WO2024135382A1 - Electrolysis device - Google Patents

Electrolysis device Download PDF

Info

Publication number
WO2024135382A1
WO2024135382A1 PCT/JP2023/043820 JP2023043820W WO2024135382A1 WO 2024135382 A1 WO2024135382 A1 WO 2024135382A1 JP 2023043820 W JP2023043820 W JP 2023043820W WO 2024135382 A1 WO2024135382 A1 WO 2024135382A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipeline
anolyte
valve
pump
tank
Prior art date
Application number
PCT/JP2023/043820
Other languages
French (fr)
Japanese (ja)
Inventor
仁司 松井
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022206605A external-priority patent/JP2024090615A/en
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Publication of WO2024135382A1 publication Critical patent/WO2024135382A1/en

Links

Images

Definitions

  • the present invention relates to an electrolysis device that supplies liquid in a tank to an electrolytic cell to perform electrolysis.
  • electrolysis is carried out by supplying the electrolyte in a tank to an electrolytic cell using a pump, but when the operation of the electrolysis equipment is stopped, the liquid is drained from the electrolytic cell to prevent corrosion of the electrolytic cell.
  • Patent Document 1 discloses an electrolysis device that uses gravity to drain liquid from within an electrolysis cell when operation is stopped.
  • This electrolysis device includes a tank, an electrolysis cell installed above the tank, a supply manifold connected below the electrolysis cell, supply nozzles provided at the bottom of the anode chamber and cathode chamber of the electrolysis cell, and a supply tube provided between the supply nozzle and the supply manifold.
  • the electrolysis device is designed to recover liquid from within the electrolysis cell by gravity from the supply nozzle through the supply tube and supply manifold into the tank.
  • the drain outlet of the electrolytic cell In order to drain the liquid in the electrolytic cell by gravity, the drain outlet of the electrolytic cell must be installed above the tank. This requires a sturdy and large platform to place the electrolytic cell, which is quite heavy, at a high altitude, and there is the problem that the installation of such a platform is very expensive.
  • the objective of the present invention is to provide an electrolysis device that can discharge the liquid in the electrolysis cell into a tank with a simple configuration.
  • an electrolysis device that solves the above problems.
  • An electrolysis device that supplies liquid in a tank to an electrolytic cell to perform electrolysis, A pump, a first pipe connecting the tank and the pump; a second pipeline connecting the pump and the electrolytic cell; a third pipeline connecting the first pipeline and the second pipeline; a fourth pipe extending from a pump side portion of the second pipe that is located closer to the pump than a connection portion between the second pipe and the third pipe to the tank; a selection means for selecting either a supply path for supplying liquid from the tank to the electrolytic cell via the first pipe and the second pipe by the pump, or a return path for returning liquid from the electrolytic cell to the tank via the third pipe and the fourth pipe by the pump;
  • An electrolysis device comprising the steps of:
  • the selection means preferably includes a first on-off valve installed in the first pipeline, a second on-off valve installed in the second pipeline, a third on-off valve installed in the third pipeline, a fourth on-off valve installed in the fourth pipeline, and a controller that controls the first on-off valve, the second on-off valve, the third on-off valve, and the fourth on-off valve.
  • the selection means may include a first on-off valve installed in the first pipeline, a second on-off valve installed in the fourth pipeline, a three-way valve installed at the connection between the second pipeline and the third pipeline, and a controller that controls the first on-off valve, the second on-off valve, and the three-way valve.
  • the selection means preferably includes a first on-off valve installed in the second pipeline, a second on-off valve installed in the fourth pipeline, a three-way valve installed at the connection between the first pipeline and the third pipeline, and a controller that controls the first on-off valve, the second on-off valve, and the three-way valve.
  • the selection means preferably includes a first on-off valve installed in the first pipeline, a second on-off valve installed in the third pipeline, a three-way valve installed at the connection between the second pipeline and the fourth pipeline, and a controller that controls the first on-off valve, the second on-off valve, and the three-way valve.
  • the selection means may include a first three-way valve installed at the connection between the first pipeline and the third pipeline, a second three-way valve installed at the connection between the second pipeline and the fourth pipeline, and a controller that controls the first three-way valve and the second three-way valve.
  • liquid can be supplied from the tank to the electrolytic cell by the pump, and when operation is stopped, by selecting a return path, the liquid can be returned from the electrolytic cell to the tank by the pump used when supplying liquid.
  • the same pump is used to supply liquid to the electrolytic cell during operation and to drain liquid from the electrolytic cell when operation is stopped, the liquid in the electrolytic cell can be drained to the tank with a simple configuration without the need for a large, sturdy stand to place the electrolytic cell at a high position.
  • FIG. 2 is a flow diagram of the electrolysis device according to the present invention.
  • FIG. 2 is a flow diagram showing the flow of liquid during operation in the electrolysis apparatus shown in FIG. 1 .
  • FIG. 2 is a flow diagram showing the flow of liquid when the operation of the electrolysis apparatus shown in FIG. 1 is stopped.
  • FIG. 4 is a flow diagram showing a first modified example of the electrolysis device according to the present invention.
  • FIG. 5 is a flow diagram showing the flow of liquid during operation in the electrolysis device shown in FIG. 4 .
  • FIG. 5 is a flow diagram showing the flow of liquid when the operation of the electrolysis device shown in FIG. 4 is stopped.
  • FIG. 6 is a flow diagram showing a second modified example of the electrolysis device according to the present invention.
  • FIG. 1 is a flow diagram showing the flow of liquid during operation in the electrolysis apparatus shown in FIG. 1 .
  • FIG. 2 is a flow diagram showing the flow of liquid when the operation of the electrolysis apparatus shown in FIG. 1 is stopped.
  • FIG. 8 is a flow diagram showing the flow of liquid during operation in the electrolysis device shown in FIG. 7 .
  • FIG. 8 is a flow diagram showing the flow of liquid when the operation of the electrolysis device shown in FIG. 7 is stopped.
  • FIG. 11 is a flow diagram showing a third modified example of the electrolysis device according to the present invention.
  • FIG. 11 is a flow diagram showing the flow of liquid during operation in the electrolysis device shown in FIG. 10 .
  • FIG. 11 is a flow diagram showing the flow of liquid when the operation of the electrolysis device shown in FIG. 10 is stopped.
  • FIG. 11 is a flow diagram showing a fourth modified example of the electrolysis device according to the present invention.
  • FIG. 14 is a flow diagram showing the flow of liquid during operation in the electrolysis device shown in FIG. 13 .
  • FIG. 14 is a flow diagram showing the flow of liquid when the operation of the electrolysis device shown in FIG. 13 is stopped.
  • the electrolysis device 2 can be used as an alkaline water electrolysis device, a salt electrolysis device, etc.
  • the electrolysis device 2 includes an electrolytic cell 4 having an anode chamber 4a and a cathode chamber 4b, an anolyte tank 6 connected to the anode chamber 4a of the electrolytic cell 4 via a pipeline, and an anolyte pump 8 disposed in the pipeline between the anode chamber 4a and the anolyte tank 6.
  • the anolyte tank 6 stores anolyte to be supplied to the anode chamber 4a, and receives anolyte (electrolyte) flowing out from an upper portion of the anode chamber 4a.
  • the electrolysis device 2 has an anolyte circuit in which anolyte circulates through the anode chamber 4a and the anolyte tank 6, as well as a catholyte circuit (not shown) in which catholyte circulates.
  • the catholyte circuit includes a catholyte tank connected to the cathode chamber 4b of the electrolytic cell 4 via a pipeline, and a catholyte pump arranged in the pipeline between the cathode chamber 4b and the catholyte tank.
  • the configuration of the catholyte circuit may be the same as that of the anolyte circuit, so this specification will mainly describe the anolyte circuit.
  • the anolyte circuit of the electrolysis device 2 includes a first conduit L1 connecting the anolyte tank 6 and the anolyte pump 8, a second conduit L2 connecting the anolyte pump 8 and the electrolytic cell 4, and a third conduit L3 connecting the first conduit L1 and the second conduit L2.
  • the first conduit L1 connects a lower part of the anolyte tank 6 (below the liquid level in the anolyte tank 6) and an intake port 8a of the anolyte pump 8.
  • the second conduit L2 connects a discharge port 8b of the anolyte pump 8 and a lower part of the anode chamber 4a of the electrolytic cell 4.
  • the anolyte circuit is provided with a fourth pipe L4 that extends from the pump side portion of the second pipe L2, which is located closer to the anolyte pump 8 than the connection portion 10 with the third pipe L3, to the lower part of the anolyte tank 6 (below the liquid level in the anolyte tank 6).
  • a fifth pipe L5 is provided from the top of the anode chamber 4a of the electrolytic cell 4, and extends to the anolyte tank 6.
  • the fifth pipe L5 branches off just before the anolyte tank 6 into an upper section L5a that is connected above the liquid level in the anolyte tank 6, and a lower section L5b that is connected below the liquid level in the anolyte tank 6.
  • the electrolysis device 2 further comprises a selection means 12 for selecting either a supply path for supplying anolyte from the anolyte tank 6 to the anode chamber 4a of the electrolytic cell 4 by the anolyte pump 8 via the first pipe L1 and the second pipe L2, or a return path for returning anolyte from the anode chamber 4a of the electrolytic cell 4 to the anolyte tank 6 by the anolyte pump 8 via the third pipe L3 and the fourth pipe L4.
  • the selection means 12 in the illustrated embodiment includes a first on-off valve V1 installed in the first pipeline L1, a second on-off valve V2 installed in the second pipeline L2, a third on-off valve V3 installed in the third pipeline L3, a fourth on-off valve V4 installed in the fourth pipeline L4, and a controller 20 that controls the first to fourth on-off valves V1 to V4.
  • a fifth on-off valve V5 is installed in the lower portion L5b of the fifth pipeline L5, and the fifth on-off valve V5 is also controlled by the controller 20.
  • the first on-off valve V1 is positioned closer to the anolyte tank 6 than the connection 14 between the first pipeline L1 and the third pipeline L3.
  • the second on-off valve V2 is disposed between the connection 10 between the second pipeline L2 and the third pipeline L3 and the connection 16 between the second pipeline L2 and the fourth pipeline L4.
  • the third on-off valve V3 is located between the connection 10 and the connection 14 (i.e., the third pipeline L3)
  • the fourth on-off valve V4 is located between the connection 16 and the lower part of the anolyte tank 6 (i.e., the fourth pipeline L4).
  • the first to fifth on-off valves V1 to V5 may be known on-off valves such as gate valves or butterfly valves.
  • the first to fifth on-off valves V1 to V5 are equipped with actuators (e.g., air cylinders or electric motors) for operating the valve bodies, and each actuator is electrically connected to the controller 20.
  • the controller 20 is composed of a computer having a processing device and a storage device.
  • the controller 20 is configured to control the operation of the first to fifth on-off valves V1 to V5 and the operation of the anolyte pump 8.
  • the controller 20 may also be configured to control the operation of the first to fifth on-off valves V1 to V5 and the anolyte pump 8 in the anolyte circuit, as well as the first to fifth on-off valves and the catholyte pump in the catholyte circuit.
  • anolyte flows from the anolyte tank 6 into the suction port 8a of the anolyte pump 8 through the first pipe L1. Then, the anolyte discharged from the discharge port 8b of the anolyte pump 8 flows into the anode chamber 4a of the electrolytic cell 4 through the second pipe L2. On the other hand, since the third and fourth on-off valves V3 and V4 are closed, no anolyte flows into the third and fourth pipes L3 and L4. Note that the supply paths are shown in Figure 2 by thick grey lines.
  • the first, second, and fifth on-off valves are opened, the third and fourth on-off valves are closed, and the cathode liquid pump is operated, just as in the anolyte circuit. Then, cathode liquid flows from the cathode liquid tank through the first pipe in the cathode liquid circuit into the suction port of the cathode liquid pump, and the cathode liquid discharged from the discharge port of the cathode liquid pump flows into the cathode chamber 4b of the electrolytic cell 4 through the second pipe in the cathode liquid circuit.
  • the gas generated in the anode chamber 4a is sent together with the anolyte from the top of the anode chamber 4a to the anolyte tank 6 via the fifth pipeline L5.
  • the gas passes through the upper part L5a of the fifth pipeline L5, and the anolyte passes through the lower part L5b of the fifth pipeline L5.
  • the gas generated in the cathode chamber 4b is sent together with the catholyte from the top of the cathode chamber 4b to the catholyte tank via the fifth pipeline in the catholyte circuit.
  • the first on-off valve V1 When the operation of the electrolysis device 2 is stopped, the first on-off valve V1 is closed, so that the anolyte in the anolyte tank 6 is not supplied to the suction port 8a of the anolyte pump 8.
  • the second on-off valve V2 is closed, so that the anolyte discharged from the discharge port 8b of the anolyte pump 8 does not flow into the anode chamber 4a of the electrolysis cell 4.
  • the third and fourth on-off valves are opened and the first, second and fifth on-off valves are closed. Then, cathode liquid flows from the lower part of the cathode chamber 4b through the third pipe in the cathode liquid circuit into the suction port of the cathode liquid pump, and the cathode liquid discharged from the discharge port of the cathode liquid pump flows into the lower part of the cathode liquid tank through the fourth pipe in the cathode liquid circuit.
  • the anolyte pump 8 can supply anolyte from the anolyte tank 6 to the anode chamber 4a of the electrolysis cell 4, and when operation is stopped, by selecting a return path, the anolyte pump 8 used during liquid supply can return anolyte from the anode chamber 4a of the electrolysis cell 4 to the anolyte tank 6.
  • the same anolyte pump 8 is used to supply anolyte to the anode chamber 4a of the electrolytic cell 4 during operation, and to discharge anolyte from the electrolytic cell 4 when operation is stopped.
  • This makes it possible to discharge anolyte from the anode chamber 4a of the electrolytic cell 4 to the anolyte tank 6 with a simple configuration, without the need for a sturdy, large stand to place the electrolytic cell 4 at a high position. This effect is true not only for the anolyte circuit, but also for the cathode liquid circuit.
  • a three-way valve TV whose operation is controlled by the controller 20 is installed at the connection between the second pipeline L2 and the third pipeline L3. Therefore, in the first modified example, unlike the circuit shown in FIG. 1, no on-off valves need to be installed in the second and third pipelines L2 and L3. Therefore, in the first modified example, the on-off valve installed in the fourth pipeline L4 will be referred to as the "second on-off valve V2,” and the on-off valve installed in the fifth pipeline L5 will be referred to as the "third on-off valve V3.”
  • the second on-off valve V2 in the first modified example may be substantially the same as the fourth on-off valve V4 in the circuit shown in FIG. 1, and the third on-off valve V3 in the first modified example may be substantially the same as the fifth on-off valve V5 in the circuit shown in FIG. 1.
  • the controller 20 opens the first and third on-off valves V1, V3, closes the second on-off valve V2, and operates the anolyte pump 8.
  • the controller 20 controls the three-way valve TV to connect the pump side portion of the second pipeline L2, which is located closer to the anolyte pump 8 than the three-way valve TV, to the electrolytic cell side portion of the second pipeline L2, which is located closer to the electrolytic cell 4 than the three-way valve TV, and to cut off communication between the second pipeline L2 and the third pipeline L3.
  • anolyte flows from the anolyte tank 6 into the suction port 8a of the anolyte pump 8 through the first pipe L1, and anolyte discharged from the discharge port 8b of the anolyte pump 8 flows into the anode chamber 4a of the electrolytic cell 4 through the second pipe L2.
  • the three-way valve TV and the second on-off valve V2 prevent the anolyte from flowing into the third and fourth pipes L3 and L4.
  • the controller 20 closes the first and third on-off valves V1, V3 and opens the second on-off valve V2.
  • the three-way valve TV is controlled by the controller 20 to cut off communication between the pump side portion of the second pipeline L2 located closer to the anolyte pump 8 than the three-way valve TV and the electrolytic cell side portion of the second pipeline L2 located closer to the electrolytic cell 4 than the three-way valve TV, and to connect the electrolytic cell side portion of the second pipeline L2 to the third pipeline L3.
  • anolyte flows from the bottom of the anode chamber 4a through the third pipe L3 into the suction port 8a of the anolyte pump 8, and the anolyte discharged from the discharge port 8b of the anolyte pump 8 flows into the bottom of the anolyte tank 6 through the fourth pipe L4.
  • a three-way valve TV whose operation is controlled by the controller 20 is installed at the connection between the first pipeline L1 and the third pipeline L3. Therefore, in the second modified example, unlike the circuit shown in FIG. 1, no on-off valves need to be installed in the first and third pipelines L1 and L3. Therefore, in the second modified example, the on-off valve installed in the second pipeline L2 will be called the "first on-off valve V1," the on-off valve installed in the fourth pipeline L4 will be called the “second on-off valve V2,” and the on-off valve installed in the fifth pipeline L5 will be called the "third on-off valve V3.”
  • the controller 20 opens the first and third on-off valves V1, V3, closes the second on-off valve V2, and operates the anolyte pump 8.
  • the three-way valve TV is controlled by the controller 20 to connect the tank side portion of the first pipe L1 located closer to the anolyte tank 6 than the three-way valve TV to the pump side portion of the first pipe L1 located closer to the anolyte pump 8 than the three-way valve TV, and to cut off communication between the first pipe L1 and the third pipe L3.
  • anolyte flows from the anolyte tank 6 into the suction port 8a of the anolyte pump 8 through the first pipe L1, and anolyte discharged from the discharge port 8b of the anolyte pump 8 flows into the anode chamber 4a of the electrolytic cell 4 through the second pipe L2.
  • the three-way valve TV and the second on-off valve V2 prevent the anolyte from flowing into the third and fourth pipes L3 and L4.
  • the controller 20 closes the first and third on-off valves V1, V3 and opens the second on-off valve V2.
  • the controller 20 controls the three-way valve TV to cut off communication between the tank side portion of the first pipe L1 located closer to the anolyte tank 6 than the three-way valve TV and the pump side portion of the first pipe L1 located closer to the anolyte pump 8 than the three-way valve TV, and to connect the pump side portion of the first pipe L1 to the third pipe L3.
  • anolyte flows from the bottom of the anode chamber 4a through the third pipe L3 into the suction port 8a of the anolyte pump 8, and the anolyte discharged from the discharge port 8b of the anolyte pump 8 flows into the bottom of the anolyte tank 6 through the fourth pipe L4.
  • a three-way valve TV whose operation is controlled by the controller 20 is installed at the connection between the second pipeline L2 and the fourth pipeline L4. Therefore, in the third modified example, unlike the circuit shown in FIG. 1, no on-off valves need to be installed in the second and fourth pipelines L2 and L4. Therefore, in the third modified example, the on-off valve installed in the third pipeline L3 will be referred to as the "second on-off valve V2," and the on-off valve installed in the fifth pipeline L5 will be referred to as the "third on-off valve V3.”
  • the controller 20 opens the first and third on-off valves V1, V3, closes the second on-off valve V2, and operates the anolyte pump 8.
  • the controller 20 controls the three-way valve TV to connect the pump side portion of the second pipeline L2, which is located closer to the anolyte pump 8 than the three-way valve TV, to the electrolytic cell side portion of the second pipeline L2, which is located closer to the electrolytic cell 4 than the three-way valve TV, and to cut off communication between the second pipeline L2 and the fourth pipeline L4.
  • anolyte flows from the anolyte tank 6 into the suction port 8a of the anolyte pump 8 through the first pipeline L1, and anolyte discharged from the discharge port 8b of the anolyte pump 8 flows into the anode chamber 4a of the electrolytic cell 4 through the second pipeline L2.
  • the three-way valve TV and the second on-off valve V2 prevent the anolyte from flowing into the third and fourth pipelines L3 and L4.
  • the controller 20 closes the first and third on-off valves V1, V3 and opens the second on-off valve V2.
  • the controller 20 controls the three-way valve TV to cut off communication between the pump side portion of the second pipeline L2 located closer to the anolyte pump 8 than the three-way valve TV and the electrolytic cell side portion of the second pipeline L2 located closer to the electrolytic cell 4 than the three-way valve TV, and to connect the pump side portion of the second pipeline L2 to the fourth pipeline L4.
  • anolyte flows from the bottom of the anode chamber 4a through the third pipe L3 into the suction port 8a of the anolyte pump 8, and the anolyte discharged from the discharge port 8b of the anolyte pump 8 flows into the bottom of the anolyte tank 6 through the fourth pipe L4.
  • a first three-way valve TV1 is installed at the connection between the first pipeline L1 and the third pipeline L3
  • a second three-way valve TV2 is installed at the connection between the second pipeline L2 and the fourth pipeline L4, and the operation of the first and second three-way valves TV1 and TV2 is controlled by a controller 20.
  • On-off valve V in the fourth modified example may be substantially the same as the fifth on-off valve V5 in the circuit shown in FIG. 1.
  • the controller 20 opens the on-off valve V and activates the anolyte pump 8.
  • the controller 20 also controls the first three-way valve TV1 to communicate between a tank side portion of the first pipe L1 located closer to the anolyte tank 6 than the first three-way valve TV1 and a pump side portion of the first pipe L1 located closer to the anolyte pump 8 than the first three-way valve TV1, and to block communication between the first pipe L1 and the third pipe L3.
  • controller 20 controls the second three-way valve TV2 so as to connect the pump side portion of the second pipeline L2 located closer to the anolyte pump 8 than the second three-way valve TV2 to the electrolytic cell side portion of the second pipeline L2 located closer to the electrolytic cell 4 than the second three-way valve TV2, and to cut off the connection between the second pipeline L2 and the fourth pipeline L4.
  • anolyte flows from the anolyte tank 6 through the first pipeline L1 into the suction port 8a of the anolyte pump 8, and the anolyte discharged from the discharge port 8b of the anolyte pump 8 flows into the anode chamber 4a of the electrolytic cell 4 through the second pipeline L2.
  • the controller 20 closes the on-off valve V and controls the first three-way valve TV1 to block communication between the tank side portion and the pump side portion of the first pipeline L1 and to connect the pump side portion of the first pipeline L1 to the third pipeline L3.
  • the controller 20 also controls the second three-way valve TV2 to block communication between the pump side portion and the electrolytic cell side portion of the second pipeline L2, and to connect the pump side portion of the second pipeline L2 to the fourth pipeline L4.
  • anolyte flows from the bottom of the anode chamber 4a through the third pipe L3 into the suction port 8a of the anolyte pump 8, and the anolyte discharged from the discharge port 8b of the anolyte pump 8 flows into the bottom of the anolyte tank 6 through the fourth pipe L4.
  • anolyte can be supplied from the anolyte tank 6 to the anode chamber 4a of the electrolytic cell 4 by the anolyte pump 8, and when operation is stopped, by selecting a return path, anolyte can be returned from the anode chamber 4a of the electrolytic cell 4 to the anolyte tank 6 by the anolyte pump 8 used during liquid supply.
  • the effects of the first to fourth modified examples are not limited to the anolyte circuit, but are naturally similar to those of the cathode liquid circuit.
  • Electrolysis device 4 Electrolytic cell 4a: Anode chamber 4b: Cathode chamber 6: Anolyte tank 8: Anolyte pump 8a: Intake port 8b: Discharge port 10: Connection between second pipeline and third pipeline 12: Selection means 14: Connection between first pipeline and third pipeline 16: Connection between second pipeline and fourth pipeline L1: First pipeline L2: Second pipeline L3: Third pipeline L4: Fourth pipeline V1: First on-off valve V2: Second on-off valve V3: Third on-off valve V4: Fourth on-off valve TV: Three-way valve (first modified example) TV1: First three-way valve (fourth modified example) TV2: Second three-way valve (fourth variant)

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

The present invention provides an electrolysis device that, with a simple configuration, is capable of discharging a liquid in an electrolytic cell to a tank. An electrolysis device 2 comprises: a pump 8; a first conduit L1 that connects a tank 6 and the pump 8; a second conduit L2 that connects the pump 8 and an electrolytic cell 4; a third conduit L3 that connects the first conduit L1 and the second conduit L2; a fourth conduit L4 that extends to the tank 6 from a pump 8 side portion which, in the second conduit L2, is located on the pump 8 side relative to a connection part 10 connected with the third conduit L3; and a selection means 12 that is for selecting a supply path for using the pump 8 to supply a liquid from the tank 6 to the electrolytic cell 4 via the first conduit L1 and the second conduit L2, or a return path for using the pump 8 to return a liquid from the electrolytic cell 4 to the tank 6 via the third conduit L3 and the fourth conduit L4.

Description

電解装置Electrolysis Equipment
 本発明は、タンク内の液体を電解槽に供給して電解を行う電解装置に関する。 The present invention relates to an electrolysis device that supplies liquid in a tank to an electrolytic cell to perform electrolysis.
 一般に、電解装置においては、タンク内の電解液をポンプによって電解槽に供給して電解を行なっているが、電解装置の運転を停止する際には、電解槽の腐食を防止するため、電解槽から液体を排出するようになっている。 Generally, in electrolysis equipment, electrolysis is carried out by supplying the electrolyte in a tank to an electrolytic cell using a pump, but when the operation of the electrolysis equipment is stopped, the liquid is drained from the electrolytic cell to prevent corrosion of the electrolytic cell.
 下記特許文献1には、運転停止時に電解槽内の液体を重力により排出する電解装置が開示されている。この電解装置は、タンクと、タンクの上方に設置された電解槽と、電解槽の下方に接続された供給マニホールドと、電解槽の陽極室および陰極室の底部に設けられた供給ノズルと、供給ノズルと供給マニホールドとの間に設けられた供給チューブとを備える。そして、上記電解装置においては、運転停止時に電解槽内の液体を供給ノズルより供給チューブ、供給マニホールドを介してタンク内に重力によって回収するようになっている。 Patent Document 1 below discloses an electrolysis device that uses gravity to drain liquid from within an electrolysis cell when operation is stopped. This electrolysis device includes a tank, an electrolysis cell installed above the tank, a supply manifold connected below the electrolysis cell, supply nozzles provided at the bottom of the anode chamber and cathode chamber of the electrolysis cell, and a supply tube provided between the supply nozzle and the supply manifold. When operation is stopped, the electrolysis device is designed to recover liquid from within the electrolysis cell by gravity from the supply nozzle through the supply tube and supply manifold into the tank.
特開2016-204698号公報JP 2016-204698 A
 電解槽内の液体を重力により排出させるには、タンクよりも上方に電解槽の排出口を設置しなければならない。このためには、相当の重量物である電解槽を高所に配置するための頑丈で大きな架台が必要となり、そのような架台の設置に高額な費用がかかるという問題がある。 In order to drain the liquid in the electrolytic cell by gravity, the drain outlet of the electrolytic cell must be installed above the tank. This requires a sturdy and large platform to place the electrolytic cell, which is quite heavy, at a high altitude, and there is the problem that the installation of such a platform is very expensive.
 本発明の課題は、電解槽内の液体を簡易な構成でタンクに排出可能な電解装置を提供することである。 The objective of the present invention is to provide an electrolysis device that can discharge the liquid in the electrolysis cell into a tank with a simple configuration.
 本発明によれば、上記課題を解決する以下の電解装置が提供される。すなわち、
「タンク内の液体を電解槽に供給して電解を行う電解装置であって、
 ポンプと、
 前記タンクと前記ポンプとを接続する第1の管路と、
 前記ポンプと前記電解槽とを接続する第2の管路と、
 前記第1の管路と前記第2の管路とを接続する第3の管路と、
 前記第2の管路において前記第3の管路との接続部よりも前記ポンプ側に位置するポンプ側部分から前記タンクまで延びる第4の管路と、
 前記第1の管路および前記第2の管路を介して前記タンクから前記電解槽へ前記ポンプによって液体を供給するための供給経路、または、前記第3の管路および前記第4の管路を介して前記電解槽から前記タンクへ前記ポンプによって液体を戻すための戻り経路のいずれかを選択するための選択手段と、
 を備える電解装置」が提供される。
According to the present invention, there is provided an electrolysis device that solves the above problems.
"An electrolysis device that supplies liquid in a tank to an electrolytic cell to perform electrolysis,
A pump,
a first pipe connecting the tank and the pump;
a second pipeline connecting the pump and the electrolytic cell;
a third pipeline connecting the first pipeline and the second pipeline;
a fourth pipe extending from a pump side portion of the second pipe that is located closer to the pump than a connection portion between the second pipe and the third pipe to the tank;
a selection means for selecting either a supply path for supplying liquid from the tank to the electrolytic cell via the first pipe and the second pipe by the pump, or a return path for returning liquid from the electrolytic cell to the tank via the third pipe and the fourth pipe by the pump;
An electrolysis device comprising the steps of:
 前記選択手段は、前記第1の管路に設置された第1の開閉弁と、前記第2の管路に設置された第2の開閉弁と、前記第3の管路に設置された第3の開閉弁と、前記第4の管路に設置された第4の開閉弁と、前記第1の開閉弁、前記第2の開閉弁、前記第3の開閉弁および前記第4の開閉弁を制御するコントローラと、を含むのが好ましい。 The selection means preferably includes a first on-off valve installed in the first pipeline, a second on-off valve installed in the second pipeline, a third on-off valve installed in the third pipeline, a fourth on-off valve installed in the fourth pipeline, and a controller that controls the first on-off valve, the second on-off valve, the third on-off valve, and the fourth on-off valve.
 前記選択手段は、前記第1の管路に設置された第1の開閉弁と、前記第4の管路に設置された第2の開閉弁と、前記第2の管路と前記第3の管路との接続部に設置された三方弁と、前記第1の開閉弁、前記第2の開閉弁および前記三方弁を制御するコントローラと、を含む構成でもよい。 The selection means may include a first on-off valve installed in the first pipeline, a second on-off valve installed in the fourth pipeline, a three-way valve installed at the connection between the second pipeline and the third pipeline, and a controller that controls the first on-off valve, the second on-off valve, and the three-way valve.
 前記選択手段は、前記第2の管路に設置された第1の開閉弁と、前記第4の管路に設置された第2の開閉弁と、前記第1の管路と前記第3の管路との接続部に設置された三方弁と、前記第1の開閉弁、前記第2の開閉弁および前記三方弁を制御するコントローラと、を含むのが好適である。 The selection means preferably includes a first on-off valve installed in the second pipeline, a second on-off valve installed in the fourth pipeline, a three-way valve installed at the connection between the first pipeline and the third pipeline, and a controller that controls the first on-off valve, the second on-off valve, and the three-way valve.
 前記選択手段は、前記第1の管路に設置された第1の開閉弁と、前記第3の管路に設置された第2の開閉弁と、前記第2の管路と前記第4の管路との接続部に設置された三方弁と、前記第1の開閉弁、前記第2の開閉弁および前記三方弁を制御するコントローラと、を含むのが望ましい。 The selection means preferably includes a first on-off valve installed in the first pipeline, a second on-off valve installed in the third pipeline, a three-way valve installed at the connection between the second pipeline and the fourth pipeline, and a controller that controls the first on-off valve, the second on-off valve, and the three-way valve.
 前記選択手段は、前記第1の管路と前記第3の管路との接続部に設置された第1の三方弁と、前記第2の管路と前記第4の管路との接続部に設置された第2の三方弁と、前記第1の三方弁および前記第2の三方弁を制御するコントローラと、を含み得る。 The selection means may include a first three-way valve installed at the connection between the first pipeline and the third pipeline, a second three-way valve installed at the connection between the second pipeline and the fourth pipeline, and a controller that controls the first three-way valve and the second three-way valve.
 本発明の電解装置においては、運転時に供給経路を選択することにより、ポンプによってタンクから電解槽へ液体を供給し、運転を停止する際には、戻り経路を選択することにより、液体供給時に使用するポンプで電解槽からタンクへ液体を戻すことができる。つまり、運転時における電解槽への液体供給と、運転停止時における電解槽からの液体排出とを同一のポンプによって行うため、電解槽を高所に配置するための頑丈で大きな架台を要することなく、簡易な構成で電解槽内の液体をタンクに排出することができる。 In the electrolytic device of the present invention, by selecting a supply path during operation, liquid can be supplied from the tank to the electrolytic cell by the pump, and when operation is stopped, by selecting a return path, the liquid can be returned from the electrolytic cell to the tank by the pump used when supplying liquid. In other words, because the same pump is used to supply liquid to the electrolytic cell during operation and to drain liquid from the electrolytic cell when operation is stopped, the liquid in the electrolytic cell can be drained to the tank with a simple configuration without the need for a large, sturdy stand to place the electrolytic cell at a high position.
本発明に係る電解装置のフロー図。FIG. 2 is a flow diagram of the electrolysis device according to the present invention. 図1に示す電解装置における運転時の液体の流れを示すフロー図。FIG. 2 is a flow diagram showing the flow of liquid during operation in the electrolysis apparatus shown in FIG. 1 . 図1に示す電解装置において、運転を停止する際の液体の流れを示すフロー図。FIG. 2 is a flow diagram showing the flow of liquid when the operation of the electrolysis apparatus shown in FIG. 1 is stopped. 本発明に係る電解装置の第1の変形例を示すフロー図。FIG. 4 is a flow diagram showing a first modified example of the electrolysis device according to the present invention. 図4に示す電解装置における運転時の液体の流れを示すフロー図。FIG. 5 is a flow diagram showing the flow of liquid during operation in the electrolysis device shown in FIG. 4 . 図4に示す電解装置において、運転を停止する際の液体の流れを示すフロー図。FIG. 5 is a flow diagram showing the flow of liquid when the operation of the electrolysis device shown in FIG. 4 is stopped. 本発明に係る電解装置の第2の変形例を示すフロー図。FIG. 6 is a flow diagram showing a second modified example of the electrolysis device according to the present invention. 図7に示す電解装置における運転時の液体の流れを示すフロー図。FIG. 8 is a flow diagram showing the flow of liquid during operation in the electrolysis device shown in FIG. 7 . 図7に示す電解装置において、運転を停止する際の液体の流れを示すフロー図。FIG. 8 is a flow diagram showing the flow of liquid when the operation of the electrolysis device shown in FIG. 7 is stopped. 本発明に係る電解装置の第3の変形例を示すフロー図。FIG. 11 is a flow diagram showing a third modified example of the electrolysis device according to the present invention. 図10に示す電解装置における運転時の液体の流れを示すフロー図。FIG. 11 is a flow diagram showing the flow of liquid during operation in the electrolysis device shown in FIG. 10 . 図10に示す電解装置において、運転を停止する際の液体の流れを示すフロー図。FIG. 11 is a flow diagram showing the flow of liquid when the operation of the electrolysis device shown in FIG. 10 is stopped. 本発明に係る電解装置の第4の変形例を示すフロー図。FIG. 11 is a flow diagram showing a fourth modified example of the electrolysis device according to the present invention. 図13に示す電解装置における運転時の液体の流れを示すフロー図。FIG. 14 is a flow diagram showing the flow of liquid during operation in the electrolysis device shown in FIG. 13 . 図13に示す電解装置において、運転を停止する際の液体の流れを示すフロー図。FIG. 14 is a flow diagram showing the flow of liquid when the operation of the electrolysis device shown in FIG. 13 is stopped.
 以下、本発明に係る電解装置の好適実施形態について、図1ないし図3を参照しながら説明する。尚、以下に説明する実施の態様はあくまで本発明の一例であり、本発明が下記に説明する実施の態様に限定されるものではなく、本発明の技術的思想の範囲内で適宜変更可能である。 Below, a preferred embodiment of the electrolysis device according to the present invention will be described with reference to Figures 1 to 3. Note that the embodiment described below is merely one example of the present invention, and the present invention is not limited to the embodiment described below, and can be modified as appropriate within the scope of the technical concept of the present invention.
(電解装置2)
 電解装置2は、アルカリ水電解装置や食塩電解装置などとして使用され得る。図1に示すとおり、電解装置2は、陽極室4aおよび陰極室4bを有する電解槽4と、電解槽4の陽極室4aに管路を介して接続された陽極液タンク6と、陽極室4aと陽極液タンク6との間の管路に配置された陽極液ポンプ8とを備える。陽極液タンク6は、陽極室4aに供給すべき陽極液を貯留するとともに、陽極室4aの上部から流出した陽極液(電解液)を受け入れる。
(Electrolysis device 2)
The electrolysis device 2 can be used as an alkaline water electrolysis device, a salt electrolysis device, etc. As shown in Fig. 1, the electrolysis device 2 includes an electrolytic cell 4 having an anode chamber 4a and a cathode chamber 4b, an anolyte tank 6 connected to the anode chamber 4a of the electrolytic cell 4 via a pipeline, and an anolyte pump 8 disposed in the pipeline between the anode chamber 4a and the anolyte tank 6. The anolyte tank 6 stores anolyte to be supplied to the anode chamber 4a, and receives anolyte (electrolyte) flowing out from an upper portion of the anode chamber 4a.
 電解装置2は、陽極室4aおよび陽極液タンク6を陽極液が循環する陽極液回路に加えて、陰極液が循環する陰極液回路(図示していない。)を有する。陰極液回路は、電解槽4の陰極室4bに管路を介して接続された陰極液タンクと、陰極室4bと陰極液タンクとの間の管路に配置された陰極液ポンプとを含む。ただし、陰極液回路の構成(ポンプや管路、弁、コントローラなど)は、陽極液回路の構成と同一でよいので、本明細書においては、主に陽極液回路について説明する。 The electrolysis device 2 has an anolyte circuit in which anolyte circulates through the anode chamber 4a and the anolyte tank 6, as well as a catholyte circuit (not shown) in which catholyte circulates. The catholyte circuit includes a catholyte tank connected to the cathode chamber 4b of the electrolytic cell 4 via a pipeline, and a catholyte pump arranged in the pipeline between the cathode chamber 4b and the catholyte tank. However, the configuration of the catholyte circuit (pump, pipeline, valve, controller, etc.) may be the same as that of the anolyte circuit, so this specification will mainly describe the anolyte circuit.
(第1~第4の管路L1~L4)
 電解装置2の陽極液回路は、陽極液タンク6と陽極液ポンプ8とを接続する第1の管路L1と、陽極液ポンプ8と電解槽4とを接続する第2の管路L2と、第1の管路L1と第2の管路L2とを接続する第3の管路L3とを含む。第1の管路L1は、陽極液タンク6の下部(陽極液タンク6内の液面よりも下側)と陽極液ポンプ8の吸入ポート8aとを接続している。第2の管路L2は、陽極液ポンプ8の吐出ポート8bと電解槽4の陽極室4aの下部とを接続している。
(First to fourth pipelines L1 to L4)
The anolyte circuit of the electrolysis device 2 includes a first conduit L1 connecting the anolyte tank 6 and the anolyte pump 8, a second conduit L2 connecting the anolyte pump 8 and the electrolytic cell 4, and a third conduit L3 connecting the first conduit L1 and the second conduit L2. The first conduit L1 connects a lower part of the anolyte tank 6 (below the liquid level in the anolyte tank 6) and an intake port 8a of the anolyte pump 8. The second conduit L2 connects a discharge port 8b of the anolyte pump 8 and a lower part of the anode chamber 4a of the electrolytic cell 4.
 陽極液回路には、第2の管路L2において第3の管路L3との接続部10よりも陽極液ポンプ8側に位置するポンプ側部分から、陽極液タンク6の下部(陽極液タンク6内の液面よりも下側)まで延びる第4の管路L4が設けられている。 The anolyte circuit is provided with a fourth pipe L4 that extends from the pump side portion of the second pipe L2, which is located closer to the anolyte pump 8 than the connection portion 10 with the third pipe L3, to the lower part of the anolyte tank 6 (below the liquid level in the anolyte tank 6).
 また、電解槽4の陽極室4aの上部からは、陽極液タンク6まで延びる第5の管路L5が設けられている。第5の管路L5は、陽極液タンク6の手前で、陽極液タンク6内の液面よりも上側に接続される上側部分L5aと、陽極液タンク6内の液面よりも下側に接続される下側部分L5bとに分岐している。 A fifth pipe L5 is provided from the top of the anode chamber 4a of the electrolytic cell 4, and extends to the anolyte tank 6. The fifth pipe L5 branches off just before the anolyte tank 6 into an upper section L5a that is connected above the liquid level in the anolyte tank 6, and a lower section L5b that is connected below the liquid level in the anolyte tank 6.
(選択手段12)
 電解装置2は、さらに、第1の管路L1および第2の管路L2を介して陽極液タンク6から電解槽4の陽極室4aへ陽極液ポンプ8によって陽極液を供給するための供給経路、または、第3の管路L3および第4の管路L4を介して電解槽4の陽極室4aから陽極液タンク6へ陽極液ポンプ8によって陽極液を戻すための戻り経路のいずれかを選択するための選択手段12を備えている。
(Selection Means 12)
The electrolysis device 2 further comprises a selection means 12 for selecting either a supply path for supplying anolyte from the anolyte tank 6 to the anode chamber 4a of the electrolytic cell 4 by the anolyte pump 8 via the first pipe L1 and the second pipe L2, or a return path for returning anolyte from the anode chamber 4a of the electrolytic cell 4 to the anolyte tank 6 by the anolyte pump 8 via the third pipe L3 and the fourth pipe L4.
 図示の実施形態の選択手段12は、第1の管路L1に設置された第1の開閉弁V1と、第2の管路L2に設置された第2の開閉弁V2と、第3の管路L3に設置された第3の開閉弁V3と、第4の管路L4に設置された第4の開閉弁V4と、第1~第4の開閉弁V1~V4を制御するコントローラ20とを含む。なお、第5の管路L5の下側部分L5bには、第5の開閉弁V5が設置されており、第5の開閉弁V5もコントローラ20によって制御されるようになっている。 The selection means 12 in the illustrated embodiment includes a first on-off valve V1 installed in the first pipeline L1, a second on-off valve V2 installed in the second pipeline L2, a third on-off valve V3 installed in the third pipeline L3, a fourth on-off valve V4 installed in the fourth pipeline L4, and a controller 20 that controls the first to fourth on-off valves V1 to V4. A fifth on-off valve V5 is installed in the lower portion L5b of the fifth pipeline L5, and the fifth on-off valve V5 is also controlled by the controller 20.
 第1の開閉弁V1は、第1の管路L1と第3の管路L3との接続部14よりも陽極液タンク6側に位置づけられている。第2の開閉弁V2は、第2の管路L2と第3の管路L3との接続部10と、第2の管路L2と第4の管路L4との接続部16と、の間に配置されている。なお、第3の開閉弁V3は、接続部10と接続部14との間(つまり、第3の管路L3)に位置し、第4の開閉弁V4は、接続部16と陽極液タンク6の下部(つまり、第4の管路L4)に位置していればよい。 The first on-off valve V1 is positioned closer to the anolyte tank 6 than the connection 14 between the first pipeline L1 and the third pipeline L3. The second on-off valve V2 is disposed between the connection 10 between the second pipeline L2 and the third pipeline L3 and the connection 16 between the second pipeline L2 and the fourth pipeline L4. The third on-off valve V3 is located between the connection 10 and the connection 14 (i.e., the third pipeline L3), and the fourth on-off valve V4 is located between the connection 16 and the lower part of the anolyte tank 6 (i.e., the fourth pipeline L4).
 第1~第5の開閉弁V1~V5は、ゲート弁またはバタフライ弁などの公知の開閉弁でよい。また、第1~第5の開閉弁V1~V5には、弁体を作動させるためのアクチュエータ(たとえば、エアシリンダや電動モータ)が装着されており、各アクチュエータがコントローラ20に電気的に接続されている。 The first to fifth on-off valves V1 to V5 may be known on-off valves such as gate valves or butterfly valves. The first to fifth on-off valves V1 to V5 are equipped with actuators (e.g., air cylinders or electric motors) for operating the valve bodies, and each actuator is electrically connected to the controller 20.
 コントローラ20は、処理装置および記憶装置を有するコンピュータから構成されている。コントローラ20は、第1~第5の開閉弁V1~V5の作動および陽極液ポンプ8の作動を制御するようになっている。なお、コントローラ20は、陽極液回路の第1~第5の開閉弁V1~V5および陽極液ポンプ8だけでなく、陰極液回路の第1~第5の開閉弁および陰極液ポンプの作動も制御するようになっていてもよい。 The controller 20 is composed of a computer having a processing device and a storage device. The controller 20 is configured to control the operation of the first to fifth on-off valves V1 to V5 and the operation of the anolyte pump 8. The controller 20 may also be configured to control the operation of the first to fifth on-off valves V1 to V5 and the anolyte pump 8 in the anolyte circuit, as well as the first to fifth on-off valves and the catholyte pump in the catholyte circuit.
(電解装置2の動作)
 次に、上述したとおりの電解装置2の動作について説明する。
(Operation of Electrolysis Device 2)
Next, the operation of the electrolysis device 2 as described above will be described.
(電解装置2の運転時)
 電解装置2の運転時には、選択手段12によって供給経路を選択する。供給経路を選択すると、コントローラ20は、第1・第2・第5の開閉弁V1、V2、V5を開け、第3・第4の開閉弁V3、V4を閉じるとともに、陽極液ポンプ8を作動させる。
(When electrolysis device 2 is in operation)
When the electrolysis device 2 is in operation, a supply path is selected by the selection means 12. When the supply path is selected, the controller 20 opens the first, second and fifth on-off valves V1, V2 and V5, closes the third and fourth on-off valves V3 and V4, and operates the anolyte pump 8.
 これによって、図2に示すとおり、第1の管路L1を通って陽極液タンク6から陽極液ポンプ8の吸入ポート8aに陽極液が流入する。そして、陽極液ポンプ8の吐出ポート8bから吐出された陽極液は、第2の管路L2を通って電解槽4の陽極室4aに流入する。他方、第3・第4の開閉弁V3、V4は閉じられているので、第3・第4の管路L3、L4に陽極液が流れることはない。なお、図2において供給経路を灰色の太線で示している。 As a result, as shown in Figure 2, anolyte flows from the anolyte tank 6 into the suction port 8a of the anolyte pump 8 through the first pipe L1. Then, the anolyte discharged from the discharge port 8b of the anolyte pump 8 flows into the anode chamber 4a of the electrolytic cell 4 through the second pipe L2. On the other hand, since the third and fourth on-off valves V3 and V4 are closed, no anolyte flows into the third and fourth pipes L3 and L4. Note that the supply paths are shown in Figure 2 by thick grey lines.
 また、電解装置2の運転時には、陰極液回路においても、陽極液回路と同様に、第1・第2・第5の開閉弁が開放され、第3・第4の開閉弁が閉塞されるとともに、陰極液ポンプが作動する。そして、陰極液回路における第1の管路を通って、陰極液タンクから陰極液ポンプの吸入ポートに陰極液が流入し、陰極液ポンプの吐出ポートから吐出された陰極液が、陰極液回路における第2の管路を通って電解槽4の陰極室4bに流入する。 When the electrolysis device 2 is in operation, in the cathode liquid circuit, the first, second, and fifth on-off valves are opened, the third and fourth on-off valves are closed, and the cathode liquid pump is operated, just as in the anolyte circuit. Then, cathode liquid flows from the cathode liquid tank through the first pipe in the cathode liquid circuit into the suction port of the cathode liquid pump, and the cathode liquid discharged from the discharge port of the cathode liquid pump flows into the cathode chamber 4b of the electrolytic cell 4 through the second pipe in the cathode liquid circuit.
 そして、電解槽4において電解が行われると、陽極室4aにおいて発生した気体が第5の管路L5を介して陽極室4aの上部から陽極液タンク6に陽極液とともに送られる。なお、第5の管路L5の上側部分L5aを気体が通り、第5の管路L5の下側部分L5bを陽極液が通る。また、陰極室4bにおいて発生した気体は、陰極液回路における第5の管路を介して、陰極室4bの上部から陰極液タンクに陰極液とともに送られる。 When electrolysis is performed in the electrolytic cell 4, the gas generated in the anode chamber 4a is sent together with the anolyte from the top of the anode chamber 4a to the anolyte tank 6 via the fifth pipeline L5. The gas passes through the upper part L5a of the fifth pipeline L5, and the anolyte passes through the lower part L5b of the fifth pipeline L5. The gas generated in the cathode chamber 4b is sent together with the catholyte from the top of the cathode chamber 4b to the catholyte tank via the fifth pipeline in the catholyte circuit.
(電解装置2の運転を停止する際)
 他方、電解装置2の運転を停止する際は、選択手段12によって戻り経路を選択する。そうすると、コントローラ20は、第1・第2・第5の開閉弁V1、V2、V5を閉じ、第3・第4の開閉弁V3、V4を開ける。
(When stopping the operation of the electrolysis device 2)
On the other hand, when the operation of the electrolysis device 2 is stopped, the return route is selected by the selection means 12. Then, the controller 20 closes the first, second and fifth on-off valves V1, V2 and V5, and opens the third and fourth on-off valves V3 and V4.
 これによって、図3に示すとおり、第3の管路L3を通って陽極室4aの下部から陽極液ポンプ8の吸入ポート8aに陽極液が流入する。そして、陽極液ポンプ8の吐出ポート8bから吐出された陽極液は、第4の管路L4を通って陽極液タンク6の下部に流入する。なお、図3において戻り経路を灰色の太線で示している。 As a result, as shown in Figure 3, anolyte flows from the bottom of the anode chamber 4a through the third pipe L3 into the suction port 8a of the anolyte pump 8. Then, the anolyte discharged from the discharge port 8b of the anolyte pump 8 flows into the bottom of the anolyte tank 6 through the fourth pipe L4. Note that the return path is shown by a thick grey line in Figure 3.
 電解装置2の運転を停止する際は、第1の開閉弁V1が閉じられているので、陽極液ポンプ8の吸入ポート8aに、陽極液タンク6内の陽極液が供給されることはない。また、第2の開閉弁V2が閉じられているため、陽極液ポンプ8の吐出ポート8bから吐出された陽極液が、電解槽4の陽極室4aに流入することはない。 When the operation of the electrolysis device 2 is stopped, the first on-off valve V1 is closed, so that the anolyte in the anolyte tank 6 is not supplied to the suction port 8a of the anolyte pump 8. In addition, the second on-off valve V2 is closed, so that the anolyte discharged from the discharge port 8b of the anolyte pump 8 does not flow into the anode chamber 4a of the electrolysis cell 4.
 また、陰極液回路においても、陽極液回路と同様に、第3・第4の開閉弁が開放されるとともに、第1・第2・第5の開閉弁が閉塞される。そして、陰極液回路における第3の管路を通って陰極室4bの下部から陰極液ポンプの吸入ポートに陰極液が流入し、陰極液ポンプの吐出ポートから吐出された陰極液が、陰極液回路における第4の管路を通って陰極液タンクの下部に流入する。 In the cathode liquid circuit, similar to the anode liquid circuit, the third and fourth on-off valves are opened and the first, second and fifth on-off valves are closed. Then, cathode liquid flows from the lower part of the cathode chamber 4b through the third pipe in the cathode liquid circuit into the suction port of the cathode liquid pump, and the cathode liquid discharged from the discharge port of the cathode liquid pump flows into the lower part of the cathode liquid tank through the fourth pipe in the cathode liquid circuit.
 上述したとおり、電解装置2においては、運転時に供給経路を選択することにより、陽極液ポンプ8によって陽極液タンク6から電解槽4の陽極室4aへ陽極液を供給し、運転を停止する際には、戻り経路を選択することにより、液体供給時に使用する陽極液ポンプ8によって電解槽4の陽極室4aから陽極液タンク6へ陽極液を戻すことが可能である。 As described above, in the electrolysis device 2, by selecting a supply path during operation, the anolyte pump 8 can supply anolyte from the anolyte tank 6 to the anode chamber 4a of the electrolysis cell 4, and when operation is stopped, by selecting a return path, the anolyte pump 8 used during liquid supply can return anolyte from the anode chamber 4a of the electrolysis cell 4 to the anolyte tank 6.
 すなわち、電解装置2においては、運転時における電解槽4の陽極室4aへの陽極液の供給と、運転停止時における電解槽4からの陽極液の排出を同一の陽極液ポンプ8によって行うため、電解槽4を高所に配置するための頑丈で大きな架台を要することなく、簡易な構成で電解槽4の陽極室4a内の陽極液を陽極液タンク6に排出することができる。この効果は、陽極液回路だけでなく、陰極液回路においても同様である。 In other words, in the electrolysis device 2, the same anolyte pump 8 is used to supply anolyte to the anode chamber 4a of the electrolytic cell 4 during operation, and to discharge anolyte from the electrolytic cell 4 when operation is stopped. This makes it possible to discharge anolyte from the anode chamber 4a of the electrolytic cell 4 to the anolyte tank 6 with a simple configuration, without the need for a sturdy, large stand to place the electrolytic cell 4 at a high position. This effect is true not only for the anolyte circuit, but also for the cathode liquid circuit.
 次に、本発明に係る電解装置2の第1の変形例について、図4ないし図6を参照しつつ説明する。 Next, a first modified example of the electrolysis device 2 according to the present invention will be described with reference to Figures 4 to 6.
 図4に示す第1の変形例においては、第2の管路L2と第3の管路L3との接続部に、コントローラ20によって作動制御される三方弁TVが設置されている。このため、第1の変形例においては、図1に示す回路とは異なり、第2・第3の管路L2、L3に開閉弁が設置されていなくてもよい。そこで、第1の変形例においては、第4の管路L4に設置されている開閉弁を「第2の開閉弁V2」と呼び、第5の管路L5に設置されている開閉弁を「第3の開閉弁V3」と呼ぶことにする。 In the first modified example shown in FIG. 4, a three-way valve TV whose operation is controlled by the controller 20 is installed at the connection between the second pipeline L2 and the third pipeline L3. Therefore, in the first modified example, unlike the circuit shown in FIG. 1, no on-off valves need to be installed in the second and third pipelines L2 and L3. Therefore, in the first modified example, the on-off valve installed in the fourth pipeline L4 will be referred to as the "second on-off valve V2," and the on-off valve installed in the fifth pipeline L5 will be referred to as the "third on-off valve V3."
 なお、第1の変形例における第2の開閉弁V2は、図1に示す回路における第4の開閉弁V4と実質的に同一でよく、また、第1の変形例における第3の開閉弁V3は、図1に示す回路における第5の開閉弁V5と実質的に同一でよい。 The second on-off valve V2 in the first modified example may be substantially the same as the fourth on-off valve V4 in the circuit shown in FIG. 1, and the third on-off valve V3 in the first modified example may be substantially the same as the fifth on-off valve V5 in the circuit shown in FIG. 1.
(第1の変形例の運転時)
 図4に示す第1の変形例において、電解装置2の運転時に供給経路が選択されると、コントローラ20は、第1・第3の開閉弁V1、V3を開け、第2の開閉弁V2を閉じるとともに、陽極液ポンプ8を作動させる。
(During operation of the first modified example)
In the first modified example shown in FIG. 4 , when a supply path is selected during operation of the electrolysis device 2, the controller 20 opens the first and third on-off valves V1, V3, closes the second on-off valve V2, and operates the anolyte pump 8.
 さらに、供給経路が選択された際には、第2の管路L2における三方弁TVよりも陽極液ポンプ8側に位置するポンプ側部分と、第2の管路L2における三方弁TVよりも電解槽4側に位置する電解槽側部分とを連通させ、第2の管路L2と第3の管路L3との連通を遮断するように、コントローラ20によって三方弁TVが制御される。 Furthermore, when a supply path is selected, the controller 20 controls the three-way valve TV to connect the pump side portion of the second pipeline L2, which is located closer to the anolyte pump 8 than the three-way valve TV, to the electrolytic cell side portion of the second pipeline L2, which is located closer to the electrolytic cell 4 than the three-way valve TV, and to cut off communication between the second pipeline L2 and the third pipeline L3.
 これによって、図5に示すとおり、第1の管路L1を通って陽極液タンク6から陽極液ポンプ8の吸入ポート8aに陽極液が流入し、陽極液ポンプ8の吐出ポート8bから吐出された陽極液が第2の管路L2を通って電解槽4の陽極室4aに流入する。他方、三方弁TVおよび第2の開閉弁V2によって、第3・第4の管路L3、L4への陽極液の流入が阻止される。 As a result, as shown in Figure 5, anolyte flows from the anolyte tank 6 into the suction port 8a of the anolyte pump 8 through the first pipe L1, and anolyte discharged from the discharge port 8b of the anolyte pump 8 flows into the anode chamber 4a of the electrolytic cell 4 through the second pipe L2. On the other hand, the three-way valve TV and the second on-off valve V2 prevent the anolyte from flowing into the third and fourth pipes L3 and L4.
(第1の変形例の運転を停止する際)
 他方、図4に示す第1の変形例において、電解装置2の運転を停止する際に、戻り経路が選択されると、コントローラ20は、第1・第3の開閉弁V1、V3を閉じ、第2の開閉弁V2を開ける。
(When stopping the operation of the first modified example)
On the other hand, in the first modified example shown in FIG. 4 , when the operation of the electrolysis device 2 is stopped and the return path is selected, the controller 20 closes the first and third on-off valves V1, V3 and opens the second on-off valve V2.
 さらに、戻り経路が選択された際には、第2の管路L2における三方弁TVよりも陽極液ポンプ8側に位置するポンプ側部分と、第2の管路L2における三方弁TVよりも電解槽4側に位置する電解槽側部分との連通を遮断し、第2の管路L2における電解槽側部分と第3の管路L3とを連通させるように、コントローラ20によって三方弁TVが制御される。 Furthermore, when the return path is selected, the three-way valve TV is controlled by the controller 20 to cut off communication between the pump side portion of the second pipeline L2 located closer to the anolyte pump 8 than the three-way valve TV and the electrolytic cell side portion of the second pipeline L2 located closer to the electrolytic cell 4 than the three-way valve TV, and to connect the electrolytic cell side portion of the second pipeline L2 to the third pipeline L3.
 これによって、図6に示すとおり、第3の管路L3を通って陽極室4aの下部から陽極液ポンプ8の吸入ポート8aに陽極液が流入し、陽極液ポンプ8の吐出ポート8bから吐出された陽極液は、第4の管路L4を通って陽極液タンク6の下部に流入する。 As a result, as shown in FIG. 6, anolyte flows from the bottom of the anode chamber 4a through the third pipe L3 into the suction port 8a of the anolyte pump 8, and the anolyte discharged from the discharge port 8b of the anolyte pump 8 flows into the bottom of the anolyte tank 6 through the fourth pipe L4.
 次に、本発明に係る電解装置2の第2の変形例について、図7ないし図9を参照しつつ説明する。 Next, a second modified example of the electrolysis device 2 according to the present invention will be described with reference to Figures 7 to 9.
 図7に示す第2の変形例においては、第1の管路L1と第3の管路L3との接続部に、コントローラ20によって作動制御される三方弁TVが設置されている。このため、第2の変形例においては、図1に示す回路とは異なり、第1・第3の管路L1、L3に開閉弁が設置されていなくてもよい。そこで、第2の変形例においては、第2の管路L2に設置されている開閉弁を「第1の開閉弁V1」と呼び、第4の管路L4に設置されている開閉弁を「第2の開閉弁V2」と呼び、第5の管路L5に設置されている開閉弁を「第3の開閉弁V3」と呼ぶことにする。 In the second modified example shown in FIG. 7, a three-way valve TV whose operation is controlled by the controller 20 is installed at the connection between the first pipeline L1 and the third pipeline L3. Therefore, in the second modified example, unlike the circuit shown in FIG. 1, no on-off valves need to be installed in the first and third pipelines L1 and L3. Therefore, in the second modified example, the on-off valve installed in the second pipeline L2 will be called the "first on-off valve V1," the on-off valve installed in the fourth pipeline L4 will be called the "second on-off valve V2," and the on-off valve installed in the fifth pipeline L5 will be called the "third on-off valve V3."
(第2の変形例の運転時)
 図7に示す第2の変形例において、電解装置2の運転時に供給経路が選択されると、コントローラ20は、第1・第3の開閉弁V1、V3を開け、第2の開閉弁V2を閉じるとともに、陽極液ポンプ8を作動させる。
(During operation of the second modified example)
In the second modified example shown in FIG. 7 , when a supply path is selected during operation of the electrolysis device 2, the controller 20 opens the first and third on-off valves V1, V3, closes the second on-off valve V2, and operates the anolyte pump 8.
 さらに、供給経路が選択された際には、第1の管路L1における三方弁TVよりも陽極液タンク6側に位置するタンク側部分と、第1の管路L1における三方弁TVよりも陽極液ポンプ8側に位置するポンプ側部分とを連通させ、第1の管路L1と第3の管路L3との連通を遮断するように、コントローラ20によって三方弁TVが制御される。 Furthermore, when a supply path is selected, the three-way valve TV is controlled by the controller 20 to connect the tank side portion of the first pipe L1 located closer to the anolyte tank 6 than the three-way valve TV to the pump side portion of the first pipe L1 located closer to the anolyte pump 8 than the three-way valve TV, and to cut off communication between the first pipe L1 and the third pipe L3.
 これによって、図8に示すとおり、第1の管路L1を通って陽極液タンク6から陽極液ポンプ8の吸入ポート8aに陽極液が流入し、陽極液ポンプ8の吐出ポート8bから吐出された陽極液が第2の管路L2を通って電解槽4の陽極室4aに流入する。他方、三方弁TVおよび第2の開閉弁V2によって、第3・第4の管路L3、L4への陽極液の流入が阻止される。 As a result, as shown in Figure 8, anolyte flows from the anolyte tank 6 into the suction port 8a of the anolyte pump 8 through the first pipe L1, and anolyte discharged from the discharge port 8b of the anolyte pump 8 flows into the anode chamber 4a of the electrolytic cell 4 through the second pipe L2. On the other hand, the three-way valve TV and the second on-off valve V2 prevent the anolyte from flowing into the third and fourth pipes L3 and L4.
(第2の変形例の運転を停止する際)
 他方、図7に示す第2の変形例において、電解装置2の運転を停止する際に、戻り経路が選択されると、コントローラ20は、第1・第3の開閉弁V1、V3を閉じ、第2の開閉弁V2を開ける。
(When stopping the operation of the second modified example)
On the other hand, in the second modified example shown in FIG. 7 , when the operation of the electrolysis device 2 is stopped and the return path is selected, the controller 20 closes the first and third on-off valves V1, V3 and opens the second on-off valve V2.
 さらに、戻り経路が選択された際には、第1の管路L1における三方弁TVよりも陽極液タンク6側に位置するタンク側部分と、第1の管路L1における三方弁TVよりも陽極液ポンプ8側に位置するポンプ側部分との連通を遮断し、第1の管路L1におけるポンプ側部分と第3の管路L3とを連通させるように、コントローラ20によって三方弁TVが制御される。 Furthermore, when the return path is selected, the controller 20 controls the three-way valve TV to cut off communication between the tank side portion of the first pipe L1 located closer to the anolyte tank 6 than the three-way valve TV and the pump side portion of the first pipe L1 located closer to the anolyte pump 8 than the three-way valve TV, and to connect the pump side portion of the first pipe L1 to the third pipe L3.
 これによって、図9に示すとおり、第3の管路L3を通って陽極室4aの下部から陽極液ポンプ8の吸入ポート8aに陽極液が流入し、陽極液ポンプ8の吐出ポート8bから吐出された陽極液は、第4の管路L4を通って陽極液タンク6の下部に流入する。 As a result, as shown in FIG. 9, anolyte flows from the bottom of the anode chamber 4a through the third pipe L3 into the suction port 8a of the anolyte pump 8, and the anolyte discharged from the discharge port 8b of the anolyte pump 8 flows into the bottom of the anolyte tank 6 through the fourth pipe L4.
 次に、本発明に係る電解装置2の第3の変形例について、図10ないし図12を参照しつつ説明する。 Next, a third modified example of the electrolysis device 2 according to the present invention will be described with reference to Figures 10 to 12.
 図10に示す第3の変形例においては、第2の管路L2と第4の管路L4との接続部に、コントローラ20によって作動制御される三方弁TVが設置されている。このため、第3の変形例においては、図1に示す回路とは異なり、第2・第4の管路L2、L4に開閉弁が設置されていなくてもよい。そこで、第3の変形例においては、第3の管路L3に設置されている開閉弁を「第2の開閉弁V2」と呼び、第5の管路L5に設置されている開閉弁を「第3の開閉弁V3」と呼ぶことにする。 In the third modified example shown in FIG. 10, a three-way valve TV whose operation is controlled by the controller 20 is installed at the connection between the second pipeline L2 and the fourth pipeline L4. Therefore, in the third modified example, unlike the circuit shown in FIG. 1, no on-off valves need to be installed in the second and fourth pipelines L2 and L4. Therefore, in the third modified example, the on-off valve installed in the third pipeline L3 will be referred to as the "second on-off valve V2," and the on-off valve installed in the fifth pipeline L5 will be referred to as the "third on-off valve V3."
(第3の変形例の運転時)
 図10に示す第3の変形例において、電解装置2の運転時に供給経路が選択されると、コントローラ20は、第1・第3の開閉弁V1、V3を開け、第2の開閉弁V2を閉じるとともに、陽極液ポンプ8を作動させる。
(During operation of the third modified example)
In the third modified example shown in FIG. 10 , when a supply path is selected during operation of the electrolysis device 2, the controller 20 opens the first and third on-off valves V1, V3, closes the second on-off valve V2, and operates the anolyte pump 8.
 さらに、供給経路が選択された際には、第2の管路L2における三方弁TVよりも陽極液ポンプ8側に位置するポンプ側部分と、第2の管路L2における三方弁TVよりも電解槽4側に位置する電解槽側部分とを連通させ、第2の管路L2と第4の管路L4との連通を遮断するように、コントローラ20によって三方弁TVが制御される。 Furthermore, when a supply path is selected, the controller 20 controls the three-way valve TV to connect the pump side portion of the second pipeline L2, which is located closer to the anolyte pump 8 than the three-way valve TV, to the electrolytic cell side portion of the second pipeline L2, which is located closer to the electrolytic cell 4 than the three-way valve TV, and to cut off communication between the second pipeline L2 and the fourth pipeline L4.
 これによって、図11に示すとおり、第1の管路L1を通って陽極液タンク6から陽極液ポンプ8の吸入ポート8aに陽極液が流入し、陽極液ポンプ8の吐出ポート8bから吐出された陽極液が第2の管路L2を通って電解槽4の陽極室4aに流入する。他方、三方弁TVおよび第2の開閉弁V2によって、第3・第4の管路L3、L4への陽極液の流入が阻止される。 As a result, as shown in Figure 11, anolyte flows from the anolyte tank 6 into the suction port 8a of the anolyte pump 8 through the first pipeline L1, and anolyte discharged from the discharge port 8b of the anolyte pump 8 flows into the anode chamber 4a of the electrolytic cell 4 through the second pipeline L2. On the other hand, the three-way valve TV and the second on-off valve V2 prevent the anolyte from flowing into the third and fourth pipelines L3 and L4.
(第3の変形例の運転を停止する際)
 他方、図10に示す第3の変形例において、電解装置2の運転を停止する際に、戻り経路が選択されると、コントローラ20は、第1・第3の開閉弁V1、V3を閉じ、第2の開閉弁V2を開ける。
(When stopping the operation of the third modified example)
On the other hand, in the third modified example shown in FIG. 10 , when the operation of the electrolysis device 2 is stopped and the return path is selected, the controller 20 closes the first and third on-off valves V1, V3 and opens the second on-off valve V2.
 さらに、戻り経路が選択された際には、第2の管路L2における三方弁TVよりも陽極液ポンプ8側に位置するポンプ側部分と、第2の管路L2における三方弁TVよりも電解槽4側に位置する電解槽側部分との連通を遮断し、第2の管路L2におけるポンプ側部分と第4の管路L4とを連通させるように、コントローラ20によって三方弁TVが制御される。 Furthermore, when the return path is selected, the controller 20 controls the three-way valve TV to cut off communication between the pump side portion of the second pipeline L2 located closer to the anolyte pump 8 than the three-way valve TV and the electrolytic cell side portion of the second pipeline L2 located closer to the electrolytic cell 4 than the three-way valve TV, and to connect the pump side portion of the second pipeline L2 to the fourth pipeline L4.
 これによって、図12に示すとおり、第3の管路L3を通って陽極室4aの下部から陽極液ポンプ8の吸入ポート8aに陽極液が流入し、陽極液ポンプ8の吐出ポート8bから吐出された陽極液は、第4の管路L4を通って陽極液タンク6の下部に流入する。 As a result, as shown in FIG. 12, anolyte flows from the bottom of the anode chamber 4a through the third pipe L3 into the suction port 8a of the anolyte pump 8, and the anolyte discharged from the discharge port 8b of the anolyte pump 8 flows into the bottom of the anolyte tank 6 through the fourth pipe L4.
 次に、本発明に係る電解装置2の第4の変形例について、図13ないし図15を参照しつつ説明する。 Next, a fourth modified example of the electrolysis device 2 according to the present invention will be described with reference to Figures 13 to 15.
 図13に示す第4の変形例においては、第1の管路L1と第3の管路L3との接続部に第1の三方弁TV1が設置され、第2の管路L2と第4の管路L4との接続部に第2の三方弁TV2が設置されており、第1・第2の三方弁TV1、TV2はコントローラ20によって作動制御されるようになっている。 In the fourth modified example shown in FIG. 13, a first three-way valve TV1 is installed at the connection between the first pipeline L1 and the third pipeline L3, and a second three-way valve TV2 is installed at the connection between the second pipeline L2 and the fourth pipeline L4, and the operation of the first and second three-way valves TV1 and TV2 is controlled by a controller 20.
 第4の変形例においては、図1に示す回路とは異なり、第1~第4の管路L1~L4に開閉弁が設置されていなくてもよい。そこで、第4の変形例においては、第5の管路L5に設置されている開閉弁を、単に「開閉弁V」と呼ぶことにする。第4の変形例における開閉弁Vは、図1に示す回路における第5の開閉弁V5と実質的に同一でよい。 In the fourth modified example, unlike the circuit shown in FIG. 1, it is not necessary for on-off valves to be installed in the first to fourth lines L1 to L4. Therefore, in the fourth modified example, the on-off valve installed in the fifth line L5 will be referred to simply as "on-off valve V." On-off valve V in the fourth modified example may be substantially the same as the fifth on-off valve V5 in the circuit shown in FIG. 1.
(第4の変形例の運転時)
 図13に示す第4の変形例において、電解装置2の運転時に供給経路が選択されると、コントローラ20は、開閉弁Vを開けるとともに陽極液ポンプ8を作動させる。また、コントローラ20は、第1の三方弁TV1について、第1の管路L1における第1の三方弁TV1よりも陽極液タンク6側に位置するタンク側部分と、第1の管路L1における第1の三方弁TV1よりも陽極液ポンプ8側に位置するポンプ側部分とを連通させ、第1の管路L1と第3の管路L3との連通を遮断するように制御する。
(During operation of the fourth modified example)
13 , when a supply path is selected during operation of the electrolysis device 2, the controller 20 opens the on-off valve V and activates the anolyte pump 8. The controller 20 also controls the first three-way valve TV1 to communicate between a tank side portion of the first pipe L1 located closer to the anolyte tank 6 than the first three-way valve TV1 and a pump side portion of the first pipe L1 located closer to the anolyte pump 8 than the first three-way valve TV1, and to block communication between the first pipe L1 and the third pipe L3.
 さらに、コントローラ20は、第2の三方弁TV2について、第2の管路L2における第2の三方弁TV2よりも陽極液ポンプ8側に位置するポンプ側部分と、第2の管路L2における第2の三方弁TV2よりも電解槽4側に位置する電解槽側部分とを連通させ、第2の管路L2と第4の管路L4との連通を遮断するように制御する。 Furthermore, the controller 20 controls the second three-way valve TV2 so as to connect the pump side portion of the second pipeline L2 located closer to the anolyte pump 8 than the second three-way valve TV2 to the electrolytic cell side portion of the second pipeline L2 located closer to the electrolytic cell 4 than the second three-way valve TV2, and to cut off the connection between the second pipeline L2 and the fourth pipeline L4.
 これによって、図14に示すとおり、第1の管路L1を通って陽極液タンク6から陽極液ポンプ8の吸入ポート8aに陽極液が流入し、陽極液ポンプ8の吐出ポート8bから吐出された陽極液が第2の管路L2を通って電解槽4の陽極室4aに流入する。 As a result, as shown in FIG. 14, anolyte flows from the anolyte tank 6 through the first pipeline L1 into the suction port 8a of the anolyte pump 8, and the anolyte discharged from the discharge port 8b of the anolyte pump 8 flows into the anode chamber 4a of the electrolytic cell 4 through the second pipeline L2.
(第4の変形例の運転を停止する際)
 他方、図13に示す第4の変形例において、電解装置2の運転を停止する際に、戻り経路が選択されると、コントローラ20は、開閉弁Vを閉じるとともに、第1の三方弁TV1について、第1の管路L1におけるタンク側部分とポンプ側部分との連通を遮断し、第1の管路L1におけるポンプ側部分と第3の管路L3とを連通させるように制御する。
(When stopping the operation of the fourth modified example)
On the other hand, in the fourth modified example shown in FIG. 13 , when the operation of the electrolysis device 2 is stopped and the return path is selected, the controller 20 closes the on-off valve V and controls the first three-way valve TV1 to block communication between the tank side portion and the pump side portion of the first pipeline L1 and to connect the pump side portion of the first pipeline L1 to the third pipeline L3.
 また、コントローラ20は、第2の三方弁TV2について、第2の管路L2におけるポンプ側部分と電解槽側部分との連通を遮断し、第2の管路L2におけるポンプ側部分と第4の管路L4とを連通させるように制御する。 The controller 20 also controls the second three-way valve TV2 to block communication between the pump side portion and the electrolytic cell side portion of the second pipeline L2, and to connect the pump side portion of the second pipeline L2 to the fourth pipeline L4.
 これによって、図15に示すとおり、第3の管路L3を通って陽極室4aの下部から陽極液ポンプ8の吸入ポート8aに陽極液が流入し、陽極液ポンプ8の吐出ポート8bから吐出された陽極液は、第4の管路L4を通って陽極液タンク6の下部に流入する。 As a result, as shown in FIG. 15, anolyte flows from the bottom of the anode chamber 4a through the third pipe L3 into the suction port 8a of the anolyte pump 8, and the anolyte discharged from the discharge port 8b of the anolyte pump 8 flows into the bottom of the anolyte tank 6 through the fourth pipe L4.
 このように、図4ないし図6に示す第1の変形例、図7ないし図9に示す第2の変形例、図10ないし図12に示す第3の変形例、図13ないし図15に示す第4の変形例のいずれにおいても、運転時に供給経路を選択することにより、陽極液ポンプ8によって陽極液タンク6から電解槽4の陽極室4aへ陽極液を供給し、運転を停止する際には、戻り経路を選択することにより、液体供給時に使用する陽極液ポンプ8によって電解槽4の陽極室4aから陽極液タンク6へ陽極液を戻すことが可能である。 In this way, in any of the first modified example shown in Figures 4 to 6, the second modified example shown in Figures 7 to 9, the third modified example shown in Figures 10 to 12, and the fourth modified example shown in Figures 13 to 15, by selecting a supply path during operation, anolyte can be supplied from the anolyte tank 6 to the anode chamber 4a of the electrolytic cell 4 by the anolyte pump 8, and when operation is stopped, by selecting a return path, anolyte can be returned from the anode chamber 4a of the electrolytic cell 4 to the anolyte tank 6 by the anolyte pump 8 used during liquid supply.
 したがって、図4ないし図6に示す第1の変形例、図7ないし図9に示す第2の変形例、図10ないし図12に示す第3の変形例、図13ないし図15に示す第4の変形例のいずれにおいても、運転時における電解槽4の陽極室4aへの陽極液の供給と、運転停止時における電解槽4からの陽極液の排出を同一の陽極液ポンプ8によって行うため、電解槽4を高所に配置するための頑丈で大きな架台を要することなく、簡易な構成で電解槽4の陽極室4a内の陽極液を陽極液タンク6に排出することができる。第1~第4の変形例の効果は、陽極液回路だけでなく、当然ながら陰極液回路においても同様である。 Therefore, in any of the first modified example shown in Figures 4 to 6, the second modified example shown in Figures 7 to 9, the third modified example shown in Figures 10 to 12, and the fourth modified example shown in Figures 13 to 15, the same anolyte pump 8 is used to supply anolyte to the anode chamber 4a of the electrolytic cell 4 during operation and to discharge anolyte from the electrolytic cell 4 when operation is stopped, so that a sturdy, large stand is not required for placing the electrolytic cell 4 at a high position, and the anolyte in the anode chamber 4a of the electrolytic cell 4 can be discharged to the anolyte tank 6 with a simple configuration. The effects of the first to fourth modified examples are not limited to the anolyte circuit, but are naturally similar to those of the cathode liquid circuit.
   2:電解装置
   4:電解槽
  4a:陽極室
  4b:陰極室
   6:陽極液タンク
   8:陽極液ポンプ
  8a:吸入ポート
  8b:吐出ポート
  10:第2の管路と第3の管路との接続部
  12:選択手段
  14:第1の管路と第3の管路との接続部
  16:第2の管路と第4の管路との接続部
  L1:第1の管路
  L2:第2の管路
  L3:第3の管路
  L4:第4の管路
  V1:第1の開閉弁
  V2:第2の開閉弁
  V3:第3の開閉弁
  V4:第4の開閉弁
  TV:三方弁(第1の変形例)
 TV1:第1の三方弁(第4の変形例)
 TV2:第2の三方弁(第4の変形例)
2: Electrolysis device 4: Electrolytic cell 4a: Anode chamber 4b: Cathode chamber 6: Anolyte tank 8: Anolyte pump 8a: Intake port 8b: Discharge port 10: Connection between second pipeline and third pipeline 12: Selection means 14: Connection between first pipeline and third pipeline 16: Connection between second pipeline and fourth pipeline L1: First pipeline L2: Second pipeline L3: Third pipeline L4: Fourth pipeline V1: First on-off valve V2: Second on-off valve V3: Third on-off valve V4: Fourth on-off valve TV: Three-way valve (first modified example)
TV1: First three-way valve (fourth modified example)
TV2: Second three-way valve (fourth variant)

Claims (6)

  1.  タンク内の液体を電解槽に供給して電解を行う電解装置であって、
     ポンプと、
     前記タンクと前記ポンプとを接続する第1の管路と、
     前記ポンプと前記電解槽とを接続する第2の管路と、
     前記第1の管路と前記第2の管路とを接続する第3の管路と、
     前記第2の管路において前記第3の管路との接続部よりも前記ポンプ側に位置するポンプ側部分から前記タンクまで延びる第4の管路と、
     前記第1の管路および前記第2の管路を介して前記タンクから前記電解槽へ前記ポンプによって液体を供給するための供給経路、または、前記第3の管路および前記第4の管路を介して前記電解槽から前記タンクへ前記ポンプによって液体を戻すための戻り経路のいずれかを選択するための選択手段と、
     を備える電解装置。
    An electrolysis apparatus that supplies a liquid in a tank to an electrolytic cell to perform electrolysis,
    A pump,
    a first pipe connecting the tank and the pump;
    a second pipeline connecting the pump and the electrolytic cell;
    a third pipeline connecting the first pipeline and the second pipeline;
    a fourth pipe extending from a pump side portion of the second pipe that is located closer to the pump than a connection portion between the second pipe and the third pipe to the tank;
    a selection means for selecting either a supply path for supplying liquid from the tank to the electrolytic cell via the first pipe and the second pipe by the pump, or a return path for returning liquid from the electrolytic cell to the tank via the third pipe and the fourth pipe by the pump;
    An electrolysis device comprising:
  2.  前記選択手段は、
     前記第1の管路に設置された第1の開閉弁と、
     前記第2の管路に設置された第2の開閉弁と、
     前記第3の管路に設置された第3の開閉弁と、
     前記第4の管路に設置された第4の開閉弁と、
     前記第1の開閉弁、前記第2の開閉弁、前記第3の開閉弁および前記第4の開閉弁を制御するコントローラと、
     を含む請求項1に記載の電解装置。
    The selection means is
    a first on-off valve installed in the first pipeline;
    a second on-off valve installed in the second pipeline;
    a third on-off valve installed in the third pipeline;
    a fourth on-off valve installed in the fourth pipeline;
    a controller that controls the first on-off valve, the second on-off valve, the third on-off valve, and the fourth on-off valve;
    2. The electrolysis device of claim 1 .
  3.  前記選択手段は、
     前記第1の管路に設置された第1の開閉弁と、
     前記第4の管路に設置された第2の開閉弁と、
     前記第2の管路と前記第3の管路との接続部に設置された三方弁と、
     前記第1の開閉弁、前記第2の開閉弁および前記三方弁を制御するコントローラと、
    を含む請求項1に記載の電解装置。
    The selection means is
    a first on-off valve installed in the first pipeline;
    a second on-off valve installed in the fourth pipeline;
    a three-way valve installed at a connection between the second pipeline and the third pipeline;
    a controller that controls the first on-off valve, the second on-off valve, and the three-way valve;
    2. The electrolysis device of claim 1 .
  4.  前記選択手段は、
     前記第2の管路に設置された第1の開閉弁と、
     前記第4の管路に設置された第2の開閉弁と、
     前記第1の管路と前記第3の管路との接続部に設置された三方弁と、
     前記第1の開閉弁、前記第2の開閉弁および前記三方弁を制御するコントローラと、
    を含む請求項1に記載の電解装置。
    The selection means is
    a first on-off valve installed in the second pipeline;
    a second on-off valve installed in the fourth pipeline;
    a three-way valve installed at a connection between the first pipeline and the third pipeline;
    a controller that controls the first on-off valve, the second on-off valve, and the three-way valve;
    2. The electrolysis device of claim 1 .
  5.  前記選択手段は、
     前記第1の管路に設置された第1の開閉弁と、
     前記第3の管路に設置された第2の開閉弁と、
     前記第2の管路と前記第4の管路との接続部に設置された三方弁と、
     前記第1の開閉弁、前記第2の開閉弁および前記三方弁を制御するコントローラと、
    を含む請求項1に記載の電解装置。
    The selection means is
    a first on-off valve installed in the first pipeline;
    a second on-off valve installed in the third pipeline;
    a three-way valve installed at a connection between the second pipeline and the fourth pipeline;
    a controller that controls the first on-off valve, the second on-off valve, and the three-way valve;
    2. The electrolysis device of claim 1 .
  6.  前記選択手段は、
     前記第1の管路と前記第3の管路との接続部に設置された第1の三方弁と、
     前記第2の管路と前記第4の管路との接続部に設置された第2の三方弁と、
     前記第1の三方弁および前記第2の三方弁を制御するコントローラと、
    を含む請求項1に記載の電解装置。
    The selection means is
    a first three-way valve installed at a connection between the first pipeline and the third pipeline;
    a second three-way valve installed at a connection between the second pipeline and the fourth pipeline;
    a controller that controls the first three-way valve and the second three-way valve;
    2. The electrolysis device of claim 1 .
PCT/JP2023/043820 2022-12-23 2023-12-07 Electrolysis device WO2024135382A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-206605 2022-12-23
JP2022206605A JP2024090615A (en) 2022-12-23 Electrolysis Equipment

Publications (1)

Publication Number Publication Date
WO2024135382A1 true WO2024135382A1 (en) 2024-06-27

Family

ID=91551737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/043820 WO2024135382A1 (en) 2022-12-23 2023-12-07 Electrolysis device

Country Status (2)

Country Link
CN (1) CN118241285A (en)
WO (1) WO2024135382A1 (en)

Also Published As

Publication number Publication date
CN118241285A (en) 2024-06-25

Similar Documents

Publication Publication Date Title
CA2628001A1 (en) Fuel balancing system
WO2024135382A1 (en) Electrolysis device
CN112576577B (en) Device for processing a hydraulic vehicle brake system
JP2024090615A (en) Electrolysis Equipment
PL211959B1 (en) Method and device for desalinating water while overcoming decreases in pressure
KR101714680B1 (en) Engine cooling system of a marine structure and engine cooling method using the same
US11660485B2 (en) Fire suppression system
CN108633870B (en) Marine organism prevention system applied to pneumatic pressing marine work platform
KR20130014166A (en) System for transferring ballast water of ship
EP2537811A1 (en) Electrolyzed water generation device
US20220341430A1 (en) Mobile pump system with metering pump and method therefor
JP2594871Y2 (en) Multiple electrolyzer type electrolyzed water generator
JP4437752B2 (en) Sealing oil supply device for rotating electrical machines
CN112572393B (en) Device for processing a hydraulic vehicle brake system
KR20230090252A (en) Draining arrangement of a propulsion unit
KR101171931B1 (en) Method for inclining test of ship
JP2023056197A (en) Processing liquid supply device and processing liquid supply method
KR20100004774U (en) Bilge treatment system in ships
RU2042745C1 (en) Composite electrolyte coating deposition apparatus
PL245325B1 (en) Power supply system for the sprayer boom
CN115671636A (en) Safety system for inlet and outlet valves of bilge fire-fighting general pump and control method thereof
JP4570231B2 (en) Electrolyzed water generator
JP2020179372A (en) Gas dissolution water manufacturing apparatus and method
JPH08189063A (en) Automatic water supply system
JP2001295085A (en) Water electrolyzer