WO2024134952A1 - Laminate, method for producing laminate, and tire - Google Patents

Laminate, method for producing laminate, and tire Download PDF

Info

Publication number
WO2024134952A1
WO2024134952A1 PCT/JP2023/027074 JP2023027074W WO2024134952A1 WO 2024134952 A1 WO2024134952 A1 WO 2024134952A1 JP 2023027074 W JP2023027074 W JP 2023027074W WO 2024134952 A1 WO2024134952 A1 WO 2024134952A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
rubber
rubber layer
laminate
mass
Prior art date
Application number
PCT/JP2023/027074
Other languages
French (fr)
Japanese (ja)
Inventor
健 山口
真紀子 竹重
昭二郎 会田
紀彦 加賀
悟司 浜谷
真 橋口
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2024134952A1 publication Critical patent/WO2024134952A1/en

Links

Images

Definitions

  • the present invention relates to a laminate, a method for manufacturing a laminate, and a tire.
  • a tire has been repaired by attaching a repair patch made of unvulcanized rubber to the damaged area of the tire and heating it at high temperatures to adhere to the damaged area. Also, when the tread rubber of a tire wears out, it is common to physically scrape off the worn tread rubber (the so-called buffing process) to obtain a base tire, and then bond a precured tread (a tread rubber member that has been vulcanized in advance) to the base tire to retread the tire. In this way, it is widely practiced to bond vulcanized rubber to unvulcanized rubber, or to bond vulcanized rubber to vulcanized rubber, and there is a demand for technology that improves the adhesion (peel strength) between rubber layers.
  • Patent Document 1 listed below discloses a method for bonding vulcanized rubber and unvulcanized rubber, in which a bonding portion on the vulcanized rubber side is subjected to a plasma treatment, and then the vulcanized rubber and the unvulcanized rubber are vulcanized and bonded together.
  • Patent Document 2 discloses that a pre-treatment such as buffing is performed on the surface of the pre-cured tread that is to be bonded to the base tire.
  • JP 2007-217559 A Japanese Patent Application Publication No. 5-116235
  • an object of the present invention is to solve the above-mentioned problems of the conventional technology and to provide a laminate having high interlayer peel strength and high productivity.
  • Another object of the present invention is to provide a method for producing such a laminate, and a tire which includes such a laminate and has high durability and can be produced with high productivity.
  • a laminate including at least two rubber layers, A laminate, characterized in that one rubber layer (A) in the laminate and another rubber layer (B) adjacent to the rubber layer (A) each contain a rubber component containing 50% by mass or more of a diene rubber and a copolymer having a conjugated diene unit and a non-conjugated olefin unit, and the content of the copolymer is 3 to 40 parts by mass per 100 parts by mass of the rubber component.
  • a method for producing a laminate comprising laminating and heating at least two crosslinked rubber layers, the rubber layers including a rubber component containing 50% by mass or more of a diene rubber and a copolymer having conjugated diene units and non-conjugated olefin units, the copolymer content being 3 to 40 parts by mass per 100 parts by mass of the rubber component.
  • a method for producing a laminate comprising laminating and heating at least one cross-linked rubber layer, the rubber layer including a rubber component containing 50% by mass or more of a diene rubber and a copolymer having conjugated diene units and non-conjugated olefin units, the copolymer content being 3 to 40 parts by mass per 100 parts by mass of the rubber component, and at least one uncross-linked rubber layer, the rubber component including 50% by mass or more of a diene rubber and a copolymer having conjugated diene units and non-conjugated olefin units, the copolymer content being 3 to 40 parts by mass per 100 parts by mass of the rubber component.
  • a method for producing a laminate comprising laminating and heating at least two uncrosslinked rubber layers, the rubber layers including a rubber component containing 50% by mass or more of a diene rubber and a copolymer having conjugated diene units and non-conjugated olefin units, the copolymer content being 3 to 40 parts by mass per 100 parts by mass of the rubber component.
  • a tire comprising a laminate according to any one of [1] to [7].
  • the present invention it is possible to provide a laminate having high interlayer peel strength and high productivity. Furthermore, according to the present invention, it is possible to provide a method for producing such a laminate, and a tire which includes such a laminate and has high durability and high productivity.
  • FIG. 1 is a cross-sectional view in a thickness direction, which diagrammatically illustrates a laminate of the present embodiment.
  • the laminate, the method for manufacturing the laminate, and the tire of the present invention are described in detail below with reference to examples based on the embodiments.
  • the compounds described herein may be derived in whole or in part from fossil sources, from biological sources such as plant sources, from recycled sources such as used tires, or from a mixture of two or more of fossil sources, biological sources, and/or renewable sources.
  • copolymers having conjugated diene units and non-conjugated olefin units are distinguished from rubber components, i.e., "rubber components” excludes “copolymers having conjugated diene units and non-conjugated olefin units.”
  • the laminate of the present embodiment is a laminate including at least two rubber layers, and is characterized in that one rubber layer (A) in the laminate and another rubber layer (B) adjacent to the rubber layer (A) each include a rubber component including 50% by mass or more of a diene rubber and a copolymer having a conjugated diene unit and a non-conjugated olefin unit (hereinafter, sometimes simply referred to as a "copolymer”), and the content of the copolymer is 3 to 40 parts by mass relative to 100 parts by mass of the rubber component.
  • both the adjacent rubber layers (A) and (B) each contain 3 to 40 parts by mass of a copolymer having conjugated diene units and non-conjugated olefin units per 100 parts by mass of a rubber component containing 50% by mass or more of diene rubber.
  • the copolymer can be melted, for example, by heating and bonded with high adhesive strength, and therefore the peel strength between the rubber layers (A) and (B) is high.
  • the copolymer having conjugated diene units and non-conjugated olefin units melts, for example, by heating.
  • the rubber layer (A) and the rubber layer (B) can be easily bonded to each other by laminating the rubber layer (A) and the rubber layer (B) and heating the laminate. Therefore, the laminate of this embodiment has high peel strength between the rubber layer (A) and the rubber layer (B) and also has high productivity.
  • the laminate of the present embodiment includes at least two rubber layers, and the thickness of each rubber layer is not particularly limited and is, for example, 1 mm or more.
  • the upper limit of the thickness is also not particularly limited and is, for example, 2000 mm or less.
  • one rubber layer (A) and another rubber layer (B) adjacent to the rubber layer (A) each contain a rubber component containing 50% by mass or more of a diene rubber and a copolymer having a conjugated diene unit and a non-conjugated olefin unit.
  • the adjacent rubber layers (A) and (B) in the laminate contain a rubber component containing 50% by mass or more of a diene rubber and a copolymer having a conjugated diene unit and a non-conjugated olefin unit, and when the laminate is composed of three or more layers, the composition of the other layers is not particularly limited and may be the same as or different from the composition of the rubber layer (A) and/or the rubber layer (B).
  • the rubber layer (A) and the rubber layer (B) each contain a rubber component containing 50% by mass or more of a diene rubber.
  • the rubber component excludes the copolymer having a conjugated diene unit and a non-conjugated olefin unit.
  • the rubber component provides rubber elasticity to the rubber layer (A) and the rubber layer (B).
  • the diene rubber include natural rubber (NR) and synthetic diene rubber.
  • the synthetic diene rubber examples include synthetic isoprene rubber (IR), butadiene rubber (BR), styrene-butadiene rubber (SBR), chloroprene rubber (CR), halogenated butyl rubber, and acrylonitrile-butadiene rubber (NBR).
  • the diene rubber may be used alone or in combination of two or more.
  • the diene rubber may be modified.
  • the rubber component may contain a non-diene rubber in addition to the diene rubber.
  • the ratio of the diene rubber in the rubber component is 50% by mass or more, and may be 100% by mass. When the ratio of the diene rubber in the rubber component is 50% by mass or more, the rubber layer (A) and the rubber layer (B) have sufficient rubber elasticity.
  • the copolymer having a conjugated diene unit and a non-conjugated olefin unit may be a binary copolymer consisting of two units, a conjugated diene unit and a non-conjugated olefin unit, or may be a ternary copolymer consisting of three units including an aromatic vinyl unit, or may be a multi-component copolymer containing other monomer units.
  • the rubber layer (A) and the rubber layer (B) are each characterized in that the content of the copolymer is 3 to 40 parts by mass per 100 parts by mass of the rubber component (in other words, the rubber component excluding the copolymer). If the content of the copolymer is 3 parts by mass or more per 100 parts by mass of the rubber component, the peel strength between the rubber layer (A) and the rubber layer (B) and the mechanical strength of the rubber layer (A) and the rubber layer (B) are improved, and if the content is 40 parts by mass or less, the flexibility of the rubber layer (A) and the rubber layer (B) is improved.
  • the difference between the content of the copolymer contained in the rubber layer (A) and the content of the copolymer contained in the rubber layer (B) is preferably 20 parts by mass or less, based on 100 parts by mass of the rubber component.
  • the difference in the content of the copolymer in the rubber layer (A) and the rubber layer (B) is 20 parts by mass or less, the physical properties of the rubber layer (A) and the rubber layer (B) tend to be similar, making it easy to improve the peel strength between the rubber layer (A) and the rubber layer (B).
  • the content of the copolymer contained in the rubber layer (A) is equal to the content of the copolymer contained in the rubber layer (B).
  • the conjugated diene unit is a structural unit derived from a conjugated diene compound as a monomer.
  • the conjugated diene compound refers to a conjugated diene compound.
  • the conjugated diene compound preferably has 4 to 8 carbon atoms. Specific examples of such conjugated diene compounds include 1,3-butadiene, isoprene, 1,3-pentadiene, and 2,3-dimethyl-1,3-butadiene.
  • the conjugated diene compound may be used alone or in combination of two or more kinds.
  • the conjugated diene compound as a monomer of the copolymer preferably contains at least one selected from the group consisting of 1,3-butadiene and isoprene, more preferably consists of only at least one selected from the group consisting of 1,3-butadiene and isoprene, and further preferably consists of only 1,3-butadiene.
  • the conjugated diene unit in the copolymer preferably contains at least one selected from the group consisting of 1,3-butadiene units and isoprene units, more preferably consists of at least one selected from the group consisting of 1,3-butadiene units and isoprene units, and further preferably consists of only 1,3-butadiene units.
  • the content of conjugated diene units is preferably more than 0 mol% and not more than 50 mol%. In this case, a copolymer with excellent elongation and weather resistance can be obtained. From the same viewpoint, it is more preferable that the proportion of conjugated diene units in the binary copolymer is not more than 40 mol%.
  • the ratio of 1,2 adducts (including 3,4 adducts) of the conjugated diene units is preferably 10 mol% or less. If the ratio is 10 mol% or less, the heat resistance and flex fatigue resistance of the copolymer can be improved. From the same viewpoint, the ratio of 1,2 adducts (including 3,4 adducts) of the conjugated diene units in the binary copolymer is more preferably 8 mol% or less, and even more preferably 6 mol% or less. Note that the ratio of 1,2 adducts (including 3,4 adducts) of the conjugated diene units is the ratio in the entire conjugated diene units, not the ratio in the entire copolymer. Furthermore, when the conjugated diene units are butadiene units, the ratio has the same meaning as the 1,2-vinyl bond amount.
  • the content of the conjugated diene unit is preferably 1 mol% or more, more preferably 3 mol% or more, and even more preferably 5 mol% or more, and is preferably 50 mol% or less, more preferably 40 mol% or less, and even more preferably 30 mol% or less.
  • the content of the conjugated diene unit is 1 to 50 mol % of the entire copolymer, the flexibility and mechanical strength of the rubber layer (A) and the rubber layer (B) can be improved.
  • the content of the conjugated diene unit is preferably in the range of 1 to 50 mol %, more preferably in the range of 3 to 40 mol %, and even more preferably in the range of 5 to 30 mol %, of the entire copolymer.
  • the non-conjugated olefin unit is a structural unit derived from a non-conjugated olefin compound as a monomer.
  • the non-conjugated olefin compound refers to an aliphatic unsaturated hydrocarbon compound having one or more carbon-carbon double bonds.
  • the non-conjugated olefin compound preferably has 2 to 10 carbon atoms.
  • non-conjugated olefin compounds include ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, and 1-octene, and heteroatom-substituted alkene compounds such as vinyl pivalate, 1-phenylthioethene, and N-vinylpyrrolidone.
  • the non-conjugated olefin compounds may be used alone or in combination of two or more kinds.
  • the non-conjugated olefin compound as a monomer of the copolymer is preferably a non-cyclic non-conjugated olefin compound from the viewpoints of improving the mechanical strength of the rubber layer (A) and the rubber layer (B) and also improving the peel strength between the rubber layer (A) and the rubber layer (B).
  • the non-cyclic non-conjugated olefin compound is more preferably an ⁇ -olefin, further preferably an ⁇ -olefin containing ethylene, and particularly preferably composed of only ethylene.
  • the non-conjugated olefin units in the copolymer are preferably non-cyclic non-conjugated olefin units, and the non-cyclic non-conjugated olefin units are more preferably ⁇ -olefin units, further preferably ⁇ -olefin units containing ethylene units, and particularly preferably consisting of only ethylene units.
  • the content of non-conjugated olefin units is preferably 50 mol% or more and less than 100 mol%. In this case, the fracture properties of the rubber layer (A) and the rubber layer (B) at high temperatures can be effectively improved. From the same viewpoint, it is more preferable that the proportion of non-conjugated olefin units in the binary copolymer is 60 mol% or more.
  • the content of the non-conjugated olefin unit is preferably 40 mol% or more, more preferably 45 mol% or more, even more preferably 55 mol% or more, particularly preferably 60 mol% or more, and is preferably 97 mol% or less, more preferably 95 mol% or less, and even more preferably 90 mol% or less.
  • the content of the non-conjugated olefin unit is 40 to 97 mol% of the entire copolymer, the mechanical strength of the rubber layer (A) and the rubber layer (B) can be improved, and the peel strength between the rubber layer (A) and the rubber layer (B) can be improved.
  • the content of the non-conjugated olefin unit is preferably in the range of 40 to 97 mol %, more preferably in the range of 45 to 95 mol %, even more preferably in the range of 55 to 90 mol %, and still more preferably in the range of 60 to 90 mol %, of the entire copolymer.
  • the copolymer preferably further contains an aromatic vinyl unit.
  • the aromatic vinyl unit is a structural unit derived from an aromatic vinyl compound as a monomer.
  • crystalline components such as ethylene crystalline components are cut, and excessive crystallization derived from non-conjugated olefin units is suppressed.
  • the aromatic vinyl compound refers to an aromatic compound substituted with at least a vinyl group, and is not included in the conjugated diene compound.
  • the aromatic vinyl compound preferably has 8 to 10 carbon atoms.
  • aromatic vinyl compounds include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o,p-dimethylstyrene, o-ethylstyrene, m-ethylstyrene, and p-ethylstyrene.
  • the aromatic vinyl compound may be a single type or a combination of two or more types.
  • the aromatic vinyl compound as a monomer of the copolymer preferably contains styrene, and more preferably consists of only styrene.
  • the aromatic vinyl unit in the copolymer preferably contains a styrene unit, and more preferably consists of only styrene unit.
  • the aromatic ring in the aromatic vinyl unit is not included in the main chain of the copolymer unless it is bonded to an adjacent unit.
  • the content of the aromatic vinyl unit is preferably 2 mol% or more, more preferably 3 mol% or more, and preferably 35 mol% or less, more preferably 30 mol% or less, and even more preferably 25 mol% or less.
  • the content of the aromatic vinyl unit is 2 to 35 mol% of the entire copolymer, the mechanical strength of the rubber layer (A) and the rubber layer (B) can be improved.
  • the content of the aromatic vinyl unit is preferably in the range of 2 to 35 mol %, more preferably in the range of 3 to 30 mol %, and even more preferably in the range of 3 to 25 mol %, of the entire copolymer.
  • the content of other structural units than the conjugated diene unit, the non-conjugated olefin unit, and the aromatic vinyl unit is preferably 30 mol% or less of the entire copolymer, more preferably 20 mol% or less, and even more preferably 10 mol% or less, and it is particularly preferable that no other structural units are contained, that is, the content is 0 mol%.
  • the copolymer is preferably a binary copolymer consisting of two units, a conjugated diene unit and a non-conjugated olefin unit, or a ternary copolymer consisting of three units, a conjugated diene unit, a non-conjugated olefin unit, and an aromatic vinyl unit.
  • the copolymer preferably has a butylene unit content of 0 mol %.
  • the copolymer is preferably a polymer obtained by polymerizing at least one kind of conjugated diene compound, one kind of non-conjugated olefin compound, and one kind of aromatic vinyl compound as monomers.
  • the copolymer is preferably a copolymer containing only one type of conjugated diene unit, only one type of non-conjugated olefin unit, and only one type of aromatic vinyl unit, more preferably a ternary copolymer consisting of only one type of conjugated diene unit, only one type of non-conjugated olefin unit, and only one type of aromatic vinyl unit, and even more preferably a ternary copolymer consisting of only 1,3-butadiene units, ethylene units, and styrene units.
  • "only one type of conjugated diene unit” includes conjugated diene units having different bonding modes.
  • the copolymer is, for example, a binary copolymer
  • the content of conjugated diene units is more than 0 mol% and not more than 50 mol%
  • the content of non-conjugated olefin units is 50 mol% or more and less than 100 mol%.
  • a copolymer having excellent elongation and weather resistance can be obtained, and the fracture properties at high temperatures of the rubber layer (A) and the rubber layer (B) can be effectively improved.
  • the copolymer is, for example, a terpolymer
  • the content of conjugated diene units is 1 to 50 mol%
  • the content of non-conjugated olefin units is 40 to 97 mol%
  • the content of aromatic vinyl units is 2 to 35 mol%. In this case, it is possible to improve the flexibility and mechanical strength of the rubber layer (A) and the rubber layer (B), while improving the peel strength between the rubber layer (A) and the rubber layer (B).
  • the copolymer preferably has a polystyrene-equivalent number average molecular weight (Mn) of 10,000 to 9,000,000 (10 to 9,000 kg/mol), more preferably 100,000 to 8,000,000 (100 to 8,000 kg/mol).
  • Mn polystyrene-equivalent number average molecular weight
  • the copolymer has an Mn of 10,000 or more, the mechanical strength of the rubber layer (A) and the rubber layer (B) can be sufficiently ensured, and when the Mn is 9,000,000 or less, the workability of the composition containing the copolymer is not easily impaired.
  • the copolymer preferably has a weight average molecular weight (Mw) in terms of polystyrene of 10,000 to 10,000,000 (10 to 10,000 kg/mol), more preferably 50,000 to 9,000,000 (50 to 9,000 kg/mol), and even more preferably 100,000 to 8,000,000 (100 to 8,000 kg/mol).
  • Mw weight average molecular weight
  • the copolymer preferably has a weight average molecular weight (Mw) in terms of polystyrene of 10,000 to 10,000,000 (10 to 10,000 kg/mol), more preferably 50,000 to 9,000,000 (50 to 9,000 kg/mol), and even more preferably 100,000 to 8,000,000 (100 to 8,000 kg/mol).
  • the copolymer preferably has a molecular weight distribution [Mw/Mn (weight average molecular weight/number average molecular weight)] of 1.00 to 4.00, more preferably 1.00 to 3.50, and even more preferably 1.80 to 3.00. If the molecular weight distribution of the copolymer is 4.00 or less, sufficient homogeneity can be achieved in the physical properties of the copolymer.
  • Mw/Mn weight average molecular weight/number average molecular weight
  • the number average molecular weight (Mn), weight average molecular weight (Mw) and molecular weight distribution (Mw/Mn) of the copolymer are determined by gel permeation chromatography (GPC) using polystyrene as the standard substance.
  • the copolymer preferably has an endothermic peak energy of 10 to 150 J/g, more preferably 30 to 120 J/g, as measured by a differential scanning calorimeter (DSC) at 0 to 120° C. If the endothermic peak energy of the copolymer is 10 J/g or more, the crystallinity of the copolymer is high, and the crack resistance of the rubber layer (A) and the rubber layer (B) can be improved. If the endothermic peak energy of the copolymer is 150 J/g or less, the workability of a composition containing the copolymer is improved.
  • DSC differential scanning calorimeter
  • the endothermic peak energy of the copolymer may be measured by using a differential scanning calorimeter in accordance with JIS K 7121-1987, for example, by increasing the temperature from ⁇ 150° C. to 150° C. at a rate of 10° C./min.
  • the copolymer has a melting point of preferably 50 to 120°C, more preferably 50 to 110°C.
  • the melting point of the copolymer is 50°C or higher, the crystallinity of the copolymer is high, and the crack resistance of the rubber layer (A) and the rubber layer (B) can be improved.
  • the melting point of the copolymer is 120°C or lower, the workability of the composition containing the copolymer is improved.
  • the melting point of the copolymer is 50 to 120°C, the crack resistance of the rubber layer (A) and the rubber layer (B) is high, and the workability in the production of the rubber layer (A) and the rubber layer (B) is improved.
  • the melting point of the copolymer may be measured using a differential scanning calorimeter (DSC) in accordance with JIS K 7121-1987.
  • the difference between the melting point of the copolymer contained in the rubber layer (A) and the melting point of the copolymer contained in the rubber layer (B) is 30°C or less.
  • the difference in melting points of the copolymers is 30°C or less, the copolymer contained in the rubber layer (A) and the copolymer contained in the rubber layer (B) can be melted at similar temperatures by heating and solidified at similar temperatures by cooling, so that the peel strength between the rubber layer (A) and the rubber layer (B) can be further improved.
  • the copolymer contained in the rubber layer (A) and the copolymer contained in the rubber layer (B) have the same melting point.
  • the copolymer preferably has a glass transition temperature (Tg) measured by a differential scanning calorimeter (DSC) of 0° C. or lower, more preferably ⁇ 100° C. to ⁇ 10° C.
  • Tg glass transition temperature measured by a differential scanning calorimeter
  • DSC differential scanning calorimeter
  • the glass transition temperature of the copolymer may be measured using a differential scanning calorimeter in accordance with JIS K 7121-1987.
  • the copolymer preferably has a crystallinity of 0.5 to 50%, more preferably 3 to 45%, and even more preferably 5 to 45%.
  • the copolymer has a crystallinity of 0.5% or more, the crystallinity of the copolymer resulting from the non-conjugated olefin units can be sufficiently ensured, and the mechanical strength of the rubber layer (A) and the rubber layer (B) can be further improved.
  • the copolymer has a crystallinity of 50% or less, the workability during kneading of the composition containing the copolymer and the extrusion processability are improved.
  • the crystallinity of the copolymer can be calculated by measuring the crystalline melting energy of 100% crystalline polyethylene and the melting peak energy of the copolymer, and calculating the crystallinity from the energy ratio between the polyethylene and the copolymer.
  • the melting peak energy can be measured by a differential scanning calorimeter.
  • the copolymer preferably has a main chain consisting solely of acyclic structures, which can further improve the mechanical strength of the rubber layer (A) and the rubber layer (B).
  • NMR is used as a main measurement means for confirming whether the main chain of the copolymer has a cyclic structure or not. Specifically, when no peaks derived from the cyclic structure present in the main chain (for example, peaks appearing at 10 to 24 ppm for three- to five-membered rings) are observed, it indicates that the main chain of the copolymer is composed of only a non-cyclic structure.
  • the main chain of a polymer means a linear molecular chain in which all other molecular chains (long molecular chains or short molecular chains, or both) are linked like pendants [see Section 1.34 of "Glossary of Basic Terms in Polymer Science IUPAC Recommendations 1996", Pure Appl. Chem., 68, 2287-2311 (1996)].
  • the copolymer may have either a linear or branched structure, but is preferably a linear structure.
  • the copolymer has excellent mechanical strength, specifically, excellent breaking strength, puncture strength, tensile strength, abrasion resistance, crack resistance, impact resistance, etc.
  • the copolymer also has excellent mechanical strength at low temperatures.
  • the copolymer has excellent mechanical strength without relying on fillers such as carbon black, silica, etc., and can be colored with a colorant, leading to excellent decorative properties.
  • the copolymer can interact with a filler, so that the mechanical strength can be further improved by using the filler.
  • the copolymer contains conjugated diene units, and therefore can be crosslinked.
  • the copolymer contains conjugated diene units, and therefore can act as an elastic body and can be stretched.
  • the copolymer can be injection molded and stretched, and therefore can be processed into a film.
  • the copolymer contains conjugated diene units and non-conjugated olefin units, and therefore can easily adhere to both resins (olefin resins) and rubbers (diene rubbers), and therefore can function as an adhesive between resins and rubbers.
  • the copolymer can be foamed.
  • the melting point of the copolymer is preferably 50 to 120°C, and the shape can be restored by pouring hot water of about 80 to 100°C on the copolymer or by heating the copolymer to the extent of immersing the copolymer in hot water.
  • the copolymer also has shape memory properties.
  • Copolymer manufacturing method When producing a binary copolymer consisting of two units, a conjugated diene unit and a non-conjugated olefin unit, as the copolymer, the copolymer can be produced through a polymerization process using a conjugated diene compound and a non-conjugated olefin compound as monomers.
  • the copolymer when a terpolymer consisting of three units, a conjugated diene unit, a non-conjugated olefin unit, and an aromatic vinyl unit, is produced as the copolymer, the copolymer can be produced through a polymerization process using a conjugated diene compound, a non-conjugated olefin compound, and an aromatic vinyl compound as monomers.
  • the method for producing the copolymer may further include a coupling step, a washing step, and other steps, if necessary.
  • a coupling step may further include a coupling step, a washing step, and other steps, if necessary.
  • the method for producing a copolymer will be described by taking the case of producing a terpolymer as a representative example.
  • any method such as solution polymerization, suspension polymerization, liquid phase bulk polymerization, emulsion polymerization, gas phase polymerization, solid phase polymerization, etc. can be used.
  • the solvent may be any solvent that is inert in the polymerization reaction, such as toluene, cyclohexane, normal hexane, etc.
  • the polymerization step may be carried out in one stage or in two or more stages.
  • the one-stage polymerization process is a process in which all types of monomers to be polymerized, i.e., a conjugated diene compound, a non-conjugated olefin compound, an aromatic vinyl compound, and other monomers, preferably a conjugated diene compound, a non-conjugated olefin compound, and an aromatic vinyl compound, are reacted and polymerized simultaneously.
  • a multi-stage polymerization process is a process in which one or two types of monomers are first reacted in part or in whole to form a polymer (first polymerization stage), and then one or more stages (second polymerization stage to final polymerization stage) are carried out in which a type of monomer not added in the first polymerization stage, the remainder of the monomer added in the first polymerization stage, etc. are added and polymerized.
  • first polymerization stage first polymerization stage
  • second polymerization stage to final polymerization stage a type of monomer not added in the first polymerization stage, the remainder of the monomer added in the first polymerization stage, etc. are added and polymerized.
  • the polymerization reaction is preferably carried out under an atmosphere of an inert gas, preferably nitrogen gas or argon gas.
  • the temperature of the polymerization reaction is not particularly limited, but is preferably in the range of -100°C to 200°C, and can be around room temperature.
  • the pressure of the polymerization reaction is preferably in the range of 0.1 to 10.0 MPa in order to sufficiently incorporate the conjugated diene compound into the polymerization reaction system.
  • the reaction time of the polymerization reaction is not particularly limited, and is preferably in the range of, for example, 1 second to 10 days, but can be appropriately selected depending on conditions such as the type of polymerization catalyst and polymerization temperature.
  • the polymerization may be terminated using a polymerization terminator such as methanol, ethanol, isopropanol, or the like.
  • the polymerization process is preferably carried out in multiple stages. More preferably, a first step is carried out in which a first monomer raw material containing at least an aromatic vinyl compound is mixed with a polymerization catalyst to obtain a polymerization mixture, and a second step is carried out in which a second monomer raw material containing at least one selected from the group consisting of a conjugated diene compound, a non-conjugated olefin compound, and an aromatic vinyl compound is introduced into the polymerization mixture. Furthermore, it is more preferable that the first monomer raw material does not contain a conjugated diene compound, and the second monomer raw material contains a conjugated diene compound.
  • the first monomer raw material used in the first step may contain a non-conjugated olefin compound together with the aromatic vinyl compound.
  • the first monomer raw material may contain the entire amount of the aromatic vinyl compound used, or may contain only a portion of the aromatic vinyl compound.
  • the non-conjugated olefin compound is contained in at least one of the first monomer raw material and the second monomer raw material.
  • the first step is preferably carried out in a reactor under an atmosphere of an inert gas, preferably nitrogen gas or argon gas.
  • the temperature (reaction temperature) in the first step is not particularly limited, but is preferably in the range of -100°C to 200°C, and can be around room temperature.
  • the pressure in the first step is not particularly limited, but is preferably in the range of 0.1 to 10.0 MPa in order to sufficiently incorporate the aromatic vinyl compound into the polymerization reaction system.
  • the time spent in the first step can be appropriately selected depending on the type of polymerization catalyst, reaction temperature, and other conditions, but is preferably in the range of 5 to 500 minutes, for example, when the reaction temperature is 25 to 80°C.
  • any method can be used as the polymerization method for obtaining the polymerization mixture, such as solution polymerization, suspension polymerization, liquid phase bulk polymerization, emulsion polymerization, gas phase polymerization, solid phase polymerization, etc.
  • the solvent may be any solvent that is inert in the polymerization reaction, such as toluene, cyclohexanone, normal hexane, etc.
  • the second monomer raw material used in the second step is preferably a conjugated diene compound alone, or a conjugated diene compound and a non-conjugated olefin compound, or a conjugated diene compound and an aromatic vinyl compound, or a conjugated diene compound, a non-conjugated olefin compound and an aromatic vinyl compound.
  • these monomer raw materials may be mixed together with a solvent or the like in advance and then introduced into the polymerization mixture, or each monomer raw material may be introduced individually.
  • each monomer raw material may be added simultaneously or successively.
  • the method of introducing the second monomer raw material into the polymerization mixture is not particularly limited, but it is preferable to control the flow rate of each monomer raw material and continuously add it to the polymerization mixture (so-called metering).
  • metering when a monomer raw material that is gaseous under the conditions of the polymerization reaction system (for example, ethylene as a non-conjugated olefin compound under the conditions of room temperature and normal pressure) is used, it can be introduced into the polymerization reaction system at a predetermined pressure.
  • the second step is preferably carried out in a reactor under an atmosphere of an inert gas, preferably nitrogen gas or argon gas.
  • the temperature (reaction temperature) in the second step is not particularly limited, but is preferably in the range of -100°C to 200°C, and can be about room temperature. If the reaction temperature is increased, the selectivity of the cis-1,4 bond in the conjugated diene unit may decrease.
  • the pressure in the second step is not particularly limited, but is preferably in the range of 0.1 to 10.0 MPa in order to sufficiently incorporate monomers such as conjugated diene compounds into the polymerization reaction system.
  • reaction time can be appropriately selected depending on conditions such as the type of polymerization catalyst and the reaction temperature, but is preferably in the range of 0.1 hours to 10 days, for example.
  • the polymerization reaction may be terminated using a polymerization terminator such as methanol, ethanol, or isopropanol.
  • the polymerization step of the above-mentioned conjugated diene compound, non-conjugated olefin compound, and aromatic vinyl compound preferably includes a step of polymerizing various monomers in the presence of one or more of the following components (a) to (f) as a catalyst component.
  • a catalyst component preferably one or more of the following components (a) to (f) as a catalyst component.
  • component a rare earth element compound or a reaction product of the rare earth element compound and a Lewis base
  • component an organometallic compound
  • component an aluminoxane
  • component an ionic compound
  • e component: a halogen compound
  • component a cyclopentadiene skeleton-containing compound selected from substituted or unsubstituted cyclopentadiene (a compound having a cyclopentadienyl group), substituted or unsubstituted indene (a compound having an indenyl group), and substituted or unsubstituted fluorene (a compound having a fluorenyl group).
  • the above (a) to (f) components can be used in the polymerization step, for example, by referring to International Publication No. WO 2018/092733.
  • the coupling step is a step of carrying out a reaction (coupling reaction) for modifying at least a part (for example, an end) of the polymer chain of the copolymer obtained in the polymerization step.
  • a reaction for modifying at least a part (for example, an end) of the polymer chain of the copolymer obtained in the polymerization step.
  • the coupling agent used in the coupling reaction is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include tin-containing compounds such as bis(1-octadecylmaleate)dioctyltin(IV), isocyanate compounds such as 4,4'-diphenylmethane diisocyanate, alkoxysilane compounds such as glycidylpropyltrimethoxysilane, etc. These may be used alone or in combination of two or more kinds. Among these, bis(1-octadecylmaleate)dioctyltin(IV) is preferred in terms of reaction efficiency and low gel formation.
  • Mn number average molecular weight
  • the washing step is a step of washing the copolymer obtained in the polymerization step.
  • the medium used for washing is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include methanol, ethanol, isopropanol, etc., but when a catalyst derived from a Lewis acid is used as a polymerization catalyst, an acid (e.g., hydrochloric acid, sulfuric acid, nitric acid, etc.) can be added to these solvents.
  • the amount of acid added is preferably 15 mol% or less relative to the solvent. By adding an amount of 15 mol% or less, the acid is unlikely to remain in the copolymer and is unlikely to adversely affect the reaction during kneading and vulcanization of the composition.
  • This washing step makes it possible to suitably reduce the amount of catalyst residue in the copolymer.
  • the rubber layer (A) and the rubber layer (B) may contain polymer components other than the above-mentioned rubber component and the copolymer having a conjugated diene unit and a non-conjugated olefin unit, and various compounding agents, such as functional components such as fillers, reinforcing fibers, antioxidants, softeners, crosslinking packages containing stearic acid, zinc oxide, crosslinking accelerators and crosslinking agents, resins, ultraviolet absorbers, foaming agents, and colorants.
  • various compounding agents such as functional components such as fillers, reinforcing fibers, antioxidants, softeners, crosslinking packages containing stearic acid, zinc oxide, crosslinking accelerators and crosslinking agents, resins, ultraviolet absorbers, foaming agents, and colorants.
  • the rubber layer (A) and the rubber layer (B) may contain a filler.
  • the fillers include carbon black and inorganic fillers.
  • the type of carbon black is not particularly limited, and examples thereof include GPF, FEF, HAF, ISAF, and SAF, with HAF, ISAF, and SAF being preferred.
  • the inorganic filler includes metal oxides such as silica, alumina, titania, etc., and among these, silica is preferred.
  • the type of silica is not particularly limited, and includes wet silica (hydrated silicic acid), dry silica (anhydrous silicic acid), colloidal silica, etc.
  • the rubber layer (A) and the rubber layer (B) may further include a silane coupling agent.
  • the rubber layer (A) and the rubber layer (B) may contain an antioxidant, such as an amine-ketone compound, an imidazole compound, an amine compound, a phenol compound, a sulfur compound, and a phosphorus compound.
  • an antioxidant such as an amine-ketone compound, an imidazole compound, an amine compound, a phenol compound, a sulfur compound, and a phosphorus compound.
  • the rubber layer (A) and the rubber layer (B) may contain a softener.
  • the softener include petroleum-based softeners such as process oil, lubricating oil, naphthenic oil, paraffin, liquid paraffin, petroleum asphalt, and vaseline, fatty oil-based softeners such as castor oil, linseed oil, rapeseed oil, and coconut oil, and waxes such as beeswax, carnauba wax, and lanolin. These softeners may be used alone or in combination of two or more.
  • the rubber layer (A) and the rubber layer (B) may contain a crosslinking agent.
  • the crosslinking agent is not particularly limited, and typically includes peroxides, sulfur, oximes, amines, ultraviolet curing agents, and the like. Since the copolymer contains conjugated diene units, it can be crosslinked (vulcanized) with sulfur, such as powdered sulfur, precipitated sulfur, colloidal sulfur, surface-treated sulfur, insoluble sulfur, etc.
  • the rubber layer (A) and the rubber layer (B) may contain a crosslinking accelerator.
  • the crosslinking accelerator include guanidine-based, sulfenamide-based, thiuram-based, thiazole-based, aldehyde amine-based, and thiocarbamate-based crosslinking accelerators.
  • FIG. Fig. 1 is a cross-sectional view in the thickness direction, which is a schematic diagram of the laminate of this embodiment.
  • the laminate 1 shown in Fig. 1 includes a rubber layer (A) 2 and a rubber layer (B) 3, and the rubber layer (A) 2 and the rubber layer (B) 3 are bonded together.
  • the laminate 1 shown in Fig. 1 is composed of two layers, the rubber layer (A) 2 and the rubber layer (B) 3, the laminate of the present invention may be composed of three or more layers.
  • the laminate of this embodiment can be applied to various rubber products including at least two rubber layers, in addition to the tires described below.
  • the laminate of the present embodiment described above can be manufactured by various methods. For example, (1) at least two cross-linked rubber layers may be laminated and heated, (2) at least one cross-linked rubber layer and at least one uncross-linked rubber layer may be laminated and heated, or (3) at least two uncross-linked rubber layers may be laminated and heated.
  • the method for producing a laminate is characterized by laminating and heating at least two crosslinked rubber layers that include a rubber component containing 50% by mass or more of diene rubber and a copolymer having conjugated diene units and non-conjugated olefin units, the copolymer content of which is 3 to 40 parts by mass per 100 parts by mass of the rubber component.
  • This method for producing a laminate provides a laminate with high interlayer peel strength with high productivity.
  • a method for producing a laminate is characterized by laminating and heating at least one crosslinked rubber layer including a rubber component containing 50% or more by mass of a diene rubber and a copolymer having conjugated diene units and non-conjugated olefin units, the content of the copolymer being 3 to 40 parts by mass per 100 parts by mass of the rubber component, and at least one uncrosslinked rubber layer including a rubber component containing 50% or more by mass of a diene rubber and a copolymer having conjugated diene units and non-conjugated olefin units, the content of the copolymer being 3 to 40 parts by mass per 100 parts by mass of the rubber component.
  • This method for producing a laminate also provides a laminate with high productivity and high interlayer peel strength.
  • at least one uncrosslinked rubber layer may be crosslinked (vulcanized) by heating.
  • the uncrosslinked rubber layer is crosslinked by heating, it is preferable that the uncrosslinked rubber layer contains the above-mentioned crosslinking agent and crosslinking accelerator.
  • the method for producing a laminate is characterized by laminating and heating (crosslinking) at least two uncrosslinked rubber layers, the rubber layers including a rubber component containing 50% by mass or more of a diene rubber and a copolymer having conjugated diene units and non-conjugated olefin units, the content of the copolymer being 3 to 40 parts by mass per 100 parts by mass of the rubber component.
  • This method for producing a laminate also provides a laminate with high productivity and high interlayer peel strength.
  • the at least two uncrosslinked rubber layers may be crosslinked (vulcanized) by heating. When the uncrosslinked rubber layer is crosslinked by heating, it is preferable that the uncrosslinked rubber layer contains the above-mentioned crosslinking agent and crosslinking accelerator.
  • the rubber layer (A) and the rubber layer (B) can be formed from a rubber composition containing a rubber component containing 50% by mass or more of the diene rubber and the copolymer having a conjugated diene unit and a non-conjugated olefin unit.
  • the rubber composition can contain the above-mentioned filler, silane coupling agent, antioxidant, softener, crosslinking agent, crosslinking accelerator, etc.
  • the rubber composition may be produced by mixing only the rubber component and the copolymer, or may be produced by mixing any additive component in addition to the rubber component and the copolymer.
  • the rubber component and the copolymer may be mixed alone or together with any other additive components using a mixer such as a single screw extrusion mixer, a twin screw extrusion mixer, a Banbury mixer, a roll or an internal mixer to produce the rubber component and the copolymer.
  • a mixer such as a single screw extrusion mixer, a twin screw extrusion mixer, a Banbury mixer, a roll or an internal mixer to produce the rubber component and the copolymer.
  • the components may be mixed in one step or in two or more steps.
  • the extruded rubber composition may be directly cut into pellets, or strands may be formed and the strands may be cut into pellets using a pelletizer.
  • the pellets may have any of the common shapes, such as cylinders, prisms, and spheres.
  • the rubber layer (A) and the rubber layer (B) may be produced by melt-kneading the rubber composition and then extruding the same, or by hot pressing the rubber composition.
  • the heat pressing temperature is preferably from 120 to 160°C, and more preferably from 130 to 150°C.
  • the tire of the present embodiment is characterized by including the laminate of the present embodiment described above. Since the tire of the present embodiment includes the laminate of the present embodiment described above, which has high interlayer peel strength and high productivity, the tire of the present embodiment is highly durable and also highly productive.
  • one layer of the laminate described above can be used, for example, as a tire repair patch or a tread rubber component of a retread tire.
  • the other layer of the laminate corresponds to a damaged tire.
  • the other layer of the laminate corresponds to a base tire prepared by removing worn tread rubber from a tire.
  • the tire can be manufactured by a conventional method.
  • components that are normally used in tire manufacturing such as a carcass layer made of an uncrosslinked rubber composition and/or cords, a belt layer, and tread rubber, are laminated in order onto a tire building drum, and the drum is removed to produce a green tire.
  • the green tire is then crosslinked to manufacture the desired tire (e.g., a pneumatic tire).
  • the damaged portion of the tire can be made into a rubber layer (B), and the rubber layer (A) can be laminated onto the rubber layer (B), and heated as desired to fix the rubber layer (A) to the rubber layer (B), thereby repairing the tire.
  • a retread tire can be manufactured by removing the tread rubber from a used tire to obtain a base tire, forming the outermost layer of the base tire as the rubber layer (B), and preparing a tread rubber member for retreading as the rubber layer (A), and laminating the rubber layer (A) on the rubber layer (B).
  • the obtained catalyst solution was added to the pressure-resistant stainless steel reactor and heated to 60°C.
  • ethylene was introduced into the pressure-resistant stainless steel reactor at a pressure of 1.5 MPa, and copolymerization was carried out for a total of 3 hours at 75° C.
  • 80 g of a toluene solution containing 20 g of 1,3-butadiene was continuously added at a rate of 0.4 to 0.6 mL/min.
  • 1 mL of a 5% by mass solution of 2,2'-methylene-bis(4-ethyl-6-t-butylphenol) (NS-5) in isopropanol was added to the pressure-resistant stainless steel reactor to terminate the reaction.
  • the copolymer was separated using a large amount of methanol and dried in vacuum at 50° C. to obtain Copolymer 1.
  • the obtained catalyst solution was added to the pressure-resistant stainless steel reactor and heated to 60°C.
  • ethylene was introduced into the pressure-resistant stainless steel reactor at a pressure of 1.0 MPa, and copolymerization was carried out for a total of 3 hours at 75° C.
  • 240 g of a toluene solution containing 60 g of 1,3-butadiene was continuously added at a rate of 2.5 to 2.8 mL/min.
  • 1 mL of a 5% by mass solution of 2,2'-methylene-bis(4-ethyl-6-t-butylphenol) (NS-5) in isopropanol was added to the pressure-resistant stainless steel reactor to terminate the reaction.
  • the copolymer was separated using a large amount of methanol and dried in vacuum at 50° C. to obtain Copolymer 2.
  • the glass transition temperature (Tg) of the copolymer was measured using a differential scanning calorimeter (DSC, manufactured by TA Instruments Japan, "DSCQ2000") in accordance with JIS K 7121-1987.
  • DSC differential scanning calorimeter
  • Crystallinity The crystalline melting energy of 100% crystalline polyethylene and the melting peak energy of the resulting copolymer at 0 to 120° C. were measured, and the crystallinity was calculated from the energy ratio between the polyethylene and the copolymer.
  • the melting peak energy was measured with a differential scanning calorimeter (DSC, manufactured by TA Instruments Japan, "DSCQ2000").
  • Tb Tensile strength
  • Eb elongation at break
  • the specimen was molded into a dumbbell shape No. 3 based on JIS K 6251 (2017) to prepare a test specimen.
  • the tensile strength (Tb) was measured based on JIS K 6251 (2017) using a tensile testing device (manufactured by Instron) by elongating the test piece by 100% at 25°C, and the maximum tensile force required to break the test piece was measured.
  • the breaking elongation (Eb) was determined by measuring the length of a test piece at the time when the test piece broke after pulling the test piece at 25° C. at a rate of 100 mm/min, and expressing the length as a ratio to the length before pulling (100%).
  • Rubber compositions were prepared by blending, kneading, and vulcanizing each component according to the compounding recipe shown in Table 2.
  • the types and amounts of the blended copolymers having conjugated diene units and non-conjugated olefin units are as shown in Table 3.
  • a rubber layer (A) and a rubber layer (B) were prepared from the rubber composition prepared as described above, and the rubber layer (A) and the rubber layer (B) were laminated and heated at 140° C. for 2 minutes to bond the rubber layer (A) and the rubber layer (B) to prepare a laminate.
  • the peel strength of the obtained laminate was measured by the following method.
  • the laminate of this embodiment can be used for various rubber products such as tires.

Abstract

The present invention addresses the problem of providing a laminate having a high interlaminar release strength and high producibility. The laminate (1) comprises at least two rubber layers, and is characterized in that one rubber layer (A) (2) in the laminate (1) and another rubber layer (B) (3) adjoining the rubber layer (A) (2) each comprise a rubber component, which includes 50 mass% or more diene-based rubber, and a copolymer, which comprises a conjugated diene unit and a non-conjugated olefin unit, and that the content of the copolymer is 3-40 parts by mass per 100 parts by mass of the rubber component.

Description

積層体、積層体の製造方法、及びタイヤLaminate, method for manufacturing laminate, and tire
 本発明は、積層体、積層体の製造方法、及びタイヤに関するものである。 The present invention relates to a laminate, a method for manufacturing a laminate, and a tire.
 従来、損傷したタイヤの損傷部に、未加硫ゴムからなるリペアパッチを貼り付け、高温で加熱することにより、損傷部に固着させて、タイヤを補修することが行われている。また、タイヤのトレッドゴムが摩耗した際には、摩耗したトレッドゴムを物理的に削って(所謂、バフ工程)、台タイヤを得た後、該台タイヤにプレキュアトレッド(予め加硫されたトレッドゴム部材)を接合させてタイヤをリトレッドすることが一般に行われている。このように、加硫ゴムと未加硫ゴムを接着させたり、加硫ゴム同士を接着させることが広く行われており、ゴム層とゴム層との間の接着性(剥離強度)を向上させる技術が求められている。  Traditionally, a tire has been repaired by attaching a repair patch made of unvulcanized rubber to the damaged area of the tire and heating it at high temperatures to adhere to the damaged area. Also, when the tread rubber of a tire wears out, it is common to physically scrape off the worn tread rubber (the so-called buffing process) to obtain a base tire, and then bond a precured tread (a tread rubber member that has been vulcanized in advance) to the base tire to retread the tire. In this way, it is widely practiced to bond vulcanized rubber to unvulcanized rubber, or to bond vulcanized rubber to vulcanized rubber, and there is a demand for technology that improves the adhesion (peel strength) between rubber layers.
 例えば、下記特許文献1には、加硫ゴムと未加硫ゴムとの接着において、加硫ゴム側の接着部にプラズマ処理を施した後、該加硫ゴムと未加硫ゴムとを加硫接着させる、加硫ゴムと未加硫ゴムとの接着方法が開示されている。
 また、下記特許文献2には、プレキュアトレッドの台タイヤへの接着面にバフ加工等の前処理を施すことが開示されている。
For example, Patent Document 1 listed below discloses a method for bonding vulcanized rubber and unvulcanized rubber, in which a bonding portion on the vulcanized rubber side is subjected to a plasma treatment, and then the vulcanized rubber and the unvulcanized rubber are vulcanized and bonded together.
Furthermore, the following Patent Document 2 discloses that a pre-treatment such as buffing is performed on the surface of the pre-cured tread that is to be bonded to the base tire.
特開2007-217559号公報JP 2007-217559 A 特開平5-116235号公報Japanese Patent Application Publication No. 5-116235
 上記のように、従来、ゴム層とゴム層との間の接着性(剥離強度)を向上させるために、様々な前処理が行われているが、前処理に時間を要するため、生産性の観点から改善が求められている。 As mentioned above, various pretreatments have been used to improve adhesion (peel strength) between rubber layers, but these pretreatments take time, and improvements are needed from the perspective of productivity.
 そこで、本発明は、上記従来技術の問題を解決し、層間の剥離強度が高く、生産性の高い積層体を提供することを課題とする。
 また、本発明は、かかる積層体の製造方法、並びに、かかる積層体を具え、耐久性が高く、生産性の高いタイヤを提供することを更なる課題とする。
Therefore, an object of the present invention is to solve the above-mentioned problems of the conventional technology and to provide a laminate having high interlayer peel strength and high productivity.
Another object of the present invention is to provide a method for producing such a laminate, and a tire which includes such a laminate and has high durability and can be produced with high productivity.
 上記課題を解決する本発明の積層体、積層体の製造方法、及びタイヤの要旨構成は、以下の通りである。 The laminate, laminate manufacturing method, and tire of the present invention that solve the above problems are summarized below.
[1] 少なくとの二つのゴム層を含む積層体であって、
 積層体中の一つのゴム層(A)と、該ゴム層(A)に隣接するもう一つのゴム層(B)とが、それぞれ、ジエン系ゴムを50質量%以上含むゴム成分と、共役ジエン単位及び非共役オレフィン単位を有する共重合体と、を含み、前記共重合体の含有量が、前記ゴム成分100質量部に対して3~40質量部であることを特徴とする、積層体。
[1] A laminate including at least two rubber layers,
A laminate, characterized in that one rubber layer (A) in the laminate and another rubber layer (B) adjacent to the rubber layer (A) each contain a rubber component containing 50% by mass or more of a diene rubber and a copolymer having a conjugated diene unit and a non-conjugated olefin unit, and the content of the copolymer is 3 to 40 parts by mass per 100 parts by mass of the rubber component.
[2] 前記共重合体は、融点が50~120℃である、[1]に記載の積層体。 [2] The laminate described in [1], wherein the copolymer has a melting point of 50 to 120°C.
[3] 前記共重合体は、前記共役ジエン単位の含有量が0mol%を超え50mol%以下であり、前記非共役オレフィン単位の含有量が50mol%以上100mol%未満である、[1]又は[2]に記載の積層体。 [3] The laminate according to [1] or [2], wherein the copolymer has a content of the conjugated diene units of more than 0 mol% and not more than 50 mol%, and a content of the non-conjugated olefin units of 50 mol% or more and less than 100 mol%.
[4] 前記共重合体が、更に芳香族ビニル単位を含む、[1]~[3]のいずれか一つに記載の積層体。 [4] The laminate according to any one of [1] to [3], wherein the copolymer further contains an aromatic vinyl unit.
[5] 前記共重合体は、前記共役ジエン単位の含有量が1~50mol%であり、前記非共役オレフィン単位の含有量が40~97mol%であり、前記芳香族ビニル単位の含有量が2~35mol%である、[4]に記載の積層体。 [5] The laminate according to [4], wherein the copolymer has a conjugated diene unit content of 1 to 50 mol%, a non-conjugated olefin unit content of 40 to 97 mol%, and an aromatic vinyl unit content of 2 to 35 mol%.
[6] 前記共重合体は、結晶化度が0.5~50%である、[1]~[5]のいずれか一つに記載の積層体。 [6] The laminate according to any one of [1] to [5], wherein the copolymer has a crystallinity of 0.5 to 50%.
[7] 前記ゴム層(A)に含まれる前記共重合体の融点と、前記ゴム層(B)に含まれる前記共重合体の融点との差が、30℃以下である、[1]~[6]のいずれか一つに記載の積層体。 [7] The laminate according to any one of [1] to [6], wherein the difference between the melting point of the copolymer contained in the rubber layer (A) and the melting point of the copolymer contained in the rubber layer (B) is 30°C or less.
[8] ジエン系ゴムを50質量%以上含むゴム成分と、共役ジエン単位及び非共役オレフィン単位を有する共重合体と、を含み、前記共重合体の含有量が、前記ゴム成分100質量部に対して3~40質量部である架橋済みの少なくとの二つのゴム層を積層し、加熱することを特徴とする、積層体の製造方法。 [8] A method for producing a laminate, comprising laminating and heating at least two crosslinked rubber layers, the rubber layers including a rubber component containing 50% by mass or more of a diene rubber and a copolymer having conjugated diene units and non-conjugated olefin units, the copolymer content being 3 to 40 parts by mass per 100 parts by mass of the rubber component.
[9] ジエン系ゴムを50質量%以上含むゴム成分と、共役ジエン単位及び非共役オレフィン単位を有する共重合体と、を含み、前記共重合体の含有量が、前記ゴム成分100質量部に対して3~40質量部である架橋済みの少なくとの一つのゴム層と、ジエン系ゴムを50質量%以上含むゴム成分と、共役ジエン単位及び非共役オレフィン単位を有する共重合体と、を含み、前記共重合体の含有量が、前記ゴム成分100質量部に対して3~40質量部である未架橋の少なくとの一つのゴム層とを積層し、加熱することを特徴とする、積層体の製造方法。 [9] A method for producing a laminate, comprising laminating and heating at least one cross-linked rubber layer, the rubber layer including a rubber component containing 50% by mass or more of a diene rubber and a copolymer having conjugated diene units and non-conjugated olefin units, the copolymer content being 3 to 40 parts by mass per 100 parts by mass of the rubber component, and at least one uncross-linked rubber layer, the rubber component including 50% by mass or more of a diene rubber and a copolymer having conjugated diene units and non-conjugated olefin units, the copolymer content being 3 to 40 parts by mass per 100 parts by mass of the rubber component.
[10] ジエン系ゴムを50質量%以上含むゴム成分と、共役ジエン単位及び非共役オレフィン単位を有する共重合体と、を含み、前記共重合体の含有量が、前記ゴム成分100質量部に対して3~40質量部である未架橋の少なくとの二つのゴム層を積層し、加熱することを特徴とする、積層体の製造方法。 [10] A method for producing a laminate, comprising laminating and heating at least two uncrosslinked rubber layers, the rubber layers including a rubber component containing 50% by mass or more of a diene rubber and a copolymer having conjugated diene units and non-conjugated olefin units, the copolymer content being 3 to 40 parts by mass per 100 parts by mass of the rubber component.
[11] [1]~[7]のいずれか一つに記載の積層体を具えることを特徴とする、タイヤ。 [11] A tire comprising a laminate according to any one of [1] to [7].
 本発明によれば、層間の剥離強度が高く、生産性の高い積層体を提供することができる。
 また、本発明によれば、かかる積層体の製造方法、並びに、かかる積層体を具え、耐久性が高く、生産性の高いタイヤを提供することができる。
According to the present invention, it is possible to provide a laminate having high interlayer peel strength and high productivity.
Furthermore, according to the present invention, it is possible to provide a method for producing such a laminate, and a tire which includes such a laminate and has high durability and high productivity.
本実施形態の積層体を模式的に示した、厚さ方向の断面図である。1 is a cross-sectional view in a thickness direction, which diagrammatically illustrates a laminate of the present embodiment.
 以下に、本発明の積層体、積層体の製造方法、及びタイヤを、その実施形態に基づき、詳細に例示説明する。 The laminate, the method for manufacturing the laminate, and the tire of the present invention are described in detail below with reference to examples based on the embodiments.
<定義>
 本明細書に記載されている化合物は、部分的に、又は全てが化石資源由来であってもよく、植物資源等の生物資源由来であってもよく、使用済タイヤ等の再生資源由来であってもよい。また、化石資源、生物資源、再生資源のいずれか2つ以上の混合物由来であってもよい。
<Definition>
The compounds described herein may be derived in whole or in part from fossil sources, from biological sources such as plant sources, from recycled sources such as used tires, or from a mixture of two or more of fossil sources, biological sources, and/or renewable sources.
 本明細書において、共役ジエン単位及び非共役オレフィン単位を有する共重合体は、ゴム成分から区別され、即ち、「ゴム成分」からは、「共役ジエン単位及び非共役オレフィン単位を有する共重合体」を除くものとする。 In this specification, copolymers having conjugated diene units and non-conjugated olefin units are distinguished from rubber components, i.e., "rubber components" excludes "copolymers having conjugated diene units and non-conjugated olefin units."
<積層体>
 本実施形態の積層体は、少なくとの二つのゴム層を含む積層体である。そして、本実施形態の積層体においては、当該積層体中の一つのゴム層(A)と、該ゴム層(A)に隣接するもう一つのゴム層(B)とが、それぞれ、ジエン系ゴムを50質量%以上含むゴム成分と、共役ジエン単位及び非共役オレフィン単位を有する共重合体(以下、単に「共重合体」と呼ぶことがある。)と、を含み、前記共重合体の含有量が、前記ゴム成分100質量部に対して3~40質量部であることを特徴とする。
<Laminate>
The laminate of the present embodiment is a laminate including at least two rubber layers, and is characterized in that one rubber layer (A) in the laminate and another rubber layer (B) adjacent to the rubber layer (A) each include a rubber component including 50% by mass or more of a diene rubber and a copolymer having a conjugated diene unit and a non-conjugated olefin unit (hereinafter, sometimes simply referred to as a "copolymer"), and the content of the copolymer is 3 to 40 parts by mass relative to 100 parts by mass of the rubber component.
 本実施形態の積層体においては、隣接するゴム層(A)とゴム層(B)との両方が、それぞれ、ジエン系ゴムを50質量%以上含むゴム成分100質量部に対して、共役ジエン単位及び非共役オレフィン単位を有する共重合体を3~40質量部含み、該共重合体は、例えば、加熱により溶融して、高い接着力で接合できるため、ゴム層(A)とゴム層(B)との間の剥離強度が高い。
 また、前記共役ジエン単位及び非共役オレフィン単位を有する共重合体は、例えば、加熱により溶融するため、ゴム層(A)及び/又はゴム層(B)に前処理を施さなくても、ゴム層(A)とゴム層(B)とを積層して、加熱することにより、ゴム層(A)とゴム層(B)とを容易に接合することができる。
 従って、本実施形態の積層体は、ゴム層(A)とゴム層(B)との間の剥離強度が高い上、生産性も高い。
In the laminate of this embodiment, both the adjacent rubber layers (A) and (B) each contain 3 to 40 parts by mass of a copolymer having conjugated diene units and non-conjugated olefin units per 100 parts by mass of a rubber component containing 50% by mass or more of diene rubber. The copolymer can be melted, for example, by heating and bonded with high adhesive strength, and therefore the peel strength between the rubber layers (A) and (B) is high.
In addition, the copolymer having conjugated diene units and non-conjugated olefin units melts, for example, by heating. Therefore, even without subjecting the rubber layer (A) and/or the rubber layer (B) to a pretreatment, the rubber layer (A) and the rubber layer (B) can be easily bonded to each other by laminating the rubber layer (A) and the rubber layer (B) and heating the laminate.
Therefore, the laminate of this embodiment has high peel strength between the rubber layer (A) and the rubber layer (B) and also has high productivity.
 本実施形態の積層体は、少なくとの二つのゴム層を含むが、各ゴム層の厚さは、特に限定されず、例えば、1mm以上である。また、上限についても特に限定されず、例えば2000mm以下である。
 本実施形態の積層体においては、一つのゴム層(A)と、該ゴム層(A)に隣接するもう一つのゴム層(B)とが、それぞれ、ジエン系ゴムを50質量%以上含むゴム成分と、共役ジエン単位及び非共役オレフィン単位を有する共重合体と、を含む。なお、積層体中の、隣接するゴム層(A)及びゴム層(B)が、ジエン系ゴムを50質量%以上含むゴム成分と、共役ジエン単位及び非共役オレフィン単位を有する共重合体と、を含めばよく、積層体が三層以上からなる場合、他の層の組成は、特に限定されず、ゴム層(A)及び/又はゴム層(B)の組成と同じでもよいし、異なってもよい。
The laminate of the present embodiment includes at least two rubber layers, and the thickness of each rubber layer is not particularly limited and is, for example, 1 mm or more. The upper limit of the thickness is also not particularly limited and is, for example, 2000 mm or less.
In the laminate of this embodiment, one rubber layer (A) and another rubber layer (B) adjacent to the rubber layer (A) each contain a rubber component containing 50% by mass or more of a diene rubber and a copolymer having a conjugated diene unit and a non-conjugated olefin unit. In addition, it is sufficient that the adjacent rubber layers (A) and (B) in the laminate contain a rubber component containing 50% by mass or more of a diene rubber and a copolymer having a conjugated diene unit and a non-conjugated olefin unit, and when the laminate is composed of three or more layers, the composition of the other layers is not particularly limited and may be the same as or different from the composition of the rubber layer (A) and/or the rubber layer (B).
(ゴム成分)
 前記ゴム層(A)及びゴム層(B)は、ジエン系ゴムを50質量%以上含むゴム成分を含む。上記の通り、該ゴム成分からは、前記共役ジエン単位及び非共役オレフィン単位を有する共重合体は除かれる。該ゴム成分は、ゴム層(A)及びゴム層(B)にゴム弾性をもたらす。
 前記ジエン系ゴムとしては、天然ゴム(NR)と、合成ジエン系ゴムが挙げられる。また、合成ジエン系ゴムとして、具体的には、合成イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン-ブタジエンゴム(SBR)、クロロプレンゴム(CR)、ハロゲン化ブチルゴム、アクリロニリトル-ブタジエンゴム(NBR)等が挙げられる。前記ジエン系ゴムは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、前記ジエン系ゴムは、変性されていてもよい。
 前記ゴム成分は、ジエン系ゴムに加えて、非ジエン系ゴムを含んでいてもよい。ここで、前記ゴム成分中の前記ジエン系ゴムの割合は、50質量%以上であり、100質量%であってもよい。ゴム成分中のジエン系ゴムの割合が50質量%以上であることで、ゴム層(A)及びゴム層(B)が十分なゴム弾性を有することとなる。
(Rubber component)
The rubber layer (A) and the rubber layer (B) each contain a rubber component containing 50% by mass or more of a diene rubber. As described above, the rubber component excludes the copolymer having a conjugated diene unit and a non-conjugated olefin unit. The rubber component provides rubber elasticity to the rubber layer (A) and the rubber layer (B).
Examples of the diene rubber include natural rubber (NR) and synthetic diene rubber. Specific examples of the synthetic diene rubber include synthetic isoprene rubber (IR), butadiene rubber (BR), styrene-butadiene rubber (SBR), chloroprene rubber (CR), halogenated butyl rubber, and acrylonitrile-butadiene rubber (NBR). The diene rubber may be used alone or in combination of two or more. The diene rubber may be modified.
The rubber component may contain a non-diene rubber in addition to the diene rubber. Here, the ratio of the diene rubber in the rubber component is 50% by mass or more, and may be 100% by mass. When the ratio of the diene rubber in the rubber component is 50% by mass or more, the rubber layer (A) and the rubber layer (B) have sufficient rubber elasticity.
(共役ジエン単位及び非共役オレフィン単位を有する共重合体)
 前記共役ジエン単位及び非共役オレフィン単位を有する共重合体は、共役ジエン単位及び非共役オレフィン単位との2つの単位からなる二元共重合体であってもよいし、更に、芳香族ビニル単位を含む3つの単位からなる三元共重合体であってもよいし、更に、他の単量体単位を含む多元共重合体であってもよい。
(Copolymers Having Conjugated Diene Units and Non-Conjugated Olefin Units)
The copolymer having a conjugated diene unit and a non-conjugated olefin unit may be a binary copolymer consisting of two units, a conjugated diene unit and a non-conjugated olefin unit, or may be a ternary copolymer consisting of three units including an aromatic vinyl unit, or may be a multi-component copolymer containing other monomer units.
 前記ゴム層(A)及びゴム層(B)は、それぞれ、前記共重合体の含有量が、前記ゴム成分(換言すると、前記共重合体を除くゴム成分)100質量部に対して3~40質量部であることを特徴とする。前記共重合体の含有量が、前記ゴム成分100質量部に対して3質量部以上であれば、ゴム層(A)とゴム層(B)との間の剥離強度や、ゴム層(A)及びゴム層(B)の機械的強度が向上し、また、40質量部以下であれば、ゴム層(A)及びゴム層(B)の柔軟性が向上する。 The rubber layer (A) and the rubber layer (B) are each characterized in that the content of the copolymer is 3 to 40 parts by mass per 100 parts by mass of the rubber component (in other words, the rubber component excluding the copolymer). If the content of the copolymer is 3 parts by mass or more per 100 parts by mass of the rubber component, the peel strength between the rubber layer (A) and the rubber layer (B) and the mechanical strength of the rubber layer (A) and the rubber layer (B) are improved, and if the content is 40 parts by mass or less, the flexibility of the rubber layer (A) and the rubber layer (B) is improved.
 前記ゴム成分100質量部に対する、前記ゴム層(A)に含まれる共重合体の含有量と、前記ゴム層(B)に含まれる共重合体の含有量との差は、20質量部以下であることが好ましい。ゴム層(A)及びゴム層(B)中の共重合体の含有量の差が、20質量部以下であると、ゴム層(A)及びゴム層(B)の物性が近くなる傾向があるため、ゴム層(A)とゴム層(B)との間の剥離強度を向上させ易い。
 また、ゴム層(A)とゴム層(B)との間の剥離強度の観点から、前記ゴム層(A)に含まれる共重合体の含有量と、前記ゴム層(B)に含まれる共重合体の含有量とは、等しいことが更に好ましい。
The difference between the content of the copolymer contained in the rubber layer (A) and the content of the copolymer contained in the rubber layer (B) is preferably 20 parts by mass or less, based on 100 parts by mass of the rubber component. When the difference in the content of the copolymer in the rubber layer (A) and the rubber layer (B) is 20 parts by mass or less, the physical properties of the rubber layer (A) and the rubber layer (B) tend to be similar, making it easy to improve the peel strength between the rubber layer (A) and the rubber layer (B).
In addition, from the viewpoint of peel strength between the rubber layer (A) and the rubber layer (B), it is more preferable that the content of the copolymer contained in the rubber layer (A) is equal to the content of the copolymer contained in the rubber layer (B).
-共役ジエン単位-
 前記共役ジエン単位は、単量体としての共役ジエン化合物に由来する構成単位である。
 ここで、共役ジエン化合物とは、共役系のジエン化合物を指す。共役ジエン化合物は、炭素数が4~8であることが好ましい。かかる共役ジエン化合物として、具体的には、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン等が挙げられる。共役ジエン化合物は、一種単独であってもよいし、二種以上の組み合わせであってもよい。
- Conjugated diene units -
The conjugated diene unit is a structural unit derived from a conjugated diene compound as a monomer.
Here, the conjugated diene compound refers to a conjugated diene compound. The conjugated diene compound preferably has 4 to 8 carbon atoms. Specific examples of such conjugated diene compounds include 1,3-butadiene, isoprene, 1,3-pentadiene, and 2,3-dimethyl-1,3-butadiene. The conjugated diene compound may be used alone or in combination of two or more kinds.
 前記共重合体の単量体としての共役ジエン化合物は、前記ゴム層(A)及びゴム層(B)の機械的強度を向上させる観点から、1,3-ブタジエン及びイソプレンからなる群より選択される少なくとも1つを含むことが好ましく、1,3-ブタジエン及びイソプレンからなる群より選択される少なくとも1つのみからなることがより好ましく、1,3-ブタジエンのみからなることが更に好ましい。
 別の言い方をすると、前記共重合体における共役ジエン単位は、1,3-ブタジエン単位及びイソプレン単位からなる群より選択される少なくとも1つを含むことが好ましく、1,3-ブタジエン単位及びイソプレン単位からなる群より選択される少なくとも1つのみからなることがより好ましく、1,3-ブタジエン単位のみからなることが更に好ましい。
From the viewpoint of improving the mechanical strength of the rubber layer (A) and the rubber layer (B), the conjugated diene compound as a monomer of the copolymer preferably contains at least one selected from the group consisting of 1,3-butadiene and isoprene, more preferably consists of only at least one selected from the group consisting of 1,3-butadiene and isoprene, and further preferably consists of only 1,3-butadiene.
In other words, the conjugated diene unit in the copolymer preferably contains at least one selected from the group consisting of 1,3-butadiene units and isoprene units, more preferably consists of at least one selected from the group consisting of 1,3-butadiene units and isoprene units, and further preferably consists of only 1,3-butadiene units.
 前記共重合体が二元共重合体の場合、共役ジエン単位の含有量は、0mol%を超え50mol%以下であることが好ましい。この場合、伸び及び耐候性に優れる共重合体を得ることができる。同様の観点から、二元共重合体における共役ジエン単位の割合は、40mol%以下であることがより好ましい。 When the copolymer is a binary copolymer, the content of conjugated diene units is preferably more than 0 mol% and not more than 50 mol%. In this case, a copolymer with excellent elongation and weather resistance can be obtained. From the same viewpoint, it is more preferable that the proportion of conjugated diene units in the binary copolymer is not more than 40 mol%.
 二元共重合体において、共役ジエン単位の1,2付加体(3,4付加体を含む)の割合は、10mol%以下であることが好ましい。上記割合が10mol%以下であると、前記共重合体の耐熱性及び耐屈曲疲労性を向上させることができる。同様の観点から、二元共重合体における共役ジエン単位の1,2付加体(3,4付加体を含む)の割合は、8mol%以下がより好ましく、6mol%以下が更に好ましい。なお、前記共役ジエン単位の1,2付加体(3,4付加体を含む)の割合は、共役ジエン単位全体における割合であって、共重合体全体における割合ではない。また、前記割合は、共役ジエン単位がブタジエン単位である場合には、1,2-ビニル結合量と同じ意味である。 In the binary copolymer, the ratio of 1,2 adducts (including 3,4 adducts) of the conjugated diene units is preferably 10 mol% or less. If the ratio is 10 mol% or less, the heat resistance and flex fatigue resistance of the copolymer can be improved. From the same viewpoint, the ratio of 1,2 adducts (including 3,4 adducts) of the conjugated diene units in the binary copolymer is more preferably 8 mol% or less, and even more preferably 6 mol% or less. Note that the ratio of 1,2 adducts (including 3,4 adducts) of the conjugated diene units is the ratio in the entire conjugated diene units, not the ratio in the entire copolymer. Furthermore, when the conjugated diene units are butadiene units, the ratio has the same meaning as the 1,2-vinyl bond amount.
 前記共重合体が三元共重合体又は多元共重合体の場合、共役ジエン単位の含有量は、1mol%以上であることが好ましく、3mol%以上であることがより好ましく、5mol%以上であることが更に好ましく、また、50mol%以下であることが好ましく、40mol%以下であることがより好ましく、30mol%以下であることが更に好ましい。
 共役ジエン単位の含有量が、共重合体全体の1~50mol%であることで、前記ゴム層(A)及びゴム層(B)の柔軟性及び機械的強度を向上させることができる。
 前記ゴム層(A)及びゴム層(B)の柔軟性及び機械的強度をより向上させる観点から、共役ジエン単位の含有量は、共重合体全体の1~50mol%の範囲が好ましく、3~40mol%の範囲がより好ましく、5~30mol%の範囲が更に好ましい。
When the copolymer is a terpolymer or a multicomponent copolymer, the content of the conjugated diene unit is preferably 1 mol% or more, more preferably 3 mol% or more, and even more preferably 5 mol% or more, and is preferably 50 mol% or less, more preferably 40 mol% or less, and even more preferably 30 mol% or less.
When the content of the conjugated diene unit is 1 to 50 mol % of the entire copolymer, the flexibility and mechanical strength of the rubber layer (A) and the rubber layer (B) can be improved.
From the viewpoint of further improving the flexibility and mechanical strength of the rubber layer (A) and the rubber layer (B), the content of the conjugated diene unit is preferably in the range of 1 to 50 mol %, more preferably in the range of 3 to 40 mol %, and even more preferably in the range of 5 to 30 mol %, of the entire copolymer.
-非共役オレフィン単位-
 前記非共役オレフィン単位は、単量体としての非共役オレフィン化合物に由来する構成単位である。
 ここで、非共役オレフィン化合物とは、脂肪族不飽和炭化水素で、炭素-炭素二重結合を1個以上有する化合物を指す。非共役オレフィン化合物は、炭素数が2~10であることが好ましい。かかる非共役オレフィン化合物として、具体的には、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン等のα-オレフィン、ピバリン酸ビニル、1-フェニルチオエテン、N-ビニルピロリドン等のヘテロ原子置換アルケン化合物等が挙げられる。非共役オレフィン化合物は、一種単独であってもよいし、二種以上の組み合わせであってもよい。
-Non-conjugated olefin units-
The non-conjugated olefin unit is a structural unit derived from a non-conjugated olefin compound as a monomer.
Here, the non-conjugated olefin compound refers to an aliphatic unsaturated hydrocarbon compound having one or more carbon-carbon double bonds. The non-conjugated olefin compound preferably has 2 to 10 carbon atoms. Specific examples of such non-conjugated olefin compounds include α-olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, and 1-octene, and heteroatom-substituted alkene compounds such as vinyl pivalate, 1-phenylthioethene, and N-vinylpyrrolidone. The non-conjugated olefin compounds may be used alone or in combination of two or more kinds.
 前記共重合体の単量体としての非共役オレフィン化合物は、前記ゴム層(A)及びゴム層(B)の機械的強度を向上させ、また、ゴム層(A)とゴム層(B)との間の剥離強度を向上させる観点から、非環状の非共役オレフィン化合物であることが好ましく、また、非環状の非共役オレフィン化合物は、α-オレフィンであることがより好ましく、エチレンを含むα-オレフィンであることが更に好ましく、エチレンのみからなることが特に好ましい。
 別の言い方をすると、前記共重合体における非共役オレフィン単位は、非環状の非共役オレフィン単位であることが好ましく、また、当該非環状の非共役オレフィン単位は、α-オレフィン単位であることがより好ましく、エチレン単位を含むα-オレフィン単位であることが更に好ましく、エチレン単位のみからなることが特に好ましい。
The non-conjugated olefin compound as a monomer of the copolymer is preferably a non-cyclic non-conjugated olefin compound from the viewpoints of improving the mechanical strength of the rubber layer (A) and the rubber layer (B) and also improving the peel strength between the rubber layer (A) and the rubber layer (B). The non-cyclic non-conjugated olefin compound is more preferably an α-olefin, further preferably an α-olefin containing ethylene, and particularly preferably composed of only ethylene.
In other words, the non-conjugated olefin units in the copolymer are preferably non-cyclic non-conjugated olefin units, and the non-cyclic non-conjugated olefin units are more preferably α-olefin units, further preferably α-olefin units containing ethylene units, and particularly preferably consisting of only ethylene units.
 前記共重合体が二元共重合体の場合、非共役オレフィン単位の含有量は、50mol%以上100mol%未満であることが好ましい。この場合、前記ゴム層(A)及びゴム層(B)の高温での破壊特性を効果的に向上させることができる。同様の観点から、二元共重合体における非共役オレフィン単位の割合は、60mol%以上であることがより好ましい。 When the copolymer is a binary copolymer, the content of non-conjugated olefin units is preferably 50 mol% or more and less than 100 mol%. In this case, the fracture properties of the rubber layer (A) and the rubber layer (B) at high temperatures can be effectively improved. From the same viewpoint, it is more preferable that the proportion of non-conjugated olefin units in the binary copolymer is 60 mol% or more.
 前記共重合体が三元共重合体又は多元共重合体の場合、非共役オレフィン単位の含有量は、40mol%以上であることが好ましく、45mol%以上であることがよりに好ましく、55mol%以上であることが更に好ましく、60mol%以上であることが特に好ましく、また、97mol%以下であることが好ましく、95mol%以下であることがより好ましく、90mol%以下であることが更に好ましい。非共役オレフィン単位の含有量が、共重合体全体の40~97mol%であることで、前記ゴム層(A)及びゴム層(B)の機械的強度を向上させ、また、ゴム層(A)とゴム層(B)との間の剥離強度を向上させることができる。
 前記ゴム層(A)及びゴム層(B)の機械的強度をより向上させ、また、ゴム層(A)とゴム層(B)との間の剥離強度をより向上させる観点から、非共役オレフィン単位の含有量は、共重合体全体の40~97mol%の範囲が好ましく、45~95mol%の範囲がより好ましく、55~90mol%の範囲がより更に好ましく、60~90mol%の範囲が更に好ましい。
When the copolymer is a terpolymer or a multicomponent copolymer, the content of the non-conjugated olefin unit is preferably 40 mol% or more, more preferably 45 mol% or more, even more preferably 55 mol% or more, particularly preferably 60 mol% or more, and is preferably 97 mol% or less, more preferably 95 mol% or less, and even more preferably 90 mol% or less. When the content of the non-conjugated olefin unit is 40 to 97 mol% of the entire copolymer, the mechanical strength of the rubber layer (A) and the rubber layer (B) can be improved, and the peel strength between the rubber layer (A) and the rubber layer (B) can be improved.
From the viewpoint of further improving the mechanical strength of the rubber layer (A) and the rubber layer (B) and further improving the peel strength between the rubber layer (A) and the rubber layer (B), the content of the non-conjugated olefin unit is preferably in the range of 40 to 97 mol %, more preferably in the range of 45 to 95 mol %, even more preferably in the range of 55 to 90 mol %, and still more preferably in the range of 60 to 90 mol %, of the entire copolymer.
-芳香族ビニル単位-
 前記共重合体は、更に、芳香族ビニル単位を含むことが好ましい。
 芳香族ビニル単位は、単量体としての芳香族ビニル化合物に由来する構成単位である。
 前記共重合体が芳香族ビニル単位を含有することで、エチレン結晶成分のような結晶成分を切断し、非共役オレフィン単位由来の過度の結晶化が抑制され、共重合体の剛性を向上させつつも、弾性を損ね難く、高い耐亀裂性を得ることができ、前記ゴム層(A)及びゴム層(B)の耐亀裂性を向上させることができる。
 ここで、芳香族ビニル化合物とは、少なくともビニル基で置換された芳香族化合物を指し、共役ジエン化合物には包含されないものとする。芳香族ビニル化合物は、炭素数が8~10であることが好ましい。かかる芳香族ビニル化合物としては、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o,p-ジメチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレン等が挙げられる。芳香族ビニル化合物は、一種単独であってもよいし、二種以上の組み合わせであってもよい。
- Aromatic vinyl unit -
The copolymer preferably further contains an aromatic vinyl unit.
The aromatic vinyl unit is a structural unit derived from an aromatic vinyl compound as a monomer.
When the copolymer contains an aromatic vinyl unit, crystalline components such as ethylene crystalline components are cut, and excessive crystallization derived from non-conjugated olefin units is suppressed. While improving the rigidity of the copolymer, elasticity is not easily impaired, and high crack resistance can be obtained, and the crack resistance of the rubber layer (A) and the rubber layer (B) can be improved.
Here, the aromatic vinyl compound refers to an aromatic compound substituted with at least a vinyl group, and is not included in the conjugated diene compound. The aromatic vinyl compound preferably has 8 to 10 carbon atoms. Examples of such aromatic vinyl compounds include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o,p-dimethylstyrene, o-ethylstyrene, m-ethylstyrene, and p-ethylstyrene. The aromatic vinyl compound may be a single type or a combination of two or more types.
 前記共重合体の単量体としての芳香族ビニル化合物は、前記ゴム層(A)及びゴム層(B)の機械的強度を向上させる観点から、スチレンを含むことが好ましく、スチレンのみからなることがより好ましい。別の言い方をすると、前記共重合体における芳香族ビニル単位は、スチレン単位を含むことが好ましく、スチレン単位のみからなることがより好ましい。
 なお、芳香族ビニル単位における芳香族環は、隣接する単位と結合しない限り、共重合体の主鎖には含まれない。
From the viewpoint of improving the mechanical strength of the rubber layer (A) and the rubber layer (B), the aromatic vinyl compound as a monomer of the copolymer preferably contains styrene, and more preferably consists of only styrene. In other words, the aromatic vinyl unit in the copolymer preferably contains a styrene unit, and more preferably consists of only styrene unit.
Incidentally, the aromatic ring in the aromatic vinyl unit is not included in the main chain of the copolymer unless it is bonded to an adjacent unit.
 前記共重合体が三元共重合体又は多元共重合体の場合、芳香族ビニル単位の含有量は、2mol%以上であることが好ましく、3mol%以上であることがより好ましく、また、35mol%以下であることが好ましく、30mol%以下であることがより好ましく、25mol%以下であることが更に好ましい。芳香族ビニル単位の含有量が、共重合体全体の2~35mol%であることで、前記ゴム層(A)及びゴム層(B)の機械的強度を向上させることができる。
 前記ゴム層(A)及びゴム層(B)の機械的強度をより向上させる観点から、芳香族ビニル単位の含有量は、共重合体全体の2~35mol%の範囲が好ましく、3~30mol%の範囲がより好ましく、3~25mol%の範囲が更に好ましい。
When the copolymer is a terpolymer or a multicomponent copolymer, the content of the aromatic vinyl unit is preferably 2 mol% or more, more preferably 3 mol% or more, and preferably 35 mol% or less, more preferably 30 mol% or less, and even more preferably 25 mol% or less. When the content of the aromatic vinyl unit is 2 to 35 mol% of the entire copolymer, the mechanical strength of the rubber layer (A) and the rubber layer (B) can be improved.
From the viewpoint of further improving the mechanical strength of the rubber layer (A) and the rubber layer (B), the content of the aromatic vinyl unit is preferably in the range of 2 to 35 mol %, more preferably in the range of 3 to 30 mol %, and even more preferably in the range of 3 to 25 mol %, of the entire copolymer.
 共役ジエン単位、非共役オレフィン単位、及び芳香族ビニル単位以外の、その他の構成単位の含有量は、本発明の所望の効果を得る観点から、共重合体全体の30mol%以下であることが好ましく、20mol%以下であることがより好ましく、10mol%以下であることが更に好ましく、含有しないこと、即ち、含有量が0mol%であることが特に好ましい。つまり、前記共重合体は、共役ジエン単位及び非共役オレフィン単位との2つの単位からなる二元共重合体であるか、共役ジエン単位、非共役オレフィン単位及び芳香族ビニル単位の3つの単位からなる三元共重合体であることが好ましい。
 また、前記共重合体は、所望の効果を確実に得る観点から、ブチレン単位の含有量が0mol%であることが好ましい。
From the viewpoint of obtaining the desired effect of the present invention, the content of other structural units than the conjugated diene unit, the non-conjugated olefin unit, and the aromatic vinyl unit is preferably 30 mol% or less of the entire copolymer, more preferably 20 mol% or less, and even more preferably 10 mol% or less, and it is particularly preferable that no other structural units are contained, that is, the content is 0 mol%. In other words, the copolymer is preferably a binary copolymer consisting of two units, a conjugated diene unit and a non-conjugated olefin unit, or a ternary copolymer consisting of three units, a conjugated diene unit, a non-conjugated olefin unit, and an aromatic vinyl unit.
In order to reliably obtain the desired effects, the copolymer preferably has a butylene unit content of 0 mol %.
 前記共重合体は、前記ゴム層(A)及びゴム層(B)の機械的強度を向上させる観点から、単量体として、一種のみの共役ジエン化合物、一種のみの非共役オレフィン化合物、及び一種の芳香族ビニル化合物を少なくとも用いて重合してなる重合体であることが好ましい。
 別の言い方をすると、前記共重合体は、一種のみの共役ジエン単位、一種のみの非共役オレフィン単位、及び一種のみの芳香族ビニル単位を含有する共重合体であることが好ましく、一種のみの共役ジエン単位、一種のみの非共役オレフィン単位、及び一種のみの芳香族ビニル単位のみからなる三元共重合体であることがより好ましく、1,3-ブタジエン単位、エチレン単位、及びスチレン単位のみからなる三元共重合体であることが更に好ましい。ここで、「一種のみの共役ジエン単位」には、異なる結合様式の共役ジエン単位が包含される。
From the viewpoint of improving the mechanical strength of the rubber layer (A) and the rubber layer (B), the copolymer is preferably a polymer obtained by polymerizing at least one kind of conjugated diene compound, one kind of non-conjugated olefin compound, and one kind of aromatic vinyl compound as monomers.
In other words, the copolymer is preferably a copolymer containing only one type of conjugated diene unit, only one type of non-conjugated olefin unit, and only one type of aromatic vinyl unit, more preferably a ternary copolymer consisting of only one type of conjugated diene unit, only one type of non-conjugated olefin unit, and only one type of aromatic vinyl unit, and even more preferably a ternary copolymer consisting of only 1,3-butadiene units, ethylene units, and styrene units. Here, "only one type of conjugated diene unit" includes conjugated diene units having different bonding modes.
 前記共重合体は、例えば、二元共重合体である場合、共役ジエン単位の含有量が0mol%を超え50mol%以下であり、前記非共役オレフィン単位の含有量が50mol%以上100mol%未満であることが好ましい。この場合、伸び及び耐候性に優れる共重合体を得ることができ、また、前記ゴム層(A)及びゴム層(B)の高温での破壊特性を効果的に向上させることができる。 When the copolymer is, for example, a binary copolymer, it is preferable that the content of conjugated diene units is more than 0 mol% and not more than 50 mol%, and the content of non-conjugated olefin units is 50 mol% or more and less than 100 mol%. In this case, a copolymer having excellent elongation and weather resistance can be obtained, and the fracture properties at high temperatures of the rubber layer (A) and the rubber layer (B) can be effectively improved.
 また、前記共重合体は、例えば、三元共重合体である場合、共役ジエン単位の含有量が1~50mol%で、非共役オレフィン単位の含有量が40~97mol%で、且つ、芳香族ビニル単位の含有量が2~35mol%であることが好ましい。この場合、前記ゴム層(A)及びゴム層(B)の柔軟性及び機械的強度を向上させつつ、ゴム層(A)とゴム層(B)との間の剥離強度を向上させることができる。 Furthermore, when the copolymer is, for example, a terpolymer, it is preferable that the content of conjugated diene units is 1 to 50 mol%, the content of non-conjugated olefin units is 40 to 97 mol%, and the content of aromatic vinyl units is 2 to 35 mol%. In this case, it is possible to improve the flexibility and mechanical strength of the rubber layer (A) and the rubber layer (B), while improving the peel strength between the rubber layer (A) and the rubber layer (B).
-共重合体の物性-
 前記共重合体は、ポリスチレン換算の数平均分子量(Mn)が10,000~9,000,000(10~9,000kg/mol)であることが好ましく、100,000~8,000,000(100~8,000kg/mol)であることがより好ましい。前記共重合体のMnが10,000以上であることにより、前記ゴム層(A)及びゴム層(B)の機械的強度を十分に確保することができ、また、Mnが9,000,000以下であることにより、共重合体を含む組成物の作業性を損ね難い。
- Physical properties of copolymers -
The copolymer preferably has a polystyrene-equivalent number average molecular weight (Mn) of 10,000 to 9,000,000 (10 to 9,000 kg/mol), more preferably 100,000 to 8,000,000 (100 to 8,000 kg/mol). When the copolymer has an Mn of 10,000 or more, the mechanical strength of the rubber layer (A) and the rubber layer (B) can be sufficiently ensured, and when the Mn is 9,000,000 or less, the workability of the composition containing the copolymer is not easily impaired.
 前記共重合体は、ポリスチレン換算の重量平均分子量(Mw)が10,000~10,000,000(10~10,000kg/mol)であることが好ましく、50,000~9,000,000(50~9,000kg/mol)であることがより好ましく、100,000~8,000,000(100~8,000kg/mol)であることが更に好ましい。前記共重合体のMwが10,000以上であることにより、前記ゴム層(A)及びゴム層(B)の機械的強度を十分に確保することができ、また、Mwが10,000,000以下であることにより、共重合体を含む組成物の作業性を損ね難い。 The copolymer preferably has a weight average molecular weight (Mw) in terms of polystyrene of 10,000 to 10,000,000 (10 to 10,000 kg/mol), more preferably 50,000 to 9,000,000 (50 to 9,000 kg/mol), and even more preferably 100,000 to 8,000,000 (100 to 8,000 kg/mol). By having the Mw of the copolymer of 10,000 or more, the mechanical strength of the rubber layer (A) and the rubber layer (B) can be sufficiently ensured, and by having the Mw of 10,000,000 or less, the workability of the composition containing the copolymer is unlikely to be impaired.
 前記共重合体は、分子量分布[Mw/Mn(重量平均分子量/数平均分子量)]が1.00~4.00であることが好ましく、1.00~3.50であることがより好ましく、1.80~3.00であることが更に好ましい。前記共重合体の分子量分布が4.00以下であれば、当該共重合体の物性に十分な均質性をもたらすことができる。 The copolymer preferably has a molecular weight distribution [Mw/Mn (weight average molecular weight/number average molecular weight)] of 1.00 to 4.00, more preferably 1.00 to 3.50, and even more preferably 1.80 to 3.00. If the molecular weight distribution of the copolymer is 4.00 or less, sufficient homogeneity can be achieved in the physical properties of the copolymer.
 なお、前記共重合体の数平均分子量(Mn)、重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)により、ポリスチレンを標準物質として求める。 The number average molecular weight (Mn), weight average molecular weight (Mw) and molecular weight distribution (Mw/Mn) of the copolymer are determined by gel permeation chromatography (GPC) using polystyrene as the standard substance.
 前記共重合体は、0~120℃における示差走査熱量計(DSC)で測定した吸熱ピークエネルギーが10~150J/gであることが好ましく、30~120J/gであることが更に好ましい。前記共重合体の吸熱ピークエネルギーが10J/g以上であれば、共重合体の結晶性が高くなり、前記ゴム層(A)及びゴム層(B)の耐亀裂性を向上させることができる。また、前記共重合体の吸熱ピークエネルギーが150J/g以下であれば、共重合体を含む組成物の作業性が向上する。
 前記共重合体の吸熱ピークエネルギーは、示差走査熱量計を用い、JIS K 7121-1987に準拠して、例えば、10℃/分の昇温速度で-150℃から150℃まで昇温して測定すればよい。
The copolymer preferably has an endothermic peak energy of 10 to 150 J/g, more preferably 30 to 120 J/g, as measured by a differential scanning calorimeter (DSC) at 0 to 120° C. If the endothermic peak energy of the copolymer is 10 J/g or more, the crystallinity of the copolymer is high, and the crack resistance of the rubber layer (A) and the rubber layer (B) can be improved. If the endothermic peak energy of the copolymer is 150 J/g or less, the workability of a composition containing the copolymer is improved.
The endothermic peak energy of the copolymer may be measured by using a differential scanning calorimeter in accordance with JIS K 7121-1987, for example, by increasing the temperature from −150° C. to 150° C. at a rate of 10° C./min.
 前記共重合体は、融点が50~120℃であることが好ましく、50~110℃であることがより好ましい。前記共重合体の融点が50℃以上であれば、共重合体の結晶性が高くなり、前記ゴム層(A)及びゴム層(B)の耐亀裂性を向上させることができる。また、前記共重合体の融点が120℃以下であれば、共重合体を含む組成物の作業性が向上する。そして、前記共重合体の融点が50~120℃であれば、前記ゴム層(A)及びゴム層(B)の耐亀裂性が高く、また、前記ゴム層(A)及びゴム層(B)の製造における作業性が向上する。
 前記共重合体の融点は、示差走査熱量計(DSC)を用い、JIS K 7121-1987に準拠して測定すればよい。
The copolymer has a melting point of preferably 50 to 120°C, more preferably 50 to 110°C. When the melting point of the copolymer is 50°C or higher, the crystallinity of the copolymer is high, and the crack resistance of the rubber layer (A) and the rubber layer (B) can be improved. When the melting point of the copolymer is 120°C or lower, the workability of the composition containing the copolymer is improved. When the melting point of the copolymer is 50 to 120°C, the crack resistance of the rubber layer (A) and the rubber layer (B) is high, and the workability in the production of the rubber layer (A) and the rubber layer (B) is improved.
The melting point of the copolymer may be measured using a differential scanning calorimeter (DSC) in accordance with JIS K 7121-1987.
 前記ゴム層(A)に含まれる前記共重合体の融点と、前記ゴム層(B)に含まれる前記共重合体の融点との差は、30℃以下であることが好ましい。共重合体の融点の差が30℃以下であると、ゴム層(A)に含まれる共重合体と、ゴム層(B)に含まれる共重合体とを加熱によって近い温度で溶融させつつ、冷却によって近い温度で固化させることができるため、ゴム層(A)とゴム層(B)との間の剥離強度を更に向上させることができる。ゴム層(A)とゴム層(B)との間の剥離強度を更に向上させる観点から、ゴム層(A)に含まれる共重合体と、ゴム層(B)に含まれる共重合体とは、融点が同じであることが特に好ましい。 It is preferable that the difference between the melting point of the copolymer contained in the rubber layer (A) and the melting point of the copolymer contained in the rubber layer (B) is 30°C or less. When the difference in melting points of the copolymers is 30°C or less, the copolymer contained in the rubber layer (A) and the copolymer contained in the rubber layer (B) can be melted at similar temperatures by heating and solidified at similar temperatures by cooling, so that the peel strength between the rubber layer (A) and the rubber layer (B) can be further improved. From the viewpoint of further improving the peel strength between the rubber layer (A) and the rubber layer (B), it is particularly preferable that the copolymer contained in the rubber layer (A) and the copolymer contained in the rubber layer (B) have the same melting point.
 前記共重合体は、示差走査熱量計(DSC)で測定したガラス転移温度(Tg)が0℃以下であることが好ましく、-100℃~-10℃であることが更に好ましい。前記共重合体のガラス転移温度が0℃以下であれば、前記ゴム層(A)及びゴム層(B)の機械的強度を更に向上させることができる。
 前記共重合体のガラス転移温度は、示差走査熱量計を用い、JIS K 7121-1987に準拠して測定すればよい。
The copolymer preferably has a glass transition temperature (Tg) measured by a differential scanning calorimeter (DSC) of 0° C. or lower, more preferably −100° C. to −10° C. When the copolymer has a glass transition temperature of 0° C. or lower, the mechanical strength of the rubber layer (A) and the rubber layer (B) can be further improved.
The glass transition temperature of the copolymer may be measured using a differential scanning calorimeter in accordance with JIS K 7121-1987.
 前記共重合体は、結晶化度が0.5~50%であることが好ましく、3~45%であることが更に好ましく、5~45%であることがより一層好ましい。前記共重合体の結晶化度が0.5%以上であれば、非共役オレフィン単位に起因する共重合体の結晶性を十分に確保して、前記ゴム層(A)及びゴム層(B)の機械的強度を更に向上させることができる。また、前記共重合体の結晶化度が50%以下であれば、共重合体を含む組成物の混練の際の作業性、及び押出加工性が向上する。
 前記共重合体の結晶化度は、100%結晶成分のポリエチレンの結晶融解エネルギーと、当該共重合体の融解ピークエネルギーを測定し、ポリエチレンと共重合体とのエネルギー比率から、結晶化度を算出すればよい。また、融解ピークエネルギーは、示差走査熱量計で測定することができる。
The copolymer preferably has a crystallinity of 0.5 to 50%, more preferably 3 to 45%, and even more preferably 5 to 45%. When the copolymer has a crystallinity of 0.5% or more, the crystallinity of the copolymer resulting from the non-conjugated olefin units can be sufficiently ensured, and the mechanical strength of the rubber layer (A) and the rubber layer (B) can be further improved. When the copolymer has a crystallinity of 50% or less, the workability during kneading of the composition containing the copolymer and the extrusion processability are improved.
The crystallinity of the copolymer can be calculated by measuring the crystalline melting energy of 100% crystalline polyethylene and the melting peak energy of the copolymer, and calculating the crystallinity from the energy ratio between the polyethylene and the copolymer. The melting peak energy can be measured by a differential scanning calorimeter.
 前記共重合体は、主鎖が非環状構造のみからなることが好ましい。これにより、前記ゴム層(A)及びゴム層(B)の機械的強度を更に向上させることができる。
 なお、前記共重合体の主鎖が環状構造を有するか否かの確認には、NMRが主要な測定手段として用いられる。具体的には、主鎖に存在する環状構造に由来するピーク(例えば、三員環~五員環については、10~24ppmに現れるピーク)が観測されない場合、その共重合体の主鎖は、非環状構造のみからなることを示す。
 なお、本明細書において、重合体の主鎖とは、それ以外のすべての分子鎖(長分子鎖又は短分子鎖、或いはその両方)が、ペンダントのように連なる線状分子鎖を意味する[「Glossary of Basic Terms in Polymer Science IUPAC Recommendations 1996」, Pure Appl. Chem., 68, 2287-2311(1996)のセクション1.34参照]。
 また、前記共重合体は、直鎖状構造又は分岐状構造のいずれであってもよいが、直鎖状構造であることが好ましい。
The copolymer preferably has a main chain consisting solely of acyclic structures, which can further improve the mechanical strength of the rubber layer (A) and the rubber layer (B).
In addition, NMR is used as a main measurement means for confirming whether the main chain of the copolymer has a cyclic structure or not. Specifically, when no peaks derived from the cyclic structure present in the main chain (for example, peaks appearing at 10 to 24 ppm for three- to five-membered rings) are observed, it indicates that the main chain of the copolymer is composed of only a non-cyclic structure.
In this specification, the main chain of a polymer means a linear molecular chain in which all other molecular chains (long molecular chains or short molecular chains, or both) are linked like pendants [see Section 1.34 of "Glossary of Basic Terms in Polymer Science IUPAC Recommendations 1996", Pure Appl. Chem., 68, 2287-2311 (1996)].
The copolymer may have either a linear or branched structure, but is preferably a linear structure.
 前記共重合体は、機械的強度に優れ、具体的には、破断強度、踏み抜き強度、引張強度、耐摩耗性、耐亀裂性、耐衝撃性等に優れる。該共重合体は、低温での機械的強度にも優れる。
 更に、前記共重合体は、カーボンブラック、シリカ等の充填剤に頼らずとも、機械的強度に優れることから、着色剤を用いて着色することができ、加飾性に優れる。一方、前記共重合体は、充填剤との相互作用が可能であるから、充填剤を用いて更に機械的強度を向上させることもできる。
 前記共重合体は、共役ジエン単位を含むことから、架橋が可能である。前記共重合体は、共役ジエン単位を含むことから、弾性体として働き、伸縮可能である。前記共重合体は、射出成型することができ、延伸加工も可能であるため、フィルム状に加工することができる。前記共重合体は、共役ジエン単位及び非共役オレフィン単位を含有するため、樹脂(オレフィン樹脂)にもゴム(ジエン系ゴム)にも接着し易く、従って、樹脂とゴムとの接着剤として機能し得る。また、前記共重合体は、発泡することができる。前記共重合体は、上述の通り、融点が50~120℃であることが好ましく、80~100℃程度のお湯を掛けたり、お湯に浸漬する程度の加熱で、形状を修復することができる。また、前記共重合体は、形状記憶特性を有する。
The copolymer has excellent mechanical strength, specifically, excellent breaking strength, puncture strength, tensile strength, abrasion resistance, crack resistance, impact resistance, etc. The copolymer also has excellent mechanical strength at low temperatures.
Furthermore, the copolymer has excellent mechanical strength without relying on fillers such as carbon black, silica, etc., and can be colored with a colorant, leading to excellent decorative properties. On the other hand, the copolymer can interact with a filler, so that the mechanical strength can be further improved by using the filler.
The copolymer contains conjugated diene units, and therefore can be crosslinked. The copolymer contains conjugated diene units, and therefore can act as an elastic body and can be stretched. The copolymer can be injection molded and stretched, and therefore can be processed into a film. The copolymer contains conjugated diene units and non-conjugated olefin units, and therefore can easily adhere to both resins (olefin resins) and rubbers (diene rubbers), and therefore can function as an adhesive between resins and rubbers. The copolymer can be foamed. As described above, the melting point of the copolymer is preferably 50 to 120°C, and the shape can be restored by pouring hot water of about 80 to 100°C on the copolymer or by heating the copolymer to the extent of immersing the copolymer in hot water. The copolymer also has shape memory properties.
-共重合体の製法-
 前記共重合体として、共役ジエン単位及び非共役オレフィン単位との2つの単位からなる二元共重合体を製造する場合、共役ジエン化合物及び非共役オレフィン化合物を単量体として用いる重合工程を経て、当該共重合体を製造することができる。
 また、前記共重合体として、共役ジエン単位、非共役オレフィン単位及び芳香族ビニル単位の3つの単位からなる三元共重合体を製造する場合、共役ジエン化合物と、非共役オレフィン化合物と、芳香族ビニル化合物とを単量体として用いる重合工程を経て、当該共重合体を製造することができる。
- Copolymer manufacturing method -
When producing a binary copolymer consisting of two units, a conjugated diene unit and a non-conjugated olefin unit, as the copolymer, the copolymer can be produced through a polymerization process using a conjugated diene compound and a non-conjugated olefin compound as monomers.
Furthermore, when a terpolymer consisting of three units, a conjugated diene unit, a non-conjugated olefin unit, and an aromatic vinyl unit, is produced as the copolymer, the copolymer can be produced through a polymerization process using a conjugated diene compound, a non-conjugated olefin compound, and an aromatic vinyl compound as monomers.
 前記共重合体の製造方法は、更に、必要に応じ、カップリング工程、洗浄工程、及びその他の工程を経てもよい。
 以下、三元共重合体を製造する場合を代表して、共重合体の製造方法について説明する。
The method for producing the copolymer may further include a coupling step, a washing step, and other steps, if necessary.
Hereinafter, the method for producing a copolymer will be described by taking the case of producing a terpolymer as a representative example.
 共重合体の製造においては、重合触媒の存在下で、共役ジエン化合物を添加せずに非共役オレフィン化合物及び芳香族ビニル化合物のみを添加し、これらをまず重合させることが好ましい。特に後述の触媒組成物を使用する場合には、非共役オレフィン化合物及び芳香族ビニル化合物より共役ジエン化合物の方が、反応性が高いことから、共役ジエン化合物の存在下で非共役オレフィン化合物及び芳香族ビニル化合物のいずれか一方又は両方を重合させ難い。また、先に共役ジエン化合物を重合させ、後に非共役オレフィン化合物及び芳香族ビニル化合物を付加的に重合させることも、触媒の特性上、困難となり易い。 In the production of copolymers, it is preferable to add only the non-conjugated olefin compound and aromatic vinyl compound in the presence of a polymerization catalyst, without adding a conjugated diene compound, and polymerize them first. In particular, when using the catalyst composition described below, it is difficult to polymerize either or both of the non-conjugated olefin compound and aromatic vinyl compound in the presence of a conjugated diene compound, since the conjugated diene compound is more reactive than the non-conjugated olefin compound and aromatic vinyl compound. In addition, due to the characteristics of the catalyst, it is also difficult to polymerize the conjugated diene compound first and then additionally polymerize the non-conjugated olefin compound and aromatic vinyl compound.
 重合方法としては、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、気相重合法、固相重合法等の任意の方法を用いることができる。また、重合反応に溶媒を用いる場合、かかる溶媒としては、重合反応において不活性なものであればよく、例えば、トルエン、シクロヘキサン、ノルマルヘキサン等が挙げられる。 As a polymerization method, any method such as solution polymerization, suspension polymerization, liquid phase bulk polymerization, emulsion polymerization, gas phase polymerization, solid phase polymerization, etc. can be used. In addition, when a solvent is used in the polymerization reaction, the solvent may be any solvent that is inert in the polymerization reaction, such as toluene, cyclohexane, normal hexane, etc.
 重合工程は、一段階で行ってもよく、二段階以上の多段階で行ってもよい。
 一段階の重合工程とは、重合させる全ての種類の単量体、即ち、共役ジエン化合物、非共役オレフィン化合物、芳香族ビニル化合物、及びその他の単量体、好ましくは、共役ジエン化合物、非共役オレフィン化合物、及び芳香族ビニル化合物を一斉に反応させて重合させる工程である。
 また、多段階の重合工程とは、1種類又は2種類の単量体の一部又は全部を最初に反応させて重合体を形成し(第1重合段階)、次いで、第1重合段階で添加しなかった種類の単量体、第1重合段階で添加した単量体の残部等を添加して重合させる1以上の段階(第2重合段階~最終重合段階)を行って重合させる工程である。特に、前記共重合体の製造では、重合工程を多段階で行うことが好ましい。
The polymerization step may be carried out in one stage or in two or more stages.
The one-stage polymerization process is a process in which all types of monomers to be polymerized, i.e., a conjugated diene compound, a non-conjugated olefin compound, an aromatic vinyl compound, and other monomers, preferably a conjugated diene compound, a non-conjugated olefin compound, and an aromatic vinyl compound, are reacted and polymerized simultaneously.
A multi-stage polymerization process is a process in which one or two types of monomers are first reacted in part or in whole to form a polymer (first polymerization stage), and then one or more stages (second polymerization stage to final polymerization stage) are carried out in which a type of monomer not added in the first polymerization stage, the remainder of the monomer added in the first polymerization stage, etc. are added and polymerized. In particular, in the production of the copolymer, it is preferable to carry out the polymerization process in multiple stages.
 重合工程において、重合反応は、不活性ガス、好ましくは窒素ガス又はアルゴンガスの雰囲気下で行われることが好ましい。重合反応の温度は、特に制限されないが、例えば、-100℃~200℃の範囲が好ましく、室温程度とすることもできる。また、上記重合反応の圧力は、共役ジエン化合物を十分に重合反応系中に取り込むため、0.1~10.0MPaの範囲が好ましい。
 また、重合反応の反応時間も特に制限がなく、例えば、1秒~10日の範囲が好ましいが、重合触媒の種類、重合温度等の条件によって適宜選択することができる。
 また、共役ジエン化合物の重合工程においては、メタノール、エタノール、イソプロパノール等の重合停止剤を用いて、重合を停止させてもよい。
In the polymerization step, the polymerization reaction is preferably carried out under an atmosphere of an inert gas, preferably nitrogen gas or argon gas. The temperature of the polymerization reaction is not particularly limited, but is preferably in the range of -100°C to 200°C, and can be around room temperature. The pressure of the polymerization reaction is preferably in the range of 0.1 to 10.0 MPa in order to sufficiently incorporate the conjugated diene compound into the polymerization reaction system.
The reaction time of the polymerization reaction is not particularly limited, and is preferably in the range of, for example, 1 second to 10 days, but can be appropriately selected depending on conditions such as the type of polymerization catalyst and polymerization temperature.
In the polymerization step of the conjugated diene compound, the polymerization may be terminated using a polymerization terminator such as methanol, ethanol, isopropanol, or the like.
 重合工程は、多段階で行うことが好ましい。より好ましくは、少なくとも芳香族ビニル化合物を含む第1単量体原料と、重合触媒とを混合して重合混合物を得る第1工程と、前記重合混合物に対し、共役ジエン化合物、非共役オレフィン化合物及び芳香族ビニル化合物よりなる群から選択される少なくとも1種を含む第2単量体原料を導入する第2工程とを実施することが好ましい。更に、第1単量体原料が共役ジエン化合物を含まず、且つ第2単量体原料が共役ジエン化合物を含むことがより好ましい。 The polymerization process is preferably carried out in multiple stages. More preferably, a first step is carried out in which a first monomer raw material containing at least an aromatic vinyl compound is mixed with a polymerization catalyst to obtain a polymerization mixture, and a second step is carried out in which a second monomer raw material containing at least one selected from the group consisting of a conjugated diene compound, a non-conjugated olefin compound, and an aromatic vinyl compound is introduced into the polymerization mixture. Furthermore, it is more preferable that the first monomer raw material does not contain a conjugated diene compound, and the second monomer raw material contains a conjugated diene compound.
 第1工程で用いる第1単量体原料は、芳香族ビニル化合物と共に、非共役オレフィン化合物を含有してもよい。また、第1単量体原料は、使用する芳香族ビニル化合物の全量を含有してもよく、一部のみを含有してもよい。また、非共役オレフィン化合物は、第1単量体原料及び第2単量体原料の少なくともいずれかに含有される。 The first monomer raw material used in the first step may contain a non-conjugated olefin compound together with the aromatic vinyl compound. The first monomer raw material may contain the entire amount of the aromatic vinyl compound used, or may contain only a portion of the aromatic vinyl compound. The non-conjugated olefin compound is contained in at least one of the first monomer raw material and the second monomer raw material.
 第1工程は、反応器内で、不活性ガス、好ましくは窒素ガス又はアルゴンガスの雰囲気下において行われることが好ましい。第1工程における温度(反応温度)は、特に制限はないが、例えば、-100℃~200℃の範囲が好ましく、室温程度とすることもできる。また、第1工程における圧力は、特に制限はないが、芳香族ビニル化合物を十分に重合反応系中に取り込むため、0.1~10.0MPaの範囲が好ましい。また、第1工程に費やす時間(反応時間)は、重合触媒の種類、反応温度等の条件によって適宜選択することができるが、例えば、反応温度を25~80℃とした場合には、5分~500分の範囲が好ましい。 The first step is preferably carried out in a reactor under an atmosphere of an inert gas, preferably nitrogen gas or argon gas. The temperature (reaction temperature) in the first step is not particularly limited, but is preferably in the range of -100°C to 200°C, and can be around room temperature. The pressure in the first step is not particularly limited, but is preferably in the range of 0.1 to 10.0 MPa in order to sufficiently incorporate the aromatic vinyl compound into the polymerization reaction system. The time spent in the first step (reaction time) can be appropriately selected depending on the type of polymerization catalyst, reaction temperature, and other conditions, but is preferably in the range of 5 to 500 minutes, for example, when the reaction temperature is 25 to 80°C.
 第1工程において、重合混合物を得るための重合方法としては、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、気相重合法、固相重合法等の任意の方法を用いることができる。また、重合反応に溶媒を用いる場合、かかる溶媒としては、重合反応において不活性なものであればよく、例えば、トルエン、シクロヘキサノン、ノルマルヘキサン等が挙げられる。 In the first step, any method can be used as the polymerization method for obtaining the polymerization mixture, such as solution polymerization, suspension polymerization, liquid phase bulk polymerization, emulsion polymerization, gas phase polymerization, solid phase polymerization, etc. In addition, when a solvent is used in the polymerization reaction, the solvent may be any solvent that is inert in the polymerization reaction, such as toluene, cyclohexanone, normal hexane, etc.
 第2工程で用いる第2単量体原料は、共役ジエン化合物のみ、又は、共役ジエン化合物及び非共役オレフィン化合物、又は、共役ジエン化合物及び芳香族ビニル化合物、又は、共役ジエン化合物、非共役オレフィン化合物及び芳香族ビニル化合物であることが好ましい。
 なお、第2単量体原料が、共役ジエン化合物以外に非共役オレフィン化合物及び芳香族ビニル化合物よりなる群から選択される少なくとも1つを含む場合には、予めこれらの単量体原料を溶媒等と共に混合した後に重合混合物に導入してもよく、各単量体原料を単独の状態から導入してもよい。また、各単量体原料は、同時に添加してもよく、逐次添加してもよい。
 第2工程において、重合混合物に対して第2単量体原料を導入する方法としては、特に制限はないが、各単量体原料の流量を制御して、重合混合物に対して連続的に添加すること(所謂、ミータリング)が好ましい。ここで、重合反応系の条件下で気体である単量体原料(例えば、室温、常圧の条件下における非共役オレフィン化合物としてのエチレン等)を用いる場合には、所定の圧力で重合反応系に導入することができる。
The second monomer raw material used in the second step is preferably a conjugated diene compound alone, or a conjugated diene compound and a non-conjugated olefin compound, or a conjugated diene compound and an aromatic vinyl compound, or a conjugated diene compound, a non-conjugated olefin compound and an aromatic vinyl compound.
In addition, when the second monomer raw material contains at least one selected from the group consisting of a non-conjugated olefin compound and an aromatic vinyl compound in addition to the conjugated diene compound, these monomer raw materials may be mixed together with a solvent or the like in advance and then introduced into the polymerization mixture, or each monomer raw material may be introduced individually. In addition, each monomer raw material may be added simultaneously or successively.
In the second step, the method of introducing the second monomer raw material into the polymerization mixture is not particularly limited, but it is preferable to control the flow rate of each monomer raw material and continuously add it to the polymerization mixture (so-called metering). Here, when a monomer raw material that is gaseous under the conditions of the polymerization reaction system (for example, ethylene as a non-conjugated olefin compound under the conditions of room temperature and normal pressure) is used, it can be introduced into the polymerization reaction system at a predetermined pressure.
 第2工程は、反応器内で、不活性ガス、好ましくは窒素ガス又はアルゴンガスの雰囲気下において行われることが好ましい。第2工程における温度(反応温度)は、特に制限はないが、例えば、-100℃~200℃の範囲が好ましく、室温程度とすることもできる。なお、反応温度を上げると、共役ジエン単位におけるシス-1,4結合の選択性が低下することがある。また、第2工程における圧力は、特に制限はないが、共役ジエン化合物等の単量体を十分に重合反応系に取り込むため、0.1~10.0MPaの範囲が好ましい。また、第2工程に費やす時間(反応時間)は、重合触媒の種類、反応温度等の条件によって適宜選択することができるが、例えば、0.1時間~10日の範囲が好ましい。
 また、第2工程においては、メタノール、エタノール、イソプロパノール等の重合停止剤を用いて、重合反応を停止させてもよい。
The second step is preferably carried out in a reactor under an atmosphere of an inert gas, preferably nitrogen gas or argon gas. The temperature (reaction temperature) in the second step is not particularly limited, but is preferably in the range of -100°C to 200°C, and can be about room temperature. If the reaction temperature is increased, the selectivity of the cis-1,4 bond in the conjugated diene unit may decrease. The pressure in the second step is not particularly limited, but is preferably in the range of 0.1 to 10.0 MPa in order to sufficiently incorporate monomers such as conjugated diene compounds into the polymerization reaction system. The time spent in the second step (reaction time) can be appropriately selected depending on conditions such as the type of polymerization catalyst and the reaction temperature, but is preferably in the range of 0.1 hours to 10 days, for example.
In the second step, the polymerization reaction may be terminated using a polymerization terminator such as methanol, ethanol, or isopropanol.
 ここで、上記の共役ジエン化合物、非共役オレフィン化合物、芳香族ビニル化合物の重合工程は、触媒成分として、下記(a)~(f)成分の1種以上の存在下で、各種単量体を重合させる工程を含むことが好ましい。なお、重合工程には、下記(a)~(f)成分を1種以上用いることが好ましいが、下記(a)~(f)成分の2種以上を組み合わせて、触媒組成物として用いることが更に好ましい。
 (a)成分:希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物
 (b)成分:有機金属化合物
 (c)成分:アルミノキサン
 (d)成分:イオン性化合物
 (e)成分:ハロゲン化合物
 (f)成分:置換又は無置換のシクロペンタジエン(シクロペンタジエニル基を有する化合物)、置換又は無置換のインデン(インデニル基を有する化合物)、及び、置換又は無置換のフルオレン(フルオレニル基を有する化合物)から選択されるシクロペンタジエン骨格含有化合物
 上記(a)~(f)成分については、例えば、国際公開第2018/092733号等を参照することによって、重合工程に用いることができる。
Here, the polymerization step of the above-mentioned conjugated diene compound, non-conjugated olefin compound, and aromatic vinyl compound preferably includes a step of polymerizing various monomers in the presence of one or more of the following components (a) to (f) as a catalyst component. Note that, in the polymerization step, it is preferable to use one or more of the following components (a) to (f), but it is more preferable to use a combination of two or more of the following components (a) to (f) as a catalyst composition.
(a) component: a rare earth element compound or a reaction product of the rare earth element compound and a Lewis base (b) component: an organometallic compound (c) component: an aluminoxane (d) component: an ionic compound (e) component: a halogen compound (f) component: a cyclopentadiene skeleton-containing compound selected from substituted or unsubstituted cyclopentadiene (a compound having a cyclopentadienyl group), substituted or unsubstituted indene (a compound having an indenyl group), and substituted or unsubstituted fluorene (a compound having a fluorenyl group). The above (a) to (f) components can be used in the polymerization step, for example, by referring to International Publication No. WO 2018/092733.
 カップリング工程は、重合工程において得られた共重合体の高分子鎖の少なくとも一部(例えば、末端)を変性する反応(カップリング反応)を行う工程である。
 カップリング工程において、重合反応が100%に達した際にカップリング反応を行うことが好ましい。
 カップリング反応に用いるカップリング剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビス(マレイン酸-1-オクタデシル)ジオクチルスズ(IV)等のスズ含有化合物;4,4’-ジフェニルメタンジイソシアネート等のイソシアネート化合物;グリシジルプロピルトリメトキシシラン等のアルコキシシラン化合物、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらの中でも、ビス(マレイン酸-1-オクタデシル)ジオクチルスズ(IV)が、反応効率と低ゲル生成の点で、好ましい。
 なお、カップリング反応を行うことにより、共重合体の数平均分子量(Mn)を増加させることができる。
The coupling step is a step of carrying out a reaction (coupling reaction) for modifying at least a part (for example, an end) of the polymer chain of the copolymer obtained in the polymerization step.
In the coupling step, it is preferable to carry out the coupling reaction when the polymerization reaction reaches 100%.
The coupling agent used in the coupling reaction is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include tin-containing compounds such as bis(1-octadecylmaleate)dioctyltin(IV), isocyanate compounds such as 4,4'-diphenylmethane diisocyanate, alkoxysilane compounds such as glycidylpropyltrimethoxysilane, etc. These may be used alone or in combination of two or more kinds.
Among these, bis(1-octadecylmaleate)dioctyltin(IV) is preferred in terms of reaction efficiency and low gel formation.
By carrying out the coupling reaction, the number average molecular weight (Mn) of the copolymer can be increased.
 洗浄工程は、重合工程において得られた共重合体を洗浄する工程である。
 なお、洗浄に用いる媒体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メタノール、エタノール、イソプロパノール等が挙げられるが、重合触媒としてルイス酸由来の触媒を使用する際は、特にこれらの溶媒に対して酸(例えば、塩酸、硫酸、硝酸等)を加えて使用することができる。添加する酸の量は溶媒に対して15mol%以下が好ましい。添加量が15mol%以下であることで、酸が共重合体中に残存しにくく、組成物の混練及び加硫時の反応に悪影響を及ぼし難い。
 この洗浄工程により、共重合体中の触媒残渣量を好適に低下させることができる。
The washing step is a step of washing the copolymer obtained in the polymerization step.
The medium used for washing is not particularly limited and can be appropriately selected depending on the purpose, and examples thereof include methanol, ethanol, isopropanol, etc., but when a catalyst derived from a Lewis acid is used as a polymerization catalyst, an acid (e.g., hydrochloric acid, sulfuric acid, nitric acid, etc.) can be added to these solvents. The amount of acid added is preferably 15 mol% or less relative to the solvent. By adding an amount of 15 mol% or less, the acid is unlikely to remain in the copolymer and is unlikely to adversely affect the reaction during kneading and vulcanization of the composition.
This washing step makes it possible to suitably reduce the amount of catalyst residue in the copolymer.
(その他の成分)
 前記ゴム層(A)及びゴム層(B)は、上述のゴム成分、共役ジエン単位及び非共役オレフィン単位を有する共重合体以外のポリマー成分や、各種配合剤を含有してもよい。配合剤としては、例えば、充填剤;強化繊維;老化防止剤;軟化剤;ステアリン酸、亜鉛華、架橋促進剤及び架橋剤を含む架橋パッケージ;樹脂;紫外線吸収剤;発泡剤;着色剤等の機能性成分が挙げられる。
(Other ingredients)
The rubber layer (A) and the rubber layer (B) may contain polymer components other than the above-mentioned rubber component and the copolymer having a conjugated diene unit and a non-conjugated olefin unit, and various compounding agents, such as functional components such as fillers, reinforcing fibers, antioxidants, softeners, crosslinking packages containing stearic acid, zinc oxide, crosslinking accelerators and crosslinking agents, resins, ultraviolet absorbers, foaming agents, and colorants.
-充填剤-
 前記ゴム層(A)及びゴム層(B)は、充填剤を含んでもよい。ゴム層(A)及びゴム層(B)が、充填剤を含むことで、ゴム層(A)及びゴム層(B)の機械的強度を向上させることができる。
 前記充填剤としては、カーボンブラック及び無機充填剤が挙げられる。
 前記カーボンブラックの種類は、特に制限されず、例えば、GPF、FEF、HAF、ISAF、SAF等が挙げられ、HAF、ISAF、及びSAFが好ましい。
 前記無機充填剤としては、シリカ、アルミナ、チタニア等の金属酸化物が挙げられ、これらの中でも、シリカが好ましい。シリカの種類は、特に制限はなく、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、コロイダルシリカ等が挙げられる。また、充填剤としてシリカを含有する場合、前記ゴム層(A)及びゴム層(B)中でのシリカの分散性を向上させるために、ゴム層(A)及びゴム層(B)は、更に、シランカップリング剤を含んでもよい。
-filler-
The rubber layer (A) and the rubber layer (B) may contain a filler. When the rubber layer (A) and the rubber layer (B) contain a filler, the mechanical strength of the rubber layer (A) and the rubber layer (B) can be improved.
The fillers include carbon black and inorganic fillers.
The type of carbon black is not particularly limited, and examples thereof include GPF, FEF, HAF, ISAF, and SAF, with HAF, ISAF, and SAF being preferred.
The inorganic filler includes metal oxides such as silica, alumina, titania, etc., and among these, silica is preferred.The type of silica is not particularly limited, and includes wet silica (hydrated silicic acid), dry silica (anhydrous silicic acid), colloidal silica, etc.In addition, when silica is contained as a filler, in order to improve the dispersibility of silica in the rubber layer (A) and the rubber layer (B), the rubber layer (A) and the rubber layer (B) may further include a silane coupling agent.
-老化防止剤-
 前記ゴム層(A)及びゴム層(B)は、老化防止剤を含んでもよい。老化防止剤としては、例えば、アミン-ケトン系化合物、イミダゾール系化合物、アミン系化合物、フェノール系化合物、硫黄系化合物及びリン系化合物等が挙げられる。
-Anti-aging agent-
The rubber layer (A) and the rubber layer (B) may contain an antioxidant, such as an amine-ketone compound, an imidazole compound, an amine compound, a phenol compound, a sulfur compound, and a phosphorus compound.
-軟化剤-
 前記ゴム層(A)及びゴム層(B)は、軟化剤を含んでもよい。軟化剤としては、プロセスオイル、潤滑油、ナフテンオイル、パラフィン、流動パラフィン、石油アスファルト、ワセリン等の石油系軟化剤、ヒマシ油、アマニ油、ナタネ油、ヤシ油等の脂肪油系軟化剤、蜜ロウ、カルナバロウ、ラノリン等のワックス類等が挙げられる。これら軟化剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
-Softener-
The rubber layer (A) and the rubber layer (B) may contain a softener. Examples of the softener include petroleum-based softeners such as process oil, lubricating oil, naphthenic oil, paraffin, liquid paraffin, petroleum asphalt, and vaseline, fatty oil-based softeners such as castor oil, linseed oil, rapeseed oil, and coconut oil, and waxes such as beeswax, carnauba wax, and lanolin. These softeners may be used alone or in combination of two or more.
-架橋剤-
 前記ゴム層(A)及びゴム層(B)は、架橋剤を含んでもよい。架橋剤としては、特に制限はなく、通常、過酸化物、硫黄、オキシム、アミン、紫外線硬化剤等が挙げられる。
 前記共重合体は、共役ジエン単位を含むことから、硫黄により架橋(加硫)することができる。硫黄としては、例えば、粉末硫黄、沈降硫黄、コロイド硫黄、表面処理硫黄、不溶性硫黄等を挙げることができる。
- Crosslinking agent -
The rubber layer (A) and the rubber layer (B) may contain a crosslinking agent. The crosslinking agent is not particularly limited, and typically includes peroxides, sulfur, oximes, amines, ultraviolet curing agents, and the like.
Since the copolymer contains conjugated diene units, it can be crosslinked (vulcanized) with sulfur, such as powdered sulfur, precipitated sulfur, colloidal sulfur, surface-treated sulfur, insoluble sulfur, etc.
-架橋促進剤-
 前記ゴム層(A)及びゴム層(B)は、架橋促進剤を含んでもよい。架橋促進剤(加硫促進剤)としては、例えば、グアジニン系、スルフェンアミド系、チウラム系、チアゾール系、アルデヒドアミン系、チオカルバミン酸塩系等の架橋促進剤が挙げられる。
- Crosslinking accelerator -
The rubber layer (A) and the rubber layer (B) may contain a crosslinking accelerator. Examples of the crosslinking accelerator (vulcanization accelerator) include guanidine-based, sulfenamide-based, thiuram-based, thiazole-based, aldehyde amine-based, and thiocarbamate-based crosslinking accelerators.
(一実施態様)
 次に、図1を参照しながら、本発明の一実施形態に係る積層体を説明する。
 図1は、本実施形態の積層体を模式的に示した、厚さ方向の断面図である。図1に示す積層体1は、ゴム層(A)2と、ゴム層(B)3と、を具え、ゴム層(A)2とゴム層(B)3とが接合されている。なお、図1に示す積層体1は、ゴム層(A)2と、ゴム層(B)3と、の二層からなるが、本発明の積層体は、三層以上であってもよい。
(One embodiment)
Next, a laminate according to one embodiment of the present invention will be described with reference to FIG.
Fig. 1 is a cross-sectional view in the thickness direction, which is a schematic diagram of the laminate of this embodiment. The laminate 1 shown in Fig. 1 includes a rubber layer (A) 2 and a rubber layer (B) 3, and the rubber layer (A) 2 and the rubber layer (B) 3 are bonded together. Although the laminate 1 shown in Fig. 1 is composed of two layers, the rubber layer (A) 2 and the rubber layer (B) 3, the laminate of the present invention may be composed of three or more layers.
(積層体の用途)
 本実施形態の積層体は、後述するタイヤの他、少なくとの二つのゴム層を含む種々のゴム製品に適用できる。
(Applications of the laminate)
The laminate of this embodiment can be applied to various rubber products including at least two rubber layers, in addition to the tires described below.
<積層体の製造方法>
 上述した本実施形態の積層体は、種々の方法で製造でき、例えば、(1)架橋済みの少なくとの二つのゴム層を積層して、加熱してもよいし、(2)架橋済みの少なくとの一つのゴム層と、未架橋の少なくとの一つのゴム層とを積層して、加熱してもよいし、(3)未架橋の少なくとの二つのゴム層を積層して、加熱してもよい。
<Method of manufacturing laminate>
The laminate of the present embodiment described above can be manufactured by various methods. For example, (1) at least two cross-linked rubber layers may be laminated and heated, (2) at least one cross-linked rubber layer and at least one uncross-linked rubber layer may be laminated and heated, or (3) at least two uncross-linked rubber layers may be laminated and heated.
 一実施形態の積層体の製造方法は、ジエン系ゴムを50質量%以上含むゴム成分と、共役ジエン単位及び非共役オレフィン単位を有する共重合体と、を含み、前記共重合体の含有量が、前記ゴム成分100質量部に対して3~40質量部である架橋済みの少なくとの二つのゴム層を積層し、加熱することを特徴とし、かかる積層体の製造方法によれば、高い生産性で、層間の剥離強度が高い積層体が得られる。 In one embodiment, the method for producing a laminate is characterized by laminating and heating at least two crosslinked rubber layers that include a rubber component containing 50% by mass or more of diene rubber and a copolymer having conjugated diene units and non-conjugated olefin units, the copolymer content of which is 3 to 40 parts by mass per 100 parts by mass of the rubber component. This method for producing a laminate provides a laminate with high interlayer peel strength with high productivity.
 また、他の実施形態の積層体の製造方法は、ジエン系ゴムを50質量%以上含むゴム成分と、共役ジエン単位及び非共役オレフィン単位を有する共重合体と、を含み、前記共重合体の含有量が、前記ゴム成分100質量部に対して3~40質量部である架橋済みの少なくとの一つのゴム層と、ジエン系ゴムを50質量%以上含むゴム成分と、共役ジエン単位及び非共役オレフィン単位を有する共重合体と、を含み、前記共重合体の含有量が、前記ゴム成分100質量部に対して3~40質量部である未架橋の少なくとの一つのゴム層とを積層し、加熱することを特徴とし、かかる積層体の製造方法によっても、高い生産性で、層間の剥離強度が高い積層体が得られる。ここで、加熱により、未架橋の少なくとの一つのゴム層は、架橋(加硫)されてもよい。未架橋のゴム層を加熱により架橋する場合は、未架橋のゴム層は、上述の架橋剤、架橋促進剤を含むことが好ましい。 In another embodiment, a method for producing a laminate is characterized by laminating and heating at least one crosslinked rubber layer including a rubber component containing 50% or more by mass of a diene rubber and a copolymer having conjugated diene units and non-conjugated olefin units, the content of the copolymer being 3 to 40 parts by mass per 100 parts by mass of the rubber component, and at least one uncrosslinked rubber layer including a rubber component containing 50% or more by mass of a diene rubber and a copolymer having conjugated diene units and non-conjugated olefin units, the content of the copolymer being 3 to 40 parts by mass per 100 parts by mass of the rubber component. This method for producing a laminate also provides a laminate with high productivity and high interlayer peel strength. Here, at least one uncrosslinked rubber layer may be crosslinked (vulcanized) by heating. When the uncrosslinked rubber layer is crosslinked by heating, it is preferable that the uncrosslinked rubber layer contains the above-mentioned crosslinking agent and crosslinking accelerator.
 また、更に他の実施形態の積層体の製造方法は、ジエン系ゴムを50質量%以上含むゴム成分と、共役ジエン単位及び非共役オレフィン単位を有する共重合体と、を含み、前記共重合体の含有量が、前記ゴム成分100質量部に対して3~40質量部である未架橋の少なくとの二つのゴム層を積層し、加熱(架橋)することを特徴とし、かかる積層体の製造方法によっても、高い生産性で、層間の剥離強度が高い積層体が得られる。ここで、加熱により、未架橋の少なくとの二つのゴム層は、架橋(加硫)されてもよい。未架橋のゴム層を加熱により架橋する場合は、未架橋のゴム層は、上述の架橋剤、架橋促進剤を含むことが好ましい。 In still another embodiment, the method for producing a laminate is characterized by laminating and heating (crosslinking) at least two uncrosslinked rubber layers, the rubber layers including a rubber component containing 50% by mass or more of a diene rubber and a copolymer having conjugated diene units and non-conjugated olefin units, the content of the copolymer being 3 to 40 parts by mass per 100 parts by mass of the rubber component. This method for producing a laminate also provides a laminate with high productivity and high interlayer peel strength. Here, the at least two uncrosslinked rubber layers may be crosslinked (vulcanized) by heating. When the uncrosslinked rubber layer is crosslinked by heating, it is preferable that the uncrosslinked rubber layer contains the above-mentioned crosslinking agent and crosslinking accelerator.
 前記ゴム層(A)及びゴム層(B)は、前記ジエン系ゴムを50質量%以上含むゴム成分と、前記共役ジエン単位及び非共役オレフィン単位を有する共重合体と、を含むゴム組成物から形成することができる。該ゴム組成物には、前記ゴム成分、並びに、前記共役ジエン単位及び非共役オレフィン単位を有する共重合体に加えて、上述した充填剤、シランカップリング剤、老化防止剤、軟化剤、架橋剤、架橋促進剤等を配合することができる。
 前記ゴム組成物は、前記ゴム成分及び前記共重合体のみを混合して製造してもよいし、前記ゴム成分及び前記共重合体の他、任意の添加成分を混合して製造してもよい。
 また、前記ゴム成分及び前記共重合体のみを、又は、他の任意の添加成分と共に、単軸押出混練機、2軸押出混練機、バンバリーミキサー、ロール、インターナルミキサー等の混練機を用いて混練して製造してもよい。
 各成分の混練は、一段階で行ってもよいし、二段階以上に分けて行ってもよい。
The rubber layer (A) and the rubber layer (B) can be formed from a rubber composition containing a rubber component containing 50% by mass or more of the diene rubber and the copolymer having a conjugated diene unit and a non-conjugated olefin unit. In addition to the rubber component and the copolymer having a conjugated diene unit and a non-conjugated olefin unit, the rubber composition can contain the above-mentioned filler, silane coupling agent, antioxidant, softener, crosslinking agent, crosslinking accelerator, etc.
The rubber composition may be produced by mixing only the rubber component and the copolymer, or may be produced by mixing any additive component in addition to the rubber component and the copolymer.
Alternatively, the rubber component and the copolymer may be mixed alone or together with any other additive components using a mixer such as a single screw extrusion mixer, a twin screw extrusion mixer, a Banbury mixer, a roll or an internal mixer to produce the rubber component and the copolymer.
The components may be mixed in one step or in two or more steps.
 前記ゴム組成物の成分を押出混練機により溶融混練して、ゴム組成物を押出した場合、押し出されたゴム組成物は、直接切断してペレットにしてもよいし、ストランドを形成した後、ストランドをペレタイザーで切断してペレットにしてもよい。ペレットの形状は、円柱、角柱、および球状など一般的な形状を取り得る。 When the components of the rubber composition are melt-kneaded in an extrusion kneader and the rubber composition is extruded, the extruded rubber composition may be directly cut into pellets, or strands may be formed and the strands may be cut into pellets using a pelletizer. The pellets may have any of the common shapes, such as cylinders, prisms, and spheres.
 前記ゴム層(A)及びゴム層(B)は、前記ゴム組成物を、溶融混練した上で、押出して製造してもよいし、前記ゴム組成物を熱プレスすることにより製造してもよい。
 熱プレス温度は、120~160℃であることが好ましく、130~150℃であることがより好ましい。
The rubber layer (A) and the rubber layer (B) may be produced by melt-kneading the rubber composition and then extruding the same, or by hot pressing the rubber composition.
The heat pressing temperature is preferably from 120 to 160°C, and more preferably from 130 to 150°C.
<タイヤ>
 本実施形態のタイヤは、上述した本実施形態の積層体を具えることを特徴とする。本実施形態のタイヤは、上述した、層間の剥離強度が高く、生産性の高い、本実施形態の積層体を具えるため、耐久性が高く、また、生産性も高い。
<Tires>
The tire of the present embodiment is characterized by including the laminate of the present embodiment described above. Since the tire of the present embodiment includes the laminate of the present embodiment described above, which has high interlayer peel strength and high productivity, the tire of the present embodiment is highly durable and also highly productive.
 本実施形態のタイヤにおいて、上述した積層体の内の一層は、例えば、タイヤのリペアパッチや、リトレッドタイヤのトレッドゴム部材等として使用できる。ここで、上述した積層体の内の一層がタイヤのリペアパッチに相当する場合、積層体の内のもう一層は、損傷したタイヤに相当する。また、上述した積層体の内の一層がリトレッドタイヤのトレッドゴム部材に相当する場合、積層体の内のもう一層は、タイヤから摩耗したトレッドゴムを除去して準備される台タイヤに相当する。 In the tire of this embodiment, one layer of the laminate described above can be used, for example, as a tire repair patch or a tread rubber component of a retread tire. Here, when one layer of the laminate described above corresponds to a tire repair patch, the other layer of the laminate corresponds to a damaged tire. Also, when one layer of the laminate described above corresponds to a tread rubber component of a retread tire, the other layer of the laminate corresponds to a base tire prepared by removing worn tread rubber from a tire.
 前記タイヤを製造する方法としては、慣用の方法を用いることができる。例えば、タイヤ成形用ドラム上に未架橋ゴム組成物及び/又はコードからなるカーカス層、ベルト層、トレッドゴム等の通常タイヤ製造に用いられる部材を順次貼り重ね、ドラムを抜き去ってグリーンタイヤとする。次いで、このグリーンタイヤを架橋させることにより、所望のタイヤ(例えば、空気入りタイヤ)を製造することができる。 The tire can be manufactured by a conventional method. For example, components that are normally used in tire manufacturing, such as a carcass layer made of an uncrosslinked rubber composition and/or cords, a belt layer, and tread rubber, are laminated in order onto a tire building drum, and the drum is removed to produce a green tire. The green tire is then crosslinked to manufacture the desired tire (e.g., a pneumatic tire).
 また、タイヤが損傷した場合は、損傷したタイヤの損傷部をゴム層(B)とし、該ゴム層(B)にゴム層(A)を積層し、所望により加熱して、ゴム層(B)にゴム層(A)を固着させることで、タイヤを補修することができる。 In addition, if a tire is damaged, the damaged portion of the tire can be made into a rubber layer (B), and the rubber layer (A) can be laminated onto the rubber layer (B), and heated as desired to fix the rubber layer (A) to the rubber layer (B), thereby repairing the tire.
 また、使用後のタイヤから、トレッドゴムを取り除いて、台タイヤを得、該台タイヤの最表層をゴム層(B)とし、一方、ゴム層(A)としてリトレッド用のトレッドゴム部材を準備し、ゴム層(B)にゴム層(A)を積層することで、リトレッドタイヤを製造することができる。 In addition, a retread tire can be manufactured by removing the tread rubber from a used tire to obtain a base tire, forming the outermost layer of the base tire as the rubber layer (B), and preparing a tread rubber member for retreading as the rubber layer (A), and laminating the rubber layer (A) on the rubber layer (B).
 以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。 The present invention will be explained in more detail below with reference to examples, but the present invention is not limited to the following examples in any way.
<共役ジエン単位及び非共役オレフィン単位を有する共重合体の合成>
(共重合体1の合成)
 十分に乾燥した2000mL耐圧ステンレス反応器内に、スチレン75gと、トルエン675gと、を加えた。
 一方、窒素雰囲気下のグローブボックス中で、ガラス製容器に、((1-ベンジルジメチルシリル-3-メチル)インデニル)ビス(ビス(ジメチルシリル)アミド)ガドリニウム錯体{(1-BnMeSi-3-Me]CGd[N(SiHMe}0.075mmol、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート[MeNHPhB(C]0.083mmol、及びジイソブチルアルミニウムハイドライド0.35mmolを加え、更にトルエン30gを加えて、触媒溶液とした。
 得られた触媒溶液を、前記耐圧ステンレス反応器内に加えて、60℃に加温した。
 次いで、エチレンを圧力1.5MPaで、前記耐圧ステンレス反応器に投入し、75℃で計3時間共重合を行った。その共重合の際、1,3-ブタジエン20gを含むトルエン溶液80gを0.4~0.6mL/分の速度で連続的に添加した。
 次いで、2,2’-メチレン-ビス(4-エチル-6-t-ブチルフェノール)(NS-5)5質量%のイソプロパノール溶液1mLを、前記耐圧ステンレス反応器内に加えて反応を停止させた。
 次いで、大量のメタノールを用いて共重合体を分離し、50℃で真空乾燥し、共重合体1を得た。
<Synthesis of copolymer having conjugated diene units and non-conjugated olefin units>
(Synthesis of Copolymer 1)
Into a thoroughly dried 2000 mL pressure-resistant stainless steel reactor, 75 g of styrene and 675 g of toluene were placed.
Meanwhile, in a glove box under a nitrogen atmosphere, 0.075 mmol of ((1-benzyldimethylsilyl-3-methyl)indenyl)bis(bis(dimethylsilyl)amide)gadolinium complex {(1-BnMe 2 Si-3-Me]C 9 H 5 Gd[N(SiHMe 2 ) 2 ] 2 }, 0.083 mmol of dimethylanilinium tetrakis(pentafluorophenyl)borate [Me 2 NHPhB(C 6 F 5 ) 4 ], and 0.35 mmol of diisobutylaluminum hydride were added to a glass container, and 30 g of toluene was further added to prepare a catalyst solution.
The obtained catalyst solution was added to the pressure-resistant stainless steel reactor and heated to 60°C.
Next, ethylene was introduced into the pressure-resistant stainless steel reactor at a pressure of 1.5 MPa, and copolymerization was carried out for a total of 3 hours at 75° C. During the copolymerization, 80 g of a toluene solution containing 20 g of 1,3-butadiene was continuously added at a rate of 0.4 to 0.6 mL/min.
Next, 1 mL of a 5% by mass solution of 2,2'-methylene-bis(4-ethyl-6-t-butylphenol) (NS-5) in isopropanol was added to the pressure-resistant stainless steel reactor to terminate the reaction.
Next, the copolymer was separated using a large amount of methanol and dried in vacuum at 50° C. to obtain Copolymer 1.
(共重合体2の合成)
 十分に乾燥した2000mL耐圧ステンレス反応器内に、スチレン30gと、1,3-ブタジエン5gを含むトルエン溶液20gと、トルエン430gと、を加えた。
 一方、窒素雰囲気下のグローブボックス中で、ガラス製容器に、モノ(1,3-ビス(tert-ブチルジメチルシリル)インデニル)ビス(ビス(ジメチルシリル)アミド)ガドリニウム錯体{1,3-[(t-Bu)MeSi]Gd[N(SiHMe}0.075mmol、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート[MeNHPhB(C]0.075mmol、及びジイソブチルアルミニウムハイドライド0.35mmolを加え、更にトルエン20mLを加えて、触媒溶液とした。
 得られた触媒溶液を、前記耐圧ステンレス反応器内に加えて、60℃に加温した。
 次いで、エチレンを圧力1.0MPaで、前記耐圧ステンレス反応器内に投入し、75℃で計3時間共重合を行った。その共重合の際、1,3-ブタジエン60gを含むトルエン溶液240gを2.5~2.8mL/分の速度で連続的に添加した。
 次いで、2,2’-メチレン-ビス(4-エチル-6-t-ブチルフェノール)(NS-5)5質量%のイソプロパノール溶液1mLを、前記耐圧ステンレス反応器内に加えて反応を停止させた。
 次いで、大量のメタノールを用いて共重合体を分離し、50℃で真空乾燥し、共重合体2を得た。
(Synthesis of Copolymer 2)
Into a thoroughly dried 2000 mL pressure-resistant stainless steel reactor, 30 g of styrene, 20 g of a toluene solution containing 5 g of 1,3-butadiene, and 430 g of toluene were placed.
Meanwhile, in a glove box under a nitrogen atmosphere, 0.075 mmol of mono(1,3-bis(tert-butyldimethylsilyl)indenyl)bis(bis(dimethylsilyl)amide)gadolinium complex {1,3-[(t-Bu)Me 2 Si] 2 C 9 H 5 Gd[N(SiHMe 2 ) 2 ] 2 }, 0.075 mmol of dimethylanilinium tetrakis(pentafluorophenyl)borate [Me 2 NHPhB(C 6 F 5 ) 4 ], and 0.35 mmol of diisobutylaluminum hydride were added to a glass container, and 20 mL of toluene was further added to prepare a catalyst solution.
The obtained catalyst solution was added to the pressure-resistant stainless steel reactor and heated to 60°C.
Next, ethylene was introduced into the pressure-resistant stainless steel reactor at a pressure of 1.0 MPa, and copolymerization was carried out for a total of 3 hours at 75° C. During the copolymerization, 240 g of a toluene solution containing 60 g of 1,3-butadiene was continuously added at a rate of 2.5 to 2.8 mL/min.
Next, 1 mL of a 5% by mass solution of 2,2'-methylene-bis(4-ethyl-6-t-butylphenol) (NS-5) in isopropanol was added to the pressure-resistant stainless steel reactor to terminate the reaction.
Next, the copolymer was separated using a large amount of methanol and dried in vacuum at 50° C. to obtain Copolymer 2.
<共重合体の物性測定方法>
 合成した共重合体について、以下の物性を測定した。結果を表1に示す。
<Method of measuring physical properties of copolymer>
The following physical properties of the synthesized copolymer were measured, and the results are shown in Table 1.
(1)数平均分子量(Mn)、重量平均分子量(Mw)、及び分子量分布(Mw/Mn)
 ゲルパーミエーションクロマトグラフィー[GPC:東ソー社製HLC-8121GPC/HT、カラム:東ソー社製GMHHR-H(S)HT×2本、検出器:示差屈折率計(RI)]で単分散ポリスチレンを基準として、共重合体のポリスチレン換算の数平均分子量(Mn)、重量平均分子量(Mw)、及び分子量分布(Mw/Mn)を求めた。なお、測定温度は40℃である。
(1) Number average molecular weight (Mn), weight average molecular weight (Mw), and molecular weight distribution (Mw/Mn)
Monodisperse polystyrene was analyzed by gel permeation chromatography [GPC: Tosoh HLC-8121GPC/HT, column: Tosoh GMH HR -H(S)HT x 2, detector: differential refractometer (RI)]. As a standard, the number average molecular weight (Mn), weight average molecular weight (Mw), and molecular weight distribution (Mw/Mn) of the copolymer were determined in terms of polystyrene. The measurement temperature was 40°C.
(2)ブタジエン単位、エチレン単位、スチレン単位の含有量
 共重合体中のエチレン単位、ブタジエン単位、スチレン単位の含有量(mol%)を、H-NMRスペクトル(100℃、d-テトラクロロエタン標準:6ppm)の各ピークの積分比より求めた。
(2) Contents of Butadiene Units, Ethylene Units, and Styrene Units The contents (mol %) of ethylene units, butadiene units, and styrene units in the copolymer were determined from the integral ratio of each peak in 1 H-NMR spectrum (100° C., d-tetrachloroethane standard: 6 ppm).
(3)融点(Tm)
 示差走査熱量計(DSC、ティー・エイ・インスツルメント・ジャパン社製、「DSCQ2000」)を用い、JIS K 7121-1987に準拠して、共重合体の融点(Tm)を測定した。
(3) Melting point (Tm)
The melting point (Tm) of the copolymer was measured using a differential scanning calorimeter (DSC, manufactured by TA Instruments Japan, "DSCQ2000") in accordance with JIS K 7121-1987.
(4)ブタジエン単位の1,4-結合の含有率
 赤外法(モレロ法)により1,2-結合及び3,4-結合求め、100%から1,2-結合及び3,4-結合の合計量を算出することで1,4-結合の含有率を算出した。
(4) Content of 1,4-bonds in butadiene units 1,2-bonds and 3,4-bonds were determined by an infrared method (Morello method), and the content of 1,4-bonds was calculated by calculating the total amount of 1,2-bonds and 3,4-bonds from 100%.
(5)ガラス転移温度(Tg)
 示差走査熱量計(DSC、ティー・エイ・インスツルメント・ジャパン社製、「DSCQ2000」)を用い、JIS K 7121-1987に準拠して、共重合体のガラス転移温度(Tg)を測定した。
(5) Glass transition temperature (Tg)
The glass transition temperature (Tg) of the copolymer was measured using a differential scanning calorimeter (DSC, manufactured by TA Instruments Japan, "DSCQ2000") in accordance with JIS K 7121-1987.
(6)吸熱ピークエネルギー
 示差走査熱量計(DSC、ティー・エイ・インスツルメント・ジャパン社製、「DSCQ2000」)を用い、JIS K 7121-1987に準拠して、得られた共重合体を、-150℃~150℃まで、10℃/minで昇温した。そして、その時(1st run)の0℃以上100℃未満の範囲における吸熱ピークエネルギー(ΔH(J/g))と、100℃以上150℃以下の範囲における吸熱ピークエネルギー(ΔH(J/g))とを測定した。
(6) Endothermic Peak Energy Using a differential scanning calorimeter (DSC, manufactured by TA Instruments Japan, "DSCQ2000"), in accordance with JIS K 7121-1987, the obtained copolymer was heated from -150°C to 150°C at a rate of 10°C/min. Then, the endothermic peak energy (ΔH 1 (J/g)) in the range of 0°C or more and less than 100°C and the endothermic peak energy (ΔH 2 (J/g)) in the range of 100°C or more and 150°C or less at that time (1st run) were measured.
(7)結晶化度
 100%結晶成分のポリエチレンの結晶融解エネルギーと、得られた共重合体の0~120℃の融解ピークエネルギーを測定し、ポリエチレンと共重合体とのエネルギー比率から、結晶化度を算出した。なお、融解ピークエネルギーは、示差走査熱量計(DSC、ティー・エイ・インスツルメント・ジャパン社製、「DSCQ2000」)で測定した。
(7) Crystallinity The crystalline melting energy of 100% crystalline polyethylene and the melting peak energy of the resulting copolymer at 0 to 120° C. were measured, and the crystallinity was calculated from the energy ratio between the polyethylene and the copolymer. The melting peak energy was measured with a differential scanning calorimeter (DSC, manufactured by TA Instruments Japan, "DSCQ2000").
(8)引張強度(Tb)及び破断伸び(Eb)
 JIS K 6251(2017年)に基づくダンベル状3号形に成形し、試験片とした。
 引張強度(Tb)は、JIS K 6251(2017年)に基づいて、引張試験装置(インストロン社製)を使用し、試験片を25℃で100%伸長し、試験片を破断させるのに要した最大の引張り力として測定した。
 破断伸び(Eb)は、試験片を、25℃にて100mm/分の速度で引張り、試験片が破断したときの長さを測定し、引っ張る前の長さ(100%)に対する長さとして求めた。
(8) Tensile strength (Tb) and elongation at break (Eb)
The specimen was molded into a dumbbell shape No. 3 based on JIS K 6251 (2017) to prepare a test specimen.
The tensile strength (Tb) was measured based on JIS K 6251 (2017) using a tensile testing device (manufactured by Instron) by elongating the test piece by 100% at 25°C, and the maximum tensile force required to break the test piece was measured.
The breaking elongation (Eb) was determined by measuring the length of a test piece at the time when the test piece broke after pulling the test piece at 25° C. at a rate of 100 mm/min, and expressing the length as a ratio to the length before pulling (100%).
(9)主鎖構造の確認
 合成した共重合体について、13C-NMRスペクトルを測定し、13C-NMRスペクトルチャートにおいて、10~24ppmにピークが観測されなかったことから、合成した共重合体は、主鎖が非環状構造のみからなることを確認した。
(9) Confirmation of main chain structure The 13 C-NMR spectrum of the synthesized copolymer was measured. Since no peak was observed at 10 to 24 ppm in the 13 C-NMR spectrum chart, it was confirmed that the main chain of the synthesized copolymer was composed only of acyclic structures.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<ゴム組成物の調製>
 表2に示す配合処方に従って、各成分を配合し混練、加硫して、ゴム組成物を調製した。なお、配合した共役ジエン単位及び非共役オレフィン単位を有する共重合体の種類及び量は、表3に示す通りである。
<Preparation of Rubber Composition>
Rubber compositions were prepared by blending, kneading, and vulcanizing each component according to the compounding recipe shown in Table 2. The types and amounts of the blended copolymers having conjugated diene units and non-conjugated olefin units are as shown in Table 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
*1 NR: 天然ゴム
*2 BR: ブタジエンゴム、UBEエラストマー社製、商品名「UBEPOL BR150L」
*3 カーボンブラック: N134
*4 加硫系薬品: 加硫促進剤と硫黄を含む
*5 その他成分: ステアリン酸、亜鉛華を含む
*1 NR: Natural rubber *2 BR: Butadiene rubber, manufactured by UBE Elastomers, product name "UBEPOL BR150L"
*3 Carbon black: N134
*4 Vulcanization chemicals: Contains vulcanization accelerators and sulfur *5 Other ingredients: Contains stearic acid and zinc oxide
<積層体の作製及び評価>
 上記のようにして作製したゴム組成物からゴム層(A)及びゴム層(B)を作製し、ゴム層(A)とゴム層(B)とを積層して140℃で2分間加熱して、ゴム層(A)とゴム層(B)とを接合させて、積層体を作製した。得られた積層体に対して、以下の方法で、剥離強度を測定した。
<Preparation and Evaluation of Laminate>
A rubber layer (A) and a rubber layer (B) were prepared from the rubber composition prepared as described above, and the rubber layer (A) and the rubber layer (B) were laminated and heated at 140° C. for 2 minutes to bond the rubber layer (A) and the rubber layer (B) to prepare a laminate. The peel strength of the obtained laminate was measured by the following method.
(10)剥離強度の測定
 積層体のゴム層(A)の部分から、ゴム層(B)の部分を引き剥がして剥離させ、剥離時抗力(N/10mm)を測定した。測定結果は、実施例1の積層体の剥離強度を100として指数表示した。指数値が大きい程、剥離強度が高いことを示す。また、以下の基準で、各例の剥離強度を分類した。
  優: 指数値が150以上の場合
  良: 指数値が150未満100以上の場合
  可: 指数値が100未満50以上の場合
  不可: 指数値が50未満の場合
 結果を表3に示す。
(10) Measurement of peel strength The rubber layer (B) was peeled off from the rubber layer (A) of the laminate, and the peel resistance (N/10 mm) was measured. The measurement results were expressed as an index, with the peel strength of the laminate of Example 1 taken as 100. The larger the index value, the higher the peel strength. The peel strength of each example was classified according to the following criteria.
Excellent: When the index value is 150 or more. Good: When the index value is less than 150 and 100 or more. Passable: When the index value is less than 100 and 50 or more. Poor: When the index value is less than 50. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から、ジエン系ゴムを50質量%以上含むゴム成分と、共役ジエン単位及び非共役オレフィン単位を有する共重合体とを含むゴム層(A)と、ジエン系ゴムを50質量%以上含むゴム成分と、共役ジエン単位及び非共役オレフィン単位を有する共重合体とを含むゴム層(B)とから作製した積層体は、ゴム層(A)とゴム層(B)との間の剥離強度が高いことが分かる。 From Table 3, it can be seen that a laminate made from a rubber layer (A) containing a rubber component containing 50% by mass or more of a diene rubber and a copolymer having conjugated diene units and non-conjugated olefin units, and a rubber layer (B) containing a rubber component containing 50% by mass or more of a diene rubber and a copolymer having conjugated diene units and non-conjugated olefin units has high peel strength between the rubber layer (A) and the rubber layer (B).
 本実施形態の積層体は、タイヤ等の種々のゴム製品に利用できる。 The laminate of this embodiment can be used for various rubber products such as tires.
 1:積層体、 2:ゴム層(A)、 3:ゴム層(B) 1: Laminate, 2: Rubber layer (A), 3: Rubber layer (B)

Claims (11)

  1.  少なくとの二つのゴム層を含む積層体であって、
     積層体中の一つのゴム層(A)と、該ゴム層(A)に隣接するもう一つのゴム層(B)とが、それぞれ、ジエン系ゴムを50質量%以上含むゴム成分と、共役ジエン単位及び非共役オレフィン単位を有する共重合体と、を含み、前記共重合体の含有量が、前記ゴム成分100質量部に対して3~40質量部であることを特徴とする、積層体。
    A laminate comprising at least two rubber layers,
    A laminate, characterized in that one rubber layer (A) in the laminate and another rubber layer (B) adjacent to the rubber layer (A) each contain a rubber component containing 50% by mass or more of a diene rubber and a copolymer having a conjugated diene unit and a non-conjugated olefin unit, and the content of the copolymer is 3 to 40 parts by mass per 100 parts by mass of the rubber component.
  2.  前記共重合体は、融点が50~120℃である、請求項1に記載の積層体。 The laminate according to claim 1, wherein the copolymer has a melting point of 50 to 120°C.
  3.  前記共重合体は、前記共役ジエン単位の含有量が0mol%を超え50mol%以下であり、前記非共役オレフィン単位の含有量が50mol%以上100mol%未満である、請求項1に記載の積層体。 The laminate according to claim 1, wherein the copolymer has a content of the conjugated diene units of more than 0 mol% and not more than 50 mol%, and a content of the non-conjugated olefin units of 50 mol% or more and less than 100 mol%.
  4.  前記共重合体が、更に芳香族ビニル単位を含む、請求項1に記載の積層体。 The laminate of claim 1, wherein the copolymer further contains aromatic vinyl units.
  5.  前記共重合体は、前記共役ジエン単位の含有量が1~50mol%であり、前記非共役オレフィン単位の含有量が40~97mol%であり、前記芳香族ビニル単位の含有量が2~35mol%である、請求項4に記載の積層体。 The laminate according to claim 4, wherein the copolymer has a conjugated diene unit content of 1 to 50 mol%, a non-conjugated olefin unit content of 40 to 97 mol%, and an aromatic vinyl unit content of 2 to 35 mol%.
  6.  前記共重合体は、結晶化度が0.5~50%である、請求項1に記載の積層体。 The laminate according to claim 1, wherein the copolymer has a crystallinity of 0.5 to 50%.
  7.  前記ゴム層(A)に含まれる前記共重合体の融点と、前記ゴム層(B)に含まれる前記共重合体の融点との差が、30℃以下である、請求項1に記載の積層体。 The laminate according to claim 1, wherein the difference between the melting point of the copolymer contained in the rubber layer (A) and the melting point of the copolymer contained in the rubber layer (B) is 30°C or less.
  8.  ジエン系ゴムを50質量%以上含むゴム成分と、共役ジエン単位及び非共役オレフィン単位を有する共重合体と、を含み、前記共重合体の含有量が、前記ゴム成分100質量部に対して3~40質量部である架橋済みの少なくとの二つのゴム層を積層し、加熱することを特徴とする、積層体の製造方法。 A method for manufacturing a laminate, comprising laminating and heating at least two crosslinked rubber layers that contain a rubber component containing 50% by mass or more of diene rubber and a copolymer having conjugated diene units and non-conjugated olefin units, the copolymer content of which is 3 to 40 parts by mass per 100 parts by mass of the rubber component.
  9.  ジエン系ゴムを50質量%以上含むゴム成分と、共役ジエン単位及び非共役オレフィン単位を有する共重合体と、を含み、前記共重合体の含有量が、前記ゴム成分100質量部に対して3~40質量部である架橋済みの少なくとの一つのゴム層と、ジエン系ゴムを50質量%以上含むゴム成分と、共役ジエン単位及び非共役オレフィン単位を有する共重合体と、を含み、前記共重合体の含有量が、前記ゴム成分100質量部に対して3~40質量部である未架橋の少なくとの一つのゴム層とを積層し、加熱することを特徴とする、積層体の製造方法。 A method for producing a laminate, comprising laminating and heating at least one cross-linked rubber layer, the rubber layer including a rubber component containing 50% by mass or more of a diene rubber and a copolymer having conjugated diene units and non-conjugated olefin units, the copolymer content being 3 to 40 parts by mass per 100 parts by mass of the rubber component, and at least one uncross-linked rubber layer, the rubber component including 50% by mass or more of a diene rubber and a copolymer having conjugated diene units and non-conjugated olefin units, the copolymer content being 3 to 40 parts by mass per 100 parts by mass of the rubber component.
  10.  ジエン系ゴムを50質量%以上含むゴム成分と、共役ジエン単位及び非共役オレフィン単位を有する共重合体と、を含み、前記共重合体の含有量が、前記ゴム成分100質量部に対して3~40質量部である未架橋の少なくとの二つのゴム層を積層し、加熱することを特徴とする、積層体の製造方法。 A method for manufacturing a laminate, comprising laminating and heating at least two uncrosslinked rubber layers, the rubber layers including a rubber component containing 50% by mass or more of diene rubber and a copolymer having conjugated diene units and non-conjugated olefin units, the copolymer content of which is 3 to 40 parts by mass per 100 parts by mass of the rubber component.
  11.  請求項1に記載の積層体を具えることを特徴とする、タイヤ。 A tire comprising the laminate described in claim 1.
PCT/JP2023/027074 2022-12-19 2023-07-24 Laminate, method for producing laminate, and tire WO2024134952A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022-202482 2022-12-19

Publications (1)

Publication Number Publication Date
WO2024134952A1 true WO2024134952A1 (en) 2024-06-27

Family

ID=

Similar Documents

Publication Publication Date Title
JP4670639B2 (en) Conjugated diene rubber composition, method for producing the same, and rubber cross-linked product
CN107849315A (en) Rubber composition
CN106795329A (en) For the elastomer blend comprising high glass-transition temperature hydrocarbon resin of tire
TWI763190B (en) Hydrogenated petroleum resin and method of preparing the same, and rubber composition and rubber composition for tire threads comprising the same
US10889146B2 (en) Tire object provided with an elastomer layer made of a thermoplastic elastomer in the form of an (A-b-(a-methylstyrene-co-B))n-b-C block copolymer
CN113474413A (en) Crosslinked product and tire
CN113423779A (en) Resin composition and resin product
WO2024134952A1 (en) Laminate, method for producing laminate, and tire
JP2021021070A (en) Pneumatic tire
WO2024134953A1 (en) Retread tire
WO2024134970A1 (en) Tire, tire production method, and tire retreading method
JP2024087585A (en) Laminate, method for manufacturing laminate, and tire
WO2021205824A1 (en) Fiber reinforced plastic and molded product
EP3978266B1 (en) Resin molded body, tire, automotive part, and resin composition
JP7336454B2 (en) Multi-element copolymers, rubber compositions, resin compositions, tires and resin products
JP2024087581A (en) Retread tires
WO2020241684A1 (en) Resin molded body, tire, automotive part, and resin composition
JP7293892B2 (en) rubber composition
CN110885484B (en) Rubber composition and method for producing the same
JP2021066025A (en) Manufacturing method of molded product and molded product
WO2020054238A1 (en) Rubber composition and tire
WO2021221103A1 (en) Laminate and product
JP2021080337A (en) Rubber composition and tire
WO2021075132A1 (en) Molded product and method for manufacturing molded product
JP2020050796A (en) Pneumatic tire