WO2024135233A1 - Film and method for manufacturing same - Google Patents

Film and method for manufacturing same Download PDF

Info

Publication number
WO2024135233A1
WO2024135233A1 PCT/JP2023/042322 JP2023042322W WO2024135233A1 WO 2024135233 A1 WO2024135233 A1 WO 2024135233A1 JP 2023042322 W JP2023042322 W JP 2023042322W WO 2024135233 A1 WO2024135233 A1 WO 2024135233A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
meth
acrylate monomer
acrylate
curable resin
Prior art date
Application number
PCT/JP2023/042322
Other languages
French (fr)
Japanese (ja)
Inventor
康昭 梅澤
祐希 池田
雅弘 市村
Original Assignee
株式会社有沢製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社有沢製作所 filed Critical 株式会社有沢製作所
Publication of WO2024135233A1 publication Critical patent/WO2024135233A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/24Feeding the material into the mould
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs

Definitions

  • the present invention relates to a film and a method for producing the same.
  • the pen-type pointing device such as a stylus pen, such as pen tablets, liquid crystal tablets, tablet PCs, and electronic paper
  • the pen-type pointing device is used for purposes such as writing characters and drawing pictures.
  • Patent Document 1 discloses a laminated film for touch panels that contains silica fine particles in the hard coat layer and has a convex surface.
  • Patent document 2 also discloses a film that improves the feel of the material by giving the surface a convex shape due to the shape of the resin.
  • the laminated film for touch panels described in Patent Document 1 has the problem that the silica particles on the hard coat layer are easily chipped off and the surface of the film is easily scratched when information is input using a pen-type pointing device.
  • the tactile sensation-improving film described in Patent Document 2 has the problem that the convex parts of the resin are easily chipped off and the surface of the film is easily scratched (i.e., it has poor abrasion resistance) when inputting information with a pen-type pointing device.
  • the present invention was made in consideration of these circumstances, and aims to provide a film that is excellent in abrasion resistance, a writing feel when inputting information with a pen-type pointing device to a pen input device to which the film is attached, and is also easy to handle (flexible), as well as a method for manufacturing the film.
  • the above problems can be solved by using a film having valleys and peaks on the surface conforming to JIS B0601:2001, in which the maximum valley depth (Rv) of the valleys, the maximum peak height (Rp) of the peaks, and the average element length (RSm) conforming to JIS B0601:2001 satisfy 1.50 ⁇ m ⁇ Rv ⁇ 8.00 ⁇ m, 0.80 ⁇ Rv/(Rv + Rp) ⁇ 0.90, and 30 ⁇ m ⁇ RSm ⁇ 300 ⁇ m, the storage modulus of the film is 0.052 to 1.500 GPa, and the film contains a UV-curable resin, and thus completed the present invention.
  • the maximum valley depth (Rv) of the valleys, the maximum peak height (Rp) of the peaks, and the average element length (RSm) conforming to JIS B0601:2001 satisfy 1.50 ⁇ m ⁇ Rv ⁇ 8.00 ⁇ m, 0.80 ⁇ Rv/(Rv + Rp) ⁇ 0.90, and
  • the present invention is as follows.
  • the storage modulus of the film is 0.052 GPa to 1.500 GPa;
  • the film includes a UV-curable resin. film.
  • (2) does not contain particulates to form said valleys and/or peaks on said surface;
  • the film described in (1) The film described in (1).
  • the storage modulus of the film is 0.150 GPa to 1.000 GPa.
  • the UV curable resin includes at least one selected from the group consisting of (meth)acrylate oligomers and (meth)acrylate monomers. A film according to (1) or (2).
  • the (meth)acrylate oligomer includes at least one selected from the group consisting of a urethane (meth)acrylate oligomer, an acrylic resin (meth)acrylate oligomer, an epoxy (meth)acrylate oligomer, and a polyester (meth)acrylate oligomer;
  • the (meth)acrylate monomer includes at least one selected from the group consisting of isobornyl (meth)acrylate monomer, tripropylene glycol di(meth)acrylate monomer, tetrahydrofurfuryl (meth)acrylate monomer, phenoxyethyl (meth)acrylate monomer, dipentaerythritol hexa(meth)acrylate monomer, tricyclodecane dimethanol di(meth)acrylate monomer, benzyl (meth)acrylate monomer, stearyl (meth)acrylate monomer, isodecyl (meth)acrylate monomer, isocty
  • the film further comprises a photoinitiator.
  • a method for producing a film comprising: a coating step of coating a UV-curable resin composition; and a step of forming valleys and peaks in accordance with JIS B0601:2001 on a surface of the film by transfer using a positive mold, The film has a maximum valley depth (Rv) of the valley, a maximum peak height (Rp) of the peak, and an average element length (RSm) in accordance with JIS B0601:2001.
  • the filling, The storage modulus of the film is 0.052 GPa to 1.500 GPa;
  • the film includes a UV-curable resin.
  • the present invention provides a film that is resistant to abrasion, has a good writing feel when inputting information with a pen-type pointing device to a pen input device to which the film is attached, and is also easy to handle (flexible), as well as a method for producing the film.
  • the present embodiment includes the numerical values before and after it.
  • 0% by mass to 100% by mass means a range of 0% by mass or more and 100% by mass or less.
  • the film according to the present embodiment is a film having a valley and a peak on a surface in accordance with JIS B0601:2001, wherein the maximum valley depth (Rv) of the valley, the maximum peak height (Rp) of the peak, and the average length of the element (RSm) in accordance with JIS B0601:2001 satisfy 1.50 ⁇ m ⁇ Rv ⁇ 8.00 ⁇ m, 0.80 ⁇ Rv/(Rv+Rp) ⁇ 0.90, and 30 ⁇ m ⁇ RSm ⁇ 300 ⁇ m, the storage modulus of the film is 0.052 to 1.500 GPa, and the film contains a UV-curable resin.
  • the film according to this embodiment is not particularly limited, but can be used by being attached to substrates of various shapes (curved, flat, etc.) and materials (glass, acrylic resin, polyacetal resin, etc.).
  • the film When the film satisfies the relationships of 1.50 ⁇ m ⁇ Rv ⁇ 8.00 ⁇ m, 0.80 ⁇ Rv/(Rv + Rp) ⁇ 0.90, and 30 ⁇ m ⁇ RSm ⁇ 300 ⁇ m, it tends to have excellent abrasion resistance and a comfortable writing feel when inputting information with a pen-type pointing device to a pen input device to which the film is attached.
  • the storage modulus of the film when the storage modulus of the film is 0.052 to 1.500 GPa, it tends to have excellent abrasion resistance and flexibility.
  • the inclusion of a UV-curable resin tends to provide excellent abrasion resistance and moldability.
  • the reason why the film tends to have excellent abrasion resistance by satisfying the relationships of 1.50 ⁇ m ⁇ Rv ⁇ 8.00 ⁇ m, 0.80 ⁇ Rv/(Rv + Rp) ⁇ 0.90, and 30 ⁇ m ⁇ RSm ⁇ 300 ⁇ m is thought to be because the formation of large peaks conforming to JIS B0601:2001 on the surface of the film is suppressed, thereby suppressing the film surface from being partially or completely chipped off due to friction and causing scratches on the film surface.
  • the reason why the film tends to have excellent writing feel when inputting information with a pen-type pointing device to a pen input device to which the film is attached by satisfying the above relationships is thought to be because the formation of valleys conforming to JIS B0601:2001 and of appropriate size is promoted, thereby providing appropriate resistance when inputting information with a pen-type pointing device via a pen input device to which the film is attached.
  • the factors that tend to result in excellent abrasion resistance and a pleasant writing feel when inputting information using a pen-type pointing device when using a pen input device to which the film is attached are not limited to these.
  • the film tends to have excellent abrasion resistance and flexibility.
  • the storage modulus of the film When the storage modulus of the film is 0.052 GPa or more, the film exhibits appropriate hardness. This makes it possible to prevent the film from being partially or completely chipped off due to friction, and to prevent the film surface from being scratched (i.e., excellent abrasion resistance).
  • the storage modulus of the film when the storage modulus of the film is 1,500 GPa or less, the film exhibits appropriate flexibility. This makes it possible to bond the film to substrates of various shapes (curved, flat, etc.) and various materials (glass, acrylic resin, polyacetal resin, etc.) without causing cracks on the surface (i.e., excellent flexibility).
  • factors that tend to result in excellent abrasion resistance and flexibility are not limited to these.
  • the film of this embodiment tends to have excellent abrasion resistance, a good writing feel when inputting information with a pen-type pointing device through a pen input device to which the film is attached, and flexibility, and is therefore suitable for use as a film for a pen input device.
  • the pen input device is not particularly limited as long as it is a display device that allows information to be inputted with a pen-type pointing device such as a stylus pen, but examples include pen tablets, liquid crystal tablets, tablet-type personal computers, electronic paper, etc.
  • film The components of the film of this embodiment (hereinafter simply referred to as “film”) are described in detail below, but the present invention is not limited to this, and various modifications are possible without departing from the gist of the invention.
  • the film is manufactured using a UV-curable resin composition as a raw material by the method described below.
  • the UV-curable resin composition contains a UV-curable resin, which is described in detail below, and may contain a photopolymerization initiator and other additives.
  • UV-curable resin in this embodiment refers to a resin that is cured by UV irradiation.
  • the UV-curable resin is not particularly limited, but may be, for example, a (meth)acrylate oligomer or a (meth)acrylate monomer, and each of these may be used alone or in combination of two or more.
  • the specific structure of the (meth)acrylate oligomer is not particularly limited, but examples include urethane (meth)acrylate oligomer, acrylic resin (meth)acrylate oligomer, epoxy (meth)acrylate oligomer, polyester (meth)acrylate oligomer, alkane (meth)acrylate oligomer, and alkylene glycol (meth)acrylate oligomer.
  • urethane (meth)acrylate oligomer acrylic resin (meth)acrylate oligomer, epoxy (meth)acrylate oligomer, and polyester (meth)acrylate oligomer
  • a urethane (meth)acrylate oligomer it is preferable to include one or more selected from the group consisting of urethane (meth)acrylate oligomer, acrylic resin (meth)acrylate oligomer, epoxy (meth)acrylate oligomer, and polyester (meth)acrylate oligomer, and it is even more preferable to include a urethane (meth)acrylate oligomer.
  • the use of a (meth)acrylate oligomer tends to improve flexibility.
  • the (meth)acrylate monomer is preferably compatible with the (meth)acrylate oligomer.
  • the specific structure of the (meth)acrylate monomer is not particularly limited, but examples thereof include methyl (meth)acrylate monomer, ethyl (meth)acrylate monomer, propyl (meth)acrylate monomer, isopropyl (meth)acrylate monomer, butyl (meth)acrylate monomer, isoamyl (meth)acrylate monomer, hexyl (meth)acrylate monomer, 2-ethyl (meth)acrylate monomer, isoctyl (meth)acrylate monomer, isodecyl (meth)acrylate monomer, lauryl (meth)acrylate monomer, stearyl (meth)acrylate monomer, isobornyl (meth)acrylate monomer, cyclohexyl (meth)acrylate monomer, and the like.
  • ether group-containing acrylate monomers such as acrylate monomers, alkyl (meth)acrylate monomers such as benzyl acrylate, tripropylene glycol di(meth)acrylate monomer, tetrahydrofurfuryl (meth)acrylate monomer, phenoxyethyl (meth)acrylate monomer, dipentaerythritol hexa(meth)acrylate monomer, tricyclodecane dimethanol di(meth)acrylate monomer, 1,6-hexanediol di(meth)acrylate monomer, phenoxydiethylene glycol (meth)acrylate monomer, 1,4-butanediol di(meth)acrylate monomer, and m-phenoxybenzyl (meth)acrylate monomer.
  • alkyl (meth)acrylate monomers such as benzyl acrylate, tripropylene glycol di(meth)acrylate monomer, tetrahydrofurfury
  • Low-viscosity (meth)acrylate monomers are suitable for diluting UV-curable resin compositions.
  • Examples of low-viscosity (meth)acrylate monomers include, but are not limited to, isobornyl (meth)acrylate monomer, tripropylene glycol di(meth)acrylate monomer, tetrahydrofurfuryl (meth)acrylate monomer, and phenoxyethyl (meth)acrylate monomer.
  • low-viscosity (meth)acrylate monomer refers to a (meth)acrylate monomer with a viscosity of 2 Pa ⁇ s or less at 25°C.
  • (Meth)acrylate monomers with a glass transition temperature of 80°C or higher are preferably used to increase the storage modulus of the UV-curable resin composition.
  • Examples of (meth)acrylate monomers with a glass transition temperature of 80°C or higher include, but are not limited to, dipentaerythritol hexa(meth)acrylate monomer and isobornyl(meth)acrylate monomer.
  • (Meth)acrylate monomers having a glass transition temperature of 5°C or less are preferably used to reduce the storage modulus of the UV-curable resin composition.
  • Examples of (meth)acrylate monomers having a glass transition temperature of 5°C or less include, but are not limited to, phenoxyethyl (meth)acrylate monomer.
  • Polyfunctional (meth)acrylate monomers are preferably used to adjust the crosslink density of the UV-curable resin composition and increase the storage modulus.
  • a polyfunctional (meth)acrylate monomer refers to a (meth)acrylate monomer having two or more functional groups of the same or different structures in one molecule.
  • the functional groups are not particularly limited, but examples include an acryloyl group, an epoxy group, and a carboxy group.
  • Polyfunctional (meth)acrylate monomers are not particularly limited, but examples include bifunctional tripropylene glycol di(meth)acrylate monomers and hexafunctional dipentaerythritol hexaacrylate monomers.
  • (Meth)acrylate monomers that are soluble in plastics are preferably used because they have excellent adhesion to the substrate film described below.
  • Examples of (meth)acrylate monomers that are soluble in plastics include, but are not limited to, tetrahydrofurfuryl (meth)acrylate monomers.
  • the content of the UV-curable resin is preferably 45 to 99 mass%, 50 to 99 mass%, 60 to 99 mass%, 70 to 99 mass%, or 80 to 99 mass% relative to the total solid content of the UV-curable resin composition.
  • the content of the (meth)acrylate oligomer is preferably 15.0 to 70.0 mass%, 20.0 to 65.0 mass%, 30.0 to 60.0 mass%, 33.0 to 55.0 mass%, or 35.0 to 50.0 mass% relative to the total solid content of the UV-curable resin composition.
  • the content of the (meth)acrylate oligomer is preferably 20.0 to 80.0 mass%, 25.0 to 70.0 mass%, 30.0 to 60.0 mass%, 33.0 to 50.0 mass%, or 35.0 to 50.0 mass% relative to the total solid content of the UV-curable resin.
  • the content of the (meth)acrylate monomer is preferably 30.0 to 80.0 mass%, 40.0 to 70.0 mass%, 50.0 to 65.0 mass%, or 50.0 to 60.0 mass% relative to the total solid content of the UV-curable resin composition.
  • the content of the (meth)acrylate monomer is preferably 35.0 to 85.0 mass%, 40.0 to 70.0 mass%, 50.0 to 67.0 mass%, or 50.0 to 65.0 mass% relative to the total solid content of the UV-curable resin.
  • the film of the present embodiment preferably contains a photopolymerization initiator.
  • the photopolymerization initiator of the present embodiment is not particularly limited, but examples thereof include carbonyl compounds such as acetophenone, benzophenone, benzyl, benzoin, acylphosphine oxide, benzoin benzoate, and ⁇ -acyloxime ester, sulfur compounds such as tetramethylthiuram monosulfide and thioxanthones, and phosphorus compounds such as diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide. Each of these may be used alone or in combination of two or more.
  • the specific structure of the photopolymerization initiator is not particularly limited, but examples include 1-hydroxycyclohexyl phenyl ketone and diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide.
  • the content of the photopolymerization initiator is preferably 0.1 to 10 mass%, 0.5 to 8 mass%, or 1 to 5 mass% based on the total solid content of the UV-curable resin composition.
  • the film of the present embodiment may contain other known components that can be used in conventional films in addition to the above-mentioned components.
  • the other components are not particularly limited, but may include colorants, antioxidants, photopolymerization accelerators, ultraviolet absorbers, light stabilizers, flame retardants, fillers, adhesives, and other additives.
  • the other components may be used alone or in combination of two or more.
  • the film of this embodiment may be a single layer film made of a UV curable resin composition, or may be a laminated film made of a surface layer film made of a UV curable resin composition and a substrate film supporting the surface layer film.
  • the method of attaching the film of this embodiment to the substrate is not particularly limited, and examples thereof include a method of directly attaching a single layer film to a substrate, and a method of attaching a substrate film of a laminated film and a substrate via an adhesive.
  • the above-mentioned components are the components of the surface layer film.
  • the substrate is not particularly limited, and is, for example, a member of the surface of a pen input device, specifically, glass, acrylic resin, polyacetal resin, etc.
  • the components of the substrate film are not particularly limited, and examples thereof include the above-mentioned UV curable resin, thermosetting resin, and thermoplastic resin.
  • thermosetting resins examples include phenolic resins, epoxy resins, melamine resins, urea resins, polyurethanes, and thermosetting polyimides.
  • thermoplastic resins include polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyamide, polyethylene terephthalate, thermoplastic polyimide, cellulose acetate, and polyethylene naphthalate.
  • the base film may contain other known components that can be used in conventional films.
  • the other components include, but are not limited to, colorants, stabilizers, flame retardants, fillers, adhesives, and other additives.
  • the other components may be used alone or in combination of two or more.
  • film The characteristics of the film of the present embodiment (hereinafter, simply referred to as the "film") are described in detail below, but the present invention is not limited thereto, and various modifications are possible without departing from the gist of the present invention.
  • the surface of the film has an uneven shape, where the concave shape is a valley in accordance with JIS B0601: 2001, and the convex shape is a mountain in accordance with JIS B0601: 2001.
  • the average length (RSm) of the elements in accordance with JIS B0601: 2001 is the average length between the valleys.
  • the maximum valley depth (Rv) according to JIS B0601:2001 is 1.50 ⁇ m ⁇ Rv ⁇ 8.00 ⁇ m, preferably 2.00 ⁇ m ⁇ Rv ⁇ 7.50 ⁇ m, and 2.50 ⁇ m ⁇ Rv ⁇ 7.00 ⁇ m.
  • the maximum valley depth (Rv) according to JIS B0601:2001 can be measured according to JIS B0601:2001. More specifically, it can be measured by the method described in the examples.
  • the maximum peak height (Rp) in accordance with JIS B0601:2001 is preferably 0.01 ⁇ m ⁇ Rp ⁇ 1.20 ⁇ m, 0.01 ⁇ m ⁇ Rp ⁇ 1.00 ⁇ m, or 0.01 ⁇ m ⁇ Rp ⁇ 0.90 ⁇ m.
  • Rp is in the above range, there is a tendency for the abrasion resistance and writing feel when inputting information with a pen-type pointing device to a pen input device to which the film is attached to be excellent.
  • the maximum valley depth (Rv) in accordance with JIS B0601:2001 can be measured in accordance with JIS B0601:2001. More specifically, it can be measured by the method described in the examples.
  • the maximum valley depth (Rv) and the maximum peak height (Rp) satisfy the relationship 0.80 ⁇ Rv/(Rv+Rp) ⁇ 0.90, and preferably 0.81 ⁇ Rv/(Rv+Rp) ⁇ 0.90.
  • Rv/(Rv+Rp) satisfies the above relationship, there is a tendency for the abrasion resistance and writing feel when inputting information with a pen-type pointing device to a pen input device to which the film is attached to be excellent.
  • the average length (RSm) of the elements according to JIS B0601:2001 is 30 ⁇ m ⁇ RSm ⁇ 300 ⁇ m, preferably 30 ⁇ m ⁇ RSm ⁇ 200 ⁇ m, 30 ⁇ m ⁇ RSm ⁇ 150 ⁇ m, 30 ⁇ m ⁇ RSm ⁇ 100 ⁇ m, 30 ⁇ m ⁇ RSm ⁇ 90 ⁇ m.
  • RSm is in the above range, there is a tendency for the abrasion resistance and writing feel when inputting information with a pen-type pointing device to a pen input device to which the film is attached to be excellent.
  • the maximum valley depth (RSm) according to JIS B0601:2001 can be measured according to JIS B0601:2001. More specifically, it can be measured by the method described in the examples.
  • the surface structure of the film may be formed so that the film surface contains fine particles, or may be formed so that the film surface does not contain fine particles. From the viewpoint of improving abrasion resistance, it is preferable that the film surface does not contain fine particles.
  • the method for controlling Rv, Rp, and RSm is not particularly limited, but examples thereof include a method for adjusting the material, particle size, etc. of inorganic and/or organic fine particles fixed to the surface of a positive mold in the film manufacturing method described below.
  • the storage modulus of the film is 0.052 to 1.500 GPa, preferably 0.080 to 1.300 GPa, 0.150 to 1.000 GPa, or 0.150 to 0.900 GPa.
  • the storage modulus of the film can be measured by a known method. More specifically, it can be measured by the method described in the examples.
  • the storage modulus is the storage modulus of the surface layer film.
  • the method for controlling the storage modulus of the film is not particularly limited, but an example of such a method is to control the composition of the UV-curable resin composition.
  • the average thickness of the film of the present embodiment is not particularly limited, but is, for example, 20 to 800 ⁇ m, 50 to 500 ⁇ m, 75 to 300 ⁇ m, or 100 to 200 ⁇ m.
  • the film thickness is in the above range, the film tends to have excellent abrasion resistance and flexibility.
  • the average thickness of the base film is not particularly limited, but is, for example, 1 to 500 ⁇ m, 50 to 400 ⁇ m, or 100 to 300 ⁇ m.
  • the average thickness of the surface layer film is not particularly limited, but is, for example, 10 to 300 ⁇ m, 50 to 250 ⁇ m, 75 to 200 ⁇ m, or 75 to 150 ⁇ m.
  • the thickness of the film can be measured by a known method. Although not particularly limited, for example, it can be measured using a micrometer.
  • the film manufacturing method of the present embodiment includes a coating step of coating a UV-curable resin composition, and a positive transfer step of forming a surface structure of the film by transfer using a positive mold.
  • the uncured UV-curable resin composition is coated on a UV-transmitting substrate, for example, without being particularly limited thereto.
  • the film according to the present embodiment is a laminated film consisting of a surface layer film made of a UV-curable resin composition and a substrate film supporting the surface layer film, the uncured UV-curable resin composition is coated on a substrate film, for example, without being particularly limited thereto.
  • UV transparency is not particularly limited, but may be, for example, the property of transmitting 10% or more, 30% or more, 50% or more, or 70% or more of ultraviolet light with a wavelength of 365 nm.
  • the uncured UV-curable resin composition is applied by a known method.
  • the application method is not particularly limited, but examples include gravure coating, reverse coating, comma coating, die coating, bar coating, curtain flow coating, roller coating, spraying, airless spraying, and hot spraying.
  • the coating process may be carried out after diluting the UV-curable resin composition with a solvent.
  • the solvent is not particularly limited, but may be, for example, a non-polar solvent or a polar solvent.
  • the positive mold is a mold for producing the film according to this embodiment, and has a concave-convex shape on the surface region.
  • the method for imparting the concave-convex shape to the surface region of the positive mold is not particularly limited, but examples thereof include a method of fixing inorganic and/or organic fine particles to the surface region of the positive mold, and a method of producing a positive mold so that the surface region of the positive mold has a concave-convex shape.
  • the positive mold may have a single layer structure or a multi-layer structure.
  • a multi-layer structure it may include a base layer, a rough surface layer on the base layer, and a release layer on the rough surface layer, and the rough surface layer and the release layer constitute the surface region of the positive mold.
  • the rough surface layer gives the surface region of the positive mold an uneven shape, and the release layer makes it easier to demold the positive mold in the film manufacturing method described below.
  • the positive type When the positive type has a single-layer structure, it includes, but is not limited to, for example, the UV-curable resin detailed in 1.1, the thermosetting resin detailed in 1.4, the thermoplastic resin detailed in 1.4, and/or inorganic materials such as metal and glass.
  • the base layer is not particularly limited, but may include, for example, a UV-curable resin as described in detail in 1.1, a thermosetting resin as described in detail in 1.4, a thermoplastic resin as described in detail in 1.4, and/or an inorganic material such as metal or glass.
  • the rough surface layer is not particularly limited, but may contain, for example, a UV-curable resin as described in detail in 1.1, a thermosetting resin as described in detail in 1.4, a thermoplastic resin as described in detail in 1.4, and/or an inorganic material such as metal or glass, and may contain inorganic and/or organic fine particles.
  • the release layer is not particularly limited, and may contain, for example, a UV-curable resin as described in detail in 1.1, a thermosetting resin as described in detail in 1.4, a thermoplastic resin as described in detail in 1.4, and/or an inorganic material such as metal or glass, and may also contain a release agent such as a silicone-based release agent.
  • the inorganic and/or organic fine particles fixed to the positive surface region are not particularly limited, but may be, for example, a metal element, a metal compound, a silicon compound, a fluorine compound, particles formed from a thermoplastic resin, particles formed from a thermosetting resin, or particles formed from a photocurable resin.
  • the particle size of the inorganic and/or organic fine particles fixed to the positive surface region is preferably 0.5 to 40.0 ⁇ m, 1.0 to 20.0 ⁇ m, or 2.0 to 10.0 ⁇ m.
  • the maximum valley depth (Rv) of the positive surface region in accordance with JIS B0601:2001 is preferably 0.01 ⁇ m ⁇ Rv ⁇ 1.20 ⁇ m, and more preferably 0.01 ⁇ m ⁇ Rv ⁇ 1.10 ⁇ m.
  • the maximum peak height (Rp) of the positive surface area in accordance with JIS B0601:2001 is preferably 1.50 ⁇ m ⁇ Rp ⁇ 8.00 ⁇ m, 2.00 ⁇ m ⁇ Rp ⁇ 7.50 ⁇ m, or 2.50 ⁇ m ⁇ Rp ⁇ 7.00 ⁇ m.
  • the maximum valley depth (Rv) and maximum peak height (Rp) of the positive type are preferably 0.01 ⁇ Rv/(Rv+Rp) ⁇ 0.20 and 0.10 ⁇ Rv/(Rv+Rp) ⁇ 0.15.
  • the average element length (RSm) of the positive surface area in accordance with JIS B0601:2001 is preferably 30 ⁇ m ⁇ RSm ⁇ 300 ⁇ m, 30 ⁇ m ⁇ RSm ⁇ 200 ⁇ m, 30 ⁇ m ⁇ RSm ⁇ 150 ⁇ m, 30 ⁇ m ⁇ RSm ⁇ 100 ⁇ m, 30 ⁇ m ⁇ RSm ⁇ 90 ⁇ m.
  • the positive type may contain other known components.
  • the other components are not particularly limited, but may include colorants, antioxidants, photopolymerization accelerators, ultraviolet absorbers, light stabilizers, flame retardants, fillers, release agents, and other additives.
  • the other components may be used alone or in combination of two or more.
  • the method for transferring the shape of the surface region of the positive mold to produce the film of this embodiment is not particularly limited, but for example, after the coating process, the positive mold is laminated onto the uncured UV-curable resin composition, and UV is irradiated from the substrate, substrate film, or positive mold side, thereby curing the UV-curable resin composition with the uneven shape of the surface region of the positive mold transferred. The positive mold is then removed, and the film of this embodiment can be produced.
  • the light source for UV irradiation is not particularly limited, but examples include mercury lamps, high-pressure mercury lamps, UV-LEDs, xenon lamps, and laser light sources.
  • the intensity and cumulative intensity of UV irradiation are appropriately selected depending on the composition, thickness, etc. of the UV curable resin composition.
  • the intensity of UV irradiation is not particularly limited, but is, for example, 10 mW/cm 2 to 10,000 mW/cm 2.
  • the cumulative intensity of UV irradiation is not particularly limited, but is, for example, 50 to 10,000 mJ/cm 2 .
  • Pen-type pointing device is a device for inputting information such as characters to a pen input device, and is made of hard materials such as plastics and metals.
  • the plastics are not particularly limited, but examples thereof include polyamide, polyacetal, polycarbonate, and polyphenylene ether.
  • the metals are not particularly limited, but examples thereof include metals such as iron and aluminum, and alloys such as stainless steel. Each of these may be used alone, or two or more of them may be used in combination.
  • the shape of the pen tip is not particularly limited, but is usually curved.
  • the average diameter of the pen tip is not particularly limited, but is, for example, 0.1 to 10.0 mm.
  • a matte release film manufactured by Otsuki Kogyo Co., Ltd. was prepared as a positive mold.
  • the matte release film is configured by laminating a substrate layer having a thickness of 25 ⁇ m, a rough surface layer made of "GM60" manufactured by Otsuki Kogyo Co., Ltd. containing silica filler, and a release layer made of "SK-1" manufactured by Otsuki Kogyo Co., Ltd., which is a silicone-based release coat, in this order.
  • a UV-curable resin composition was applied onto this positive mold by die coating, and a polyethylene terephthalate film (Cosmoshine A4360 manufactured by Toyobo Co., Ltd., thickness 188 ⁇ m) was laminated as a substrate film on the applied UV-curable resin composition.
  • This laminate was passed between two metal rolls having a gap of a certain distance, and the UV-curable resin composition was spread between the positive mold and the substrate film so that the thickness was uniform. The gap was appropriately adjusted so that the thickness of the UV-curable composition layer after curing was 100 ⁇ m.
  • the thickness of the positive type was measured with a micrometer.
  • a high-pressure mercury lamp (Oak Manufacturing Co., Ltd., HHM-7000/D-FS) was used to irradiate ultraviolet light with a main wavelength of 365 nm from the substrate film side so that the irradiation intensity was 150 ⁇ 10 mW/cm 2 and the cumulative irradiation intensity was 3000 ⁇ 300 mJ/cm 2 , curing the UV-curable resin composition, forming and curing a surface layer film, and forming a surface structure of the film.
  • the intensity of the ultraviolet light was measured using UVR-T1/UD-T36 manufactured by Topcon Corporation. The measurement conditions were a measurement wavelength of 300 to 390 nm and a peak sensitivity wavelength of 355 nm.
  • the positive type was demolded to obtain films (negative type films) of Examples 1 to 5 and Comparative Examples 1 to 2.
  • the silicone rubber that had undergone primary curing was peeled off from the positive mold and the stainless steel tray, and the peeled silicone rubber was put into a 100 ° C. oven for 20 hours to perform secondary curing, to obtain a negative mold.
  • the UV-curable resin composition was applied onto this negative mold by die coating, and a polyethylene terephthalate film (Cosmoshine A4360, thickness 188 ⁇ m, manufactured by Toyobo Co., Ltd.) was laminated onto the applied UV-curable resin composition as a substrate film. This laminate was passed between two metal rolls having a gap of a certain distance, and the UV-curable resin composition was spread between the negative mold and the substrate film so that the thickness was uniform.
  • the gap was appropriately adjusted so that the thickness of the UV-curable composition layer after curing was 100 ⁇ m.
  • the thickness of the negative mold was measured with a micrometer.
  • ultraviolet rays with a main wavelength of 365 nm were irradiated from the substrate film side using a high pressure mercury lamp (Oak Manufacturing Co., Ltd., HHM-7000/D-FS) so that the irradiation intensity was 150 ⁇ 10 mW/cm 2 and the cumulative irradiation intensity was 3000 ⁇ 300 mJ/cm 2 , and the UV-curable resin composition was cured, and the surface layer film was molded and cured to form the surface structure of the film.
  • the intensity of the ultraviolet rays was measured using UVR-T1/UD-T36 manufactured by Topcon Corporation.
  • the measurement conditions were a measurement wavelength of 300 to 390 nm and a peak sensitivity wavelength of 355 nm.
  • the positive type was demolded to obtain the films (positive type films) of Comparative Examples 3 to 9.
  • the UV curable resin composition was prepared by mixing the components so as to have the compositions shown in Tables 1 and 2.
  • the UV curable resin composition was applied to the release surface of a release polyethylene terephthalate film A (PET3811, manufactured by Lintec Corporation) using a die coater, and a release polyethylene terephthalate film B (PET3811, manufactured by Lintec Corporation) was laminated on the applied UV curable resin composition so that the release surface was in contact with the UV curable resin composition, and the UV curable resin composition was spread between the release polyethylene terephthalate film A and the release polyethylene terephthalate film B so that the thickness was uniform through two metal rolls having a gap of a certain distance.
  • the gap was appropriately adjusted so that the thickness of the UV curable composition layer after curing was 100 ⁇ m.
  • a high pressure mercury lamp (Oak Manufacturing Co., Ltd., HHM-7000/D-FS)
  • ultraviolet rays with a main wavelength of 365 nm were irradiated from the film B side so that the irradiation intensity was 150 ⁇ 10 mW/cm 2 and the cumulative irradiation intensity was 3000 ⁇ 300 mJ/cm 2
  • the UV-curable resin composition was cured.
  • the intensity of the ultraviolet rays was measured using a Topcon Corporation UVR-T1/UD-T36.
  • the measurement conditions were a measurement wavelength of 300 to 390 nm and a peak sensitivity wavelength of 355 nm.
  • films A and B were peeled off from the cured UV-curable resin composition to obtain a film for measuring the storage modulus.
  • Dipentaerythritol hexaacrylate monomer "DPHA” manufactured by Daicel Allnex Corporation [Photopolymerization initiator] 1-Hydroxycyclohexyl phenyl ketone: "Omnirad 184" manufactured by IGM Resins B.V.
  • Diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide "TPO” manufactured by IGM Resins B.V.
  • Measurement method 2.1 Surface roughness parameters For the films and positive molds produced in each of the Examples and Comparative Examples, 0.5 mm thick soda lime glass was attached and fixed via an adhesive to the surface opposite to the film surface, which was the measurement surface, and the maximum valley depth (Rv), maximum peak height (Rp), and average element length (RSm) were measured using a surface roughness measuring device (SURFCOM TOUCH50, manufactured by Tokyo Seimitsu Co., Ltd.) under the following conditions in accordance with JIS B0601:2001.
  • SURFCOM TOUCH50 surface roughness measuring device
  • Storage modulus was measured using a dynamic viscoelasticity measuring device (DMA: Dynamic Mechanical Analysis, RSA-G2, manufactured by TA Instruments, Inc.) for the film for measuring storage modulus. The measurement was performed under the conditions of tensile mode, heating rate of 10° C./min, and 1 Hz, and the value at 25° C. was read.
  • DMA Dynamic Mechanical Analysis, RSA-G2
  • Thickness of Surface Layer Film The thickness of the laminated film prepared in 1.1. and 1.2., in which the surface layer film and the base film were laminated, was measured with a micrometer, and the thickness of the surface layer film was calculated by subtracting the thickness of the base film measured beforehand from the measured thickness.
  • compositions of the UV-curable resin compositions used to prepare the films in each Example and Comparative Example the measured values of each physical property, and the evaluation results are shown in Tables 1 and 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

This film has, on the surface thereof, valleys and peaks in accordance with JIS B0601:2001, and the maximum valley depth (Rv) of the valleys, the maximum peak height (Rp) of the peaks, and the mean length (RSm) of the elements, in accordance with JIS B0601:2001, satisfy the following conditions: 1.50 μm < Rv < 8.00 μm, 0.80 < Rv/(Rv + Rp) < 0.90, and 30 μm < RSm < 300 μm, wherein the storage elastic modulus of the film is 0.052 GPa to 1.500 GPa, and the film contains a UV curable resin.

Description

フィルム及びその製造方法Film and manufacturing method thereof
 本発明は、フィルム及びその製造方法に関する。 The present invention relates to a film and a method for producing the same.
 近年、タッチパネル等の情報入力用パネルを介してスマートフォン、ノートパソコン、タブレット等の情報機器に情報入力することが普及してきている。特に、ペンタブレット、液晶タブレット、タブレット型パソコン、電子ペーパー等の、スタイラスペン等のペン型ポインティングデバイスによって情報入力することが可能なペン入力デバイスにおいて、ペン型ポインティングデバイスは、文字を書く、絵を描画する、等の用途に利用されている。 In recent years, it has become common to input information into information devices such as smartphones, laptops, and tablets via information input panels such as touch panels. In particular, in pen input devices that allow information input using a pen-type pointing device such as a stylus pen, such as pen tablets, liquid crystal tablets, tablet PCs, and electronic paper, the pen-type pointing device is used for purposes such as writing characters and drawing pictures.
 ペン入力デバイスが様々な用途に利用されるようになってきたことに伴い、ペン型ポインティングデバイスを使用した入力方法について、様々な高度な機能が要求されるようになってきた。例えば、ペン入力デバイスに、直接ペン型ポインティングデバイスを使用すると、ペン先が滑って書き味が悪いため、適度な筆記抵抗を与えて紙に鉛筆で書くような書き味を付加する機能が要求されている。 As pen input devices have come to be used for a variety of purposes, various advanced functions have been required for input methods using pen-type pointing devices. For example, when using a pen-type pointing device directly on a pen input device, the pen tip slips and the writing experience is poor, so there is a demand for a function that provides an appropriate writing resistance to give a writing experience similar to that of writing with a pencil on paper.
 上記書き味を付加するために、種々のペン入力デバイス用フィルムが提案されている。 In order to provide the above-mentioned writing feel, various films for pen input devices have been proposed.
 例えば、特許文献1にはハードコート層にシリカ微粒子を含有させ、表面に凸形状を有するタッチパネル用積層フィルムが開示されている。 For example, Patent Document 1 discloses a laminated film for touch panels that contains silica fine particles in the hard coat layer and has a convex surface.
 また、特許文献2には、樹脂の形状により表面に凸形状を与える触感改良フィルムが開示されている。 Patent document 2 also discloses a film that improves the feel of the material by giving the surface a convex shape due to the shape of the resin.
特開2010-153298号JP 2010-153298 A 特開2014-137640号JP 2014-137640 A
 しかしながら、特許文献1に記載のタッチパネル用積層フィルムは、ペン型ポインティングデバイスにより情報入力する際に、ハードコート層上のシリカ微粒子が欠落しやすく、フィルムの表面に傷がつきやすい、という問題がある。 However, the laminated film for touch panels described in Patent Document 1 has the problem that the silica particles on the hard coat layer are easily chipped off and the surface of the film is easily scratched when information is input using a pen-type pointing device.
 また、特許文献2に記載の触感改良フィルムは、ペン型ポインティングデバイスにより情報入力する際に、樹脂の凸部分が欠落しやすく、フィルムの表面が傷つきやすい(即ち、耐擦過性に劣る)という問題がある。 Furthermore, the tactile sensation-improving film described in Patent Document 2 has the problem that the convex parts of the resin are easily chipped off and the surface of the film is easily scratched (i.e., it has poor abrasion resistance) when inputting information with a pen-type pointing device.
 本発明はこのような事情に鑑みてなされたものであり、耐擦過性及びフィルムが貼り付けられたペン入力デバイスに対してペン型ポインティングデバイスにより情報入力する際の書き味に優れ、且つ取り扱いやすさ(屈曲性)にも優れるフィルム、及びフィルムの製造方法を提供することを目的とする。 The present invention was made in consideration of these circumstances, and aims to provide a film that is excellent in abrasion resistance, a writing feel when inputting information with a pen-type pointing device to a pen input device to which the film is attached, and is also easy to handle (flexible), as well as a method for manufacturing the film.
 本発明者らは上記課題を解決するために鋭意検討した結果、表面にJIS B0601:2001に準拠した谷と山と、を有するフィルムであって、JIS B0601:2001に準拠した上記谷の最大谷深さ(Rv)と、上記山の最大山高さ(Rp)と、要素の平均長さ(RSm)と、が、1.50μm<Rv<8.00μm、0.80<Rv/(Rv+Rp)<0.90、及び30μm<RSm<300μmを満たし、上記フィルムの貯蔵弾性率は、0.052~1.500GPaであり、上記フィルムは、UV硬化性樹脂を含む、フィルムを用いることにより、上記課題を解決し得ることを見出し、本発明を完成させた。 As a result of intensive research by the inventors to solve the above problems, they discovered that the above problems can be solved by using a film having valleys and peaks on the surface conforming to JIS B0601:2001, in which the maximum valley depth (Rv) of the valleys, the maximum peak height (Rp) of the peaks, and the average element length (RSm) conforming to JIS B0601:2001 satisfy 1.50 μm < Rv < 8.00 μm, 0.80 < Rv/(Rv + Rp) < 0.90, and 30 μm < RSm < 300 μm, the storage modulus of the film is 0.052 to 1.500 GPa, and the film contains a UV-curable resin, and thus completed the present invention.
 すなわち、本発明は以下のとおりである。
(1)
 表面にJIS B0601:2001に準拠した谷と山と、を有するフィルムであって、
 JIS B0601:2001に準拠した前記谷の最大谷深さ(Rv)と、前記山の最大山高さ(Rp)と、要素の平均長さ(RSm)と、が、
1.50μm<Rv<8.00μm
0.80<Rv/(Rv+Rp)<0.90
30μm<RSm<300μm
を満たし、
 前記フィルムの貯蔵弾性率は、0.052GPa~1.500GPaであり、
 前記フィルムは、UV硬化性樹脂を含む、
 フィルム。
(2)
 前記表面に前記谷及び/又は山を形成するための微粒子を含まない、
 (1)に記載のフィルム。
(3)
前記フィルムの貯蔵弾性率は、0.150GPa~1.000GPaである、
 (1)又は(2)に記載のフィルム。
(4)
 前記UV硬化性樹脂は、(メタ)アクリレートオリゴマー及び(メタ)アクリレートモノマーからなる群から選択される1種以上を含む、
 (1)又は(2)に記載のフィルム。
(5)
 前記(メタ)アクリレートオリゴマーは、ウレタン(メタ)アクリレートオリゴマー、アクリル樹脂(メタ)アクリレートオリゴマー、エポキシ(メタ)アクリレートオリゴマー、及びポリエステル(メタ)アクリレートオリゴマーからなる群から選択される1種以上を含み、
 前記(メタ)アクリレートモノマーは、イソボルニル(メタ)アクリレートモノマー、トリプロピレングリコールジ(メタ)アクリレートモノマー、テトラヒドロフルフリル(メタ)アクリレートモノマー、フェノキシエチル(メタ)アクリレートモノマー、ジペンタエリスリトールヘキサ(メタ)アクリレートモノマー、トリシクロデカンジメタノールジ(メタ)アクリレートモノマー、ベンジル(メタ)アクリレートモノマー、ステアリル(メタ)アクリレートモノマー、イソデシル(メタ)アクリレートモノマー、イソクチル(メタ)アクリレートモノマー、1,6-ヘキサンジオールジ(メタ)アクリレートモノマー、ラウリル(メタ)アクリレートモノマー、m-フェノキシベンジル(メタ)アクリレートモノマー、イソアミル(メタ)アクリレートモノマー、フェノキシジエチレングリコール(メタ)アクリレートモノマー、及び1,4-ブタンジオールジ(メタ)アクリレートモノマーからなる群から選択される1種以上を含む、
 (4)に記載のフィルム。
(6)
 前記フィルムは、光重合開始剤をさらに含む、
 (1)又は(2)に記載のフィルム。
(7)
 ペン入力デバイス用フィルムである、
 (1)又は(2)に記載のフィルム。
(8)
 UV硬化性樹脂組成物を塗布する塗布工程と、ポジ型を用いた転写によりフィルムの表面にJIS B0601:2001に準拠した谷と山とを形成する工程と、を含む、フィルムの製造方法であって、
 前記フィルムは、JIS B0601:2001に準拠した前記谷の最大谷深さ(Rv)と、前記山の最大山高さ(Rp)と、要素の平均長さ(RSm)と、が、
1.50μm<Rv<8.00μm
0.80<Rv/(Rv+Rp)<0.90
30μm<RSm<300μm
を満たし、
 前記フィルムの貯蔵弾性率は、0.052GPa~1.500GPaであり、
 前記フィルムは、UV硬化性樹脂を含む、
 フィルムの製造方法。
That is, the present invention is as follows.
(1)
A film having a surface having valleys and peaks conforming to JIS B0601:2001,
The maximum valley depth (Rv) of the valley, the maximum peak height (Rp) of the peak, and the average length (RSm) of the element in accordance with JIS B0601:2001,
1.50μm<Rv<8.00μm
0.80<Rv/(Rv+Rp)<0.90
30μm<RSm<300μm
The filling,
The storage modulus of the film is 0.052 GPa to 1.500 GPa;
The film includes a UV-curable resin.
film.
(2)
does not contain particulates to form said valleys and/or peaks on said surface;
The film described in (1).
(3)
The storage modulus of the film is 0.150 GPa to 1.000 GPa.
A film according to (1) or (2).
(4)
The UV curable resin includes at least one selected from the group consisting of (meth)acrylate oligomers and (meth)acrylate monomers.
A film according to (1) or (2).
(5)
The (meth)acrylate oligomer includes at least one selected from the group consisting of a urethane (meth)acrylate oligomer, an acrylic resin (meth)acrylate oligomer, an epoxy (meth)acrylate oligomer, and a polyester (meth)acrylate oligomer;
The (meth)acrylate monomer includes at least one selected from the group consisting of isobornyl (meth)acrylate monomer, tripropylene glycol di(meth)acrylate monomer, tetrahydrofurfuryl (meth)acrylate monomer, phenoxyethyl (meth)acrylate monomer, dipentaerythritol hexa(meth)acrylate monomer, tricyclodecane dimethanol di(meth)acrylate monomer, benzyl (meth)acrylate monomer, stearyl (meth)acrylate monomer, isodecyl (meth)acrylate monomer, isoctyl (meth)acrylate monomer, 1,6-hexanediol di(meth)acrylate monomer, lauryl (meth)acrylate monomer, m-phenoxybenzyl (meth)acrylate monomer, isoamyl (meth)acrylate monomer, phenoxydiethylene glycol (meth)acrylate monomer, and 1,4-butanediol di(meth)acrylate monomer;
The film described in (4).
(6)
The film further comprises a photoinitiator.
A film according to (1) or (2).
(7)
A film for a pen input device.
A film according to (1) or (2).
(8)
A method for producing a film, comprising: a coating step of coating a UV-curable resin composition; and a step of forming valleys and peaks in accordance with JIS B0601:2001 on a surface of the film by transfer using a positive mold,
The film has a maximum valley depth (Rv) of the valley, a maximum peak height (Rp) of the peak, and an average element length (RSm) in accordance with JIS B0601:2001.
1.50μm<Rv<8.00μm
0.80<Rv/(Rv+Rp)<0.90
30μm<RSm<300μm
The filling,
The storage modulus of the film is 0.052 GPa to 1.500 GPa;
The film includes a UV-curable resin.
A method for manufacturing a film.
 本発明により、耐擦過性及びフィルムが貼り付けられたペン入力デバイスに対してペン型ポインティングデバイスにより情報入力する際の書き味に優れ、且つ取り扱いやすさ(屈曲性)にも優れるフィルム、及びフィルムの製造方法を提供することができる。 The present invention provides a film that is resistant to abrasion, has a good writing feel when inputting information with a pen-type pointing device to a pen input device to which the film is attached, and is also easy to handle (flexible), as well as a method for producing the film.
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に記載する。なお、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することが可能である。数値範囲の「~」は、その前後の数値を含む範囲であり、例えば、「0質量%~100質量%」は、0質量%以上であり、かつ、100質量%以下である範囲を意味する。 Below, the form for carrying out the present invention (hereinafter referred to as "the present embodiment") will be described in detail. Note that the present invention is not limited to the following embodiment, and various modifications can be made within the scope of the gist of the invention. The "to" in the numerical range includes the numerical values before and after it. For example, "0% by mass to 100% by mass" means a range of 0% by mass or more and 100% by mass or less.
1.フィルム
 本実施形態に係るフィルムは、表面にJIS B0601:2001に準拠した谷と山と、を有するフィルムであって、JIS B0601:2001に準拠した上記谷の最大谷深さ(Rv)と、上記山の最大山高さ(Rp)と、要素の平均長さ(RSm)と、が、1.50μm<Rv<8.00μm、0.80<Rv/(Rv+Rp)<0.90、及び30μm<RSm<300μmを満たし、前記フィルムの貯蔵弾性率は、0.052~1.500GPaであり、上記フィルムは、UV硬化性樹脂を含む。
1. Film The film according to the present embodiment is a film having a valley and a peak on a surface in accordance with JIS B0601:2001, wherein the maximum valley depth (Rv) of the valley, the maximum peak height (Rp) of the peak, and the average length of the element (RSm) in accordance with JIS B0601:2001 satisfy 1.50 μm<Rv<8.00 μm, 0.80<Rv/(Rv+Rp)<0.90, and 30 μm<RSm<300 μm, the storage modulus of the film is 0.052 to 1.500 GPa, and the film contains a UV-curable resin.
 本実施形態に係るフィルムは、特に限定されないが、例えば、様々な形状(曲面、平面等)、及び様々な材質(ガラス、アクリル樹脂、ポリアセタール樹脂等)の基材に対して貼り付けて使用される。 The film according to this embodiment is not particularly limited, but can be used by being attached to substrates of various shapes (curved, flat, etc.) and materials (glass, acrylic resin, polyacetal resin, etc.).
 フィルムが1.50μm<Rv<8.00μm、0.80<Rv/(Rv+Rp)<0.90、30μm<RSm<300μmの関係性を満たすことで、耐擦過性及びフィルムが貼り付けられたペン入力デバイスに対してペン型ポインティングデバイスにより情報入力する際の書き味に優れる傾向にある。また、フィルムの貯蔵弾性率が、0.052~1.500GPaであることで、耐擦過性及び屈曲性に優れる傾向にある。また、UV硬化性樹脂を含むことにより耐擦過性に優れ、且つ成形性に優れる傾向にある。 When the film satisfies the relationships of 1.50 μm < Rv < 8.00 μm, 0.80 < Rv/(Rv + Rp) < 0.90, and 30 μm < RSm < 300 μm, it tends to have excellent abrasion resistance and a comfortable writing feel when inputting information with a pen-type pointing device to a pen input device to which the film is attached. In addition, when the storage modulus of the film is 0.052 to 1.500 GPa, it tends to have excellent abrasion resistance and flexibility. In addition, the inclusion of a UV-curable resin tends to provide excellent abrasion resistance and moldability.
 フィルムが1.50μm<Rv<8.00μm、0.80<Rv/(Rv+Rp)<0.90、30μm<RSm<300μmの関係性を満たすことで、耐擦過性に優れる傾向にある要因は、フィルムの表面にJIS B0601:2001に準拠した山であって大きな山が形成されることを抑制することにより、フィルムの表面が摩擦により一部又は全て欠落し、フィルムの表面に傷がつくことを抑制するためと考えられる。また、上述した関係性を満たすことで、フィルムが貼り付けられたペン入力デバイスに対してペン型ポインティングデバイスにより情報入力する際の書き味に優れる傾向にある要因は、JIS B0601:2001に準拠した谷であって適度な大きさの谷が形成されることを促進することにより、フィルムが貼り付けられたペン入力デバイスを介してペン型ポインティングデバイスにより情報入力する際に、適度な抵抗を与えるためであると考えられる。但し、耐擦過性及びフィルムが貼り付けられたペン入力デバイスに対してペン型ポインティングデバイスにより情報入力する際の書き味に優れる傾向にある要因はこれに限定されない。 The reason why the film tends to have excellent abrasion resistance by satisfying the relationships of 1.50 μm < Rv < 8.00 μm, 0.80 < Rv/(Rv + Rp) < 0.90, and 30 μm < RSm < 300 μm is thought to be because the formation of large peaks conforming to JIS B0601:2001 on the surface of the film is suppressed, thereby suppressing the film surface from being partially or completely chipped off due to friction and causing scratches on the film surface. In addition, the reason why the film tends to have excellent writing feel when inputting information with a pen-type pointing device to a pen input device to which the film is attached by satisfying the above relationships is thought to be because the formation of valleys conforming to JIS B0601:2001 and of appropriate size is promoted, thereby providing appropriate resistance when inputting information with a pen-type pointing device via a pen input device to which the film is attached. However, the factors that tend to result in excellent abrasion resistance and a pleasant writing feel when inputting information using a pen-type pointing device when using a pen input device to which the film is attached are not limited to these.
 フィルムの貯蔵弾性率が0.052~1.500GPaであることにより、耐擦過性及び屈曲性に優れる傾向にある。フィルムの貯蔵弾性率が0.052GPa以上であることで、フィルムが適度な硬さを発現する。これにより、フィルムが摩擦により一部又は全て欠落し、フィルムの表面に傷がつくことを抑制することが出来る(即ち、耐擦過性に優れる)。また、フィルムの貯蔵弾性率が1.500GPa以下であることで、フィルムが適度な柔軟性を発現する。これにより、様々な形状(曲面、平面等)、様々な材質(ガラス、アクリル樹脂、ポリアセタール樹脂等)の基材に対して、フィルムを表面に割れを生じさせることなく、貼合させることが出来る(即ち、耐屈曲性に優れる)。但し、耐擦過性及び屈曲性に優れる傾向にある要因はこれに限定されない。 When the storage modulus of the film is 0.052 to 1,500 GPa, the film tends to have excellent abrasion resistance and flexibility. When the storage modulus of the film is 0.052 GPa or more, the film exhibits appropriate hardness. This makes it possible to prevent the film from being partially or completely chipped off due to friction, and to prevent the film surface from being scratched (i.e., excellent abrasion resistance). Furthermore, when the storage modulus of the film is 1,500 GPa or less, the film exhibits appropriate flexibility. This makes it possible to bond the film to substrates of various shapes (curved, flat, etc.) and various materials (glass, acrylic resin, polyacetal resin, etc.) without causing cracks on the surface (i.e., excellent flexibility). However, factors that tend to result in excellent abrasion resistance and flexibility are not limited to these.
 本実施形態のフィルムは、耐擦過性、フィルムが貼り付けられたペン入力デバイスを介してペン型ポインティングデバイスにより情報入力する際の書き味、及び屈曲性に優れる傾向にあることから、ペン入力デバイス用フィルムとして好適に用いられる。ペン入力デバイスとしては、スタイラスペン等のペン型ポインティングデバイスによって情報入力することが可能な表示装置であれば特に限定されないが、例えば、ペンタブレット、液晶タブレット、タブレット型パソコン、電子ペーパー等が挙げられる。 The film of this embodiment tends to have excellent abrasion resistance, a good writing feel when inputting information with a pen-type pointing device through a pen input device to which the film is attached, and flexibility, and is therefore suitable for use as a film for a pen input device. The pen input device is not particularly limited as long as it is a display device that allows information to be inputted with a pen-type pointing device such as a stylus pen, but examples include pen tablets, liquid crystal tablets, tablet-type personal computers, electronic paper, etc.
 以下、本実施形態のフィルム(以下、単に「フィルム」ともいう。)の各成分についてそれぞれ詳説するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。 The components of the film of this embodiment (hereinafter simply referred to as "film") are described in detail below, but the present invention is not limited to this, and various modifications are possible without departing from the gist of the invention.
 フィルムは、UV硬化性樹脂組成物を原料として、後述する方法によって製造される。UV硬化性樹脂組成物は、下記で詳説するUV硬化性樹脂を含み、光重合開始剤及びその他の添加剤を含んでもよい。 The film is manufactured using a UV-curable resin composition as a raw material by the method described below. The UV-curable resin composition contains a UV-curable resin, which is described in detail below, and may contain a photopolymerization initiator and other additives.
1.1.UV硬化性樹脂
 本実施形態のUV硬化性樹脂は、UV照射により硬化する樹脂を意味する。UV硬化性樹脂としては、特に限定されないが、例えば、(メタ)アクリレートオリゴマーや(メタ)アクリレートモノマーを挙げることができ、これらは、それぞれ、1種単独で用いてもよく、2種以上を併用してもよい。
1.1. UV-curable resin The UV-curable resin in this embodiment refers to a resin that is cured by UV irradiation. The UV-curable resin is not particularly limited, but may be, for example, a (meth)acrylate oligomer or a (meth)acrylate monomer, and each of these may be used alone or in combination of two or more.
 (メタ)アクリレートオリゴマーの具体的な構造としては、特に限定されないが、例えば、ウレタン(メタ)アクリレートオリゴマー、アクリル樹脂(メタ)アクリレートオリゴマー、エポキシ(メタ)アクリレートオリゴマー、ポリエステル(メタ)アクリレートオリゴマー、アルカン(メタ)アクリレートオリゴマー及びアルキレングリコール(メタ)アクリレートオリゴマーが挙げられる。このなかでも、ウレタン(メタ)アクリレートオリゴマー、アクリル樹脂(メタ)アクリレートオリゴマー、エポキシ(メタ)アクリレートオリゴマー、及びポリエステル(メタ)アクリレートオリゴマーからなる群から選択される1種以上を含むことが好ましく、ウレタン(メタ)アクリレートオリゴマーを含むことがさらに好ましい。(メタ)アクリレートオリゴマーを用いることにより、屈曲性が向上する傾向にある。 The specific structure of the (meth)acrylate oligomer is not particularly limited, but examples include urethane (meth)acrylate oligomer, acrylic resin (meth)acrylate oligomer, epoxy (meth)acrylate oligomer, polyester (meth)acrylate oligomer, alkane (meth)acrylate oligomer, and alkylene glycol (meth)acrylate oligomer. Among these, it is preferable to include one or more selected from the group consisting of urethane (meth)acrylate oligomer, acrylic resin (meth)acrylate oligomer, epoxy (meth)acrylate oligomer, and polyester (meth)acrylate oligomer, and it is even more preferable to include a urethane (meth)acrylate oligomer. The use of a (meth)acrylate oligomer tends to improve flexibility.
 (メタ)アクリレートモノマーは、(メタ)アクリレートオリゴマーに対して相溶性を有するものが好ましい。(メタ)アクリレートモノマーの具体的な構造としては、特に限定されないが、例えば、メチル(メタ)アクリレートモノマー、エチル(メタ)アクリレートモノマー、プロピル(メタ)アクリレートモノマー、イソプロピル(メタ)アクリレートモノマー、ブチル(メタ)アクリレートモノマー、イソアミル(メタ)アクリレートモノマー、ヘキシル(メタ)アクリレートモノマー、2-エチル(メタ)アクリレートモノマー、イソクチル(メタ)アクリレートモノマー、イソデシル(メタ)アクリレートモノマー、ラウリル(メタ)アクリレートモノマー、ステアリル(メタ)アクリレートモノマー、イソボルニル(メタ)アクリレートモノマー、シクロヘキシル(メタ)アクリレートモノマー、ベンジルアクリレート等のアルキル(メタ)アクリレートモノマー、トリプロピレングリコールジ(メタ)アクリレートモノマー、テトラヒドロフルフリル(メタ)アクリレートモノマー、フェノキシエチル(メタ)アクリレートモノマー、ジペンタエリスリトールヘキサ(メタ)アクリレートモノマー、トリシクロデカンジメタノールジ(メタ)アクリレートモノマー、1,6-ヘキサンジオールジ(メタ)アクリレートモノマー、フェノキシジエチレングリコール(メタ)アクリレートモノマー、1,4-ブタンジオールジ(メタ)アクリレートモノマー、m-フェノキシベンジル(メタ)アクリレートモノマー等の含エーテル基アクリレートモノマーが挙げられる。このなかでも、イソボルニル(メタ)アクリレートモノマー、トリプロピレングリコールジ(メタ)アクリレートモノマー、テトラヒドロフルフリル(メタ)アクリレートモノマー、フェノキシエチル(メタ)アクリレートモノマー、ジペンタエリスリトールヘキサ(メタ)アクリレートモノマー、トリシクロデカンジメタノールジ(メタ)アクリレートモノマー、ベンジル(メタ)アクリレートモノマー、ステアリル(メタ)アクリレートモノマー、イソデシル(メタ)アクリレートモノマー、イソクチル(メタ)アクリレートモノマー、1,6-ヘキサンジオールジ(メタ)アクリレートモノマー、ラウリル(メタ)アクリレートモノマー、m-フェノキシベンジル(メタ)アクリレートモノマー、イソアミル(メタ)アクリレートモノマー、フェノキシジエチレングリコール(メタ)アクリレートモノマー、及び1,4-ブタンジオールジ(メタ)アクリレートモノマーからなる群から選択される1種以上を含むことが好ましく、イソボルニル(メタ)アクリレートモノマー、トリプロピレングリコールジ(メタ)アクリレートモノマー、テトラヒドロフルフリル(メタ)アクリレートモノマー、フェノキシエチル(メタ)アクリレートモノマー、及びジペンタエリスリトールヘキサ(メタ)アクリレートモノマーからなる群から選択される1種以上を含むことがさらに好ましい。(メタ)アクリレートモノマーを用いることにより、フィルムの貯蔵弾性率、屈折率、耐久性、粘度などの物性を好適な範囲にすることができる。 The (meth)acrylate monomer is preferably compatible with the (meth)acrylate oligomer. The specific structure of the (meth)acrylate monomer is not particularly limited, but examples thereof include methyl (meth)acrylate monomer, ethyl (meth)acrylate monomer, propyl (meth)acrylate monomer, isopropyl (meth)acrylate monomer, butyl (meth)acrylate monomer, isoamyl (meth)acrylate monomer, hexyl (meth)acrylate monomer, 2-ethyl (meth)acrylate monomer, isoctyl (meth)acrylate monomer, isodecyl (meth)acrylate monomer, lauryl (meth)acrylate monomer, stearyl (meth)acrylate monomer, isobornyl (meth)acrylate monomer, cyclohexyl (meth)acrylate monomer, and the like. ether group-containing acrylate monomers such as acrylate monomers, alkyl (meth)acrylate monomers such as benzyl acrylate, tripropylene glycol di(meth)acrylate monomer, tetrahydrofurfuryl (meth)acrylate monomer, phenoxyethyl (meth)acrylate monomer, dipentaerythritol hexa(meth)acrylate monomer, tricyclodecane dimethanol di(meth)acrylate monomer, 1,6-hexanediol di(meth)acrylate monomer, phenoxydiethylene glycol (meth)acrylate monomer, 1,4-butanediol di(meth)acrylate monomer, and m-phenoxybenzyl (meth)acrylate monomer. Among these, isobornyl (meth)acrylate monomer, tripropylene glycol di(meth)acrylate monomer, tetrahydrofurfuryl (meth)acrylate monomer, phenoxyethyl (meth)acrylate monomer, dipentaerythritol hexa(meth)acrylate monomer, tricyclodecane dimethanol di(meth)acrylate monomer, benzyl (meth)acrylate monomer, stearyl (meth)acrylate monomer, isodecyl (meth)acrylate monomer, isoctyl (meth)acrylate monomer, 1,6-hexanediol di(meth)acrylate monomer, lauryl (meth)acrylate monomer , m-phenoxybenzyl (meth)acrylate monomer, isoamyl (meth)acrylate monomer, phenoxydiethylene glycol (meth)acrylate monomer, and 1,4-butanediol di(meth)acrylate monomer are preferably included, and more preferably, isobornyl (meth)acrylate monomer, tripropylene glycol di(meth)acrylate monomer, tetrahydrofurfuryl (meth)acrylate monomer, phenoxyethyl (meth)acrylate monomer, and dipentaerythritol hexa(meth)acrylate monomer are preferably included. By using a (meth)acrylate monomer, the physical properties such as the storage modulus, refractive index, durability, and viscosity of the film can be set in a suitable range.
 低粘度の(メタ)アクリレートモノマーは、UV硬化性樹脂組成物の希釈に好適に用いられる。低粘度の(メタ)アクリレートモノマーとしては、特に限定されないが、例えば、イソボルニル(メタ)アクリレートモノマー、トリプロピレングリコールジ(メタ)アクリレートモノマー、テトラヒドロフルフリル(メタ)アクリレートモノマー、フェノキシエチル(メタ)アクリレートモノマーが挙げられる。本明細書において、低粘度の(メタ)アクリレートモノマーとは、25℃での粘度が2Pa・s以下の(メタ)アクリレートモノマーをいう。 Low-viscosity (meth)acrylate monomers are suitable for diluting UV-curable resin compositions. Examples of low-viscosity (meth)acrylate monomers include, but are not limited to, isobornyl (meth)acrylate monomer, tripropylene glycol di(meth)acrylate monomer, tetrahydrofurfuryl (meth)acrylate monomer, and phenoxyethyl (meth)acrylate monomer. In this specification, low-viscosity (meth)acrylate monomer refers to a (meth)acrylate monomer with a viscosity of 2 Pa·s or less at 25°C.
 ガラス転移温度が80℃以上である(メタ)アクリレートモノマーは、UV硬化性樹脂組成物の貯蔵弾性率を増加させるために好適に用いられる。ガラス転移温度が80℃以上である(メタ)アクリレートモノマーとしては、特に限定されないが、例えば、ジペンタエリスリトールヘキサ(メタ)アクリレートモノマー、イソボルニル(メタ)アクリレートモノマーが挙げられる。 (Meth)acrylate monomers with a glass transition temperature of 80°C or higher are preferably used to increase the storage modulus of the UV-curable resin composition. Examples of (meth)acrylate monomers with a glass transition temperature of 80°C or higher include, but are not limited to, dipentaerythritol hexa(meth)acrylate monomer and isobornyl(meth)acrylate monomer.
 ガラス転移温度が5℃以下である(メタ)アクリレートモノマーは、UV硬化性樹脂組成物の貯蔵弾性率を低下させるために好適に用いられる。ガラス転移温度が5℃以下である(メタ)アクリレートモノマーとしては、特に限定されないが、例えば、フェノキシエチル(メタ)アクリレートモノマーが挙げられる。 (Meth)acrylate monomers having a glass transition temperature of 5°C or less are preferably used to reduce the storage modulus of the UV-curable resin composition. Examples of (meth)acrylate monomers having a glass transition temperature of 5°C or less include, but are not limited to, phenoxyethyl (meth)acrylate monomer.
 多官能である(メタ)アクリレートモノマーは、UV硬化性樹脂組成物の架橋密度を調整し、貯蔵弾性率を増加させるために好適に用いられる。本明細書において、多官能である(メタ)アクリレートモノマーとは、1つの分子中に同一又は異なる構造の官能基を2つ以上有する(メタ)アクリレートモノマーをいう。官能基としては特に限定されないが、例えば、アクリロイル基、エポキシ基、カルボキシ基等が挙げられる。 Polyfunctional (meth)acrylate monomers are preferably used to adjust the crosslink density of the UV-curable resin composition and increase the storage modulus. In this specification, a polyfunctional (meth)acrylate monomer refers to a (meth)acrylate monomer having two or more functional groups of the same or different structures in one molecule. The functional groups are not particularly limited, but examples include an acryloyl group, an epoxy group, and a carboxy group.
 多官能である(メタ)アクリレートモノマーとしては、特に限定されないが、例えば、2官能であるトリプロピレングリコールジ(メタ)アクリレートモノマー、6官能であるジペンタエリストールヘキサアクリレートモノマーが挙げられる。 Polyfunctional (meth)acrylate monomers are not particularly limited, but examples include bifunctional tripropylene glycol di(meth)acrylate monomers and hexafunctional dipentaerythritol hexaacrylate monomers.
 プラスチックに対して溶解性がある(メタ)アクリレートモノマーは、後述する基材フィルムとの接着性に優れるために好適に用いられる。プラスチックに対して溶解性がある(メタ)アクリレートモノマーとしては、特に限定されないが、例えば、テトラヒドロフルフリル(メタ)アクリレートモノマーが挙げられる。 (Meth)acrylate monomers that are soluble in plastics are preferably used because they have excellent adhesion to the substrate film described below. Examples of (meth)acrylate monomers that are soluble in plastics include, but are not limited to, tetrahydrofurfuryl (meth)acrylate monomers.
 UV硬化性樹脂の含有量は、UV硬化性樹脂組成物の固形分総量に対して、好ましくは、45~99質量%であり、50~99質量%であり、60~99質量%であり、70~99質量%であり、80~99質量%である。UV硬化性樹脂の含有量が上記範囲であることにより、耐擦過性及び屈曲性に優れる傾向にある。 The content of the UV-curable resin is preferably 45 to 99 mass%, 50 to 99 mass%, 60 to 99 mass%, 70 to 99 mass%, or 80 to 99 mass% relative to the total solid content of the UV-curable resin composition. By having the content of the UV-curable resin in the above range, the abrasion resistance and flexibility tend to be excellent.
 (メタ)アクリレートオリゴマーの含有量は、UV硬化性樹脂組成物の固形分総量に対して、好ましくは、15.0~70.0質量%であり、20.0~65.0質量%であり、30.0~60.0質量%であり、33.0~55.0質量%であり、35.0~50.0質量%である。(メタ)アクリレートオリゴマーの含有量が上記範囲であることにより、耐擦過性及び屈曲性に優れる傾向にある。 The content of the (meth)acrylate oligomer is preferably 15.0 to 70.0 mass%, 20.0 to 65.0 mass%, 30.0 to 60.0 mass%, 33.0 to 55.0 mass%, or 35.0 to 50.0 mass% relative to the total solid content of the UV-curable resin composition. By having the content of the (meth)acrylate oligomer in the above range, the abrasion resistance and flexibility tend to be excellent.
 (メタ)アクリレートオリゴマーの含有量は、UV硬化性樹脂の固形分総量に対して、好ましくは、20.0~80.0質量%であり、25.0~70.0質量%であり、30.0~60.0質量%であり、33.0~50.0質量%であり、35.0~50.0質量%である。(メタ)アクリレートオリゴマーの含有量が上記範囲であることにより、耐擦過性及び屈曲性に優れる傾向にある。 The content of the (meth)acrylate oligomer is preferably 20.0 to 80.0 mass%, 25.0 to 70.0 mass%, 30.0 to 60.0 mass%, 33.0 to 50.0 mass%, or 35.0 to 50.0 mass% relative to the total solid content of the UV-curable resin. By having the content of the (meth)acrylate oligomer in the above range, there is a tendency for the abrasion resistance and flexibility to be excellent.
 (メタ)アクリレートモノマーの含有量は、UV硬化性樹脂組成物の固形分総量に対して、好ましくは、30.0~80.0質量%であり、40.0~70.0質量%であり、50.0~65.0質量%であり、50.0~60.0質量%である。(メタ)アクリレートモノマーの含有量が上記範囲であることにより、耐擦過性及び屈曲性に優れる傾向にある。 The content of the (meth)acrylate monomer is preferably 30.0 to 80.0 mass%, 40.0 to 70.0 mass%, 50.0 to 65.0 mass%, or 50.0 to 60.0 mass% relative to the total solid content of the UV-curable resin composition. By having the content of the (meth)acrylate monomer within the above range, the abrasion resistance and flexibility tend to be excellent.
 (メタ)アクリレートモノマーの含有量は、UV硬化性樹脂の固形分総量に対して、好ましくは、35.0~85.0質量%であり、40.0~70.0質量%であり、50.0~67.0質量%であり、50.0~65.0質量%である。(メタ)アクリレートモノマーの含有量が上記範囲であることにより、耐擦過性及び屈曲性に優れる傾向にある。 The content of the (meth)acrylate monomer is preferably 35.0 to 85.0 mass%, 40.0 to 70.0 mass%, 50.0 to 67.0 mass%, or 50.0 to 65.0 mass% relative to the total solid content of the UV-curable resin. By having the content of the (meth)acrylate monomer within the above range, the abrasion resistance and flexibility tend to be excellent.
1.2.光重合開始剤
 本実施形態のフィルムは、光重合開始剤を含むことが好ましい。本実施形態の光重合開始剤は、特に限定されないが、例えば、アセトフェノン系、ベンゾフェノン系、ベンジル系、ベンゾイン系、アシルホスフィンオキサイド系、ベンゾインベンゾエート系、α-アシロキシムエステル系等のカルボニル化合物、テトラメチルチウラムモノサルファイド、チオキサントン類等の硫黄化合物、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド等の燐化合物等を挙げることができ、これらは、それぞれ、1種単独で用いてもよく、2種以上を併用してもよい。
1.2. Photopolymerization initiator The film of the present embodiment preferably contains a photopolymerization initiator. The photopolymerization initiator of the present embodiment is not particularly limited, but examples thereof include carbonyl compounds such as acetophenone, benzophenone, benzyl, benzoin, acylphosphine oxide, benzoin benzoate, and α-acyloxime ester, sulfur compounds such as tetramethylthiuram monosulfide and thioxanthones, and phosphorus compounds such as diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide. Each of these may be used alone or in combination of two or more.
 光重合開始剤の具体的な構造としては、特に限定されないが、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシドを挙げることができる。 The specific structure of the photopolymerization initiator is not particularly limited, but examples include 1-hydroxycyclohexyl phenyl ketone and diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide.
 光重合開始剤の含有量は、UV硬化性樹脂組成物の固形分総量に対して、好ましくは、0.1~10質量%であり、0.5~8質量%であり、1~5質量%である。光重合開始剤の含有量が上記範囲であることにより、硬化速度、屈曲性及び耐擦過性に優れる傾向にある。 The content of the photopolymerization initiator is preferably 0.1 to 10 mass%, 0.5 to 8 mass%, or 1 to 5 mass% based on the total solid content of the UV-curable resin composition. By having the content of the photopolymerization initiator within the above range, the curing speed, flexibility, and abrasion resistance tend to be excellent.
1.3.その他の添加剤
 本実施形態のフィルムは、上記の各成分の他に、従来のフィルムに用いられ得る公知のその他の成分を含んでもよい。その他の成分としては、特に限定されないが、着色剤、酸化防止剤、光重合促進剤、紫外線吸収剤、光安定剤、難燃剤、充填剤、粘着剤、その他の添加剤等が挙げられる。その他の成分は、1種単独で使用してもよく、2種以上を併用してもよい。
1.3. Other Additives The film of the present embodiment may contain other known components that can be used in conventional films in addition to the above-mentioned components. The other components are not particularly limited, but may include colorants, antioxidants, photopolymerization accelerators, ultraviolet absorbers, light stabilizers, flame retardants, fillers, adhesives, and other additives. The other components may be used alone or in combination of two or more.
1.4.その他
 本実施形態のフィルムはUV硬化性樹脂組成物からなる単層フィルムであってもよく、UV硬化性樹脂組成物からなる表面層フィルムと、前記表面層フィルムを支持する基材フィルムと、からなる積層フィルムであってもよい。本実施形態のフィルムを基材に貼合する方法は特に限定されないが、例えば単層フィルムを基材に直接貼合する方法、積層フィルムの基材フィルムと基材を、粘着剤を介して貼合する方法等が挙げられる。積層フィルムの場合、上述の各成分は、表面層フィルムの各成分である。ここで基材とは、特に限定されないが、例えば、ペン入力デバイスの表面の部材であり、具体的には、ガラス、アクリル樹脂、ポリアセタール樹脂等である。基材フィルムの成分は、特に限定されないが、例えば上述のUV硬化性樹脂、熱硬化性樹脂、及び熱可塑性樹脂が挙げられる。
1.4. Others The film of this embodiment may be a single layer film made of a UV curable resin composition, or may be a laminated film made of a surface layer film made of a UV curable resin composition and a substrate film supporting the surface layer film. The method of attaching the film of this embodiment to the substrate is not particularly limited, and examples thereof include a method of directly attaching a single layer film to a substrate, and a method of attaching a substrate film of a laminated film and a substrate via an adhesive. In the case of a laminated film, the above-mentioned components are the components of the surface layer film. Here, the substrate is not particularly limited, and is, for example, a member of the surface of a pen input device, specifically, glass, acrylic resin, polyacetal resin, etc. The components of the substrate film are not particularly limited, and examples thereof include the above-mentioned UV curable resin, thermosetting resin, and thermoplastic resin.
 熱硬化性樹脂としては、例えばフェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、ポリウレタン、熱硬化性ポリイミドが挙げられる。 Examples of thermosetting resins include phenolic resins, epoxy resins, melamine resins, urea resins, polyurethanes, and thermosetting polyimides.
 熱可塑性樹脂としては、例えばポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリアミド、ポリエチレンテレフタラート、熱可塑性ポリイミド、セルロースアセテート、ポリエチレンナフタレートが挙げられる。 Examples of thermoplastic resins include polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyamide, polyethylene terephthalate, thermoplastic polyimide, cellulose acetate, and polyethylene naphthalate.
 基材フィルムは、上記の各成分の他に、従来のフィルムに用いられ得る公知のその他の成分を含んでもよい。その他の成分としては、特に限定されないが、着色剤、安定化剤、難燃剤、充填剤、粘着剤、その他の添加剤等が挙げられる。その他の成分は、1種単独で使用してもよく、2種以上を併用してもよい。 In addition to the above components, the base film may contain other known components that can be used in conventional films. The other components include, but are not limited to, colorants, stabilizers, flame retardants, fillers, adhesives, and other additives. The other components may be used alone or in combination of two or more.
2.フィルムの特性
 以下、本実施形態のフィルム(以下、単に「フィルム」ともいう。)の各特性についてそれぞれ詳説するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。
2. Film Characteristics The characteristics of the film of the present embodiment (hereinafter, simply referred to as the "film") are described in detail below, but the present invention is not limited thereto, and various modifications are possible without departing from the gist of the present invention.
2.1.表面構造
 フィルムの表面には、凹凸形状が形成されており、ここで凹形状は、JIS B0601:2001に準拠した谷であり、凸形状は、JIS B0601:2001に準拠した山である。また、JIS B0601:2001に準拠した要素の平均長さ(RSm)は、谷と谷との間の平均長さである。
2.1 Surface Structure The surface of the film has an uneven shape, where the concave shape is a valley in accordance with JIS B0601: 2001, and the convex shape is a mountain in accordance with JIS B0601: 2001. The average length (RSm) of the elements in accordance with JIS B0601: 2001 is the average length between the valleys.
 JIS B0601:2001に準拠した最大谷深さ(Rv)は、1.50μm<Rv<8.00μmであり、好ましくは、2.00μm<Rv<7.50μmであり、2.50μm<Rv<7.00μmである。Rvが上記範囲であることにより、耐擦過性及びフィルムが貼り付けられたペン入力デバイスに対してペン型ポインティングデバイスにより情報入力する際の書き味に優れる傾向にある。JIS B0601:2001に準拠した最大谷深さ(Rv)は、JIS B0601:2001に準拠して測定できる。より具体的には、実施例に記載された方法で測定できる。 The maximum valley depth (Rv) according to JIS B0601:2001 is 1.50 μm<Rv<8.00 μm, preferably 2.00 μm<Rv<7.50 μm, and 2.50 μm<Rv<7.00 μm. When Rv is in the above range, there is a tendency for the abrasion resistance and writing feel when inputting information with a pen-type pointing device to a pen input device to which the film is attached to be excellent. The maximum valley depth (Rv) according to JIS B0601:2001 can be measured according to JIS B0601:2001. More specifically, it can be measured by the method described in the examples.
 JIS B0601:2001に準拠した最大山高さ(Rp)は、好ましくは、0.01μm<Rp<1.20μmであり、0.01μm<Rp<1.00μmであり、0.01μm<Rp<0.90μmである。Rpが上記範囲であることにより、耐擦過性及びフィルムが貼り付けられたペン入力デバイスに対してペン型ポインティングデバイスにより情報入力する際の書き味に優れる傾向にある。JIS B0601:2001に準拠した最大谷深さ(Rv)は、JIS B0601:2001に準拠して測定できる。より具体的には、実施例に記載された方法で測定できる。 The maximum peak height (Rp) in accordance with JIS B0601:2001 is preferably 0.01 μm<Rp<1.20 μm, 0.01 μm<Rp<1.00 μm, or 0.01 μm<Rp<0.90 μm. When Rp is in the above range, there is a tendency for the abrasion resistance and writing feel when inputting information with a pen-type pointing device to a pen input device to which the film is attached to be excellent. The maximum valley depth (Rv) in accordance with JIS B0601:2001 can be measured in accordance with JIS B0601:2001. More specifically, it can be measured by the method described in the examples.
 最大谷深さ(Rv)と最大山高さ(Rp)と、は0.80<Rv/(Rv+Rp)<0.90の関係性を満たし、好ましくは0.81<Rv/(Rv+Rp)<0.90である。Rv/(Rv+Rp)が上記関係性を満たすことにより、耐擦過性及びフィルムが貼り付けられたペン入力デバイスに対してペン型ポインティングデバイスにより情報入力する際の書き味に優れる傾向にある。 The maximum valley depth (Rv) and the maximum peak height (Rp) satisfy the relationship 0.80<Rv/(Rv+Rp)<0.90, and preferably 0.81<Rv/(Rv+Rp)<0.90. When Rv/(Rv+Rp) satisfies the above relationship, there is a tendency for the abrasion resistance and writing feel when inputting information with a pen-type pointing device to a pen input device to which the film is attached to be excellent.
 JIS B0601:2001に準拠した要素の平均長さ(RSm)は、30μm<RSm<300μmであり、好ましくは、30μm<RSm<200μmであり、30μm<RSm<150μmであり、30μm<RSm<100μmであり、30μm<RSm<90μmである。RSmが上記範囲であることにより、耐擦過性及びフィルムが貼り付けられたペン入力デバイスに対してペン型ポインティングデバイスにより情報入力する際の書き味に優れる傾向にある。JIS B0601:2001に準拠した最大谷深さ(RSm)は、JIS B0601:2001に準拠して測定できる。より具体的には、実施例に記載された方法で測定できる。 The average length (RSm) of the elements according to JIS B0601:2001 is 30 μm<RSm<300 μm, preferably 30 μm<RSm<200 μm, 30 μm<RSm<150 μm, 30 μm<RSm<100 μm, 30 μm<RSm<90 μm. When RSm is in the above range, there is a tendency for the abrasion resistance and writing feel when inputting information with a pen-type pointing device to a pen input device to which the film is attached to be excellent. The maximum valley depth (RSm) according to JIS B0601:2001 can be measured according to JIS B0601:2001. More specifically, it can be measured by the method described in the examples.
 フィルムの表面構造は、フィルムの表面に微粒子を含んで形成されてもよく、フィルムの表面に微粒子を含まないで形成されてもよい。耐擦過性を向上させる観点からは、フィルムの表面に微粒子を含まないで形成されることが好ましい。 The surface structure of the film may be formed so that the film surface contains fine particles, or may be formed so that the film surface does not contain fine particles. From the viewpoint of improving abrasion resistance, it is preferable that the film surface does not contain fine particles.
 Rv,Rp、及びRSmを制御する方法は、特に限定されないが、例えば、後述するフィルムの製造方法において、ポジ型の表面に固定された無機及び/又は有機微粒子の材質、粒径等を調整する方法が挙げられる。 The method for controlling Rv, Rp, and RSm is not particularly limited, but examples thereof include a method for adjusting the material, particle size, etc. of inorganic and/or organic fine particles fixed to the surface of a positive mold in the film manufacturing method described below.
2.2.貯蔵弾性率
 フィルムの貯蔵弾性率は、0.052~1.500GPaであり、好ましくは、0.080~1.300GPaであり、0.150~1.000GPaであり、0.150~0.900GPaである。フィルムの貯蔵弾性率が上記範囲であることにより、耐擦過性及び屈曲性に優れる傾向にある。フィルムの貯蔵弾性率は、公知の方法により測定することができる。より具体的には、実施例に記載された方法で測定できる。また、本実施形態のフィルムが積層フィルムである場合、貯蔵弾性率は表面層フィルムの貯蔵弾性率である。
2.2. Storage modulus The storage modulus of the film is 0.052 to 1.500 GPa, preferably 0.080 to 1.300 GPa, 0.150 to 1.000 GPa, or 0.150 to 0.900 GPa. When the storage modulus of the film is within the above range, the film tends to have excellent abrasion resistance and bending properties. The storage modulus of the film can be measured by a known method. More specifically, it can be measured by the method described in the examples. In addition, when the film of the present embodiment is a laminated film, the storage modulus is the storage modulus of the surface layer film.
 フィルムの貯蔵弾性率を制御する方法は、特に限定されないが、例えば、UV硬化性樹脂組成物の組成を制御する方法を挙げることができる。 The method for controlling the storage modulus of the film is not particularly limited, but an example of such a method is to control the composition of the UV-curable resin composition.
2.3.厚さ
 本実施形態のフィルムが単層フィルムである場合、本実施形態のフィルムの平均厚さは、特に限定されないが、例えば20~800μmであり、50~500μmであり、75~300μmであり、100~200μmである。フィルムの厚さが上記範囲であることにより、フィルムは耐擦過性及び屈曲性に優れる傾向にある。
When the film of the present embodiment is a monolayer film, the average thickness of the film of the present embodiment is not particularly limited, but is, for example, 20 to 800 μm, 50 to 500 μm, 75 to 300 μm, or 100 to 200 μm. When the film thickness is in the above range, the film tends to have excellent abrasion resistance and flexibility.
 本実施形態のフィルムが、UV硬化性樹脂組成物からなる表面層フィルムと、表面層フィルムを支持する基材フィルムと、からなる積層フィルムである場合、基材フィルムの平均厚さは、特に限定されないが、例えば1~500μmであり、50~400μmであり、100~300μmである。また、表面層フィルムの平均厚さは、特に限定されないが、例えば10~300μmであり、50~250μmであり、75~200μmであり、75~150μmである。フィルムの表面層フィルムと基材フィルムの厚さが上記範囲であることにより、本実施形態のフィルムは、耐擦過性及び屈曲性に優れる傾向にある。 When the film of this embodiment is a laminated film consisting of a surface layer film made of a UV-curable resin composition and a base film supporting the surface layer film, the average thickness of the base film is not particularly limited, but is, for example, 1 to 500 μm, 50 to 400 μm, or 100 to 300 μm. The average thickness of the surface layer film is not particularly limited, but is, for example, 10 to 300 μm, 50 to 250 μm, 75 to 200 μm, or 75 to 150 μm. By having the thicknesses of the surface layer film and base film of the film within the above ranges, the film of this embodiment tends to have excellent abrasion resistance and bending properties.
 フィルムの厚さは、公知の方法により測定することができる。特に限定されないが、例えば、マイクロメーターを用いて測定する。 The thickness of the film can be measured by a known method. Although not particularly limited, for example, it can be measured using a micrometer.
3.フィルムの製造方法
 本実施形態のフィルムの製造方法は、UV硬化性樹脂組成物を塗布する塗布工程、及びポジ型を用いた転写によりフィルムの表面構造を形成するポジ型転写工程を有する。
3. Film Manufacturing Method The film manufacturing method of the present embodiment includes a coating step of coating a UV-curable resin composition, and a positive transfer step of forming a surface structure of the film by transfer using a positive mold.
3.1.塗布工程
 本実施形態に係るフィルムが単層フィルムの場合、特に限定されないが、例えば、UV透過性の基材上に未硬化のUV硬化性樹脂組成物を塗布する。本実施形態に係るフィルムがUV硬化性樹脂組成物からなる表面層フィルムと、表面層フィルムを支持する基材フィルムと、からなる積層フィルムである場合、特に限定されないが、例えば、基材フィルム上に未硬化のUV硬化性樹脂組成物を塗布する。
3.1. Coating process When the film according to the present embodiment is a single-layer film, the uncured UV-curable resin composition is coated on a UV-transmitting substrate, for example, without being particularly limited thereto. When the film according to the present embodiment is a laminated film consisting of a surface layer film made of a UV-curable resin composition and a substrate film supporting the surface layer film, the uncured UV-curable resin composition is coated on a substrate film, for example, without being particularly limited thereto.
 UV透過性とは、特に限定されないが、例えば、波長365nmの紫外線を10%以上透過し、30%以上透過し、50%以上透過し、又は、70%以上透過する性質である。 UV transparency is not particularly limited, but may be, for example, the property of transmitting 10% or more, 30% or more, 50% or more, or 70% or more of ultraviolet light with a wavelength of 365 nm.
 未硬化のUV硬化性樹脂組成物は、公知の方法で塗布される。塗布の方法としては、特に限定されないが、例えば、グラビアコート、リバースコート、コンマコート、ダイコート、バーコート、カーテンフローコート、ローラーコート、スプレー、エアレススプレー、ホットスプレーが挙げられる。 The uncured UV-curable resin composition is applied by a known method. The application method is not particularly limited, but examples include gravure coating, reverse coating, comma coating, die coating, bar coating, curtain flow coating, roller coating, spraying, airless spraying, and hot spraying.
 塗布工程は、UV硬化性樹脂組成物を溶媒で希釈してから行ってもよい。溶媒は、特に限定されないが、例えば、無極性溶媒であってもよく、極性溶媒であってもよい。 The coating process may be carried out after diluting the UV-curable resin composition with a solvent. The solvent is not particularly limited, but may be, for example, a non-polar solvent or a polar solvent.
3.2.ポジ型転写工程
 ポジ型は、本実施形態に係るフィルムを作製するための型であり、表面領域に凹凸形状を有する。ポジ型の表面領域に凹凸形状を与える方法としては、特に限定されないが、例えば、無機及び/又は有機微粒子をポジ型の表面領域に固定する方法、ポジ型の表面領域が凹凸形状を有するようにポジ型を作製する方法が挙げられる。
3.2. Positive mold transfer process The positive mold is a mold for producing the film according to this embodiment, and has a concave-convex shape on the surface region. The method for imparting the concave-convex shape to the surface region of the positive mold is not particularly limited, but examples thereof include a method of fixing inorganic and/or organic fine particles to the surface region of the positive mold, and a method of producing a positive mold so that the surface region of the positive mold has a concave-convex shape.
 ポジ型は、単層構造でもよく、複層構造でもよい。複層構造の場合は、基材層、基材層上の粗面層、粗面層上の離型層を含んでもよく、粗面層と離型層とが、ポジ型の表面領域を構成する。粗面層は、ポジ型の表面領域に凹凸形状を与え、離型層は、後述するフィルムの製造方法において、ポジ型を脱型しやすくする。 The positive mold may have a single layer structure or a multi-layer structure. In the case of a multi-layer structure, it may include a base layer, a rough surface layer on the base layer, and a release layer on the rough surface layer, and the rough surface layer and the release layer constitute the surface region of the positive mold. The rough surface layer gives the surface region of the positive mold an uneven shape, and the release layer makes it easier to demold the positive mold in the film manufacturing method described below.
 ポジ型が単層構造であるとき、特に限定されないが、例えば、1.1.で詳説したUV硬化性樹脂、1.4.で詳説した熱硬化性樹脂、1.4.で詳説した熱可塑性樹脂、及び/又は金属やガラスなどの無機材料を含む。 When the positive type has a single-layer structure, it includes, but is not limited to, for example, the UV-curable resin detailed in 1.1, the thermosetting resin detailed in 1.4, the thermoplastic resin detailed in 1.4, and/or inorganic materials such as metal and glass.
 ポジ型が複層構造であるとき、基材層は、特に限定されないが、例えば、1.1.で詳説したUV硬化性樹脂、1.4.で詳説した熱硬化性樹脂、1.4.で詳説した熱可塑性樹脂、及び/又は金属やガラスなどの無機材料を含む。 When the positive type has a multi-layer structure, the base layer is not particularly limited, but may include, for example, a UV-curable resin as described in detail in 1.1, a thermosetting resin as described in detail in 1.4, a thermoplastic resin as described in detail in 1.4, and/or an inorganic material such as metal or glass.
 ポジ型が複層構造であるとき、粗面層は、特に限定されないが、例えば、1.1.で詳説したUV硬化性樹脂、1.4.で詳説した熱硬化性樹脂、1.4.で詳説した熱可塑性樹脂、及び/又は金属やガラスなどの無機材料を含み、無機及び/又は有機微粒子を含んでもよい。 When the positive type has a multi-layer structure, the rough surface layer is not particularly limited, but may contain, for example, a UV-curable resin as described in detail in 1.1, a thermosetting resin as described in detail in 1.4, a thermoplastic resin as described in detail in 1.4, and/or an inorganic material such as metal or glass, and may contain inorganic and/or organic fine particles.
 ポジ型が複層構造であるとき、離型層は、特に限定されないが、例えば、1.1.で詳説したUV硬化性樹脂、1.4.で詳説した熱硬化性樹脂、1.4.で詳説した熱可塑性樹脂、及び/又は金属やガラスなどの無機材料を含み、シリコーン系離型剤等の離型剤を含んでもよい。 When the positive mold has a multi-layer structure, the release layer is not particularly limited, and may contain, for example, a UV-curable resin as described in detail in 1.1, a thermosetting resin as described in detail in 1.4, a thermoplastic resin as described in detail in 1.4, and/or an inorganic material such as metal or glass, and may also contain a release agent such as a silicone-based release agent.
 ポジ型の表面領域に固定された無機及び/又は有機微粒子は、特に限定されないが、例えば、金属単体、金属化合物、ケイ素化合物、フッ素化合物、熱可塑性樹脂で形成された粒子、熱硬化性樹脂で形成された粒子、光硬化性樹脂で形成された粒子である。 The inorganic and/or organic fine particles fixed to the positive surface region are not particularly limited, but may be, for example, a metal element, a metal compound, a silicon compound, a fluorine compound, particles formed from a thermoplastic resin, particles formed from a thermosetting resin, or particles formed from a photocurable resin.
 ポジ型の表面領域に固定された無機及び/又は有機微粒子の粒径は、好ましくは、0.5~40.0μmであり、1.0~20.0μmであり、2.0~10.0μmである。微粒子の粒径が上記数値範囲であることにより、2.フィルムの特性で詳説した特性を満たすフィルムを容易に形成できる。 The particle size of the inorganic and/or organic fine particles fixed to the positive surface region is preferably 0.5 to 40.0 μm, 1.0 to 20.0 μm, or 2.0 to 10.0 μm. By having the particle size of the fine particles within the above numerical range, a film that satisfies the characteristics detailed in 2. Film characteristics can be easily formed.
 ポジ型の表面領域の、JIS B0601:2001に準拠した最大谷深さ(Rv)は、好ましくは、0.01μm<Rv<1.20μmであり、0.01μm<Rv<1.10μmである。 The maximum valley depth (Rv) of the positive surface region in accordance with JIS B0601:2001 is preferably 0.01 μm<Rv<1.20 μm, and more preferably 0.01 μm<Rv<1.10 μm.
 ポジ型の表面領域の、JIS B0601:2001に準拠した最大山高さ(Rp)は、好ましくは、1.50μm<Rp<8.00μmであり、2.00μm<Rp<7.50μmであり、2.50μm<Rp<7.00μmである。 The maximum peak height (Rp) of the positive surface area in accordance with JIS B0601:2001 is preferably 1.50 μm<Rp<8.00 μm, 2.00 μm<Rp<7.50 μm, or 2.50 μm<Rp<7.00 μm.
 ポジ型の最大谷深さ(Rv)と最大山高さ(Rp)と、は、好ましくは0.01<Rv/(Rv+Rp)<0.20であり、0.10<Rv/(Rv+Rp)<0.15である。 The maximum valley depth (Rv) and maximum peak height (Rp) of the positive type are preferably 0.01<Rv/(Rv+Rp)<0.20 and 0.10<Rv/(Rv+Rp)<0.15.
 ポジ型の表面領域の、JIS B0601:2001に準拠した要素の平均長さ(RSm)は、好ましくは30μm<RSm<300μmであり、30μm<RSm<200μmであり、30μm<RSm<150μmであり、30μm<RSm<100μmであり、30μm<RSm<90μmである。 The average element length (RSm) of the positive surface area in accordance with JIS B0601:2001 is preferably 30μm<RSm<300μm, 30μm<RSm<200μm, 30μm<RSm<150μm, 30μm<RSm<100μm, 30μm<RSm<90μm.
 ポジ型の表面領域が上記数値範囲を満たすことにより、2.フィルムの特性で詳説した特性を満たすフィルムを容易に形成できる。 By having the positive type surface area satisfy the above numerical range, it is easy to form a film that satisfies the characteristics detailed in 2. Film characteristics.
 ポジ型は、公知のその他の成分を含んでもよい。その他の成分としては、特に限定されないが、着色剤、酸化防止剤、光重合促進剤、紫外線吸収剤、光安定剤、難燃剤、充填剤、離型剤、その他の添加剤等が挙げられる。その他の成分は、1種単独で使用してもよく、2種以上を併用してもよい。 The positive type may contain other known components. The other components are not particularly limited, but may include colorants, antioxidants, photopolymerization accelerators, ultraviolet absorbers, light stabilizers, flame retardants, fillers, release agents, and other additives. The other components may be used alone or in combination of two or more.
 ポジ型の表面領域の形状を転写して本実施形態のフィルムを作製する方法は、特に限定されないが、例えば、塗布工程後、未硬化のUV硬化性樹脂組成物上にポジ型をラミネートし、基材、基材フィルム、又はポジ型側からUV照射することで、ポジ型の表面領域の凹凸形状が転写された状態でUV硬化性樹脂組成物を硬化させる。その後、ポジ型を脱型し、本実施形態に係るフィルムを作製することができる。 The method for transferring the shape of the surface region of the positive mold to produce the film of this embodiment is not particularly limited, but for example, after the coating process, the positive mold is laminated onto the uncured UV-curable resin composition, and UV is irradiated from the substrate, substrate film, or positive mold side, thereby curing the UV-curable resin composition with the uneven shape of the surface region of the positive mold transferred. The positive mold is then removed, and the film of this embodiment can be produced.
 UV照射の光源は、特に限定されないが、例えば、水銀ランプ、高圧水銀ランプ、UV-LED、キセノンランプ、レーザー光源が挙げられる。 The light source for UV irradiation is not particularly limited, but examples include mercury lamps, high-pressure mercury lamps, UV-LEDs, xenon lamps, and laser light sources.
 UV照射の強度及び積算強度は、UV硬化性樹脂組成物の組成、厚さ等によって適宜選択される。UV照射の強度は、特に限定されないが、例えば、10mW/cm~10000mW/cmである。また、UV照射の積算強度は、特に限定されないが、例えば、50~10000mJ/cmである。 The intensity and cumulative intensity of UV irradiation are appropriately selected depending on the composition, thickness, etc. of the UV curable resin composition. The intensity of UV irradiation is not particularly limited, but is, for example, 10 mW/cm 2 to 10,000 mW/cm 2. The cumulative intensity of UV irradiation is not particularly limited, but is, for example, 50 to 10,000 mJ/cm 2 .
4.ペン型ポインティングデバイス
 ペン型ポインティングデバイスは、ペン入力デバイスに文字などの情報を入力するデバイスであって、プラスチックや金属などの硬質材料で形成される。プラスチックとしては、特に限定されないが、例えば、ポリアミド、ポリアセタール、ポリカーボネート、ポリフェニレンエーテルが挙げられる。金属としては、特に限定されないが、例えば、鉄、アルミニウム等の金属、ステンレス等の合金が挙げられる。これらは、それぞれ、1種単独で用いてもよく、2種以上を併用してもよい。
4. Pen-type pointing device A pen-type pointing device is a device for inputting information such as characters to a pen input device, and is made of hard materials such as plastics and metals. The plastics are not particularly limited, but examples thereof include polyamide, polyacetal, polycarbonate, and polyphenylene ether. The metals are not particularly limited, but examples thereof include metals such as iron and aluminum, and alloys such as stainless steel. Each of these may be used alone, or two or more of them may be used in combination.
 ペン先の形状は、特に限定されないが、通常、曲面形状である。ペン先の平均径は特に限定されないが、例えば、0.1~10.0mmである。 The shape of the pen tip is not particularly limited, but is usually curved. The average diameter of the pen tip is not particularly limited, but is, for example, 0.1 to 10.0 mm.
 以下、本発明を実施例及び比較例を用いてより具体的に説明する。本発明は、以下の実施例によって何ら限定されるものではない。 The present invention will be explained in more detail below using examples and comparative examples. The present invention is not limited in any way by the following examples.
1.フィルムの作製
1.1.実施例1~5、比較例1~2のフィルム(ネガ型のフィルム)の作製
 表1に記載の組成となるように調合してUV硬化性樹脂組成物を用意した。ポジ型として、大槻工業株式会社製マット離型フィルムを用意した。前記マット離型フィルムは、厚さ25μmの基材層、シリカフィラーを含む大槻工業社製「GM60」からなる粗面層、及びシリコーン系離型コートである大槻工業社製「SK-1」からなる離型層が、この順に積層された構成である。このポジ型上にUV硬化性樹脂組成物をダイコートによって塗布し、塗布したUV硬化性樹脂組成物上に基材フィルムであるポリエチレンテレフタラートフィルム(東洋紡株式会社製、コスモシャインA4360、厚み188μm)を積層した。この積層体を、一定の距離のギャップを有する2本の金属ロールの間を通して、UV硬化性樹脂組成物を、ポジ型と基材フィルムの間に厚みが均一になるように行き渡らせた。ギャップは、硬化後のUV硬化性組成物層の厚みが100μmとなるように適宜調整した。なお、ポジ型の厚みは、マイクロメーターにより測定した。続いて、基材フィルム側から、高圧水銀ランプ(オーク製作所社製、HHM-7000/D-FS)を用いて、照射強度150±10mW/cm、積算照射強度3000±300mJ/cmとなるように主波長365nmの紫外線を照射し、UV硬化性樹脂組成物を硬化させ、表面層フィルムを成形し硬化し、フィルムの表面構造を形成した。紫外線の強度測定は、トプコン社製、UVR-T1/UD-T36を用いた。測定条件は、測定波長を300~390nmとし、ピーク感度波長を355nmとした。続いて、ポジ型を脱型し、実施例1~5、及び比較例1~2のフィルム(ネガ型のフィルム)を得た。
1. Preparation of Films 1.1. Preparation of Films (Negative Films) of Examples 1 to 5 and Comparative Examples 1 to 2 UV-curable resin compositions were prepared by mixing to obtain the compositions shown in Table 1. A matte release film manufactured by Otsuki Kogyo Co., Ltd. was prepared as a positive mold. The matte release film is configured by laminating a substrate layer having a thickness of 25 μm, a rough surface layer made of "GM60" manufactured by Otsuki Kogyo Co., Ltd. containing silica filler, and a release layer made of "SK-1" manufactured by Otsuki Kogyo Co., Ltd., which is a silicone-based release coat, in this order. A UV-curable resin composition was applied onto this positive mold by die coating, and a polyethylene terephthalate film (Cosmoshine A4360 manufactured by Toyobo Co., Ltd., thickness 188 μm) was laminated as a substrate film on the applied UV-curable resin composition. This laminate was passed between two metal rolls having a gap of a certain distance, and the UV-curable resin composition was spread between the positive mold and the substrate film so that the thickness was uniform. The gap was appropriately adjusted so that the thickness of the UV-curable composition layer after curing was 100 μm. The thickness of the positive type was measured with a micrometer. Next, a high-pressure mercury lamp (Oak Manufacturing Co., Ltd., HHM-7000/D-FS) was used to irradiate ultraviolet light with a main wavelength of 365 nm from the substrate film side so that the irradiation intensity was 150±10 mW/cm 2 and the cumulative irradiation intensity was 3000±300 mJ/cm 2 , curing the UV-curable resin composition, forming and curing a surface layer film, and forming a surface structure of the film. The intensity of the ultraviolet light was measured using UVR-T1/UD-T36 manufactured by Topcon Corporation. The measurement conditions were a measurement wavelength of 300 to 390 nm and a peak sensitivity wavelength of 355 nm. Next, the positive type was demolded to obtain films (negative type films) of Examples 1 to 5 and Comparative Examples 1 to 2.
 ポジ型は、JIS B0601:2001に準拠した谷の最大谷深さ(Rv)と、山の最大山高さ(Rp)と、要素の平均長さ(RSm)と、が、それぞれ、Rv=1.02μm、Rp=4.25μm、RSm=68.52μmであった。また、Rv/(Rv+Rp)=0.19であった。なお、Rv,Rp,RSmは後述の方法で測定した。 The maximum valley depth (Rv) of the valley, maximum peak height (Rp) of the peak, and average element length (RSm) of the positive type according to JIS B0601:2001 were Rv = 1.02 μm, Rp = 4.25 μm, and RSm = 68.52 μm, respectively. Also, Rv/(Rv + Rp) = 0.19. Rv, Rp, and RSm were measured using the method described below.
1.2.比較例3~9のフィルム(ポジ型のフィルム)の作製
 表2に記載の組成となるように調合してUV硬化性樹脂組成物を用意した。縁の高さが10mmの300mm×200mmのステンレストレイ内に、実施例1~5、比較例1~2のフィルムの作製のために作製したポジ型を、その表面領域(凸形状)とは反対側の面とステンレストレイの底とが対向するように接地した。その後、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製シリコーンゴム用主剤「TSE3455T(A)」、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製シリコーンゴム用硬化剤「TSE3455T(B)」、及びモメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製シリコーンゴム用硬化遅延剤「ME75」を、重量比が「TSE3455T(A)」:「TSE3455T(B)」:「ME75」=100:10:1となるように調合したシリコーンゴム液を、硬化後の厚みが5mmとなるようにステンレス内に流し込み、真空脱泡を行った後、55℃のオーブンに7時間投入して1次硬化を行った。続いて、1次硬化をしたシリコーンゴムをポジ型及びステンレストレイから剥がし、剥がしたシリコーンゴムを100℃のオーブンに20時間投入して2次硬化を行って、ネガ型を得た。このネガ型上にUV硬化性樹脂組成物をダイコートによって塗布し、塗布したUV硬化性樹脂組成物上に基材フィルムであるポリエチレンテレフタラートフィルム(東洋紡株式会社製、コスモシャインA4360、厚み188μm)を積層した。この積層体を、一定の距離のギャップを有する2本の金属ロールの間を通して、UV硬化性樹脂組成物を、ネガ型と基材フィルムの間に厚みが均一になるように行き渡らせた。ギャップは、硬化後のUV硬化性組成物層の厚みが100μmとなるように適宜調整した。なお、ネガ型の厚みは、マイクロメーターにより測定した。続いて、基材フィルム側から、高圧水銀ランプ(オーク製作所社製、HHM-7000/D-FS)を用いて、照射強度150±10mW/cm、積算照射強度3000±300mJ/cmとなるように主波長365nmの紫外線を照射し、UV硬化性樹脂組成物を硬化させ、表面層フィルムを成形し硬化し、フィルムの表面構造を形成した。紫外線の強度測定は、トプコン社製、UVR-T1/UD-T36を用いた。測定条件は、測定波長を300~390nmとし、ピーク感度波長を355nmとした。続いて、ポジ型を脱型し、比較例3~9のフィルム(ポジ型のフィルム)を得た。
1.2. Preparation of films (positive type films) of Comparative Examples 3 to 9 UV-curable resin compositions were prepared by mixing the compositions shown in Table 2. The positive types prepared for the preparation of the films of Examples 1 to 5 and Comparative Examples 1 and 2 were placed on a 300 mm x 200 mm stainless steel tray with a rim height of 10 mm, with the surface opposite to the surface region (convex shape) facing the bottom of the stainless steel tray. Thereafter, a silicone rubber liquid prepared by mixing the silicone rubber base material "TSE3455T (A)" manufactured by Momentive Performance Materials Japan, LLC, the silicone rubber curing agent "TSE3455T (B)" manufactured by Momentive Performance Materials Japan, LLC, and the silicone rubber curing retarder "ME75" manufactured by Momentive Performance Materials Japan, LLC, in a weight ratio of "TSE3455T (A)": "TSE3455T (B)": "ME75" = 100: 10: 1 was poured into the stainless steel so that the thickness after curing was 5 mm, and after vacuum degassing, it was put into a 55 ° C. oven for 7 hours to perform primary curing. Subsequently, the silicone rubber that had undergone primary curing was peeled off from the positive mold and the stainless steel tray, and the peeled silicone rubber was put into a 100 ° C. oven for 20 hours to perform secondary curing, to obtain a negative mold. The UV-curable resin composition was applied onto this negative mold by die coating, and a polyethylene terephthalate film (Cosmoshine A4360, thickness 188 μm, manufactured by Toyobo Co., Ltd.) was laminated onto the applied UV-curable resin composition as a substrate film. This laminate was passed between two metal rolls having a gap of a certain distance, and the UV-curable resin composition was spread between the negative mold and the substrate film so that the thickness was uniform. The gap was appropriately adjusted so that the thickness of the UV-curable composition layer after curing was 100 μm. The thickness of the negative mold was measured with a micrometer. Next, ultraviolet rays with a main wavelength of 365 nm were irradiated from the substrate film side using a high pressure mercury lamp (Oak Manufacturing Co., Ltd., HHM-7000/D-FS) so that the irradiation intensity was 150±10 mW/cm 2 and the cumulative irradiation intensity was 3000±300 mJ/cm 2 , and the UV-curable resin composition was cured, and the surface layer film was molded and cured to form the surface structure of the film. The intensity of the ultraviolet rays was measured using UVR-T1/UD-T36 manufactured by Topcon Corporation. The measurement conditions were a measurement wavelength of 300 to 390 nm and a peak sensitivity wavelength of 355 nm. Next, the positive type was demolded to obtain the films (positive type films) of Comparative Examples 3 to 9.
1.3.貯蔵弾性率測定用フィルムの作製
 表1及び表2に記載の貯蔵弾性率は、各実施例及び比較例のフィルムと同じUV硬化性樹脂組成物を、以下に記載の方法でフィルムにし、当該フィルムについて後述の方法で測定した。
1.3. Preparation of Film for Measuring Storage Modulus The storage modulus shown in Tables 1 and 2 was measured by forming a film from the same UV-curable resin composition as in the films of each of the Examples and Comparative Examples using the method described below, and then measuring the storage modulus of the film using the method described below.
 具体的には、表1及び表2に記載の組成となるように、調合してUV硬化性樹脂組成物を用意した。UV硬化性樹脂組成物を離型ポリエチレンテレフタラートフィルムA(リンテック社製、PET3811)の離型面上にダイコートで塗布し、塗布したUV硬化性樹脂組成物の上に離型ポリエチレンテレフタラートフィルムB(リンテック社製、PET3811)を離型面がUV硬化性樹脂組成物に接するように積層し、一定の距離のギャップを有する2本の金属ロールの間を通して、UV硬化性樹脂組成物を、離型ポリエチレンテレフタラートフィルムAと離型ポリエチレンテレフタラートフィルムBの間に厚みが均一になるように行き渡らせた。ギャップは、硬化後のUV硬化性組成物層の厚みが100μmとなるように適宜調整した。続いて、フィルムB側から高圧水銀ランプ(オーク製作所社製、HHM-7000/D-FS)を用いて、照射強度150±10mW/cm、積算照射強度3000±300mJ/cmとなるように主波長365nmの紫外線を照射し、UV硬化性樹脂組成物を硬化した。紫外線の強度測定は、トプコン社製、UVR-T1/UD-T36を用いた。測定条件は、測定波長を300~390nmとし、ピーク感度波長を355nmとした。続いて、フィルムAとフィルムBを硬化したUV硬化性樹脂組成物から剥離し、貯蔵弾性率測定用フィルムを得た。 Specifically, the UV curable resin composition was prepared by mixing the components so as to have the compositions shown in Tables 1 and 2. The UV curable resin composition was applied to the release surface of a release polyethylene terephthalate film A (PET3811, manufactured by Lintec Corporation) using a die coater, and a release polyethylene terephthalate film B (PET3811, manufactured by Lintec Corporation) was laminated on the applied UV curable resin composition so that the release surface was in contact with the UV curable resin composition, and the UV curable resin composition was spread between the release polyethylene terephthalate film A and the release polyethylene terephthalate film B so that the thickness was uniform through two metal rolls having a gap of a certain distance. The gap was appropriately adjusted so that the thickness of the UV curable composition layer after curing was 100 μm. Next, using a high pressure mercury lamp (Oak Manufacturing Co., Ltd., HHM-7000/D-FS), ultraviolet rays with a main wavelength of 365 nm were irradiated from the film B side so that the irradiation intensity was 150±10 mW/cm 2 and the cumulative irradiation intensity was 3000±300 mJ/cm 2 , and the UV-curable resin composition was cured. The intensity of the ultraviolet rays was measured using a Topcon Corporation UVR-T1/UD-T36. The measurement conditions were a measurement wavelength of 300 to 390 nm and a peak sensitivity wavelength of 355 nm. Next, films A and B were peeled off from the cured UV-curable resin composition to obtain a film for measuring the storage modulus.
 表1及び表2に示す材料は、以下のとおりである。
[(メタ)アクリレートオリゴマー]
・ウレタンアクリレートオリゴマー:ダイセル・オルネクス株式会社製「KRM7735」
[(メタ)アクリレートモノマー]
・イソボルニルアクリレートモノマー:共栄社化学株式会社製「IBXA」
・トリプロピレングリコールジアクリレートモノマー:ダイセル・オルネクス株式会社製「TPGDA」
・テトラヒドロフルフリルアクリレートモノマー:共栄社化学株式会社製「THF-A」
・フェノキシエチルアクリレートモノマー:共栄社化学株式会社製「PO-A」
・ジペンタエリスリトールヘキサアクリレートモノマー:ダイセル・オルネクス株式会社製「DPHA」
[光重合開始剤]
・1-ヒドロキシシクロヘキシルフェニルケトン:IGM Resins B.V.社製「Omnirad184」
・ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド:IGM Resins B.V.社製「TPO」
The materials shown in Tables 1 and 2 are as follows.
[(Meth)acrylate Oligomer]
Urethane acrylate oligomer: "KRM7735" manufactured by Daicel Allnex Corporation
(Meth)acrylate Monomer
Isobornyl acrylate monomer: "IBXA" manufactured by Kyoeisha Chemical Co., Ltd.
Tripropylene glycol diacrylate monomer: "TPGDA" manufactured by Daicel Allnex Corporation
Tetrahydrofurfuryl acrylate monomer: "THF-A" manufactured by Kyoeisha Chemical Co., Ltd.
Phenoxyethyl acrylate monomer: "PO-A" manufactured by Kyoeisha Chemical Co., Ltd.
Dipentaerythritol hexaacrylate monomer: "DPHA" manufactured by Daicel Allnex Corporation
[Photopolymerization initiator]
1-Hydroxycyclohexyl phenyl ketone: "Omnirad 184" manufactured by IGM Resins B.V.
Diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide: "TPO" manufactured by IGM Resins B.V.
2.測定方法
2.1.表面粗さパラメータ
 各実施例及び比較例で作製したフィルム、並びにポジ型を、測定面であるフィルムの表面とは反対の面に、厚さ0.5mmソーダライムガラスを、粘着剤を介して貼り合わせて固定し、表面粗さ測定機(株式会社東京精密製、SURFCOM TOUCH50)を用いて、以下の条件にてJIS B0601:2001に準拠して、谷の最大谷深さ(Rv)と、山の最大山高さ(Rp)と、要素の平均長さ(RSm)と、を測定した。
・表面粗さ検出部の触針:株式会社東京精密製、DM43801(先端半径:2μm)
・測定速度      :1.5mm/s
・評価長さ      :4mm
・測定種別      :粗さ測定
・形状除去      :R面
・カットオフ種別   :ガウシアン
・カットオフ周波数λc:0.8mm
・カットオフ周波数λs:2.5μm
2. Measurement method 2.1. Surface roughness parameters For the films and positive molds produced in each of the Examples and Comparative Examples, 0.5 mm thick soda lime glass was attached and fixed via an adhesive to the surface opposite to the film surface, which was the measurement surface, and the maximum valley depth (Rv), maximum peak height (Rp), and average element length (RSm) were measured using a surface roughness measuring device (SURFCOM TOUCH50, manufactured by Tokyo Seimitsu Co., Ltd.) under the following conditions in accordance with JIS B0601:2001.
Stylus for detecting surface roughness: Tokyo Seimitsu Co., Ltd., DM43801 (tip radius: 2 μm)
・Measurement speed: 1.5mm/s
Evaluation length: 4 mm
Measurement type: Roughness measurement Shape removal: R surface Cutoff type: Gaussian Cutoff frequency λc: 0.8 mm
Cutoff frequency λs: 2.5 μm
2.2.貯蔵弾性率
 貯蔵弾性率測定用フィルムに対して、動的粘弾性測定装置DMA:Dynamic Mechanical Analysis(ティー・エイ・インスツルメント社製、RSA-G2)を用いて測定した。測定条件は、引張モード、昇温速度10℃/min、1Hzで測定を行い、25℃での値を読み取った。
Storage modulus was measured using a dynamic viscoelasticity measuring device (DMA: Dynamic Mechanical Analysis, RSA-G2, manufactured by TA Instruments, Inc.) for the film for measuring storage modulus. The measurement was performed under the conditions of tensile mode, heating rate of 10° C./min, and 1 Hz, and the value at 25° C. was read.
2.3.表面層フィルムの厚み
 1.1.及び1.2.で作製した、表面層フィルムと基材フィルムとを積層した積層フィルムの厚みをマイクロメーターで測定し、その厚みから事前に測定した基材フィルムの厚みを差し引いて、表面層フィルムの厚みを算出した。
2.3. Thickness of Surface Layer Film The thickness of the laminated film prepared in 1.1. and 1.2., in which the surface layer film and the base film were laminated, was measured with a micrometer, and the thickness of the surface layer film was calculated by subtracting the thickness of the base film measured beforehand from the measured thickness.
3.評価
3.1.耐擦過性評価
 新東化学社製往復摩耗試験機トライボギアTYPE30にワコム社製ハードフェルト芯ACK-20003を取り付け、そのハードフェルト芯を各実施例及び比較例で作製したフィルムの表面に接触させた。その後、23℃、65%(相対湿度)の雰囲気下で、荷重100g、速度3000mm/min、移動距離50mmでフィルムの表面を500往復及び1000往復し目視にて、以下の基準で評価した。
[評価基準]
〇:500往復後、1000往復後ともに、フィルムの表面にキズが発生しなかった。
△:500往復後、キズが発生しなかったが、1000往復後、フィルムの表面にキズが発生した。実用上は問題ないレベルである。
×:500往復後、フィルムの表面にキズが発生した。
3. Evaluation 3.1. Abrasion resistance evaluation A hard felt core ACK-20003 manufactured by Wacom Co., Ltd. was attached to a reciprocating abrasion tester Tribogear TYPE 30 manufactured by Shinto Chemical Industry Co., Ltd., and the hard felt core was brought into contact with the surface of the film produced in each Example and Comparative Example. After that, the surface of the film was reciprocated 500 times and 1000 times with a load of 100 g, a speed of 3000 mm/min, and a moving distance of 50 mm under an atmosphere of 23°C and 65% (relative humidity), and visually evaluated according to the following criteria.
[Evaluation criteria]
◯: No scratches were observed on the surface of the film after 500 and 1000 reciprocations.
Δ: No scratches were observed after 500 reciprocations, but scratches were observed on the film surface after 1000 reciprocations, which is at a level that is not problematic in practical use.
x: After 500 reciprocating strokes, scratches were generated on the surface of the film.
3.2.書き味評価
 各実施例及び比較例で作製したフィルムに対して、三菱鉛筆社製スタイラスペンHi-uni DIGITAL for Wacomを用いて、官能評価にて、以下の基準で評価した。
[評価基準]
〇:適度な筆記抵抗があり、滑らかに筆記ができる。
△:筆記抵抗が適度な範囲を僅かに超えて大きい(又は小さい)ため、滑らに筆記しにくい。実用上問題があるレベルである。
×:筆記抵抗が適度な範囲を大幅に超えて大きい(又は小さい)ため、滑らかに筆記ができない。実用上問題があるレベルである。
3.2. Evaluation of writing feel The films produced in each of the examples and comparative examples were evaluated for writing feel by sensory evaluation using a stylus pen Hi-uni DIGITAL for Wacom manufactured by Mitsubishi Pencil Co., Ltd., according to the following criteria.
[Evaluation criteria]
Good: There is moderate writing resistance, allowing for smooth writing.
Δ: The writing resistance is slightly larger (or smaller) than the appropriate range, making it difficult to write smoothly. This is at a level that is problematic in practical use.
×: The writing resistance is significantly larger (or smaller) than the appropriate range, making it impossible to write smoothly. This is at a level that is problematic for practical use.
3.3.屈曲性評価
 各実施例及び比較例で作製したフィルムを用いて、JIS K5600-5-1:1999で規定する円筒形マンドレル法に準拠して耐屈曲性試験を行った。折り曲げ試験装置(BEVS Industrial Co., Ltd社製、円筒形マンドレル屈曲試験器)を使用し、表面層フィルムが外側になる様に、直径10mmの円筒マンドレルに巻き付けた際、表面層フィルムに割れが発生しているかどうか、目視で観察した。また、円筒マンドレルに巻き付けたものとは別に、各実施例及び比較例で作製したフィルムについて、表面層フィルムを外側として90°に折り曲げた際、表面層フィルムに割れが発生しているかどうか、目視で観察し、以下の基準で評価した。
[評価基準]
○:円筒マンドレルに巻き付けた際の表面層フィルム、及び90°に折り曲げた際の表面層フィルムのいずれも、割れは見られない。
△:円筒マンドレルに巻き付けた際の表面層フィルムは、割れが見られない。90°に折り曲げた際の表面層フィルムは、割れが見られるが、実用上は問題ないレベルである。
×:円筒マンドレルに巻き付けた際の表面層フィルム、及び90°に折り曲げた際の表面層フィルムのいずれも、割れが見られる。
3.3. Evaluation of Flexibility Using the films prepared in each Example and Comparative Example, a flex resistance test was performed in accordance with the cylindrical mandrel method specified in JIS K5600-5-1:1999. Using a bending tester (manufactured by BEVS Industrial Co., Ltd., cylindrical mandrel bending tester), the surface layer film was wound around a cylindrical mandrel with a diameter of 10 mm so that the surface layer film was on the outside, and the surface layer film was visually observed to see if it had any cracks. In addition, apart from the films wound around the cylindrical mandrel, the films prepared in each Example and Comparative Example were visually observed to see if it had any cracks when bent 90° with the surface layer film on the outside, and were evaluated according to the following criteria.
[Evaluation criteria]
◯: No cracks were observed in the surface layer film when it was wound around the cylindrical mandrel, and when it was bent at 90°.
Δ: No cracks were observed in the surface layer film when it was wound around a cylindrical mandrel. When it was bent at 90°, cracks were observed in the surface layer film, but the level was not problematic in practical use.
x: Cracks were observed in the surface layer film both when wrapped around the cylindrical mandrel and when bent at 90°.
3.4.総合評価
 耐擦過性評価、書き味評価、屈曲性評価に対して、〇を2点、△を1点、×を0点として、実施例及び比較例毎に全ての評価結果の合計点を算出し、以下の基準で総合評価をした。
[評価基準]
◎:6点
〇:5点
△:4点
×:0~3点
3.4. Overall Evaluation For the evaluation of abrasion resistance, writing feel, and flexibility, ◯ was scored as 2 points, △ was scored as 1 point, and × was scored as 0 point. The total score of all the evaluation results was calculated for each Example and Comparative Example, and an overall evaluation was made according to the following criteria.
[Evaluation criteria]
◎: 6 points 〇: 5 points △: 4 points ×: 0 to 3 points
 各実施例及び比較例におけるフィルムの作製に用いたUV硬化性樹脂組成物の組成、各物性の測定値、及び評価結果を表1及び表2に示す。 The compositions of the UV-curable resin compositions used to prepare the films in each Example and Comparative Example, the measured values of each physical property, and the evaluation results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
 
*1:示した数値は、左から、固形分質量比/UV硬化性樹脂組成物の固形分総量に対する質量百分率(%)/UV硬化性樹脂の固形分総量に対する質量百分率(%)である。
Figure JPOXMLDOC01-appb-T000001

*1: The values shown are, from the left, solid content mass ratio/mass percentage (%) of the total solid content of the UV-curable resin composition/mass percentage (%) of the total solid content of the UV-curable resin.
Figure JPOXMLDOC01-appb-T000002
 
*1:示した数値は、左から、固形分質量比/UV硬化性樹脂組成物の固形分総量に対する質量百分率(%)/UV硬化性樹脂の固形分総量に対する質量百分率(%)である。
Figure JPOXMLDOC01-appb-T000002

*1: The values shown are, from the left, solid content mass ratio/mass percentage (%) of the total solid content of the UV-curable resin composition/mass percentage (%) of the total solid content of the UV-curable resin.
4.評価結果
 表1及び表2の評価結果から、実施例1~5はいずれも、貯蔵弾性率が所定の範囲外である比較例1~2、Rv、Rv/(Rv+Rp)、及びRSmのいずれかが所定の範囲外である比較例3~9と比較して、耐擦過性、書き味、及び屈曲性に優れることがわかった。
4. Evaluation Results From the evaluation results in Tables 1 and 2, it was found that all of Examples 1 to 5 were excellent in abrasion resistance, writing feel, and flexibility, compared to Comparative Examples 1 and 2 in which the storage modulus was outside the specified range, and Comparative Examples 3 to 9 in which any of Rv, Rv/(Rv+Rp), and RSm was outside the specified range.
 本出願は、2022年12月22日に日本国特許庁へ出願された日本特許出願(特願2022-205378)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Patent Application No. 2022-205378) filed with the Japan Patent Office on December 22, 2022, the contents of which are incorporated herein by reference.

Claims (8)

  1.  表面にJIS B0601:2001に準拠した谷と山と、を有するフィルムであって、
     JIS B0601:2001に準拠した前記谷の最大谷深さ(Rv)と、前記山の最大山高さ(Rp)と、要素の平均長さ(RSm)と、が、
    1.50μm<Rv<8.00μm
    0.80<Rv/(Rv+Rp)<0.90
    30μm<RSm<300μm
    を満たし、
     前記フィルムの貯蔵弾性率は、0.052GPa~1.500GPaであり、
     前記フィルムは、UV硬化性樹脂を含む、
     フィルム。
    A film having a surface having valleys and peaks conforming to JIS B0601:2001,
    The maximum valley depth (Rv) of the valley, the maximum peak height (Rp) of the peak, and the average length (RSm) of the element in accordance with JIS B0601:2001,
    1.50μm<Rv<8.00μm
    0.80<Rv/(Rv+Rp)<0.90
    30μm<RSm<300μm
    The filling,
    The storage modulus of the film is 0.052 GPa to 1.500 GPa;
    The film includes a UV-curable resin.
    film.
  2.  前記表面に前記谷及び/又は山を形成するための微粒子を含まない、
     請求項1に記載のフィルム。
    does not contain particulates to form said valleys and/or peaks on said surface;
    The film of claim 1.
  3.  前記フィルムの貯蔵弾性率は、0.150GPa~1.000GPaである、
     請求項1又は2に記載のフィルム。
    The storage modulus of the film is 0.150 GPa to 1.000 GPa.
    The film according to claim 1 or 2.
  4.  前記UV硬化性樹脂は、(メタ)アクリレートオリゴマー及び(メタ)アクリレートモノマーからなる群から選択される1種以上を含む、
     請求項1又は2に記載のフィルム。
    The UV curable resin includes at least one selected from the group consisting of (meth)acrylate oligomers and (meth)acrylate monomers.
    The film according to claim 1 or 2.
  5.  前記(メタ)アクリレートオリゴマーは、ウレタン(メタ)アクリレートオリゴマー、アクリル樹脂(メタ)アクリレートオリゴマー、エポキシ(メタ)アクリレートオリゴマー、及びポリエステル(メタ)アクリレートオリゴマーからなる群から選択される1種以上を含み、
     前記(メタ)アクリレートモノマーは、イソボルニル(メタ)アクリレートモノマー、トリプロピレングリコールジ(メタ)アクリレートモノマー、テトラヒドロフルフリル(メタ)アクリレートモノマー、フェノキシエチル(メタ)アクリレートモノマー、ジペンタエリスリトールヘキサ(メタ)アクリレートモノマー、トリシクロデカンジメタノールジ(メタ)アクリレートモノマー、ベンジル(メタ)アクリレートモノマー、ステアリル(メタ)アクリレートモノマー、イソデシル(メタ)アクリレートモノマー、イソクチル(メタ)アクリレートモノマー、1,6-ヘキサンジオールジ(メタ)アクリレートモノマー、ラウリル(メタ)アクリレートモノマー、m-フェノキシベンジル(メタ)アクリレートモノマー、イソアミル(メタ)アクリレートモノマー、フェノキシジエチレングリコール(メタ)アクリレートモノマー、及び1,4-ブタンジオールジ(メタ)アクリレートモノマーからなる群から選択される1種以上を含む、
     請求項4に記載のフィルム。
    The (meth)acrylate oligomer includes at least one selected from the group consisting of a urethane (meth)acrylate oligomer, an acrylic resin (meth)acrylate oligomer, an epoxy (meth)acrylate oligomer, and a polyester (meth)acrylate oligomer;
    The (meth)acrylate monomer includes at least one selected from the group consisting of isobornyl (meth)acrylate monomer, tripropylene glycol di(meth)acrylate monomer, tetrahydrofurfuryl (meth)acrylate monomer, phenoxyethyl (meth)acrylate monomer, dipentaerythritol hexa(meth)acrylate monomer, tricyclodecane dimethanol di(meth)acrylate monomer, benzyl (meth)acrylate monomer, stearyl (meth)acrylate monomer, isodecyl (meth)acrylate monomer, isoctyl (meth)acrylate monomer, 1,6-hexanediol di(meth)acrylate monomer, lauryl (meth)acrylate monomer, m-phenoxybenzyl (meth)acrylate monomer, isoamyl (meth)acrylate monomer, phenoxydiethylene glycol (meth)acrylate monomer, and 1,4-butanediol di(meth)acrylate monomer;
    The film of claim 4.
  6.  前記フィルムは、光重合開始剤をさらに含む、
     請求項1又は2に記載のフィルム。
    The film further comprises a photoinitiator.
    The film according to claim 1 or 2.
  7.  ペン入力デバイス用フィルムである、
     請求項1又は2に記載のフィルム。
    A film for a pen input device.
    The film according to claim 1 or 2.
  8.  UV硬化性樹脂組成物を塗布する塗布工程と、ポジ型を用いた転写によりフィルムの表面にJIS B0601:2001に準拠した谷と山とを形成する工程と、を含む、フィルムの製造方法であって、
     前記フィルムは、JIS B0601:2001に準拠した前記谷の最大谷深さ(Rv)と、前記山の最大山高さ(Rp)と、要素の平均長さ(RSm)と、が、
    1.50μm<Rv<8.00μm
    0.80<Rv/(Rv+Rp)<0.90
    30μm<RSm<300μm
    を満たし、
     前記フィルムの貯蔵弾性率は、0.052GPa~1.500GPaであり、
     前記フィルムは、UV硬化性樹脂を含む、
     フィルムの製造方法。
    A method for producing a film, comprising: a coating step of coating a UV-curable resin composition; and a step of forming valleys and peaks in accordance with JIS B0601:2001 on a surface of the film by transfer using a positive mold,
    The film has a maximum valley depth (Rv) of the valley, a maximum peak height (Rp) of the peak, and an average element length (RSm) in accordance with JIS B0601:2001.
    1.50μm<Rv<8.00μm
    0.80<Rv/(Rv+Rp)<0.90
    30μm<RSm<300μm
    The filling,
    The storage modulus of the film is 0.052 GPa to 1.500 GPa;
    The film includes a UV-curable resin.
    A method for manufacturing a film.
PCT/JP2023/042322 2022-12-22 2023-11-27 Film and method for manufacturing same WO2024135233A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022205378A JP2024089874A (en) 2022-12-22 2022-12-22 Film and method for manufacturing the same
JP2022-205378 2022-12-22

Publications (1)

Publication Number Publication Date
WO2024135233A1 true WO2024135233A1 (en) 2024-06-27

Family

ID=91588576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/042322 WO2024135233A1 (en) 2022-12-22 2023-11-27 Film and method for manufacturing same

Country Status (3)

Country Link
JP (1) JP2024089874A (en)
TW (1) TW202428633A (en)
WO (1) WO2024135233A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019057141A (en) * 2017-09-21 2019-04-11 シャープ株式会社 Pen input surface material, polarizing plate and display device
WO2020213156A1 (en) * 2019-04-19 2020-10-22 株式会社ダイセル Surface material for pen input device
JP2022025620A (en) * 2020-07-29 2022-02-10 三菱ケミカル株式会社 Cured film, laminate, and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019057141A (en) * 2017-09-21 2019-04-11 シャープ株式会社 Pen input surface material, polarizing plate and display device
WO2020213156A1 (en) * 2019-04-19 2020-10-22 株式会社ダイセル Surface material for pen input device
JP2022025620A (en) * 2020-07-29 2022-02-10 三菱ケミカル株式会社 Cured film, laminate, and method for producing the same

Also Published As

Publication number Publication date
TW202428633A (en) 2024-07-16
JP2024089874A (en) 2024-07-04

Similar Documents

Publication Publication Date Title
TWI301096B (en) Anti glare hard coat film
JP6174378B2 (en) Anti-glare hard coat film
JP6189642B2 (en) Touch panel
JP2007182519A (en) Antiblocking photosetting resin composition, antiblocking structure obtained by applying and curing the composition to substrate and method for producing the same
JP2009013384A (en) Easily slipable anti-blocking photocurable resin composition, anti-blocking structure with the same coated and cured on base material, and method of manufacturing the same
JPWO2014025040A1 (en) Antibacterial transparent film and antibacterial adhesive sheet
JP6138598B2 (en) Hard coat film and method for producing the same
JP5728191B2 (en) Hard coat layer surface forming film, method for producing optical member with hard coat layer, and optical member with hard coat layer
CN111028683A (en) Flexible cover plate
TWI706863B (en) Film to improve writing feeling
JP2009072954A (en) Antidazzle sheet for transfer
KR20210107798A (en) Anti-reflection film and its manufacturing method
KR20130018475A (en) Laminate
CN108070326B (en) Writing feeling improving film
KR20180041531A (en) Photo-curable coating compositions, method for forming coating layer using the same, apparatus for forming coating layer using the same
JP2017178999A (en) Hard coat coating composition and hard coat film for molding
WO2003067416A1 (en) Pen-input device surface member, and pen-input device
CN211349969U (en) Flexible cover plate
JP2019081271A (en) Whiteboard and projection screen combined film
JP7229833B2 (en) Laminated film for molding
WO2024135233A1 (en) Film and method for manufacturing same
JP6022861B2 (en) Irregular molding curable material, optical member, and optical member manufacturing method
JP2012068398A (en) Hard-coated film
JP2018136645A (en) Image display unit with position detection function
JP4811051B2 (en) Laminated body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23906602

Country of ref document: EP

Kind code of ref document: A1