
 このような背景から、フィルムコンデンサには耐熱性や耐電圧性のさらなる向上が求められており、フィルムコンデンサ用フィルムには110℃を超えた高温環境下での絶縁破壊電圧の向上が求められている。しかしながら、非特許文献1に記載のように、ポリプロピレンフィルムの使用温度上限は約110℃といわれており、ポリプロピレンフィルムがこのような温度環境下で安定して耐電圧性を維持することは極めて困難であった。 In light of this, there is a demand for further improvements in the heat resistance and voltage resistance of film capacitors, and for films for film capacitors there is a demand for improvements in the dielectric breakdown voltage in high-temperature environments exceeding 110°C. However, as described in Non-Patent Document 1, the upper limit of the usable temperature for polypropylene film is said to be approximately 110°C, and it has been extremely difficult for polypropylene film to stably maintain voltage resistance in such a temperature environment.
 フィルムコンデンサを小型化して耐熱性を向上させるためには、フィルムの薄膜化や比誘電率の高いフィルムを用いること、フィルムコンデンサとしての使用環境温度領域を超えるガラス転移温度を有するフィルムを用いることが考えられる。 In order to miniaturize film capacitors and improve their heat resistance, it is possible to use thinner films, films with higher dielectric constants, or films with glass transition temperatures that exceed the operating temperature range of the film capacitor.
 例えば、比誘電率が異なる2種の層を交互に重ね合わせた積層構造とし、一方の層はそのガラス転移温度が130℃を超えるような環状オレフィン系樹脂、もう一方はポリプロピレン層を用いることで、耐熱性と耐電圧性を有しながら大きな静電容量を保つことができる積層体が提案されている(例えば、特許文献1)。また、環状オレフィン系樹脂とポリプロピレンの積層体を形成する際に共押出、共延伸することで加工性を向上したフィルムが提案されている(例えば、特許文献2、3)。さらには、環状オレフィン系樹脂とポリプロピレン樹脂をブレンドして製膜及び二軸延伸することによって高温環境での熱寸法安定性を高めたフィルムが提案されている(例えば、特許文献4)。 For example, a laminate has been proposed in which two layers with different dielectric constants are alternately stacked, one layer being a cyclic olefin resin with a glass transition temperature exceeding 130°C, and the other being a polypropylene layer, thereby providing heat resistance and voltage resistance while maintaining a large electrostatic capacity (e.g., Patent Document 1). Also, a film has been proposed in which the processability is improved by co-extrusion and co-stretching when forming a laminate of a cyclic olefin resin and polypropylene (e.g., Patent Documents 2 and 3). Furthermore, a film has been proposed in which the thermal dimensional stability in a high-temperature environment is improved by blending a cyclic olefin resin and a polypropylene resin, forming a film, and biaxially stretching the film (e.g., Patent Document 4).
特開2015-012076号公報JP 2015-012076 A 国際公開第2017/022706号International Publication No. 2017/022706 特開2018-034510号公報JP 2018-034510 A 特表2020-521867号公報Special Publication No. 2020-521867
 しかしながら、特許文献1のフィルムは共押出による積層体ではなく、ポリプロピレンフィルム上にコート法で環状オレフィン系樹脂層を形成した積層体である。そのため、環状オレフィン系樹脂層が剥離しやすく、高温環境下での加工性や、フィルムコンデンサとしたときの性能と信頼性が十分とは言い難いものであった。特許文献2のフィルムも積層構成の基層部が環状オレフィン系樹脂単体である。そのため、面積延伸倍率を高めることが困難であり高温環境での耐電圧性が不足するなど、フィルムコンデンサとしたときの性能と信頼性については十分とは言い難いものであった。特許文献3のフィルムも積層構成の基層部が環状オレフィン系樹脂であり、延伸性を改良するためにエラストマーを含有させて面積延伸倍率を高めているが、高温環境での耐電圧性は満足なものではなく、フィルムコンデンサとしたときの性能と信頼性については十分とは言い難いものであった。特許文献4のフィルムは単に環状オレフィン系樹脂とポリプロピレン樹脂をブレンドしたフィルムのため、面積延伸倍率を高めることが困難である。そのため、高温環境での耐電圧性が不足するなど、フィルムコンデンサとしたときの性能と信頼性については十分とは言い難いものであった。また、幅方向延伸時の予熱温度と延伸温度を高温化することで高い面積延伸倍率での延伸が可能となるが、高い温度で延伸したフィルムは室温から高温にかけての耐電圧の低下が大きく、フィルムコンデンサとして使用したときの特性が安定しないという課題もあった。 However, the film of Patent Document 1 is not a laminate by coextrusion, but a laminate in which a cyclic olefin resin layer is formed on a polypropylene film by a coating method. Therefore, the cyclic olefin resin layer is easily peeled off, and the processability in a high-temperature environment and the performance and reliability when used as a film capacitor are not sufficient. The base layer of the laminated structure of the film of Patent Document 2 is also a single cyclic olefin resin. Therefore, it is difficult to increase the areal stretch ratio, and the voltage resistance in a high-temperature environment is insufficient, so the performance and reliability when used as a film capacitor are not sufficient. The base layer of the laminated structure of the film of Patent Document 3 is also a cyclic olefin resin, and an elastomer is contained to improve the stretchability to increase the areal stretch ratio, but the voltage resistance in a high-temperature environment is not satisfactory, and the performance and reliability when used as a film capacitor are not sufficient. The film of Patent Document 4 is a film simply made by blending a cyclic olefin resin and a polypropylene resin, so it is difficult to increase the areal stretch ratio. As a result, the voltage resistance in high-temperature environments was insufficient, and the performance and reliability of the film capacitors were not sufficient. In addition, although it is possible to stretch at a high areal stretch ratio by increasing the preheating temperature and stretching temperature during width-direction stretching, there was also the issue that the film stretched at a high temperature had a large decrease in voltage resistance when going from room temperature to high temperatures, resulting in unstable characteristics when used as a film capacitor.
 そこで、本発明は、高温環境下での加工性に優れ、使用温度によらず高い耐電圧特性を有し、かつフィルムコンデンサとしたときの信頼性に優れるポリプロピレンフィルムを提供することを目的とする。 The present invention aims to provide a polypropylene film that has excellent processability in high-temperature environments, high voltage resistance regardless of the operating temperature, and excellent reliability when used as a film capacitor.
 本発明者らは、上記の課題を解決するため鋭意検討を重ね、環状オレフィン系樹脂とポリプロピレン樹脂とを含む層をA層とし、主配向軸方向と厚み方向に平行な面でポリプロピレンフィルムを切断したときの断面を断面Xとしたときに、前記A層を有し、かつ前記断面Xのラマン分光分析により測定される配向パラメータI810/I840が2.2以上20以下である、ポリプロピレンフィルムを発明するに至った。 The inventors conducted extensive research to solve the above problems, and came to invent a polypropylene film in which, when a layer containing a cyclic olefin resin and a polypropylene resin is designated as layer A and a cross section obtained by cutting the polypropylene film along a plane parallel to the main orientation axis direction and the thickness direction is designated as cross section X, the polypropylene film has layer A and the orientation parameter I810/I840 measured by Raman spectroscopic analysis of cross section X is 2.2 or more and 20 or less.
 本発明によれば、高温環境下での加工性に優れ、使用温度によらず高い耐電圧特性を有し、かつフィルムコンデンサとしたときの信頼性に優れるポリプロピレンフィルムを提供することができる。 The present invention provides a polypropylene film that has excellent processability in high-temperature environments, high voltage resistance regardless of the operating temperature, and excellent reliability when used as a film capacitor.
本発明のポリプロピレンフィルムの断面X内に一対の短辺が厚み方向に平行となるように定めた1μm×2μmサイズの長方形、及び当該長方形の厚み方向と平行な一対の辺を通過する環状オレフィン系樹脂のドメインを表す模式図である。FIG. 1 is a schematic diagram showing a rectangle of 1 μm×2 μm size defined so that a pair of short sides are parallel to the thickness direction within the cross section X of a polypropylene film of the present invention, and a domain of a cyclic olefin resin passing through a pair of sides of the rectangle parallel to the thickness direction. 本発明の一実施態様に係るポリプロピレンフィルム(実施例5のもの)の断面XのA層部分のTEM観察画像(倍率20000倍)について、(16)のii)までに記載の処理をおこなった画像(左)と、(16)のv)までに記載の処理をおこなった画像(右)である。FIG. 1 shows TEM images (magnification: 20,000 times) of the layer A portion of the cross section X of a polypropylene film according to an embodiment of the present invention (Example 5), in which the treatment described up to ii) of (16) was performed (left) and the treatment described up to v) of (16) was performed (right).
 本発明者らは、前述の課題を解決するため鋭意検討を重ね、上記特許文献1~4に記載のフィルムが、高温環境下における絶縁破壊電圧、フィルムコンデンサとしたときの高温環境での耐電圧特性や信頼性、及び高温環境下での加工性が十分でない理由について、以下のように考えた。 The inventors conducted extensive research to solve the above-mentioned problems, and came to the following conclusions about why the films described in Patent Documents 1 to 4 above do not have sufficient dielectric breakdown voltage in high-temperature environments, sufficient voltage resistance and reliability in high-temperature environments when used as a film capacitor, and sufficient processability in high-temperature environments.
 特許文献1のフィルムは、コート法で積層した未延伸フィルムであるため、高温環境で層間の剥離を生じること、機械特性、特に破断伸度が不十分でフィルムコンデンサ素子加工時に破断し易いこと、高温環境下での耐電圧が低下すること等の問題があると考えた。特許文献2、3のフィルムは、高温環境での耐電圧性を想定してみると、いずれもフィルム製膜における縦延伸時の倍率が十分ではなく、フィルムに可動非晶成分が多く存在するため高温での絶縁破壊電圧が低くなることに問題があると考えた。特許文献4のフィルムについても、高温環境での耐電圧性を想定してみると、環状オレフィン系樹脂とポリプロピレン樹脂の混ざり具合が十分ではないため、製膜における縦延伸時の倍率を十分に高めることが困難であり、フィルムに可動非晶成分が多く存在するため高温での絶縁破壊電圧が低くなることに問題があると考えた。また、幅方向延伸時の予熱温度と延伸温度を高温化することで高い面積延伸倍率での延伸が可能となるが、高い温度で延伸したフィルムは室温から高温にかけての耐電圧の低下が大きく、フィルムコンデンサとして使用したときの特性が安定しないことにも問題があると考えた。 The film of Patent Document 1 is an unstretched film laminated by a coating method, and therefore it is considered to have problems such as peeling between layers in a high-temperature environment, insufficient mechanical properties, particularly breaking elongation, which makes it prone to breaking during processing of the film capacitor element, and reduced voltage resistance in a high-temperature environment. Assuming that the films of Patent Documents 2 and 3 have problems with voltage resistance in a high-temperature environment, the ratio of stretching in the vertical direction during film production is insufficient in both cases, and the film has a large amount of mobile amorphous components, resulting in a low breakdown voltage at high temperatures. Assuming that the film of Patent Document 4 has problems with voltage resistance in a high-temperature environment, the mixing of the cyclic olefin resin and the polypropylene resin is insufficient, making it difficult to sufficiently increase the ratio of stretching in the vertical direction during film production, and the film has a large amount of mobile amorphous components, resulting in a low breakdown voltage at high temperatures. In addition, by increasing the preheating temperature and stretching temperature during widthwise stretching, it becomes possible to stretch at a high areal stretch ratio, but it was thought that there would be a problem in that a film stretched at a high temperature would experience a large decrease in voltage resistance from room temperature to high temperatures, and the characteristics would be unstable when used as a film capacitor.
 以上の考察を踏まえて、本発明者らはさらに検討を重ね、上記課題を解決するポリプロピレンフィルムを発明するに至った。本発明のポリプロピレンフィルムは、環状オレフィン系樹脂とポリプロピレン樹脂とを含む層をA層とし、主配向軸方向と厚み方向に平行な面でポリプロピレンフィルムを切断したときの断面を断面Xとしたときに、前記A層を有し、かつ前記断面Xのラマン分光分析により測定される配向パラメータI810/I840が2.2以上20以下である、ポリプロピレンフィルムである。 In light of the above considerations, the inventors of the present invention have further studied the matter and have come up with the invention of a polypropylene film that solves the above problems. The polypropylene film of the present invention is a polypropylene film in which, when a layer containing a cyclic olefin resin and a polypropylene resin is designated as layer A and a cross section obtained by cutting the polypropylene film along a plane parallel to the main orientation axis direction and the thickness direction is designated as cross section X, the polypropylene film has layer A and has an orientation parameter I810/I840 of 2.2 or more and 20 or less as measured by Raman spectroscopic analysis of cross section X.
 以下、本発明のポリプロピレンフィルムについて具体的に説明する。なお、以下好ましい範囲について上限と下限が別々に記載されている場合、その組み合わせは任意とすることができる。ここで、ポリプロピレンフィルムとは、ポリプロピレン樹脂を主成分とするシート状の成形体をいい、主成分とは、フィルムを構成する全成分を100質量%としたときに、50質量%より多く100質量%以下含まれる成分をいう。なお、フィルム中にポリプロピレン樹脂に相当する成分が複数種含まれる場合は、各々の成分が50質量%に満たなくとも、これらの成分の合計が50質量%を超えていれば、ポリプロピレン樹脂を主成分とするものとする。 The polypropylene film of the present invention will be described in detail below. Note that when the upper and lower limits of the preferred ranges are stated separately below, the combination can be arbitrary. Here, polypropylene film refers to a sheet-like molded product whose main component is polypropylene resin, and the main component refers to a component that is contained in an amount of more than 50% by mass and not more than 100% by mass when all components constituting the film are taken as 100% by mass. Note that when the film contains multiple components equivalent to polypropylene resin, even if each component is less than 50% by mass, as long as the total of these components exceeds 50% by mass, it is considered that the main component is polypropylene resin.
 ポリプロピレン樹脂とは、樹脂を構成する全構成単位を100mol%としたときに、プロピレン単位を50mol%より多く100mol%以下含む樹脂であって、環状オレフィン系樹脂に該当しないものをいう。 Polypropylene resin is a resin that contains more than 50 mol% and up to 100 mol% of propylene units when the total constituent units of the resin are taken as 100 mol%, and does not fall under the category of cyclic olefin resin.
 環状オレフィン系樹脂とは、樹脂を構成する全構成単位を100mol%としたときに、環状オレフィン単位を10mol%以上100mol%以下含むポリオレフィン樹脂をいう。なお、環状オレフィン単位に相当する構成単位が複数種含まれる樹脂については、各々の環状オレフィン単位が10mol%に満たなくとも、これらの構成単位の合計が10mol%以上であれば、環状オレフィン系樹脂に該当するものとする。 Cyclic olefin resin refers to a polyolefin resin that contains 10 mol% to 100 mol% of cyclic olefin units when all the constituent units constituting the resin are taken as 100 mol%. Note that for resins that contain multiple types of constituent units equivalent to cyclic olefin units, even if each cyclic olefin unit is less than 10 mol%, as long as the total of these constituent units is 10 mol% or more, it is considered to be a cyclic olefin resin.
 また、以下ポリプロピレンフィルムを単にフィルムと称する場合がある。なお、本発明のポリプロピレンフィルムは、微多孔フィルムではないので、多数の空孔を有していない。すなわち本発明のポリプロピレンフィルムとは、微多孔フィルム以外のポリプロピレンフィルムを意味する。ここで微多孔フィルムとは、フィルムの両表面を貫通した孔構造を有し、かつJIS P 8117(1998)のB型ガーレー試験機により、温度23℃、相対湿度65%にて測定した100mlの空気の透過時間が5,000秒/100ml以下となる程度の通気性を備えるフィルムと定義する。 In the following, polypropylene film may be simply referred to as film. The polypropylene film of the present invention is not a microporous film and does not have many pores. In other words, the polypropylene film of the present invention means a polypropylene film other than a microporous film. Here, a microporous film is defined as a film that has a pore structure penetrating both surfaces of the film and has a degree of air permeability of 5,000 seconds/100 ml or less when measured at a temperature of 23°C and a relative humidity of 65% using a type B Gurley tester according to JIS P 8117 (1998).
 以下、本発明のポリプロピレンフィルムにおける主配向軸方向について説明する。主配向軸方向とは、フィルム面内においてポリプロピレン樹脂の分子鎖配向の最も大きい方向をいう。ポリプロピレンフィルムの製造において二軸延伸を行う場合は、通常、長手方向と幅方向に延伸を行うが、一般的に、その延伸倍率が大きい方が主配向軸方向となる。延伸方向(長手方向と幅方向)は特定できているが倍率が不明である場合は、後述する23℃での引張試験で破断するまでの最大荷重を各方向について測定し、測定値の大きい方向を主配向軸方向とすることができる。 The main orientation direction in the polypropylene film of the present invention is described below. The main orientation direction refers to the direction in which the molecular chain orientation of the polypropylene resin is greatest within the film plane. When biaxial stretching is performed in the production of polypropylene film, stretching is usually performed in the longitudinal and width directions, and generally, the direction of the larger stretching ratio becomes the main orientation direction. If the stretching directions (longitudinal and width directions) are specified but the ratio is unknown, the maximum load until breakage is measured for each direction in a tensile test at 23°C described below, and the direction with the larger measured value can be determined as the main orientation direction.
 上記の通り、延伸倍率にある程度の差がある場合は延伸方向と延伸倍率が分かれば、容易に主配向軸方向を特定することができるが、これらが不明なフィルムや二方向の延伸倍率がほぼ等しいフィルムの場合は以下の方法により主配向軸方向を特定することができる。具体的には、長さ50mm×幅10mmの矩形に切り出してサンプル<1>とし、サンプル<1>の長辺の方向を0°と定義する。次に、長辺方向が0°方向から右に15°回転した方向となるように、同サイズの矩形のサンプル<2>を採取し、以下同様に矩形のサンプルの長辺方向を15°ずつ回転させて矩形のサンプル<3>~<12>を採取する。次に、長辺方向が引っ張り方向(測定方向)となるように、各矩形のサンプルを初期チャック間距離20mmで引張試験機にセットし、室温の雰囲気下で引張速度を300mm/分として引張試験を行う。このときサンプルが破断するまでの最大荷重を読み取り、試験前の試料の断面積(フィルム厚み×幅)で除した値を最大点強度の応力として算出する。当該値が最大であったサンプルの長辺方向をポリプロピレンフィルムの主配向軸方向とし、これにフィルム面内で直交する方向をポリプロピレンフィルムの主配向軸と直交する方向とする。 As mentioned above, if there is a certain degree of difference in the stretch ratio, the main orientation axis direction can be easily identified if the stretch direction and stretch ratio are known, but in the case of a film whose stretch direction and stretch ratio are unknown or a film whose stretch ratios in two directions are almost equal, the main orientation axis direction can be identified by the following method. Specifically, a rectangle measuring 50 mm in length and 10 mm in width is cut out to form sample <1>, and the direction of the long side of sample <1> is defined as 0°. Next, a rectangular sample <2> of the same size is taken so that the long side direction is rotated 15° to the right from the 0° direction, and similarly, rectangular samples <3> to <12> are taken by rotating the long side direction of the rectangular samples by 15° each. Next, each rectangular sample is set in a tensile tester with an initial chuck distance of 20 mm so that the long side direction is the pulling direction (measurement direction), and a tensile test is performed at a tensile speed of 300 mm/min in a room temperature atmosphere. At this time, the maximum load until the sample breaks is read, and the maximum point strength stress is calculated by dividing the load by the cross-sectional area of the sample before the test (film thickness x width). The direction of the long side of the sample where this value was maximum is defined as the main orientation axis of the polypropylene film, and the direction perpendicular to this in the film plane is defined as the direction perpendicular to the main orientation axis of the polypropylene film.
 サンプルの幅が50mm未満で上記の引張試験を実施できない場合は、広角X線によるα晶(110)面の結晶配向を次のように測定し、下記の判断基準に基づいて主配向軸方向を決定することができる。すなわち、フィルム表面に対して垂直方向にX線(CuKα線)を入射し、2θ=約14°(α晶(110)面)における結晶ピークを円周方向にスキャンし、得られた回折強度分布の回折強度が最も高い方向を主配向軸方向とし、それとフィルム面内で直交する方向を主配向軸方向と直交する方向とすることもできる。 If the sample width is less than 50 mm and the above tensile test cannot be performed, the crystal orientation of the α crystal (110) plane can be measured using wide-angle X-rays as follows, and the main orientation axis direction can be determined based on the following criteria. That is, X-rays (CuKα rays) are incident perpendicularly to the film surface, and the crystal peak at 2θ = approximately 14° (α crystal (110) plane) is scanned in the circumferential direction, and the direction with the highest diffraction intensity in the obtained diffraction intensity distribution is determined as the main orientation axis direction, and the direction perpendicular to this in the film plane can also be determined as the direction perpendicular to the main orientation axis direction.
 本発明のポリオレフィンフィルムは、環状オレフィン系樹脂とポリプロピレン樹脂とを含む層をA層とし、主配向軸方向と厚み方向に平行な面でポリプロピレンフィルムを切断したときの断面を断面Xとしたときに、A層を有し、かつ断面Xのラマン分光分析により測定される配向パラメータI810/I840が2.2以上20以下である。ここで厚み方向とは、フィルム面に垂直な方向をいう。断面Xの配向パラメータI810/I840をこの範囲に収めることで、室温から高温にかけての耐電圧の低下が小さいポリプロピレンフィルムを得ることができる。なお、以下ポリプロピレンフィルムの配向パラメータI810/I840について、単にI810/I840ということがある。 The polyolefin film of the present invention has a layer A containing a cyclic olefin resin and a polypropylene resin, and when a cross section X is a cross section obtained by cutting the polypropylene film in a plane parallel to the main orientation axis direction and the thickness direction, the polyolefin film has a layer A, and the orientation parameter I810/I840 measured by Raman spectroscopy analysis of the cross section X is 2.2 or more and 20 or less. Here, the thickness direction means the direction perpendicular to the film surface. By keeping the orientation parameter I810/I840 of the cross section X within this range, a polypropylene film can be obtained that exhibits a small decrease in withstand voltage from room temperature to high temperatures. Note that hereinafter, the orientation parameter I810/I840 of the polypropylene film may be simply referred to as I810/I840.
 I810/I840はポリプロピレンフィルム中のポリプロピレン鎖の緊張状態を反映したパラメータであり、高ければ高いほど高温環境下でのポリプロピレン鎖の緩和と、それによる耐電圧の低下を抑制できることを意味する。I810/I840が2.2未満であると、ポリプロピレンフィルム中のポリプロピレン鎖が加熱により緩和し、高温環境下でフィルムコンデンサとしたときの耐電圧が低下するという問題が生じる。室温から高温にかけてポリプロピレンフィルムの耐電圧の低下を抑制する観点から、I810/I840は2.8以上であることが好ましく、3.5以上であることがより好ましく、4.2以上であることがさらに好ましく、4.7以上であることが特に好ましく、5.0以上であることが最も好ましい。一方、前述した通りI810/I840は高ければ高いほどよいが、実現性の観点からI810/I840は20以下であり、15以下であることが好ましく、10以下であることがより好ましく、7.0以下であることがさらに好ましい。 I810/I840 is a parameter that reflects the tension state of the polypropylene chains in the polypropylene film, and the higher it is, the more the polypropylene chains can be relaxed in a high-temperature environment and the lowering of the voltage resistance can be suppressed. If I810/I840 is less than 2.2, the polypropylene chains in the polypropylene film will relax when heated, causing a problem of a decrease in the voltage resistance when the film is used as a film capacitor in a high-temperature environment. From the viewpoint of suppressing the decrease in the voltage resistance of the polypropylene film from room temperature to high temperatures, I810/I840 is preferably 2.8 or more, more preferably 3.5 or more, even more preferably 4.2 or more, particularly preferably 4.7 or more, and most preferably 5.0 or more. On the other hand, as mentioned above, the higher I810/I840 is the better, but from the viewpoint of feasibility, I810/I840 is 20 or less, preferably 15 or less, more preferably 10 or less, and even more preferably 7.0 or less.
 I810/I840は、ラマン分光法により、ポリプロピレンフィルムの表面から偏光ラマン測定(ビーム径1μm、主配向軸方向に平行な偏光にて測定)を行うことで測定することができる。なお、測定位置はポリプロピレンフィルムの厚み方向の中央位置であり、測定装置や方法等の詳細は後述する。 I810/I840 can be measured by Raman spectroscopy, using polarized Raman measurement (beam diameter 1 μm, measured with polarized light parallel to the main orientation axis direction) from the surface of the polypropylene film. The measurement position is the center position in the thickness direction of the polypropylene film, and details of the measurement device and method will be described later.
 環状オレフィン系樹脂を含有するポリプロピレンフィルムにおいてI810/I840を2.2以上20以下にする方法としては、特に限定されるものではないが、例えば、ポリプロピレンフィルムを逐次二軸延伸方式により製造し、幅方向の延伸倍率を8.5倍以上とし、かつ次の2段延伸方式(I)により幅方向の延伸を行うことが効果的である。また、立体規則性と融点の高いポリプロピレン樹脂(例えば、メソペンタッド分率が高く、かつ融点が高い樹脂ポリプロピレン樹脂等)を使用することも効果的である。なお、これらの方法は適宜併用してもよい。 The method for making I810/I840 2.2 or more and 20 or less in a polypropylene film containing a cyclic olefin resin is not particularly limited, but for example, it is effective to manufacture the polypropylene film by a sequential biaxial stretching method, set the stretching ratio in the width direction to 8.5 times or more, and perform width direction stretching by the following two-stage stretching method (I). It is also effective to use a polypropylene resin with high stereoregularity and melting point (for example, a polypropylene resin with a high mesopentad fraction and a high melting point). These methods may be used in combination as appropriate.
 2段延伸方式(I)とは、以下の1段目の延伸後に、以下の2段目の延伸を行う延伸方式をいう。すなわち、2段延伸方式(I)1段目の延伸と2段目の延伸(共に下記参照)で合わせてa×b倍の延伸を行うこととなる。
2段延伸方式(I):
1段目の延伸:最終的な幅方向の延伸倍率をa×b倍としたときに、温度160℃以上185℃以下(下限は好ましくは170℃、上限は好ましくは180℃)、延伸倍率a倍で幅方向に延伸する。
2段目の延伸:1段目の延伸における温度よりも1℃~20℃低い温度で、さらに延伸倍率b倍で幅方向に延伸する。
The two-stage drawing method (I) refers to a drawing method in which the following second-stage drawing is performed after the following first-stage drawing. That is, in the two-stage drawing method (I), a × b times drawing is performed in total in the first-stage drawing and the second-stage drawing (both of which are described below).
Two-stage stretching method (I):
First-stage stretching: When the final stretching ratio in the width direction is a × b times, the film is stretched in the width direction at a temperature of 160°C or higher and 185°C or lower (the lower limit is preferably 170°C, and the upper limit is preferably 180°C) and a stretching ratio of a times.
Second-stage drawing: The film is further drawn in the width direction at a draw ratio of b times at a temperature 1° C. to 20° C. lower than the temperature in the first-stage drawing.
 2段目の延伸の温度と1段目の延伸の温度の差は、I810/I840を高める観点では5℃以上であることがより好ましく、製膜性を高める観点では10℃以下であることがより好ましい。なお、「最終的な幅方向の延伸倍率」とは、2段目の延伸終了直後の延伸倍率をいう(すなわち、弛緩処理による倍率変動は考慮しない。)。 The difference between the temperature of the second stretching stage and the temperature of the first stretching stage is preferably 5°C or more from the viewpoint of increasing I810/I840, and is preferably 10°C or less from the viewpoint of improving film formability. Note that the "final stretching ratio in the width direction" refers to the stretching ratio immediately after the second stretching stage is completed (i.e., the variation in stretching ratio due to the relaxation treatment is not taken into consideration).
 本発明のポリプロピレンフィルムは、断面Xにおける環状オレフィン系樹脂のドメインの主配向軸方向の長さが5.0μm以上1mm以下であることが好ましい。断面Xにおける環状オレフィン系樹脂のドメインの主配向軸方向の長さを5.0μm以上とすることで、フィルムコンデンサとして高温で長時間使用した際の形態安定性を高めることができる。断面Xにおける環状オレフィン系樹脂のドメインの主配向軸方向の長さは、フィルムコンデンサとして高温で長時間使用した際の形態安定性の観点から長ければ長いほどよいが、実現上の観点から1mm以下、好ましくは30μm以下である。断面Xにおける環状オレフィン系樹脂のドメインの主配向軸方向の長さは、フィルムコンデンサとして高温で長時間使用した際の形態安定性(信頼性)を高めて寿命を改善する観点から、7.0μm以上であることがより好ましく、10.0μm以上であることがさらに好ましく、10.5μm以上であることが特に好ましい。 In the polypropylene film of the present invention, the length in the main axis direction of the cyclic olefin resin domain in the cross section X is preferably 5.0 μm or more and 1 mm or less. By making the length in the main axis direction of the cyclic olefin resin domain in the cross section X 5.0 μm or more, the shape stability when used as a film capacitor at high temperatures for a long time can be improved. The length in the main axis direction of the cyclic olefin resin domain in the cross section X is preferably as long as possible from the viewpoint of shape stability when used as a film capacitor at high temperatures for a long time, but is 1 mm or less, preferably 30 μm or less from the viewpoint of realization. The length in the main axis direction of the cyclic olefin resin domain in the cross section X is more preferably 7.0 μm or more, even more preferably 10.0 μm or more, and particularly preferably 10.5 μm or more, from the viewpoint of improving shape stability (reliability) and improving life when used as a film capacitor at high temperatures for a long time.
 断面Xにおける環状オレフィン系樹脂のドメインの主配向軸方向の長さを5.0μm以上1mm以下に収める方法としては、特に限定されるものではないが、逐次二軸延伸方式にて幅方向の延伸倍率が8.0倍以上、好ましくは8.5倍以上となるように延伸する方法が効果的である。ここで、前記ドメイン長さは透過型電子顕微鏡(TEM)を用いて得られる断面Xの画像より計測することができ、その詳細は後述する。 The method for keeping the length of the main axis direction of the domain of the cyclic olefin resin in the cross section X between 5.0 μm and 1 mm is not particularly limited, but a method of stretching by a sequential biaxial stretching method so that the stretch ratio in the width direction is 8.0 times or more, preferably 8.5 times or more, is effective. Here, the domain length can be measured from an image of the cross section X obtained using a transmission electron microscope (TEM), and the details will be described later.
 本発明のポリプロピレンフィルムは、断面XのA層部分において、ポリプロピレン樹脂の海部分に環状オレフィン系樹脂が拡散した構造(以下、拡散構造ということがある。)を有することが好ましい。このような拡散構造は、TEMで断面XのA層部分を観察した際に黒色で観測される環状オレフィン系樹脂と、白色で観測されるポリプロピレン樹脂の中間の明度として観測される。ここで断面XのA層部分において「拡散構造」を有するとは、後述する方法で断面XのA層部分の観察画像を二値化した際に明度が255である画素数の割合が全画素中0.01%以上となることを指す。なお、以下「後述する方法で断面XのA層部分の観察画像を二値化した際に明度が255である画素」を、単に二値化後のA層部分の白色画素ということがある。 The polypropylene film of the present invention preferably has a structure in which the cyclic olefin resin is diffused into the sea portion of the polypropylene resin in the A layer portion of the cross section X (hereinafter, sometimes referred to as a diffusion structure). When observing the A layer portion of the cross section X with a TEM, such a diffusion structure is observed as a brightness intermediate between the cyclic olefin resin, which is observed as black, and the polypropylene resin, which is observed as white. Herein, the "diffusion structure" in the A layer portion of the cross section X means that when the observed image of the A layer portion of the cross section X is binarized using the method described below, the proportion of pixels with a brightness of 255 out of all pixels is 0.01% or more. Hereinafter, "pixels with a brightness of 255 when the observed image of the A layer portion of the cross section X is binarized using the method described below" may simply be referred to as white pixels in the A layer portion after binarization.
 本発明のポリプロピレンフィルムがこのような拡散構造を有する場合、高温、高電圧の環境下にて長時間使用した際に生じるポリプロピレン樹脂の分子鎖の緩和が抑制される。そのため、このようなポリプロピレンフィルムをフィルムコンデンサの誘電体として使用すると、容易にフィルムコンデンサの信頼性の低下を軽減することできる。上記観点から二値化後のA層部分の白色画素の割合は、全画素中5%以上であることが好ましく、15%以上であることがより好ましい。一方で、ドメイン構造により熱安定性と耐電圧性を向上させる観点と実現可能性の観点から、二値化後のA層部分の白色画素の割合は50%以下であることが好ましい。 When the polypropylene film of the present invention has such a diffusion structure, the relaxation of the molecular chains of the polypropylene resin that occurs during long-term use in a high-temperature, high-voltage environment is suppressed. Therefore, when such a polypropylene film is used as a dielectric for a film capacitor, it is possible to easily reduce the deterioration of the reliability of the film capacitor. From the above perspective, the proportion of white pixels in the A layer portion after binarization is preferably 5% or more of all pixels, and more preferably 15% or more. On the other hand, from the perspective of improving thermal stability and voltage resistance by the domain structure and from the perspective of feasibility, it is preferable that the proportion of white pixels in the A layer portion after binarization is 50% or less.
 本発明のポリプロピレンフィルムのA層部分にこのような拡散構造を形成する方法としては、特に限定されるものではないが、A層における環状オレフィン系樹脂とポリプロピレン樹脂の比率を後述の範囲とした上で、逐次二軸延伸方式にて後述する好適な面積延伸倍率にて延伸を行い、かつ使用する環状オレフィン系樹脂のガラス転移温度より5℃以上高い温度で幅方向への延伸(横延伸)を行う方法が挙げられる。 The method of forming such a diffusion structure in the A layer of the polypropylene film of the present invention is not particularly limited, but includes a method in which the ratio of cyclic olefin resin to polypropylene resin in the A layer is set within the range described below, and the film is stretched at a suitable areal stretch ratio described below using a sequential biaxial stretching method, and then stretched in the width direction (transverse stretching) at a temperature at least 5°C higher than the glass transition temperature of the cyclic olefin resin used.
 本発明のポリプロピレンフィルムは、誘電正接が3×10-6以上1×10-2以下であることが好ましい。ポリプロピレンフィルムをフィルムコンデンサの誘電体として使用したときの発熱を抑制し、フィルムコンデンサの信頼性を高める観点から、誘電正接は好ましくは1×10-2以下であり、より好ましくは1×10-3以下であり、さらに好ましくは5×10-4以下、特に好ましくは3×10-4以下である。一方、上記観点から誘電正接は低ければ低いほど好ましいが、実現可能性の観点から3×10-6以上であることが好ましく、より好ましくは1×10-5以上である。なお、ポリプロピレンフィルムの誘電正接はJIS C2138-2007に準じて測定することができ、その詳細は後述する。 The polypropylene film of the present invention preferably has a dielectric loss tangent of 3×10 −6 or more and 1×10 −2 or less. From the viewpoint of suppressing heat generation when the polypropylene film is used as a dielectric of a film capacitor and improving the reliability of the film capacitor, the dielectric loss tangent is preferably 1×10 −2 or less, more preferably 1×10 −3 or less, even more preferably 5×10 −4 or less, and particularly preferably 3×10 −4 or less. On the other hand, from the above viewpoint, the lower the dielectric loss tangent, the more preferable it is, but from the viewpoint of feasibility, it is preferably 3×10 −6 or more, more preferably 1×10 −5 or more. The dielectric loss tangent of the polypropylene film can be measured in accordance with JIS C2138-2007, and the details thereof will be described later.
 本発明のポリプロピレンフィルムの誘電正接を3×10-6以上1×10-2以下に収める方法としては、特に限定されるものではないが、ポリプロピレンフィルムに含まれるポリプロピレン以外の成分の含量を少なくすることが効果的であり、特にフィルム全体の質量を100質量%としたときに、当該成分の含量を40質量%以下とすることが好ましく、より好ましくは30質量%以下、さらに好ましくは20質量%以下、特に好ましくは9.5質量%以下、最も好ましくは9.0質量以下である。 The method for keeping the dielectric loss tangent of the polypropylene film of the present invention within the range of 3×10 −6 to 1×10 −2 is not particularly limited, but it is effective to reduce the content of components other than polypropylene contained in the polypropylene film. In particular, when the mass of the entire film is taken as 100 mass%, the content of such components is preferably 40 mass% or less, more preferably 30 mass% or less, even more preferably 20 mass% or less, particularly preferably 9.5 mass% or less, and most preferably 9.0 mass% or less.
 本発明のポリプロピレンフィルムは、断面XのA層部分に一対の短辺が厚み方向に平行となるように定めた1μm×2μmサイズの長方形において、一対の短辺を通過する環状オレフィン系樹脂のドメインが2.0個以上1000個以下存在することが好ましい。以下、本発明のポリプロピレンフィルムにおいて、断面X内に一対の短辺が厚み方向に平行となるように1μm×2μmサイズの長方形を定める方法、及び当該長方形の一対の短辺を通過する環状オレフィン系樹脂のドメイン数の決定方法について、図面を参照しながら説明する(TEMでの観察条件等の詳細は後述する。)。 In the polypropylene film of the present invention, it is preferable that in a rectangle of 1 μm×2 μm size defined in the A layer portion of the cross section X so that a pair of short sides are parallel to the thickness direction, there are 2.0 to 1000 domains of cyclic olefin resin passing through a pair of short sides. Hereinafter, a method for defining a rectangle of 1 μm×2 μm size in the cross section X of the polypropylene film of the present invention so that a pair of short sides are parallel to the thickness direction, and a method for determining the number of domains of cyclic olefin resin passing through a pair of short sides of the rectangle will be described with reference to the drawings (details of the observation conditions with TEM, etc. will be described later).
 図1は、本発明のポリプロピレンフィルムの断面X内に一対の辺が厚み方向に平行となるように定めた1μm×2μmサイズの長方形、及び当該長方形の一対の短辺を通過する環状オレフィン系樹脂のドメインを表す模式図である。図1における符号1~5はそれぞれ順に、断面Xの一部、海部分、島部分(ドメイン)、断面X内に一対の辺が厚み方向に平行となるように定めた1μm×2μmサイズの長方形、当該長方形の一対の短辺を表す。図1の左図が断面Xの一部、右図が断面X内に一対の短辺が厚み方向に平行となるように定めた1μm×2μmサイズの破線で示した長方形の拡大図である。なお、本発明のポリプロピレンフィルムにおいては、海部分がポリプロピレン樹脂、島部分が環状オレフィン系樹脂となる。 Figure 1 is a schematic diagram showing a 1 μm x 2 μm rectangle with a pair of sides parallel to the thickness direction in the cross section X of the polypropylene film of the present invention, and a domain of a cyclic olefin resin passing through a pair of short sides of the rectangle. References 1 to 5 in Figure 1 respectively represent a part of the cross section X, a sea part, an island part (domain), a 1 μm x 2 μm rectangle with a pair of sides parallel to the thickness direction in the cross section X, and a pair of short sides of the rectangle. The left side of Figure 1 is a part of the cross section X, and the right side is an enlarged view of a 1 μm x 2 μm rectangle indicated by a dashed line in the cross section X with a pair of short sides parallel to the thickness direction. In the polypropylene film of the present invention, the sea part is polypropylene resin, and the island part is cyclic olefin resin.
 断面X内に一対の短辺が厚み方向に平行となるように1μm×2μmサイズの長方形を定めるにあたっては、当該長方形の底辺は海部分に設定するものとし、底辺と対向する辺上にドメインが位置する場合は、これは無いものと見なして個数としてはカウントしないこととする(図1の例においてはこのようなドメインは存在しない)。 When defining a rectangle of 1 μm x 2 μm size within cross section X so that a pair of short sides are parallel to the thickness direction, the base of the rectangle is set in the sea portion, and if a domain is located on the side opposite the base, it is considered not to exist and is not counted in the number (in the example of Figure 1, no such domain exists).
 ここで「厚み方向と平行な一対の短辺を通過する環状オレフィン系樹脂のドメイン」とは、厚み方向と平行な一対の短辺を共に通過する環状オレフィン系樹脂のドメインをいう。すなわち、図1の例(右図)においては上から1、5、7番目のドメインがこれに該当し、上から2~4、6番目のドメインはこれに該当しないため、当該例における「厚み方向と平行な一対の短辺を通過する環状オレフィン系樹脂のドメイン」は3つとなる。 Here, "domains of cyclic olefin resin passing through a pair of short sides parallel to the thickness direction" refers to domains of cyclic olefin resin passing through both a pair of short sides parallel to the thickness direction. That is, in the example of Figure 1 (right), the first, fifth, and seventh domains from the top fall into this category, but the second to fourth and sixth domains from the top do not, so there are three "domains of cyclic olefin resin passing through a pair of short sides parallel to the thickness direction" in this example.
 このような環状オレフィン系樹脂のドメインを2.0個以上とすることで、面内に環状オレフィン系樹脂がより扁平状に微分散していることになる。その結果、環状オレフィン系樹脂の有する高い熱安定性とポリプロピレン樹脂の有する高い耐電圧性をポリプロピレンフィルムに反映させることができ、高温環境下でのポリプロピレンフィルムの絶縁破壊電圧を高めることができる。さらに、このようなポリプロピレンフィルムをフィルムコンデンサに用いると、特に高温環境で長時間の使用でもショート破壊を引き起こし難くなり、フィルムコンデンサの耐電圧性が維持され、高い信頼性を得ることができる。 By making the number of domains of such cyclic olefin resin 2.0 or more, the cyclic olefin resin is finely dispersed in a flatter shape within the plane. As a result, the high thermal stability of the cyclic olefin resin and the high voltage resistance of the polypropylene resin can be reflected in the polypropylene film, and the dielectric breakdown voltage of the polypropylene film in a high-temperature environment can be increased. Furthermore, when such a polypropylene film is used in a film capacitor, short circuit breakdown is less likely to occur, even when used for long periods of time, especially in high-temperature environments, and the voltage resistance of the film capacitor is maintained, resulting in high reliability.
 このような環状オレフィン系樹脂のドメインの数を好適な範囲に収める方法は特に限定されるものではないが、例えば、フィルム全体の質量を100質量%としたときに、環状オレフィン系樹脂の含有量を1.0質量%以上30質量%以下とした上で、ポリプロピレン樹脂と環状オレフィン系樹脂を含む樹脂組成物を押出する工程においてフィルターの温度を押出温度より低く設定すること、面積延伸倍率が40倍以上になるよう二軸延伸を行うことが有効である。面積延伸倍率は45倍以上とすることがより好ましく、50倍以上とすることがさらに好ましく、54倍以上とすることが特に好ましく、60倍以上とすることが最も好ましい。また、押出機での溶融前にポリプロピレン樹脂と環状オレフィン系樹脂を予めコンパウンドして分散性を高めることも効果的である。本発明のポリプロピレンフィルムにおいて、このような環状オレフィン系樹脂のドメインの数は、上記観点から好ましくは4.0個以上、より好ましくは6.0個以上、さらに好ましくは7.0個以上である。一方、当該環状オレフィン系樹脂のドメインの数の上限は、実現可能性の観点から1000個、より好ましくは20個である。 The method of keeping the number of domains of such cyclic olefin resin within a suitable range is not particularly limited, but for example, when the mass of the entire film is taken as 100 mass%, it is effective to set the content of cyclic olefin resin to 1.0 mass% or more and 30 mass% or less, set the temperature of the filter lower than the extrusion temperature in the process of extruding a resin composition containing polypropylene resin and cyclic olefin resin, and perform biaxial stretching so that the areal stretching ratio is 40 times or more. The areal stretching ratio is more preferably 45 times or more, even more preferably 50 times or more, particularly preferably 54 times or more, and most preferably 60 times or more. It is also effective to compound the polypropylene resin and the cyclic olefin resin in advance before melting in the extruder to increase dispersibility. In the polypropylene film of the present invention, the number of domains of such cyclic olefin resin is preferably 4.0 or more, more preferably 6.0 or more, and even more preferably 7.0 or more from the above viewpoints. On the other hand, the upper limit of the number of domains of the cyclic olefin resin is 1000 from the viewpoint of feasibility, and more preferably 20.
 本発明のポリプロピレンフィルムにおいては、フィルム全体の質量を100質量%としたときに、環状オレフィン系樹脂の含有量が1.0質量%以上40質量%以下であることが好ましい。ポリプロピレンフィルムにおける環状オレフィン系樹脂の含有量は、延伸時の破膜を抑制して生産性を高める観点、及び上記の一対の短辺を通過する環状オレフィン系樹脂のドメインの個数を好適に制御する観点から、30質量%以下であることがより好ましく、20質量%以下であることがさらに好ましく、9.5質量%以下であることが特に好ましく、9.0質量%以下であることが最も好ましい。 In the polypropylene film of the present invention, when the mass of the entire film is taken as 100% by mass, the content of the cyclic olefin resin is preferably 1.0% by mass or more and 40% by mass or less. From the viewpoint of suppressing film rupture during stretching and increasing productivity, and from the viewpoint of appropriately controlling the number of domains of the cyclic olefin resin passing through the pair of short sides, the content of the cyclic olefin resin in the polypropylene film is more preferably 30% by mass or less, even more preferably 20% by mass or less, particularly preferably 9.5% by mass or less, and most preferably 9.0% by mass or less.
 一般に、環状オレフィン系樹脂はポリプロピレンより高価格であるため、より少ない含量、特に9.5質量%以下で所定の効果を得ることが産業上好ましい。一方、フィルムコンデンサとして使用したときの耐熱性を高める観点から、ポリプロピレンフィルムにおける環状オレフィン系樹脂の含有量は5.0質量%以上であることがより好ましい。ポリプロピレンフィルムにおける環状オレフィン系樹脂の含有量を1.0質量%以上40質量%以下又は上記の好適な範囲に収めることで、高温・高電圧下にて長時間使用時の形態安定性が高く、フィルムコンデンサとしたときに高い信頼性を備え、かつ生産性に優れたポリプロピレンフィルムを得ることが容易となる。 Generally, cyclic olefin resins are more expensive than polypropylene, so it is industrially preferable to obtain the desired effect with a smaller content, particularly 9.5 mass% or less. On the other hand, from the viewpoint of improving heat resistance when used as a film capacitor, it is more preferable that the content of cyclic olefin resin in the polypropylene film is 5.0 mass% or more. By keeping the content of cyclic olefin resin in the polypropylene film between 1.0 mass% and 40 mass% or within the above preferred range, it becomes easy to obtain a polypropylene film that has high dimensional stability when used for long periods of time under high temperature and high voltage, has high reliability when used as a film capacitor, and has excellent productivity.
 本発明のポリプロピレンフィルムにおけるA層の環状オレフィン系樹脂の含有量は、高温での熱寸法安定性を高め、フィルムコンデンサの誘電体として使用したときにフィルムコンデンサの信頼性を高める観点から、A層の全構成成分を100質量%としたときに、0.5質量%以上が好ましく、より好ましくは1質量%以上、さらに好ましくは4質量%以上であり、特に好ましくは7質量%以上である。一方で、A層の環状オレフィン系樹脂の含有量は、延伸時に面積延伸倍率を高めた際の破膜を起きにくくする観点から、A層の全構成成分を100質量%としたときに、38質量%以下であることが好ましく、34質量%以下であることがより好ましく、25質量%以下であることがさらに好ましく、19.5質量%以下であることが特に好ましく、9.8質量%以下であることが最も好ましい。なお、本発明のポリプロピレンフィルムが環状オレフィン系樹脂の組成が異なる層を積層してなる場合、環状オレフィン系樹脂の含有量が最も多い層をA層とする。 The content of the cyclic olefin resin in layer A of the polypropylene film of the present invention is preferably 0.5% by mass or more, more preferably 1% by mass or more, even more preferably 4% by mass or more, and particularly preferably 7% by mass or more, when the total components of layer A are taken as 100% by mass, from the viewpoint of increasing the thermal dimensional stability at high temperatures and increasing the reliability of the film capacitor when used as a dielectric of the film capacitor. On the other hand, the content of the cyclic olefin resin in layer A is preferably 38% by mass or less, more preferably 34% by mass or less, even more preferably 25% by mass or less, particularly preferably 19.5% by mass or less, and most preferably 9.8% by mass or less, when the total components of layer A are taken as 100% by mass, from the viewpoint of making it difficult for the film to break when the areal stretch ratio is increased during stretching. When the polypropylene film of the present invention is formed by laminating layers having different compositions of cyclic olefin resins, the layer with the highest content of cyclic olefin resin is taken as layer A.
 本発明のポリプロピレンフィルムは、面積延伸倍率を高めた際の破膜を抑制する観点から、最外層にA層より環状オレフィン系樹脂含有量の少ない層(以下、これをB層とする。)を少なくとも片面に積層した積層構成とすることが好ましく、より好ましくは両面にB層を積層した構成である。B層の環状オレフィン系樹脂含有量はB層全体の質量を100質量%としたときに、A層より少なく、3質量%以下であることが好ましく、1質量%以下であることがより好ましく、B層が環状オレフィン系樹脂を含まないことが最も好ましい。なお、両面にB層を積層する場合、B層の組成は同一であっても互いに異なっていてもよい。 In order to prevent film rupture when the areal stretch ratio is increased, the polypropylene film of the present invention preferably has a laminated structure in which a layer having a lower cyclic olefin resin content than layer A (hereinafter referred to as layer B) is laminated on at least one side of the outermost layer, and more preferably has layer B laminated on both sides. When the total mass of layer B is taken as 100 mass%, the cyclic olefin resin content of layer B is less than that of layer A, preferably 3 mass% or less, more preferably 1 mass% or less, and most preferably layer B does not contain cyclic olefin resin. When layer B is laminated on both sides, the composition of layer B may be the same or different.
 本発明のポリプロピレンフィルムに含有せしめる環状オレフィン系樹脂としては、環状オレフィンポリマーや環状オレフィンコポリマーを好ましく用いることができる。中でも、ポリプロピレン樹脂との相溶性を高める観点から、エチレンやプロピレンなどの鎖状オレフィンモノマーと、ノルボルネン、ノルボルナジエン、テトラシクロドデセンおよびそれらの誘導体などの環状オレフィンを共重合した環状オレフィンコポリマーを用いるのがより好ましい。 As the cyclic olefin resin to be contained in the polypropylene film of the present invention, a cyclic olefin polymer or a cyclic olefin copolymer can be preferably used. Among them, from the viewpoint of increasing compatibility with polypropylene resin, it is more preferable to use a cyclic olefin copolymer in which a chain olefin monomer such as ethylene or propylene is copolymerized with a cyclic olefin such as norbornene, norbornadiene, tetracyclododecene, or a derivative thereof.
 本発明のポリプロピレンフィルムに含有せしめる環状オレフィン系樹脂の詳細について説明する。本発明のポリプロピレンフィルムに用いる環状オレフィン系樹脂の製造に用いることができる環状オレフィンモノマーとしては、シクロブテン、シクロペンテン、シクロヘプテン、シクロオクテン、シクロペンタジエン、1,3-シクロヘキサジエンといった単環式オレフィン、ビシクロ〔2,2,1〕ヘプト-2-エン、5-メチル-ビシクロ〔2,2,1〕ヘプタ-2-エン、5,5-ジメチル-ビシクロ〔2,2,1〕ヘプト-2-エン、5-エチル-ビシクロ〔2,2,1〕ヘプト-2-エン、5-ブチル-ビシクロ〔2,2,1〕ヘプト-2-エン、5-エチリデン-ビシクロ〔2,2,1〕ヘプト-2-エン、5-ヘキシル-ビシクロ〔2,2,1〕ヘプト-2-エン、5-オクチル-ビシクロ〔2,2,1〕ヘプト-2-エン、5-オクタデシル-ビシクロ〔2,2,1〕ヘプト-2-エン、5-メチリデン- ビシクロ〔2,2,1〕ヘプト-2-エン、5-ビニル-ビシクロ〔2,2,1〕ヘプト-2-エン、5-プロペニル-ビシクロ〔2,2,1〕ヘプト-2-エンといった二環式オレフィン、トリシクロ〔4,3,0,12.5〕デカ-3,7-ジエン、トリシクロ〔4,3,0,12.5〕デカ-3-エン、トリシクロ〔4,3,0,12.5〕ウンデカ-3,7-ジエン、トリシクロ〔4,3,0,12.5〕ウンデカ-3,8-ジエン、トリシクロ〔4,3,0,12.5〕ウンデカ-3-エン、5-シクロペンチル-ビシクロ〔2,2,1〕ヘプト-2-エン、5-シクロヘキシル-ビシクロ〔2,2,1〕ヘプト-2-エン、5-シクロヘキセニルビシクロ〔2,2,1〕ヘプト-2-エン、5-フェニル-ビシクロ〔2,2,1〕ヘプタ-2-エンといった三環式オレフィン、テトラシクロ〔4,4,0,12.5,17.10〕ドデカ-3-エン、8-メチルテトラシクロ〔4,4,0,12.5,17.10〕ドデカ-3-エン、8-エチルテトラシクロ〔4,4,0,12.5,17.10〕ドデカ-3-エン、8-メチリデンテトラシクロ〔4,4,0,12.5,17.10〕ドデカ-3-エン、8-エチリデンテトラシクロ〔4,4,0,12.5,17.10〕ドデカ-3-エン、8-ビニルテトラシクロ〔4,4,0,12.5,17.10〕ドデカ-3-エン、8-プロペニル-テトラシクロ〔4,4,0,12.5,17.10〕ドデカ-3-エンといった四環式オレフィン、および8-シクロペンチル-テトラシクロ〔4,4,0,12.5,17.10〕ドデカ-3-エン、8-シクロヘキシル-テトラシクロ〔4,4,0,12.5,17.10〕ドデカ-3-エン、8-シクロヘキセニル-テトラシクロ〔4,4,0,12.5,17.10〕ドデカ-3-エン、8-フェニル-シクロペンチル-テトラシクロ〔4,4,0,12.5,17.10〕ドデカ-3-エン、テトラシクロ〔7,4,13.6,01.9,02.7〕テトラデカ-4,9,11,13-テトラエン、テトラシクロ〔8,4,14.7,01.10,03.8〕ペンタデカ-5,10,12,14-テトラエン、ペンタシクロ〔6,6,13.6,02.7,09.14〕-4-ヘキサデセン、ペンタシクロ〔6,5,1,13.6,02.7,09.13〕-4-ペンタデセン、ペンタシクロ〔7,4,0,02.7,13.6,110.13〕-4-ペンタデセン、ヘプタシクロ〔8,7,0,12.9,14.7,111.17,03.8,012.16〕-5-エイコセン、ヘプタシクロ〔8,7,0,12.9,03.8,14.7,012.17,113.16〕-14-エイコセン、シクロペンタジエンといった四量体等の多環式オレフィンなどが挙げられる。これらの環状オレフィンモノマーは、それぞれ単独であるいは2種以上組合せて用いることができる。 The details of the cyclic olefin resin contained in the polypropylene film of the present invention will be described. Cyclic olefin monomers that can be used to manufacture the cyclic olefin resin used in the polypropylene film of the present invention include monocyclic olefins such as cyclobutene, cyclopentene, cycloheptene, cyclooctene, cyclopentadiene, and 1,3-cyclohexadiene, bicyclo[2,2,1]hept-2-ene, 5-methyl-bicyclo[2,2,1]hept-2-ene, and 5,5-dimethyl-bicyclo[2,2,1]hept-2-ene. 5-ethyl-bicyclo[2,2,1]hept-2-ene, 5-butyl-bicyclo[2,2,1]hept-2-ene, 5-ethylidene-bicyclo[2,2,1]hept-2-ene, 5-hexyl-bicyclo[2,2,1]hept-2-ene, 5-octyl-bicyclo[2,2,1]hept-2-ene, 5-octadecyl-bicyclo[2,2,1]hept-2-ene, 5-methylidene-bicyclo[2,2,1]hept bicyclic olefins such as 5-vinyl-bicyclo[2,2,1]hept-2-ene, 5-vinyl-bicyclo[2,2,1]hept-2-ene, and 5-propenyl-bicyclo[2,2,1]hept-2-ene; tricyclo[4,3,0,12.5]deca-3,7-diene, tricyclo[4,3,0,12.5]deca-3-ene, tricyclo[4,3,0,12.5]undeca-3,7-diene, tricyclo[4,3,0,12.5]undeca-3,8-diene, tricyclo[ tricyclic olefins such as tetracyclo[4,4,0,12.5,17.10]dodec-3-ene, 8-methyltetracyclo[4,3,0,12.5]undec-3-ene, 5-cyclopentyl-bicyclo[2,2,1]hept-2-ene, 5-cyclohexyl-bicyclo[2,2,1]hept-2-ene, 5-cyclohexenyl-bicyclo[2,2,1]hept-2-ene, and 5-phenyl-bicyclo[2,2,1]hept-2-ene; b) [4,4,0,12.5,17.10] dodec-3-ene, 8-ethyltetracyclo [4,4,0,12.5,17.10] dodec-3-ene, 8-methylidenetetracyclo [4,4,0,12.5,17.10] dodec-3-ene, 8-ethylidenetetracyclo [4,4,0,12.5,17.10] dodec-3-ene, 8-vinyltetracyclo [4,4,0,12.5,17.10] dodec-3-ene, 8-propenyl tetracyclic olefins such as tetracyclo[4,4,0,12.5,17.10]dodec-3-ene, 8-cyclopentyl-tetracyclo[4,4,0,12.5,17.10]dodec-3-ene, 8-cyclohexyl-tetracyclo[4,4,0,12.5,17.10]dodec-3-ene, 8-cyclohexenyl-tetracyclo[4,4,0,12.5,17.10]dodec-3-ene, 8-phenyl-cyclopentyl- Tetracyclo[4,4,0,12.5,17.10]dodec-3-ene, tetracyclo[7,4,13.6,01.9,02.7]tetradeca-4,9,11,13-tetraene, tetracyclo[8,4,14.7,01.10,03.8]pentadeca-5,10,12,14-tetraene, pentacyclo[6,6,13.6,02.7,09.14]-4-hexadecene, pentacyclo[6,5,1,13.6,02.7,0 9.13]-4-pentadecene, pentacyclo[7,4,0,02.7,13.6,110.13]-4-pentadecene, heptacyclo[8,7,0,12.9,14.7,111.17,03.8,012.16]-5-eicosene, heptacyclo[8,7,0,12.9,03.8,14.7,012.17,113.16]-14-eicosene, and polycyclic olefins such as tetramers such as cyclopentadiene. These cyclic olefin monomers can be used alone or in combination of two or more.
 環状オレフィンモノマーとしては、上記した中でも、生産性、表面性の観点から、ビシクロ〔2,2,1〕ヘプト-2-エン(以下、ノルボルネンとする。)、トリシクロ〔4,3,0,12.5〕デカ-3-エンなどの炭素数10の三環式オレフィン(以下、トリシクロデセンとする。)、テトラシクロ〔4,4,0,12.5,17.10〕ドデカ-3-エンなどの炭素数12の四環式オレフィン(以下、テトラシクロドデセンとする。)、シクロペンタジエン、または1,3-シクロヘキサジエンが好ましく用いられる。  Among the above, from the viewpoints of productivity and surface properties, the following cyclic olefin monomers are preferably used: tricyclic olefins having 10 carbon atoms, such as bicyclo[2,2,1]hept-2-ene (hereinafter referred to as norbornene), tricyclo[4,3,0,12.5]dec-3-ene (hereinafter referred to as tricyclodecene), tetracyclic olefins having 12 carbon atoms, such as tetracyclo[4,4,0,12.5,17.10]dodec-3-ene (hereinafter referred to as tetracyclododecene), cyclopentadiene, or 1,3-cyclohexadiene.
 環状オレフィン系樹脂は、上記した定義を満たす限り、上記環状オレフィンモノマーのみを重合させた樹脂(以下、COPということがある。)や、上記環状オレフィンモノマーと鎖状オレフィンモノマーとを共重合させた樹脂(以下、COCということがある。)のいずれの樹脂でも構わない。 As long as the cyclic olefin resin satisfies the above definition, it may be either a resin obtained by polymerizing only the above cyclic olefin monomer (hereinafter sometimes referred to as COP) or a resin obtained by copolymerizing the above cyclic olefin monomer with a chain olefin monomer (hereinafter sometimes referred to as COC).
 COPの製造方法としては、環状オレフィンモノマーの付加重合、あるいは開環重合などの公知の方法が挙げられ、例えば、ノルボルネン、トリシクロデセン、テトラシクロデセン、およびその誘導体を開環メタセシス重合させた後に水素化させる方法、ノルボルネンおよびその誘導体を付加重合させる方法、シクロペンタジエン、シクロヘキサジエンを1,2-、1,4-付加重合させた後に水素化させる方法などが挙げられる。これらの中でも、生産性、成型性の観点から、ノルボルネン、トリシクロデセン、テトラシクロデセン、およびその誘導体を開環メタセシス重合させた後に水素化させる方法がより好ましい。  COP can be produced by known methods such as addition polymerization or ring-opening polymerization of cyclic olefin monomers. For example, there is a method of subjecting norbornene, tricyclodecene, tetracyclodecene, and their derivatives to ring-opening metathesis polymerization followed by hydrogenation, a method of addition polymerization of norbornene and its derivatives, and a method of subjecting cyclopentadiene and cyclohexadiene to 1,2-, 1,4-addition polymerization followed by hydrogenation. Among these, from the standpoint of productivity and moldability, the method of subjecting norbornene, tricyclodecene, tetracyclodecene, and their derivatives to ring-opening metathesis polymerization followed by hydrogenation is more preferable.
 COCの場合、好ましい鎖状オレフィンモノマーとしては、エチレン、プロピレン、1-ブテン、1-ペンテン、1-へキセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-へキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-へキセン、3-エチル-1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等が挙げられる。これらの中でも、生産性、コストの観点から、エチレンもしくはエチレンとプロピレンの両方を特に好ましく用いることができる。また、環状オレフィンモノマーと鎖状オレフィンモノマーとを共重合させた樹脂の製造方法としては、環状オレフィンモノマーと鎖状オレフィンモノマーの付加重合などの公知の方法が挙げられ、例えば、ノルボルネンおよびその誘導体とエチレンを付加重合させる方法などが挙げられる。 In the case of COC, preferred chain olefin monomers include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, 3-ethyl-1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, etc. Among these, ethylene or both ethylene and propylene can be particularly preferably used from the viewpoints of productivity and cost. In addition, methods for producing resins obtained by copolymerizing cyclic olefin monomers with chain olefin monomers include known methods such as addition polymerization of cyclic olefin monomers with chain olefin monomers, such as a method of addition polymerization of norbornene or its derivatives with ethylene.
 特に、生産性、成型性の観点からノルボルネン、テトラシクロドデセン、又はそれらの誘導体と、エチレン及び/またはプロピレンからなる2元重合または3元重合による方法などを好ましい方法として用いることができる。すなわち、例えば、テトラシクロドデセン誘導体とエチレンの2元重合や、ノルボルネンとエチレンとプロピレンの3元重合を好ましい方法として用いることができる。 In particular, from the viewpoint of productivity and moldability, a method of binary or terpolymerization of norbornene, tetracyclododecene, or a derivative thereof with ethylene and/or propylene can be used as a preferred method. That is, for example, binary polymerization of a tetracyclododecene derivative with ethylene, or terpolymerization of norbornene, ethylene, and propylene can be used as a preferred method.
 環状オレフィンコポリマーを得るための鎖状オレフィンモノマーと環状オレフィンモノマーはそれぞれ1種類ずつであってもよいし、どちらか一方又は両方が2種類以上であってもよい。中でも、エチレンとプロピレンを構成単位として有する環状オレフィンコポリマーを用いることが、環状オレフィン系樹脂とポリプロピレン樹脂との相溶性を高める観点で特に好ましい。環状オレフィンモノマーとしては、コンデンサとしたときの耐熱性を高める観点から、ノルボルネン誘導体、ノルボルナジエンおよびその誘導体を用いることが好ましい。 The chain olefin monomer and the cyclic olefin monomer for obtaining the cyclic olefin copolymer may each be one type, or one or both may be two or more types. Among them, the use of a cyclic olefin copolymer having ethylene and propylene as structural units is particularly preferred from the viewpoint of increasing the compatibility between the cyclic olefin resin and the polypropylene resin. As the cyclic olefin monomer, it is preferred to use a norbornene derivative, norbornadiene, or a derivative thereof, from the viewpoint of increasing the heat resistance when made into a capacitor.
 本発明のポリプロピレンフィルムは、示差走査熱量測定によって測定される降温過程での結晶化温度(Tmc)が110℃以上150℃以下であることが好ましく、Tmcは112℃以上150℃以下であることがより好ましい。Tmcを110℃以上とすることで、延伸前のフィルムが微細な結晶構造を有する構造体となるため、延伸後、特に二軸延伸後にポリプロピレンフィルム表面に緻密な突起が形成され、かつ生産性も向上する。このような突起により、ポリプロピレンフィルムは高温での耐電圧に優れたものとなる。Tmcの上限は、実現性の観点から150℃以下である。なお、TmcはJIS K7121-1987に準じて測定することができ、その詳細は後述する。 The polypropylene film of the present invention preferably has a crystallization temperature (Tmc) during the cooling process measured by differential scanning calorimetry of 110°C or more and 150°C or less, and more preferably a Tmc of 112°C or more and 150°C or less. By setting the Tmc to 110°C or more, the film before stretching becomes a structure having a fine crystal structure, so that after stretching, especially after biaxial stretching, dense protrusions are formed on the surface of the polypropylene film, and productivity is also improved. Such protrusions give the polypropylene film excellent voltage resistance at high temperatures. The upper limit of Tmc is 150°C or less from the viewpoint of feasibility. Tmc can be measured in accordance with JIS K7121-1987, and details will be described later.
 Tmcを110℃以上にする方法としては、特に限定されるものではないが、ポリプロピレンフィルムに、ポリプロピレン樹脂の結晶化を促進する結晶核剤を含有せしめる方法が挙げられる。本発明のポリプロピレンフィルムに使用することができる結晶核剤としては、ソルビトール系核剤、ノニトール系核剤、アミド系核剤、芳香族カルボン酸金属塩、リン酸金属塩、架橋構造を有するポリプロピレン樹脂、分岐鎖状ポリプロピレン樹脂等が挙げられるが、異物による生産時の破膜を抑制する観点から、分岐鎖状ポリプロピレン樹脂を用いるのが好ましい。 The method of increasing the Tmc to 110°C or higher is not particularly limited, but includes a method of incorporating a crystal nucleating agent that promotes the crystallization of the polypropylene resin into the polypropylene film. Examples of crystal nucleating agents that can be used in the polypropylene film of the present invention include sorbitol-based nucleating agents, nonitol-based nucleating agents, amide-based nucleating agents, metal salts of aromatic carboxylic acids, metal salts of phosphates, polypropylene resins having a crosslinked structure, and branched polypropylene resins. From the viewpoint of suppressing film rupture during production due to foreign matter, it is preferable to use branched polypropylene resin.
 ここで分岐鎖状ポリプロピレン樹脂とは、炭素数6以上の側鎖を分子鎖中に1本以上有するポリプロピレン分子鎖を含むポリプロピレン樹脂であり、13C-NMRによりその分岐構造の存在が確認できるものをいう。分岐鎖状ポリプロピレン樹脂は、溶融したポリプロピレン樹脂を固化させる際に結晶化を早める核剤作用がある。そのため、分岐鎖状ポリプロピレン樹脂を含有せしめることで、より均一なフィルムの結晶化が促進され、延伸時の破膜やボイドの形成を抑制しながら高倍率で延伸することが容易になる。 Here, the branched polypropylene resin refers to a polypropylene resin containing a polypropylene molecular chain having at least one side chain with 6 or more carbon atoms in the molecular chain, and the presence of the branched structure can be confirmed by 13 C-NMR. The branched polypropylene resin acts as a nucleating agent to accelerate crystallization when solidifying the molten polypropylene resin. Therefore, by incorporating the branched polypropylene resin, more uniform crystallization of the film is promoted, and it becomes easy to stretch at a high ratio while suppressing the formation of film breakage and voids during stretching.
 分岐鎖状ポリプロピレン樹脂の含有量は、核剤作用を得る観点から、フィルムの質量を100質量%としたときに0.01質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、0.3質量%以上であることがさらに好ましい。一方、溶融張力の上昇に伴う押出時の破膜を軽減する観点から、分岐鎖状ポリプロピレン樹脂の含有量は、フィルムの質量を100質量%としたときに50質量%以下であることが好ましく、30質量%以下であることがより好ましく、10質量%以下であることがさらに好ましく、7.0質量%以下であることが特に好ましい。 From the viewpoint of obtaining a nucleating agent effect, the content of the branched polypropylene resin is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and even more preferably 0.3% by mass or more, when the mass of the film is taken as 100% by mass. On the other hand, from the viewpoint of reducing film breakage during extrusion due to an increase in melt tension, the content of the branched polypropylene resin is preferably 50% by mass or less, more preferably 30% by mass or less, even more preferably 10% by mass or less, and particularly preferably 7.0% by mass or less, when the mass of the film is taken as 100% by mass.
 本発明のポリプロピレンフィルムに用いることができる分岐鎖状ポリプロピレン樹脂としては、例えば、Borealis AG社製の“Daploy”(登録商標)WB135HMS、日本ポリプロ社製の“WAYMAX”(登録商標)MFX6等が挙げられる。 Examples of branched polypropylene resins that can be used in the polypropylene film of the present invention include "Daploy" (registered trademark) WB135HMS manufactured by Borealis AG and "WAYMAX" (registered trademark) MFX6 manufactured by Japan Polypropylene Corporation.
 本発明のポリプロピレンフィルムの厚みは、耐熱性向上とフィルムコンデンサの小型化の観点から、0.5μm以上15μm以下であることが好ましい。上記観点から、ポリプロピレンフィルムの厚みは6.0μm以下であることがより好ましく、5.0μm以下であることがさらに好ましく、3.5μm以下であることが特に好ましく、3.0μm以下であることが最も好ましい。ポリプロピレンフィルムの厚みを15μm以下とすることにより、環状オレフィン系樹脂の耐熱性を高める効果を大きくすることができ、高温環境下での耐電圧性を高めることができ、さらにフィルムコンデンサとしたときの素子サイズを小さくすることもできる。なお、ポリプロピレンフィルムの厚みは公知の電子マイクロメータで測定することができ、その詳細は後述する。 The thickness of the polypropylene film of the present invention is preferably 0.5 μm or more and 15 μm or less from the viewpoint of improving heat resistance and miniaturizing the film capacitor. From the above viewpoint, the thickness of the polypropylene film is more preferably 6.0 μm or less, even more preferably 5.0 μm or less, particularly preferably 3.5 μm or less, and most preferably 3.0 μm or less. By making the thickness of the polypropylene film 15 μm or less, the effect of increasing the heat resistance of the cyclic olefin resin can be increased, the voltage resistance in a high-temperature environment can be increased, and the element size can be reduced when made into a film capacitor. The thickness of the polypropylene film can be measured with a known electronic micrometer, and details will be described later.
 本発明のポリプロピレンフィルムは、加工性向上の観点から、主配向軸直交方向の引裂強度/主配向軸方向の引裂強度の値(以下、引裂強度比ということがある。)が0.10以上10.0以下であることが好ましい。上記観点から、引裂強度比は0.40以上であることがより好ましく、0.50以上であることがさらに好ましく、特に好ましくは0.80以上である。引裂強度比を0.10以上とすることで、ポリプロピレンフィルムを主配向軸方向に沿って帯状にスリット加工するときの破断を抑制することが容易となる。引裂強度比の上限は特に限定されるものではないが、実現性の観点から好ましくは10.0、より好ましくは2.0である。 From the viewpoint of improving processability, the polypropylene film of the present invention preferably has a value of tear strength in the direction perpendicular to the main orientation axis/tear strength in the main orientation axis direction (hereinafter sometimes referred to as tear strength ratio) of 0.10 or more and 10.0 or less. From the above viewpoint, the tear strength ratio is more preferably 0.40 or more, even more preferably 0.50 or more, and particularly preferably 0.80 or more. By making the tear strength ratio 0.10 or more, it becomes easier to suppress breakage when the polypropylene film is slit into strips along the main orientation axis direction. The upper limit of the tear strength ratio is not particularly limited, but from the viewpoint of feasibility, it is preferably 10.0, more preferably 2.0.
 引裂強度を0.10以上とする方法は特に限定されるものではないが、二軸延伸を行う際に、幅方向の延伸倍率が長手方向の延伸倍率に対して3.0倍以下、好ましくは2.0倍以下となるよう逐次延伸を行うこと、環状オレフィン系樹脂の含有量を前述した好適な範囲に収めることが有効である。なお、引裂強度比は、JIS K 7128-2:1998に準じて、公知の引裂き試験機により測定することができ、その詳細は後述する。 There is no particular limitation on the method for achieving a tear strength of 0.10 or more, but it is effective to perform sequential biaxial stretching so that the stretch ratio in the width direction is 3.0 times or less, and preferably 2.0 times or less, relative to the stretch ratio in the longitudinal direction, and to keep the content of cyclic olefin resin within the preferred range mentioned above. The tear strength ratio can be measured using a known tear tester in accordance with JIS K 7128-2:1998, and details will be described later.
 本発明のポリプロピレンフィルムは、本発明のポリプロピレンフィルム全体の質量を100質量%としたときに、灰分が0.0ppm以上1000ppm以下であることが好ましい。本発明のポリプロピレンフィルムの灰分を好適な範囲に制御することで、フィルムコンデンサの誘電体として使用した際に、フィルムコンデンサの信頼性を高めることができる。上記観点から灰分は少なければ少ないほど好ましく、より好ましくは500ppm以下、さらに好ましくは200ppm以下、特に好ましくは100ppm以下、最も好ましくは55ppmである。灰分は、理論上0.0ppm以上であり、実現可能性の観点から好ましくは10ppmである。 The polypropylene film of the present invention preferably has an ash content of 0.0 ppm or more and 1000 ppm or less when the total mass of the polypropylene film of the present invention is taken as 100% by mass. By controlling the ash content of the polypropylene film of the present invention within a suitable range, the reliability of the film capacitor can be improved when the film is used as a dielectric of the film capacitor. From the above viewpoint, the lower the ash content, the more preferable, more preferably 500 ppm or less, even more preferably 200 ppm or less, particularly preferably 100 ppm or less, and most preferably 55 ppm. Theoretically, the ash content is 0.0 ppm or more, and from the viewpoint of feasibility, it is preferably 10 ppm.
 灰分はJIS K 7250-1:2006に準じて測定することができ、その詳細は後述する。また、灰分を前記好適な範囲に制御せしめる方法としては、特に限定されるものではないが、本発明のポリプロピレンフィルムを製造する主成分となるポリプロピレン樹脂の灰分を減らすことが有効である。 The ash content can be measured in accordance with JIS K 7250-1:2006, the details of which will be described later. In addition, the method for controlling the ash content to the preferred range is not particularly limited, but it is effective to reduce the ash content of the polypropylene resin, which is the main component for producing the polypropylene film of the present invention.
 本発明のポリプロピレンフィルムは、本発明の目的を損なわない範囲で種々の添加剤、例えば有機粒子、無機粒子、結晶核剤、酸化防止剤、熱安定剤、塩素捕捉剤、すべり剤、帯電防止剤、ブロッキング防止剤、充填剤、粘度調整剤、着色防止剤を含有してもよい。なお、これらの添加剤は、単独で用いても併用してもよく、また、層が複数存在する場合はいずれの層に加えてもよい。 The polypropylene film of the present invention may contain various additives, such as organic particles, inorganic particles, crystal nucleating agents, antioxidants, heat stabilizers, chlorine scavengers, slipping agents, antistatic agents, antiblocking agents, fillers, viscosity modifiers, and color inhibitors, as long as the additives do not impair the object of the present invention. These additives may be used alone or in combination, and when multiple layers are present, they may be added to any of the layers.
 これらの添加剤の中で酸化防止剤を含有させる場合、その種類および添加量は、ポリプロピレンフィルムの長期耐熱性の観点から重要である。上記観点から、酸化防止剤としては立体障害性を有するフェノール系のものを1種以上用いることが好ましく、そのうち少なくとも1種は分子量500以上の高分子量型のものが好ましい。その具体例としては種々のものが挙げられるが、例えば2,6-ジ-t-ブチル-p-クレゾール(BHT:分子量220.4)とともに1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン(例えば、BASF社製“Irganox”(登録商標)1330:分子量775.2)、またはテトラキス[メチレン-3(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン(例えばBASF社製“Irganox”(登録商標)1010:分子量1,177.7)等を併用することが好ましい。 When antioxidants are included among these additives, the type and amount of antioxidant added are important from the viewpoint of long-term heat resistance of polypropylene film. From the above viewpoint, it is preferable to use one or more sterically hindered phenolic antioxidants, and at least one of them is preferably a high molecular weight type with a molecular weight of 500 or more. Specific examples include various types, but it is preferable to use 2,6-di-t-butyl-p-cresol (BHT: molecular weight 220.4) in combination with 1,3,5-trimethyl-2,4,6-tris(3,5-di-t-butyl-4-hydroxybenzyl)benzene (e.g., BASF's "Irganox" (registered trademark) 1330: molecular weight 775.2) or tetrakis[methylene-3(3,5-di-t-butyl-4-hydroxyphenyl)propionate]methane (e.g., BASF's "Irganox" (registered trademark) 1010: molecular weight 1,177.7).
 分子量500以上の高分子量型の酸化防止剤の総含有量は樹脂全量に対して0.1質量部~1.0質量部の範囲が好ましい。酸化防止剤が少なすぎると長期耐熱性に劣る場合があり、酸化防止剤が多すぎるとこれら酸化防止剤のブリードアウトによる高温下でのブロッキングにより、フィルムコンデンサ素子に悪影響を及ぼす場合がある。上記観点から、より好ましい含有量は樹脂全体の質量100質量部に対して0.2質量部~0.7質量部であり、さらに好ましくは0.3質量部~0.5質量部である。ポリプロピレンフィルムが2層以上の積層構成の場合は、その各層において分子量500以上の高分子量型の酸化防止剤が0.3質量部~0.5質量部であることが、フィッシュアイなどの欠陥を抑制し、品位や耐電圧性能を向上させる観点から好ましい。 The total content of high molecular weight antioxidants with a molecular weight of 500 or more is preferably in the range of 0.1 to 1.0 parts by mass relative to the total amount of resin. If the amount of antioxidant is too small, the long-term heat resistance may be poor, and if the amount of antioxidant is too large, blocking at high temperatures due to bleed-out of these antioxidants may have an adverse effect on the film capacitor element. From the above perspective, the more preferred content is 0.2 to 0.7 parts by mass, and even more preferably 0.3 to 0.5 parts by mass, relative to 100 parts by mass of the total resin. If the polypropylene film has a laminated structure of two or more layers, it is preferable that each layer contains 0.3 to 0.5 parts by mass of high molecular weight antioxidants with a molecular weight of 500 or more, from the viewpoint of suppressing defects such as fish eyes and improving quality and voltage resistance performance.
 本発明のポリプロピレンフィルムは、本発明の目的を損なわない範囲でポリプロピレン樹脂、環状オレフィン系樹脂以外の樹脂を含んでいてもよい。具体的な樹脂としては、各種ポリオレフィン系樹脂を含むビニルポリマー系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリフェニレンサルファイド系樹脂、ポリイミド系樹脂、ポリカーボネート系樹脂などが挙げられ、特に、ポリメチルペンテン、シンジオタクチックポリスチレンなどが好ましく例示される。これらの樹脂の含有量は、ポリプロピレンフィルムを構成する樹脂成分全体を100質量%とした場合、3質量%未満が好ましく、より好ましくは2質量%以下、さらに好ましくは1質量%以下である。ポリプロピレン樹脂以外の樹脂の含有量を3質量%未満に留めることにより、ドメイン界面の影響を抑え、高温環境下での絶縁破壊電圧の低下を軽減することができる。 The polypropylene film of the present invention may contain resins other than polypropylene resin and cyclic olefin resin, as long as the object of the present invention is not impaired. Specific resins include vinyl polymer resins including various polyolefin resins, polyester resins, polyamide resins, polyphenylene sulfide resins, polyimide resins, polycarbonate resins, etc., and particularly preferred examples include polymethylpentene and syndiotactic polystyrene. The content of these resins is preferably less than 3% by mass, more preferably 2% by mass or less, and even more preferably 1% by mass or less, assuming that the entire resin components constituting the polypropylene film are 100% by mass. By keeping the content of resins other than polypropylene resin to less than 3% by mass, the effect of the domain interface can be suppressed and the decrease in the dielectric breakdown voltage in a high-temperature environment can be reduced.
 本発明のポリプロピレンフィルムは、フィルムコンデンサ用の誘電体として好ましく用いられるものであるが、フィルムコンデンサのタイプは限定されるものではない。具体的には電極構成の観点では金属箔とフィルムとの合わせ巻きフィルムコンデンサ、金属蒸着フィルムコンデンサのいずれであってもよいし、絶縁油を含浸させた油浸タイプのフィルムコンデンサや絶縁油を全く使用しない乾式コンデンサにも好ましく用いられる。しかしながら本発明のポリプロピレンフィルムの特性から、特に金属蒸着フィルムコンデンサとして好ましく使用される。形状の観点では、捲回式であっても積層式であっても構わない(本発明のフィルムコンデンサについては後述する)。 The polypropylene film of the present invention is preferably used as a dielectric for film capacitors, but the type of film capacitor is not limited. Specifically, from the viewpoint of electrode configuration, it may be either a laminated film capacitor of metal foil and film, or a metal vapor deposition film capacitor, and it is also preferably used in oil-immersed type film capacitors impregnated with insulating oil, and dry capacitors that do not use insulating oil at all. However, due to the characteristics of the polypropylene film of the present invention, it is particularly preferably used as a metal vapor deposition film capacitor. From the viewpoint of shape, it may be either a wound type or a laminated type (the film capacitor of the present invention will be described later).
 ポリプロピレンフィルムは通常、表面エネルギーが低く、金属蒸着を安定的に施すことが困難であるために、金属膜との接着性を改善する目的で、蒸着前に表面処理を行うことが好ましい。表面処理とは具体的に、コロナ放電処理、プラズマ処理、グロー処理、火炎処理等が例示される。 Since polypropylene film usually has a low surface energy and it is difficult to stably apply metal vapor deposition to it, it is preferable to perform a surface treatment before vapor deposition in order to improve adhesion to the metal film. Specific examples of surface treatments include corona discharge treatment, plasma treatment, glow discharge treatment, and flame treatment.
 本発明のポリプロピレンフィルムは、ポリプロピレン樹脂を主成分とし、環状オレフィン系樹脂を含む樹脂組成物を用いてポリプロピレン樹脂シートを取得し、これを二軸延伸、熱処理および弛緩処理することによって得ることが可能である。二軸延伸の方法としては、インフレーション同時二軸延伸法、テンター同時二軸延伸法、テンター逐次二軸延伸法のいずれによっても得られるが、その中でも、フィルムの製膜安定性、結晶・非晶構造、表面特性、特に本発明の延伸倍率を高めながら機械特性および熱寸法安定性を制御する点においてテンター逐次二軸延伸法、テンター同時二軸延伸法を採用することが好ましく、本発明のポリプロピレンフィルムのI810/I840を前記した好適な範囲にせしめる観点から、テンター逐次二軸延伸法を採用することがより好ましい。 The polypropylene film of the present invention can be obtained by obtaining a polypropylene resin sheet using a resin composition containing a polypropylene resin as the main component and a cyclic olefin resin, and then biaxially stretching, heat treating and relaxing the sheet. As a method of biaxial stretching, any of the inflation simultaneous biaxial stretching method, tenter simultaneous biaxial stretching method and tenter sequential biaxial stretching method can be used. Among these, the tenter sequential biaxial stretching method and the tenter simultaneous biaxial stretching method are preferred in terms of controlling the mechanical properties and thermal dimensional stability while increasing the film forming stability, crystalline/amorphous structure, surface properties, and especially the stretch ratio of the present invention, and the tenter sequential biaxial stretching method is more preferred in terms of bringing the I810/I840 of the polypropylene film of the present invention into the preferred range described above.
 次に本発明のポリプロピレンフィルムの好ましい製造方法について説明する。本発明のポリプロピレンフィルムの好ましい製造方法は、ポリプロピレン樹脂と環状オレフィン系樹脂とを含む樹脂組成物を支持体上に溶融押出してポリプロピレン樹脂シートとするキャスト工程、前記ポリプロピレン樹脂シートを長手方向および幅方向に延伸する延伸工程をこの順に有し、前記延伸工程において、幅方向への延伸を後述の2段延伸方式(I)により行う。なお、キャスト工程と延伸工程をこの順に有するとは、キャスト工程の上流、キャスト工程と延伸工程の間、延伸工程の下流に他の工程があるか否かを問わず、キャスト工程と延伸工程がこの順に存在することをいう。 Next, a preferred method for producing the polypropylene film of the present invention will be described. The preferred method for producing the polypropylene film of the present invention comprises, in this order, a casting step in which a resin composition containing a polypropylene resin and a cyclic olefin resin is melt-extruded onto a support to form a polypropylene resin sheet, and a stretching step in which the polypropylene resin sheet is stretched in the longitudinal and width directions, and in the stretching step, stretching in the width direction is performed by a two-stage stretching method (I) described below. Incidentally, "having a casting step and a stretching step in this order" means that the casting step and the stretching step are present in this order, regardless of whether there are other steps upstream of the casting step, between the casting step and the stretching step, or downstream of the stretching step.
 当該製造方法は、ポリプロピレン樹脂と環状オレフィン系樹脂とを含む樹脂組成物を支持体上に溶融押出してポリプロピレン樹脂シートとするキャスト工程を有する。ポリプロピレン樹脂と環状オレフィン系樹脂とを含む樹脂組成物は、ポリプロピレン樹脂を主成分とし、環状オレフィン系樹脂を含むのであれば特に制限されないが、環状オレフィン系樹脂の分散性を高めるため、環状オレフィン系樹脂とポリプロピレン樹脂とを事前に予備混練したコンパウンド樹脂組成物を用いるのが好ましい。支持体はシート状に溶融押出された樹脂組成物を冷却、固化してポリプロピレン樹脂シートを得ることができるものであれば特に制限されず、例えば冷却ドラム等を用いることができる。 The manufacturing method includes a casting step in which a resin composition containing polypropylene resin and a cyclic olefin resin is melt-extruded onto a support to form a polypropylene resin sheet. The resin composition containing polypropylene resin and a cyclic olefin resin is not particularly limited as long as it contains polypropylene resin as the main component and the cyclic olefin resin, but in order to increase the dispersibility of the cyclic olefin resin, it is preferable to use a compound resin composition in which the cyclic olefin resin and the polypropylene resin are pre-kneaded in advance. The support is not particularly limited as long as it can cool and solidify the resin composition melt-extruded into a sheet to obtain a polypropylene resin sheet, and for example, a cooling drum or the like can be used.
 当該製造方法においては、キャスト工程の下流に、ポリプロピレン樹脂シートを長手方向および幅方向に延伸する延伸工程が存在する。「長手方向および幅方向に延伸する」とは、長手方向の延伸に次いで幅方向の延伸を行う逐次二軸延伸方式、長手方向と幅方向に同時に延伸を行う同時二軸延伸方式のいずれをも含むが、長手方向への延伸と幅方向への延伸において温度条件を個別に好ましく制御する観点から、逐次二軸延伸方式が好ましい。 In this manufacturing method, downstream of the casting process, there is a stretching process in which the polypropylene resin sheet is stretched in the longitudinal and width directions. "Stretching in the longitudinal and width directions" includes both a sequential biaxial stretching method in which stretching in the longitudinal direction is performed followed by stretching in the width direction, and a simultaneous biaxial stretching method in which stretching in the longitudinal and width directions is performed simultaneously, but the sequential biaxial stretching method is preferred from the viewpoint of individually and preferably controlling the temperature conditions in stretching in the longitudinal direction and stretching in the width direction.
 また、当該製造方法における延伸工程では、幅方向への延伸を下記の2段延伸方式(I)により行う。このような延伸方式を採用することにより、断面Xのラマン分光分析により測定される配向パラメータI810/I840を容易に好適な範囲に制御することができる。
2段延伸方式(I):
1段目の延伸:最終的な幅方向の延伸倍率をa×b倍としたときに、温度160℃以上185℃以下(下限は好ましくは170℃、上限は好ましくは180℃)、延伸倍率a倍で幅方向に延伸する。
2段目の延伸:1段目の延伸における温度よりも1℃~20℃低い温度で、さらに延伸倍率b倍で幅方向に延伸する。
In the stretching step in the production method, stretching in the width direction is performed by the following two-stage stretching method (I). By adopting such a stretching method, the orientation parameter I810/I840 measured by Raman spectroscopy of the cross section X can be easily controlled to a suitable range.
Two-stage stretching method (I):
First-stage stretching: When the final stretching ratio in the width direction is a × b times, the film is stretched in the width direction at a temperature of 160°C or higher and 185°C or lower (the lower limit is preferably 170°C, and the upper limit is preferably 180°C) and a stretching ratio of a times.
Second-stage drawing: The film is further drawn in the width direction at a draw ratio of b times at a temperature 1° C. to 20° C. lower than the temperature in the first-stage drawing.
 2段目の延伸の温度と1段目の延伸の温度の差は、I810/I840を高める観点では5℃以上であることがより好ましく、製膜性を高める観点では10℃以下であることがより好ましい。なお、「最終的な幅方向の延伸倍率」とは、2段目の延伸終了直後の延伸倍率をいう(すなわち、弛緩処理による倍率変動は考慮しない)。 The difference between the temperature of the second stretching stage and the temperature of the first stretching stage is preferably 5°C or more from the viewpoint of increasing I810/I840, and is preferably 10°C or less from the viewpoint of improving film formability. Note that the "final stretching ratio in the width direction" refers to the stretching ratio immediately after the second stretching stage is completed (i.e., the variation in stretching ratio due to the relaxation treatment is not taken into consideration).
 なお、同時二軸延伸にて2段延伸方式(I)をとる場合には、1段目の延伸として幅方向の延伸が前記1段目の延伸の条件を満たすように同時二軸延伸を行い、続けて2段目の延伸として幅方向の延伸を前記2段目の延伸の条件を満たすように行うことが好ましい。ただし、同時二軸延伸にて1段目の延伸を行う場合の好適な温度範囲は150℃以上180℃以下、より好ましくは165℃以上180℃以下の範囲である。 When the two-stage stretching method (I) is used for simultaneous biaxial stretching, it is preferable to perform simultaneous biaxial stretching in the first stage such that the width direction stretching satisfies the conditions for the first stage stretching, and then perform width direction stretching in the second stage such that the conditions for the second stage stretching are satisfied. However, the preferred temperature range for the first stage stretching in simultaneous biaxial stretching is 150°C or higher and 180°C or lower, more preferably 165°C or higher and 180°C or lower.
 当該製造方法においては、断面XのA層部分に一対の短辺が厚み方向に平行となるように定めた1μm×2μmサイズの長方形において、一対の短辺を通過する環状オレフィン系樹脂のドメインの数を好適な範囲に調整する観点から、面積延伸倍率が40倍以上であることが好ましい。ここで面積延伸倍率とは、長手方向の延伸倍率×幅方向の延伸倍率をいう。 In this manufacturing method, in a rectangle of 1 μm×2 μm size in the A layer portion of cross section X, a pair of short sides of which are parallel to the thickness direction, the area stretch ratio is preferably 40 times or more from the viewpoint of adjusting the number of domains of the cyclic olefin resin passing through a pair of short sides within a suitable range. Here, the area stretch ratio refers to the longitudinal stretch ratio×width stretch ratio.
 以下、本発明のポリプロピレンフィルムを製造する方法について、より具体的に説明する。但し、本発明のポリプロピレンフィルムは以下の方法により得られるものに限定されない。 The method for producing the polypropylene film of the present invention will be described in more detail below. However, the polypropylene film of the present invention is not limited to that obtained by the method below.
 まず、本発明のポリプロピレンフィルムを製造するにあたっては、環状オレフィン系樹脂とポリプロピレン樹脂との分散状態を良くして、得られるポリプロピレンフィルムの高温時における絶縁破壊電圧を高める観点から、予め環状オレフィン系樹脂とポリプロピレン樹脂と酸化防止剤をコンパウンドすることが好ましい。 First, when producing the polypropylene film of the present invention, it is preferable to compound the cyclic olefin resin, polypropylene resin, and antioxidant in advance from the viewpoint of improving the dispersion state of the cyclic olefin resin and polypropylene resin and increasing the dielectric breakdown voltage of the resulting polypropylene film at high temperatures.
 コンパウンドには単軸押出機、二軸押出機などを用いることができるが、良好な分散状態を実現する観点から、特に二軸押出機を用いることが好ましい。コンパウンドする際の樹脂温度は環状オレフィン系樹脂とポリプロピレン樹脂との分散状態を良くして、得られるポリプロピレンフィルムの高温時における絶縁破壊電圧をより高める観点から、次の温度範囲に収めることが好ましい。まず、300℃以下であることが好ましく、280℃以下であることがより好ましい。一方で、200℃以上であることが好ましく、230℃以上であることがより好ましい。 Although single-screw extruders, twin-screw extruders, etc. can be used for compounding, it is preferable to use a twin-screw extruder in particular from the viewpoint of achieving a good dispersion state. The resin temperature during compounding is preferably within the following temperature range from the viewpoint of improving the dispersion state of the cyclic olefin resin and the polypropylene resin and further increasing the dielectric breakdown voltage at high temperatures of the resulting polypropylene film. First, it is preferable that it is 300°C or less, and more preferably 280°C or less. On the other hand, it is preferable that it is 200°C or more, and more preferably 230°C or more.
 コンパウンドにより得られる樹脂組成物中の環状オレフィン系樹脂の含有量は、コンパウンドする成分全体を100質量%としたときに、0.5質量%以上が好ましく、より好ましくは1質量%以上、さらに好ましくは4質量%以上、特に好ましくは7質量%以上である。一方で、環状オレフィン系樹脂の分散状態を高める観点から、コンパウンド樹脂中の環状オレフィン系樹脂の含有量は、49質量%以下であることが好ましく、40質量%以下であることがより好ましい。 The content of the cyclic olefin resin in the resin composition obtained by compounding is preferably 0.5% by mass or more, more preferably 1% by mass or more, even more preferably 4% by mass or more, and particularly preferably 7% by mass or more, when the total amount of the compounded components is 100% by mass. On the other hand, from the viewpoint of improving the dispersion state of the cyclic olefin resin, the content of the cyclic olefin resin in the compound resin is preferably 49% by mass or less, and more preferably 40% by mass or less.
 酸化防止剤の量は、コンパウンドにより得られる樹脂原料中の全成分を100質量%としたときに、0.1質量%以上が好ましく、より好ましくは0.3質量%以上、さらに好ましくは0.4質量%以上である。上限は1.0質量部とするものである。また、ポリプロピレン樹脂のメソペンタッド分率を0.960以上とすることで、得られるポリプロピレンフィルムは融点が高いものとなり、高温での使用に適するため好ましい。 The amount of antioxidant is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and even more preferably 0.4% by mass or more, when the total components in the resin raw material obtained by compounding are taken as 100% by mass. The upper limit is 1.0 part by mass. In addition, by making the mesopentad fraction of the polypropylene resin 0.960 or more, the resulting polypropylene film has a high melting point and is suitable for use at high temperatures, which is preferable.
 次いで、ポリプロピレン樹脂とコンパウンドにより得られた樹脂組成物を、環状オレフィン系樹脂量を所望の水準に調整した上で単軸押出機に供給し、ろ過フィルターを通した後にスリット状口金からシート状に押し出す。この際、ろ過フィルターの温度は、押出温度-40℃以上かつ押出温度以下の範囲に収めることが好ましく、より好ましくは押出温度-40℃以上かつ押出温度-20℃以下である。ろ過フィルターの温度を当該範囲に収めることで一対の短辺を通過する環状オレフィン系樹脂のドメインの数を好適な範囲に収めることが容易となる。その後、スリット状口金から押し出された溶融シート状物を、温度制御されたキャスティングドラム(冷却ドラム)上で固化してポリプロピレン樹脂シートを得る。 Then, the resin composition obtained by compounding with polypropylene resin is fed to a single screw extruder after adjusting the amount of cyclic olefin resin to the desired level, and after passing through a filter, is extruded into a sheet from a slit nozzle. At this time, the temperature of the filter is preferably within the range of extrusion temperature -40°C or more and extrusion temperature or less, and more preferably extrusion temperature -40°C or more and extrusion temperature -20°C or less. By keeping the temperature of the filter within this range, it becomes easy to keep the number of domains of the cyclic olefin resin passing through the pair of short sides within a suitable range. The molten sheet extruded from the slit nozzle is then solidified on a temperature-controlled casting drum (cooling drum) to obtain a polypropylene resin sheet.
 前記した通り、本発明のポリプロピレンフィルムは、面積延伸倍率を高める観点から積層構成とすることが好ましい。その場合にはA層用の原料として、ポリプロピレン樹脂とコンパウンドにより得られた樹脂組成物を混合して単軸押出機に供給し、B層用の原料としてポリプロピレン樹脂を別の単軸押出機に供給する。その後、溶融共押出によるフィードブロック方式で溶融樹脂を、A層/B層の2層構成、あるいはB層/A層/B層の3層構成に積層させ、これをスリット状口金からシート状に押し出し、温度制御した冷却ドラム上で固化させ未延伸ポリプロピレンフィルムを得る。 As mentioned above, the polypropylene film of the present invention is preferably laminated in order to increase the areal stretch ratio. In this case, polypropylene resin and a resin composition obtained by compounding are mixed and fed to a single screw extruder as the raw material for layer A, and polypropylene resin is fed to another single screw extruder as the raw material for layer B. The molten resin is then laminated in a two-layer structure of layer A/layer B or a three-layer structure of layer B/layer A/layer B using a feed block method with melt co-extrusion, and this is extruded into a sheet from a slit-shaped die and solidified on a temperature-controlled cooling drum to obtain an unstretched polypropylene film.
 なお、単層構成であるか積層構成であるか否かにかかわらず、結晶の成長を適切に制御しつつ溶融樹脂を冷却固化させる観点から冷却ドラムの温度は10℃以上110℃以下であることが好ましく、10℃以上95℃以下であることがより好ましい。 Regarding whether the structure is a single layer or a laminated structure, from the viewpoint of cooling and solidifying the molten resin while appropriately controlling the crystal growth, the temperature of the cooling drum is preferably 10°C or higher and 110°C or lower, and more preferably 10°C or higher and 95°C or lower.
 溶融シートの冷却ドラムへの密着方法としては静電印加法、水の表面張力を利用した密着方法、エアーナイフ法、プレスロール法、水中キャスト法、エアーチャンバー法などのうちいずれの手法を用いてもよいが、平面性が良好でかつ表面粗さの制御が可能なエアーナイフ法が好ましい。また、フィルムの振動を生じさせないために製膜下流側にエアーが流れるようにエアーナイフの位置を適宜調整することが好ましい。なお、エアーナイフのエアー温度は冷却ドラムの温度にもよるが、5℃以上130℃以下が好ましく、得られるポリプロピレンフィルムの両面の表面性状が大きく異ならないようにする観点から、冷却ドラムの温度との差の絶対値が50℃を超えないようにすることがより好ましい。 The molten sheet may be adhered to the cooling drum by any of the following methods: electrostatic application, adhesion using the surface tension of water, air knife method, press roll method, underwater casting method, air chamber method, etc. However, the air knife method is preferred because it provides good flatness and allows control of surface roughness. It is also preferable to appropriately adjust the position of the air knife so that air flows downstream of the film production in order to prevent vibration of the film. The air temperature of the air knife depends on the temperature of the cooling drum, but is preferably 5°C or higher and 130°C or lower. From the viewpoint of preventing a large difference in the surface properties of both sides of the resulting polypropylene film, it is more preferable that the absolute value of the difference with the temperature of the cooling drum does not exceed 50°C.
 次に、ポリプロピレン樹脂シートを二軸延伸し、二軸配向せしめる。延伸時には、ポリプロピレン樹脂シートを所定の長手方向延伸温度に設定したロールに接触させ、長手方向に所定の倍率で延伸する。長手方向の延伸温度は、破膜を抑制する観点から100℃以上であることが好ましく、120℃以上であることがより好ましく、140℃以上であることがさらに好ましい。一方で、170℃以下であることが好ましく、165℃以下であることがより好ましく、160℃以下であることがさらに好ましい。また、長手方向の延伸倍率は面積延伸倍率を高めて高温時の絶縁破壊電圧を高める観点から3.5倍以上であることが好ましく、4.0倍以上であることがより好ましく、5.0倍以上であることがさらに好ましく、5.2倍以上であることが特に好ましい。一方で、破膜を抑制する観点からは、長手方向の延伸倍率は10倍以下であることが好ましい。このようにポリプロピレン樹脂シートを長手方向に延伸した後、室温まで冷却して一軸配向ポリプロピレンフィルムを得る。 Next, the polypropylene resin sheet is biaxially stretched to obtain a biaxial orientation. During stretching, the polypropylene resin sheet is brought into contact with a roll set to a predetermined longitudinal stretching temperature, and stretched in the longitudinal direction at a predetermined ratio. The longitudinal stretching temperature is preferably 100°C or higher, more preferably 120°C or higher, and even more preferably 140°C or higher, from the viewpoint of suppressing film rupture. On the other hand, it is preferably 170°C or lower, more preferably 165°C or lower, and even more preferably 160°C or lower. In addition, the longitudinal stretching ratio is preferably 3.5 times or higher, more preferably 4.0 times or higher, even more preferably 5.0 times or higher, and particularly preferably 5.2 times or higher, from the viewpoint of increasing the areal stretching ratio and increasing the dielectric breakdown voltage at high temperatures. On the other hand, from the viewpoint of suppressing film rupture, the longitudinal stretching ratio is preferably 10 times or lower. After stretching the polypropylene resin sheet in the longitudinal direction in this manner, it is cooled to room temperature to obtain a uniaxially oriented polypropylene film.
 得られた一軸配向ポリプロピレンフィルムの幅方向両端部をクリップで把持したまま、テンターに導く。ここで横延伸倍率を高める観点から、幅方向へ延伸する直前の予熱工程のテンター雰囲気温度(幅方向の予熱温度)を幅方向の延伸温度+5℃以上とすることが好ましい(ここでいう幅方向の延伸温度は、後述する2段延伸方式(I)を採用する場合は1段目の延伸温度とする。)。一方で、高温での耐電圧低下を抑制する観点からは、幅方向の予熱温度を幅方向の延伸温度+15℃以下にすることが好ましく、より好ましくは+12℃以下、さらに好ましくは+10℃以下である。予熱工程の温度を上記範囲に収めることで、長手方向への延伸により長手方向に高配向したフィブリル構造をさらに強化でき、得られるポリプロピレンフィルムの絶縁破壊電圧を高めることができる。また一軸延伸後、配向が不十分な分子鎖を高温予熱で安定化させることは、熱寸法安定性が向上できる観点でも好ましい。 The obtained uniaxially oriented polypropylene film is introduced into a tenter while both ends in the width direction are held by clips. From the viewpoint of increasing the transverse stretch ratio, it is preferable that the tenter atmosphere temperature (width direction preheating temperature) in the preheating process immediately before the width direction stretching is set to the width direction stretching temperature + 5°C or more (the width direction stretching temperature here is the first stage stretching temperature when the two-stage stretching method (I) described later is adopted). On the other hand, from the viewpoint of suppressing the decrease in withstand voltage at high temperatures, it is preferable that the width direction preheating temperature is set to the width direction stretching temperature + 15°C or less, more preferably +12°C or less, and even more preferably +10°C or less. By keeping the temperature of the preheating process within the above range, the fibril structure highly oriented in the length direction can be further strengthened by the longitudinal stretching, and the dielectric breakdown voltage of the obtained polypropylene film can be increased. In addition, it is preferable to stabilize the molecular chains that are insufficiently oriented by high-temperature preheating after the uniaxial stretching from the viewpoint of improving thermal dimensional stability.
 次いで、予熱後の一軸配向ポリプロピレンフィルムの幅方向両端部をクリップで把持したまま幅方向へ延伸する。このときのテンター雰囲気温度(幅方向の延伸温度)は、ガラス転移温度の高い環状オレフィン系樹脂を均一に延伸し、フィルムコンデンサの誘電体として使用としたときにフィルムコンデンサの信頼性を高める観点から、好ましくは150℃以上であり、より好ましくは155℃以上であり、さらに好ましくは160℃以上である。一方で、上記観点から、幅方向の延伸温度は好ましくは190℃以下であり、より好ましくは185℃以下である。なお、後述する2段延伸方式(I)を採用する場合は2段目の延伸における温度条件を上記範囲とすることが好ましい。 Then, the preheated uniaxially oriented polypropylene film is stretched in the width direction while both width direction ends are held by clips. The tenter atmosphere temperature (width direction stretching temperature) at this time is preferably 150°C or higher, more preferably 155°C or higher, and even more preferably 160°C or higher, from the viewpoint of uniformly stretching the cyclic olefin resin with a high glass transition temperature and improving the reliability of the film capacitor when used as a dielectric of the film capacitor. On the other hand, from the above viewpoint, the width direction stretching temperature is preferably 190°C or lower, more preferably 185°C or lower. Note that when the two-stage stretching method (I) described later is adopted, it is preferable that the temperature conditions in the second stage of stretching are within the above range.
 得られるポリプロピレンフィルムの絶縁破壊電圧を高める観点から、幅方向の延伸倍率(2段延伸方式(I)を採用する場合のように、多段階で幅方向の延伸を行う場合は最終の延伸倍率)は好ましくは8.5倍以上であり、より好ましくは9.3倍以上であり、さらに好ましくは10.0倍以上である。一方で、安定して製膜を行う観点から、幅方向の延伸倍率は好ましくは20.0倍以下であり、より好ましくは17.0倍以下であり、さらに好ましくは15.0倍以下である。幅方向の延伸倍率を8.5倍以上とすることで、環状オレフィン系樹脂のドメインの主配向軸方向の長さを5μm以上とすることが容易となる。 From the viewpoint of increasing the dielectric breakdown voltage of the resulting polypropylene film, the widthwise stretching ratio (the final stretching ratio when the widthwise stretching is performed in multiple stages, such as when the two-stage stretching method (I) is adopted) is preferably 8.5 times or more, more preferably 9.3 times or more, and even more preferably 10.0 times or more. On the other hand, from the viewpoint of stable film formation, the widthwise stretching ratio is preferably 20.0 times or less, more preferably 17.0 times or less, and even more preferably 15.0 times or less. By setting the widthwise stretching ratio to 8.5 times or more, it becomes easy to set the length in the main orientation axis direction of the domain of the cyclic olefin resin to 5 μm or more.
 なお、幅方向の延伸は、前述した通り予熱温度より低い温度にて行うことが好ましく、以下の1段目の延伸、2段目の延伸を順に行う2段延伸方式(I)にて行うことが好ましい。このような延伸方式を採用することにより、断面Xのラマン分光分析により測定される配向パラメータI810/I840を容易に好適な範囲に制御することができる。
2段延伸方式(I):
1段目の延伸:最終的な幅方向の延伸倍率をa×b倍としたときに、温度160℃以上185℃以下(下限は好ましくは170℃、上限は好ましくは180℃)、延伸倍率a倍で幅方向に延伸する。
2段目の延伸:1段目の延伸における温度よりも1℃~20℃低い温度で、さらに延伸倍率b倍で幅方向に延伸する。
As described above, the stretching in the width direction is preferably performed at a temperature lower than the preheating temperature, and is preferably performed by the following two-stage stretching method (I) in which the first stage stretching and the second stage stretching are performed in sequence. By adopting such a stretching method, the orientation parameter I810/I840 measured by Raman spectroscopy of the cross section X can be easily controlled to a suitable range.
Two-stage stretching method (I):
First-stage stretching: When the final stretching ratio in the width direction is a × b times, the film is stretched in the width direction at a temperature of 160°C or higher and 185°C or lower (the lower limit is preferably 170°C, and the upper limit is preferably 180°C) and a stretching ratio of a times.
Second-stage drawing: The film is further drawn in the width direction at a draw ratio of b times at a temperature 1° C. to 20° C. lower than the temperature in the first-stage drawing.
 2段目の延伸の温度と1段目の延伸の温度の差は、I810/I840を高める観点では5℃以上であることがより好ましく、製膜性を高める観点では10℃以下であることがより好ましい。なお、「最終的な幅方向の延伸倍率」とは、2段目の延伸終了直後の延伸倍率をいう(すなわち、弛緩処理による倍率変動は考慮しない)。 The difference between the temperature of the second stretching stage and the temperature of the first stretching stage is preferably 5°C or more from the viewpoint of increasing I810/I840, and is preferably 10°C or less from the viewpoint of improving film formability. Note that the "final stretching ratio in the width direction" refers to the stretching ratio immediately after the second stretching stage is completed (i.e., the variation in stretching ratio due to the relaxation treatment is not taken into consideration).
 1段目の延伸における延伸倍率aは、安定して製膜を行う観点から、1.8倍以上13.3倍以下であることが好ましく、より好ましくは1.8倍以上9.0倍以下である。2段目の延伸における延伸倍率(b)は、I810/I840を好適な範囲に収め、高温で使用したときの耐電圧低下を抑制する観点から、1.1倍以上5.0倍以下の範囲であり、a>bであることがより好ましい。 The stretching ratio a in the first stretching stage is preferably 1.8 to 13.3 times, more preferably 1.8 to 9.0 times. The stretching ratio (b) in the second stretching stage is preferably 1.1 to 5.0 times, more preferably a>b, from the viewpoint of keeping I810/I840 within a suitable range and suppressing a decrease in voltage resistance when used at high temperatures.
 幅方向の延伸倍率と長手方向の延伸倍率の比について、I810/I840を前記した範囲に収める観点から、幅方向の延伸倍率は、長手方向の延伸倍率に対し1.5倍以上の倍率とすることが好ましく、より好ましくは1.7倍以上である。一方で、幅方向の延伸倍率が長手方向の延伸倍率に対して3.0倍以下となるよう逐次延伸を行うことは、さらに引裂強度比を好適な範囲に収めるのに効果的である。 With regard to the ratio of the stretch ratio in the width direction to the stretch ratio in the longitudinal direction, from the viewpoint of keeping I810/I840 within the above-mentioned range, the stretch ratio in the width direction is preferably 1.5 times or more relative to the stretch ratio in the longitudinal direction, and more preferably 1.7 times or more. On the other hand, performing sequential stretching so that the stretch ratio in the width direction is 3.0 times or less relative to the stretch ratio in the longitudinal direction is more effective in keeping the tear strength ratio within a suitable range.
 面積延伸倍率は40倍以上であることが好ましい。面積延伸倍率を40倍以上とすることにより、断面Xにおける一対の短辺を通過する環状オレフィン系樹脂のドメインの数を好適な範囲に収めることが容易となる。その結果、得られるフィルムは、特に高温時の絶縁破壊電圧が高いものとなる。本発明において、面積延伸倍率とは、長手方向の延伸倍率に幅方向の延伸倍率を乗じたものである。なお、本発明において幅方向の延伸倍率とは、幅方向延伸後、弛緩処理を行う前の延伸倍率を指す。上記観点から面積延伸倍率は、より好ましくは45倍以上、さらに好ましくは50倍以上、特に好ましくは54倍以上、最も好ましくは60倍以上である。面積延伸倍率の上限は特に限定されないが、実現可能性の観点から逐次二軸延伸の場合は90倍、同時二軸延伸の場合は150倍である。 The areal stretching ratio is preferably 40 times or more. By setting the areal stretching ratio to 40 times or more, it becomes easy to keep the number of domains of the cyclic olefin resin passing through a pair of short sides in the cross section X within a suitable range. As a result, the obtained film has a high dielectric breakdown voltage, especially at high temperatures. In the present invention, the areal stretching ratio is the longitudinal stretching ratio multiplied by the widthwise stretching ratio. In the present invention, the widthwise stretching ratio refers to the stretching ratio after widthwise stretching and before relaxation treatment. From the above viewpoint, the areal stretching ratio is more preferably 45 times or more, even more preferably 50 times or more, particularly preferably 54 times or more, and most preferably 60 times or more. There is no particular limit to the upper limit of the areal stretching ratio, but from the viewpoint of feasibility, it is 90 times in the case of sequential biaxial stretching and 150 times in the case of simultaneous biaxial stretching.
 本発明のポリプロピレンフィルムにおいて重要な点は、環状オレフィン系樹脂を含有せしめながら、I810/I840を高めることである。すなわち、本発明のポリプロピレンフィルムの製造においては、例えば、予備混練によりポリプロピレン樹脂中に分散する環状オレフィン系樹脂ドメインの分散性を高め、前述した2段延伸方式をとることにより高い面積延伸倍率とし、135℃での耐電圧を高めることができる。 The important point about the polypropylene film of the present invention is to increase I810/I840 while incorporating a cyclic olefin resin. That is, in the production of the polypropylene film of the present invention, for example, the dispersibility of the cyclic olefin resin domains dispersed in the polypropylene resin can be increased by pre-mixing, and a high areal stretching ratio can be achieved by using the two-stage stretching method described above, thereby increasing the withstand voltage at 135°C.
 本発明のポリプロピレンフィルムの製造においては、二軸延伸後に熱処理および弛緩処理工程を設けることが好ましい。当該工程ではクリップで幅方向を緊張把持したまま幅方向に2~30%の弛緩を与えつつ、テンター雰囲気温度で150℃以上190℃以下の温度で熱処理を行うことが、フィルムコンデンサとしたときの信頼性を高める観点から好ましく、より好ましくは150℃以上164℃以下、さらに好ましくは150℃以上159℃以下である。また、ポリプロピレンフィルムをフィルムコンデンサとして使用したときに、フィルムコンデンサの信頼性を高める観点から、弛緩処理率は5%以上であることが好ましく、7%以上であることがより好ましく、9%以上であることがさらに好ましく、13%以上であることが特に好ましい。一方で、ポリプロピレンフィルムの絶縁破壊電圧を高める観点から、弛緩処理は25%以下がより好ましく、18%以下がさらに好ましい。 In the manufacture of the polypropylene film of the present invention, it is preferable to provide a heat treatment and relaxation treatment process after biaxial stretching. In this process, the heat treatment is performed at a temperature of 150°C to 190°C in the tenter atmosphere while providing 2 to 30% relaxation in the width direction while holding the film tensely with clips, from the viewpoint of improving the reliability of the film capacitor when it is used as a film capacitor, and more preferably 150°C to 164°C, and even more preferably 150°C to 159°C. In addition, from the viewpoint of improving the reliability of the film capacitor when the polypropylene film is used as a film capacitor, the relaxation treatment rate is preferably 5% or more, more preferably 7% or more, even more preferably 9% or more, and particularly preferably 13% or more. On the other hand, from the viewpoint of increasing the dielectric breakdown voltage of the polypropylene film, the relaxation treatment is more preferably 25% or less, and even more preferably 18% or less.
 熱処理および弛緩処理を経た後、ポリプロピレンフィルムをテンターの外側へ導き、室温雰囲気にて幅方向両端部のクリップを解放する。その後、ワインダ工程にてフィルムエッジ部をスリットしてポリプロピレンフィルムをロール状に巻き取る。ここでポリプロピレンフィルムを巻き取る前に、蒸着金属の接着性をよくするために、空気中、窒素中、炭酸ガス中あるいはこれらの混合気体中で、少なくとも一方の面にコロナ放電処理等の表面処理を行うことが好ましい。 After undergoing heat treatment and relaxation treatment, the polypropylene film is guided to the outside of the tenter, and the clips on both ends in the width direction are released in a room temperature atmosphere. After that, the film edges are slit in the winder process, and the polypropylene film is wound into a roll. Before winding the polypropylene film, it is preferable to perform a surface treatment such as a corona discharge treatment on at least one side in air, nitrogen, carbon dioxide gas, or a mixture of these gases in order to improve the adhesion of the evaporated metal.
 なお、本発明のポリプロピレンフィルムを得るため、着眼される製造条件を具体的に挙げると、例としては以下のとおりである。なお、これらの製造条件を全て満たすことが好ましいが、必ずしも全て備える態様とはせずに適宜組み合わせてもよい。例えば、「逐次二軸延伸において幅方向の延伸前の予熱温度が幅方向の延伸温度+5℃以上かつ+15℃以下であること。」に代えて、同時二軸延伸を採用してもよい。
・主成分であるポリプロピレン樹脂のメソペンタッド分率が0.960以上であること。
・架橋構造を有するポリプロピレン樹脂または分岐鎖状ポリプロピレン樹脂を含有すること。
・環状オレフィン系樹脂とポリプロピレン樹脂とを予備混練すること。
・押出機のフィルター温度を、押出温度によりも低温にすること。
・環状オレフィン系樹脂の含有量を1質量%以上40質量%以下とすること。
・二軸延伸の面積延伸倍率を40倍以上とすること。
・幅方向の延伸倍率を8.5倍以上とすること。
・幅方向の延伸倍率が長手方向の延伸倍率に対し1.5倍以上3.0倍以下、好ましくは1.7倍以上3.0倍以下であること。
・逐次二軸延伸において幅方向の延伸前の予熱温度が幅方向の延伸温度+5℃~幅方向の延伸温度+15℃であること。
・幅方向の延伸を前記2段延伸方式(I)により行うこと。
・二軸延伸後に熱処理と弛緩処理が施されていること。
・二軸延伸後の熱処理温度が150℃以上であること。
Specific examples of the production conditions to be considered in order to obtain the polypropylene film of the present invention are as follows. It is preferable to satisfy all of these production conditions, but they do not necessarily have to be all present and may be combined as appropriate. For example, instead of "in the sequential biaxial stretching, the preheating temperature before the width direction stretching is the width direction stretching temperature +5°C or more and +15°C or less," simultaneous biaxial stretching may be adopted.
- The mesopentad fraction of the main component, polypropylene resin, is 0.960 or more.
- Contains a polypropylene resin having a crosslinked structure or a branched polypropylene resin.
- Pre-mixing the cyclic olefin resin and the polypropylene resin.
- The extruder filter temperature is set lower than the extrusion temperature.
The content of the cyclic olefin resin is from 1% by mass to 40% by mass.
The area stretch ratio of the biaxial stretching is 40 times or more.
The stretch ratio in the width direction is 8.5 times or more.
The stretching ratio in the width direction is 1.5 to 3.0 times, preferably 1.7 to 3.0 times, the stretching ratio in the longitudinal direction.
In the sequential biaxial stretching, the preheating temperature before stretching in the width direction is from the width direction stretching temperature + 5°C to the width direction stretching temperature + 15°C.
The transverse stretching is carried out by the two-stage stretching method (I).
- Heat treatment and relaxation treatment are performed after biaxial stretching.
The heat treatment temperature after biaxial stretching is 150°C or higher.
 続いて、本発明のポリプロピレンフィルムを用いてなる金属膜積層フィルム、それを用いてなるフィルムコンデンサ、およびそれらの製造方法について説明する。 Next, we will explain the metal film laminated film made using the polypropylene film of the present invention, the film capacitor made using the same, and the manufacturing methods for the same.
 本発明の金属膜積層フィルムは、本発明のポリプロピレンフィルムの少なくとも片面に金属膜を有する。この金属膜積層フィルムは、上記の本発明に係るポリプロピレンフィルムの少なくとも片面に金属膜を設けることで得ることができる。 The metal film laminated film of the present invention has a metal film on at least one side of the polypropylene film of the present invention. This metal film laminated film can be obtained by providing a metal film on at least one side of the polypropylene film of the present invention described above.
 本発明において、金属膜を付与する方法は特に限定されないが、例えば、ポリプロピレンフィルムの少なくとも片面に、アルミニウムや、アルミニウムと亜鉛との合金等を蒸着してフィルムコンデンサの内部電極となる蒸着膜等の金属膜を設ける方法が好ましく用いられる。このとき、アルミニウムと同時あるいは逐次に、例えば、ニッケル、銅、金、銀、クロムなどの他の金属成分を蒸着することもできる。また、蒸着膜上にオイルなどで保護層を設けることもできる。ポリプロピレンフィルムの表面粗さが表裏で異なる場合には、相対的に粗さが小さい表面側に金属膜を設けて金属膜積層フィルムとすることが耐電圧性を高める観点から好ましい。 In the present invention, the method of applying the metal film is not particularly limited, but a preferred method is to deposit aluminum or an alloy of aluminum and zinc on at least one side of the polypropylene film to provide a metal film such as a vapor deposition film that will become the internal electrode of the film capacitor. At this time, other metal components such as nickel, copper, gold, silver, and chromium can also be deposited simultaneously with or successively to the aluminum. Also, a protective layer can be provided on the vapor deposition film using oil or the like. If the surface roughness of the polypropylene film differs between the front and back, it is preferable to provide a metal film on the front side, which has relatively less roughness, to form a metal film laminated film from the viewpoint of increasing voltage resistance.
 本発明では、必要により、金属膜を形成後、金属膜積層フィルムを特定の温度でアニール処理を行ったり、熱処理を行ったりすることができる。また、絶縁もしくは他の目的で、金属膜積層フィルムの少なくとも片面に、ポリフェニレンオキサイドなど樹脂のコーティングを施すこともできる。 In the present invention, if necessary, after forming the metal film, the metal film laminated film can be annealed or heat treated at a specific temperature. In addition, at least one side of the metal film laminated film can be coated with a resin such as polyphenylene oxide for insulation or other purposes.
 本発明のフィルムコンデンサは、本発明の金属膜積層フィルムを用いてなる。すなわち、本発明のフィルムコンデンサは、本発明の金属膜積層フィルムを有する。 The film capacitor of the present invention is made using the metal film laminated film of the present invention. In other words, the film capacitor of the present invention has the metal film laminated film of the present invention.
 本発明のフィルムコンデンサは容量密度が1.1μF/cm以上18μF/cm以下であることが好ましい。フィルムコンデンサの容量密度は、高ければ高いほど同一容量のコンデンサ素子を作製したときに体積が小さくなり小型化が可能となることから、1.5μF/cm以上であることがより好ましい。フィルムコンデンサの容量密度は高ければ高いほど好ましいが、実現性の観点から18μF/cm以下であることが好ましく、より好ましくは10μF/cm以下である。本発明のポリプロピレンフィルムを4.5μm以下の厚みとなるよう製膜したものを使用することで前記容量密度を1.1μF/cm以上とすることが容易となり、3.5μm以下の厚みとなるよう製膜したものを使用することで1.5μF/cm以上とすることが容易となる。 The film capacitor of the present invention preferably has a capacitance density of 1.1 μF/cm 3 or more and 18 μF/cm 3 or less. The higher the capacitance density of the film capacitor, the smaller the volume of a capacitor element of the same capacitance is when it is manufactured, and therefore miniaturization is possible, so that the capacitance density is more preferably 1.5 μF/cm 3 or more. The higher the capacitance density of the film capacitor, the more preferable it is, but from the viewpoint of feasibility, it is preferably 18 μF/cm 3 or less, and more preferably 10 μF/cm 3 or less. By using the polypropylene film of the present invention formed to a thickness of 4.5 μm or less, it is easy to set the capacitance density to 1.1 μF/cm 3 or more, and by using the polypropylene film formed to a thickness of 3.5 μm or less, it is easy to set the capacitance density to 1.5 μF/cm 3 or more.
 フィルムコンデンサの容量密度(μF/cm)は、素子容量(μF)と素子体積(cm)より、以下の計算式により算出することができる。素子容量は、雰囲気温度23℃でJIS C 4908:2007に従い計測することができる。素子体積は、外装材、メタリコン、リールを含まない、蒸着フィルムを巻回した部分の体積を指し、公知の3Dスキャナ型三次元測定機により計測することができる。なお、フィルムコンデンサの容量密度(μF/cm)の測定方法の詳細は後述する。
容量密度(μF/cm)=素子容量(μF)/素子体積(cm)。
The capacitance density (μF/cm 3 ) of a film capacitor can be calculated from the element capacitance (μF) and element volume (cm 3 ) by the following formula. The element capacitance can be measured in accordance with JIS C 4908:2007 at an ambient temperature of 23° C. The element volume refers to the volume of the part where the vapor deposition film is wound, not including the exterior material, metallicon, and reel, and can be measured by a known 3D scanner type three-dimensional measuring machine. The method for measuring the capacitance density (μF/cm 3 ) of a film capacitor will be described in detail later.
Capacitance density (μF/cm 3 )=element capacitance (μF)/element volume (cm 3 ).
 本発明のフィルムコンデンサは135℃での耐電圧が0.60kV以上であることが好ましく、0.75kV以上であることがより好ましく、1.0kV以上であることがさらに好ましい。本発明のポリプロピレンフィルムは上述した特徴を具備することで高温での耐電圧が高いことから、これをフィルムコンデンサの誘電体に用いることで、得られるフィルムコンデンサの135℃での耐電圧を0.60kV以上とすることが容易となり、本発明の好ましい態様のポリプロピレンフィルムを用いることで、135℃での耐電圧をさらに高めることができる。 The film capacitor of the present invention preferably has a withstand voltage of 0.60 kV or more at 135°C, more preferably 0.75 kV or more, and even more preferably 1.0 kV or more. Since the polypropylene film of the present invention has the above-mentioned characteristics and thus has a high withstand voltage at high temperatures, using this as the dielectric of a film capacitor makes it easy to achieve a withstand voltage of 0.60 kV or more at 135°C for the resulting film capacitor, and by using a preferred embodiment of the polypropylene film of the present invention, the withstand voltage at 135°C can be further increased.
 例えば、上記した本発明の金属膜積層フィルムを、種々の方法で積層もしくは捲回すことにより本発明のフィルムコンデンサを得ることができる。捲回型フィルムコンデンサの好ましい製造方法を例示すると、次のとおりである。 For example, the film capacitor of the present invention can be obtained by laminating or winding the metal film laminate film of the present invention described above in various ways. Examples of preferred methods for manufacturing a wound film capacitor are as follows.
 ポリプロピレンフィルムの片面にアルミニウムを減圧状態で蒸着する。その際、長手方向に走るマージン部を有するストライプ状に蒸着する。次に、表面の各蒸着部の中央と各マージン部の中央に刃を入れてスリットし、表面の一方にマージンを有したテープ状の巻取リールを作製する。左もしくは右にマージンを有するテープ状の巻取リールを左マージンおよび右マージンのもの各1本ずつを、幅方向に蒸着部分がマージン部よりはみ出すように2枚重ね合わせて捲回し、捲回体を得る。 Aluminum is vapor-deposited under reduced pressure on one side of a polypropylene film. At this time, it is vapor-deposited in stripes with margins running in the longitudinal direction. Next, a blade is used to slit the center of each vapor-deposited section and the center of each margin on the surface, creating a tape-like take-up reel with a margin on one side of the surface. Two tape-like take-up reels with a left margin and one with a right margin are stacked together and wound so that the vapor-deposited section extends beyond the margin in the width direction, to obtain a wound body.
 両面に蒸着を行う場合は、一方の面の長手方向に走るマージン部を有するストライプ状に蒸着し、もう一方の面には長手方向のマージン部が裏面側蒸着部の中央に位置するようにストライプ状に蒸着する。次に表裏それぞれのマージン部中央に刃を入れてスリットし、両面ともそれぞれ片側にマージン(例えば表面右側にマージンがあれば裏面には左側にマージン)を有するテープ状の巻取リールを作製する。得られたリールと未蒸着の合わせフィルム各1本ずつを、幅方向に金属化フィルムが合わせフィルムよりはみ出すように2枚重ね合わせて捲回し、捲回体を得る。 When vapor deposition is performed on both sides, one side is vapor deposited in stripes with a margin running in the longitudinal direction, and the other side is vapor deposited in stripes so that the longitudinal margin is located in the center of the vapor deposition area on the back side. Next, a blade is cut into the center of the margins on both sides to create a tape-like take-up reel with a margin on one side on each side (for example, if there is a margin on the right side of the front side, there will be a margin on the left side on the back side). The resulting reel and one unvapor-deposited laminated film are then overlapped and wound in two so that the metallized film extends beyond the laminated film in the width direction to obtain a wound body.
 本発明の金属層積層フィルムから本発明のフィルムコンデンサを得る方法としては、例えば、以上のようにして作製した捲回体から芯材を抜いてプレスし、両端面にメタリコンを溶射して外部電極とし、メタリコンにリード線を溶接して捲回型フィルムコンデンサとする方法が挙げられる。フィルムコンデンサの用途は、電気自動車、ハイブリッド車、燃料電池車等の電動自動車やドローン等の電動航空機のパワーコントロールユニット用途、鉄道車輌用途、太陽光発電・風力発電用途および一般家電用途等、多岐に亘っており、本発明のフィルムコンデンサもこれら用途に好適に用いることができる。その他、本発明のポリプロピレンフィルムは、包装用フィルム、離型用フィルム、工程フィルム、衛生用品、農業用品、建築用品、医療用品など様々な用途でも用いることができ、特にフィルム加工において加熱工程を含む用途に好ましく用いることができる。 A method for obtaining the film capacitor of the present invention from the metal layer laminated film of the present invention includes, for example, removing the core material from the wound body produced as described above, pressing it, spraying metallicon on both end faces to form external electrodes, and welding lead wires to the metallicon to form a wound film capacitor. Film capacitors have a wide range of applications, including power control units for electric automobiles such as electric vehicles, hybrid vehicles, and fuel cell vehicles, electric aircraft such as drones, railway vehicles, solar power generation and wind power generation, and general home appliances, and the film capacitor of the present invention can also be suitably used for these applications. In addition, the polypropylene film of the present invention can be used for various applications such as packaging films, release films, process films, sanitary products, agricultural products, construction products, and medical products, and can be particularly preferably used for applications that include a heating process in film processing.
 以下、本発明のパワーコントロールユニット、電動自動車、電動航空機について説明する。本発明のパワーコントロールユニットは、本発明のフィルムコンデンサを有する。パワーコントロールユニットは、電力により駆動する機構を持つ電動自動車や電動航空機等において、動力をマネジメントするシステムである。パワーコントロールユニットに本発明のフィルムコンデンサを搭載することで、パワーコントロールユニット自体の小型化、耐熱性向上、高効率化が可能となり、結果、燃費が向上する。 The power control unit, electric automobile, and electric aircraft of the present invention will be described below. The power control unit of the present invention has the film capacitor of the present invention. The power control unit is a system that manages power in electric automobiles, electric aircraft, and the like that have mechanisms that are driven by electricity. By installing the film capacitor of the present invention in the power control unit, it is possible to reduce the size of the power control unit itself, improve its heat resistance, and increase its efficiency, resulting in improved fuel efficiency.
 本発明の電動自動車は、本発明のパワーコントロールユニットを有する。ここで電動自動車とは、電気自動車、ハイブリッド車、燃料電池車等の電力により駆動する機構を有する自動車を指す。前述のとおり、本発明のパワーコントロールユニットは小型化が可能な他、耐熱性や効率にも優れるため、電動自動車が本発明のパワーコントロールユニットを備えることで燃費の向上等に繋がる。 The electric vehicle of the present invention has the power control unit of the present invention. Here, the electric vehicle refers to a vehicle that has a mechanism that is driven by electric power, such as an electric vehicle, a hybrid vehicle, or a fuel cell vehicle. As mentioned above, the power control unit of the present invention can be made compact, and also has excellent heat resistance and efficiency, so that equipping an electric vehicle with the power control unit of the present invention leads to improved fuel efficiency, etc.
 本発明の電動航空機は、本発明のパワーコントロールユニットを有する。ここで電動航空機とは、有人電動航空機やドローン等の電力により駆動する機構を有する航空機を指す。前述のとおり、本発明のパワーコントロールユニットは小型化が可能な他、耐熱性や効率にも優れるため、電動航空機が本発明のパワーコントロールユニットを備えることで燃費の向上等に繋がる。 The electric aircraft of the present invention has the power control unit of the present invention. Here, the electric aircraft refers to an aircraft having a mechanism that is driven by electricity, such as a manned electric aircraft or a drone. As mentioned above, the power control unit of the present invention can be made compact and has excellent heat resistance and efficiency, so that equipping an electric aircraft with the power control unit of the present invention leads to improved fuel efficiency, etc.
 本発明の包装材料は、本発明のポリプロピレンフィルムを用いてなることを特徴とする。本発明の包装材は、蒸着時の熱に対して構造安定性に優れ、特に透明蒸着層を積層した際に水蒸気バリア性、酸素バリア性が良好であることから、水蒸気や酸素により劣化しやすいものの包装に好適に用いることができる。 The packaging material of the present invention is characterized by using the polypropylene film of the present invention. The packaging material of the present invention has excellent structural stability against heat during deposition, and has good water vapor barrier properties and oxygen barrier properties, especially when a transparent deposition layer is laminated, so it can be suitably used for packaging items that are easily deteriorated by water vapor or oxygen.
 [測定、評価方法]
 (1)フィルム厚み
 ポリプロピレンフィルムの任意の10箇所の厚みを、23℃65%RHの雰囲気下で接触式のアンリツ(株)製電子マイクロメータ(K-312A型)を用いて測定した。その10箇所の厚みの算術平均値をポリプロピレンフィルムのフィルム厚み(単位:μm)とした。
[Measurement and evaluation methods]
(1) Film Thickness The thickness of ten randomly selected points on the polypropylene film was measured in an atmosphere of 23° C. and 65% RH using a contact-type electronic micrometer (K-312A type) manufactured by Anritsu Corp. The arithmetic average value of the thicknesses at the ten points was taken as the film thickness (unit: μm) of the polypropylene film.
 (2)ポリプロピレンフィルムの主配向軸方向と主配向軸直交方向
 実施例、比較例毎に、ポリプロピレンフィルムの主配向軸方向は下記の方法(引張試験)に従い、以下の通り決定した。なお、いずれの実施例、比較例においてもポリプロピレンフィルムの主配向軸直交方向はフィルム面内で主配向軸方向と直交する方向とした。
実施例1~6、比較例1~4、7、8:幅方向がポリプロピレンフィルムの主配向軸方向であった。
比較例5:サンプルの長辺方向がポリプロピレンフィルムの主配向軸方向であった。
(2) Direction of main orientation axis and direction perpendicular to main orientation axis of polypropylene film In each of the examples and comparative examples, the direction of the main orientation axis of the polypropylene film was determined as follows according to the following method (tensile test). In each of the examples and comparative examples, the direction perpendicular to the main orientation axis of the polypropylene film was the direction perpendicular to the main orientation axis in the film plane.
Examples 1 to 6, Comparative Examples 1 to 4, 7, and 8: The width direction was the main orientation axis direction of the polypropylene film.
Comparative Example 5: The long side direction of the sample was the main orientation axis direction of the polypropylene film.
 <引張試験>
 まず、長さ50mm×幅10mmの矩形に切り出しサンプル<1>とし、サンプル<1>の長辺の方向を0°と定義した。次に、長辺方向が0°方向から右に15°回転した方向となるように、同サイズの矩形のサンプル<2>を採取し、以下同様に矩形のサンプルの長辺方向を15°ずつ回転させて矩形のサンプル<3>~<12>を採取した。次に、長辺方向が引っ張り方向(測定方向)となるように、各矩形のサンプルを初期チャック間距離20mmで引張試験機にセットし、室温の雰囲気下で引張速度を300mm/分として引張試験を行った。このとき矩形サンプルが破断するまでの最大荷重を読み取り、これを試験前の試料の断面積(フィルム厚み×幅)で除した値を最大点強度の応力として算出した。当該値が最大であったサンプルの長辺方向をポリプロピレンフィルムの主配向軸方向とした。
<Tensile test>
First, a rectangular sample <1> with a length of 50 mm and a width of 10 mm was cut out, and the direction of the long side of the sample <1> was defined as 0°. Next, a rectangular sample <2> of the same size was taken so that the long side direction was rotated 15° to the right from the 0° direction, and rectangular samples <3> to <12> were taken by rotating the long side direction of the rectangular sample by 15° each in the same manner. Next, each rectangular sample was set in a tensile tester with an initial chuck distance of 20 mm so that the long side direction was the tensile direction (measurement direction), and a tensile test was performed at a tensile speed of 300 mm/min in an atmosphere at room temperature. At this time, the maximum load until the rectangular sample broke was read, and the value divided by the cross-sectional area (film thickness x width) of the sample before the test was calculated as the stress of the maximum point strength. The long side direction of the sample with the maximum value was determined as the main orientation axis direction of the polypropylene film.
 (3)ポリプロピレンフィルムの降温過程での結晶化温度(Tmc)
 ポリプロピレンフィルムの降温過程での結晶化温度(Tmc)は、JIS K7121-1987に準じて測定した。まず、示差走査熱量計(セイコーインスツル製EXSTAR DSC6220)を用いて、窒素雰囲気中で3mgのフィルムを30℃から260℃まで20℃/分の条件で昇温した。次いで、260℃で5分間保持した後、20℃/分の条件で30℃まで降温し、降温過程で得られる発熱ピークのピーク温度を計測した。同様の測定を3回行い、得られたピーク温度の平均値をポリプロピレンフィルムの降温結晶化温度(Tmc)とした。なお、1度の測定において前記発熱ピークが複数見られる場合は、ピーク温度が最も高い発熱ピークのピーク温度を当該測定のピーク温度とした。
(3) Crystallization temperature (Tmc) during cooling of polypropylene film
The crystallization temperature (Tmc) during the cooling process of the polypropylene film was measured in accordance with JIS K7121-1987. First, using a differential scanning calorimeter (EXSTAR DSC6220 manufactured by Seiko Instruments), 3 mg of the film was heated from 30 ° C. to 260 ° C. at 20 ° C./min in a nitrogen atmosphere. Next, after holding at 260 ° C. for 5 minutes, the temperature was lowered to 30 ° C. at 20 ° C./min, and the peak temperature of the exothermic peak obtained during the cooling process was measured. The same measurement was performed three times, and the average value of the obtained peak temperatures was taken as the cooling crystallization temperature (Tmc) of the polypropylene film. In addition, when multiple exothermic peaks were observed in one measurement, the peak temperature of the exothermic peak with the highest peak temperature was taken as the peak temperature of the measurement.
 (4)環状オレフィン系樹脂のガラス転移温度(Tg)
 JIS K7121-1987に準じて測定した。示差走査熱量計(セイコーインスツル製EXSTAR DSC6220)を用いて、窒素雰囲気中で3mgのフィルムあるいは樹脂を30℃から260℃まで20℃/分の条件で昇温し、次いで、260℃で5分間保持した後、20℃/分の条件で30℃まで降温した。さらに、20℃で5分間保持した後、再昇温として30℃から260℃まで20℃/分の条件で昇温した。再昇温過程で得られたDSC曲線から、ガラス転移温度(Tg)を下記式により算出した。
ガラス転移温度=(補外ガラス転移開始温度+補外ガラス転移終了温度)/2 。
(4) Glass transition temperature (Tg) of cyclic olefin resin
Measurement was performed according to JIS K7121-1987. Using a differential scanning calorimeter (EXSTAR DSC6220 manufactured by Seiko Instruments), 3 mg of film or resin was heated from 30°C to 260°C at 20°C/min in a nitrogen atmosphere, then held at 260°C for 5 minutes, and cooled to 30°C at 20°C/min. After further holding at 20°C for 5 minutes, the temperature was raised again from 30°C to 260°C at 20°C/min. From the DSC curve obtained during the reheating process, the glass transition temperature (Tg) was calculated according to the following formula.
Glass transition temperature=(extrapolated glass transition onset temperature+extrapolated glass transition finish temperature)/2.
 (5)I810/I840
 以下に示す装置および条件にて、ポリプロピレンフィルムよりミクロトーム法により断面Xを切り出し、断面Xの厚み方向の中央位置に対し、顕微ラマン分光法により偏光ラマン測定(ビーム径1μm、主配向軸方向に平行な偏光にて測定)を行った。その後、測定により得られた810cm-1および840cm-1のラマンバンド強度をそれぞれI810、I840としてI810/I840を算出した。なお、断面Xの切り出しは、ポリプロピレンフィルムの端部から1cm以上離れており、かつ、一度測定した断面の中心から1cm以上離れた位置を5箇所選んで行い、各断面について得られた測定値の平均値をポリプロピレンフィルムのI810/I840として採用した。また、偏光ラマンスペクトルは、ポリプロピレンフィルムに直線偏光を入射し、得られた散乱光のうち入射光と平行な成分のみを検出することで取得した。ただし、分光器の異方性を解消するため、検光子後・グレーティング前にλ/4板を設置し、散乱光の偏光状態を解消した状態でグレーティングに導入した。
<測定装置>
測定装置:inVia(RENISHAW製)
<測定条件>
測定モード:顕微ラマン
対物レンズ:×100
ビーム径:1μm
光源:半導体レーザー/532nm
レ-ザーパワー:300mW
回折格子:Single -3000gr/mm
スリット:65μm
検出器:CCD/RENISHAW 1024×256。
(5) I810/I840
Using the following equipment and conditions, a cross section X was cut out from a polypropylene film by a microtome method, and polarized Raman measurement (beam diameter 1 μm, parallel to the main orientation axis direction) was performed on the center position of the cross section X in the thickness direction by microscopic Raman spectroscopy. The Raman band intensities at 810 cm −1 and 840 cm −1 obtained by the measurement were taken as I810 and I840, respectively, and I810/I840 was calculated. The measurement was performed at five locations that were 1 cm or more away from the edge of the film and 1 cm or more away from the center of the cross section that was previously measured, and the average of the measurements obtained for each cross section was used as the I810/I840 of the polypropylene film. The polarized Raman spectrum was obtained by irradiating a linearly polarized light to the polypropylene film and detecting only the component of the scattered light parallel to the incident light. In order to eliminate this, a λ/4 plate was placed after the analyzer and before the grating, and the scattered light was introduced to the grating in a state where the polarization state of the scattered light was eliminated.
<Measurement Equipment>
Measuring device: inVia (manufactured by RENISHAW)
<Measurement conditions>
Measurement mode: Raman microscope objective lens: ×100
Beam diameter: 1 μm
Light source: Semiconductor laser / 532 nm
Laser power: 300mW
Diffraction grating: Single -3000 gr/mm
Slit: 65 μm
Detector: CCD/RENISHAW 1024x256.
 (6)A層における1μm×2μmの長方形において厚み方向と平行な一対の辺を通過する環状オレフィン樹脂のドメイン数(個/2μm
 ミクロトーム法を用い、ポリプロピレンフィルムを主配向軸方向と厚み方向に平行な面で切断し、切断面を有するポリプロピレンフィルム片を作製した。得られた切断面をRuOで染色した後、染色面を切削して断面Xを有する超薄切片を採取した。採取した超薄切片を下記観察条件にて透過型電子顕微鏡((株)日立製作所製 透過型電子顕微鏡(TEM)HT7700)を用いて断面Xを観察、撮像した。なお、このとき、環状オレフィン系樹脂は、ポリプロピレン樹脂よりも黒く染まる。
<観察条件>
加速電圧:100kV
観察倍率:2,000倍
 採取した断面X像に、一対の辺が厚み方向に1μm、厚み方向と直交する方向(主配向軸方向)に2μmの長方形を定めた2μmの四方で囲んだ長方形を描き、当該長方形において厚み方向と平行な一対の辺を通過する環状オレフィン系樹脂のドメイン数をカウントした。同様の測定を画像内の長方形の位置を変えて合計10回行って得られたドメイン数の平均値を算出し、A層における厚み方向と平行な一対の辺を通過する環状オレフィン樹脂のドメイン数(個/2μm)とした。なお、断面X内に一対の辺が厚み方向に1μm、厚み方向と直交する方向に2μmの長方形を定めるにあたっては、当該長方形の底辺は海部分に設定するものとし、底辺と対向する辺上にドメインが位置する場合は、これは無いものと見なして個数としてはカウントしないこととした。また、くびれ部のあるドメインについても、連結したドメインとして扱った。
(6) The number of cyclic olefin resin domains passing through a pair of sides parallel to the thickness direction in a 1 μm×2 μm rectangle in layer A (domains/2 μm 2 )
Using a microtome method, a polypropylene film was cut in a plane parallel to the main orientation axis direction and the thickness direction to prepare a polypropylene film piece having a cut surface. The cut surface was stained with RuO4 , and then the stained surface was cut to obtain an ultrathin section having a cross section X. The cross section X of the ultrathin section was observed and photographed using a transmission electron microscope (Hitachi, Ltd. Transmission Electron Microscope (TEM) HT7700) under the following observation conditions. At this time, the cyclic olefin resin was stained blacker than the polypropylene resin.
<Observation conditions>
Acceleration voltage: 100 kV
Observation magnification: 2,000 times. A rectangle was drawn on the collected cross-sectional X image, with a pair of sides of 1 μm in the thickness direction and 2 μm in the direction perpendicular to the thickness direction (main orientation axis direction), and the number of domains of the cyclic olefin resin passing through a pair of sides parallel to the thickness direction in the rectangle was counted. The same measurement was performed a total of 10 times by changing the position of the rectangle in the image, and the average value of the obtained domain numbers was calculated, and this was defined as the number of domains of the cyclic olefin resin passing through a pair of sides parallel to the thickness direction in the A layer (pieces/2 μm 2 ). In addition, when a rectangle with a pair of sides of 1 μm in the thickness direction and 2 μm in the direction perpendicular to the thickness direction is defined in the cross-sectional X, the base of the rectangle is set to the sea part, and if a domain is located on the side opposite to the base, this is considered to be absent and is not counted as the number. In addition, domains with constrictions were also treated as connected domains.
 (7)断面Xにおける環状オレフィン系樹脂のドメインの主配向軸方向の長さ
 (6)に記載の条件で断面XのTEM観察を行い、視野を動かさずにドメインを視野の中心から近い順にまず上方向に5個選択し、次に下方向に5個選択した。選択したドメインについて主配向軸方向の長さを計測し、平均値を断面Xにおける環状オレフィン系樹脂のドメインの主配向軸方向の長さとした。なお、選択したドメインが視野の外に端部を有する場合、一方の端部から他方の端部に向けて視野を移動して複数枚の像を取得し、つなぎ合わせた画像にてドメインの主配向軸方向の長さを求めた。1つの視野で10個のドメインが選択できなかった場合、別の視野に移動し、10個のドメインの計測が完了するまで観察を継続した。
(7) Length of the main axis direction of the domain of the cyclic olefin resin in the cross section X The cross section X was observed under the conditions described in (6), and five domains were selected in the upward direction from the center of the field of view without moving the field of view, and then five domains were selected in the downward direction. The length of the main axis direction of the selected domains was measured, and the average value was taken as the length of the main axis direction of the domain of the cyclic olefin resin in the cross section X. In addition, when the selected domain has an end outside the field of view, the field of view was moved from one end to the other end to obtain multiple images, and the length of the main axis direction of the domain was determined from the images connected together. If 10 domains could not be selected in one field of view, the field of view was moved to another field of view, and the observation was continued until the measurement of 10 domains was completed.
 (8)誘電正接
 JIS C2138-2007に準じて、ポリプロピレンフィルムの誘電正接を測定した。まず、フィルムを50mm×50mmの正方形状に切り出し、導電性ペーストを一方の面にΦ18mm、他方の面にΦ28mmで塗布して電極を形成した。電極形成サンプルを22℃で90時間、60%RHの環境下で保存した後、precision LCR meter HP-4284A(アジレント・テクノロジー製)にて22℃、60%RH、周波数10kHzの条件で誘電正接の測定を5回行い、得られた値の平均値を当該ポリプロピレンフィルムの誘電正接とした。
(8) Dielectric tangent The dielectric tangent of the polypropylene film was measured according to JIS C2138-2007. First, the film was cut into a square shape of 50 mm x 50 mm, and a conductive paste was applied to one side with a diameter of Φ18 mm and the other side with a diameter of Φ28 mm to form an electrode. The electrode-formed sample was stored in an environment of 22 ° C. and 60% RH for 90 hours, and then the dielectric tangent was measured five times using a precision LCR meter HP-4284A (manufactured by Agilent Technologies) under conditions of 22 ° C., 60% RH, and a frequency of 10 kHz, and the average value of the obtained values was taken as the dielectric tangent of the polypropylene film.
 (9)主配向軸直交方向の引裂強度/主配向軸方向の引裂強度
 JIS K 7128-2:1998に準じて測定した。具体的には、測定方向が長辺になるようにポリプロピレンフィルムから63.5mm×50mmの矩形の試験片を3つ採取した。各試験片について引裂力を東洋精機製軽荷重引裂き試験機で測定し、(1)に記載の方法で計測したフィルム厚みで除して引裂強度を求めた。3つの試験片の引裂強度の平均値を当該方向の引裂強度とした。主配向軸方向と主配向軸直交方向のそれぞれについて当該測定を行い、各方向の引裂強度からフィルムの主配向軸直交方向の引裂強度/主配向軸方向の引裂強度を算出した。
(9) Tear strength in the direction perpendicular to the main orientation axis/tear strength in the direction of the main orientation axis Measured according to JIS K 7128-2:1998. Specifically, three rectangular test pieces of 63.5 mm x 50 mm were taken from the polypropylene film so that the measurement direction was the long side. The tear strength of each test piece was measured using a light-load tear tester manufactured by Toyo Seiki, and the tear strength was calculated by dividing the tear strength by the film thickness measured by the method described in (1). The average value of the tear strengths of the three test pieces was taken as the tear strength in that direction. The measurement was performed in each of the main orientation axis direction and the direction perpendicular to the main orientation axis, and the tear strength in the direction perpendicular to the main orientation axis/tear strength in the direction of the main orientation axis of the film was calculated from the tear strength in each direction.
 (10)ポリプロピレンフィルムの絶縁破壊電圧(V/μm)
 測定温度に保温されたオーブン内でポリプロピレンフィルムを1分間加熱後、その雰囲気中でJIS C2330(2001)7.4.11.2 B法(平板電極法)に準じて絶縁破壊電圧試験を行い、絶縁破壊電圧を測定した。ただし、下部電極については、JIS C2330(2001)7.4.11.2のB法記載の金属板の上に、同一寸法の株式会社十川ゴム製「導電ゴムE-100<65>」を乗せたものを使用した。絶縁破壊電圧試験を30回行い、得られた値をポリプロピレンフィルムの厚み(上記(1)で測定)で除してV/μmに換算し、計30点の測定値(算出値)のうち最大値から大きい順に5点と最小値から小さい順に5点を除いた20点の平均値を、当該温度におけるポリプロピレンフィルムの絶縁破壊電圧とした。測定温度としては、23℃、105℃、135℃の3種とした。なお、23℃の場合においては、オーブンでの加熱をせず、部屋の雰囲気温度を23℃に保って絶縁破壊電圧試験を行った。
(10) Dielectric breakdown voltage of polypropylene film (V/μm)
After heating the polypropylene film for 1 minute in an oven kept at the measurement temperature, a breakdown voltage test was performed in that atmosphere in accordance with JIS C2330 (2001) 7.4.11.2 B method (flat electrode method) to measure the breakdown voltage. However, for the lower electrode, a metal plate described in JIS C2330 (2001) 7.4.11.2 B method was used, and "Conductive Rubber E-100 <65>" manufactured by Togawa Rubber Co., Ltd. of the same dimensions was placed on top of it. The breakdown voltage test was performed 30 times, and the obtained value was divided by the thickness of the polypropylene film (measured in (1) above) to convert it to V/μm. The average value of 20 points, excluding the 5 points from the largest value and the 5 points from the smallest value out of the total 30 measured values (calculated values), was taken as the breakdown voltage of the polypropylene film at that temperature. Three types of measurement temperatures were used: 23°C, 105°C, and 135°C. In the case of 23° C., the dielectric breakdown voltage test was performed without heating in an oven, with the ambient temperature in the room kept at 23° C.
 (11)フィルムコンデンサ特性の評価
 ポリプロピレンフィルムの各面の濡れ張力を、JIS K 6768-1995に準じて測定した。濡れ張力が高い方の面に、(株)アルバック製真空蒸着機でアルミニウムを膜抵抗が10Ω/sqとなるよう蒸着した。蒸着の際、マスキングオイルにより長手方向に垂直な方向にマージン部を設けた、いわゆるT型マージン(長手方向ピッチ(周期)が17mm、ヒューズ幅が0.5mm)を有する蒸着パターンを施した蒸着フィルムAと、T型マージンを有する蒸着パターンを施していない蒸着フィルムBをそれぞれ作製した。得られた蒸着フィルムA、Bをそれぞれスリットし、フィルム幅50mm(端部マージン幅2mm)の蒸着リールA、Bを得た。次いで、蒸着リールA、Bが交互に重なるようにして、(株)皆藤製作所製素子巻機(KAW-4NHB)を用いて、コンデンサ素子として仕上げた後の素子容量が10μFとなるようにコンデンサ素子を巻き取り、メタリコン処理を施した後、135℃雰囲気下で減圧しながら12時間の熱処理を施し、リード線を取り付けてコンデンサ素子に仕上げた。こうして得られたコンデンサ素子10個を用いて、評価温度下でコンデンサ素子に150VDCの電圧を印加し、該電圧で10分間経過後にステップ状に50VDC/1分で徐々に印加電圧を上昇させることを繰り返す、所謂ステップアップ試験を行った。なお、評価温度は23℃、135℃とし、温度毎に試験を行った。
(11) Evaluation of film capacitor characteristics The wet tension of each surface of a polypropylene film was measured in accordance with JIS K 6768-1995. On the surface with higher wet tension, aluminum was deposited using a vacuum deposition machine manufactured by ULVAC, Inc., so that the film resistance was 10 Ω/sq. During deposition, a deposition film A was provided with a deposition pattern having a so-called T-shaped margin (longitudinal pitch (period) of 17 mm, fuse width of 0.5 mm) in which a margin was provided in a direction perpendicular to the longitudinal direction using masking oil, and a deposition film B was not provided with a deposition pattern having a T-shaped margin. The obtained deposition films A and B were each slit to obtain deposition reels A and B with a film width of 50 mm (edge margin width of 2 mm). Next, the evaporation reels A and B were alternately stacked, and the capacitor elements were wound using a device winding machine (KAW-4NHB) manufactured by Kaito Manufacturing Co., Ltd., so that the element capacitance after finishing as a capacitor element would be 10 μF, and after metallicon processing, they were subjected to heat treatment for 12 hours while reducing the pressure in an atmosphere at 135°C, and lead wires were attached to finish the capacitor element. Using 10 capacitor elements thus obtained, a so-called step-up test was performed in which a voltage of 150 VDC was applied to the capacitor elements at an evaluation temperature, and after 10 minutes had elapsed at that voltage, the applied voltage was gradually increased in steps at 50 VDC/minute. The evaluation temperatures were 23°C and 135°C, and the test was performed at each temperature.
 <耐電圧評価>
 ステップアップ試験において、静電容量を測定してグラフ上にプロットし、該容量が初期値の75%になった電圧をポリプロピレンフィルムの厚み(上記(1)で測定した値)で割り返して、各温度での耐電圧を求めた。同様の測定をコンデンサ素子10個で行い、得られた値の平均値を算出して、以下の基準で温度変化による耐電圧低下率と135℃での耐電圧を評価した。
<Voltage resistance evaluation>
In the step-up test, the capacitance was measured and plotted on a graph, and the voltage at which the capacitance became 75% of the initial value was divided by the thickness of the polypropylene film (the value measured in (1) above) to determine the withstand voltage at each temperature. Similar measurements were performed on 10 capacitor elements, and the average value of the obtained values was calculated, and the withstand voltage reduction rate due to temperature change and the withstand voltage at 135°C were evaluated according to the following criteria.
 <温度変化による耐電圧低下率>
 23℃での耐電圧をB(23)、135℃での耐電圧をB(135)として、以下の評価基準で評価した。評価基準の「A」は使用可能であること、「B」、「C」は条件次第で使用可能であること、「D」は実用上の性能に劣り使用が困難なことをそれぞれ意味する。
A:B(135)/B(23)が0.70より大きかった。
B:B(135)/B(23)が0.60より大きく0.70以下であった。
C:B(135)/B(23)が0.50より大きく0.60以下であった。
D:B(135)/B(23)が0.5より小さかった。
<Voltage withstand voltage drop rate due to temperature change>
The withstand voltage at 23° C. was rated as B (23), and the withstand voltage at 135° C. was rated as B (135), and the evaluation was based on the following evaluation criteria: "A" in the evaluation criteria means usable, "B" and "C" means usable under certain conditions, and "D" means poor practical performance and difficult to use.
A:B(135)/B(23) was greater than 0.70.
B: B(135)/B(23) was greater than 0.60 and not greater than 0.70.
C: B(135)/B(23) was greater than 0.50 and equal to or less than 0.60.
D: B(135)/B(23) was smaller than 0.5.
 <135℃での耐電圧>
 B(135)を基準に以下の評価基準で評価した。なお、評価基準の「A」は使用可能であること、「B」、「C」は条件次第で使用可能であること、「D」は実用上の性能に劣り使用が困難なことをそれぞれ意味する。
A:B(135)が410V/μmより大きかった。
B:B(135)が360V/μmより大きく410V/μm以下であった。
C:B(135)が330V/μmより大きく360V/μm以下であった。
D:B(135)が330V/μm以下であった。
<Voltage resistance at 135°C>
The evaluation was performed according to the following criteria, with B (135) as the standard. In the evaluation criteria, "A" means usable, "B" and "C" mean usable under certain conditions, and "D" means poor practical performance and difficult to use.
A:B(135) was greater than 410 V/μm.
B: B(135) was greater than 360 V/μm and equal to or less than 410 V/μm.
C: B(135) was greater than 330 V/μm and equal to or less than 360 V/μm.
D: B(135) was 330 V/μm or less.
 <信頼性評価>
 10個のコンデンサ素子について、静電容量が初期値に対して18%以下に減少するまで電圧を上昇させた後に、最も耐電圧を高く上昇させたコンデンサ素子1個を解体し、破壊の状態を調べて信頼性を以下の評価基準で評価した。評価基準の「S」は使用可能であること、「A」、「B」、「C」は条件次第で使用可能であること、「D」は実用上の性能に劣り使用が困難であることをそれぞれ意味する。
A:素子形状の変化、貫通状の破壊共に観察されなかった。
B:素子形状の変化は無く、かつポリプロピレンフィルムに1層以上5層以下の貫通状の破壊が観察された。
C:素子形状の変化は無く、ポリプロピレンフィルムに6層以上10層以下の貫通状の破壊が観察された。
D:素子形状に変化が認められた、又はポリプロピレンフィルムに11層以上の貫通状の破壊が観察された。
<Reliability evaluation>
The voltage was increased for the 10 capacitor elements until the capacitance was reduced to 18% or less of the initial value, and then the capacitor element with the highest withstand voltage was disassembled to check the state of breakdown and evaluate its reliability using the following evaluation criteria: "S" in the evaluation criteria means that it can be used, "A", "B", and "C" mean that it can be used depending on the conditions, and "D" means that it has poor practical performance and is difficult to use.
A: Neither change in element shape nor breakage in the form of penetration was observed.
B: There was no change in the shape of the element, and penetration damage was observed in 1 to 5 layers of the polypropylene film.
C: The shape of the element was not changed, and penetration damage was observed in 6 to 10 layers of the polypropylene film.
D: Change in element shape was observed, or breakage of 11 or more layers through the polypropylene film was observed.
 <加工性評価>
 前記蒸着を施した後のスリットの際に、ポリプロピレンフィルムが破断した頻度に応じて加工性を以下の評価基準で評価した。評価基準において、「A」は使用可能であること、「B」、「C」は条件次第で使用可能であること、「D」は実用上の性能に劣り使用が困難なことをそれぞれ意味する。
A:スリット長2万mあたりの破断回数は1回以下であった。
B:スリット長2万mあたりの破断回数は1回より多く3回以下であった。
C:スリット長2万mあたりの破断回数は3回より多く10回以下であった。
D:スリット長2万mあたりの破断回数は10回より多かった。
<Processability evaluation>
The processability was evaluated according to the frequency with which the polypropylene film broke when slitting after the deposition, using the following evaluation criteria: "A" means usable, "B" and "C" mean usable depending on the conditions, and "D" means poor practical performance and difficult to use.
A: The number of breaks per 20,000 m of slit length was 1 or less.
B: The number of breaks per 20,000 m of slit length was more than 1 and 3 or less.
C: The number of breaks per 20,000 m of slit length was more than 3 and 10 or less.
D: The number of breaks per 20,000 m of slit length was more than 10.
 (12)フィルムコンデンサ素子の容量密度
 コンデンサ素子10個の容量をキーサイトテクノロジー製E4980AプレシジョンLCRメーターにて、周波数1kHz、雰囲気温度23℃でJIS C 4908:2007に従い計測し、各素子の素子容量を求めた。続いて、それぞれの素子の体積をキーエンス製VL-500 3Dスキャナ型三次元測定機により計測し、素子体積とした。得られた値から、各素子について次式にしたがい容量密度(μF/cm)を算出し、10個のコンデンサ素子の平均値を測定値として採用した。
容量密度(μF/cm)=素子容量(μF)/素子体積(cm)。
(12) Capacitance Density of Film Capacitor Element The capacitance of 10 capacitor elements was measured using a Keysight Technologies E4980A precision LCR meter at a frequency of 1 kHz and an atmospheric temperature of 23°C in accordance with JIS C 4908:2007 to determine the element capacitance of each element. Next, the volume of each element was measured using a Keyence VL-500 3D scanner-type three-dimensional measuring machine to determine the element volume. From the obtained values, the capacitance density (μF/cm 3 ) of each element was calculated according to the following formula, and the average value of the 10 capacitor elements was used as the measured value.
Capacitance density (μF/cm 3 )=element capacitance (μF)/element volume (cm 3 ).
 (13)フィルムコンデンサの135℃での耐電圧
 コンデンサ素子10個を用いて、135℃高温下でコンデンサ素子に150VDCの電圧を印加し、該電圧で10分間経過後にステップ状に50VDC/1分で徐々に印加電圧を上昇させることを繰り返す、所謂ステップアップ試験を行った。ステップアップ試験において、静電容量変化を測定しグラフ上にプロットし、該容量が初期値の75%になった電圧をフィルムコンデンサの135℃での耐電圧として記録した。
(13) Withstand voltage of film capacitor at 135°C A so-called step-up test was performed using 10 capacitor elements, in which a voltage of 150 VDC was applied to the capacitor elements at a high temperature of 135°C, and after 10 minutes at that voltage, the applied voltage was gradually increased in steps of 50 VDC/minute, and this was repeated. In the step-up test, the change in capacitance was measured and plotted on a graph, and the voltage at which the capacitance became 75% of the initial value was recorded as the withstand voltage of the film capacitor at 135°C.
 (14)フィルムコンデンサ性能評価
 <寿命評価>
 コンデンサ素子10個を用いて、135℃高温下でコンデンサ素子に750VDCの電圧を印加し、100時間ごとに取り出して容量を測定した。該容量が初期値の90%以下となった時間を求め、コンデンサ素子10個の平均値を算出したものを寿命とし、以下の基準で評価した。Aは好適に使用可能であること、Bは使用困難なことをそれぞれ意味する。
A:寿命が2000時間以上である。
B:寿命が2000時間より小さい。
(14) Film capacitor performance evaluation <Life evaluation>
Ten capacitor elements were used, and a voltage of 750 VDC was applied to the capacitor elements at a high temperature of 135° C., and the capacitor elements were removed every 100 hours to measure the capacitance. The time at which the capacitance became 90% or less of the initial value was determined, and the average value of the 10 capacitor elements was calculated as the lifespan, which was evaluated according to the following criteria. A means that it can be used favorably, and B means that it is difficult to use.
A: The life span is 2000 hours or more.
B: The life is less than 2000 hours.
 <素子体格評価(小型化の指標)>
 (12)の方法で測定したコンデンサ素子10個の体積の平均値を素子体積とし、以下の基準で評価した。A、Bはコンデンサ素子の小型化が可能であり、Cはコンデンサ素子の小型化が困難なことをそれぞれ意味する。
A:素子体積が80cm以下である。
B:素子体積が80cmより大きく、160cm以下である。
C:素子体積が160cmより大きい。
<Element size evaluation (index for miniaturization)>
The average value of the volumes of 10 capacitor elements measured by the method in (12) was taken as the element volume, and evaluation was performed according to the following criteria: A and B indicate that the capacitor element can be miniaturized, and C indicates that it is difficult to miniaturize the capacitor element.
A: The element volume is 80 cm3 or less.
B: The element volume is greater than 80 cm 3 and less than or equal to 160 cm 3 .
C: The element volume is greater than 160 cm3 .
 (15)灰分
 JIS K 7250-1:2006に準じて、秤量した樹脂又はポリプロピレンフィルムを電気炉にて燃焼させ、灰分の量を評価した。なお、秤量にはメトラー・トレド製電子天秤XP26を用い、電気炉はヤマト科学製FO510を用い、電気炉は600℃まで加熱して燃焼させた。
(15) Ash Content The weighed resin or polypropylene film was burned in an electric furnace to evaluate the amount of ash content in accordance with JIS K 7250-1: 2006. For the weighing, an electronic balance XP26 manufactured by Mettler Toledo was used, and an electric furnace FO510 manufactured by Yamato Scientific was used. The electric furnace was heated to 600°C for burning.
 (16)断面XのA層部分における拡散構造
 観察倍率を20,000倍にした以外は(6)に記載の条件と同様の条件にてポリプロピレンフィルムの断面XのA層部分のTEM観察を行い、得られた画像をImageJ(バージョン1.53t)にて以下の通り処理し、拡散構造の画素数の割合を求めた。
i)TEM観察で得られた画像より、重心が厚み方向から見てA層部分の中央となるように250pixel×250pixelを切り出した。
ii)8bitのグレースケール画像に変換した。
iii)Imageタブ中のAdjustタブのBrightness/Contrast機能のAutoにて明度を調整した。
iv)明度が60以上100以下となる画素が明度255、他の画素が0となるように二値化を行った。
v)10pixelの設定にてmedianフィルタ処理を行った。
vi)明度255の画素数をカウントし、切り出した画像の全画素数である62,500pixelで割り、100を掛けて拡散構造の画素数の割合(%)を求めた。
同一の画素が含まれないように同様の測定を5回行い、得られた拡散構造の画素数の割合の平均値を当該ポリプロピレンフィルムの断面XのA層部分における拡散構造の画素数の割合(%)とした。
(16) Diffusion structure in layer A of cross section X TEM observation of layer A of cross section X of a polypropylene film was performed under the same conditions as those described in (6) except that the observation magnification was changed to 20,000 times. The obtained image was processed in ImageJ (version 1.53t) as follows to determine the proportion of pixels of the diffusion structure.
i) From the image obtained by TEM observation, a 250 pixel x 250 pixel piece was cut out so that the center of gravity was the center of the layer A portion when viewed in the thickness direction.
ii) Converted into an 8-bit grayscale image.
iii) The brightness was adjusted using Auto in the Brightness/Contrast function of the Adjust tab in the Image tab.
iv) The image was binarized so that pixels with a brightness between 60 and 100 had a brightness of 255, and other pixels had a brightness of 0.
v) Median filter processing was performed with a setting of 10 pixels.
vi) The number of pixels with a brightness of 255 was counted, divided by the total number of pixels of the cut-out image, 62,500 pixels, and multiplied by 100 to obtain the percentage of pixels with a diffuse structure.
The same measurement was performed five times so as not to include the same pixel, and the average value of the obtained percentage of the number of pixels of the diffusion structure was regarded as the percentage (%) of the number of pixels of the diffusion structure in the layer A part of the cross section X of the polypropylene film.
 [樹脂等]
 各実施例及び比較例におけるポリプロピレンフィルムの製造には、以下の樹脂等を使用した。
[Resin, etc.]
The following resins and the like were used in the production of the polypropylene films in each of the Examples and Comparative Examples.
 <ポリプロピレン樹脂>
ポリプロピレン樹脂1:
メソペンタッド分率が0.970、融点が166℃、メルトフローレート(MFR)が3.3g/10分であり、灰分を20ppm含有するホモポリプロピレン(Borealis AGの“Borclean”(登録商標)HC300BF)。
ポリプロピレン樹脂2:
メソペンタッド分率が0.982、融点が168℃、メルトフローレート(MFR)が2.2g/10分であり、灰分を15ppm含有するホモポリプロピレン。
分岐鎖状ポリプロピレン(B1):メルトフローレート(MFR)が2.4g/10分である分岐鎖状ポリプロピレン樹脂(Borealis AGの“Daploy”(登録商標)WB135HMS)。
<Polypropylene resin>
Polypropylene resin 1:
Homopolypropylene having a mesopentad fraction of 0.970, a melting point of 166° C., a melt flow rate (MFR) of 3.3 g/10 min, and an ash content of 20 ppm (Borealis AG's “Borclean”® HC300BF).
Polypropylene resin 2:
A homopolypropylene having a mesopentad fraction of 0.982, a melting point of 168° C., a melt flow rate (MFR) of 2.2 g/10 min, and an ash content of 15 ppm.
Branched polypropylene (B1): A branched polypropylene resin having a melt flow rate (MFR) of 2.4 g/10 min ("Daploy" (registered trademark) WB135HMS from Borealis AG).
 <ポリプロピレン樹脂以外の成分>
環状オレフィン系樹脂(C1):
ポリプラスチックス製“TOPAS”(登録商標)6013F-04(エチレンとノルボルネンを共重合させた樹脂(COC)であり、ガラス転移温度が138℃、非晶性)
環状オレフィン系樹脂(C2):
ポリプラスチックス製“TOPAS”(登録商標)6017S-04(エチレンとノルボルネンを共重合させた樹脂(COC)であり、ガラス転移温度が178℃、非晶性)
環状オレフィン系樹脂(C3):
三井化学製“APEL”(登録商標)5014CL(エチレンとノルボルナジエン誘導体を共重合させた樹脂(COC)であり、ガラス転移温度が136℃、非晶性)
酸化防止剤:
チバ・スペシャリティ・ケミカルズ製“IRGANOX”(登録商標)1010。
<Components other than polypropylene resin>
Cyclic olefin resin (C1):
Polyplastics "TOPAS" (registered trademark) 6013F-04 (a resin made by copolymerizing ethylene and norbornene (COC), with a glass transition temperature of 138°C and non-crystalline)
Cyclic olefin resin (C2):
Polyplastics "TOPAS" (registered trademark) 6017S-04 (a resin made by copolymerizing ethylene and norbornene (COC), with a glass transition temperature of 178°C and non-crystalline)
Cyclic olefin resin (C3):
Mitsui Chemicals'"APEL" (registered trademark) 5014CL (a resin (COC) made by copolymerizing ethylene and norbornadiene derivatives, with a glass transition temperature of 136°C and amorphous nature)
Antioxidant:
"IRGANOX" (registered trademark) 1010 manufactured by Ciba Specialty Chemicals.
 <環状オレフィン系樹脂予備混練原料>
原料(A1):
ポリプロピレン樹脂1が59.5質量部、環状オレフィン系樹脂(C1)が40質量部、酸化防止剤が0.5質量部となるように各成分を混合し、260℃に設定した二軸押出機で混練押出した後、ストランドを水冷後チップ化したもの。
原料(A2):
ポリプロピレン樹脂2が59.5質量部、環状オレフィン系樹脂(C3)が40質量部、酸化防止剤が0.5質量部となるように各成分を混合し、260℃に設定した二軸押出機で混練押出した後、ストランドを水冷後チップ化したもの。
原料(A3):
ポリプロピレン樹脂2が59.5質量部、環状オレフィン系樹脂(C2)が40質量部、酸化防止剤が0.5質量部となるように各成分を混合し、260℃に設定した二軸押出機で混練押出した後、ストランドを水冷後チップ化したもの。
<Cyclic olefin resin pre-mixed raw material>
Raw material (A1):
The components were mixed so that the polypropylene resin 1 was 59.5 parts by mass, the cyclic olefin resin (C1) was 40 parts by mass, and the antioxidant was 0.5 parts by mass, and the components were kneaded and extruded in a twin-screw extruder set at 260°C. The strands were then water-cooled and chipped.
Raw material (A2):
The components were mixed so that the polypropylene resin 2 was 59.5 parts by mass, the cyclic olefin resin (C3) was 40 parts by mass, and the antioxidant was 0.5 parts by mass, and the components were kneaded and extruded in a twin-screw extruder set at 260°C. The strands were then water-cooled and chipped.
Raw material (A3):
The components were mixed so that the polypropylene resin 2 was 59.5 parts by mass, the cyclic olefin resin (C2) was 40 parts by mass, and the antioxidant was 0.5 parts by mass, and the mixture was kneaded and extruded in a twin-screw extruder set at 260°C. The strands were then water-cooled and chipped.
 <分岐鎖状ポリプロピレン予備混練原料>
原料(D1):
ポリプロピレン樹脂1が89.5質量部、分岐鎖状ポリプロピレン(B1)が10質量部、酸化防止剤が0.5質量部となるように各成分を混合し、260℃に設定した二軸押出機で混練押出した後、ストランドを水冷後チップ化したもの。
原料(D2):
ポリプロピレン樹脂2が89.5質量部、分岐鎖状ポリプロピレン(B1)が10質量部、酸化防止剤が0.5質量部となるように各成分を混合し、260℃に設定した二軸押出機で混練押出した後、ストランドを水冷後チップ化したもの。
<Branched chain polypropylene pre-mixed raw material>
Raw material (D1):
The components were mixed so that the polypropylene resin 1 was 89.5 parts by mass, the branched polypropylene (B1) was 10 parts by mass, and the antioxidant was 0.5 parts by mass, and the mixture was kneaded and extruded in a twin-screw extruder set at 260°C. The strands were then water-cooled and chipped.
Raw material (D2):
The components were mixed so that the polypropylene resin 2 was 89.5 parts by mass, the branched polypropylene (B1) was 10 parts by mass, and the antioxidant was 0.5 parts by mass, and the mixture was kneaded and extruded in a twin-screw extruder set at 260°C. The strands were then water-cooled and chipped.
 (実施例1)
 原料(A1)が80.0質量部、ポリプロピレン樹脂1が19.7質量部、酸化防止剤が0.3質量部となるように各成分を混合した樹脂組成物をA層用の単軸押出機に供給した。当該単軸押出機において樹脂組成物を温度250℃で溶融させ、温度を250℃に調整した80μmカットの焼結フィルターで異物を除去した後、溶融樹脂組成物をTダイよりシート状に吐出させた。その後、エアーナイフ(エアー温度:23℃)により、表面温度が30℃に保持されたキャスティングドラム上に溶融シートを密着させて冷却固化し、未延伸ポリプロピレンフィルムを得た。該未延伸ポリプロピレンフィルムを複数のロール群にて155℃の温度に加熱し、周速差を設けたロール間で長手方向へ3.5倍に延伸して一軸配向ポリプロピレンフィルムを得た。引き続き、幅方向両端部を複数のクリップで把持して一軸配向ポリプロピレンフィルムをテンターに導き、185℃で予熱した。次いで、第1室と第2室の2室からなる横延伸室に一軸配向ポリプロピレンフィルムを導入し、第1室において180℃で幅方向へ3.2倍に延伸した後、第2室において175℃で幅方向へ3.7倍に延伸した(2室合わせて幅方向には11.8倍の延伸を行った。)。さらに熱処理および弛緩処理として幅方向に12%の弛緩を与えながら165℃で熱処理を行い、テンターの外側へ導いてクリップを解放した。さらに、熱処理後のフィルム表面(キャスティングドラム接触面側)に、大気中にて25W・分/mの処理強度でコロナ放電処理を行い、ポリプロピレンフィルムを得た。評価結果を表1-1に示す。
Example 1
A resin composition in which the raw material (A1) was mixed to 80.0 parts by mass, the polypropylene resin 1 was mixed to 19.7 parts by mass, and the antioxidant was mixed to 0.3 parts by mass was fed to a single-screw extruder for the A layer. In the single-screw extruder, the resin composition was melted at a temperature of 250°C, and foreign matter was removed using a sintered filter with a cut of 80 μm and adjusted to 250°C. The molten resin composition was then discharged from a T-die in the form of a sheet. Thereafter, the molten sheet was adhered to a casting drum whose surface temperature was kept at 30°C by an air knife (air temperature: 23°C) and cooled and solidified to obtain an unstretched polypropylene film. The unstretched polypropylene film was heated to a temperature of 155°C by a group of multiple rolls, and stretched 3.5 times in the longitudinal direction between rolls with a difference in peripheral speed to obtain a uniaxially oriented polypropylene film. Subsequently, the uniaxially oriented polypropylene film was guided to a tenter by holding both ends in the width direction with multiple clips, and preheated at 185°C. Next, the uniaxially oriented polypropylene film was introduced into a transverse stretching chamber consisting of two chambers, the first chamber and the second chamber, and stretched 3.2 times in the width direction at 180°C in the first chamber, and then stretched 3.7 times in the width direction at 175°C in the second chamber (11.8 times stretched in the width direction in total in the two chambers). Further, as heat treatment and relaxation treatment, heat treatment was performed at 165°C while giving 12% relaxation in the width direction, and the clip was released by leading to the outside of the tenter. Furthermore, the surface of the film after heat treatment (the side contacting the casting drum) was subjected to corona discharge treatment in the atmosphere at a treatment intensity of 25 W·min/ m2 to obtain a polypropylene film. The evaluation results are shown in Table 1-1.
 (実施例2)
 原料(A1)が48.0質量部、ポリプロピレン樹脂1が51.7質量部、酸化防止剤が0.3質量部となるように各成分を混合した樹脂組成物をA層用の単軸押出機に供給し、ポリプロピレン樹脂1をB層用の単軸押出機に供給した。各単軸押出機において樹脂組成物及びポリプロピレン樹脂1を260℃で溶融させ、温度を230℃に調整した80μmカットの焼結フィルターで異物を除去した後、フィードブロックを用いて樹脂組成物(A層用)とポリプロピレン樹脂1(B層用)をB層/A層/B層の3層構成で積層厚み比が1/10/1となるように積層させた。得られた溶融積層体をTダイよりシート状に吐出させ、エアーナイフにより、表面温度が30℃に保持されたキャスティングドラム上に密着させて冷却固化して未延伸ポリプロピレンフィルムを得た。以後、製膜条件を表1-1の通りとした以外は実施例1と同様にしてポリプロピレンフィルムを得た。評価結果を表1-1に示す。
Example 2
The resin composition obtained by mixing the raw material (A1) at 48.0 parts by mass, the polypropylene resin 1 at 51.7 parts by mass, and the antioxidant at 0.3 parts by mass was fed to a single screw extruder for the A layer, and the polypropylene resin 1 was fed to a single screw extruder for the B layer. In each single screw extruder, the resin composition and the polypropylene resin 1 were melted at 260°C, and foreign matter was removed using a sintered filter with a cutoff of 80 μm and adjusted to 230°C. The resin composition (for the A layer) and the polypropylene resin 1 (for the B layer) were laminated using a feed block so that the layer thickness ratio was 1/10/1 in a three-layer structure of the B layer/A layer/B layer. The obtained molten laminate was discharged from a T die into a sheet shape, and the sheet was brought into close contact with a casting drum with a surface temperature maintained at 30°C by an air knife, and cooled and solidified to obtain an unstretched polypropylene film. Thereafter, a polypropylene film was obtained in the same manner as in Example 1, except that the film-forming conditions were as shown in Table 1-1. The evaluation results are shown in Table 1-1.
 (実施例3~5、比較例3、4、6)
 原料処方、製膜条件を表1-1、表1-2に記載のとおりとした以外は実施例2と同様にしてポリプロピレンフィルムを得た。評価結果を表1-1、表1-2に示す。なお、フィルム厚みの調整は押出機の吐出量の増減により、積層比の調整はフィードブロックにより行った。比較例3,4,6においては、テンターの横延伸室が第1室のみであり、延伸も1段階で行った(以下、横延伸室が第1室のみのテンターを用いた例において同様)。なお、比較例6は5.5μmのポリプロピレンフィルムを得ようとしたところ、破膜により製膜することができなかった(ポリプロピレンフィルムを得られなかったため、表1-2中の評価は斜線で示す)。
(Examples 3 to 5, Comparative Examples 3, 4, and 6)
A polypropylene film was obtained in the same manner as in Example 2, except that the raw material formulation and film-forming conditions were as shown in Tables 1-1 and 1-2. The evaluation results are shown in Tables 1-1 and 1-2. The film thickness was adjusted by increasing or decreasing the discharge rate of the extruder, and the lamination ratio was adjusted by the feed block. In Comparative Examples 3, 4, and 6, the tenter had only the first transverse stretching chamber, and stretching was also performed in one stage (hereinafter, the same applies to examples in which a tenter having only the first transverse stretching chamber was used). In Comparative Example 6, when an attempt was made to obtain a 5.5 μm polypropylene film, film formation was not possible due to film breakage (since a polypropylene film was not obtained, the evaluation in Table 1-2 is indicated by diagonal lines).
 (実施例6、比較例1、5、7、9)
 原料処方及び製膜条件を表1に記載のとおりとした以外は、実施例1と同様にしてポリプロピレンフィルムを得た。評価結果を表1-1、表1-2に示す。なお、比較例5は未延伸フィルムであり、延伸以降の工程は行わなかった。比較例9は4.6μmのポリプロピレンフィルムを得ようとしたところ、破膜により製膜することができなかった(ポリプロピレンフィルムを得られなかったため、表1-2中の評価は斜線で示す)。
(Example 6, Comparative Examples 1, 5, 7, and 9)
A polypropylene film was obtained in the same manner as in Example 1, except that the raw material formulation and film-forming conditions were as shown in Table 1. The evaluation results are shown in Tables 1-1 and 1-2. Note that Comparative Example 5 was an unstretched film, and no steps after stretching were performed. In Comparative Example 9, an attempt was made to obtain a 4.6 μm polypropylene film, but film formation was not possible due to film breakage (since a polypropylene film could not be obtained, the evaluation in Table 1-2 is indicated by diagonal lines).
 (比較例2)
 ポリプロピレン樹脂2が79.7質量部、環状オレフィン系樹脂(C1)が20質量部、さらに酸化防止剤が0.3質量部となるように各成分をそれぞれ混合して260℃に設定した単軸の押出機に供給し、温度260℃で溶融した後、80μmカットの焼結フィルターで異物を除去して溶融単層ポリマーをTダイより吐出させた。これを90℃に保持されたキャスティングドラム上に、エアーナイフにより密着させて冷却固化して未延伸ポリプロピレンフィルムを得た。得られた未延伸ポリプロピレンフィルムを、その幅方向両端部を複数のクリップで把持して同時二軸延伸機に導き、把持を保ったまま163℃で予熱後、同温度で長手方向に3.6倍、幅方向に8.2倍の倍率で同時二軸延伸した。次いで、熱処理および弛緩処理は行わず同時二軸延伸機の外側へ導き、幅方向両端部のクリップを解放した後、実施例1と同様にコロナ放電処理を行い、ポリプロピレンフィルムを得た。評価結果を表1-2に示す。
(Comparative Example 2)
Each component was mixed so that polypropylene resin 2 was 79.7 parts by mass, cyclic olefin resin (C1) was 20 parts by mass, and antioxidant was 0.3 parts by mass, and fed to a single-screw extruder set at 260 ° C., melted at a temperature of 260 ° C., and then foreign matter was removed with a sintered filter with a cutoff of 80 μm, and the molten single-layer polymer was extruded from a T-die. This was adhered to a casting drum maintained at 90 ° C. by an air knife and cooled and solidified to obtain an unstretched polypropylene film. The obtained unstretched polypropylene film was guided to a simultaneous biaxial stretching machine with both ends in the width direction held by multiple clips, preheated at 163 ° C. while holding, and then simultaneously biaxially stretched at the same temperature at a magnification of 3.6 times in the longitudinal direction and 8.2 times in the width direction. Next, the film was guided to the outside of the simultaneous biaxial stretching machine without heat treatment and relaxation treatment, and the clips at both ends in the width direction were released, and then corona discharge treatment was performed in the same manner as in Example 1 to obtain a polypropylene film. The evaluation results are shown in Table 1-2.
 (比較例8)
 原料処方及び製膜条件を表1-2に記載のとおりとし、延伸後のフィルム厚みが4.5μmになるようにした以外は、比較例2と同様にしてポリプロピレンフィルムを得た。評価結果を表1-2に示す。
(Comparative Example 8)
A polypropylene film was obtained in the same manner as in Comparative Example 2, except that the raw material formulation and film-forming conditions were as shown in Table 1-2 and the film thickness after stretching was 4.5 μm. The evaluation results are shown in Table 1-2.
 (実施例C1)
 実施例5で得られたポリプロピレンフィルムのコロナ放電処理を施した面に、(株)アルバック製真空蒸着機でアルミニウムを膜抵抗が20Ω/sqで蒸着を施した。蒸着の際、マスキングオイルにより長手方向に垂直な方向にマージン部を設けた、いわゆるT型マージン(長手方向ピッチ(周期)が17mm、ヒューズ幅が0.5mm)を有する蒸着パターンを施した蒸着フィルムC1Aと、T型マージンを有する蒸着パターンを施していないもの蒸着フィルムC1Bをそれぞれ作製した。前記蒸着フィルムC1A、C1Bをそれぞれスリットし、フィルム幅50mm(端部マージン幅2mm)の蒸着リールC1A、C1Bを得た。次いで、蒸着リールC1A、C1Bが交互に重なるようにして(株)皆藤製作所製素子巻機(KAW-4NHB)にてコンデンサ素子として仕上げた後の素子容量が10μFとなるようにコンデンサ素子を巻き取り、メタリコン処理を施した後、135℃雰囲気下で減圧しながら12時間の熱処理を施し、リード線を取り付けてコンデンサ素子に仕上げた。得られたコンデンサ素子の評価結果を表2に示す。
(Example C1)
On the corona discharge-treated surface of the polypropylene film obtained in Example 5, aluminum was vapor-deposited at a film resistance of 20 Ω/sq using a vacuum vapor deposition machine manufactured by ULVAC, Inc. During vapor deposition, a vapor deposition pattern having a so-called T-shaped margin (longitudinal pitch (period) of 17 mm, fuse width of 0.5 mm) in which a margin was provided in a direction perpendicular to the longitudinal direction using masking oil was produced as a vapor deposition film C1A, and a vapor deposition film C1B without a vapor deposition pattern having a T-shaped margin was produced. The vapor deposition films C1A and C1B were each slit to obtain vapor deposition reels C1A and C1B with a film width of 50 mm (edge margin width of 2 mm). Next, the evaporation reels C1A and C1B were alternately stacked and the capacitor elements were wound on a device winding machine (KAW-4NHB) manufactured by Kaito Seisakusho Co., Ltd. so that the capacitance of the capacitor elements after finishing was 10 μF, and after metallicon treatment, the capacitor elements were subjected to heat treatment for 12 hours under reduced pressure at 135°C, and lead wires were attached to finish the capacitor elements. The evaluation results of the obtained capacitor elements are shown in Table 2.
 (実施例C2、比較例C1、C2)
 ポリプロピレンフィルムとして、表2に記載のポリプロピレンフィルムを使用した以外は、実施例C1と同様にしてコンデンサ素子を得た。評価結果を表2に示す。
(Example C2, Comparative Examples C1 and C2)
A capacitor element was obtained in the same manner as in Example C1, except that the polypropylene film used was a polypropylene film shown in Table 2. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、各実施例及び表1-2に記載のポリプロピレンフィルムはいずれも微多孔フィルムには当たらないものであった。 Note that none of the polypropylene films in each example and in Table 1-2 are microporous films.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明のポリプロピレンフィルムは、フィルムコンデンサ用途、包装用途、離型用途、テープ用途など工業用途等に広く使用でき、特に高温環境での耐電圧特性に優れることから、高温度・高電圧下で用いられるフィルムコンデンサ用途に好適に用いることができる。 The polypropylene film of the present invention can be widely used for industrial purposes such as film capacitors, packaging, release agents, and tapes, and is particularly suitable for use in film capacitors that are used at high temperatures and voltages because of its excellent voltage resistance properties in high-temperature environments.
1:断面Xの一部
2:海部分
3:島部分(ドメイン)
4:断面X内に一対の辺が厚み方向に平行となるように定めた1μm×2μmサイズの長方形
5:断面X内に一対の辺が厚み方向に平行となるように定めた1μm×2μmサイズの長方形の一対の短辺
 
1: Part of cross section X 2: Sea part 3: Island part (domain)
4: A rectangle of 1 μm×2 μm size defined in the cross section X so that a pair of sides are parallel to the thickness direction. 5: A pair of short sides of a rectangle of 1 μm×2 μm size defined in the cross section X so that a pair of sides are parallel to the thickness direction.

Claims (21)

  1.  環状オレフィン系樹脂とポリプロピレン樹脂とを含む層をA層とし、主配向軸方向と厚み方向に平行な面でポリプロピレンフィルムを切断したときの断面を断面Xとしたときに、前記A層を有し、かつ前記断面Xのラマン分光分析により測定される配向パラメータI810/I840が2.2以上20以下である、ポリプロピレンフィルム。 A polypropylene film having a layer A containing a cyclic olefin resin and a polypropylene resin, and a cross section X of the polypropylene film cut along a plane parallel to the main orientation axis direction and the thickness direction, the polypropylene film having the layer A, and an orientation parameter I810/I840 of the cross section X measured by Raman spectroscopic analysis of the cross section X being 2.2 or more and 20 or less.
  2.  前記断面Xにおける前記環状オレフィン系樹脂のドメインの主配向軸方向の長さが5.0μm以上1mm以下である、請求項1に記載のポリプロピレンフィルム。 The polypropylene film according to claim 1, wherein the length in the main orientation axis direction of the domain of the cyclic olefin resin in the cross section X is 5.0 μm or more and 1 mm or less.
  3.  誘電正接が3×10-6以上1×10-2以下である、請求項1または2に記載のポリプロピレンフィルム。 The polypropylene film according to claim 1 or 2, having a dielectric loss tangent of 3×10 −6 or more and 1×10 −2 or less.
  4.  前記断面XのA層部分に一対の短辺が厚み方向に平行となるように定めた1μm×2μmサイズの長方形において、前記一対の短辺を通過する前記環状オレフィン系樹脂のドメインが2.0個以上1000個以下存在する、請求項1~3のいずれかに記載のポリプロピレンフィルム。 The polypropylene film according to any one of claims 1 to 3, in which a pair of short sides of a rectangle of 1 μm x 2 μm in size is defined in the layer A portion of the cross section X so that the pair of short sides are parallel to the thickness direction, there are 2.0 to 1,000 domains of the cyclic olefin resin passing through the pair of short sides.
  5.  フィルム全体の質量を100質量%としたときに、前記環状オレフィン系樹脂の含有量が1.0質量%以上40質量%以下である、請求項1~4のいずれかに記載のポリプロピレンフィルム。 The polypropylene film according to any one of claims 1 to 4, in which the content of the cyclic olefin resin is 1.0% by mass or more and 40% by mass or less when the mass of the entire film is 100% by mass.
  6.  示差走査熱量測定によって測定される降温過程での結晶化温度(Tmc)が110℃以上150℃以下である、請求項1~5のいずれかに記載のポリプロピレンフィルム。 The polypropylene film according to any one of claims 1 to 5, in which the crystallization temperature (Tmc) during the cooling process measured by differential scanning calorimetry is 110°C or higher and 150°C or lower.
  7.  厚みが0.5μm以上15μm以下である、請求項1~6のいずれかに記載のポリプロピレンフィルム。 The polypropylene film according to any one of claims 1 to 6, having a thickness of 0.5 μm or more and 15 μm or less.
  8.  主配向軸直交方向の引裂強度/主配向軸方向の引裂強度の値が0.10以上10.0以下である、請求項1~7のいずれかに記載のポリプロピレンフィルム。 The polypropylene film according to any one of claims 1 to 7, in which the value of tear strength in the direction perpendicular to the main orientation axis/tear strength in the main orientation axis direction is 0.10 or more and 10.0 or less.
  9.  ポリプロピレンフィルム全体の質量を100質量%としたときに、灰分が0.0ppm以上1000ppm以下である、請求項1~8のいずれかに記載のポリプロピレンフィルム。 The polypropylene film according to any one of claims 1 to 8, in which the ash content is 0.0 ppm or more and 1000 ppm or less when the mass of the entire polypropylene film is taken as 100 mass %.
  10.  前記断面XのA層部分において、ポリプロピレン樹脂の海部分に環状オレフィン系樹脂が拡散した構造を有する、請求項1~9のいずれかに記載のポリプロピレンフィルム。 The polypropylene film according to any one of claims 1 to 9, wherein the A layer portion of the cross section X has a structure in which a cyclic olefin resin is diffused into the sea portion of the polypropylene resin.
  11.  請求項1~10のいずれかに記載のポリプロピレンフィルムの少なくとも片面に金属膜を有する、金属膜積層フィルム。 A metal film laminated film having a metal film on at least one side of the polypropylene film described in any one of claims 1 to 10.
  12.  請求項11に記載の金属膜積層フィルムを用いてなる、フィルムコンデンサ。 A film capacitor using the metal film laminate film described in claim 11.
  13.  容量密度が1.1μF/cm以上18μF/cm以下である、請求項12に記載のフィルムコンデンサ。 The film capacitor according to claim 12, having a capacitance density of 1.1 μF/cm 3 or more and 18 μF/cm 3 or less.
  14.  135℃での耐電圧が0.60kV以上である、請求項12または13に記載のフィルムコンデンサ。 The film capacitor according to claim 12 or 13, having a withstand voltage of 0.60 kV or more at 135°C.
  15.  請求項12~14のいずれかに記載のフィルムコンデンサを有する、パワーコントロールユニット。 A power control unit having a film capacitor according to any one of claims 12 to 14.
  16.  請求項15に記載のパワーコントロールユニットを有する、電動自動車。 An electric vehicle having the power control unit according to claim 15.
  17.  請求項15に記載のパワーコントロールユニットを有する、電動航空機。 An electric aircraft having the power control unit according to claim 15.
  18.  請求項1~10のいずれかに記載のポリプロピレンフィルムを用いてなる、包装材料。 A packaging material made using the polypropylene film described in any one of claims 1 to 10.
  19.  請求項1~18のいずれかに記載のポリプロピレンフィルムを製造する、ポリプロピレンフィルムの製造方法であって、ポリプロピレン樹脂と環状オレフィン系樹脂とを含む樹脂組成物を支持体上に溶融押出してポリプロピレン樹脂シートとするキャスト工程、前記ポリプロピレン樹脂シートを長手方向および幅方向に延伸する延伸工程をこの順に有し、前記延伸工程において、幅方向への延伸を下記の2段延伸方式(I)により行う、ポリプロピレンフィルムの製造方法。
    2段延伸方式(I):
    1段目の延伸:最終的な幅方向の延伸倍率をa×b倍としたときに、温度160℃以上185℃以下、延伸倍率a倍で幅方向に延伸する。
    2段目の延伸:前記1段目の延伸における温度よりも1℃~20℃低い温度で、さらに延伸倍率b倍で幅方向に延伸する。
    A method for producing a polypropylene film according to any one of claims 1 to 18, comprising the steps of: a casting step of melt-extruding a resin composition containing a polypropylene resin and a cyclic olefin resin onto a support to form a polypropylene resin sheet; and a stretching step of stretching the polypropylene resin sheet in the longitudinal direction and the width direction, in that order, wherein in the stretching step, stretching in the width direction is performed by the following two-stage stretching method (I).
    Two-stage stretching method (I):
    First-stage stretching: Stretching in the width direction is performed at a temperature of 160° C. to 185° C. and a stretching ratio of a, where the final stretching ratio in the width direction is a×b.
    Second-stage stretching: The film is further stretched in the width direction at a stretch ratio of b times at a temperature 1° C. to 20° C. lower than the temperature in the first-stage stretching.
  20.  面積延伸倍率が40倍以上である、請求項19に記載のポリプロピレンフィルムの製造方法。 The method for producing a polypropylene film according to claim 19, wherein the areal stretching ratio is 40 times or more.
  21.  前記延伸工程における延伸を、長手方向の延伸に次いで幅方向の延伸を行う逐次二軸延伸方式にて行う、請求項19または20に記載のポリプロピレンフィルムの製造方法。
     
    The method for producing a polypropylene film according to claim 19 or 20, wherein the stretching in the stretching step is performed by a sequential biaxial stretching method in which stretching in the longitudinal direction is followed by stretching in the width direction.
PCT/JP2023/044988 2022-12-19 2023-12-15 Polypropylene film WO2024135552A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022201846 2022-12-19
JP2022-201846 2022-12-19

Publications (1)

Publication Number Publication Date
WO2024135552A1 true WO2024135552A1 (en) 2024-06-27

Family

ID=91588800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/044988 WO2024135552A1 (en) 2022-12-19 2023-12-15 Polypropylene film

Country Status (1)

Country Link
WO (1) WO2024135552A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820689A (en) * 1994-07-08 1996-01-23 Tokuyama Corp Polypropylene sheet and stretched film
JP2020520127A (en) * 2017-05-15 2020-07-02 ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフトTdk Electronics Ag Film capacitor
JP2020521867A (en) * 2017-04-27 2020-07-27 トパス・アドバンスド・ポリマーズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Polyolefin film and its use
WO2022270577A1 (en) * 2021-06-25 2022-12-29 東レ株式会社 Polyolefin-based film, metallized film including same, film capacitor, power control unit, electric vehicle, and electric aircraft
WO2023188598A1 (en) * 2022-03-30 2023-10-05 東レ株式会社 Polypropylene film, metal membrane layered film using same, and film capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820689A (en) * 1994-07-08 1996-01-23 Tokuyama Corp Polypropylene sheet and stretched film
JP2020521867A (en) * 2017-04-27 2020-07-27 トパス・アドバンスド・ポリマーズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Polyolefin film and its use
JP2020520127A (en) * 2017-05-15 2020-07-02 ティーディーケイ・エレクトロニクス・アクチェンゲゼルシャフトTdk Electronics Ag Film capacitor
WO2022270577A1 (en) * 2021-06-25 2022-12-29 東レ株式会社 Polyolefin-based film, metallized film including same, film capacitor, power control unit, electric vehicle, and electric aircraft
WO2023188598A1 (en) * 2022-03-30 2023-10-05 東レ株式会社 Polypropylene film, metal membrane layered film using same, and film capacitor

Similar Documents

Publication Publication Date Title
KR102500999B1 (en) Polypropylene film, metal film laminated film and film capacitor and their manufacturing method
JP6160782B2 (en) Olefin-based laminated film and film capacitor
JP7135320B2 (en) Biaxially oriented polypropylene film, metal film laminated film and film capacitor
CN111051400B (en) Polypropylene film, metal film laminated film and film capacitor
JP6070864B2 (en) Polypropylene film and film capacitor
JP2006093688A (en) Polypropylene film for capacitor and capacitor using the same
WO2022270577A1 (en) Polyolefin-based film, metallized film including same, film capacitor, power control unit, electric vehicle, and electric aircraft
JP2008127460A (en) Biaxially oriented polypropylene film for capacitor, and metallized film and capacitor by using the same
JPWO2016043217A1 (en) Polypropylene film and film capacitor
JP6926827B2 (en) Olefin laminated film and film capacitors
WO2020040127A1 (en) Polypropylene film, metal-membrane layered film using same, and film capacitor
CN115135703A (en) Polypropylene film, metal film laminate film, and film capacitor
US20220135780A1 (en) Polypropylene film, metal layer laminated film using polypropylene film, and film capacitor
JP7424517B1 (en) Polypropylene film, metal film laminate film and film capacitor using it
US12020871B2 (en) Polypropylene film, metal layer laminated film using same, and film capacitor
JP6885484B2 (en) Polypropylene film and metal film laminated film using it, film capacitor
JP4742398B2 (en) Biaxially oriented polypropylene film
WO2024135552A1 (en) Polypropylene film
JP7318187B2 (en) Polypropylene film, metal film laminated film and film capacitor
JP7247919B2 (en) Polypropylene film, metal film laminated film using the same, film capacitor
WO2023188599A1 (en) Polyolefin-based film, laminated body, packing material, and packed body
JP7247918B2 (en) Polypropylene film, metal film laminated film using the same, film capacitor
CN117480202A (en) Polyolefin film, metal film laminate film using same, film capacitor, power control unit, electric vehicle, and electric aircraft
JP2023164765A (en) Polyolefin-based film, laminate, packaging material, and packaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23906914

Country of ref document: EP

Kind code of ref document: A1