WO2024134905A1 - Terminal, wireless communication method, and base station - Google Patents
Terminal, wireless communication method, and base station Download PDFInfo
- Publication number
- WO2024134905A1 WO2024134905A1 PCT/JP2022/047753 JP2022047753W WO2024134905A1 WO 2024134905 A1 WO2024134905 A1 WO 2024134905A1 JP 2022047753 W JP2022047753 W JP 2022047753W WO 2024134905 A1 WO2024134905 A1 WO 2024134905A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sensing
- signal
- information
- communication
- radar
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 174
- 238000000034 method Methods 0.000 title description 107
- 230000005540 biological transmission Effects 0.000 claims abstract description 56
- 238000005259 measurement Methods 0.000 claims description 74
- 238000012545 processing Methods 0.000 description 53
- 230000011664 signaling Effects 0.000 description 46
- 230000006870 function Effects 0.000 description 30
- 238000013135 deep learning Methods 0.000 description 21
- 239000003999 initiator Substances 0.000 description 17
- 238000005516 engineering process Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 11
- 238000013468 resource allocation Methods 0.000 description 11
- 230000009977 dual effect Effects 0.000 description 10
- 238000007726 management method Methods 0.000 description 10
- 238000001914 filtration Methods 0.000 description 9
- 238000010295 mobile communication Methods 0.000 description 9
- 230000007246 mechanism Effects 0.000 description 8
- 238000013507 mapping Methods 0.000 description 7
- 238000013473 artificial intelligence Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000003321 amplification Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000012937 correction Methods 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 238000010187 selection method Methods 0.000 description 4
- 230000001960 triggered effect Effects 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000013139 quantization Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000002592 echocardiography Methods 0.000 description 2
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 235000015842 Hesperis Nutrition 0.000 description 1
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 1
- 108700026140 MAC combination Proteins 0.000 description 1
- 101150071746 Pbsn gene Proteins 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000013523 data management Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 208000037918 transfusion-transmitted disease Diseases 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000012384 transportation and delivery Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/87—Combinations of radar systems, e.g. primary radar and secondary radar
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
Definitions
- This disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
- LTE Long Term Evolution
- UMTS Universal Mobile Telecommunications System
- Non-Patent Document 1 LTE-Advanced (3GPP Rel. 10-14) was specified for the purpose of achieving higher capacity and greater sophistication over LTE (Third Generation Partnership Project (3GPP (registered trademark)) Release (Rel.) 8, 9).
- LTE 5th generation mobile communication system
- 5G+ 5th generation mobile communication system
- 6G 6th generation mobile communication system
- NR New Radio
- E-UTRA Evolved Universal Terrestrial Radio Access
- E-UTRAN Evolved Universal Terrestrial Radio Access Network
- Wireless sensing is being considered for future wireless communication systems (e.g., NR).
- one of the objectives of this disclosure is to provide a terminal, a wireless communication method, and a base station that appropriately perform wireless sensing in a wireless communication system.
- a terminal has a receiving unit that receives information for determining a type based on at least one of whether the sensing uses cooperation between multiple devices, whether the sensing uses a signal for communication, whether the sensing uses a signal for radar, and whether the sensing uses a signal for both communication and radar, and a control unit that controls at least one of transmission and reception for the sensing based on the information.
- wireless sensing can be appropriately performed in a wireless communication system.
- FIG. 1A to 1C show examples of sensing method 1 and sensing method 2.
- FIG. 2A and 2B show an example of sensing method 3.
- 3A and 3B show an example of an LFM radar signal.
- 4A through 4D show an example of a pulsed radar signal.
- 5A and 5B show an example area/scenario of embodiment #1-1.
- 6A and 6B show another example of an area/scenario for embodiment #1-1.
- 7A to 7C show an example of Type 1 of embodiment #1-1-1.
- 8A to 8D show an example of Type 2 of embodiment #1-1-1.
- 9A to 9C show an example of Type 1 of embodiment #1-1-2.
- 10A and 10B show an example of Type 2 of embodiment #1-1-2.
- 11A to 11C show an example of Type 1 of embodiment #1-1-3.
- FIG. 12A to 12C show an example of Type 2 of embodiment #1-1-3.
- 13A to 13C show an example of Type 3 of embodiment #1-1-3.
- FIG. 14 shows an example of a sensing information collection request in embodiment #2-1.
- 15A to 15C show an example of sensing information collection in embodiment #2-2.
- FIG. 16 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment.
- FIG. 17 is a diagram illustrating an example of the configuration of a base station according to an embodiment.
- FIG. 18 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
- FIG. 19 is a diagram illustrating an example of the hardware configuration of a base station and a user terminal according to an embodiment.
- FIG. 20 is a diagram illustrating an example of a vehicle according to an embodiment.
- Wireless sensing technology Sensing technologies that use radio waves (wireless sensing technology, object detection, etc.) are being studied. Wireless sensing technology is thought to have the following advantages compared to other sensing technologies: - Sensing using moving images or infrared rays can only be applied in specific directions, whereas wireless sensing technology is not limited by direction and can take advantage of characteristics such as diffraction. - Wireless sensing technology can be implemented at low cost compared to video capture functions.
- BS base station
- sensing-assisted communication and communication-assisted sensing are considered.
- sensing-assisted communication sensing-assisted beam management and sensing-assisted resource allocation are considered.
- communication-assisted sensing network sensing and coordinated sensing are considered.
- waveforms, beamforming, artificial intelligence (AI)/deep learning (DL) operation radio access technology (RAT), frame structure, and reference signals are considered.
- AI artificial intelligence
- DL deep learning
- RAT radio access technology
- frame structure and reference signals are considered.
- reference signals are considered.
- shared spectrum hardware, and algorithms for ISAC, higher frequency bands, larger antenna arrays, and similar signal processing algorithms for communication and sensing are considered.
- the challenges are a unified waveform that simultaneously meets the requirements for communication (e.g., OFDM signal) and sensing (e.g., chirp signal), ISAC beamforming that simultaneously realizes communication (e.g., transmission signal, reception signal) and sensing (e.g., echo signal, transmission signal, reflection signal) by beamforming, and interference suppression between them, and CSI mining by AI that uses AI/DL networks to extract sensing information from channel information for communication (e.g., UL transmission signal) and radar (e.g., DL radar signal).
- OFDM signal OFDM signal
- sensing e.g., chirp signal
- AI that uses AI/DL networks to extract sensing information from channel information for communication
- radar e.g., DL radar signal
- the three types of radar and communication systems are considered based on whether the communication and radar (sensing) systems share hardware/bands.
- the three types are independent radar and communication systems (independent systems), joint radar and communication systems (joint systems), and integrated radar and communication systems (integrated systems).
- independent systems independent systems
- joint radar and communication systems joint systems
- integrated radar and communication systems integrated systems
- Conventional communication systems include communication between one BS (base station) and one UE, and joint transmission between multiple BSs and one UE.
- Conventional radar systems include monostatic radar, in which one radar transmits a radar signal and receives echoes from a sensing target, and bistatic/multistatic radar, in which one radar transmits a radar signal and one or more radars receive echoes from a sensing target.
- Independent systems use separate hardware and separate frequency bands for radar and communications.
- the separate hardware may be co-located or in separate locations.
- the joint system uses the same hardware and separate frequency bands for radar and communications.
- the integrated system uses the same hardware and the same frequency bands for radar and communications.
- sensing can be achieved in three ways: [Sensing method 1] Monostatic sensing, which uses the idea of monostatic radar. [Sensing method 2] Bistatic/multistatic sensing using bistatic radar/multistatic radar. [Sensing method 3] Sensing aided by UE (UE-assisted sensing) using the idea of NR positioning.
- Sensing method 1 requires one BS or UE, and sensing is performed by echo signals.
- sensing method 1 there is no BS-BS cooperation, UE-UE cooperation, or BS-UE cooperation.
- sensing method 1 full duplex is required, and a low SNR of the echo signal is required.
- a use case of sensing method 1 is, for example, imaging using terahertz.
- Sensing method 2 requires two or more BSs or two or more UEs, and sensing is performed by reflected signals. In sensing method 2, half duplex is sufficient. In sensing method 2, close synchronization and coordination between BSs or UEs is required, and scheduling coordination between multiple BSs is required. A use case of sensing method 2 is, for example, positioning.
- Sensing method 3 requires a BS and a UE, and sensing is performed by communication (UL/DL) signals.
- the existing 5G NR framework operates.
- a UE is required, and both line of sight (LOS) and non-line of sight (NLOS) sensing require high computational complexity.
- a use case of sensing method 3 is, for example, breath monitoring.
- each of the multiple sensing methods has its own suitable scenario, requirements regarding BS/UE capabilities, and sensing accuracy/performance.
- Sensing method 1 is suitable for BS/UE with full duplex, sensing targets close to the BS or UE.
- Sensing method 2 is suitable for BS/UE without full duplex, sensing targets far from the BS or UE.
- Sensing method 3 is suitable for BS/UE with high capabilities.
- Scenarios suitable for sensing method 1 include sensing targets close to the sensing BS or UE, high or medium SNR of the echo signal, and sensing targets without communication capabilities. Capability requirements for sensing method 1 include full duplex (a high requirement) at the BS or UE. Sensing performance of sensing method 1 includes high accuracy with no quantization, accuracy related to the SNR of the echo signal, and low latency.
- Scenarios suitable for sensing method 2 include very tight synchronization between multiple BSs or multiple UEs, sensing targets without communication capabilities. Capability requirements for sensing method 2 include half-duplex (low requirement), synchronization between multiple BSs or multiple UEs (high requirement). Sensing performance of sensing method 2 includes high accuracy with no quantization, accuracy related to synchronization error, and moderate latency.
- Scenarios suitable for sensing method 3 include communicating UEs around the sensing target.
- the capacity requirements of sensing method 3 are UEs with high computational resources (high requirements).
- the sensing performance of sensing method 3 includes medium accuracy due to quantization of feedback values, accuracy related to deployed resources and UE location, and high latency.
- multiple sensing methods and capabilities may coexist within one ISAC system.
- the inventors therefore investigated signaling regarding sensing types, definitions and signaling of UE/BS capabilities, and measurement and reporting mechanisms.
- A/B and “at least one of A and B” may be interpreted as interchangeable. Also, in this disclosure, “A/B/C” may mean “at least one of A, B, and C.”
- Radio Resource Control RRC
- RRC parameters RRC parameters
- RRC messages higher layer parameters
- information elements IEs
- settings etc.
- MAC Control Element CE
- update commands activation/deactivation commands, etc.
- higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or any combination thereof.
- RRC Radio Resource Control
- MAC Medium Access Control
- the MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), etc.
- the broadcast information may be, for example, a Master Information Block (MIB), a System Information Block (SIB), Remaining Minimum System Information (RMSI), Other System Information (OSI), etc.
- MIB Master Information Block
- SIB System Information Block
- RMSI Remaining Minimum System Information
- OSI System Information
- the physical layer signaling may be, for example, Downlink Control Information (DCI), Uplink Control Information (UCI), etc.
- DCI Downlink Control Information
- UCI Uplink Control Information
- index identifier
- indicator indicator
- resource ID etc.
- sequence list, set, group, cluster, subset, etc.
- the sensing method may be at least one of sensing methods 1 to 3 described above.
- the multiple sensing methods may require different capabilities on the UE/BS.
- Sensing method 1 may require full-duplex capability at the BS or UE.
- Sensing method 2 may require precise synchronization between multiple BSs or multiple UEs.
- Sensing method 3 may require communication capability at the sensing target or high computational complexity capability.
- the sensing signal may be a signal for a sensing function.
- the sensing signal may be at least one of a communication signal and a communication waveform.
- the sensing signal may be a signal with at least one of CP-OFDM and DFT-s-OFDM waveforms in a communication system.
- the signal may be, for example, at least one of PRS, SRS, CSI-RS, SSB, PDSCH, and PUSCH.
- the sensing signal may be at least one of a radar signal and a radar waveform.
- the sensing signal may be a signal with at least one of a frequency modulated continuous wave (FMCW), a linear frequency modulation (LFM), and a chirp waveform (CW) in a radar system.
- FMCW frequency modulated continuous wave
- LFM linear frequency modulation
- CW chirp waveform
- the sensing signal may be at least one of an ISAC signal and an ISAC waveform.
- the UE may be a terminal with communication capabilities.
- the sensing target may or may not have communication capabilities.
- a communication signal or an ISAC signal may be transmitted and received between the BS and the UE.
- a sensing signal or an ISAC signal may be transmitted from the BS or the UE to the sensing target.
- the BS or the UE may receive an echo signal from the sensing target.
- a communication signal or an ISAC signal may be transmitted and received between the BS and the UE.
- a sensing signal or an ISAC signal may be transmitted from the BS or the UE to the sensing target.
- the associated BS1 or the associated UE may receive a reflected signal from the sensing target.
- a communication signal or an ISAC signal may be transmitted and received between the BS and the UE.
- a sensing signal or an ISAC signal may be transmitted from the BS or the UE to the sensing target.
- the associated BS1 and associated BS2 or the associated UE1 and associated UE2 may receive a reflected signal from the sensing target.
- a sensing signal or ISAC signal may be transmitted and received between the BS and the UE.
- the UE may be a sensing target.
- a sensing signal or ISAC signal may be transmitted and received between the BS and the UE.
- the UE may or may not be a sensing target.
- the UE may receive a reflected signal from the sensing target.
- 5G system (5GS) capabilities provide the capability to use NR RF signals to obtain information about at least one of the characteristics of an environment and objects in the environment.
- the information may include at least one of the shape, size, speed, location, distance, and relative movement between multiple objects.
- 5GS capabilities may provide the capability to obtain information that is predefined in EPC/E-UTRA.
- the sensing transmitter may be an entity that emits sensing signals used by the sensing service in its operation.
- the sensing transmitter may be an NR radio access network (RAN) node or a UE.
- the sensing transmitter may be located in the same entity as the sensing receiver or in a different entity than the sensing receiver.
- RAN radio access network
- the sensing receiver may be an entity that receives sensing signals used by the sensing service in its operation.
- the sensing receiver may be an NR RAN node or a UE.
- the sensing receiver may be located within the same entity as the sensing transmitter or may be located within a different entity than the sensing transmitter.
- a sensing group may be a set of one or more UEs that support sensing operations. The locations of all UEs in the set of UEs may be known. Sensing measurement data for the set of UEs may be collected simultaneously.
- the sensing measurement data may be data collected about radio/wireless signals that are affected by the object or environment targeted for sensing.
- the sensing measurement process may be the process of collecting sensing measurement data.
- the sensing result may be information derived from processing the sensing measurement data.
- the sensing result may be a characteristic of the object or the environment.
- WLAN wireless local area network
- Sensing types include monostatic, monostatic with coordination (two or more transmitters and receivers), bistatic, bistatic with coordination (two or more receivers), multistatic, and passive sensing.
- the sensing configuration includes any of a sensing transmitter, a sensing receiver, a sensing initiator, and a sensing responder. Any of cases 1 to 4 based on different combinations of sensing transmitters, sensing receivers, sensing initiators, and sensing responders may be configured.
- the sensing initiator has the function of a sensing receiver and sends a request to the sensing responder.
- the sensing responder has the function of a sensing transmitter and sends a physical protocol data unit (PPDU) in response to the request.
- the sensing initiator receives the PPDU.
- the sensing initiator has the function of a sensing transmitter and sends a PPDU.
- the sensing responder has the function of a sensing receiver, receives the PPDU, and sends a report based on the reception to the sensing initiator.
- the sensing initiator has the function of both a sensing transmitter and a sensing receiver, and sends and receives PPDUs.
- the sensing responder has the functionality of both a sensing transmitter and a sensing receiver, transmits and receives PPDUs, and transmits reports based on the reception to the sensing initiator.
- the sensing initiator does not have the functionality of either a sensing transmitter or a sensing receiver, and transmits requests.
- the sensing responder has the functionality of both a sensing transmitter and a sensing receiver, transmits and receives PPDUs in response to requests, and transmits reports based on the reception to the sensing initiator.
- sensing requirements/sensing services may be initiated by a sensing initiator.
- the sensing procedure includes, in order, a sensing session setup, a sensing measurement setup, a sensing measurement instance, a sensing measurement termination, and a sensing session termination.
- the radar signal may have high sensing performance or may be designed for sensing.
- the form of the radar signal in each embodiment may be a pulse signal in one or more subcarriers or one or more frequency resources, a pulse signal in one or more OFDM symbols or one or more time resources, or a continuous signal with chirp/LFM characteristics.
- These signals may be generated in an NR (5G advanced (5GA) or 6G or later) system, or may be generated by another integrated non-NR/5GA/6G system.
- the radar method and the sensing method using the radar signal may be the monostatic/bistatic/multistatic sensing described above.
- the LFM radar signal may be one subcarrier in OFDM.
- the LFM radar signal may be a chirp signal.
- the radar (sensing) signal may be a pulsed radar signal with regular intervals. Each pulse may be a chirp signal.
- the radar signal may be frequency division multiplexed (FDM) with the communication signal.
- the radar (sensing) signal may be a continuous pulsed radar signal. Each pulse may be a chirp signal. As in the example of FIG. 4D, the radar signal may be frequency division multiplexed (FDM) with the communication signal.
- FDM frequency division multiplexed
- the sensing transmitter may be a BS/UE/wireless communication device.
- the sensing receiver may be a BS/UE/wireless communication device.
- the sensing transmitter and the sensing receiver may be one BS/UE/sensing transceiver/wireless communication device.
- the sensing target may or may not have communication capabilities.
- the sensing target may include a UE.
- sensing target and target may be read as interchangeable.
- sensing, wireless sensing and measurement may be read as interchangeable.
- the echo signal, the signal impacted by the object, the signal reflected by the object, the signal refracted by the object, the signal diffracted by the object, the signal transmitted and received by the sensing transceiver, and the signal received by the sensing receiver may be interchangeable.
- the communication signal, RS, radar signal, hybrid communication and radar signal, integrated signal, ISAC signal, and sensing signal may be interchangeable.
- a sensing transmitter and a sensing receiver in the same location may be interpreted as interchangeable.
- a sensing transceiver in the same location, a sensing transceiver, an integrated sensing transceiver, and a BS may be interpreted as interchangeable.
- the terms BS, UE, IAB, repeater, reconfigurable intelligent surface (RIS), sensing transmitter, sensing receiver, sensing transceiver, wireless communication device, and target may be interchangeable.
- the terms BS, network (NW), core network, and sensing server may be interchangeable.
- UE group, sensor group, UE set, and sensor set may be interpreted as interchangeable.
- Multiple sensing types may be supported within a single ISAC system.
- sensing transmitters/sensing receivers and sensing initiators/sensing responders may complicate the system.
- some pre-configurations for sensing types may be defined.
- the sensing type may be defined as a higher layer parameter.
- the higher layer parameter may be an RRC parameter or a broadcast parameter such as SIB/MIB.
- the setting/instruction may follow embodiment #1-2.
- the sensing types may be limited to fewer options through configuration in higher layers. This is beneficial in sensing resource allocation and sensing measurement data configuration.
- Multiple areas/scenarios may support different sensing methods and sensing signals.
- each of the two BSs may be a conventional BS without full-duplex capability and radar signals.
- Each of the two UEs performs measurements on the RS received from the BS and reports to the BS.
- the frequency resource may change along with the change in the time resource. Data for communication may be allocated to other times/frequencies.
- the supported sensing methods may be sensing methods 2 and 3.
- the supported sensing signal may be a communication signal.
- the communication signal may be, for example, a PRS or a new RS for sensing.
- one new ISAC BS may support full duplex and new waveform generation.
- the BS performs measurements and does not report on echo signals.
- the radar signal/radar waveform may be allocated across multiple frequency resources at a specific time resource.
- the radar waveform may be, for example, FMCW. Data for communication may be allocated at other times/frequencies.
- the supported sensing methods may be sensing methods 1, 2 and 3.
- the supported sensing signal may be a radar signal/radar waveform.
- the radar waveform may be, for example, a new ISAC waveform.
- the sensing methods and sensing signals may be associated with measurement and reporting configurations.
- the configurations may be, for example, resource allocation for sensing and measurement results for reporting.
- the supported sensing methods and sensing signals for different coverage areas/scenarios may be pre-configured by higher layers.
- One or more sensing types based on one or more sensing methods may be defined.
- the one or more sensing types may be at least one of several types:
- the signal transmitted and received at the sensing transmitter/sensing receiver may be used for sensing the target.
- the affected sensing signal received at the sensing transmitter/sensing receiver may be used for sensing the target.
- full duplex is required at the BS side or UE side.
- Collaborative sensing between BS-BS or UE-UE i.e., collaborative sensing is bistatic sensing/multistatic sensing), or collaborative sensing between BS-UE (i.e., UE-assisted sensing), or distributed sensing transmitter and sensing receiver.
- Collaborative sensing between BS-UE may be UE-assisted sensing with UL RS or DL RS for sensing.
- Collaborative sensing between BS-UE may be based on 5G NR positioning method.
- Collaborative sensing between BS-BS or UE-UE requires accurate synchronization between multiple BSs or multiple UEs.
- Type 1 and Type 2 can be easily determined by at least one of full duplex capability at the BS/UE and the location of the sensing transmitter and sensing receiver. If there is no full duplex capability at the BS/UE, then only Type 2 may be supported. Otherwise, both types may be supported.
- the sensing transmitter and sensing receiver are co-located and may be a sensing transceiver.
- the sensing transceiver transmits a signal and receives an echo signal from the target.
- the Type 1 example of FIG. 7B is BS-side monostatic sensing. In this example, the sensing transceiver is the BS.
- the Type 1 example of FIG. 7C is UE-side monostatic sensing. In this example, the sensing transceiver is the UE.
- the sensing transmitter and the sensing receiver are distributed.
- the sensing transmitter transmits a signal and the sensing receiver receives the signal affected by the object.
- the Type 2 example of FIG. 8B is BS-side bistatic sensing/multistatic sensing.
- the sensing transmitter is the BS and the sensing receiver is the associated BS.
- the Type 2 example of FIG. 8C is UE-side bistatic sensing/multistatic sensing.
- the sensing transmitter is the UE and the sensing receiver is the associated UE.
- the Type 2 example of FIG. 8D is UE-assisted sensing.
- the sensing transmitter is the BS and the sensing receiver is the UE, where the BS transmits a communication signal and the UE receives a communication signal from the BS and feeds back the sensing result to the BS.
- One or more sensing types based on forward compatibility may be defined.
- the one or more sensing types may be at least one of the following types:
- UE-assisted sensing UL/DL RS may be used for sensing and feedback.
- Existing RS or new RS may be defined for sensing.
- Data e.g., PUSCH/PDSCH
- UE-assisted sensing may be based on 5G NR positioning method.
- the sensing transmitter may be a BS and the sensing receiver may be a UE.
- the sensing transmitter may be a UE and the sensing receiver may be a BS.
- the communication signals may be, for example, at least one of PRS, SRS, CSI-RS, SSB, PDSCH, and PUSCH.
- the radar signals may be at least one of FMCW, LFM, and CW.
- the integrated signals may be novel ISAC signals.
- the ISAC system may support at least one of monostatic/bistatic/multistatic.
- Type 1 and Type 2 can be easily determined depending on whether new sensing capabilities different from 5G NR are supported or the UE is involved in sensing. If new capabilities different from 5G NR positioning are involved, only Type 2 may be supported. If not, both types may be supported. The smaller number of types results in smaller signaling overhead.
- the sensing transmitter and sensing receiver may be a BS and a UE.
- the sensing transmitter transmits a signal and the sensing receiver receives an echo signal from the target.
- the Type 1 example of FIG. 9B is UE-assisted sensing via DL signals.
- the sensing transmitter is a BS and the sensing receiver is a UE.
- the Type 1 example of FIG. 9C is UE-assisted sensing via UL signals.
- the sensing transmitter is a UE and the sensing receiver is a BS.
- Type 2 in FIG. 10A is monostatic sensing.
- the sensing transceiver is a BS or a UE.
- the sensing transceiver transmits a signal and receives an echo signal from the target.
- An example of Type 2 in FIG. 10B is bistatic/multistatic sensing.
- the sensing transmitter is a BS or a UE and the sensing receiver is an associated BS or an associated UE.
- the sensing transmitter transmits a signal and the sensing receiver receives the signal affected by the target.
- One or more sensing types based on the sensing signal may be defined.
- the one or more sensing types may be at least one of the following types:
- a radar method at least one of one or more UEs, one or more objects, and the environment may be sensed by a sensing signal/ISAC signal.
- the sensing signal/ISAC signal may be a radar signal as described above.
- the radar method may be a monostatic sensing/bistatic sensing/multistatic sensing radar method as described above.
- One or more sensing methods may be supported.
- One or more UEs may be sensed by existing or new signals in the communication system. Through a radar method, at least one of one or more objects and the environment may be sensed by communication signals/sensing signals/ISAC signals.
- the radar method may be the above-mentioned monostatic sensing/bistatic sensing/multistatic sensing radar method.
- One or more sensing methods may be supported.
- At least one type may be supported by the sensing system. At least one type may be based on Type 1 with methods and signals defined by 5G NR positioning.
- Type 1 in FIG. 11A is monostatic sensing at the BS or UE.
- the sensing transceiver may be the BS or the UE.
- the sensing transceiver transmits the communication signal and receives the echo signal from the object.
- An example of Type 1 in FIG. 11B is bistatic/multistatic sensing at the BS/UE.
- the sensing transmitter transmits the communication signal and the sensing receiver receives the signal affected by the object.
- the sensing transmitter is the BS or the UE and the sensing receiver is the associated BS or the associated UE.
- An example of Type 1 in FIG. 11C is UE-assisted sensing.
- the sensing transmitter is the BS and the sensing receiver is the UE, the BS transmits the communication signal, the UE receives the communication signal from the BS and feeds back the sensing result to the BS.
- Type 2 in FIG. 12A is monostatic sensing at the BS or UE.
- the sensing transceiver may be the BS or the UE.
- the sensing transceiver transmits a radar signal and receives an echo signal from the target.
- An example of Type 2 in FIG. 12B is bistatic/multistatic sensing at the BS/UE.
- the sensing transmitter transmits a radar signal and the sensing receiver receives the signal affected by the target.
- the sensing transmitter is the BS or the UE and the sensing receiver is an associated BS or an associated UE.
- An example of Type 2 in FIG. 12C is UE-assisted sensing.
- the sensing transmitter is the BS and the sensing receiver is the UE, the BS transmits a radar signal, the UE receives the radar signal from the BS, and feeds back the sensing result to the BS.
- Type 3 in FIG. 13A is monostatic sensing at the BS.
- the sensing transceiver is the BS.
- the BS uses communication signals for sensing the UE and radar signals for sensing the target.
- the BS transmits communication signals and radar signals.
- the UE receives communication signals from the BS and feeds back the reception results to the BS.
- the BS receives echo signals from the target and receives feedback from the UE.
- An example of Type 3 in FIG. 13B is bistatic/multistatic sensing at the BS.
- the sensing transmitter is the BS and the sensing receiver is a cooperating BS.
- the BS uses communication signals for sensing the UE and radar signals for sensing the target.
- the BS transmits communication signals and radar signals.
- the UE receives communication signals from the BS and feeds back the reception results to the BS.
- the cooperating BS receives signals influenced by the target.
- the BS receives feedback from the UE.
- An example of Type 3 in FIG. 13C is UE-assisted sensing.
- the sensing transmitter is a BS and the sensing receiver is a UE.
- the BS uses communication signals to sense the UE and radar signals to sense the target.
- the BS transmits communication signals and radar signals.
- the UE receives the communication signals from the BS and the signals affected by the target, and feeds back the reception results to the BS.
- the BS receives feedback from the UE.
- One or more sensing types based on the sensing signal and the sensing method may be defined.
- the one or more sensing types may be at least one of the following types:
- sensing may be based on UL or DL signals to the UE.
- the signals may be based on at least one of PRS, SRS, CSI-RS, SSB, PDSCH, PUSCH, new RS.
- the UE has requirements/capabilities for data communication.
- sensing may be based on signals from the sensing transmitter (BS/UE) to the sensing receiver (BS/UE).
- the signals may be at least one of PRS, SRS, CSI-RS, SSB, PDSCH, PUSCH, new RS. If a UE is involved, sensing may be independent of whether the UE has requirements/capabilities for data communication or not.
- sensing may be based on UL or DL signals to the UE.
- the signals may be based on at least one of radar signals, ISAC signals, radar waveforms, and ISAC waveforms.
- the UE has requirements/capabilities for data communication.
- sensing may be based on a signal from a sensing transmitter (BS/UE) to a sensing receiver (BS/UE).
- the signal may be based on at least one of a radar signal, an ISAC signal, a radar waveform, and an ISAC waveform. If a UE is involved, sensing may be independent of whether the UE has requirements/capabilities for data communication.
- the dynamic configuration of measurement and reporting mechanisms (e.g., resource allocation and reporting values) can be less complex.
- the sensing type may not be explicitly defined as in embodiments #1-1-1 to #1-1-4, but may be implicitly indicated by the sensing signal and sensing method that are set.
- the determination/configuration of the corresponding measurement and reporting mechanisms can be achieved with low overhead and low complexity.
- the sensing type may be selected based on one or more factors including at least one of the supported signals and the capabilities of the BS/UE/sensing target.
- the capabilities may be exchanged between multiple devices including the BS/UE.
- the capabilities may be exchanged by higher layer signaling/physical layer signaling.
- the capabilities may be exchanged by at least one of the RRC IE/MAC CE/DCI/UCI and the X2/Xn interface between multiple BSs, or may be broadcast by SIB/MIB signaling.
- the sensing type/sensing signal may be selected/determined according to at least one of the following selection methods:
- sensing type and sensing signal may be based on the capabilities of BS/UE.
- the capabilities of BS/UE involved in sensing may be exchanged/broadcast.
- all sensing types may be supported.
- sensing type with monostatic sensing may not be supported, and sensing type with at least one of bistatic/multistatic sensing and UE-assisted sensing may be supported.
- the system may select one sensing type based on performance requirements and configure corresponding resources and procedures.
- BS with full-duplex capability and UE with low computational complexity/capability only sensing type with bistatic/multistatic sensing may be supported.
- the selection of sensing type and sensing signal may be based on the supported signals.
- the BS/UE capabilities for sensing may be exchanged/broadcast. If the BS can generate radar signals, all of the one or more sensing signals may be supported.
- the one or more sensing signals may include at least one of communication signals, radar signals, and hybrid signals. One or more sensing signals may be selected and transmitted. If the BS cannot generate radar signals, only communication signals may be supported.
- sensing type and sensing signal may be based on the capability of the sensing target.
- the capability of BS/UE involved in sensing may be exchanged/broadcast. If the sensing target does not have communication capability and there is no UE around, only sensing types with monostatic/bistatic/multistatic sensing may be supported. Otherwise, all sensing types may be supported.
- the exchange of capability information may differ due to different definitions of sensing type and sensing signal in embodiment #1-1, or due to different factors of selection in embodiment #1-2-1.
- the signaling overhead consumed can be reduced.
- the selected sensing type and sensing signal may be indicated by physical layer signaling (e.g., DCI/UCI), may be set by higher layer signaling (e.g., RRC IE/MAC CE), or may be set by broadcast signaling (e.g., SIB/MIB).
- one sensing type may be set by higher layer signaling.
- multiple sensing types may be set by higher layer signaling, and one sensing type among them may be indicated by physical layer signaling.
- the corresponding resources for sensing may be set/indicated by RRC IE/MAC CE/DCI/UCI/SIB/MIB signaling.
- bistatic sensing/multistatic sensing interaction between cooperating BSs may be conducted via existing or new X2/Xn interfaces or via a sensing server.
- embodiment #1-2-2 the advantages of embodiment #1-1 can be realized.
- the corresponding values of measurement and reporting may be determined, may be indicated by physical layer signaling (e.g., DCI/UCI), may be set by higher layer signaling (e.g., RRC IE/MAC CE), or may be set by broadcast signaling (e.g., SIB/MIB). Details of measurement and reporting of different sensing types and different sensing signals may follow embodiments #1-3.
- physical layer signaling e.g., DCI/UCI
- RRC IE/MAC CE e.g., RRC IE/MAC CE
- broadcast signaling e.g., SIB/MIB
- Measurements and reports may be designed for the sensing type and sensing signal.
- Measurements at the BS side may be performed based on at least one of the following options: [Option 1] Measurements (in monostatic sensing type) may be made based on echo signals at the sensing transceiver, or on signals transmitted and received by the BS, or on signals impinged on the object. [Option 2] Measurements may be made based on signals transmitted and received from other BSs (in bistatic/multistatic sensing type) or based on signals transmitted and received from the UE (in UE-assisted sensing type).
- reporting may not be necessary, but measurement resources may be set/instructed.
- Measurements at the UE side may be performed based on at least one of the following options: [Option 1] Measurements (in monostatic sensing type) may be made based on echo signals at the sensing transceiver, or on signals transmitted and received by the BS, or on signals impinged on the object. [Option 2] Measurements may be made based on signals transmitted and received from the BS (in bistatic/multistatic sensing type) or based on signals transmitted and received from other UEs (in UE-assisted sensing type).
- Measurement resources and reporting resources may be configured/indicated.
- Measurements at the cooperating BS side may be performed based on signals transmitted and received from another BS.
- a mechanism for cooperation among multiple BSs may be defined.
- At least measurement resources may be configured.
- measurements/sensing using DL may be performed in the UE, and measurements/sensing using UL may be performed in the BS.
- the results of the measurements/sensing using DL may be reported by the UE.
- the measurement/sensing may be performed at the UE or at the BS.
- the result of the measurement/sensing may or may not be reported by the UE.
- the measurement/sensing may be performed in one or more associated BSs or one or more associated UEs.
- the measurement/sensing results may be reported by one or more associated BSs or one or more associated UEs.
- the measurement and reporting mechanism is related to the sensing type/sensing signal. According to embodiment #1-3, the advantages of embodiment #1-1/1-2 can be realized.
- any appropriate sensing type/sensing signal can be used.
- Embodiment #2 This embodiment relates to a mechanism for requesting (initiator) and collecting (responder) sensing. Embodiment #1 and embodiment #2 may be combined.
- the request for collecting sensing information may be in accordance with at least one of the following options:
- the request may be triggered from the BS/network, i.e. the sensing initiator may be the BS/network.
- the trigger may be according to at least one of several options: [Option 1] The request is triggered from higher layers/network. [Option 2] The request is triggered periodically, with a pre-set periodicity.
- the request may be triggered from the UE side, i.e., the sensing initiator may be the UE.
- the UE may determine the request from an event.
- the event may be related to communication quality degradation or some new sensing service.
- the sensing service may be, for example, automated navigation defined in service and systems aspects (SA) 1 of 3GPP.
- SA service and systems aspects
- the event may be configured by the BS/network.
- the sensing request/initiator in option 1 is the BS/network side
- the sensing request/initiator in option 2 is the UE side.
- a request for sensing and information collection/reporting may be signaled from the BS/network to a sensing responder, which may be, for example, one or more other BSs, or one or more UEs, or a UE/sensor group.
- the collection of sensing information may follow at least one of the following options:
- the information is collected at the BS side from at least one of the BS itself and one or more other BSs through at least one of wireless sensing and one or more sensors other than wireless sensing, which may include at least one of a camera and a LiDAR.
- the information is collected from a UE connected to the BS through at least one of wireless sensing and one or more sensors other than wireless sensing, which may include at least one of a camera and a LiDAR.
- the information is collected from multiple UEs (sensors) in one UE (sensor) group through at least one of wireless sensing and one or more sensors other than wireless sensing.
- the one or more sensors may include at least one of a camera and a LiDAR.
- Configurations e.g., resource allocation, report values, etc.
- a sensing type e.g., a sensing signal
- a measurement and reporting mechanism may be configured for one UE in the UE group or all UEs in the UE group.
- Measurement values or collected information may be first collected by one UE in the UE group and then reported by the UE to the BS/network. Measurement values or collected information may be reported from all UEs in the UE group to the BS/network.
- Figure 15A shows an example of option 1.
- the BS is the sensing responder and performs the information collection.
- the relationship between the BS and the sensing target is the sensing link.
- the relationship between the UE and the sensing target is the sensing link.
- the relationship between the BS and the UE is the reporting link for the collected information.
- Figure 15B shows an example of option 2.
- one UE connected to the BS is a sensing responder and performs information collection.
- the relationship between the BS and the sensing target is a sensing link.
- the relationship between the UE and the sensing target is a sensing link.
- the relationship between the BS and the UE is a reporting link for the collected information.
- Figure 15C shows an example of option 3.
- one UE group is a sensing responder and performs information collection.
- the relationship between the UE group (sensor group) and the sensing target is a sensing link.
- the relationship between the BS and the UE is a reporting link for the collected information.
- sensing requests and collection can be performed appropriately.
- BS/UE capabilities related to sensing may be defined.
- monostatic sensing For a co-located sensing transmitter and sensing receiver, if full-duplex is supported on the BS side (self-interference can be cancelled within an acceptable range), monostatic sensing may be supported. Otherwise, monostatic sensing may not be supported.
- Such capability definitions can be combined with sensing types in embodiment #1-1-1/1-1-2.
- a BS capability with respect to synchronization error among multiple BSs may be defined.
- bistatic sensing/multistatic sensing may be supported. Otherwise, bistatic sensing/multistatic sensing may not be supported.
- Such capability definitions can be combined with sensing types in embodiment #1-1-1/1-1-2.
- the sensing function can be realized by at least one of the radar signals and hybrid signals of communication signals and radar signals. If not, the communication signals can be used for sensing.
- Such capability definitions can be combined with sensing types in embodiment #1-1-3.
- BS capabilities may be exchanged between the BS and the core network, between the BS and the server, between multiple BSs with cooperation, or broadcast to multiple UEs.
- the X2 or Xn interface may be taken into account.
- monostatic sensing For a co-located sensing transmitter and sensing receiver, if full duplex is supported on the UE side (self-interference can be cancelled within an acceptable range), monostatic sensing may be supported. Otherwise, monostatic sensing may not be supported.
- Such capability definitions can be combined with sensing types in embodiment #1-1-1/1-1-2.
- bistatic sensing/multistatic sensing may be supported. Otherwise, bistatic sensing/multistatic sensing may not be supported.
- Such capability definitions can be combined with sensing types in embodiment #1-1-1/1-1-2.
- the sensing function may be realized by at least one of the radar signals and hybrid signals of communication signals and radar signals. If not, the communication signal can be used for sensing.
- Such capability definitions can be combined with sensing types in embodiment #1-1-3.
- UE-assisted sensing in DL for targets via NLOS channel information may be supported. Otherwise, UE-assisted sensing in DL may not be supported.
- Such capability definitions can determine whether UE-assisted sensing of the environment/objects is supported or not.
- UE capabilities may be reported to the BS via RRC IE/MAC CE/UCI signaling. UE capabilities may also be exchanged between multiple UEs with cooperation via sidelink.
- At least one of the BS, the network, and the server may determine a sensing type (including a sensing method and a sensing signal) based on at least one of the BS capabilities and the UE capabilities, and may notify at least one of the BS and the UE of the sensing type, as in embodiment #1.
- a sensing type including a sensing method and a sensing signal
- appropriate sensing can be performed based on the capabilities of the BS/UE.
- the UE when the BS performs sensing on a specific resource, the UE may not transmit or receive on the specific resource, may not expect to be instructed/configured/scheduled to transmit or receive on the specific resource, or may drop/cancel/puncture/rate match the transmission or reception on the specific resource.
- any information may be notified to the UE (from a network (NW) (e.g., a base station (BS))) (in other words, any information is received from the BS by the UE) using physical layer signaling (e.g., DCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PDCCH, PDSCH, reference signal), or a combination thereof.
- NW network
- BS base station
- any information is received from the BS by the UE
- physical layer signaling e.g., DCI
- higher layer signaling e.g., RRC signaling, MAC CE
- PDCCH Physical Downlink Control Channel
- PDSCH reference signal
- the MAC CE may be identified by including a new Logical Channel ID (LCID) in the MAC subheader that is not specified in existing standards.
- LCID Logical Channel ID
- the notification When the notification is made by a DCI, the notification may be made by a specific field of the DCI, a Radio Network Temporary Identifier (RNTI) used to scramble Cyclic Redundancy Check (CRC) bits assigned to the DCI, the format of the DCI, etc.
- RNTI Radio Network Temporary Identifier
- CRC Cyclic Redundancy Check
- notification of any information to the UE in the above-mentioned embodiments may be performed periodically, semi-persistently, or aperiodically.
- notification of any information from the UE (to the NW) may be performed using physical layer signaling (e.g., UCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PUCCH, PUSCH, PRACH, reference signal), or a combination thereof.
- physical layer signaling e.g., UCI
- higher layer signaling e.g., RRC signaling, MAC CE
- a specific signal/channel e.g., PUCCH, PUSCH, PRACH, reference signal
- the MAC CE may be identified by including a new LCID in the MAC subheader that is not specified in existing standards.
- the notification may be transmitted using PUCCH or PUSCH.
- notification of any information from the UE may be performed periodically, semi-persistently, or aperiodically.
- At least one of the above-mentioned embodiments may be applied when a specific condition is satisfied, which may be specified in a standard or may be notified to a UE/BS using higher layer signaling/physical layer signaling.
- At least one of the above-described embodiments may be applied only to UEs that have reported or support a particular UE capability.
- the particular UE capability may be any of the UE capabilities in each of the above-mentioned embodiments.
- the specific UE capabilities may be capabilities that are applied across all duplexing methods (commonly regardless of the duplexing method), or may be capabilities for each duplexing method (e.g., Time Division Duplex (TDD) and Frequency Division Duplex (FDD)).
- TDD Time Division Duplex
- FDD Frequency Division Duplex
- the above-mentioned embodiments may be applied when the UE configures/activates/triggers specific information related to the above-mentioned embodiments (or performs the operations of the above-mentioned embodiments) by higher layer signaling/physical layer signaling.
- the specific information may be information indicating that the functions of each embodiment are enabled, any RRC parameters for a specific release (e.g., Rel. 18/19), etc.
- the UE may, for example, apply Rel. 15/16 operations.
- Appendix 1 a receiving unit that receives information for determining a type based on at least one of whether the sensing uses cooperation of multiple devices, whether the sensing uses a signal for communication, whether the sensing uses a signal for radar, and whether the sensing uses a signal for both communication and radar;
- a terminal having a control unit that controls at least one of transmission and reception for the sensing based on the information.
- [Appendix 2] The terminal of claim 1, wherein the information indicates at least one of: computational capabilities for the sensing, signals supported for the sensing, capabilities of the sensing target, the type, signals for the sensing, measurement configurations for the sensing, reporting configurations based on the sensing, a request for the sensing, capabilities for simultaneous transmission and reception, and capabilities regarding synchronization errors.
- [Appendix 3] The terminal according to claim 1 or 2, wherein the sensing is performed by any one of the terminal, a base station, cooperation between the terminal and the base station, cooperation between a plurality of terminals including the terminal, and cooperation between a plurality of base stations.
- [Appendix 4] 4 4. The terminal according to claim 1, wherein the control unit controls at least one of a request for the sensing and a report based on the sensing.
- Wired communication system A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
- communication is performed using any one of the wireless communication methods according to the above embodiments of the present disclosure or a combination of these.
- FIG. 16 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
- the wireless communication system 1 (which may simply be referred to as system 1) may be a system that realizes communication using Long Term Evolution (LTE) specified by the Third Generation Partnership Project (3GPP), 5th generation mobile communication system New Radio (5G NR), or the like.
- LTE Long Term Evolution
- 3GPP Third Generation Partnership Project
- 5G NR 5th generation mobile communication system New Radio
- the wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
- MR-DC may include dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E-UTRA Dual Connectivity (NE-DC)), etc.
- RATs Radio Access Technologies
- MR-DC may include dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E-UTRA Dual Connectivity (NE-DC)), etc.
- E-UTRA Evolved Universal Terrestrial Radio Access
- EN-DC E-UTRA-NR Dual Connectivity
- NE-DC NR-E-UTRA Dual Connectivity
- the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN).
- the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
- the wireless communication system 1 may support dual connectivity between multiple base stations within the same RAT (e.g., dual connectivity in which both the MN and SN are NR base stations (gNBs) (NR-NR Dual Connectivity (NN-DC))).
- dual connectivity in which both the MN and SN are NR base stations (gNBs) (NR-NR Dual Connectivity (NN-DC))).
- gNBs NR base stations
- N-DC Dual Connectivity
- the wireless communication system 1 may include a base station 11 that forms a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) that are arranged within the macrocell C1 and form a small cell C2 that is narrower than the macrocell C1.
- a user terminal 20 may be located within at least one of the cells. The arrangement and number of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when there is no need to distinguish between the base stations 11 and 12, they will be collectively referred to as base station 10.
- the user terminal 20 may be connected to at least one of the multiple base stations 10.
- the user terminal 20 may utilize at least one of carrier aggregation (CA) using multiple component carriers (CC) and dual connectivity (DC).
- CA carrier aggregation
- CC component carriers
- DC dual connectivity
- Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
- Macro cell C1 may be included in FR1
- small cell C2 may be included in FR2.
- FR1 may be a frequency band below 6 GHz (sub-6 GHz)
- FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
- the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
- TDD Time Division Duplex
- FDD Frequency Division Duplex
- the multiple base stations 10 may be connected by wire (e.g., optical fiber conforming to the Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (e.g., NR communication).
- wire e.g., optical fiber conforming to the Common Public Radio Interface (CPRI), X2 interface, etc.
- NR communication e.g., NR communication
- base station 11 which corresponds to the upper station
- IAB Integrated Access Backhaul
- base station 12 which corresponds to a relay station
- the base station 10 may be connected to the core network 30 directly or via another base station 10.
- the core network 30 may include at least one of, for example, an Evolved Packet Core (EPC), a 5G Core Network (5GCN), a Next Generation Core (NGC), etc.
- EPC Evolved Packet Core
- 5GCN 5G Core Network
- NGC Next Generation Core
- the core network 30 may include network functions (Network Functions (NF)) such as, for example, a User Plane Function (UPF), an Access and Mobility management Function (AMF), a Session Management Function (SMF), a Unified Data Management (UDM), an Application Function (AF), a Data Network (DN), a Location Management Function (LMF), and Operation, Administration and Maintenance (Management) (OAM).
- NF Network Functions
- UPF User Plane Function
- AMF Access and Mobility management Function
- SMF Session Management Function
- UDM Unified Data Management
- AF Application Function
- DN Data Network
- LMF Location Management Function
- OAM Operation, Administration and Maintenance
- the user terminal 20 may be a terminal that supports at least one of the communication methods such as LTE, LTE-A, and 5G.
- a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
- OFDM Orthogonal Frequency Division Multiplexing
- CP-OFDM Cyclic Prefix OFDM
- DFT-s-OFDM Discrete Fourier Transform Spread OFDM
- OFDMA Orthogonal Frequency Division Multiple Access
- SC-FDMA Single Carrier Frequency Division Multiple Access
- the radio access method may also be called a waveform.
- other radio access methods e.g., other single-carrier transmission methods, other multi-carrier transmission methods
- a downlink shared channel (Physical Downlink Shared Channel (PDSCH)) shared by each user terminal 20, a broadcast channel (Physical Broadcast Channel (PBCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)), etc. may be used as the downlink channel.
- PDSCH Physical Downlink Shared Channel
- PBCH Physical Broadcast Channel
- PDCCH Physical Downlink Control Channel
- an uplink shared channel (Physical Uplink Shared Channel (PUSCH)) shared by each user terminal 20, an uplink control channel (Physical Uplink Control Channel (PUCCH)), a random access channel (Physical Random Access Channel (PRACH)), etc. may be used as an uplink channel.
- PUSCH Physical Uplink Shared Channel
- PUCCH Physical Uplink Control Channel
- PRACH Physical Random Access Channel
- SIB System Information Block
- PDSCH User data, upper layer control information, System Information Block (SIB), etc.
- SIB System Information Block
- PUSCH User data, upper layer control information, etc.
- MIB Master Information Block
- PBCH Physical Broadcast Channel
- Lower layer control information may be transmitted by the PDCCH.
- the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information for at least one of the PDSCH and the PUSCH.
- DCI Downlink Control Information
- the DCI for scheduling the PDSCH may be called a DL assignment or DL DCI
- the DCI for scheduling the PUSCH may be called a UL grant or UL DCI.
- the PDSCH may be interpreted as DL data
- the PUSCH may be interpreted as UL data.
- a control resource set (COntrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH.
- the CORESET corresponds to the resources to search for DCI.
- the search space corresponds to the search region and search method of PDCCH candidates.
- One CORESET may be associated with one or multiple search spaces. The UE may monitor the CORESET associated with a search space based on the search space configuration.
- a search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
- One or more search spaces may be referred to as a search space set. Note that the terms “search space,” “search space set,” “search space setting,” “search space set setting,” “CORESET,” “CORESET setting,” etc. in this disclosure may be read as interchangeable.
- the PUCCH may transmit uplink control information (UCI) including at least one of channel state information (CSI), delivery confirmation information (which may be called, for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and a scheduling request (SR).
- UCI uplink control information
- CSI channel state information
- HARQ-ACK Hybrid Automatic Repeat reQuest ACKnowledgement
- ACK/NACK ACK/NACK
- SR scheduling request
- the PRACH may transmit a random access preamble for establishing a connection with a cell.
- downlink, uplink, etc. may be expressed without adding "link.”
- various channels may be expressed without adding "Physical” to the beginning.
- a synchronization signal (SS), a downlink reference signal (DL-RS), etc. may be transmitted.
- a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DMRS), a positioning reference signal (PRS), a phase tracking reference signal (PTRS), etc. may be transmitted.
- the synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
- a signal block including an SS (PSS, SSS) and a PBCH (and a DMRS for PBCH) may be called an SS/PBCH block, an SS Block (SSB), etc.
- the SS, SSB, etc. may also be called a reference signal.
- a measurement reference signal Sounding Reference Signal (SRS)
- a demodulation reference signal DMRS
- UL-RS uplink reference signal
- DMRS may also be called a user equipment-specific reference signal (UE-specific Reference Signal).
- the base station 17 is a diagram showing an example of a configuration of a base station according to an embodiment.
- the base station 10 includes a control unit 110, a transceiver unit 120, a transceiver antenna 130, and a transmission line interface 140.
- the control unit 110, the transceiver unit 120, the transceiver antenna 130, and the transmission line interface 140 may each be provided in one or more units.
- this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the base station 10 may also be assumed to have other functional blocks necessary for wireless communication. Some of the processing of each part described below may be omitted.
- the control unit 110 controls the entire base station 10.
- the control unit 110 can be configured from a controller, a control circuit, etc., which are described based on a common understanding in the technical field to which this disclosure pertains.
- the control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), etc.
- the control unit 110 may control transmission and reception using the transceiver unit 120, the transceiver antenna 130, and the transmission path interface 140, measurement, etc.
- the control unit 110 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transceiver unit 120.
- the control unit 110 may perform call processing of communication channels (setting, release, etc.), status management of the base station 10, management of radio resources, etc.
- the transceiver unit 120 may include a baseband unit 121, a radio frequency (RF) unit 122, and a measurement unit 123.
- the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
- the transceiver unit 120 may be composed of a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transceiver circuit, etc., which are described based on a common understanding in the technical field to which the present disclosure relates.
- the transceiver unit 120 may be configured as an integrated transceiver unit, or may be composed of a transmission unit and a reception unit.
- the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
- the reception unit may be composed of a reception processing unit 1212, an RF unit 122, and a measurement unit 123.
- the transmitting/receiving antenna 130 can be configured as an antenna described based on common understanding in the technical field to which this disclosure pertains, such as an array antenna.
- the transceiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
- the transceiver 120 may receive the above-mentioned uplink channel, uplink reference signal, etc.
- the transceiver 120 may form at least one of the transmit beam and the receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
- digital beamforming e.g., precoding
- analog beamforming e.g., phase rotation
- the transceiver 120 may perform Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (e.g., RLC retransmission control), Medium Access Control (MAC) layer processing (e.g., HARQ retransmission control), etc., on data and control information obtained from the control unit 110, and generate a bit string to be transmitted.
- PDCP Packet Data Convergence Protocol
- RLC Radio Link Control
- MAC Medium Access Control
- HARQ retransmission control HARQ retransmission control
- the transceiver 120 may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, Discrete Fourier Transform (DFT) processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
- transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, Discrete Fourier Transform (DFT) processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
- channel coding which may include error correction coding
- DFT Discrete Fourier Transform
- IFFT Inverse Fast Fourier Transform
- the transceiver unit 120 may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the transceiver antenna 130.
- the transceiver unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transceiver antenna 130.
- the transceiver 120 may apply reception processing such as analog-to-digital conversion, Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal, and acquire user data, etc.
- reception processing such as analog-to-digital conversion, Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal, and acquire user data, etc.
- FFT Fast Fourier Transform
- IDFT Inverse Discrete Fourier Transform
- the transceiver 120 may perform measurements on the received signal.
- the measurement unit 123 may perform Radio Resource Management (RRM) measurements, Channel State Information (CSI) measurements, etc. based on the received signal.
- the measurement unit 123 may measure received power (e.g., Reference Signal Received Power (RSRP)), received quality (e.g., Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)), signal strength (e.g., Received Signal Strength Indicator (RSSI)), propagation path information (e.g., CSI), etc.
- RSRP Reference Signal Received Power
- RSSI Received Signal Strength Indicator
- the measurement results may be output to the control unit 110.
- the transmission path interface 140 may transmit and receive signals (backhaul signaling) between devices included in the core network 30 (e.g., network nodes providing NF), other base stations 10, etc., and may acquire and transmit user data (user plane data), control plane data, etc. for the user terminal 20.
- devices included in the core network 30 e.g., network nodes providing NF
- other base stations 10, etc. may acquire and transmit user data (user plane data), control plane data, etc. for the user terminal 20.
- the transmitter and receiver of the base station 10 in this disclosure may be configured with at least one of the transmitter/receiver 120, the transmitter/receiver antenna 130, and the transmission path interface 140.
- the transceiver unit 120 may transmit information for determining the type based on at least one of the following: whether the sensing uses cooperation between multiple devices; whether the sensing uses a signal for communication; whether the sensing uses a signal for radar; and whether the sensing uses a signal for both communication and radar.
- the control unit 110 may control at least one of the transmission and reception for the sensing based on the information.
- the user terminal 18 is a diagram showing an example of the configuration of a user terminal according to an embodiment.
- the user terminal 20 includes a control unit 210, a transmitting/receiving unit 220, and a transmitting/receiving antenna 230.
- the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may each include one or more.
- this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the user terminal 20 may also be assumed to have other functional blocks necessary for wireless communication. Some of the processing of each part described below may be omitted.
- the control unit 210 controls the entire user terminal 20.
- the control unit 210 can be configured from a controller, a control circuit, etc., which are described based on a common understanding in the technical field to which this disclosure pertains.
- the control unit 210 may control signal generation, mapping, etc.
- the control unit 210 may control transmission and reception using the transceiver unit 220 and the transceiver antenna 230, measurement, etc.
- the control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transceiver unit 220.
- the transceiver unit 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223.
- the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
- the transceiver unit 220 may be composed of a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transceiver circuit, etc., which are described based on a common understanding in the technical field to which the present disclosure relates.
- the transceiver unit 220 may be configured as an integrated transceiver unit, or may be composed of a transmission unit and a reception unit.
- the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
- the reception unit may be composed of a reception processing unit 2212, an RF unit 222, and a measurement unit 223.
- the transmitting/receiving antenna 230 can be configured as an antenna described based on common understanding in the technical field to which this disclosure pertains, such as an array antenna.
- the transceiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc.
- the transceiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, etc.
- the transceiver 220 may form at least one of the transmit beam and receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
- digital beamforming e.g., precoding
- analog beamforming e.g., phase rotation
- the transceiver 220 may perform PDCP layer processing, RLC layer processing (e.g., RLC retransmission control), MAC layer processing (e.g., HARQ retransmission control), etc. on the data and control information acquired from the controller 210, and generate a bit string to be transmitted.
- RLC layer processing e.g., RLC retransmission control
- MAC layer processing e.g., HARQ retransmission control
- the transceiver 220 may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), IFFT processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
- transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), IFFT processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
- Whether or not to apply DFT processing may be based on the settings of transform precoding.
- the transceiver unit 220 transmission processing unit 2211
- the transceiver unit 220 may perform DFT processing as the above-mentioned transmission processing in order to transmit the channel using a DFT-s-OFDM waveform, and when transform precoding is not enabled, it is not necessary to perform DFT processing as the above-mentioned transmission processing.
- the transceiver unit 220 may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the transceiver antenna 230.
- the transceiver unit 220 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transceiver antenna 230.
- the transceiver 220 may apply reception processing such as analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal to acquire user data, etc.
- reception processing such as analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal to acquire user data, etc.
- the transceiver 220 may perform measurements on the received signal. For example, the measurement unit 223 may perform RRM measurements, CSI measurements, etc. based on the received signal.
- the measurement unit 223 may measure received power (e.g., RSRP), received quality (e.g., RSRQ, SINR, SNR), signal strength (e.g., RSSI), propagation path information (e.g., CSI), etc.
- the measurement results may be output to the control unit 210.
- the transmitting unit and receiving unit of the user terminal 20 in this disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
- the transceiver unit 220 may receive information for determining the type based on at least one of the following: whether the sensing uses cooperation between multiple devices (at least two of the terminal 20 and the base station 10); whether the sensing uses a signal for communication; whether the sensing uses a signal for radar; and whether the sensing uses a signal for both communication and radar.
- the control unit 210 may control at least one of the transmission and reception for the sensing based on the information.
- the information may indicate at least one of the following: computational capabilities for the sensing, signals supported for the sensing, capabilities of the sensing target, the type, signals for the sensing, measurement settings for the sensing, reporting settings based on the sensing, a request for the sensing, simultaneous transmission and reception capabilities, and capabilities regarding synchronization errors.
- the sensing may be performed by the terminal 20, the base station 10, cooperation between the terminal 20 and the base station 10, cooperation between multiple terminals including the terminal 20, or cooperation between multiple base stations.
- the control unit 210 may control at least one of the sensing request and the reporting based on the sensing.
- each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and directly or indirectly connected (for example, using wires, wirelessly, etc.).
- the functional blocks may be realized by combining the one device or the multiple devices with software.
- the functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, election, establishment, comparison, assumption, expectation, deeming, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment.
- a functional block (component) that performs the transmission function may be called a transmitting unit, a transmitter, and the like. In either case, as mentioned above, there are no particular limitations on the method of realization.
- a base station, a user terminal, etc. in one embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
- FIG. 19 is a diagram showing an example of the hardware configuration of a base station and a user terminal according to one embodiment.
- the above-mentioned base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc.
- the terms apparatus, circuit, device, section, unit, etc. may be interpreted as interchangeable.
- the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figures, or may be configured to exclude some of the devices.
- processor 1001 may be implemented by one or more chips.
- the functions of the base station 10 and the user terminal 20 are realized, for example, by loading specific software (programs) onto hardware such as the processor 1001 and memory 1002, causing the processor 1001 to perform calculations, control communications via the communication device 1004, and control at least one of the reading and writing of data in the memory 1002 and storage 1003.
- the processor 1001 for example, runs an operating system to control the entire computer.
- the processor 1001 may be configured as a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, etc.
- CPU central processing unit
- control unit 110 210
- transmission/reception unit 120 220
- etc. may be realized by the processor 1001.
- the processor 1001 also reads out programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
- the programs used are those that cause a computer to execute at least some of the operations described in the above embodiments.
- the control unit 110 (210) may be realized by a control program stored in the memory 1002 and running on the processor 1001, and similar implementations may be made for other functional blocks.
- Memory 1002 is a computer-readable recording medium and may be composed of at least one of, for example, Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. Memory 1002 may also be called a register, cache, main memory, etc. Memory 1002 can store executable programs (program codes), software modules, etc. for implementing a wireless communication method according to one embodiment of the present disclosure.
- ROM Read Only Memory
- EPROM Erasable Programmable ROM
- EEPROM Electrically EPROM
- RAM Random Access Memory
- Memory 1002 may also be called a register, cache, main memory, etc.
- Memory 1002 can store executable programs (program codes), software modules, etc. for implementing a wireless communication method according to one embodiment of the present disclosure.
- Storage 1003 is a computer-readable recording medium and may be composed of at least one of a flexible disk, a floppy disk, a magneto-optical disk (e.g., a compact disk (Compact Disc ROM (CD-ROM)), a digital versatile disk, a Blu-ray disk), a removable disk, a hard disk drive, a smart card, a flash memory device (e.g., a card, a stick, a key drive), a magnetic stripe, a database, a server, or other suitable storage medium.
- Storage 1003 may also be referred to as an auxiliary storage device.
- the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, or a communication module.
- the communication device 1004 may be configured to include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., to realize at least one of Frequency Division Duplex (FDD) and Time Division Duplex (TDD).
- FDD Frequency Division Duplex
- TDD Time Division Duplex
- the above-mentioned transmitting/receiving unit 120 (220), transmitting/receiving antenna 130 (230), etc. may be realized by the communication device 1004.
- the transmitting/receiving unit 120 (220) may be implemented as a transmitting unit 120a (220a) and a receiving unit 120b (220b) that are physically or logically separated.
- the input device 1005 is an input device (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
- the output device 1006 is an output device (e.g., a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
- the input device 1005 and the output device 1006 may be integrated into one structure (e.g., a touch panel).
- each device such as the processor 1001 and memory 1002 is connected by a bus 1007 for communicating information.
- the bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
- the base station 10 and the user terminal 20 may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized using the hardware.
- the processor 1001 may be implemented using at least one of these pieces of hardware.
- a channel, a symbol, and a signal may be read as mutually interchangeable.
- a signal may also be a message.
- a reference signal may be abbreviated as RS, and may be called a pilot, a pilot signal, or the like depending on an applied standard.
- a component carrier may also be called a cell, a frequency carrier, a carrier frequency, or the like.
- a radio frame may be composed of one or more periods (frames) in the time domain.
- Each of the one or more periods (frames) constituting a radio frame may be called a subframe.
- a subframe may be composed of one or more slots in the time domain.
- a subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
- the numerology may be a communication parameter that is applied to at least one of the transmission and reception of a signal or channel.
- the numerology may indicate, for example, at least one of the following: SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, Transmission Time Interval (TTI), number of symbols per TTI, radio frame configuration, a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
- SCS SubCarrier Spacing
- TTI Transmission Time Interval
- radio frame configuration a specific filtering process performed by the transceiver in the frequency domain
- a specific windowing process performed by the transceiver in the time domain etc.
- a slot may consist of one or more symbols in the time domain (such as Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.).
- OFDM Orthogonal Frequency Division Multiplexing
- SC-FDMA Single Carrier Frequency Division Multiple Access
- a slot may also be a time unit based on numerology.
- a slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot.
- a PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (PUSCH) mapping type A.
- a PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (PUSCH) mapping type B.
- a radio frame, a subframe, a slot, a minislot, and a symbol all represent time units when transmitting a signal.
- a different name may be used for a radio frame, a subframe, a slot, a minislot, and a symbol, respectively.
- the time units such as a frame, a subframe, a slot, a minislot, and a symbol in this disclosure may be read as interchangeable.
- one subframe may be called a TTI
- multiple consecutive subframes may be called a TTI
- one slot or one minislot may be called a TTI.
- at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms.
- the unit representing the TTI may be called a slot, minislot, etc., instead of a subframe.
- TTI refers to, for example, the smallest time unit for scheduling in wireless communication.
- a base station schedules each user terminal by allocating radio resources (such as frequency bandwidth and transmission power that can be used by each user terminal) in TTI units.
- radio resources such as frequency bandwidth and transmission power that can be used by each user terminal
- the TTI may be a transmission time unit for a channel-coded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc.
- the time interval e.g., the number of symbols
- the time interval in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
- one or more TTIs may be the minimum time unit of scheduling.
- the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
- a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
- a TTI shorter than a normal TTI may be called a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
- a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms
- a short TTI e.g., a shortened TTI, etc.
- TTI length shorter than the TTI length of a long TTI and equal to or greater than 1 ms.
- a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
- the number of subcarriers included in an RB may be the same regardless of numerology, and may be, for example, 12.
- the number of subcarriers included in an RB may be determined based on numerology.
- an RB may include one or more symbols in the time domain and may be one slot, one minislot, one subframe, or one TTI in length.
- One TTI, one subframe, etc. may each be composed of one or more resource blocks.
- one or more RBs may be referred to as a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, an RB pair, etc.
- PRB Physical RB
- SCG sub-carrier Group
- REG resource element group
- PRB pair an RB pair, etc.
- a resource block may be composed of one or more resource elements (REs).
- REs resource elements
- one RE may be a radio resource area of one subcarrier and one symbol.
- a Bandwidth Part which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier.
- PRBs may be defined in a BWP and numbered within the BWP.
- radio frames, subframes, slots, minislots, and symbols are merely examples.
- the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
- the information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information.
- a radio resource may be indicated by a predetermined index.
- the names used for parameters and the like in this disclosure are not limiting in any respect. Furthermore, the formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure.
- the various channels (PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and therefore the various names assigned to these various channels and information elements are not limiting in any respect.
- the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
- the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
- information, signals, etc. may be output from a higher layer to a lower layer and/or from a lower layer to a higher layer.
- Information, signals, etc. may be input/output via multiple network nodes.
- Input/output information, signals, etc. may be stored in a specific location (e.g., memory) or may be managed using a management table. Input/output information, signals, etc. may be overwritten, updated, or added to. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to another device.
- a specific location e.g., memory
- Input/output information, signals, etc. may be overwritten, updated, or added to.
- Output information, signals, etc. may be deleted.
- Input information, signals, etc. may be transmitted to another device.
- the physical layer signaling may be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc.
- the RRC signaling may be called an RRC message, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc.
- the MAC signaling may be notified, for example, using a MAC Control Element (CE).
- CE MAC Control Element
- notification of specified information is not limited to explicit notification, but may be implicit (e.g., by not notifying the specified information or by notifying other information).
- the determination may be based on a value represented by a single bit (0 or 1), a Boolean value represented by true or false, or a comparison of numerical values (e.g., with a predetermined value).
- Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
- Software, instructions, information, etc. may also be transmitted and received via a transmission medium.
- a transmission medium For example, if the software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
- wired technologies such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)
- wireless technologies such as infrared, microwave, etc.
- Network may refer to the devices included in the network (e.g., base stations).
- precoding "precoder,” “weight (precoding weight),” “Quasi-Co-Location (QCL),” “Transmission Configuration Indication state (TCI state),” "spatial relation,” “spatial domain filter,” “transmit power,” “phase rotation,” “antenna port,” “antenna port group,” “layer,” “number of layers,” “rank,” “resource,” “resource set,” “resource group,” “beam,” “beam width,” “beam angle,” “antenna,” “antenna element,” and “panel” may be used interchangeably.
- Base Station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, etc.
- a base station can accommodate one or more (e.g., three) cells.
- a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small base station for indoor use (Remote Radio Head (RRH))).
- RRH Remote Radio Head
- the term "cell” or “sector” refers to a part or the entire coverage area of at least one of the base station and base station subsystems that provide communication services in this coverage.
- MS Mobile Station
- UE User Equipment
- a mobile station may also be referred to as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
- At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc.
- at least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, etc.
- the moving object may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned).
- a vehicle e.g., a car, an airplane, etc.
- an unmanned moving object e.g., a drone, an autonomous vehicle, etc.
- a robot manned or unmanned
- at least one of the base station and the mobile station may also include devices that do not necessarily move during communication operations.
- at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
- IoT Internet of Things
- FIG. 20 is a diagram showing an example of a vehicle according to an embodiment.
- the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (including a current sensor 50, a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service unit 59, and a communication module 60.
- various sensors including a current sensor 50, a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58
- an information service unit 59 including a communication module 60.
- the drive unit 41 is composed of at least one of an engine, a motor, and a hybrid of an engine and a motor, for example.
- the steering unit 42 includes at least a steering wheel (also called a handlebar), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
- the electronic control unit 49 is composed of a microprocessor 61, memory (ROM, RAM) 62, and a communication port (e.g., an Input/Output (IO) port) 63. Signals are input to the electronic control unit 49 from various sensors 50-58 provided in the vehicle.
- the electronic control unit 49 may also be called an Electronic Control Unit (ECU).
- ECU Electronic Control Unit
- Signals from the various sensors 50-58 include a current signal from a current sensor 50 that senses the motor current, a rotation speed signal of the front wheels 46/rear wheels 47 acquired by a rotation speed sensor 51, an air pressure signal of the front wheels 46/rear wheels 47 acquired by an air pressure sensor 52, a vehicle speed signal acquired by a vehicle speed sensor 53, an acceleration signal acquired by an acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by an accelerator pedal sensor 55, a depression amount signal of the brake pedal 44 acquired by a brake pedal sensor 56, an operation signal of the shift lever 45 acquired by a shift lever sensor 57, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by an object detection sensor 58.
- the information service unit 59 is composed of various devices, such as a car navigation system, audio system, speakers, displays, televisions, and radios, for providing (outputting) various information such as driving information, traffic information, and entertainment information, and one or more ECUs that control these devices.
- the information service unit 59 uses information acquired from external devices via the communication module 60, etc., to provide various information/services (e.g., multimedia information/multimedia services) to the occupants of the vehicle 40.
- various information/services e.g., multimedia information/multimedia services
- the driving assistance system unit 64 is composed of various devices that provide functions for preventing accidents and reducing the driver's driving load, such as a millimeter wave radar, a Light Detection and Ranging (LiDAR), a camera, a positioning locator (e.g., a Global Navigation Satellite System (GNSS)), map information (e.g., a High Definition (HD) map, an Autonomous Vehicle (AV) map, etc.), a gyro system (e.g., an Inertial Measurement Unit (IMU), an Inertial Navigation System (INS), etc.), an Artificial Intelligence (AI) chip, and an AI processor, and one or more ECUs that control these devices.
- the driving assistance system unit 64 also transmits and receives various information via the communication module 60 to realize a driving assistance function or an autonomous driving function.
- the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63.
- the communication module 60 transmits and receives data (information) via the communication port 63 between the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, left and right rear wheels 47, axles 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and the various sensors 50-58 that are provided on the vehicle 40.
- the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with an external device. For example, it transmits and receives various information to and from the external device via wireless communication.
- the communication module 60 may be located either inside or outside the electronic control unit 49.
- the external device may be, for example, the above-mentioned base station 10 or user terminal 20.
- the communication module 60 may also be, for example, at least one of the above-mentioned base station 10 and user terminal 20 (it may function as at least one of the base station 10 and user terminal 20).
- the communication module 60 may transmit at least one of the signals from the various sensors 50-58 described above input to the electronic control unit 49, information obtained based on the signals, and information based on input from the outside (user) obtained via the information service unit 59 to an external device via wireless communication.
- the electronic control unit 49, the various sensors 50-58, the information service unit 59, etc. may be referred to as input units that accept input.
- the PUSCH transmitted by the communication module 60 may include information based on the above input.
- the communication module 60 also stores various information received from external devices in memory 62 that can be used by the microprocessor 61. Based on the information stored in memory 62, the microprocessor 61 may control the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, left and right rear wheels 47, axles 48, various sensors 50-58, and the like provided on the vehicle 40.
- the base station in the present disclosure may be read as a user terminal.
- each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a user terminal is replaced with communication between multiple user terminals (which may be called, for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
- the user terminal 20 may be configured to have the functions of the base station 10 described above.
- terms such as "uplink” and "downlink” may be read as terms corresponding to terminal-to-terminal communication (for example, "sidelink").
- the uplink channel, downlink channel, etc. may be read as the sidelink channel.
- the user terminal in this disclosure may be interpreted as a base station.
- the base station 10 may be configured to have the functions of the user terminal 20 described above.
- operations that are described as being performed by a base station may in some cases be performed by its upper node.
- a network that includes one or more network nodes having base stations, it is clear that various operations performed for communication with terminals may be performed by the base station, one or more network nodes other than the base station (such as, but not limited to, a Mobility Management Entity (MME) or a Serving-Gateway (S-GW)), or a combination of these.
- MME Mobility Management Entity
- S-GW Serving-Gateway
- each aspect/embodiment described in this disclosure may be used alone, in combination, or switched between depending on the implementation.
- the processing procedures, sequences, flow charts, etc. of each aspect/embodiment described in this disclosure may be rearranged as long as there is no inconsistency.
- the methods described in this disclosure present elements of various steps using an exemplary order, and are not limited to the particular order presented.
- LTE Long Term Evolution
- LTE-A LTE-Advanced
- LTE-B LTE-Beyond
- SUPER 3G IMT-Advanced
- 4th generation mobile communication system 4th generation mobile communication system
- 5G 5th generation mobile communication system
- 6G 6th generation mobile communication system
- xG x is, for example, an integer or decimal
- Future Radio Access FX
- GSM Global System for Mobile communications
- CDMA2000 Code Division Multiple Access
- UMB Ultra Mobile Broadband
- IEEE 802.11 Wi-Fi
- IEEE 802.16 WiMAX (registered trademark)
- IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods, as well as next-generation systems that are expanded, modified,
- the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
- any reference to elements using designations such as “first,” “second,” etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in some way.
- determining may encompass a wide variety of actions. For example, “determining” may be considered to be judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., looking in a table, database, or other data structure), ascertaining, etc.
- Determining may also be considered to mean “determining” receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in a memory), etc.
- “Judgment” may also be considered to mean “deciding” to resolve, select, choose, establish, compare, etc.
- judgment may also be considered to mean “deciding” to take some kind of action.
- the "maximum transmit power" referred to in this disclosure may mean the maximum value of transmit power, may mean the nominal UE maximum transmit power, or may mean the rated UE maximum transmit power.
- connection refers to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
- the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connected” may be read as "access.”
- a and B are different may mean “A and B are different from each other.”
- the term may also mean “A and B are each different from C.”
- Terms such as “separate” and “combined” may also be interpreted in the same way as “different.”
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
A terminal according to one aspect of the present disclosure has a reception unit and a control unit. The reception unit receives information for determination of a type that is based on at least one of whether sensing is to use cooperation between a plurality of devices, whether the sensing is to use a signal for communication, whether the sensing is to use a signal for radar, and whether the sensing is to use a signal for both communication and radar. The control unit controls at least one of transmission and reception for the sensing on the basis of the information. One aspect of the present disclosure makes it possible to appropriately perform wireless sensing over a wireless communication system.
Description
本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。
This disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP(登録商標)) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
Long Term Evolution (LTE) was specified for Universal Mobile Telecommunications System (UMTS) networks with the aim of achieving higher data rates and lower latency (Non-Patent Document 1). In addition, LTE-Advanced (3GPP Rel. 10-14) was specified for the purpose of achieving higher capacity and greater sophistication over LTE (Third Generation Partnership Project (3GPP (registered trademark)) Release (Rel.) 8, 9).
LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
Successor systems to LTE (e.g., 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 and later, etc.) are also under consideration.
将来の無線通信システム(例えば、NR)における無線センシングが検討されている。
Wireless sensing is being considered for future wireless communication systems (e.g., NR).
しかしながら、無線センシングの詳細が十分に検討されていない。無線センシングの詳細が明らかでなければ、センシング品質/通信品質が低下するおそれがある。
However, the details of wireless sensing have not been fully considered. If the details of wireless sensing are not clear, there is a risk that sensing quality/communication quality will decrease.
そこで、本開示は、無線通信システムにおける無線センシングを適切に行う端末、無線通信方法及び基地局を提供することを目的の1つとする。
Therefore, one of the objectives of this disclosure is to provide a terminal, a wireless communication method, and a base station that appropriately perform wireless sensing in a wireless communication system.
本開示の一態様に係る端末は、センシングが複数の装置の連携を用いるか否かと、前記センシングが通信のための信号を用いるか否かと、前記センシングがレーダのための信号を用いるか否かと、前記センシングが通信及びレーダの両方のための信号を用いるか否かと、の少なくとも1つに基づくタイプの決定のための情報を受信する受信部と、前記情報に基づいて、前記センシングのための送信及び受信の少なくとも1つを制御する制御部と、を有する。
A terminal according to one aspect of the present disclosure has a receiving unit that receives information for determining a type based on at least one of whether the sensing uses cooperation between multiple devices, whether the sensing uses a signal for communication, whether the sensing uses a signal for radar, and whether the sensing uses a signal for both communication and radar, and a control unit that controls at least one of transmission and reception for the sensing based on the information.
本開示の一態様によれば、無線通信システムにおける無線センシングを適切に行うことができる。
According to one aspect of the present disclosure, wireless sensing can be appropriately performed in a wireless communication system.
(無線センシング技術)
無線を用いるセンシング技術(無線センシング技術、物体検知など)の検討が行われている。無線センシング技術は、他のセンシング技術と比較して以下のようなメリットが考えられる。
・動画像や赤外線を用いるセンシングは、特定方向のみに適用されるのに対し、無線センシング技術は、方向の制限がなく、回折などの特徴を活かすことができる。
・動画像撮影機能と比較して、無線センシング技術は廉価で実現できる。 (Wireless sensing technology)
Sensing technologies that use radio waves (wireless sensing technology, object detection, etc.) are being studied. Wireless sensing technology is thought to have the following advantages compared to other sensing technologies:
- Sensing using moving images or infrared rays can only be applied in specific directions, whereas wireless sensing technology is not limited by direction and can take advantage of characteristics such as diffraction.
- Wireless sensing technology can be implemented at low cost compared to video capture functions.
無線を用いるセンシング技術(無線センシング技術、物体検知など)の検討が行われている。無線センシング技術は、他のセンシング技術と比較して以下のようなメリットが考えられる。
・動画像や赤外線を用いるセンシングは、特定方向のみに適用されるのに対し、無線センシング技術は、方向の制限がなく、回折などの特徴を活かすことができる。
・動画像撮影機能と比較して、無線センシング技術は廉価で実現できる。 (Wireless sensing technology)
Sensing technologies that use radio waves (wireless sensing technology, object detection, etc.) are being studied. Wireless sensing technology is thought to have the following advantages compared to other sensing technologies:
- Sensing using moving images or infrared rays can only be applied in specific directions, whereas wireless sensing technology is not limited by direction and can take advantage of characteristics such as diffraction.
- Wireless sensing technology can be implemented at low cost compared to video capture functions.
無線センシング技術によれば、センシング結果を基地局(BS)において収集し、収集された情報を高度なサイバー空間生成に活用することや、収集された情報を実空間へのフィードバックに活用することが考えられる。
With wireless sensing technology, it is possible to collect sensing results at a base station (BS) and use the collected information to generate advanced cyberspace, or to use the collected information as feedback to the real space.
(ISAC)
integrated sensing and communications(ISAC)として、センシングに支援される通信(sensing-assisted communication)と、通信に支援されるセンシング(communication-assisted sensing)と、が検討されている。センシングに支援される通信として、センシングに支援されるビーム管理(beam management)と、センシングに支援されるリソース配置(resource allocation)と、が検討されている。通信に支援されるセンシングとして、ネットワークセンシングと、協調(coordinated)センシングと、が検討されている。それらの実現のために、波形、ビームフォーミング、artificial intelligence(AI)/deep learning(DL)動作radio access technology(RAT)、フレーム構造、参照信号、が検討されている。また、ISACのための、共有スペクトラム(shared spectrum)、ハードウェア、アルゴリズムとして、より高い周波数バンド、より大きいアンテナアレイ、通信及びセンシングに対する類似の信号処理アルゴリズム、が検討されている。 (ISAC)
As integrated sensing and communications (ISAC), sensing-assisted communication and communication-assisted sensing are considered. As sensing-assisted communication, sensing-assisted beam management and sensing-assisted resource allocation are considered. As communication-assisted sensing, network sensing and coordinated sensing are considered. To realize them, waveforms, beamforming, artificial intelligence (AI)/deep learning (DL) operation radio access technology (RAT), frame structure, and reference signals are considered. In addition, as shared spectrum, hardware, and algorithms for ISAC, higher frequency bands, larger antenna arrays, and similar signal processing algorithms for communication and sensing are considered.
integrated sensing and communications(ISAC)として、センシングに支援される通信(sensing-assisted communication)と、通信に支援されるセンシング(communication-assisted sensing)と、が検討されている。センシングに支援される通信として、センシングに支援されるビーム管理(beam management)と、センシングに支援されるリソース配置(resource allocation)と、が検討されている。通信に支援されるセンシングとして、ネットワークセンシングと、協調(coordinated)センシングと、が検討されている。それらの実現のために、波形、ビームフォーミング、artificial intelligence(AI)/deep learning(DL)動作radio access technology(RAT)、フレーム構造、参照信号、が検討されている。また、ISACのための、共有スペクトラム(shared spectrum)、ハードウェア、アルゴリズムとして、より高い周波数バンド、より大きいアンテナアレイ、通信及びセンシングに対する類似の信号処理アルゴリズム、が検討されている。 (ISAC)
As integrated sensing and communications (ISAC), sensing-assisted communication and communication-assisted sensing are considered. As sensing-assisted communication, sensing-assisted beam management and sensing-assisted resource allocation are considered. As communication-assisted sensing, network sensing and coordinated sensing are considered. To realize them, waveforms, beamforming, artificial intelligence (AI)/deep learning (DL) operation radio access technology (RAT), frame structure, and reference signals are considered. In addition, as shared spectrum, hardware, and algorithms for ISAC, higher frequency bands, larger antenna arrays, and similar signal processing algorithms for communication and sensing are considered.
ISACにおいて、通信(例えば、OFDM信号)及びセンシング(例えば、チャープ信号)の要求を同時に満たす統合型信号波形(unified waveform)、ビームフォーミングによる通信(例えば、送信信号、受信信号)、センシング(例えば、エコー信号、送信信号、反射信号)、及びそれらの間の干渉抑制を同時に実現するISACビームフォーミング、通信(例えば、UL送信信号)及びレーダ(radar、例えば、DLレーダ信号)のチャネル情報からセンシング情報をAI/DLネットワークによって発掘するCSI発掘(CSI mining by AI)、が課題となっている。
In ISAC, the challenges are a unified waveform that simultaneously meets the requirements for communication (e.g., OFDM signal) and sensing (e.g., chirp signal), ISAC beamforming that simultaneously realizes communication (e.g., transmission signal, reception signal) and sensing (e.g., echo signal, transmission signal, reflection signal) by beamforming, and interference suppression between them, and CSI mining by AI that uses AI/DL networks to extract sensing information from channel information for communication (e.g., UL transmission signal) and radar (e.g., DL radar signal).
通信及びレーダ(センシング)のシステムがハードウェア/バンドを共有するから否かに基づいて、レーダ及び通信のシステムの3つのタイプが検討されている。3つのタイプは、独立の(independent)レーダ及び通信のシステム(独立システム)、合同の(joint)レーダ及び通信のシステム(合同システム)、統合の(integrated)レーダ及び通信のシステム(統合システム)、である。以下、レーダ及び通信のシステムの間において、ハードウェア及びバンドが共有されるISACシステムを対象とする。
Three types of radar and communication systems are considered based on whether the communication and radar (sensing) systems share hardware/bands. The three types are independent radar and communication systems (independent systems), joint radar and communication systems (joint systems), and integrated radar and communication systems (integrated systems). The following focuses on ISAC systems in which hardware and bands are shared between radar and communication systems.
従来通信システムとして、1つのBS(基地局)と1つのUEとの間の通信と、複数のBSと1つのUEとの間のジョイント送信と、がある。従来レーダシステムとして、1つのレーダがレーダ信号を送信し、そのレーダがセンシング対象からのエコーを受信するモノスタティック(monostatic)レーダと、1つのレーダがレーダ信号を送信し、1つ以上のレーダがセンシング対象からのエコーを受信するバイスタティック(bistatic)レーダ/マルチスタティック(multistatic)レーダと、がある。
Conventional communication systems include communication between one BS (base station) and one UE, and joint transmission between multiple BSs and one UE. Conventional radar systems include monostatic radar, in which one radar transmits a radar signal and receives echoes from a sensing target, and bistatic/multistatic radar, in which one radar transmits a radar signal and one or more radars receive echoes from a sensing target.
独立システムは、レーダ及び通信に対して、個別のハードウェアと、個別の周波数バンドと、を用いる。個別のハードウェアは、同一位置設置されてもよいし、個別の場所に設置されてもよい。
Independent systems use separate hardware and separate frequency bands for radar and communications. The separate hardware may be co-located or in separate locations.
合同システムは、レーダ及び通信に対して、同じハードウェアと、個別の周波数バンドと、を用いる。
The joint system uses the same hardware and separate frequency bands for radar and communications.
統合システムは、レーダ及び通信に対して、同じハードウェアと、同じ周波数バンドと、を用いる。
The integrated system uses the same hardware and the same frequency bands for radar and communications.
ISACシステムにおいて、センシングは、以下の3つの方法によって実現されることができる。
[センシング方法1]モノスタティックレーダのアイデアを用いるモノスタティックセンシング(monostatic sensing)。
[センシング方法2]バイスタティックレーダ/マルチスタティックレーダを用いるバイスタティックセンシング/マルチスタティックセンシング(bistatic/multistatic sensing)。
[センシング方法3]NRポジショニングのアイデアを用いる、UEに支援されるセンシング(sensing aided by UE、UE-assisted sensing)。 In the ISAC system, sensing can be achieved in three ways:
[Sensing method 1] Monostatic sensing, which uses the idea of monostatic radar.
[Sensing method 2] Bistatic/multistatic sensing using bistatic radar/multistatic radar.
[Sensing method 3] Sensing aided by UE (UE-assisted sensing) using the idea of NR positioning.
[センシング方法1]モノスタティックレーダのアイデアを用いるモノスタティックセンシング(monostatic sensing)。
[センシング方法2]バイスタティックレーダ/マルチスタティックレーダを用いるバイスタティックセンシング/マルチスタティックセンシング(bistatic/multistatic sensing)。
[センシング方法3]NRポジショニングのアイデアを用いる、UEに支援されるセンシング(sensing aided by UE、UE-assisted sensing)。 In the ISAC system, sensing can be achieved in three ways:
[Sensing method 1] Monostatic sensing, which uses the idea of monostatic radar.
[Sensing method 2] Bistatic/multistatic sensing using bistatic radar/multistatic radar.
[Sensing method 3] Sensing aided by UE (UE-assisted sensing) using the idea of NR positioning.
センシング方法1は、1つのBS又はUEを必要とし、エコー信号によってセンシングを行う。センシング方法1において、BS-BS間の連携又はUE-UE間の連携又はBS-UE間の連携はない。センシング方法1において、全二重(full duplex)が必要であり、エコー信号の低SNRが必要となる。センシング方法1のユースケースは、例えば、テラヘルツを用いるイメージングである。
Sensing method 1 requires one BS or UE, and sensing is performed by echo signals. In sensing method 1, there is no BS-BS cooperation, UE-UE cooperation, or BS-UE cooperation. In sensing method 1, full duplex is required, and a low SNR of the echo signal is required. A use case of sensing method 1 is, for example, imaging using terahertz.
センシング方法2は、2つ以上のBS又は2つ以上のUEを必要とし、反射信号によってセンシングを行う。センシング方法2において、半二重(half duplex)で十分である。センシング方法2において、BS-BS間又はUE-UE間の緊密な同期及び連携が必要であり、複数BSの間のスケジューリング協調が必要である。センシング方法2のユースケースは、例えば、ポジショニングである。
Sensing method 2 requires two or more BSs or two or more UEs, and sensing is performed by reflected signals. In sensing method 2, half duplex is sufficient. In sensing method 2, close synchronization and coordination between BSs or UEs is required, and scheduling coordination between multiple BSs is required. A use case of sensing method 2 is, for example, positioning.
センシング方法3は、BS及びUEを必要とし、通信(UL/DL)信号によってセンシングを行う。センシング方法3において、既存5G NRフレームワークが動作する。センシング方法3において、UEが必要であり、見通し内(line of sight、LOS)及び見通し外(non line of sight、NLOS)の両方のセンシングは計算の高い複雑性を必要とする。センシング方法3のユースケースは、例えば、呼吸モニタリング(breath monitoring)である。
Sensing method 3 requires a BS and a UE, and sensing is performed by communication (UL/DL) signals. In sensing method 3, the existing 5G NR framework operates. In sensing method 3, a UE is required, and both line of sight (LOS) and non-line of sight (NLOS) sensing require high computational complexity. A use case of sensing method 3 is, for example, breath monitoring.
ISACシステムにおいて、複数のセンシング方法のそれぞれには、適したシナリオ、BS/UEの能力に関する要件、センシングの精度/性能、がある。センシング方法1は、全二重を伴うBS/UE、BS又はUEに近いセンシング対象に適している。センシング方法2は、全二重を伴わないBS/UE、BS又はUEから遠いセンシング対象に適している。センシング方法3は、高い能力を伴うBS/UEに適している。
In the ISAC system, each of the multiple sensing methods has its own suitable scenario, requirements regarding BS/UE capabilities, and sensing accuracy/performance. Sensing method 1 is suitable for BS/UE with full duplex, sensing targets close to the BS or UE. Sensing method 2 is suitable for BS/UE without full duplex, sensing targets far from the BS or UE. Sensing method 3 is suitable for BS/UE with high capabilities.
センシング方法1に適したシナリオは、センシングBS又はUEに近いセンシング対象、エコー信号の高い又は中程度のSNR、通信能力を伴わないセンシング対象、を含む。センシング方法1の能力要件は、BS又はUEにおける全二重(高い要件)を含む。センシング方法1のセンシング性能は、量子化なしによる高精度、エコー信号のSNRに関係する精度、低レイテンシ、を含む。
Scenarios suitable for sensing method 1 include sensing targets close to the sensing BS or UE, high or medium SNR of the echo signal, and sensing targets without communication capabilities. Capability requirements for sensing method 1 include full duplex (a high requirement) at the BS or UE. Sensing performance of sensing method 1 includes high accuracy with no quantization, accuracy related to the SNR of the echo signal, and low latency.
センシング方法2に適したシナリオは、複数BS又は複数UEの間の極めて緊密な同期、通信能力を伴わないセンシング対象、を含む。センシング方法2の能力要件は、半二重(低い要件)、複数BS間又は複数UE間の同期(高い要件)、を含む。センシング方法2のセンシング性能は、量子化なしによる高精度、同期誤差に関係する精度、中程度のレイテンシ、を含む。
Scenarios suitable for sensing method 2 include very tight synchronization between multiple BSs or multiple UEs, sensing targets without communication capabilities. Capability requirements for sensing method 2 include half-duplex (low requirement), synchronization between multiple BSs or multiple UEs (high requirement). Sensing performance of sensing method 2 includes high accuracy with no quantization, accuracy related to synchronization error, and moderate latency.
センシング方法3に適したシナリオは、センシング対象の周囲の通信UEを含む。センシング方法3の能力要件は、高い計算リソースを伴うUE(高い要件)である。センシング方法3のセンシング性能は、フィードバック値の量子化による中程度の精度、配置されたリソースとUE位置とに関係する精度、高レイテンシ、を含む。
Scenarios suitable for sensing method 3 include communicating UEs around the sensing target. The capacity requirements of sensing method 3 are UEs with high computational resources (high requirements). The sensing performance of sensing method 3 includes medium accuracy due to quantization of feedback values, accuracy related to deployed resources and UE location, and high latency.
6G以降において、1つのISACシステム内に複数のセンシング方法及び能力が共存し得る。しかしながら、1つのシステム内において複数のセンシング方法及び複数の信号をどのようにサポートするか、異なるセンシング方法に必要とされる測定及び報告をどのように設計するか、について十分に検討されていない。これらが明らかにならなければ、センシング精度/通信品質の低下などを招くおそれがある。
In 6G and beyond, multiple sensing methods and capabilities may coexist within one ISAC system. However, there has been insufficient consideration given to how to support multiple sensing methods and multiple signals within one system, and how to design the measurements and reports required for different sensing methods. Unless these issues are clarified, there is a risk that this could lead to a deterioration in sensing accuracy/communication quality.
そこで、本発明者らは、センシングタイプに関するシグナリング、UE/BSの能力の定義及びシグナリング、測定及び報告の仕組み、について検討した。
The inventors therefore investigated signaling regarding sensing types, definitions and signaling of UE/BS capabilities, and measurement and reporting mechanisms.
以下、本開示に係る実施形態について、図面を参照して詳細に説明する。なお、以下の各実施形態(例えば、各ケース)はそれぞれ単独で用いられてもよいし、少なくとも2つを組み合わせて適用されてもよい。
The following describes in detail the embodiments of the present disclosure with reference to the drawings. Each of the following embodiments (e.g., each case) may be used alone, or at least two of them may be combined and applied.
本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。
In this disclosure, "A/B" and "at least one of A and B" may be interpreted as interchangeable. Also, in this disclosure, "A/B/C" may mean "at least one of A, B, and C."
本開示において、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択(select)、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できるなどは、互いに読み替えられてもよい。
In this disclosure, terms such as activate, deactivate, indicate, select, configure, update, and determine may be interpreted as interchangeable. In this disclosure, terms such as support, control, can be controlled, operate, and can operate may be interpreted as interchangeable.
本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、情報要素(IE)、設定などは、互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンドなどは、互いに読み替えられてもよい。
In this disclosure, Radio Resource Control (RRC), RRC parameters, RRC messages, higher layer parameters, information elements (IEs), settings, etc. may be interchangeable. In this disclosure, Medium Access Control (MAC Control Element (CE)), update commands, activation/deactivation commands, etc. may be interchangeable.
本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
In the present disclosure, higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or any combination thereof.
本開示において、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
In the present disclosure, the MAC signaling may use, for example, a MAC Control Element (MAC CE), a MAC Protocol Data Unit (PDU), etc. The broadcast information may be, for example, a Master Information Block (MIB), a System Information Block (SIB), Remaining Minimum System Information (RMSI), Other System Information (OSI), etc.
本開示において、物理レイヤシグナリングは、例えば、下りリンク制御情報(Downlink Control Information(DCI))、上りリンク制御情報(Uplink Control Information(UCI))などであってもよい。
In the present disclosure, the physical layer signaling may be, for example, Downlink Control Information (DCI), Uplink Control Information (UCI), etc.
本開示において、インデックス、識別子(Identifier(ID))、インディケーター、リソースIDなどは、互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。
In this disclosure, the terms index, identifier (ID), indicator, resource ID, etc. may be interchangeable. In this disclosure, the terms sequence, list, set, group, cluster, subset, etc. may be interchangeable.
本開示において、「…の能力を有する」は、「…の能力をサポートする/報告する」と互いに読み替えられてもよい。
In this disclosure, "having the ability to..." may be read interchangeably as "supporting/reporting the ability to..."
(無線通信方法)
以下、各実施形態における用語について説明する。 (Wireless communication method)
The terms used in each embodiment will be explained below.
以下、各実施形態における用語について説明する。 (Wireless communication method)
The terms used in each embodiment will be explained below.
センシング方法は、前述のセンシング方法1から3の少なくとも1つであってもよい。複数のセンシング方法は、UE/BSに関する異なる能力を必要としてもよい。センシング方法1は、BS又はUEにおける全二重の能力を必要としてもよい。センシング方法2は、複数BS又は複数UEの間において正確な同期を必要としてもよい。センシング方法3は、センシング対象における通信の能力を必要としてもよいし、計算の高い複雑性の能力を必要としてもよい。
The sensing method may be at least one of sensing methods 1 to 3 described above. The multiple sensing methods may require different capabilities on the UE/BS. Sensing method 1 may require full-duplex capability at the BS or UE. Sensing method 2 may require precise synchronization between multiple BSs or multiple UEs. Sensing method 3 may require communication capability at the sensing target or high computational complexity capability.
センシング信号は、センシング機能のための信号であってもよい。
The sensing signal may be a signal for a sensing function.
センシング信号は、通信信号及び通信波形の少なくとも1つであってもよい。センシング信号は、通信システムにおける、CP-OFDM及びDFT-s-OFDMの少なくとも1つの波形を伴う信号であってもよい。その信号は、例えば、PRS、SRS、CSI-RS、SSB、PDSCH、PUSCHの少なくとも1つであってもよい。
The sensing signal may be at least one of a communication signal and a communication waveform. The sensing signal may be a signal with at least one of CP-OFDM and DFT-s-OFDM waveforms in a communication system. The signal may be, for example, at least one of PRS, SRS, CSI-RS, SSB, PDSCH, and PUSCH.
センシング信号は、レーダ信号及びレーダ波形の少なくとも1つであってもよい。センシング信号は、レーダシステムにおける、frequency modulated continuous wave(FMCW)、linear frequency modulation(LFM)、chirp waveform(CW)の少なくとも1つを伴う信号であってもよい。
The sensing signal may be at least one of a radar signal and a radar waveform. The sensing signal may be a signal with at least one of a frequency modulated continuous wave (FMCW), a linear frequency modulation (LFM), and a chirp waveform (CW) in a radar system.
センシング信号は、ISAC信号及びISAC波形の少なくとも1つであってもよい。
The sensing signal may be at least one of an ISAC signal and an ISAC waveform.
UEは、通信能力を伴う端末であってもよい。センシング対象は、通信能力を伴ってもよいし、伴わなくてもよい。
The UE may be a terminal with communication capabilities. The sensing target may or may not have communication capabilities.
図1Aにおけるセンシング方法1のモノスタティックセンシングの例において、BS及びUEの間において通信信号又はISAC信号が送受信されてもよい。BS又はUEからセンシング対象へセンシング信号又はISAC信号が送信されてもよい。BS又はUEは、センシング対象からのエコー信号を受信してもよい。
In the example of monostatic sensing of sensing method 1 in FIG. 1A, a communication signal or an ISAC signal may be transmitted and received between the BS and the UE. A sensing signal or an ISAC signal may be transmitted from the BS or the UE to the sensing target. The BS or the UE may receive an echo signal from the sensing target.
図1Bにおけるセンシング方法2のバイスタティックセンシングの例において、BS及びUEの間において通信信号又はISAC信号が送受信されてもよい。BS又はUEからセンシング対象へセンシング信号又はISAC信号が送信されてもよい。連携BS1又は連携UEは、センシング対象からの反射信号を受信してもよい。
In the example of bistatic sensing of sensing method 2 in FIG. 1B, a communication signal or an ISAC signal may be transmitted and received between the BS and the UE. A sensing signal or an ISAC signal may be transmitted from the BS or the UE to the sensing target. The associated BS1 or the associated UE may receive a reflected signal from the sensing target.
図1Cにおけるセンシング方法2のマルチスタティックセンシングの例において、BS及びUEの間において通信信号又はISAC信号が送受信されてもよい。BS又はUEからセンシング対象へセンシング信号又はISAC信号が送信されてもよい。連携BS1及び連携BS2又は連携UE1及び連携UE2は、センシング対象からの反射信号を受信してもよい。
In the example of multistatic sensing of sensing method 2 in FIG. 1C, a communication signal or an ISAC signal may be transmitted and received between the BS and the UE. A sensing signal or an ISAC signal may be transmitted from the BS or the UE to the sensing target. The associated BS1 and associated BS2 or the associated UE1 and associated UE2 may receive a reflected signal from the sensing target.
図2Aにおけるセンシング方法3のUEに支援されるセンシングの例において、BS及びUEの間においてセンシング信号又はISAC信号が送受信されてもよい。このUEは、センシング対象であってもよい。
In the example of UE-assisted sensing of sensing method 3 in FIG. 2A, a sensing signal or ISAC signal may be transmitted and received between the BS and the UE. The UE may be a sensing target.
図2Bにおけるセンシング方法3のUEに支援されるセンシングの別の例において、BS及びUEの間においてセンシング信号又はISAC信号が送受信されてもよい。このUEは、センシング対象であってもよいし、センシング対象でなくてもよい。UEは、センシング対象からの反射信号を受信してもよい。
In another example of UE-assisted sensing of sensing method 3 in FIG. 2B, a sensing signal or ISAC signal may be transmitted and received between the BS and the UE. The UE may or may not be a sensing target. The UE may receive a reflected signal from the sensing target.
5G無線センシングにおいて、5Gシステム(5GS)機能は、NR RF信号を用いて、環境の特性と、環境内の対象物と、の少なくとも1つについての情報を得るための能力を提供する。その情報は、形状、サイズ、速度、位置、距離、複数対象物間の相対移動、の少なくとも1つを含んでもよい。幾つかのケースにおいて、5GS機能は、EPC/E-UTRAにおいて予め定義された情報を得るための能力を提供してもよい。
In 5G wireless sensing, 5G system (5GS) capabilities provide the capability to use NR RF signals to obtain information about at least one of the characteristics of an environment and objects in the environment. The information may include at least one of the shape, size, speed, location, distance, and relative movement between multiple objects. In some cases, 5GS capabilities may provide the capability to obtain information that is predefined in EPC/E-UTRA.
センシング送信機は、センシングサービスがその動作において用いるセンシング信号を送出するエンティティであってもよい。センシング送信機は、NR radio access network(RAN)ノード又はUEであってもよい。センシング送信機は、センシング受信機と同じエンティティ内に位置してもよいし、センシング受信機と異なるエンティティ内に位置してもよい。
The sensing transmitter may be an entity that emits sensing signals used by the sensing service in its operation. The sensing transmitter may be an NR radio access network (RAN) node or a UE. The sensing transmitter may be located in the same entity as the sensing receiver or in a different entity than the sensing receiver.
センシング受信機は、センシングサービスがその動作において用いるセンシング信号を受信するエンティティであってもよい。センシング受信機は、NR RANノード又はUEであってもよい。センシング受信機は、センシング送信機と同じエンティティ内に位置してもよいし、センシング送信機と異なるエンティティ内に位置してもよい。
The sensing receiver may be an entity that receives sensing signals used by the sensing service in its operation. The sensing receiver may be an NR RAN node or a UE. The sensing receiver may be located within the same entity as the sensing transmitter or may be located within a different entity than the sensing transmitter.
センシンググループは、センシング動作をサポートする1つ以上のUEのセットであってもよい。そのUEのセットの全てのUEの位置が既知であってもよい。そのUEのセットのセンシング測定データが同時に収集されてもよい。
A sensing group may be a set of one or more UEs that support sensing operations. The locations of all UEs in the set of UEs may be known. Sensing measurement data for the set of UEs may be collected simultaneously.
センシング測定データは、センシングを目的とする対象物又は環境によって影響を受けた無線(radio/wireless)信号について収集されるデータであってもよい。
The sensing measurement data may be data collected about radio/wireless signals that are affected by the object or environment targeted for sensing.
センシング測定プロセスは、センシング測定データの収集のプロセスであってもよい。
The sensing measurement process may be the process of collecting sensing measurement data.
センシング結果は、センシング測定データの処理から導出される情報であってもよい。例えば、センシング結果は、対象物又は環境の特性であってもよい。
The sensing result may be information derived from processing the sensing measurement data. For example, the sensing result may be a characteristic of the object or the environment.
wireless local area network(WLAN)センシングにおいて、センシングタイプ、センシング設定、及びセンシング手順が定義されている。
For wireless local area network (WLAN) sensing, sensing types, sensing settings, and sensing procedures are defined.
センシングタイプは、モノスタティック、(2つ以上の送受信機の)協調を伴うモノスタティック、バイスタティック、(2つ以上の受信機の)協調を伴うバイスタティック、マルチスタティック、受動(passive)センシング、のいずれかを含む。
Sensing types include monostatic, monostatic with coordination (two or more transmitters and receivers), bistatic, bistatic with coordination (two or more receivers), multistatic, and passive sensing.
センシング設定は、センシング送信機、センシング受信機、センシングイニシエータ、センシングレスポンダ、のいずれかを含む。センシング送信機、センシング受信機、センシングイニシエータ、センシングレスポンダの異なる組み合わせに基づくケース1から4のいずれかが設定されてもよい。ケース1において、センシングイニシエータはセンシング受信機の機能を持ち、センシングレスポンダへ要求を送信する。センシングレスポンダはセンシング送信機の機能を持ち、要求に応じてphysical protocol data unit(PPDU)を送信する。センシングイニシエータは、PPDUを受信する。ケース2において、センシングイニシエータはセンシング送信機の機能を持ち、PPDUを送信する。センシングレスポンダはセンシング受信機の機能を持ち、PPDUを受信し、その受信に基づく報告をセンシングイニシエータへ送信する。ケース3において、センシングイニシエータはセンシング送信機及びセンシング受信機の両方の機能を持ち、PPDUを送受信する。センシングレスポンダはセンシング送信機及びセンシング受信機の両方の機能を持ち、PPDUを送受信し、その受信に基づく報告をセンシングイニシエータへ送信する。ケース3において、センシングイニシエータはセンシング送信機及びセンシング受信機のいずれの機能も持たず、要求を送信する。センシングレスポンダはセンシング送信機及びセンシング受信機の両方の機能を持ち、要求に応じてPPDUを送受信し、その受信に基づく報告をセンシングイニシエータへ送信する。
The sensing configuration includes any of a sensing transmitter, a sensing receiver, a sensing initiator, and a sensing responder. Any of cases 1 to 4 based on different combinations of sensing transmitters, sensing receivers, sensing initiators, and sensing responders may be configured. In case 1, the sensing initiator has the function of a sensing receiver and sends a request to the sensing responder. The sensing responder has the function of a sensing transmitter and sends a physical protocol data unit (PPDU) in response to the request. The sensing initiator receives the PPDU. In case 2, the sensing initiator has the function of a sensing transmitter and sends a PPDU. The sensing responder has the function of a sensing receiver, receives the PPDU, and sends a report based on the reception to the sensing initiator. In case 3, the sensing initiator has the function of both a sensing transmitter and a sensing receiver, and sends and receives PPDUs. The sensing responder has the functionality of both a sensing transmitter and a sensing receiver, transmits and receives PPDUs, and transmits reports based on the reception to the sensing initiator. In case 3, the sensing initiator does not have the functionality of either a sensing transmitter or a sensing receiver, and transmits requests. The sensing responder has the functionality of both a sensing transmitter and a sensing receiver, transmits and receives PPDUs in response to requests, and transmits reports based on the reception to the sensing initiator.
センシング手順において、センシング要件/センシングサービスがセンシングイニシエータによって開始されてもよい。センシング手順は、順に、センシングセッションセットアップと、センシング測定セットアップと、センシング測定インスタンスと、センシング測定終了と、センシングセッション終了と、を含む。
In the sensing procedure, sensing requirements/sensing services may be initiated by a sensing initiator. The sensing procedure includes, in order, a sensing session setup, a sensing measurement setup, a sensing measurement instance, a sensing measurement termination, and a sensing session termination.
各実施形態におけるレーダ信号の機能において、レーダ信号は、高いセンシング性能を伴ってもよいし、センシングのために設計されてもよい。各実施形態におけるレーダ信号の形式は、1つ以上のサブキャリア又は1つ以上の周波数リソースにおけるパルス信号であってもよいし、1つ以上のOFDMシンボル又は1つ以上の時間リソースにおけるパルス信号であってもよいし、チャープ/LFMの特性を伴う連続信号であってもよい。これらの信号は、NR(5G advanced(5GA)又は6G以降)システムにおいて生成されてもよいし、別の統合された非NR/5GA/6Gのシステムによって生成されてもよい。
In the function of the radar signal in each embodiment, the radar signal may have high sensing performance or may be designed for sensing. The form of the radar signal in each embodiment may be a pulse signal in one or more subcarriers or one or more frequency resources, a pulse signal in one or more OFDM symbols or one or more time resources, or a continuous signal with chirp/LFM characteristics. These signals may be generated in an NR (5G advanced (5GA) or 6G or later) system, or may be generated by another integrated non-NR/5GA/6G system.
レーダ方法、レーダ信号を用いるセンシング方法は、前述のモノスタティック/バイスタティック/マルチスタティックのセンシングであってもよい。
The radar method and the sensing method using the radar signal may be the monostatic/bistatic/multistatic sensing described above.
図3Aの例のように、LFMのレーダ信号は、OFDMにおける1つのサブキャリアであってもよい。図3Bの例のように、LFMのレーダ信号は、チャープ信号であってもよい。
As in the example of FIG. 3A, the LFM radar signal may be one subcarrier in OFDM. As in the example of FIG. 3B, the LFM radar signal may be a chirp signal.
図4Aの例のように、レーダ(センシング)信号は、一定間隔を伴うパルス(pulsed)レーダ信号であってもよい。各パルスがチャープ信号であってもよい。図4Bの例のように、そのレーダ信号が通信信号と多重(frequency division multiplexed、FDM)されてもよい。
As in the example of FIG. 4A, the radar (sensing) signal may be a pulsed radar signal with regular intervals. Each pulse may be a chirp signal. As in the example of FIG. 4B, the radar signal may be frequency division multiplexed (FDM) with the communication signal.
図4Cの例のように、レーダ(センシング)信号は、連続するパルス(pulsed)レーダ信号であってもよい。各パルスがチャープ信号であってもよい。図4Dの例のように、そのレーダ信号が通信信号と多重(FDM)されてもよい。
As in the example of FIG. 4C, the radar (sensing) signal may be a continuous pulsed radar signal. Each pulse may be a chirp signal. As in the example of FIG. 4D, the radar signal may be frequency division multiplexed (FDM) with the communication signal.
各実施形態において、センシング送信機は、BS/UE/無線通信装置であってもよい。各実施形態において、センシング受信機は、BS/UE/無線通信装置であってもよい。各実施形態において、センシング送信機及びセンシング受信機は、1つのBS/UE/センシング送受信機/無線通信装置であってもよい。
In each embodiment, the sensing transmitter may be a BS/UE/wireless communication device. In each embodiment, the sensing receiver may be a BS/UE/wireless communication device. In each embodiment, the sensing transmitter and the sensing receiver may be one BS/UE/sensing transceiver/wireless communication device.
各実施形態において、センシング対象は、通信能力を有していてもよいし、通信能力を有していなくてもよい。各実施形態において、センシング対象は、UEを含んでもよい。
In each embodiment, the sensing target may or may not have communication capabilities. In each embodiment, the sensing target may include a UE.
各実施形態において、センシング対象、対象、は互いに読み替えられてもよい。各実施形態において、センシング、無線センシング、測定、は互いに読み替えられてもよい。
In each embodiment, sensing target and target may be read as interchangeable. In each embodiment, sensing, wireless sensing and measurement may be read as interchangeable.
各実施形態において、エコー信号、対象によって影響を受けた(impacted)信号、対象によって反射された(reflected)信号、対象によって屈折した(refracted)信号、対象によって回折した(diffracted)信号、センシング送受信機によって送信され受信される信号、センシング受信機によって受信される信号、は互いに読み替えられてもよい。各実施形態において、通信信号、RS、レーダ信号、通信及びレーダのハイブリッド信号、統合信号、ISAC信号、センシング信号、は互いに読み替えられてもよい。
In each embodiment, the echo signal, the signal impacted by the object, the signal reflected by the object, the signal refracted by the object, the signal diffracted by the object, the signal transmitted and received by the sensing transceiver, and the signal received by the sensing receiver may be interchangeable. In each embodiment, the communication signal, RS, radar signal, hybrid communication and radar signal, integrated signal, ISAC signal, and sensing signal may be interchangeable.
各実施形態において、同一位置におけるセンシング送信機及びセンシング受信機、センシング送受信機、一体のセンシング送受信機、BS、は互いに読み替えられてもよい。
In each embodiment, a sensing transmitter and a sensing receiver in the same location, a sensing transceiver, an integrated sensing transceiver, and a BS may be interpreted as interchangeable.
各実施形態において、BS、UE、IAB、リピータ、reconfigurable intelligent surface(RIS)、センシング送信機、センシング受信機、センシング送受信機、無線通信装置、対象(ターゲット)、は互いに読み替えられてもよい。各実施形態において、BS、ネットワーク(NW)、コアネットワーク、センシングサーバ、は互いに読み替えられてもよい。
In each embodiment, the terms BS, UE, IAB, repeater, reconfigurable intelligent surface (RIS), sensing transmitter, sensing receiver, sensing transceiver, wireless communication device, and target may be interchangeable. In each embodiment, the terms BS, network (NW), core network, and sensing server may be interchangeable.
各実施形態において、UEグループ、センサグループ、UEセット、センサセット、は互いに読み替えられてもよい。
In each embodiment, UE group, sensor group, UE set, and sensor set may be interpreted as interchangeable.
<実施形態#1>
この実施形態は、センシングタイプの定義に関する。 <Embodiment # 1>
This embodiment relates to the definition of a sensing type.
この実施形態は、センシングタイプの定義に関する。 <
This embodiment relates to the definition of a sensing type.
1つのISACシステム内において複数のセンシングタイプがサポートされてもよい。
Multiple sensing types may be supported within a single ISAC system.
センシング送信機/センシング受信機とセンシングイニシエータ/センシングレスポンダに関する高い自由度の設定が、システムを複雑にする可能性がある。シグナリングオーバーヘッド及びシステムの複雑性を減らすために、センシングタイプに関するいくつかの事前設定が定義されてもよい。
The high degree of freedom in the configuration of sensing transmitters/sensing receivers and sensing initiators/sensing responders may complicate the system. To reduce the signaling overhead and system complexity, some pre-configurations for sensing types may be defined.
-実施形態#1-1
複数のセンシングタイプが定義されてもよい。センシングタイプは、上位レイヤパラメータとして定義されてもよい。例えば、その上位レイヤパラメータは、RRCパラメータであってもよいし、SIB/MIBなどのブロードキャストパラメータであってもよい。その設定/指示は、実施形態#1-2に従ってもよい。 -Embodiment #1-1
A plurality of sensing types may be defined. The sensing type may be defined as a higher layer parameter. For example, the higher layer parameter may be an RRC parameter or a broadcast parameter such as SIB/MIB. The setting/instruction may follow embodiment #1-2.
複数のセンシングタイプが定義されてもよい。センシングタイプは、上位レイヤパラメータとして定義されてもよい。例えば、その上位レイヤパラメータは、RRCパラメータであってもよいし、SIB/MIBなどのブロードキャストパラメータであってもよい。その設定/指示は、実施形態#1-2に従ってもよい。 -Embodiment #1-1
A plurality of sensing types may be defined. The sensing type may be defined as a higher layer parameter. For example, the higher layer parameter may be an RRC parameter or a broadcast parameter such as SIB/MIB. The setting/instruction may follow embodiment #1-2.
BS/UEの能力に基づき、対応するエリア(カバレッジエリア)/シナリオ内において、センシング方法又はセンシング信号/センシング波形の一部のみがサポートされてもよい。このエリア/シナリオ内のセンシングサービスにおいて、上位レイヤにおける設定を通じて、センシングタイプが、より少ない選択肢に限定されてもよい。それは、センシングのリソース配置と、センシングの測定データの設定と、において有益である。
Based on the capabilities of the BS/UE, only some of the sensing methods or sensing signals/sensing waveforms may be supported in the corresponding area (coverage area)/scenario. In the sensing services in this area/scenario, the sensing types may be limited to fewer options through configuration in higher layers. This is beneficial in sensing resource allocation and sensing measurement data configuration.
複数のエリア/シナリオが異なるセンシング方法及びセンシング信号をサポートしてもよい。
Multiple areas/scenarios may support different sensing methods and sensing signals.
図5Aの例において、2つのBSのそれぞれは、全二重能力及びレーダ信号を伴わない従来のBSであってもよい。2つのUEのそれぞれは、BSから受信されたRSに関する測定と、そのBSへの報告を行う。図5Bの例において、RSベースのセンシングのためのRSのリソース配置において、時間リソースの変化に伴って周波数リソースが変化してもよい。その他の時間/周波数に、通信用のデータが配置されてもよい。このカバレッジエリアAにおいて、サポートされるセンシング方法は、センシング方法2及び3であってもよい。カバレッジエリアAにおいて、サポートされるセンシング信号は、通信信号であってもよい。その通信信号は、例えば、PRSであってもよいし、センシング用の新規RSであってもよい。
In the example of FIG. 5A, each of the two BSs may be a conventional BS without full-duplex capability and radar signals. Each of the two UEs performs measurements on the RS received from the BS and reports to the BS. In the example of FIG. 5B, in the resource allocation of the RS for RS-based sensing, the frequency resource may change along with the change in the time resource. Data for communication may be allocated to other times/frequencies. In this coverage area A, the supported sensing methods may be sensing methods 2 and 3. In coverage area A, the supported sensing signal may be a communication signal. The communication signal may be, for example, a PRS or a new RS for sensing.
図6Aの例において、1つの新規ISAC BSは、全二重及び新規波形生成をサポートしてもよい。そのBSは、エコー信号に関する測定を行い、報告を行わない。図6Bの例において、レーダ信号ベースのセンシングのためのレーダ信号のリソース配置において、レーダ信号/レーダ波形は、特定の時間リソースにおいて複数の周波数リソースにわたって配置されてもよい。レーダ波形は、例えば、FMCWであってもよい。その他の時間/周波数に、通信用のデータが配置されてもよい。このカバレッジエリアBにおいて、サポートされるセンシング方法は、センシング方法1、2及び3であってもよい。カバレッジエリアBにおいて、サポートされるセンシング信号は、レーダ信号/レーダ波形であってもよい。そのレーダ波形は、例えば、新規ISAC波形であってもよい。
In the example of FIG. 6A, one new ISAC BS may support full duplex and new waveform generation. The BS performs measurements and does not report on echo signals. In the example of FIG. 6B, in the radar signal resource allocation for radar signal based sensing, the radar signal/radar waveform may be allocated across multiple frequency resources at a specific time resource. The radar waveform may be, for example, FMCW. Data for communication may be allocated at other times/frequencies. In this coverage area B, the supported sensing methods may be sensing methods 1, 2 and 3. In coverage area B, the supported sensing signal may be a radar signal/radar waveform. The radar waveform may be, for example, a new ISAC waveform.
センシング方法及びセンシング信号は、測定及び報告の設定に関連してもよい。その設定は、例えば、センシングのためのリソース配置と、報告のための測定結果と、であってもよい。リソース配置及び測定関連設定に対する、より小さいオーバーヘッドとより低い複雑性のために、異なるカバレッジエリア/シナリオに対し、サポートされるセンシング方法及びセンシング信号が、上位レイヤによって事前設定されてもよい。
The sensing methods and sensing signals may be associated with measurement and reporting configurations. The configurations may be, for example, resource allocation for sensing and measurement results for reporting. For smaller overhead and lower complexity for resource allocation and measurement related configurations, the supported sensing methods and sensing signals for different coverage areas/scenarios may be pre-configured by higher layers.
--実施形態#1-1-1
1つ以上のセンシング方法に基づく1つ以上のセンシングタイプが定義されてもよい。1つ以上のセンシングタイプは、以下のいくつかのタイプの少なくとも1つであってもよい。 --Embodiment #1-1-1
One or more sensing types based on one or more sensing methods may be defined. The one or more sensing types may be at least one of several types:
1つ以上のセンシング方法に基づく1つ以上のセンシングタイプが定義されてもよい。1つ以上のセンシングタイプは、以下のいくつかのタイプの少なくとも1つであってもよい。 --Embodiment #1-1-1
One or more sensing types based on one or more sensing methods may be defined. The one or more sensing types may be at least one of several types:
[タイプ1]BS又はUEにおける独立(independent)センシング(すなわち、モノスタティックセンシング、同一位置におけるセンシング送信機及びセンシング受信機)
センシング送信機/センシング受信機において送信され受信される信号が対象のセンシングに用いられてもよい。センシング送信機/センシング受信機において受信される、影響を受けたセンシング信号が、対象のセンシングに用いられてもよい。同一位置におけるセンシング送信機及びセンシング受信機の実現のために、BS側又はUE側において全二重が必要である。 [Type 1] Independent sensing at the BS or UE (i.e., monostatic sensing, sensing transmitter and sensing receiver at the same location)
The signal transmitted and received at the sensing transmitter/sensing receiver may be used for sensing the target. The affected sensing signal received at the sensing transmitter/sensing receiver may be used for sensing the target. For the realization of the sensing transmitter and sensing receiver at the same location, full duplex is required at the BS side or UE side.
センシング送信機/センシング受信機において送信され受信される信号が対象のセンシングに用いられてもよい。センシング送信機/センシング受信機において受信される、影響を受けたセンシング信号が、対象のセンシングに用いられてもよい。同一位置におけるセンシング送信機及びセンシング受信機の実現のために、BS側又はUE側において全二重が必要である。 [Type 1] Independent sensing at the BS or UE (i.e., monostatic sensing, sensing transmitter and sensing receiver at the same location)
The signal transmitted and received at the sensing transmitter/sensing receiver may be used for sensing the target. The affected sensing signal received at the sensing transmitter/sensing receiver may be used for sensing the target. For the realization of the sensing transmitter and sensing receiver at the same location, full duplex is required at the BS side or UE side.
[タイプ2]BS-BS間又はUE-UE間の連携(collaborative)センシング(すなわち、連携センシングは、バイスタティックセンシング/マルチスタティックセンシング)、又は、BS-UE間の連携センシング(すなわち、UEに支援されるセンシング)、又は、分散する(distributed)センシング送信機及びセンシング受信機
BS-UE間の連携センシングは、センシングのためのUL RS又はDL RSを伴い、UEに支援されるセンシングであってもよい。BS-UE間の連携センシングは、5G NRポジショニング方法に基づいてもよい。BS-BS間又はUE-UE間の連携センシングは、複数BS間又は複数UE間の正確な同期を必要とする。 [Type 2] Collaborative sensing between BS-BS or UE-UE (i.e., collaborative sensing is bistatic sensing/multistatic sensing), or collaborative sensing between BS-UE (i.e., UE-assisted sensing), or distributed sensing transmitter and sensing receiver. Collaborative sensing between BS-UE may be UE-assisted sensing with UL RS or DL RS for sensing. Collaborative sensing between BS-UE may be based on 5G NR positioning method. Collaborative sensing between BS-BS or UE-UE requires accurate synchronization between multiple BSs or multiple UEs.
BS-UE間の連携センシングは、センシングのためのUL RS又はDL RSを伴い、UEに支援されるセンシングであってもよい。BS-UE間の連携センシングは、5G NRポジショニング方法に基づいてもよい。BS-BS間又はUE-UE間の連携センシングは、複数BS間又は複数UE間の正確な同期を必要とする。 [Type 2] Collaborative sensing between BS-BS or UE-UE (i.e., collaborative sensing is bistatic sensing/multistatic sensing), or collaborative sensing between BS-UE (i.e., UE-assisted sensing), or distributed sensing transmitter and sensing receiver. Collaborative sensing between BS-UE may be UE-assisted sensing with UL RS or DL RS for sensing. Collaborative sensing between BS-UE may be based on 5G NR positioning method. Collaborative sensing between BS-BS or UE-UE requires accurate synchronization between multiple BSs or multiple UEs.
タイプ1及びタイプ2は、BS/UEにおける全二重能力と、センシング送信機及びセンシング受信機の位置と、の少なくとも1つによって容易に決定されることができる。BS/UEにおいて全二重能力がない場合、タイプ2のみがサポートされてもよい。そうでない場合、両方のタイプがサポートされてもよい。
Type 1 and Type 2 can be easily determined by at least one of full duplex capability at the BS/UE and the location of the sensing transmitter and sensing receiver. If there is no full duplex capability at the BS/UE, then only Type 2 may be supported. Otherwise, both types may be supported.
図7Aのタイプ1の例において、センシング送信機及びセンシング受信機は同一位置にあり、センシング送受信機であってもよい。センシング送受信機は、信号を送信し、対象からのエコー信号を受信する。図7Bのタイプ1の例は、BS側モノスタティックセンシングである。この例において、センシング送受信機はBSである。図7Cのタイプ1の例は、UE側モノスタティックセンシングである。この例において、センシング送受信機はUEである。
In the Type 1 example of FIG. 7A, the sensing transmitter and sensing receiver are co-located and may be a sensing transceiver. The sensing transceiver transmits a signal and receives an echo signal from the target. The Type 1 example of FIG. 7B is BS-side monostatic sensing. In this example, the sensing transceiver is the BS. The Type 1 example of FIG. 7C is UE-side monostatic sensing. In this example, the sensing transceiver is the UE.
図8Aのタイプ2の例において、センシング送信機及びセンシング受信機は分散している。センシング送信機は、信号を送信し、センシング受信機は、対象によって影響を受けた信号を受信する。図8Bのタイプ2の例は、BS側のバイスタティックセンシング/マルチスタティックセンシングである。この例において、センシング送信機はBSであり、センシング受信機は連携BSである。図8Cのタイプ2の例は、UE側のバイスタティックセンシング/マルチスタティックセンシングである。この例において、センシング送信機はUEであり、センシング受信機は連携UEである。図8Dのタイプ2の例は、UEに支援されるセンシングである。この例において、センシング送信機はBSであり、センシング受信機はUEであり、BSは通信信号を送信し、UEは、BSからの通信信号を受信し、センシング結果をBSへフィードバックする。
In the Type 2 example of FIG. 8A, the sensing transmitter and the sensing receiver are distributed. The sensing transmitter transmits a signal and the sensing receiver receives the signal affected by the object. The Type 2 example of FIG. 8B is BS-side bistatic sensing/multistatic sensing. In this example, the sensing transmitter is the BS and the sensing receiver is the associated BS. The Type 2 example of FIG. 8C is UE-side bistatic sensing/multistatic sensing. In this example, the sensing transmitter is the UE and the sensing receiver is the associated UE. The Type 2 example of FIG. 8D is UE-assisted sensing. In this example, the sensing transmitter is the BS and the sensing receiver is the UE, where the BS transmits a communication signal and the UE receives a communication signal from the BS and feeds back the sensing result to the BS.
--実施形態#1-1-2
前方互換性(forward compatibility)に基づく1つ以上のセンシングタイプが定義されてもよい。1つ以上のセンシングタイプは、以下のいくつかのタイプの少なくとも1つであってもよい。 --Embodiment #1-1-2
One or more sensing types based on forward compatibility may be defined. The one or more sensing types may be at least one of the following types:
前方互換性(forward compatibility)に基づく1つ以上のセンシングタイプが定義されてもよい。1つ以上のセンシングタイプは、以下のいくつかのタイプの少なくとも1つであってもよい。 --Embodiment #1-1-2
One or more sensing types based on forward compatibility may be defined. The one or more sensing types may be at least one of the following types:
[タイプ1]UEに支援されるセンシング
センシング及びフィードバックにUL/DLのRSが用いられてもよい。既存RS又は新規RSがセンシング用に定義されてもよい。データ(例えば、PUSCH/PDSCH)は、RSの特別ケースと見なされてもよい。UEに支援されるセンシングは、5G NRポジショニング方法に基づいてもよい。センシング送信機がBSであってもよく、センシング受信機がUEであってもよい。センシング送信機がUEであってもよく、センシング受信機がBSであってもよい。 [Type 1] UE-assisted sensing UL/DL RS may be used for sensing and feedback. Existing RS or new RS may be defined for sensing. Data (e.g., PUSCH/PDSCH) may be considered as a special case of RS. UE-assisted sensing may be based on 5G NR positioning method. The sensing transmitter may be a BS and the sensing receiver may be a UE. The sensing transmitter may be a UE and the sensing receiver may be a BS.
センシング及びフィードバックにUL/DLのRSが用いられてもよい。既存RS又は新規RSがセンシング用に定義されてもよい。データ(例えば、PUSCH/PDSCH)は、RSの特別ケースと見なされてもよい。UEに支援されるセンシングは、5G NRポジショニング方法に基づいてもよい。センシング送信機がBSであってもよく、センシング受信機がUEであってもよい。センシング送信機がUEであってもよく、センシング受信機がBSであってもよい。 [Type 1] UE-assisted sensing UL/DL RS may be used for sensing and feedback. Existing RS or new RS may be defined for sensing. Data (e.g., PUSCH/PDSCH) may be considered as a special case of RS. UE-assisted sensing may be based on 5G NR positioning method. The sensing transmitter may be a BS and the sensing receiver may be a UE. The sensing transmitter may be a UE and the sensing receiver may be a BS.
[タイプ2]モノスタティック/バイスタティック/マルチスタティックのセンシングを伴う新規センシング方法
通信信号又はレーダ信号又は統合信号が、センシングに用いられてもよい。通信信号は例えば、PRS、SRS、CSI-RS、SSB、PDSCH、PUSCHの少なくとも1つであってもよい。レーダ信号は、FMCW、LFM、CWの少なくとも1つであってもよい。統合信号は、新規ISAC信号であってもよい。ISACシステムは、モノスタティック/バイスタティック/マルチスタティックと、の少なくとも1つをサポートしてもよい。 [Type 2] Novel sensing method with monostatic/bistatic/multistatic sensing Communication signals or radar signals or integrated signals may be used for sensing. The communication signals may be, for example, at least one of PRS, SRS, CSI-RS, SSB, PDSCH, and PUSCH. The radar signals may be at least one of FMCW, LFM, and CW. The integrated signals may be novel ISAC signals. The ISAC system may support at least one of monostatic/bistatic/multistatic.
通信信号又はレーダ信号又は統合信号が、センシングに用いられてもよい。通信信号は例えば、PRS、SRS、CSI-RS、SSB、PDSCH、PUSCHの少なくとも1つであってもよい。レーダ信号は、FMCW、LFM、CWの少なくとも1つであってもよい。統合信号は、新規ISAC信号であってもよい。ISACシステムは、モノスタティック/バイスタティック/マルチスタティックと、の少なくとも1つをサポートしてもよい。 [Type 2] Novel sensing method with monostatic/bistatic/multistatic sensing Communication signals or radar signals or integrated signals may be used for sensing. The communication signals may be, for example, at least one of PRS, SRS, CSI-RS, SSB, PDSCH, and PUSCH. The radar signals may be at least one of FMCW, LFM, and CW. The integrated signals may be novel ISAC signals. The ISAC system may support at least one of monostatic/bistatic/multistatic.
タイプ1及びタイプ2は、5G NRと異なる新規センシング能力がサポートされるか、又は、センシング中にUEが関わるか、によって容易に決定されることができる。5G NRポジショニングと異なる新規能力が関わる場合、タイプ2のみがサポートされてもよい。そうでない場合、両方のタイプがサポートされてもよい。タイプの数がより少なくなることによって、シグナリングオーバーヘッドがより小さくなる。
Type 1 and Type 2 can be easily determined depending on whether new sensing capabilities different from 5G NR are supported or the UE is involved in sensing. If new capabilities different from 5G NR positioning are involved, only Type 2 may be supported. If not, both types may be supported. The smaller number of types results in smaller signaling overhead.
図9Aのタイプ1の例において、センシング送信機及びセンシング受信機はBS及びUEであってもよい。センシング送信機は、信号を送信し、センシング受信機は、対象からのエコー信号を受信する。図9Bのタイプ1の例は、DL信号を介し、UEに支援されるセンシングである。この例において、センシング送信機はBSであり、センシング受信機はUEである。図9Cのタイプ1の例は、UL信号を介し、UEに支援されるセンシングである。この例において、センシング送信機はUEであり、センシング受信機はBSである。
In the Type 1 example of FIG. 9A, the sensing transmitter and sensing receiver may be a BS and a UE. The sensing transmitter transmits a signal and the sensing receiver receives an echo signal from the target. The Type 1 example of FIG. 9B is UE-assisted sensing via DL signals. In this example, the sensing transmitter is a BS and the sensing receiver is a UE. The Type 1 example of FIG. 9C is UE-assisted sensing via UL signals. In this example, the sensing transmitter is a UE and the sensing receiver is a BS.
図10Aのタイプ2の例は、モノスタティックセンシングである。この例において、センシング送受信機はBS又はUEである。センシング送受信機は、信号を送信し、対象からのエコー信号を受信する。図10Bのタイプ2の例は、バイスタティックセンシング/マルチスタティックセンシングである。この例において、センシング送信機はBS又はUEであり、センシング受信機は、連携BS又は連携UEである。センシング送信機は、信号を送信し、センシング受信機は、対象によって影響を受けた信号を受信する。
An example of Type 2 in FIG. 10A is monostatic sensing. In this example, the sensing transceiver is a BS or a UE. The sensing transceiver transmits a signal and receives an echo signal from the target. An example of Type 2 in FIG. 10B is bistatic/multistatic sensing. In this example, the sensing transmitter is a BS or a UE and the sensing receiver is an associated BS or an associated UE. The sensing transmitter transmits a signal and the sensing receiver receives the signal affected by the target.
--実施形態#1-1-3
センシング信号に基づく1つ以上のセンシングタイプが定義されてもよい。1つ以上のセンシングタイプは、以下のいくつかのタイプの少なくとも1つであってもよい。 --Embodiment #1-1-3
One or more sensing types based on the sensing signal may be defined. The one or more sensing types may be at least one of the following types:
センシング信号に基づく1つ以上のセンシングタイプが定義されてもよい。1つ以上のセンシングタイプは、以下のいくつかのタイプの少なくとも1つであってもよい。 --Embodiment #1-1-3
One or more sensing types based on the sensing signal may be defined. The one or more sensing types may be at least one of the following types:
[タイプ1]通信ベースの(communication-based)センシング
通信システムにおける既存又は新規の信号によって、1つ以上のUEと、1つ以上の対象と、環境と、の少なくとも1つがセンシングされてもよい。 [Type 1] Communication-based Sensing At least one of one or more UEs, one or more objects, and the environment may be sensed by existing or new signals in a communication system.
通信システムにおける既存又は新規の信号によって、1つ以上のUEと、1つ以上の対象と、環境と、の少なくとも1つがセンシングされてもよい。 [Type 1] Communication-based Sensing At least one of one or more UEs, one or more objects, and the environment may be sensed by existing or new signals in a communication system.
[タイプ2]レーダベースの(radar-based)センシング
レーダ方法を通じ、センシング信号/ISAC信号によって、1つ以上のUEと、1つ以上の対象と、環境と、の少なくとも1つがセンシングされてもよい。センシング信号/ISAC信号は、前述のレーダ信号であってもよい。レーダ方法は、前述のモノスタティックセンシング/バイスタティックセンシング/マルチスタティックセンシングのレーダ方法であってもよい。1つ以上のセンシング方法(モノスタティックセンシング/バイスタティックセンシング/マルチスタティックセンシング)がサポートされてもよい。 [Type 2] Radar-based Sensing Through a radar method, at least one of one or more UEs, one or more objects, and the environment may be sensed by a sensing signal/ISAC signal. The sensing signal/ISAC signal may be a radar signal as described above. The radar method may be a monostatic sensing/bistatic sensing/multistatic sensing radar method as described above. One or more sensing methods (monostatic sensing/bistatic sensing/multistatic sensing) may be supported.
レーダ方法を通じ、センシング信号/ISAC信号によって、1つ以上のUEと、1つ以上の対象と、環境と、の少なくとも1つがセンシングされてもよい。センシング信号/ISAC信号は、前述のレーダ信号であってもよい。レーダ方法は、前述のモノスタティックセンシング/バイスタティックセンシング/マルチスタティックセンシングのレーダ方法であってもよい。1つ以上のセンシング方法(モノスタティックセンシング/バイスタティックセンシング/マルチスタティックセンシング)がサポートされてもよい。 [Type 2] Radar-based Sensing Through a radar method, at least one of one or more UEs, one or more objects, and the environment may be sensed by a sensing signal/ISAC signal. The sensing signal/ISAC signal may be a radar signal as described above. The radar method may be a monostatic sensing/bistatic sensing/multistatic sensing radar method as described above. One or more sensing methods (monostatic sensing/bistatic sensing/multistatic sensing) may be supported.
[タイプ3]通信及びレーダのハイブリッドベースのセンシング
通信システムにおける既存又は新規の信号によって、1つ以上のUEがセンシングされてもよい。レーダ方法を通じ、通信信号/センシング信号/ISAC信号によって、1つ以上の対象と、環境と、の少なくとも1つがセンシングされてもよい。レーダ方法は、前述のモノスタティックセンシング/バイスタティックセンシング/マルチスタティックセンシングのレーダ方法であってもよい。1つ以上のセンシング方法(モノスタティックセンシング/バイスタティックセンシング/マルチスタティックセンシング)がサポートされてもよい。 [Type 3] Hybrid-based sensing of communication and radar One or more UEs may be sensed by existing or new signals in the communication system. Through a radar method, at least one of one or more objects and the environment may be sensed by communication signals/sensing signals/ISAC signals. The radar method may be the above-mentioned monostatic sensing/bistatic sensing/multistatic sensing radar method. One or more sensing methods (monostatic sensing/bistatic sensing/multistatic sensing) may be supported.
通信システムにおける既存又は新規の信号によって、1つ以上のUEがセンシングされてもよい。レーダ方法を通じ、通信信号/センシング信号/ISAC信号によって、1つ以上の対象と、環境と、の少なくとも1つがセンシングされてもよい。レーダ方法は、前述のモノスタティックセンシング/バイスタティックセンシング/マルチスタティックセンシングのレーダ方法であってもよい。1つ以上のセンシング方法(モノスタティックセンシング/バイスタティックセンシング/マルチスタティックセンシング)がサポートされてもよい。 [Type 3] Hybrid-based sensing of communication and radar One or more UEs may be sensed by existing or new signals in the communication system. Through a radar method, at least one of one or more objects and the environment may be sensed by communication signals/sensing signals/ISAC signals. The radar method may be the above-mentioned monostatic sensing/bistatic sensing/multistatic sensing radar method. One or more sensing methods (monostatic sensing/bistatic sensing/multistatic sensing) may be supported.
センシングシステムによって、少なくとも1つのタイプがサポートされてもよい。少なくとも1つのタイプが、5G NRポジショニングによって定義される方法及び信号を伴うタイプ1に基づいてもよい。
At least one type may be supported by the sensing system. At least one type may be based on Type 1 with methods and signals defined by 5G NR positioning.
これらの信号は、一連のリソース配置及び測定/報告の設定に関連する。センシング送信機能力に基づく事前設定を伴うことによって、より少ない選択肢と、より低いシグナリングオーバーヘッド及びより低い複雑性を伴って、測定及び報告の仕組みが設定されることができる。
These signals are associated with a set of resource allocation and measurement/reporting configurations. By involving pre-configuration based on sensing transmission capabilities, measurement and reporting mechanisms can be configured with fewer options, lower signaling overhead and lower complexity.
図11Aのタイプ1の例は、BS又はUEにおけるモノスタティックセンシングである。この例において、センシング送受信機はBS又はUEであってもよい。センシング送受信機は、通信信号を送信し、対象からのエコー信号を受信する。図11Bのタイプ1の例は、BS/UEにおけるバイスタティックセンシング/マルチスタティックセンシングである。センシング送信機は、通信信号を送信し、センシング受信機は、対象によって影響を受けた信号を受信する。この例において、センシング送信機はBS又はUEであり、センシング受信機は連携BS又は連携UEである。図11Cのタイプ1の例は、UEに支援されるセンシングである。この例において、センシング送信機はBSであり、センシング受信機はUEであり、BSは通信信号を送信し、UEは、BSからの通信信号を受信し、センシング結果をBSへフィードバックする。
An example of Type 1 in FIG. 11A is monostatic sensing at the BS or UE. In this example, the sensing transceiver may be the BS or the UE. The sensing transceiver transmits the communication signal and receives the echo signal from the object. An example of Type 1 in FIG. 11B is bistatic/multistatic sensing at the BS/UE. The sensing transmitter transmits the communication signal and the sensing receiver receives the signal affected by the object. In this example, the sensing transmitter is the BS or the UE and the sensing receiver is the associated BS or the associated UE. An example of Type 1 in FIG. 11C is UE-assisted sensing. In this example, the sensing transmitter is the BS and the sensing receiver is the UE, the BS transmits the communication signal, the UE receives the communication signal from the BS and feeds back the sensing result to the BS.
図12Aのタイプ2の例は、BS又はUEにおけるモノスタティックセンシングである。この例において、センシング送受信機はBS又はUEであってもよい。センシング送受信機は、レーダ信号を送信し、対象からのエコー信号を受信する。図12Bのタイプ2の例は、BS/UEにおけるバイスタティックセンシング/マルチスタティックセンシングである。センシング送信機は、レーダ信号を送信し、センシング受信機は、対象によって影響を受けた信号を受信する。この例において、センシング送信機はBS又はUEであり、センシング受信機は連携BS又は連携UEである。図12Cのタイプ2の例は、UEに支援されるセンシングである。この例において、センシング送信機はBSであり、センシング受信機はUEであり、BSはレーダ信号を送信し、UEは、BSからのレーダ信号を受信し、センシング結果をBSへフィードバックする。
An example of Type 2 in FIG. 12A is monostatic sensing at the BS or UE. In this example, the sensing transceiver may be the BS or the UE. The sensing transceiver transmits a radar signal and receives an echo signal from the target. An example of Type 2 in FIG. 12B is bistatic/multistatic sensing at the BS/UE. The sensing transmitter transmits a radar signal and the sensing receiver receives the signal affected by the target. In this example, the sensing transmitter is the BS or the UE and the sensing receiver is an associated BS or an associated UE. An example of Type 2 in FIG. 12C is UE-assisted sensing. In this example, the sensing transmitter is the BS and the sensing receiver is the UE, the BS transmits a radar signal, the UE receives the radar signal from the BS, and feeds back the sensing result to the BS.
図13Aのタイプ3の例は、BSにおけるモノスタティックセンシングである。この例において、センシング送受信機はBSである。BSは、UEのセンシングに通信信号を用い、対象のセンシングにレーダ信号を用いる。BSは、通信信号及びレーダ信号を送信する。UEは、BSからの通信信号を受信し、受信結果をBSへフィードバックする。BSは、対象からのエコー信号を受信し、UEからのフィードバックを受信する。図13Bのタイプ3の例は、BSにおけるバイスタティックセンシング/マルチスタティックセンシングである。この例において、センシング送信機はBSであり、センシング受信機は連携BSである。BSは、UEのセンシングに通信信号を用い、対象のセンシングにレーダ信号を用いる。BSは、通信信号及びレーダ信号を送信する。UEは、BSからの通信信号を受信し、受信結果をBSへフィードバックする。連携BSは、対象に影響を受けた信号を受信する。BSは、UEからのフィードバックを受信する。図13Cのタイプ3の例は、UEに支援されるセンシングである。この例において、センシング送信機はBSであり、センシング受信機はUEである。BSは、UEのセンシングに通信信号を用い、対象のセンシングにレーダ信号を用いる。BSは、通信信号及びレーダ信号を送信する。UEは、BSからの通信信号を受信し、対象に影響を受けた信号を受信し、それらの受信結果をBSへフィードバックする。BSは、UEからのフィードバックを受信する。
An example of Type 3 in FIG. 13A is monostatic sensing at the BS. In this example, the sensing transceiver is the BS. The BS uses communication signals for sensing the UE and radar signals for sensing the target. The BS transmits communication signals and radar signals. The UE receives communication signals from the BS and feeds back the reception results to the BS. The BS receives echo signals from the target and receives feedback from the UE. An example of Type 3 in FIG. 13B is bistatic/multistatic sensing at the BS. In this example, the sensing transmitter is the BS and the sensing receiver is a cooperating BS. The BS uses communication signals for sensing the UE and radar signals for sensing the target. The BS transmits communication signals and radar signals. The UE receives communication signals from the BS and feeds back the reception results to the BS. The cooperating BS receives signals influenced by the target. The BS receives feedback from the UE. An example of Type 3 in FIG. 13C is UE-assisted sensing. In this example, the sensing transmitter is a BS and the sensing receiver is a UE. The BS uses communication signals to sense the UE and radar signals to sense the target. The BS transmits communication signals and radar signals. The UE receives the communication signals from the BS and the signals affected by the target, and feeds back the reception results to the BS. The BS receives feedback from the UE.
--実施形態#1-1-4
センシング信号及びセンシング方法に基づく1つ以上のセンシングタイプが定義されてもよい。1つ以上のセンシングタイプは、以下のいくつかのタイプの少なくとも1つであってもよい。 --Embodiment #1-1-4
One or more sensing types based on the sensing signal and the sensing method may be defined. The one or more sensing types may be at least one of the following types:
センシング信号及びセンシング方法に基づく1つ以上のセンシングタイプが定義されてもよい。1つ以上のセンシングタイプは、以下のいくつかのタイプの少なくとも1つであってもよい。 --Embodiment #1-1-4
One or more sensing types based on the sensing signal and the sensing method may be defined. The one or more sensing types may be at least one of the following types:
[タイプ1]通信信号ベースであり、UEに支援されるセンシング
例えば、センシングは、UEに対するUL又はDLの信号に基づいてもよい。その信号は、PRS、SRS、CSI-RS、SSB、PDSCH、PUSCH、新規RS、の少なくとも1つに基づいてもよい。そのUEは、データ通信の要件/能力を有する。 [Type 1] Communication signal based, UE assisted sensing For example, sensing may be based on UL or DL signals to the UE. The signals may be based on at least one of PRS, SRS, CSI-RS, SSB, PDSCH, PUSCH, new RS. The UE has requirements/capabilities for data communication.
例えば、センシングは、UEに対するUL又はDLの信号に基づいてもよい。その信号は、PRS、SRS、CSI-RS、SSB、PDSCH、PUSCH、新規RS、の少なくとも1つに基づいてもよい。そのUEは、データ通信の要件/能力を有する。 [Type 1] Communication signal based, UE assisted sensing For example, sensing may be based on UL or DL signals to the UE. The signals may be based on at least one of PRS, SRS, CSI-RS, SSB, PDSCH, PUSCH, new RS. The UE has requirements/capabilities for data communication.
[タイプ2]通信信号ベースであり、モノスタティック/バイスタティック/マルチスタティックのセンシング
例えば、センシングは、センシング送信機(BS/UE)からセンシング受信機(BS/UE)への信号に基づいてもよい。その信号は、PRS、SRS、CSI-RS、SSB、PDSCH、PUSCH、新規RS、の少なくとも1つであってもよい。UEが関わる場合、センシングは、そのUEがデータ通信の要件/能力を有するか否かに関わらなくてもよい。 [Type 2] Communication signal based, monostatic/bistatic/multistatic sensing For example, sensing may be based on signals from the sensing transmitter (BS/UE) to the sensing receiver (BS/UE). The signals may be at least one of PRS, SRS, CSI-RS, SSB, PDSCH, PUSCH, new RS. If a UE is involved, sensing may be independent of whether the UE has requirements/capabilities for data communication or not.
例えば、センシングは、センシング送信機(BS/UE)からセンシング受信機(BS/UE)への信号に基づいてもよい。その信号は、PRS、SRS、CSI-RS、SSB、PDSCH、PUSCH、新規RS、の少なくとも1つであってもよい。UEが関わる場合、センシングは、そのUEがデータ通信の要件/能力を有するか否かに関わらなくてもよい。 [Type 2] Communication signal based, monostatic/bistatic/multistatic sensing For example, sensing may be based on signals from the sensing transmitter (BS/UE) to the sensing receiver (BS/UE). The signals may be at least one of PRS, SRS, CSI-RS, SSB, PDSCH, PUSCH, new RS. If a UE is involved, sensing may be independent of whether the UE has requirements/capabilities for data communication or not.
[タイプ3]レーダ信号/ISAC信号ベースであり、UEに支援されるセンシング
例えば、センシングは、UEに対するUL又はDLの信号に基づいてもよい。その信号は、レーダ信号、ISAC信号、レーダ波形、ISAC波形、の少なくとも1つに基づいてもよい。そのUEは、データ通信の要件/能力を有する。 [Type 3] Radar/ISAC signal based UE assisted sensing For example, sensing may be based on UL or DL signals to the UE. The signals may be based on at least one of radar signals, ISAC signals, radar waveforms, and ISAC waveforms. The UE has requirements/capabilities for data communication.
例えば、センシングは、UEに対するUL又はDLの信号に基づいてもよい。その信号は、レーダ信号、ISAC信号、レーダ波形、ISAC波形、の少なくとも1つに基づいてもよい。そのUEは、データ通信の要件/能力を有する。 [Type 3] Radar/ISAC signal based UE assisted sensing For example, sensing may be based on UL or DL signals to the UE. The signals may be based on at least one of radar signals, ISAC signals, radar waveforms, and ISAC waveforms. The UE has requirements/capabilities for data communication.
[タイプ4]レーダ信号/ISAC信号ベースであり、モノスタティック/バイスタティック/マルチスタティックのセンシング
例えば、センシングは、センシング送信機(BS/UE)からセンシング受信機(BS/UE)への信号に基づいてもよい。その信号は、レーダ信号、ISAC信号、レーダ波形、ISAC波形、の少なくとも1つに基づいてもよい。UEが関わる場合、センシングは、そのUEがデータ通信の要件/能力を有するか否かに関わらなくてもよい。 [Type 4] Radar/ISAC signal based, monostatic/bistatic/multistatic sensing For example, sensing may be based on a signal from a sensing transmitter (BS/UE) to a sensing receiver (BS/UE). The signal may be based on at least one of a radar signal, an ISAC signal, a radar waveform, and an ISAC waveform. If a UE is involved, sensing may be independent of whether the UE has requirements/capabilities for data communication.
例えば、センシングは、センシング送信機(BS/UE)からセンシング受信機(BS/UE)への信号に基づいてもよい。その信号は、レーダ信号、ISAC信号、レーダ波形、ISAC波形、の少なくとも1つに基づいてもよい。UEが関わる場合、センシングは、そのUEがデータ通信の要件/能力を有するか否かに関わらなくてもよい。 [Type 4] Radar/ISAC signal based, monostatic/bistatic/multistatic sensing For example, sensing may be based on a signal from a sensing transmitter (BS/UE) to a sensing receiver (BS/UE). The signal may be based on at least one of a radar signal, an ISAC signal, a radar waveform, and an ISAC waveform. If a UE is involved, sensing may be independent of whether the UE has requirements/capabilities for data communication.
センシングタイプをより詳細に分けることによって、測定及び報告の仕組み(例えば、リソース配置及び報告値)に関する動的設定の複雑性が低くなり得る。
By separating sensing types in more detail, the dynamic configuration of measurement and reporting mechanisms (e.g., resource allocation and reporting values) can be less complex.
--実施形態#1-1-5
センシングタイプは、実施形態#1-1-1から#1-1-4のように明示的に定義されず、設定されるセンシング信号及びセンシング方法によって暗示的に指示されてもよい。 --Embodiment #1-1-5
The sensing type may not be explicitly defined as in embodiments #1-1-1 to #1-1-4, but may be implicitly indicated by the sensing signal and sensing method that are set.
センシングタイプは、実施形態#1-1-1から#1-1-4のように明示的に定義されず、設定されるセンシング信号及びセンシング方法によって暗示的に指示されてもよい。 --Embodiment #1-1-5
The sensing type may not be explicitly defined as in embodiments #1-1-1 to #1-1-4, but may be implicitly indicated by the sensing signal and sensing method that are set.
これによれば、センシングタイプが、いかなる事前設定もなく、完全に動的に設定されることができる。
This allows the sensing type to be configured completely dynamically without any pre-configuration.
-実施形態#1-2
センシングタイプの設定/指示/シグナリングが定義されてもよい。 -Embodiment #1-2
Sensing type configuration/indication/signaling may be defined.
センシングタイプの設定/指示/シグナリングが定義されてもよい。 -Embodiment #1-2
Sensing type configuration/indication/signaling may be defined.
実施形態#1-1において定義されるセンシングタイプの設定を用いることによって、対応する測定及び報告の仕組みの決定/設定が、低オーバーヘッド及び低複雑性になることができる。
By using the sensing type configuration defined in embodiment #1-1, the determination/configuration of the corresponding measurement and reporting mechanisms can be achieved with low overhead and low complexity.
--実施形態#1-2-1
センシングタイプは、サポートされている信号と、BS/UE/センシング対象の能力と、の少なくとも1つを含む1つ以上の因子に基づいて選択されてもよい。能力は、BS/UEを含む複数の装置の間において交換されてもよい。能力は、上位レイヤシグナリング/物理レイヤシグナリングによって交換されてもよい。例えば、能力は、RRC IE/MAC CE/DCI/UCIと、複数BS間のX2/Xnインタフェースと、の少なくとも1つによって交換されてもよいし、SIB/MIBのシグナリングによってブロードキャストされてもよい。センシングタイプ/センシング信号は、以下のいくつかの選択方法の少なくとも1つに従って選択/決定されてもよい。 --Embodiment #1-2-1
The sensing type may be selected based on one or more factors including at least one of the supported signals and the capabilities of the BS/UE/sensing target. The capabilities may be exchanged between multiple devices including the BS/UE. The capabilities may be exchanged by higher layer signaling/physical layer signaling. For example, the capabilities may be exchanged by at least one of the RRC IE/MAC CE/DCI/UCI and the X2/Xn interface between multiple BSs, or may be broadcast by SIB/MIB signaling. The sensing type/sensing signal may be selected/determined according to at least one of the following selection methods:
センシングタイプは、サポートされている信号と、BS/UE/センシング対象の能力と、の少なくとも1つを含む1つ以上の因子に基づいて選択されてもよい。能力は、BS/UEを含む複数の装置の間において交換されてもよい。能力は、上位レイヤシグナリング/物理レイヤシグナリングによって交換されてもよい。例えば、能力は、RRC IE/MAC CE/DCI/UCIと、複数BS間のX2/Xnインタフェースと、の少なくとも1つによって交換されてもよいし、SIB/MIBのシグナリングによってブロードキャストされてもよい。センシングタイプ/センシング信号は、以下のいくつかの選択方法の少なくとも1つに従って選択/決定されてもよい。 --Embodiment #1-2-1
The sensing type may be selected based on one or more factors including at least one of the supported signals and the capabilities of the BS/UE/sensing target. The capabilities may be exchanged between multiple devices including the BS/UE. The capabilities may be exchanged by higher layer signaling/physical layer signaling. For example, the capabilities may be exchanged by at least one of the RRC IE/MAC CE/DCI/UCI and the X2/Xn interface between multiple BSs, or may be broadcast by SIB/MIB signaling. The sensing type/sensing signal may be selected/determined according to at least one of the following selection methods:
[選択方法1]
センシングタイプ及びセンシング信号の選択は、BS/UEの能力に基づいてもよい。センシングに関わるBS/UEの能力は、交換/ブロードキャストされてもよい。全二重能力を伴うBSと、計算の高い複雑性/能力を伴うUEと、において、全てのセンシングタイプがサポートされてもよい。全二重能力を伴わないBSと、計算の高い複雑性/能力を伴うUEと、において、モノスタティックセンシングを伴うセンシングタイプがサポートされなくてもよく、バイスタティックセンシング/マルチスタティックセンシングと、UEに支援されるセンシングと、の少なくとも1つを伴うセンシングタイプがサポートされてもよい。システムは、性能要件に基づいて1つのセンシングタイプを選択肢、対応するリソース及び手順を設定してもよい。全二重能力を伴うBSと、計算の低い複雑性/能力を伴うUEと、において、バイスタティックセンシング/マルチスタティックセンシングを伴うセンシングタイプのみがサポートされてもよい。 [Selection method 1]
The selection of sensing type and sensing signal may be based on the capabilities of BS/UE. The capabilities of BS/UE involved in sensing may be exchanged/broadcast. In BS with full-duplex capability and UE with high computational complexity/capability, all sensing types may be supported. In BS without full-duplex capability and UE with high computational complexity/capability, sensing type with monostatic sensing may not be supported, and sensing type with at least one of bistatic/multistatic sensing and UE-assisted sensing may be supported. The system may select one sensing type based on performance requirements and configure corresponding resources and procedures. In BS with full-duplex capability and UE with low computational complexity/capability, only sensing type with bistatic/multistatic sensing may be supported.
センシングタイプ及びセンシング信号の選択は、BS/UEの能力に基づいてもよい。センシングに関わるBS/UEの能力は、交換/ブロードキャストされてもよい。全二重能力を伴うBSと、計算の高い複雑性/能力を伴うUEと、において、全てのセンシングタイプがサポートされてもよい。全二重能力を伴わないBSと、計算の高い複雑性/能力を伴うUEと、において、モノスタティックセンシングを伴うセンシングタイプがサポートされなくてもよく、バイスタティックセンシング/マルチスタティックセンシングと、UEに支援されるセンシングと、の少なくとも1つを伴うセンシングタイプがサポートされてもよい。システムは、性能要件に基づいて1つのセンシングタイプを選択肢、対応するリソース及び手順を設定してもよい。全二重能力を伴うBSと、計算の低い複雑性/能力を伴うUEと、において、バイスタティックセンシング/マルチスタティックセンシングを伴うセンシングタイプのみがサポートされてもよい。 [Selection method 1]
The selection of sensing type and sensing signal may be based on the capabilities of BS/UE. The capabilities of BS/UE involved in sensing may be exchanged/broadcast. In BS with full-duplex capability and UE with high computational complexity/capability, all sensing types may be supported. In BS without full-duplex capability and UE with high computational complexity/capability, sensing type with monostatic sensing may not be supported, and sensing type with at least one of bistatic/multistatic sensing and UE-assisted sensing may be supported. The system may select one sensing type based on performance requirements and configure corresponding resources and procedures. In BS with full-duplex capability and UE with low computational complexity/capability, only sensing type with bistatic/multistatic sensing may be supported.
[選択方法2]
センシングタイプ及びセンシング信号の選択は、サポートされている信号に基づいてもよい。センシングに関わるBS/UEの能力は、交換/ブロードキャストされてもよい。BSがレーダ信号を生成できる場合、1つ以上のセンシング信号の全てがサポートされてもよい。1つ以上のセンシング信号は、通信信号、レーダ信号、ハイブリッド信号の少なくとも1つを含んでもよい。1つ以上のセンシング信号が選択され送信されてもよい。BSがレーダ信号を生成できない場合、通信信号のみがサポートされてもよい。 [Selection method 2]
The selection of sensing type and sensing signal may be based on the supported signals. The BS/UE capabilities for sensing may be exchanged/broadcast. If the BS can generate radar signals, all of the one or more sensing signals may be supported. The one or more sensing signals may include at least one of communication signals, radar signals, and hybrid signals. One or more sensing signals may be selected and transmitted. If the BS cannot generate radar signals, only communication signals may be supported.
センシングタイプ及びセンシング信号の選択は、サポートされている信号に基づいてもよい。センシングに関わるBS/UEの能力は、交換/ブロードキャストされてもよい。BSがレーダ信号を生成できる場合、1つ以上のセンシング信号の全てがサポートされてもよい。1つ以上のセンシング信号は、通信信号、レーダ信号、ハイブリッド信号の少なくとも1つを含んでもよい。1つ以上のセンシング信号が選択され送信されてもよい。BSがレーダ信号を生成できない場合、通信信号のみがサポートされてもよい。 [Selection method 2]
The selection of sensing type and sensing signal may be based on the supported signals. The BS/UE capabilities for sensing may be exchanged/broadcast. If the BS can generate radar signals, all of the one or more sensing signals may be supported. The one or more sensing signals may include at least one of communication signals, radar signals, and hybrid signals. One or more sensing signals may be selected and transmitted. If the BS cannot generate radar signals, only communication signals may be supported.
[選択方法3]
センシングタイプ及びセンシング信号の選択は、センシング対象の能力に基づいてもよい。センシングに関わるBS/UEの能力は、交換/ブロードキャストされてもよい。センシング対象が通信能力を有しておらず、周囲にいかなるUEも存在しない場合、モノスタティックセンシング/バイスタティックセンシング/マルチスタティックセンシングを伴うセンシングタイプのみがサポートされてもよい。そうでない場合、全てのセンシングタイプがサポートされてもよい。 [Selection method 3]
The selection of sensing type and sensing signal may be based on the capability of the sensing target. The capability of BS/UE involved in sensing may be exchanged/broadcast. If the sensing target does not have communication capability and there is no UE around, only sensing types with monostatic/bistatic/multistatic sensing may be supported. Otherwise, all sensing types may be supported.
センシングタイプ及びセンシング信号の選択は、センシング対象の能力に基づいてもよい。センシングに関わるBS/UEの能力は、交換/ブロードキャストされてもよい。センシング対象が通信能力を有しておらず、周囲にいかなるUEも存在しない場合、モノスタティックセンシング/バイスタティックセンシング/マルチスタティックセンシングを伴うセンシングタイプのみがサポートされてもよい。そうでない場合、全てのセンシングタイプがサポートされてもよい。 [Selection method 3]
The selection of sensing type and sensing signal may be based on the capability of the sensing target. The capability of BS/UE involved in sensing may be exchanged/broadcast. If the sensing target does not have communication capability and there is no UE around, only sensing types with monostatic/bistatic/multistatic sensing may be supported. Otherwise, all sensing types may be supported.
能力の情報の交換は、実施形態#1-1におけるセンシングタイプ及びセンシング信号の異なる定義によって異なってもよいし、実施形態#1-2-1における選択の異なる因子によって異なってもよい。全ての情報の交換の代わりに、必要とされる情報の交換を行うことによって、消費されるシグナリングオーバーヘッドが小さくなることができる。
The exchange of capability information may differ due to different definitions of sensing type and sensing signal in embodiment #1-1, or due to different factors of selection in embodiment #1-2-1. By exchanging only required information instead of exchanging all information, the signaling overhead consumed can be reduced.
--実施形態#1-2-2
選択されたセンシングタイプ及びセンシング信号は、物理レイヤシグナリング(例えば、DCI/UCI)によって指示されてもよいし、上位レイヤシグナリング(例えば、RRC IE/MAC CE)によって設定されてもよいし、ブロードキャストシグナリング(例えば、SIB/MIB)によって設定されてもよい。例えば、1つのセンシングタイプが上位レイヤシグナリングによって設定されてもよい。例えば、複数のセンシングタイプが上位レイヤシグナリングによって設定され、その内の1つのセンシングタイプが物理レイヤシグナリングによって指示されてもよい。選択されたセンシングタイプ及びセンシング信号に基づき、センシング用の対応するリソースが、RRC IE/MAC CE/DCI/UCI/SIB/MIBのシグナリングによって設定/指示されてもよい。バイスタティックセンシング/マルチスタティックセンシングが選択された場合、既存又は新規のX2/Xnインタフェースを介して、又は、センシングサーバを介して、連携する複数BSの間の相互作用が導かれてもよい。 --Embodiment #1-2-2
The selected sensing type and sensing signal may be indicated by physical layer signaling (e.g., DCI/UCI), may be set by higher layer signaling (e.g., RRC IE/MAC CE), or may be set by broadcast signaling (e.g., SIB/MIB). For example, one sensing type may be set by higher layer signaling. For example, multiple sensing types may be set by higher layer signaling, and one sensing type among them may be indicated by physical layer signaling. Based on the selected sensing type and sensing signal, the corresponding resources for sensing may be set/indicated by RRC IE/MAC CE/DCI/UCI/SIB/MIB signaling. When bistatic sensing/multistatic sensing is selected, interaction between cooperating BSs may be conducted via existing or new X2/Xn interfaces or via a sensing server.
選択されたセンシングタイプ及びセンシング信号は、物理レイヤシグナリング(例えば、DCI/UCI)によって指示されてもよいし、上位レイヤシグナリング(例えば、RRC IE/MAC CE)によって設定されてもよいし、ブロードキャストシグナリング(例えば、SIB/MIB)によって設定されてもよい。例えば、1つのセンシングタイプが上位レイヤシグナリングによって設定されてもよい。例えば、複数のセンシングタイプが上位レイヤシグナリングによって設定され、その内の1つのセンシングタイプが物理レイヤシグナリングによって指示されてもよい。選択されたセンシングタイプ及びセンシング信号に基づき、センシング用の対応するリソースが、RRC IE/MAC CE/DCI/UCI/SIB/MIBのシグナリングによって設定/指示されてもよい。バイスタティックセンシング/マルチスタティックセンシングが選択された場合、既存又は新規のX2/Xnインタフェースを介して、又は、センシングサーバを介して、連携する複数BSの間の相互作用が導かれてもよい。 --Embodiment #1-2-2
The selected sensing type and sensing signal may be indicated by physical layer signaling (e.g., DCI/UCI), may be set by higher layer signaling (e.g., RRC IE/MAC CE), or may be set by broadcast signaling (e.g., SIB/MIB). For example, one sensing type may be set by higher layer signaling. For example, multiple sensing types may be set by higher layer signaling, and one sensing type among them may be indicated by physical layer signaling. Based on the selected sensing type and sensing signal, the corresponding resources for sensing may be set/indicated by RRC IE/MAC CE/DCI/UCI/SIB/MIB signaling. When bistatic sensing/multistatic sensing is selected, interaction between cooperating BSs may be conducted via existing or new X2/Xn interfaces or via a sensing server.
実施形態#1-2-2によれば、実施形態#1-1の利点が実現されることができる。
According to embodiment #1-2-2, the advantages of embodiment #1-1 can be realized.
--実施形態#1-2-3
選択されたセンシングタイプ及びセンシング信号に基づき、測定及び報告の対応する値が決定されてもよいし、物理レイヤシグナリング(例えば、DCI/UCI)によって指示されてもよいし、上位レイヤシグナリング(例えば、RRC IE/MAC CE)によって設定されてもよいし、ブロードキャストシグナリング(例えば、SIB/MIB)によって設定されてもよい。異なるセンシングタイプ及び異なるセンシング信号の測定及び報告の詳細は、実施形態#1-3に従ってもよい。 --Embodiment #1-2-3
Based on the selected sensing type and sensing signal, the corresponding values of measurement and reporting may be determined, may be indicated by physical layer signaling (e.g., DCI/UCI), may be set by higher layer signaling (e.g., RRC IE/MAC CE), or may be set by broadcast signaling (e.g., SIB/MIB). Details of measurement and reporting of different sensing types and different sensing signals may follow embodiments #1-3.
選択されたセンシングタイプ及びセンシング信号に基づき、測定及び報告の対応する値が決定されてもよいし、物理レイヤシグナリング(例えば、DCI/UCI)によって指示されてもよいし、上位レイヤシグナリング(例えば、RRC IE/MAC CE)によって設定されてもよいし、ブロードキャストシグナリング(例えば、SIB/MIB)によって設定されてもよい。異なるセンシングタイプ及び異なるセンシング信号の測定及び報告の詳細は、実施形態#1-3に従ってもよい。 --Embodiment #1-2-3
Based on the selected sensing type and sensing signal, the corresponding values of measurement and reporting may be determined, may be indicated by physical layer signaling (e.g., DCI/UCI), may be set by higher layer signaling (e.g., RRC IE/MAC CE), or may be set by broadcast signaling (e.g., SIB/MIB). Details of measurement and reporting of different sensing types and different sensing signals may follow embodiments #1-3.
実施形態#1-2-3によれば、実施形態#1-1の利点が実現されることができる。
According to embodiment #1-2-3, the advantages of embodiment #1-1 can be realized.
-実施形態#1-3
センシングタイプ及びセンシング信号に対する測定及び報告が設計されてもよい。 -Embodiments #1-3
Measurements and reports may be designed for the sensing type and sensing signal.
センシングタイプ及びセンシング信号に対する測定及び報告が設計されてもよい。 -Embodiments #1-3
Measurements and reports may be designed for the sensing type and sensing signal.
BS側における測定が、以下のいくつかの選択肢の少なくとも1つに基づいて実行されてもよい。
[選択肢1]
(モノスタティックのセンシングタイプにおいて)測定は、センシング送受信機における、エコー信号、又は、そのBSによって送信され受信される信号、又は、対象に影響を受けた信号、に基づいて行われてもよい。
[選択肢2]
(バイスタティック/マルチスタティックのセンシングタイプにおいて)測定は、他のBSから送信されて受信される信号に基づいて行われてもよい。(UEに支援されるセンシングのタイプにおいて)測定は、UEから送信されて受信される信号に基づいて行われてもよい。 Measurements at the BS side may be performed based on at least one of the following options:
[Option 1]
Measurements (in monostatic sensing type) may be made based on echo signals at the sensing transceiver, or on signals transmitted and received by the BS, or on signals impinged on the object.
[Option 2]
Measurements may be made based on signals transmitted and received from other BSs (in bistatic/multistatic sensing type) or based on signals transmitted and received from the UE (in UE-assisted sensing type).
[選択肢1]
(モノスタティックのセンシングタイプにおいて)測定は、センシング送受信機における、エコー信号、又は、そのBSによって送信され受信される信号、又は、対象に影響を受けた信号、に基づいて行われてもよい。
[選択肢2]
(バイスタティック/マルチスタティックのセンシングタイプにおいて)測定は、他のBSから送信されて受信される信号に基づいて行われてもよい。(UEに支援されるセンシングのタイプにおいて)測定は、UEから送信されて受信される信号に基づいて行われてもよい。 Measurements at the BS side may be performed based on at least one of the following options:
[Option 1]
Measurements (in monostatic sensing type) may be made based on echo signals at the sensing transceiver, or on signals transmitted and received by the BS, or on signals impinged on the object.
[Option 2]
Measurements may be made based on signals transmitted and received from other BSs (in bistatic/multistatic sensing type) or based on signals transmitted and received from the UE (in UE-assisted sensing type).
BS側における測定なので、報告は不要であってもよいが、測定リソースが設定/指示されてもよい。
Since this is a measurement on the BS side, reporting may not be necessary, but measurement resources may be set/instructed.
UE側における測定が、以下のいくつかの選択肢の少なくとも1つに基づいて実行されてもよい。
[選択肢1]
(モノスタティックのセンシングタイプにおいて)測定は、センシング送受信機における、エコー信号、又は、そのBSによって送信され受信される信号、又は、対象に影響を受けた信号、に基づいて行われてもよい。
[選択肢2]
(バイスタティック/マルチスタティックのセンシングタイプにおいて)測定は、BSから送信されて受信される信号に基づいて行われてもよい。(UEに支援されるセンシングのタイプにおいて)測定は、他のUEから送信されて受信される信号に基づいて行われてもよい。 Measurements at the UE side may be performed based on at least one of the following options:
[Option 1]
Measurements (in monostatic sensing type) may be made based on echo signals at the sensing transceiver, or on signals transmitted and received by the BS, or on signals impinged on the object.
[Option 2]
Measurements may be made based on signals transmitted and received from the BS (in bistatic/multistatic sensing type) or based on signals transmitted and received from other UEs (in UE-assisted sensing type).
[選択肢1]
(モノスタティックのセンシングタイプにおいて)測定は、センシング送受信機における、エコー信号、又は、そのBSによって送信され受信される信号、又は、対象に影響を受けた信号、に基づいて行われてもよい。
[選択肢2]
(バイスタティック/マルチスタティックのセンシングタイプにおいて)測定は、BSから送信されて受信される信号に基づいて行われてもよい。(UEに支援されるセンシングのタイプにおいて)測定は、他のUEから送信されて受信される信号に基づいて行われてもよい。 Measurements at the UE side may be performed based on at least one of the following options:
[Option 1]
Measurements (in monostatic sensing type) may be made based on echo signals at the sensing transceiver, or on signals transmitted and received by the BS, or on signals impinged on the object.
[Option 2]
Measurements may be made based on signals transmitted and received from the BS (in bistatic/multistatic sensing type) or based on signals transmitted and received from other UEs (in UE-assisted sensing type).
UE側における測定に対する報告は必要であってもよい。測定リソース及び報告リソースが設定/指示されてもよい。
Reporting of measurements on the UE side may be required. Measurement resources and reporting resources may be configured/indicated.
連携BS側における測定が、別のBSから送信されて受信される信号に基づいて実行されてもよい。複数BSの連携の仕組みが定義されてもよい。少なくとも測定リソースが設定されてもよい。
Measurements at the cooperating BS side may be performed based on signals transmitted and received from another BS. A mechanism for cooperation among multiple BSs may be defined. At least measurement resources may be configured.
UEに支援されるセンシングのタイプにおいて、DLを用いる測定/センシングがUEにおいて行われてもよく、ULを用いる測定/センシングがBSにおいて行われてもよい。そのDLを用いる測定/センシングの結果がUEによって報告されてもよい。
In the type of sensing supported by the UE, measurements/sensing using DL may be performed in the UE, and measurements/sensing using UL may be performed in the BS. The results of the measurements/sensing using DL may be reported by the UE.
モノスタティックセンシングのタイプにおいて、測定/センシングは、UE又はBSにおいて行われてもよい。その測定/センシングの結果がUEによって報告されてもよいし、報告されなくてもよい。
In the monostatic sensing type, the measurement/sensing may be performed at the UE or at the BS. The result of the measurement/sensing may or may not be reported by the UE.
バイスタティックセンシング/マルチスタティックセンシングのタイプにおいて、測定/センシングは、1つ以上の連携BS又は1つ以上の連携UEにおいて行われてもよい。その測定/センシングの結果が、1つ以上の連携BS又は1つ以上の連携UEによって報告されてもよい。
In the bistatic/multistatic sensing type, the measurement/sensing may be performed in one or more associated BSs or one or more associated UEs. The measurement/sensing results may be reported by one or more associated BSs or one or more associated UEs.
測定及び報告の仕組みは、センシングタイプ/センシング信号に関係する。実施形態#1-3によれば、実施形態#1-1/1-2の利点が実現されることができる。
The measurement and reporting mechanism is related to the sensing type/sensing signal. According to embodiment #1-3, the advantages of embodiment #1-1/1-2 can be realized.
この実施形態によれば、適切なセンシングタイプ/センシング信号が用いられることができる。
According to this embodiment, any appropriate sensing type/sensing signal can be used.
<実施形態#2>
この実施形態は、センシングの要求(イニシエータ)及び収集(レスポンダ)の仕組みに関する。実施形態#1及び実施形態#2は組み合わせられてもよい。 <Embodiment # 2>
This embodiment relates to a mechanism for requesting (initiator) and collecting (responder) sensing.Embodiment # 1 and embodiment # 2 may be combined.
この実施形態は、センシングの要求(イニシエータ)及び収集(レスポンダ)の仕組みに関する。実施形態#1及び実施形態#2は組み合わせられてもよい。 <
This embodiment relates to a mechanism for requesting (initiator) and collecting (responder) sensing.
-実施形態#2-1
センシング情報収集の要求は、以下のいくつかの選択肢の少なくとも1つに従ってもよい。 -Embodiment #2-1
The request for collecting sensing information may be in accordance with at least one of the following options:
センシング情報収集の要求は、以下のいくつかの選択肢の少なくとも1つに従ってもよい。 -Embodiment #2-1
The request for collecting sensing information may be in accordance with at least one of the following options:
[選択肢1]
その要求は、BS/ネットワークからトリガされてもよい。すなわち、センシングイニシエータがBS/ネットワークであってもよい。そのトリガは、以下のいくつかのオプションの少なくとも1つに従ってもよい。
[[オプション1]]その要求は、上位レイヤ/ネットワークからトリガされる。
[[オプション2]]その要求は、事前に設定された周期を伴って、周期的にトリガされる。 [Option 1]
The request may be triggered from the BS/network, i.e. the sensing initiator may be the BS/network. The trigger may be according to at least one of several options:
[Option 1] The request is triggered from higher layers/network.
[Option 2] The request is triggered periodically, with a pre-set periodicity.
その要求は、BS/ネットワークからトリガされてもよい。すなわち、センシングイニシエータがBS/ネットワークであってもよい。そのトリガは、以下のいくつかのオプションの少なくとも1つに従ってもよい。
[[オプション1]]その要求は、上位レイヤ/ネットワークからトリガされる。
[[オプション2]]その要求は、事前に設定された周期を伴って、周期的にトリガされる。 [Option 1]
The request may be triggered from the BS/network, i.e. the sensing initiator may be the BS/network. The trigger may be according to at least one of several options:
[Option 1] The request is triggered from higher layers/network.
[Option 2] The request is triggered periodically, with a pre-set periodicity.
[選択肢2]
その要求は、UE側からトリガされてもよい。すなわち、センシングイニシエータがUEであってもよい。UEは、イベントからその要求を決定してもよい。そのイベントは、通信品質の劣化、又は、いくつかの新規のセンシングサービスに関係してもよい。センシングサービスは例えば、3GPPのservice and systems aspects(SA)1において定義される自動ナビゲーション(automated navigation)であってもよい。そのイベントは、BS/ネットワークによって設定されてもよい。 [Option 2]
The request may be triggered from the UE side, i.e., the sensing initiator may be the UE. The UE may determine the request from an event. The event may be related to communication quality degradation or some new sensing service. The sensing service may be, for example, automated navigation defined in service and systems aspects (SA) 1 of 3GPP. The event may be configured by the BS/network.
その要求は、UE側からトリガされてもよい。すなわち、センシングイニシエータがUEであってもよい。UEは、イベントからその要求を決定してもよい。そのイベントは、通信品質の劣化、又は、いくつかの新規のセンシングサービスに関係してもよい。センシングサービスは例えば、3GPPのservice and systems aspects(SA)1において定義される自動ナビゲーション(automated navigation)であってもよい。そのイベントは、BS/ネットワークによって設定されてもよい。 [Option 2]
The request may be triggered from the UE side, i.e., the sensing initiator may be the UE. The UE may determine the request from an event. The event may be related to communication quality degradation or some new sensing service. The sensing service may be, for example, automated navigation defined in service and systems aspects (SA) 1 of 3GPP. The event may be configured by the BS/network.
図14の例に示すように、選択肢1におけるセンシング要求/イニシエータは、BS/ネットワーク側であり、選択肢2におけるセンシング要求/イニシエータは、UE側である。
As shown in the example of Figure 14, the sensing request/initiator in option 1 is the BS/network side, and the sensing request/initiator in option 2 is the UE side.
-実施形態#2-2
センシング及び情報の収集/報告の要求が、BS/ネットワークからセンシングレスポンダへ通知されてもよい。センシングレスポンダは例えば、他の1つ以上のBS、又は、1つ以上のUE、又は、UE/センサグループであってもよい。センシングの情報の収集は、以下のいくつかの選択肢の少なくとも1つに従ってもよい。 -Embodiment #2-2
A request for sensing and information collection/reporting may be signaled from the BS/network to a sensing responder, which may be, for example, one or more other BSs, or one or more UEs, or a UE/sensor group. The collection of sensing information may follow at least one of the following options:
センシング及び情報の収集/報告の要求が、BS/ネットワークからセンシングレスポンダへ通知されてもよい。センシングレスポンダは例えば、他の1つ以上のBS、又は、1つ以上のUE、又は、UE/センサグループであってもよい。センシングの情報の収集は、以下のいくつかの選択肢の少なくとも1つに従ってもよい。 -Embodiment #2-2
A request for sensing and information collection/reporting may be signaled from the BS/network to a sensing responder, which may be, for example, one or more other BSs, or one or more UEs, or a UE/sensor group. The collection of sensing information may follow at least one of the following options:
[選択肢1]
その情報は、BS側において、そのBS自身と、他の1つ以上のBSと、の少なくとも1つから、無線センシングと、無線センシング以外の他の1つ以上のセンサと、の少なくとも1つを通じて収集される。その1つ以上のセンサは、カメラ、LiDARの少なくとも1つを含んでもよい。 [Option 1]
The information is collected at the BS side from at least one of the BS itself and one or more other BSs through at least one of wireless sensing and one or more sensors other than wireless sensing, which may include at least one of a camera and a LiDAR.
その情報は、BS側において、そのBS自身と、他の1つ以上のBSと、の少なくとも1つから、無線センシングと、無線センシング以外の他の1つ以上のセンサと、の少なくとも1つを通じて収集される。その1つ以上のセンサは、カメラ、LiDARの少なくとも1つを含んでもよい。 [Option 1]
The information is collected at the BS side from at least one of the BS itself and one or more other BSs through at least one of wireless sensing and one or more sensors other than wireless sensing, which may include at least one of a camera and a LiDAR.
[選択肢2]
その情報は、BSに接続されている1つのUEから、無線センシングと、無線センシング以外の他の1つ以上のセンサと、の少なくとも1つを通じて収集される。その1つ以上のセンサは、カメラ、LiDARの少なくとも1つを含んでもよい。 [Option 2]
The information is collected from a UE connected to the BS through at least one of wireless sensing and one or more sensors other than wireless sensing, which may include at least one of a camera and a LiDAR.
その情報は、BSに接続されている1つのUEから、無線センシングと、無線センシング以外の他の1つ以上のセンサと、の少なくとも1つを通じて収集される。その1つ以上のセンサは、カメラ、LiDARの少なくとも1つを含んでもよい。 [Option 2]
The information is collected from a UE connected to the BS through at least one of wireless sensing and one or more sensors other than wireless sensing, which may include at least one of a camera and a LiDAR.
[選択肢3]
その情報は、1つのUE(センサ)グループ内の複数UE(センサ)から、無線センシングと、無線センシング以外の他の1つ以上のセンサと、の少なくとも1つを通じて収集される。その1つ以上のセンサは、カメラ、LiDARの少なくとも1つを含んでもよい。センシングタイプと、センシング信号と、測定及び報告の仕組みと、の少なくとも1つに関する設定(例えば、リソース配置、報告値、など)が、そのUEグループ内の1つのUE、又は、そのUEグループ内の全てのUEへ設定されてもよい。測定値又は収集情報は、まず、そのUEグループ内の1つのUEへ収集され、その後、そのUEによってBS/ネットワークへ報告されてもよい。測定値又は収集情報は、そのUEグループ内の全てのUEからBS/ネットワークへ報告されてもよい。 [Option 3]
The information is collected from multiple UEs (sensors) in one UE (sensor) group through at least one of wireless sensing and one or more sensors other than wireless sensing. The one or more sensors may include at least one of a camera and a LiDAR. Configurations (e.g., resource allocation, report values, etc.) related to at least one of a sensing type, a sensing signal, and a measurement and reporting mechanism may be configured for one UE in the UE group or all UEs in the UE group. Measurement values or collected information may be first collected by one UE in the UE group and then reported by the UE to the BS/network. Measurement values or collected information may be reported from all UEs in the UE group to the BS/network.
その情報は、1つのUE(センサ)グループ内の複数UE(センサ)から、無線センシングと、無線センシング以外の他の1つ以上のセンサと、の少なくとも1つを通じて収集される。その1つ以上のセンサは、カメラ、LiDARの少なくとも1つを含んでもよい。センシングタイプと、センシング信号と、測定及び報告の仕組みと、の少なくとも1つに関する設定(例えば、リソース配置、報告値、など)が、そのUEグループ内の1つのUE、又は、そのUEグループ内の全てのUEへ設定されてもよい。測定値又は収集情報は、まず、そのUEグループ内の1つのUEへ収集され、その後、そのUEによってBS/ネットワークへ報告されてもよい。測定値又は収集情報は、そのUEグループ内の全てのUEからBS/ネットワークへ報告されてもよい。 [Option 3]
The information is collected from multiple UEs (sensors) in one UE (sensor) group through at least one of wireless sensing and one or more sensors other than wireless sensing. The one or more sensors may include at least one of a camera and a LiDAR. Configurations (e.g., resource allocation, report values, etc.) related to at least one of a sensing type, a sensing signal, and a measurement and reporting mechanism may be configured for one UE in the UE group or all UEs in the UE group. Measurement values or collected information may be first collected by one UE in the UE group and then reported by the UE to the BS/network. Measurement values or collected information may be reported from all UEs in the UE group to the BS/network.
図15Aは、選択肢1の一例を示す。この例において、BSが、センシングレスポンダであり、情報収集を行う。BS及びセンシング対象の間の関係は、センシングリンクである。UE及びセンシング対象の間の関係は、センシングリンクである。BS及びUEの間の関係は、収集される情報のための報告リンクである。
Figure 15A shows an example of option 1. In this example, the BS is the sensing responder and performs the information collection. The relationship between the BS and the sensing target is the sensing link. The relationship between the UE and the sensing target is the sensing link. The relationship between the BS and the UE is the reporting link for the collected information.
図15Bは、選択肢2の一例を示す。この例において、BSに接続されている1つのUEが、センシングレスポンダであり、情報収集を行う。BS及びセンシング対象の間の関係は、センシングリンクである。UE及びセンシング対象の間の関係は、センシングリンクである。BS及びUEの間の関係は、収集される情報のための報告リンクである。
Figure 15B shows an example of option 2. In this example, one UE connected to the BS is a sensing responder and performs information collection. The relationship between the BS and the sensing target is a sensing link. The relationship between the UE and the sensing target is a sensing link. The relationship between the BS and the UE is a reporting link for the collected information.
図15Cは、選択肢3の一例を示す。この例において、1つのUEグループが、センシングレスポンダであり、情報収集を行う。UEグループ(センサグループ)及びセンシング対象の間の関係は、センシングリンクである。BS及びUEの間の関係は、収集される情報のための報告リンクである。
Figure 15C shows an example of option 3. In this example, one UE group is a sensing responder and performs information collection. The relationship between the UE group (sensor group) and the sensing target is a sensing link. The relationship between the BS and the UE is a reporting link for the collected information.
この実施形態によれば、センシングの要求及び収集が適切に行われることができる。
According to this embodiment, sensing requests and collection can be performed appropriately.
<実施形態#3>
この実施形態は、BS/UEの能力に関する。 <Embodiment # 3>
This embodiment relates to BS/UE capabilities.
この実施形態は、BS/UEの能力に関する。 <
This embodiment relates to BS/UE capabilities.
センシングに関係するBS/UEの能力が定義されてもよい。
BS/UE capabilities related to sensing may be defined.
-実施形態#3-1
BS能力が定義されてもよい。 -Embodiment #3-1
BS capabilities may be defined.
BS能力が定義されてもよい。 -Embodiment #3-1
BS capabilities may be defined.
--実施形態#3-1-1
全二重と、BSにおける同一位置のセンシング送信機及びセンシング受信機と、の少なくとも1つに関するBS能力が定義されてもよい。 --Embodiment #3-1-1
BS capabilities for full duplex and/or co-located sensing transmitter and receiver at the BS may be defined.
全二重と、BSにおける同一位置のセンシング送信機及びセンシング受信機と、の少なくとも1つに関するBS能力が定義されてもよい。 --Embodiment #3-1-1
BS capabilities for full duplex and/or co-located sensing transmitter and receiver at the BS may be defined.
同一位置のセンシング送信機及びセンシング受信機に対して、BS側における全二重がサポートされる場合(自干渉(self-interference)が許容範囲においてキャンセル(干渉除去)されることができる場合)、モノスタティックセンシングがサポートされてもよい。そうでない場合、モノスタティックセンシングがサポートされなくてもよい。
For a co-located sensing transmitter and sensing receiver, if full-duplex is supported on the BS side (self-interference can be cancelled within an acceptable range), monostatic sensing may be supported. Otherwise, monostatic sensing may not be supported.
このような能力の定義は、実施形態#1-1-1/1-1-2におけるセンシングタイプと組み合わせられることができる。
Such capability definitions can be combined with sensing types in embodiment #1-1-1/1-1-2.
--実施形態#3-1-2
複数BSの間の同期誤差(すなわち、分散するセンシング送信機及びセンシング受信機)に関するBS能力が定義されてもよい。 --Embodiment #3-1-2
A BS capability with respect to synchronization error among multiple BSs (i.e., distributed sensing transmitters and sensing receivers) may be defined.
複数BSの間の同期誤差(すなわち、分散するセンシング送信機及びセンシング受信機)に関するBS能力が定義されてもよい。 --Embodiment #3-1-2
A BS capability with respect to synchronization error among multiple BSs (i.e., distributed sensing transmitters and sensing receivers) may be defined.
複数BSの間の同期誤差がゼロに近づく場合、バイスタティックセンシング/マルチスタティックセンシングがサポートされてもよい。そうでない場合、バイスタティックセンシング/マルチスタティックセンシングがサポートされなくてもよい。
If the synchronization error between multiple BSs approaches zero, bistatic sensing/multistatic sensing may be supported. Otherwise, bistatic sensing/multistatic sensing may not be supported.
このような能力の定義は、実施形態#1-1-1/1-1-2におけるセンシングタイプと組み合わせられることができる。
Such capability definitions can be combined with sensing types in embodiment #1-1-1/1-1-2.
--実施形態#3-1-3
レーダ信号の生成又は受信に関するBS能力が定義されてもよい。 --Embodiment #3-1-3
The BS capabilities regarding the generation or reception of radar signals may be defined.
レーダ信号の生成又は受信に関するBS能力が定義されてもよい。 --Embodiment #3-1-3
The BS capabilities regarding the generation or reception of radar signals may be defined.
BSがレーダ信号を生成又は受信できる場合、レーダ信号と、通信信号及びレーダ信号のハイブリッド信号と、の少なくとも1つによってセンシング機能が実現されることができる。そうでない場合、通信信号がセンシングに用いられることができる。
If the BS can generate or receive radar signals, the sensing function can be realized by at least one of the radar signals and hybrid signals of communication signals and radar signals. If not, the communication signals can be used for sensing.
このような能力の定義は、実施形態#1-1-3におけるセンシングタイプと組み合わせられることができる。
Such capability definitions can be combined with sensing types in embodiment #1-1-3.
--実施形態#3-1-4
BS能力は、BS及びコアネットワークの間において交換されてもよいし、BS及びサーバ間において交換されてもよいし、連携を伴う複数BSの間において交換されてもよいし、複数UEへブロードキャストされてもよい。能力の交換において、X2又はXnインタフェースが考慮されてもよい。 --Embodiment #3-1-4
BS capabilities may be exchanged between the BS and the core network, between the BS and the server, between multiple BSs with cooperation, or broadcast to multiple UEs. In the capability exchange, the X2 or Xn interface may be taken into account.
BS能力は、BS及びコアネットワークの間において交換されてもよいし、BS及びサーバ間において交換されてもよいし、連携を伴う複数BSの間において交換されてもよいし、複数UEへブロードキャストされてもよい。能力の交換において、X2又はXnインタフェースが考慮されてもよい。 --Embodiment #3-1-4
BS capabilities may be exchanged between the BS and the core network, between the BS and the server, between multiple BSs with cooperation, or broadcast to multiple UEs. In the capability exchange, the X2 or Xn interface may be taken into account.
このような能力の定義は、実施形態#1-2-1と組み合わせられることができる。
This capability definition can be combined with embodiment #1-2-1.
-実施形態#3-2
UE能力が定義されてもよい。 -Embodiment #3-2
UE capabilities may be defined.
UE能力が定義されてもよい。 -Embodiment #3-2
UE capabilities may be defined.
--実施形態#3-2-1
全二重と、UEにおける同一位置のセンシング送信機及びセンシング受信機と、の少なくとも1つに関するUE能力が定義されてもよい。 --Embodiment #3-2-1
UE capabilities for at least one of full duplex and co-located sensing transmitter and sensing receiver at the UE may be defined.
全二重と、UEにおける同一位置のセンシング送信機及びセンシング受信機と、の少なくとも1つに関するUE能力が定義されてもよい。 --Embodiment #3-2-1
UE capabilities for at least one of full duplex and co-located sensing transmitter and sensing receiver at the UE may be defined.
同一位置のセンシング送信機及びセンシング受信機に対して、UE側における全二重がサポートされる場合(自干渉(self-interference)が許容範囲においてキャンセル(干渉除去)されることができる場合)、モノスタティックセンシングがサポートされてもよい。そうでない場合、モノスタティックセンシングがサポートされなくてもよい。
For a co-located sensing transmitter and sensing receiver, if full duplex is supported on the UE side (self-interference can be cancelled within an acceptable range), monostatic sensing may be supported. Otherwise, monostatic sensing may not be supported.
このような能力の定義は、実施形態#1-1-1/1-1-2におけるセンシングタイプと組み合わせられることができる。
Such capability definitions can be combined with sensing types in embodiment #1-1-1/1-1-2.
--実施形態#3-2-2
複数UEの間の同期誤差(すなわち、分散するセンシング送信機及びセンシング受信機)に関するUE能力が定義されてもよい。 --Embodiment #3-2-2
UE capabilities with respect to synchronization error among multiple UEs (i.e., distributed sensing transmitters and sensing receivers) may be defined.
複数UEの間の同期誤差(すなわち、分散するセンシング送信機及びセンシング受信機)に関するUE能力が定義されてもよい。 --Embodiment #3-2-2
UE capabilities with respect to synchronization error among multiple UEs (i.e., distributed sensing transmitters and sensing receivers) may be defined.
複数UEの間の同期誤差がゼロに近づく場合、バイスタティックセンシング/マルチスタティックセンシングがサポートされてもよい。そうでない場合、バイスタティックセンシング/マルチスタティックセンシングがサポートされなくてもよい。
If the synchronization error between multiple UEs approaches zero, bistatic sensing/multistatic sensing may be supported. Otherwise, bistatic sensing/multistatic sensing may not be supported.
このような能力の定義は、実施形態#1-1-1/1-1-2におけるセンシングタイプと組み合わせられることができる。
Such capability definitions can be combined with sensing types in embodiment #1-1-1/1-1-2.
--実施形態#3-2-3
レーダ信号の生成又は受信に関するUE能力が定義されてもよい。 --Embodiment #3-2-3
UE capabilities regarding the generation or reception of radar signals may be defined.
レーダ信号の生成又は受信に関するUE能力が定義されてもよい。 --Embodiment #3-2-3
UE capabilities regarding the generation or reception of radar signals may be defined.
UEがレーダ信号を生成又は受信できる場合、レーダ信号と、通信信号及びレーダ信号のハイブリッド信号と、の少なくとも1つによってセンシング機能が実現されることができる。
そうでない場合、通信信号がセンシングに用いられることができる。 If the UE is capable of generating or receiving radar signals, the sensing function may be realized by at least one of the radar signals and hybrid signals of communication signals and radar signals.
If not, the communication signal can be used for sensing.
そうでない場合、通信信号がセンシングに用いられることができる。 If the UE is capable of generating or receiving radar signals, the sensing function may be realized by at least one of the radar signals and hybrid signals of communication signals and radar signals.
If not, the communication signal can be used for sensing.
このような能力の定義は、実施形態#1-1-3におけるセンシングタイプと組み合わせられることができる。
Such capability definitions can be combined with sensing types in embodiment #1-1-3.
--実施形態#3-2-4
計算の複雑性に関するUE能力が定義されてもよい。 --Embodiment #3-2-4
UE capabilities in terms of computational complexity may be defined.
計算の複雑性に関するUE能力が定義されてもよい。 --Embodiment #3-2-4
UE capabilities in terms of computational complexity may be defined.
UEが高い計算能力を有する場合、NLOSチャネル情報を介する、対象に対してDLにおけるUEに支援されるセンシングがサポートされてもよい。そうでない場合、DLにおけるUEに支援されるセンシングがサポートされてなくてもよい。
If the UE has high computational capability, UE-assisted sensing in DL for targets via NLOS channel information may be supported. Otherwise, UE-assisted sensing in DL may not be supported.
このような能力の定義は、環境/対象に対するUEに支援されるセンシングがサポートされるか否かを決定できる。
Such capability definitions can determine whether UE-assisted sensing of the environment/objects is supported or not.
--実施形態#3-2-5
UE能力は、RRC IE/MAC CE/UCIのシグナリングを介してBSへ報告されてもよい。UE能力は、サイドリンクを介して、連携を伴う複数UEの間において交換されてもよい。 --Embodiment #3-2-5
UE capabilities may be reported to the BS via RRC IE/MAC CE/UCI signaling. UE capabilities may also be exchanged between multiple UEs with cooperation via sidelink.
UE能力は、RRC IE/MAC CE/UCIのシグナリングを介してBSへ報告されてもよい。UE能力は、サイドリンクを介して、連携を伴う複数UEの間において交換されてもよい。 --Embodiment #3-2-5
UE capabilities may be reported to the BS via RRC IE/MAC CE/UCI signaling. UE capabilities may also be exchanged between multiple UEs with cooperation via sidelink.
このような能力の定義は、実施形態#1-2-1と組み合わせられることができる。
This capability definition can be combined with embodiment #1-2-1.
-実施形態#3-3
BSと、ネットワークと、サーバと、の少なくとも1つが、BS能力と、UE能力と、の少なくとも1つに基づいて、(センシング方法及びセンシング信号を含む)センシングタイプを決定してもよいし、実施形態#1のように、そのセンシングタイプをBS及びUEの少なくとも1つへ通知してもよい。 -Embodiment #3-3
At least one of the BS, the network, and the server may determine a sensing type (including a sensing method and a sensing signal) based on at least one of the BS capabilities and the UE capabilities, and may notify at least one of the BS and the UE of the sensing type, as inembodiment # 1.
BSと、ネットワークと、サーバと、の少なくとも1つが、BS能力と、UE能力と、の少なくとも1つに基づいて、(センシング方法及びセンシング信号を含む)センシングタイプを決定してもよいし、実施形態#1のように、そのセンシングタイプをBS及びUEの少なくとも1つへ通知してもよい。 -Embodiment #3-3
At least one of the BS, the network, and the server may determine a sensing type (including a sensing method and a sensing signal) based on at least one of the BS capabilities and the UE capabilities, and may notify at least one of the BS and the UE of the sensing type, as in
この実施形態によれば、BS/UEの能力に基づいて、適切なセンシングが行われることができる。
According to this embodiment, appropriate sensing can be performed based on the capabilities of the BS/UE.
<補足>
以上の実施形態において、BSが特定リソースにおいてセンシングを行う場合、UEは、特定リソースにおける送受信を行わなくてもよいし、特定リソースにおける送受信を指示/設定/スケジュールされることを想定しなくてもよいし、特定リソースにおける送受信をドロップ/キャンセル/パンクチャ/レートマッチングしてもよい。 <Additional Information>
In the above embodiments, when the BS performs sensing on a specific resource, the UE may not transmit or receive on the specific resource, may not expect to be instructed/configured/scheduled to transmit or receive on the specific resource, or may drop/cancel/puncture/rate match the transmission or reception on the specific resource.
以上の実施形態において、BSが特定リソースにおいてセンシングを行う場合、UEは、特定リソースにおける送受信を行わなくてもよいし、特定リソースにおける送受信を指示/設定/スケジュールされることを想定しなくてもよいし、特定リソースにおける送受信をドロップ/キャンセル/パンクチャ/レートマッチングしてもよい。 <Additional Information>
In the above embodiments, when the BS performs sensing on a specific resource, the UE may not transmit or receive on the specific resource, may not expect to be instructed/configured/scheduled to transmit or receive on the specific resource, or may drop/cancel/puncture/rate match the transmission or reception on the specific resource.
[UEへの情報の通知]
上述の実施形態における(ネットワーク(Network(NW))(例えば、基地局(Base Station(BS)))から)UEへの任意の情報の通知(言い換えると、UEにおけるBSからの任意の情報の受信)は、物理レイヤシグナリング(例えば、DCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PDCCH、PDSCH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。 [Notification of information to UE]
In the above-described embodiments, any information may be notified to the UE (from a network (NW) (e.g., a base station (BS))) (in other words, any information is received from the BS by the UE) using physical layer signaling (e.g., DCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PDCCH, PDSCH, reference signal), or a combination thereof.
上述の実施形態における(ネットワーク(Network(NW))(例えば、基地局(Base Station(BS)))から)UEへの任意の情報の通知(言い換えると、UEにおけるBSからの任意の情報の受信)は、物理レイヤシグナリング(例えば、DCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PDCCH、PDSCH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。 [Notification of information to UE]
In the above-described embodiments, any information may be notified to the UE (from a network (NW) (e.g., a base station (BS))) (in other words, any information is received from the BS by the UE) using physical layer signaling (e.g., DCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PDCCH, PDSCH, reference signal), or a combination thereof.
上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たな論理チャネルID(Logical Channel ID(LCID))がMACサブヘッダに含まれることによって識別されてもよい。
When the above notification is performed by a MAC CE, the MAC CE may be identified by including a new Logical Channel ID (LCID) in the MAC subheader that is not specified in existing standards.
上記通知がDCIによって行われる場合、上記通知は、当該DCIの特定のフィールド、当該DCIに付与される巡回冗長検査(Cyclic Redundancy Check(CRC))ビットのスクランブルに用いられる無線ネットワーク一時識別子(Radio Network Temporary Identifier(RNTI))、当該DCIのフォーマットなどによって行われてもよい。
When the notification is made by a DCI, the notification may be made by a specific field of the DCI, a Radio Network Temporary Identifier (RNTI) used to scramble Cyclic Redundancy Check (CRC) bits assigned to the DCI, the format of the DCI, etc.
また、上述の実施形態におけるUEへの任意の情報の通知は、周期的、セミパーシステント又は非周期的に行われてもよい。
Furthermore, notification of any information to the UE in the above-mentioned embodiments may be performed periodically, semi-persistently, or aperiodically.
[UEからの情報の通知]
上述の実施形態におけるUEから(NWへ)の任意の情報の通知(言い換えると、UEにおけるBSへの任意の情報の送信/報告)は、物理レイヤシグナリング(例えば、UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PUCCH、PUSCH、PRACH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。 [Information notification from UE]
In the above-described embodiments, notification of any information from the UE (to the NW) (in other words, transmission/report of any information from the UE to the BS) may be performed using physical layer signaling (e.g., UCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PUCCH, PUSCH, PRACH, reference signal), or a combination thereof.
上述の実施形態におけるUEから(NWへ)の任意の情報の通知(言い換えると、UEにおけるBSへの任意の情報の送信/報告)は、物理レイヤシグナリング(例えば、UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル(例えば、PUCCH、PUSCH、PRACH、参照信号)、又はこれらの組み合わせを用いて行われてもよい。 [Information notification from UE]
In the above-described embodiments, notification of any information from the UE (to the NW) (in other words, transmission/report of any information from the UE to the BS) may be performed using physical layer signaling (e.g., UCI), higher layer signaling (e.g., RRC signaling, MAC CE), a specific signal/channel (e.g., PUCCH, PUSCH, PRACH, reference signal), or a combination thereof.
上記通知がMAC CEによって行われる場合、当該MAC CEは、既存の規格では規定されていない新たなLCIDがMACサブヘッダに含まれることによって識別されてもよい。
If the notification is made by a MAC CE, the MAC CE may be identified by including a new LCID in the MAC subheader that is not specified in existing standards.
上記通知がUCIによって行われる場合、上記通知は、PUCCH又はPUSCHを用いて送信されてもよい。
If the notification is made by UCI, the notification may be transmitted using PUCCH or PUSCH.
また、上述の実施形態におけるUEからの任意の情報の通知は、周期的、セミパーシステント又は非周期的に行われてもよい。
Furthermore, in the above-mentioned embodiments, notification of any information from the UE may be performed periodically, semi-persistently, or aperiodically.
[各実施形態の適用について]
上述の実施形態の少なくとも1つは、特定の条件を満たす場合に適用されてもよい。当該特定の条件は、規格において規定されてもよいし、上位レイヤシグナリング/物理レイヤシグナリングを用いてUE/BSに通知されてもよい。 [Application of each embodiment]
At least one of the above-mentioned embodiments may be applied when a specific condition is satisfied, which may be specified in a standard or may be notified to a UE/BS using higher layer signaling/physical layer signaling.
上述の実施形態の少なくとも1つは、特定の条件を満たす場合に適用されてもよい。当該特定の条件は、規格において規定されてもよいし、上位レイヤシグナリング/物理レイヤシグナリングを用いてUE/BSに通知されてもよい。 [Application of each embodiment]
At least one of the above-mentioned embodiments may be applied when a specific condition is satisfied, which may be specified in a standard or may be notified to a UE/BS using higher layer signaling/physical layer signaling.
上述の実施形態の少なくとも1つは、特定のUE能力(UE capability)を報告した又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい。
At least one of the above-described embodiments may be applied only to UEs that have reported or support a particular UE capability.
当該特定のUE能力は、上述の各実施形態におけるいずれかのUE能力であってもよい。
The particular UE capability may be any of the UE capabilities in each of the above-mentioned embodiments.
また、上記特定のUE能力は、全周波数にわたって(周波数に関わらず共通に)適用される能力であってもよいし、周波数(例えば、セル、バンド、バンドコンビネーション、BWP、コンポーネントキャリアなどの1つ又はこれらの組み合わせ)ごとの能力であってもよいし、周波数レンジ(例えば、Frequency Range 1(FR1)、FR2、FR3、FR4、FR5、FR2-1、FR2-2)ごとの能力であってもよいし、サブキャリア間隔(SubCarrier Spacing(SCS))ごとの能力であってもよいし、Feature Set(FS)又はFeature Set Per Component-carrier(FSPC)ごとの能力であってもよい。
Furthermore, the above-mentioned specific UE capabilities may be capabilities that are applied across all frequencies (commonly regardless of frequency), capabilities per frequency (e.g., one or a combination of a cell, band, band combination, BWP, component carrier, etc.), capabilities per frequency range (e.g., Frequency Range 1 (FR1), FR2, FR3, FR4, FR5, FR2-1, FR2-2), capabilities per subcarrier spacing (SubCarrier Spacing (SCS)), or capabilities per Feature Set (FS) or Feature Set Per Component-carrier (FSPC).
また、上記特定のUE能力は、全複信方式にわたって(複信方式に関わらず共通に)適用される能力であってもよいし、複信方式(例えば、時分割複信(Time Division Duplex(TDD))、周波数分割複信(Frequency Division Duplex(FDD)))ごとの能力であってもよい。
The specific UE capabilities may be capabilities that are applied across all duplexing methods (commonly regardless of the duplexing method), or may be capabilities for each duplexing method (e.g., Time Division Duplex (TDD) and Frequency Division Duplex (FDD)).
また、上述の実施形態の少なくとも1つは、UEが上位レイヤシグナリング/物理レイヤシグナリングによって、上述の実施形態に関連する特定の情報(又は上述の実施形態の動作を実施すること)を設定/アクティベート/トリガされた場合に適用されてもよい。例えば、当該特定の情報は、各実施形態の機能を有効化することを示す情報、特定のリリース(例えば、Rel.18/19)向けの任意のRRCパラメータなどであってもよい。
Furthermore, at least one of the above-mentioned embodiments may be applied when the UE configures/activates/triggers specific information related to the above-mentioned embodiments (or performs the operations of the above-mentioned embodiments) by higher layer signaling/physical layer signaling. For example, the specific information may be information indicating that the functions of each embodiment are enabled, any RRC parameters for a specific release (e.g., Rel. 18/19), etc.
UEは、上記特定のUE能力の少なくとも1つをサポートしない又は上記特定の情報を設定されない場合、例えばRel.15/16の動作を適用してもよい。
If the UE does not support at least one of the above specific UE capabilities or the above specific information is not configured, the UE may, for example, apply Rel. 15/16 operations.
(付記)
本開示の一実施形態に関して、以下の発明を付記する。
[付記1]
センシングが複数の装置の連携を用いるか否かと、前記センシングが通信のための信号を用いるか否かと、前記センシングがレーダのための信号を用いるか否かと、前記センシングが通信及びレーダの両方のための信号を用いるか否かと、の少なくとも1つに基づくタイプの決定のための情報を受信する受信部と、
前記情報に基づいて、前記センシングのための送信及び受信の少なくとも1つを制御する制御部と、を有する端末。
[付記2]
前記情報は、前記センシングのための計算の能力と、前記センシングのためにサポートされている信号と、前記センシングの対象の能力と、前記タイプと、前記センシングのための信号と、前記センシングのための測定の設定と、前記センシングに基づく報告の設定と、前記センシングの要求と、同時送受信の能力と、同期誤差に関する能力と、の少なくとも1つを示す、付記1に記載の端末。
[付記3]
前記センシングは、前記端末と、基地局と、前記端末及び前記基地局の連携と、前記端末を含む複数の端末の連携と、複数の基地局の連携と、のいずれかによって行われる、付記1又は付記2に記載の端末。
[付記4]
前記制御部は、前記センシングの要求と、前記センシングに基づく報告と、の少なくとも1つを制御する、付記1から付記3のいずれかに記載の端末。 (Additional Note)
With respect to one embodiment of the present disclosure, the following invention is noted.
[Appendix 1]
a receiving unit that receives information for determining a type based on at least one of whether the sensing uses cooperation of multiple devices, whether the sensing uses a signal for communication, whether the sensing uses a signal for radar, and whether the sensing uses a signal for both communication and radar;
A terminal having a control unit that controls at least one of transmission and reception for the sensing based on the information.
[Appendix 2]
The terminal ofclaim 1, wherein the information indicates at least one of: computational capabilities for the sensing, signals supported for the sensing, capabilities of the sensing target, the type, signals for the sensing, measurement configurations for the sensing, reporting configurations based on the sensing, a request for the sensing, capabilities for simultaneous transmission and reception, and capabilities regarding synchronization errors.
[Appendix 3]
The terminal according to claim 1 or 2, wherein the sensing is performed by any one of the terminal, a base station, cooperation between the terminal and the base station, cooperation between a plurality of terminals including the terminal, and cooperation between a plurality of base stations.
[Appendix 4]
4. The terminal according toclaim 1, wherein the control unit controls at least one of a request for the sensing and a report based on the sensing.
本開示の一実施形態に関して、以下の発明を付記する。
[付記1]
センシングが複数の装置の連携を用いるか否かと、前記センシングが通信のための信号を用いるか否かと、前記センシングがレーダのための信号を用いるか否かと、前記センシングが通信及びレーダの両方のための信号を用いるか否かと、の少なくとも1つに基づくタイプの決定のための情報を受信する受信部と、
前記情報に基づいて、前記センシングのための送信及び受信の少なくとも1つを制御する制御部と、を有する端末。
[付記2]
前記情報は、前記センシングのための計算の能力と、前記センシングのためにサポートされている信号と、前記センシングの対象の能力と、前記タイプと、前記センシングのための信号と、前記センシングのための測定の設定と、前記センシングに基づく報告の設定と、前記センシングの要求と、同時送受信の能力と、同期誤差に関する能力と、の少なくとも1つを示す、付記1に記載の端末。
[付記3]
前記センシングは、前記端末と、基地局と、前記端末及び前記基地局の連携と、前記端末を含む複数の端末の連携と、複数の基地局の連携と、のいずれかによって行われる、付記1又は付記2に記載の端末。
[付記4]
前記制御部は、前記センシングの要求と、前記センシングに基づく報告と、の少なくとも1つを制御する、付記1から付記3のいずれかに記載の端末。 (Additional Note)
With respect to one embodiment of the present disclosure, the following invention is noted.
[Appendix 1]
a receiving unit that receives information for determining a type based on at least one of whether the sensing uses cooperation of multiple devices, whether the sensing uses a signal for communication, whether the sensing uses a signal for radar, and whether the sensing uses a signal for both communication and radar;
A terminal having a control unit that controls at least one of transmission and reception for the sensing based on the information.
[Appendix 2]
The terminal of
[Appendix 3]
The terminal according to
[Appendix 4]
4. The terminal according to
(無線通信システム)
以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。 (Wireless communication system)
A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below. In this wireless communication system, communication is performed using any one of the wireless communication methods according to the above embodiments of the present disclosure or a combination of these.
以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。 (Wireless communication system)
A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below. In this wireless communication system, communication is performed using any one of the wireless communication methods according to the above embodiments of the present disclosure or a combination of these.
図16は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1(単にシステム1と呼ばれてもよい)は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
FIG. 16 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. The wireless communication system 1 (which may simply be referred to as system 1) may be a system that realizes communication using Long Term Evolution (LTE) specified by the Third Generation Partnership Project (3GPP), 5th generation mobile communication system New Radio (5G NR), or the like.
また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
The wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)). MR-DC may include dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E-UTRA Dual Connectivity (NE-DC)), etc.
EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN). In NE-DC, the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
The wireless communication system 1 may support dual connectivity between multiple base stations within the same RAT (e.g., dual connectivity in which both the MN and SN are NR base stations (gNBs) (NR-NR Dual Connectivity (NN-DC))).
無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
The wireless communication system 1 may include a base station 11 that forms a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) that are arranged within the macrocell C1 and form a small cell C2 that is narrower than the macrocell C1. A user terminal 20 may be located within at least one of the cells. The arrangement and number of each cell and user terminal 20 are not limited to the embodiment shown in the figure. Hereinafter, when there is no need to distinguish between the base stations 11 and 12, they will be collectively referred to as base station 10.
ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
The user terminal 20 may be connected to at least one of the multiple base stations 10. The user terminal 20 may utilize at least one of carrier aggregation (CA) using multiple component carriers (CC) and dual connectivity (DC).
各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)). Macro cell C1 may be included in FR1, and small cell C2 may be included in FR2. For example, FR1 may be a frequency band below 6 GHz (sub-6 GHz), and FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
In addition, the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
The multiple base stations 10 may be connected by wire (e.g., optical fiber conforming to the Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (e.g., NR communication). For example, when NR communication is used as a backhaul between base stations 11 and 12, base station 11, which corresponds to the upper station, may be called an Integrated Access Backhaul (IAB) donor, and base station 12, which corresponds to a relay station, may be called an IAB node.
基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
The base station 10 may be connected to the core network 30 directly or via another base station 10. The core network 30 may include at least one of, for example, an Evolved Packet Core (EPC), a 5G Core Network (5GCN), a Next Generation Core (NGC), etc.
コアネットワーク30は、例えば、User Plane Function(UPF)、Access and Mobility management Function(AMF)、Session Management Function(SMF)、Unified Data Management(UDM)、Application Function(AF)、Data Network(DN)、Location Management Function(LMF)、保守運用管理(Operation、Administration and Maintenance(Management)(OAM))などのネットワーク機能(Network Functions(NF))を含んでもよい。なお、1つのネットワークノードによって複数の機能が提供されてもよい。また、DNを介して外部ネットワーク(例えば、インターネット)との通信が行われてもよい。
The core network 30 may include network functions (Network Functions (NF)) such as, for example, a User Plane Function (UPF), an Access and Mobility management Function (AMF), a Session Management Function (SMF), a Unified Data Management (UDM), an Application Function (AF), a Data Network (DN), a Location Management Function (LMF), and Operation, Administration and Maintenance (Management) (OAM). Note that multiple functions may be provided by one network node. In addition, communication with an external network (e.g., the Internet) may be performed via the DN.
ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
The user terminal 20 may be a terminal that supports at least one of the communication methods such as LTE, LTE-A, and 5G.
無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
In the wireless communication system 1, a wireless access method based on Orthogonal Frequency Division Multiplexing (OFDM) may be used. For example, in at least one of the downlink (DL) and uplink (UL), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
The radio access method may also be called a waveform. In the wireless communication system 1, other radio access methods (e.g., other single-carrier transmission methods, other multi-carrier transmission methods) may be used for the UL and DL radio access methods.
無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
In the wireless communication system 1, a downlink shared channel (Physical Downlink Shared Channel (PDSCH)) shared by each user terminal 20, a broadcast channel (Physical Broadcast Channel (PBCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)), etc. may be used as the downlink channel.
また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
In addition, in the wireless communication system 1, an uplink shared channel (Physical Uplink Shared Channel (PUSCH)) shared by each user terminal 20, an uplink control channel (Physical Uplink Control Channel (PUCCH)), a random access channel (Physical Random Access Channel (PRACH)), etc. may be used as an uplink channel.
PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
User data, upper layer control information, System Information Block (SIB), etc. are transmitted via PDSCH. User data, upper layer control information, etc. may also be transmitted via PUSCH. Furthermore, Master Information Block (MIB) may also be transmitted via PBCH.
PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
Lower layer control information may be transmitted by the PDCCH. The lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information for at least one of the PDSCH and the PUSCH.
なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
Note that the DCI for scheduling the PDSCH may be called a DL assignment or DL DCI, and the DCI for scheduling the PUSCH may be called a UL grant or UL DCI. Note that the PDSCH may be interpreted as DL data, and the PUSCH may be interpreted as UL data.
PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
A control resource set (COntrol REsource SET (CORESET)) and a search space may be used to detect the PDCCH. The CORESET corresponds to the resources to search for DCI. The search space corresponds to the search region and search method of PDCCH candidates. One CORESET may be associated with one or multiple search spaces. The UE may monitor the CORESET associated with a search space based on the search space configuration.
1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
A search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. Note that the terms "search space," "search space set," "search space setting," "search space set setting," "CORESET," "CORESET setting," etc. in this disclosure may be read as interchangeable.
PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
The PUCCH may transmit uplink control information (UCI) including at least one of channel state information (CSI), delivery confirmation information (which may be called, for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.), and a scheduling request (SR). The PRACH may transmit a random access preamble for establishing a connection with a cell.
なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
Note that in this disclosure, downlink, uplink, etc. may be expressed without adding "link." Also, various channels may be expressed without adding "Physical" to the beginning.
無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
In the wireless communication system 1, a synchronization signal (SS), a downlink reference signal (DL-RS), etc. may be transmitted. In the wireless communication system 1, as the DL-RS, a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DMRS), a positioning reference signal (PRS), a phase tracking reference signal (PTRS), etc. may be transmitted.
同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
The synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS). A signal block including an SS (PSS, SSS) and a PBCH (and a DMRS for PBCH) may be called an SS/PBCH block, an SS Block (SSB), etc. In addition, the SS, SSB, etc. may also be called a reference signal.
また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
In addition, in the wireless communication system 1, a measurement reference signal (Sounding Reference Signal (SRS)), a demodulation reference signal (DMRS), etc. may be transmitted as an uplink reference signal (UL-RS). Note that the DMRS may also be called a user equipment-specific reference signal (UE-specific Reference Signal).
(基地局)
図17は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。 (base station)
17 is a diagram showing an example of a configuration of a base station according to an embodiment. Thebase station 10 includes a control unit 110, a transceiver unit 120, a transceiver antenna 130, and a transmission line interface 140. Note that the control unit 110, the transceiver unit 120, the transceiver antenna 130, and the transmission line interface 140 may each be provided in one or more units.
図17は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。 (base station)
17 is a diagram showing an example of a configuration of a base station according to an embodiment. The
なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
Note that this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the base station 10 may also be assumed to have other functional blocks necessary for wireless communication. Some of the processing of each part described below may be omitted.
制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
The control unit 110 controls the entire base station 10. The control unit 110 can be configured from a controller, a control circuit, etc., which are described based on a common understanding in the technical field to which this disclosure pertains.
制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
The control unit 110 may control signal generation, scheduling (e.g., resource allocation, mapping), etc. The control unit 110 may control transmission and reception using the transceiver unit 120, the transceiver antenna 130, and the transmission path interface 140, measurement, etc. The control unit 110 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transceiver unit 120. The control unit 110 may perform call processing of communication channels (setting, release, etc.), status management of the base station 10, management of radio resources, etc.
送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
The transceiver unit 120 may include a baseband unit 121, a radio frequency (RF) unit 122, and a measurement unit 123. The baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212. The transceiver unit 120 may be composed of a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transceiver circuit, etc., which are described based on a common understanding in the technical field to which the present disclosure relates.
送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
The transceiver unit 120 may be configured as an integrated transceiver unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122. The reception unit may be composed of a reception processing unit 1212, an RF unit 122, and a measurement unit 123.
送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
The transmitting/receiving antenna 130 can be configured as an antenna described based on common understanding in the technical field to which this disclosure pertains, such as an array antenna.
送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
The transceiver 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc. The transceiver 120 may receive the above-mentioned uplink channel, uplink reference signal, etc.
送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
The transceiver 120 may form at least one of the transmit beam and the receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
The transceiver 120 (transmission processing unit 1211) may perform Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (e.g., RLC retransmission control), Medium Access Control (MAC) layer processing (e.g., HARQ retransmission control), etc., on data and control information obtained from the control unit 110, and generate a bit string to be transmitted.
送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
The transceiver 120 (transmission processor 1211) may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, Discrete Fourier Transform (DFT) processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
The transceiver unit 120 (RF unit 122) may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the transceiver antenna 130.
一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
On the other hand, the transceiver unit 120 (RF unit 122) may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transceiver antenna 130.
送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
The transceiver 120 (reception processing unit 1212) may apply reception processing such as analog-to-digital conversion, Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal, and acquire user data, etc.
送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
The transceiver 120 (measurement unit 123) may perform measurements on the received signal. For example, the measurement unit 123 may perform Radio Resource Management (RRM) measurements, Channel State Information (CSI) measurements, etc. based on the received signal. The measurement unit 123 may measure received power (e.g., Reference Signal Received Power (RSRP)), received quality (e.g., Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)), signal strength (e.g., Received Signal Strength Indicator (RSSI)), propagation path information (e.g., CSI), etc. The measurement results may be output to the control unit 110.
伝送路インターフェース140は、コアネットワーク30に含まれる装置(例えば、NFを提供するネットワークノード)、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
The transmission path interface 140 may transmit and receive signals (backhaul signaling) between devices included in the core network 30 (e.g., network nodes providing NF), other base stations 10, etc., and may acquire and transmit user data (user plane data), control plane data, etc. for the user terminal 20.
なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
Note that the transmitter and receiver of the base station 10 in this disclosure may be configured with at least one of the transmitter/receiver 120, the transmitter/receiver antenna 130, and the transmission path interface 140.
送受信部120は、センシングが複数の装置の連携を用いるか否かと、前記センシングが通信のための信号を用いるか否かと、前記センシングがレーダのための信号を用いるか否かと、前記センシングが通信及びレーダの両方のための信号を用いるか否かと、の少なくとも1つに基づくタイプの決定のための情報を送信してもよい。制御部110は、前記情報に基づいて、前記センシングのための送信及び受信の少なくとも1つを制御してもよい。
The transceiver unit 120 may transmit information for determining the type based on at least one of the following: whether the sensing uses cooperation between multiple devices; whether the sensing uses a signal for communication; whether the sensing uses a signal for radar; and whether the sensing uses a signal for both communication and radar. The control unit 110 may control at least one of the transmission and reception for the sensing based on the information.
(ユーザ端末)
図18は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。 (User terminal)
18 is a diagram showing an example of the configuration of a user terminal according to an embodiment. Theuser terminal 20 includes a control unit 210, a transmitting/receiving unit 220, and a transmitting/receiving antenna 230. Note that the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may each include one or more.
図18は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。 (User terminal)
18 is a diagram showing an example of the configuration of a user terminal according to an embodiment. The
なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
Note that this example mainly shows the functional blocks of the characteristic parts of this embodiment, and the user terminal 20 may also be assumed to have other functional blocks necessary for wireless communication. Some of the processing of each part described below may be omitted.
制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
The control unit 210 controls the entire user terminal 20. The control unit 210 can be configured from a controller, a control circuit, etc., which are described based on a common understanding in the technical field to which this disclosure pertains.
制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
The control unit 210 may control signal generation, mapping, etc. The control unit 210 may control transmission and reception using the transceiver unit 220 and the transceiver antenna 230, measurement, etc. The control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transceiver unit 220.
送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
The transceiver unit 220 may include a baseband unit 221, an RF unit 222, and a measurement unit 223. The baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212. The transceiver unit 220 may be composed of a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transceiver circuit, etc., which are described based on a common understanding in the technical field to which the present disclosure relates.
送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
The transceiver unit 220 may be configured as an integrated transceiver unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222. The reception unit may be composed of a reception processing unit 2212, an RF unit 222, and a measurement unit 223.
送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
The transmitting/receiving antenna 230 can be configured as an antenna described based on common understanding in the technical field to which this disclosure pertains, such as an array antenna.
送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
The transceiver 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, etc. The transceiver 220 may transmit the above-mentioned uplink channel, uplink reference signal, etc.
送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
The transceiver 220 may form at least one of the transmit beam and receive beam using digital beamforming (e.g., precoding), analog beamforming (e.g., phase rotation), etc.
送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
The transceiver 220 (transmission processor 2211) may perform PDCP layer processing, RLC layer processing (e.g., RLC retransmission control), MAC layer processing (e.g., HARQ retransmission control), etc. on the data and control information acquired from the controller 210, and generate a bit string to be transmitted.
送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
The transceiver 220 (transmission processor 2211) may perform transmission processing such as channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), IFFT processing, precoding, and digital-to-analog conversion on the bit string to be transmitted, and output a baseband signal.
なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
Whether or not to apply DFT processing may be based on the settings of transform precoding. When transform precoding is enabled for a certain channel (e.g., PUSCH), the transceiver unit 220 (transmission processing unit 2211) may perform DFT processing as the above-mentioned transmission processing in order to transmit the channel using a DFT-s-OFDM waveform, and when transform precoding is not enabled, it is not necessary to perform DFT processing as the above-mentioned transmission processing.
送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
The transceiver unit 220 (RF unit 222) may perform modulation, filtering, amplification, etc., on the baseband signal to a radio frequency band, and transmit the radio frequency band signal via the transceiver antenna 230.
一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
On the other hand, the transceiver unit 220 (RF unit 222) may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transceiver antenna 230.
送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
The transceiver 220 (reception processor 2212) may apply reception processing such as analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing, and PDCP layer processing to the acquired baseband signal to acquire user data, etc.
送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
The transceiver 220 (measurement unit 223) may perform measurements on the received signal. For example, the measurement unit 223 may perform RRM measurements, CSI measurements, etc. based on the received signal. The measurement unit 223 may measure received power (e.g., RSRP), received quality (e.g., RSRQ, SINR, SNR), signal strength (e.g., RSSI), propagation path information (e.g., CSI), etc. The measurement results may be output to the control unit 210.
なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
In addition, the transmitting unit and receiving unit of the user terminal 20 in this disclosure may be configured by at least one of the transmitting/receiving unit 220 and the transmitting/receiving antenna 230.
送受信部220は、センシングが複数の装置(端末20及び基地局10の少なくとも2つ)の連携を用いるか否かと、前記センシングが通信のための信号を用いるか否かと、前記センシングがレーダのための信号を用いるか否かと、前記センシングが通信及びレーダの両方のための信号を用いるか否かと、の少なくとも1つに基づくタイプの決定のための情報を受信してもよい。制御部210は、前記情報に基づいて、前記センシングのための送信及び受信の少なくとも1つを制御してもよい。
The transceiver unit 220 may receive information for determining the type based on at least one of the following: whether the sensing uses cooperation between multiple devices (at least two of the terminal 20 and the base station 10); whether the sensing uses a signal for communication; whether the sensing uses a signal for radar; and whether the sensing uses a signal for both communication and radar. The control unit 210 may control at least one of the transmission and reception for the sensing based on the information.
前記情報は、前記センシングのための計算の能力と、前記センシングのためにサポートされている信号と、前記センシングの対象の能力と、前記タイプと、前記センシングのための信号と、前記センシングのための測定の設定と、前記センシングに基づく報告の設定と、前記センシングの要求と、同時送受信の能力と、同期誤差に関する能力と、の少なくとも1つを示してもよい。
The information may indicate at least one of the following: computational capabilities for the sensing, signals supported for the sensing, capabilities of the sensing target, the type, signals for the sensing, measurement settings for the sensing, reporting settings based on the sensing, a request for the sensing, simultaneous transmission and reception capabilities, and capabilities regarding synchronization errors.
前記センシングは、前記端末20と、基地局10と、前記端末20及び前記基地局10の連携と、前記端末20を含む複数の端末の連携と、複数の基地局の連携と、のいずれかによって行われてもよい。
The sensing may be performed by the terminal 20, the base station 10, cooperation between the terminal 20 and the base station 10, cooperation between multiple terminals including the terminal 20, or cooperation between multiple base stations.
前記制御部210は、前記センシングの要求と、前記センシングに基づく報告と、の少なくとも1つを制御してもよい。
The control unit 210 may control at least one of the sensing request and the reporting based on the sensing.
(ハードウェア構成)
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 (Hardware configuration)
The block diagrams used in the description of the above embodiments show functional blocks. These functional blocks (components) are realized by any combination of at least one of hardware and software. The method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and directly or indirectly connected (for example, using wires, wirelessly, etc.). The functional blocks may be realized by combining the one device or the multiple devices with software.
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 (Hardware configuration)
The block diagrams used in the description of the above embodiments show functional blocks. These functional blocks (components) are realized by any combination of at least one of hardware and software. The method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one device that is physically or logically coupled, or may be realized using two or more devices that are physically or logically separated and directly or indirectly connected (for example, using wires, wirelessly, etc.). The functional blocks may be realized by combining the one device or the multiple devices with software.
ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
Here, the functions include, but are not limited to, judgement, determination, judgment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, election, establishment, comparison, assumption, expectation, deeming, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment. For example, a functional block (component) that performs the transmission function may be called a transmitting unit, a transmitter, and the like. In either case, as mentioned above, there are no particular limitations on the method of realization.
例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図19は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
For example, a base station, a user terminal, etc. in one embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 19 is a diagram showing an example of the hardware configuration of a base station and a user terminal according to one embodiment. The above-mentioned base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc.
なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
In addition, in this disclosure, the terms apparatus, circuit, device, section, unit, etc. may be interpreted as interchangeable. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figures, or may be configured to exclude some of the devices.
例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
For example, although only one processor 1001 is shown, there may be multiple processors. Furthermore, processing may be performed by one processor, or processing may be performed by two or more processors simultaneously, sequentially, or using other techniques. Furthermore, the processor 1001 may be implemented by one or more chips.
基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
The functions of the base station 10 and the user terminal 20 are realized, for example, by loading specific software (programs) onto hardware such as the processor 1001 and memory 1002, causing the processor 1001 to perform calculations, control communications via the communication device 1004, and control at least one of the reading and writing of data in the memory 1002 and storage 1003.
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
The processor 1001, for example, runs an operating system to control the entire computer. The processor 1001 may be configured as a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, etc. For example, at least a portion of the above-mentioned control unit 110 (210), transmission/reception unit 120 (220), etc. may be realized by the processor 1001.
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
The processor 1001 also reads out programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. The programs used are those that cause a computer to execute at least some of the operations described in the above embodiments. For example, the control unit 110 (210) may be realized by a control program stored in the memory 1002 and running on the processor 1001, and similar implementations may be made for other functional blocks.
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
Memory 1002 is a computer-readable recording medium and may be composed of at least one of, for example, Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), and other suitable storage media. Memory 1002 may also be called a register, cache, main memory, etc. Memory 1002 can store executable programs (program codes), software modules, etc. for implementing a wireless communication method according to one embodiment of the present disclosure.
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
Storage 1003 is a computer-readable recording medium and may be composed of at least one of a flexible disk, a floppy disk, a magneto-optical disk (e.g., a compact disk (Compact Disc ROM (CD-ROM)), a digital versatile disk, a Blu-ray disk), a removable disk, a hard disk drive, a smart card, a flash memory device (e.g., a card, a stick, a key drive), a magnetic stripe, a database, a server, or other suitable storage medium. Storage 1003 may also be referred to as an auxiliary storage device.
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
The communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, or a communication module. The communication device 1004 may be configured to include a high-frequency switch, a duplexer, a filter, a frequency synthesizer, etc., to realize at least one of Frequency Division Duplex (FDD) and Time Division Duplex (TDD). For example, the above-mentioned transmitting/receiving unit 120 (220), transmitting/receiving antenna 130 (230), etc. may be realized by the communication device 1004. The transmitting/receiving unit 120 (220) may be implemented as a transmitting unit 120a (220a) and a receiving unit 120b (220b) that are physically or logically separated.
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
The input device 1005 is an input device (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (e.g., a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may be integrated into one structure (e.g., a touch panel).
また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
Furthermore, each device such as the processor 1001 and memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
Furthermore, the base station 10 and the user terminal 20 may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these pieces of hardware.
(変形例)
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。 (Modification)
In addition, the terms described in this disclosure and the terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, a channel, a symbol, and a signal (signal or signaling) may be read as mutually interchangeable. A signal may also be a message. A reference signal may be abbreviated as RS, and may be called a pilot, a pilot signal, or the like depending on an applied standard. A component carrier (CC) may also be called a cell, a frequency carrier, a carrier frequency, or the like.
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。 (Modification)
In addition, the terms described in this disclosure and the terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, a channel, a symbol, and a signal (signal or signaling) may be read as mutually interchangeable. A signal may also be a message. A reference signal may be abbreviated as RS, and may be called a pilot, a pilot signal, or the like depending on an applied standard. A component carrier (CC) may also be called a cell, a frequency carrier, a carrier frequency, or the like.
無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
A radio frame may be composed of one or more periods (frames) in the time domain. Each of the one or more periods (frames) constituting a radio frame may be called a subframe. Furthermore, a subframe may be composed of one or more slots in the time domain. A subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.
ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
Here, the numerology may be a communication parameter that is applied to at least one of the transmission and reception of a signal or channel. The numerology may indicate, for example, at least one of the following: SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, Transmission Time Interval (TTI), number of symbols per TTI, radio frame configuration, a specific filtering process performed by the transceiver in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
A slot may consist of one or more symbols in the time domain (such as Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.). A slot may also be a time unit based on numerology.
スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
A slot may include multiple minislots. Each minislot may consist of one or multiple symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot. A PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (PUSCH) mapping type A. A PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (PUSCH) mapping type B.
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
A radio frame, a subframe, a slot, a minislot, and a symbol all represent time units when transmitting a signal. A different name may be used for a radio frame, a subframe, a slot, a minislot, and a symbol, respectively. Note that the time units such as a frame, a subframe, a slot, a minislot, and a symbol in this disclosure may be read as interchangeable.
例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
For example, one subframe may be called a TTI, multiple consecutive subframes may be called a TTI, or one slot or one minislot may be called a TTI. In other words, at least one of the subframe and the TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms. Note that the unit representing the TTI may be called a slot, minislot, etc., instead of a subframe.
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
Here, TTI refers to, for example, the smallest time unit for scheduling in wireless communication. For example, in an LTE system, a base station schedules each user terminal by allocating radio resources (such as frequency bandwidth and transmission power that can be used by each user terminal) in TTI units. Note that the definition of TTI is not limited to this.
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
The TTI may be a transmission time unit for a channel-coded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc. When a TTI is given, the time interval (e.g., the number of symbols) in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
Note that when one slot or one minislot is called a TTI, one or more TTIs (i.e., one or more slots or one or more minislots) may be the minimum time unit of scheduling. In addition, the number of slots (minislots) that constitute the minimum time unit of scheduling may be controlled.
1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
A TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI shorter than a normal TTI may be called a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
Note that a long TTI (e.g., a normal TTI, a subframe, etc.) may be interpreted as a TTI having a time length of more than 1 ms, and a short TTI (e.g., a shortened TTI, etc.) may be interpreted as a TTI having a TTI length shorter than the TTI length of a long TTI and equal to or greater than 1 ms.
リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of numerology, and may be, for example, 12. The number of subcarriers included in an RB may be determined based on numerology.
また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
Furthermore, an RB may include one or more symbols in the time domain and may be one slot, one minislot, one subframe, or one TTI in length. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
In addition, one or more RBs may be referred to as a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, an RB pair, etc.
また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
Furthermore, a resource block may be composed of one or more resource elements (REs). For example, one RE may be a radio resource area of one subcarrier and one symbol.
帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
A Bandwidth Part (BWP), which may also be referred to as a partial bandwidth, may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by an index of the RB relative to a common reference point of the carrier. PRBs may be defined in a BWP and numbered within the BWP.
BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
The BWP may include a UL BWP (BWP for UL) and a DL BWP (BWP for DL). One or more BWPs may be configured for a UE within one carrier.
設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP. Note that "cell," "carrier," etc. in this disclosure may be read as "BWP."
なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
Note that the above-mentioned structures of radio frames, subframes, slots, minislots, and symbols are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
In addition, the information, parameters, etc. described in this disclosure may be represented using absolute values, may be represented using relative values from a predetermined value, or may be represented using other corresponding information. For example, a radio resource may be indicated by a predetermined index.
本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
The names used for parameters and the like in this disclosure are not limiting in any respect. Furthermore, the formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. The various channels (PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and therefore the various names assigned to these various channels and information elements are not limiting in any respect.
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, the data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
In addition, information, signals, etc. may be output from a higher layer to a lower layer and/or from a lower layer to a higher layer. Information, signals, etc. may be input/output via multiple network nodes.
入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
Input/output information, signals, etc. may be stored in a specific location (e.g., memory) or may be managed using a management table. Input/output information, signals, etc. may be overwritten, updated, or added to. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to another device.
情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
The notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. For example, the notification of information in this disclosure may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB)), etc.), Medium Access Control (MAC) signaling), other signals, or a combination of these.
なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
The physical layer signaling may be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), etc. The RRC signaling may be called an RRC message, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc. The MAC signaling may be notified, for example, using a MAC Control Element (CE).
また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
Furthermore, notification of specified information (e.g., notification that "X is the case") is not limited to explicit notification, but may be implicit (e.g., by not notifying the specified information or by notifying other information).
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
The determination may be based on a value represented by a single bit (0 or 1), a Boolean value represented by true or false, or a comparison of numerical values (e.g., with a predetermined value).
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
Software, instructions, information, etc. may also be transmitted and received via a transmission medium. For example, if the software is transmitted from a website, server, or other remote source using at least one of wired technologies (such as coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL)), and/or wireless technologies (such as infrared, microwave, etc.), then at least one of these wired and wireless technologies is included within the definition of a transmission medium.
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
As used in this disclosure, the terms "system" and "network" may be used interchangeably. "Network" may refer to the devices included in the network (e.g., base stations).
本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
In this disclosure, terms such as "precoding," "precoder," "weight (precoding weight)," "Quasi-Co-Location (QCL)," "Transmission Configuration Indication state (TCI state)," "spatial relation," "spatial domain filter," "transmit power," "phase rotation," "antenna port," "antenna port group," "layer," "number of layers," "rank," "resource," "resource set," "resource group," "beam," "beam width," "beam angle," "antenna," "antenna element," and "panel" may be used interchangeably.
本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
In this disclosure, terms such as "Base Station (BS)", "Radio base station", "Fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission Point (TP)", "Reception Point (RP)", "Transmission/Reception Point (TRP)", "Panel", "Cell", "Sector", "Cell group", "Carrier", "Component carrier", etc. may be used interchangeably. Base stations may also be referred to by terms such as macrocell, small cell, femtocell, picocell, etc.
基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
A base station can accommodate one or more (e.g., three) cells. When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, and each smaller area can also provide communication services by a base station subsystem (e.g., a small base station for indoor use (Remote Radio Head (RRH))). The term "cell" or "sector" refers to a part or the entire coverage area of at least one of the base station and base station subsystems that provide communication services in this coverage.
本開示において、基地局が端末に情報を送信することは、当該基地局が当該端末に対して、当該情報に基づく制御/動作を指示することと、互いに読み替えられてもよい。
In this disclosure, a base station transmitting information to a terminal may be interpreted as the base station instructing the terminal to control/operate based on the information.
本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
In this disclosure, terms such as "Mobile Station (MS)", "user terminal", "User Equipment (UE)", and "terminal" may be used interchangeably.
移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
A mobile station may also be referred to as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。
At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, etc. In addition, at least one of the base station and the mobile station may be a device mounted on a moving object, the moving object itself, etc.
当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。
The moving body in question refers to an object that can move, and the moving speed is arbitrary, and of course includes the case where the moving body is stationary. The moving body in question includes, but is not limited to, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, handcarts, rickshaws, ships and other watercraft, airplanes, rockets, artificial satellites, drones, multicopters, quadcopters, balloons, and objects mounted on these. The moving body in question may also be a moving body that moves autonomously based on an operating command.
当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
The moving object may be a vehicle (e.g., a car, an airplane, etc.), an unmanned moving object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned). Note that at least one of the base station and the mobile station may also include devices that do not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
図20は、一実施形態に係る車両の一例を示す図である。車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。
FIG. 20 is a diagram showing an example of a vehicle according to an embodiment. The vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (including a current sensor 50, a rotation speed sensor 51, an air pressure sensor 52, a vehicle speed sensor 53, an acceleration sensor 54, an accelerator pedal sensor 55, a brake pedal sensor 56, a shift lever sensor 57, and an object detection sensor 58), an information service unit 59, and a communication module 60.
駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。
The drive unit 41 is composed of at least one of an engine, a motor, and a hybrid of an engine and a motor, for example. The steering unit 42 includes at least a steering wheel (also called a handlebar), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。
The electronic control unit 49 is composed of a microprocessor 61, memory (ROM, RAM) 62, and a communication port (e.g., an Input/Output (IO) port) 63. Signals are input to the electronic control unit 49 from various sensors 50-58 provided in the vehicle. The electronic control unit 49 may also be called an Electronic Control Unit (ECU).
各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。
Signals from the various sensors 50-58 include a current signal from a current sensor 50 that senses the motor current, a rotation speed signal of the front wheels 46/rear wheels 47 acquired by a rotation speed sensor 51, an air pressure signal of the front wheels 46/rear wheels 47 acquired by an air pressure sensor 52, a vehicle speed signal acquired by a vehicle speed sensor 53, an acceleration signal acquired by an acceleration sensor 54, a depression amount signal of the accelerator pedal 43 acquired by an accelerator pedal sensor 55, a depression amount signal of the brake pedal 44 acquired by a brake pedal sensor 56, an operation signal of the shift lever 45 acquired by a shift lever sensor 57, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by an object detection sensor 58.
情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。
The information service unit 59 is composed of various devices, such as a car navigation system, audio system, speakers, displays, televisions, and radios, for providing (outputting) various information such as driving information, traffic information, and entertainment information, and one or more ECUs that control these devices. The information service unit 59 uses information acquired from external devices via the communication module 60, etc., to provide various information/services (e.g., multimedia information/multimedia services) to the occupants of the vehicle 40.
情報サービス部59は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。
The information service unit 59 may include input devices (e.g., a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accept input from the outside, and may also include output devices (e.g., a display, a speaker, an LED lamp, a touch panel, etc.) that perform output to the outside.
運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。
The driving assistance system unit 64 is composed of various devices that provide functions for preventing accidents and reducing the driver's driving load, such as a millimeter wave radar, a Light Detection and Ranging (LiDAR), a camera, a positioning locator (e.g., a Global Navigation Satellite System (GNSS)), map information (e.g., a High Definition (HD) map, an Autonomous Vehicle (AV) map, etc.), a gyro system (e.g., an Inertial Measurement Unit (IMU), an Inertial Navigation System (INS), etc.), an Artificial Intelligence (AI) chip, and an AI processor, and one or more ECUs that control these devices. The driving assistance system unit 64 also transmits and receives various information via the communication module 60 to realize a driving assistance function or an autonomous driving function.
通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。
The communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63. For example, the communication module 60 transmits and receives data (information) via the communication port 63 between the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, left and right rear wheels 47, axles 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and the various sensors 50-58 that are provided on the vehicle 40.
通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。
The communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with an external device. For example, it transmits and receives various information to and from the external device via wireless communication. The communication module 60 may be located either inside or outside the electronic control unit 49. The external device may be, for example, the above-mentioned base station 10 or user terminal 20. The communication module 60 may also be, for example, at least one of the above-mentioned base station 10 and user terminal 20 (it may function as at least one of the base station 10 and user terminal 20).
通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号、当該信号に基づいて得られる情報、及び情報サービス部59を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部49、各種センサ50-58、情報サービス部59などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール60によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。
The communication module 60 may transmit at least one of the signals from the various sensors 50-58 described above input to the electronic control unit 49, information obtained based on the signals, and information based on input from the outside (user) obtained via the information service unit 59 to an external device via wireless communication. The electronic control unit 49, the various sensors 50-58, the information service unit 59, etc. may be referred to as input units that accept input. For example, the PUSCH transmitted by the communication module 60 may include information based on the above input.
通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。情報サービス部59は、情報を出力する(例えば、通信モジュール60によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。
The communication module 60 receives various information (traffic information, signal information, vehicle distance information, etc.) transmitted from an external device and displays it on an information service unit 59 provided in the vehicle. The information service unit 59 may also be called an output unit that outputs information (for example, outputs information to a device such as a display or speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 60).
また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。
The communication module 60 also stores various information received from external devices in memory 62 that can be used by the microprocessor 61. Based on the information stored in memory 62, the microprocessor 61 may control the drive unit 41, steering unit 42, accelerator pedal 43, brake pedal 44, shift lever 45, left and right front wheels 46, left and right rear wheels 47, axles 48, various sensors 50-58, and the like provided on the vehicle 40.
また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。
Furthermore, the base station in the present disclosure may be read as a user terminal. For example, each aspect/embodiment of the present disclosure may be applied to a configuration in which communication between a base station and a user terminal is replaced with communication between multiple user terminals (which may be called, for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). In this case, the user terminal 20 may be configured to have the functions of the base station 10 described above. Furthermore, terms such as "uplink" and "downlink" may be read as terms corresponding to terminal-to-terminal communication (for example, "sidelink"). For example, the uplink channel, downlink channel, etc. may be read as the sidelink channel.
同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
Similarly, the user terminal in this disclosure may be interpreted as a base station. In this case, the base station 10 may be configured to have the functions of the user terminal 20 described above.
本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
In this disclosure, operations that are described as being performed by a base station may in some cases be performed by its upper node. In a network that includes one or more network nodes having base stations, it is clear that various operations performed for communication with terminals may be performed by the base station, one or more network nodes other than the base station (such as, but not limited to, a Mobility Management Entity (MME) or a Serving-Gateway (S-GW)), or a combination of these.
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
Each aspect/embodiment described in this disclosure may be used alone, in combination, or switched between depending on the implementation. In addition, the processing procedures, sequences, flow charts, etc. of each aspect/embodiment described in this disclosure may be rearranged as long as there is no inconsistency. For example, the methods described in this disclosure present elements of various steps using an exemplary order, and are not limited to the particular order presented.
本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
Each aspect/embodiment described in this disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system (5G), 6th generation mobile communication system (6G), xth generation mobile communication system (xG (x is, for example, an integer or decimal)), Future Radio Access (FRA), New-Radio The present invention may be applied to systems that use Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth (registered trademark), and other appropriate wireless communication methods, as well as next-generation systems that are expanded, modified, created, or defined based on these. In addition, multiple systems may be combined (for example, a combination of LTE or LTE-A and 5G, etc.).
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
As used in this disclosure, the phrase "based on" does not mean "based only on," unless expressly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
Any reference to elements using designations such as "first," "second," etc., used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in some way.
本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
The term "determining" as used in this disclosure may encompass a wide variety of actions. For example, "determining" may be considered to be judging, calculating, computing, processing, deriving, investigating, looking up, search, inquiry (e.g., looking in a table, database, or other data structure), ascertaining, etc.
また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
"Determining" may also be considered to mean "determining" receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in a memory), etc.
また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
"Judgment" may also be considered to mean "deciding" to resolve, select, choose, establish, compare, etc. In other words, "judgment" may also be considered to mean "deciding" to take some kind of action.
また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
In addition, "judgment (decision)" may be interpreted as "assuming," "expecting," "considering," etc.
本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
The "maximum transmit power" referred to in this disclosure may mean the maximum value of transmit power, may mean the nominal UE maximum transmit power, or may mean the rated UE maximum transmit power.
本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
As used in this disclosure, the terms "connected" and "coupled," or any variation thereof, refer to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are "connected" or "coupled" to each other. The coupling or connection between the elements may be physical, logical, or a combination thereof. For example, "connected" may be read as "access."
本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
In this disclosure, when two elements are connected, they may be considered to be "connected" or "coupled" to one another using one or more wires, cables, printed electrical connections, and the like, as well as using electromagnetic energy having wavelengths in the radio frequency range, microwave range, light (both visible and invisible) range, and the like, as some non-limiting and non-exhaustive examples.
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
In this disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean "A and B are each different from C." Terms such as "separate" and "combined" may also be interpreted in the same way as "different."
本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
When the terms "include," "including," and variations thereof are used in this disclosure, these terms are intended to be inclusive, similar to the term "comprising." Additionally, the term "or," as used in this disclosure, is not intended to be an exclusive or.
本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
In this disclosure, where articles have been added through translation, such as a, an, and the in English, this disclosure may include that the nouns following these articles are plural.
本開示において、「以下」、「未満」、「以上」、「より多い」、「と等しい」などは、互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」、などを意味する文言は、原級、比較級及び最上級に限らず互いに読み替えられてもよい。また、本開示において、「良い」、「悪い」、「大きい」、「小さい」、「高い」、「低い」、「早い」、「遅い」、「広い」、「狭い」などを意味する文言は、「i番目に」(iは任意の整数)を付けた表現として、原級、比較級及び最上級に限らず互いに読み替えられてもよい(例えば、「最高」は「i番目に最高」と互いに読み替えられてもよい)。
In this disclosure, terms such as "less than", "less than", "greater than", "more than", "equal to", etc. may be read as interchangeable. In addition, in this disclosure, terms meaning "good", "bad", "big", "small", "high", "low", "fast", "slow", "wide", "narrow", etc. may be read as interchangeable, not limited to positive, comparative and superlative. In addition, in this disclosure, terms meaning "good", "bad", "big", "small", "high", "low", "fast", "slow", "wide", "narrow", etc. may be read as interchangeable, not limited to positive, comparative and superlative, as expressions with "ith" (i is any integer) (for example, "best" may be read as "ith best").
本開示において、「の(of)」、「のための(for)」、「に関する(regarding)」、「に関係する(related to)」、「に関連付けられる(associated with)」などは、互いに読み替えられてもよい。
In this disclosure, the terms "of," "for," "regarding," "related to," "associated with," etc. may be read interchangeably.
以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。
The invention disclosed herein has been described in detail above, but it is clear to those skilled in the art that the invention disclosed herein is not limited to the embodiments described herein. The invention disclosed herein can be implemented in modified and altered forms without departing from the spirit and scope of the invention as defined by the claims. Therefore, the description of the disclosure is intended as an illustrative example and does not impose any limiting meaning on the invention disclosed herein.
Claims (6)
- センシングが複数の装置の連携を用いるか否かと、前記センシングが通信のための信号を用いるか否かと、前記センシングがレーダのための信号を用いるか否かと、前記センシングが通信及びレーダの両方のための信号を用いるか否かと、の少なくとも1つに基づくタイプの決定のための情報を受信する受信部と、
前記情報に基づいて、前記センシングのための送信及び受信の少なくとも1つを制御する制御部と、を有する端末。 a receiving unit that receives information for determining a type based on at least one of whether the sensing uses cooperation of multiple devices, whether the sensing uses a signal for communication, whether the sensing uses a signal for radar, and whether the sensing uses a signal for both communication and radar;
A terminal having a control unit that controls at least one of transmission and reception for the sensing based on the information. - 前記情報は、前記センシングのための計算の能力と、前記センシングのためにサポートされている信号と、前記センシングの対象の能力と、前記タイプと、前記センシングのための信号と、前記センシングのための測定の設定と、前記センシングに基づく報告の設定と、前記センシングの要求と、同時送受信の能力と、同期誤差に関する能力と、の少なくとも1つを示す、請求項1に記載の端末。 The terminal of claim 1, wherein the information indicates at least one of: a computation capability for the sensing, a signal supported for the sensing, a capability of the sensing target, the type, a signal for the sensing, a measurement configuration for the sensing, a reporting configuration based on the sensing, a request for the sensing, a capability for simultaneous transmission and reception, and a capability related to synchronization error.
- 前記センシングは、前記端末と、基地局と、前記端末及び前記基地局の連携と、前記端末を含む複数の端末の連携と、複数の基地局の連携と、のいずれかによって行われる、請求項1に記載の端末。 The terminal according to claim 1, wherein the sensing is performed by any one of the terminal, a base station, cooperation between the terminal and the base station, cooperation between a plurality of terminals including the terminal, and cooperation between a plurality of base stations.
- 前記制御部は、前記センシングの要求と、前記センシングに基づく報告と、の少なくとも1つを制御する、請求項1に記載の端末。 The terminal according to claim 1, wherein the control unit controls at least one of the sensing request and the reporting based on the sensing.
- センシングが複数の装置の連携を用いるか否かと、前記センシングが通信のための信号を用いるか否かと、前記センシングがレーダのための信号を用いるか否かと、前記センシングが通信及びレーダの両方のための信号を用いるか否かと、の少なくとも1つに基づくタイプの決定のための情報を受信するステップと、
前記情報に基づいて、前記センシングのための送信及び受信の少なくとも1つを制御するステップと、を有する、端末の無線通信方法。 receiving information for determining a type based on at least one of whether the sensing uses a combination of multiple devices, whether the sensing uses a signal for communication, whether the sensing uses a signal for radar, and whether the sensing uses a signal for both communication and radar;
and controlling at least one of transmission and reception for the sensing based on the information. - センシングが複数の装置の連携を用いるか否かと、前記センシングが通信のための信号を用いるか否かと、前記センシングがレーダのための信号を用いるか否かと、前記センシングが通信及びレーダの両方のための信号を用いるか否かと、の少なくとも1つに基づくタイプの決定のための情報を送信する送信部と、
前記情報に基づいて、前記センシングのための送信及び受信の少なくとも1つを制御する制御部と、を有する基地局。 a transmitting unit that transmits information for determining a type based on at least one of whether the sensing uses cooperation of a plurality of devices, whether the sensing uses a signal for communication, whether the sensing uses a signal for radar, and whether the sensing uses a signal for both communication and radar;
A base station having a control unit that controls at least one of transmission and reception for the sensing based on the information.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/047753 WO2024134905A1 (en) | 2022-12-23 | 2022-12-23 | Terminal, wireless communication method, and base station |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/047753 WO2024134905A1 (en) | 2022-12-23 | 2022-12-23 | Terminal, wireless communication method, and base station |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024134905A1 true WO2024134905A1 (en) | 2024-06-27 |
Family
ID=91587964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/047753 WO2024134905A1 (en) | 2022-12-23 | 2022-12-23 | Terminal, wireless communication method, and base station |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024134905A1 (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004061464A (en) * | 2002-07-31 | 2004-02-26 | Matsushita Electric Works Ltd | Position information terminal |
JP2004235762A (en) * | 2003-01-28 | 2004-08-19 | Nec Corp | Mobile station position specifying system, controller and mobile station in mobile communication network |
US20130033999A1 (en) * | 2011-08-05 | 2013-02-07 | Telefonaktiebolaget Lm Ericsson (Publ) | Node and methods therein for enhanced positioning with complementary positioning information |
JP2014510427A (en) * | 2011-01-14 | 2014-04-24 | クゥアルコム・インコーポレイテッド | Providing positioning support to mobile stations via a self-organizing network |
WO2019221055A1 (en) * | 2018-05-15 | 2019-11-21 | 日本電気株式会社 | Positioning system and positioning method |
JP2019207210A (en) * | 2018-05-30 | 2019-12-05 | 日本電信電話株式会社 | Position estimation method and position estimation device |
US20190372652A1 (en) * | 2018-06-04 | 2019-12-05 | Qualcomm Incorporated | Receive beam selection for measuring a reference signal |
WO2021005660A1 (en) * | 2019-07-05 | 2021-01-14 | 株式会社Nttドコモ | User equipment and communication method |
CN113225674A (en) * | 2021-05-12 | 2021-08-06 | 北京红山信息科技研究院有限公司 | Fingerprint positioning method, system, server and storage medium |
-
2022
- 2022-12-23 WO PCT/JP2022/047753 patent/WO2024134905A1/en unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004061464A (en) * | 2002-07-31 | 2004-02-26 | Matsushita Electric Works Ltd | Position information terminal |
JP2004235762A (en) * | 2003-01-28 | 2004-08-19 | Nec Corp | Mobile station position specifying system, controller and mobile station in mobile communication network |
JP2014510427A (en) * | 2011-01-14 | 2014-04-24 | クゥアルコム・インコーポレイテッド | Providing positioning support to mobile stations via a self-organizing network |
US20130033999A1 (en) * | 2011-08-05 | 2013-02-07 | Telefonaktiebolaget Lm Ericsson (Publ) | Node and methods therein for enhanced positioning with complementary positioning information |
WO2019221055A1 (en) * | 2018-05-15 | 2019-11-21 | 日本電気株式会社 | Positioning system and positioning method |
JP2019207210A (en) * | 2018-05-30 | 2019-12-05 | 日本電信電話株式会社 | Position estimation method and position estimation device |
US20190372652A1 (en) * | 2018-06-04 | 2019-12-05 | Qualcomm Incorporated | Receive beam selection for measuring a reference signal |
WO2021005660A1 (en) * | 2019-07-05 | 2021-01-14 | 株式会社Nttドコモ | User equipment and communication method |
CN113225674A (en) * | 2021-05-12 | 2021-08-06 | 北京红山信息科技研究院有限公司 | Fingerprint positioning method, system, server and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023170826A1 (en) | Terminal, wireless communication method, and base station | |
WO2023170827A1 (en) | Terminal, wireless communication method, and base station | |
WO2024134905A1 (en) | Terminal, wireless communication method, and base station | |
WO2024134906A1 (en) | Terminal, wireless communication method, and base station | |
WO2023203681A1 (en) | Terminal, wireless communication method, and base station | |
WO2024038591A1 (en) | Terminal, wireless communication method, and base station | |
WO2023188432A1 (en) | Terminal, wireless communication method, and base station | |
WO2024038590A1 (en) | Terminal, wireless communication method, and base station | |
WO2024029038A1 (en) | Terminal, wireless communication method, and base station | |
WO2024029039A1 (en) | Terminal, wireless communication method, and base station | |
WO2023058131A1 (en) | Terminal, radio communication method, and base station | |
WO2024166390A1 (en) | Relay device, relay method, and base station | |
WO2024034120A1 (en) | Terminal, wireless communication method, and base station | |
WO2023181332A1 (en) | Terminal, radio communication method, and base station | |
WO2023209885A1 (en) | Terminal, radio communication method, and base station | |
WO2023203728A1 (en) | Terminal, radio communication method, and base station | |
WO2024029044A1 (en) | Terminal, wireless communication method, and base station | |
WO2024042866A1 (en) | Terminal, wireless communication method, and base station | |
WO2024029043A1 (en) | Terminal, wireless communication method, and base station | |
WO2023166957A1 (en) | Terminal, wireless communication method, and base station | |
WO2023073908A1 (en) | Terminal, wireless communication method, and base station | |
WO2023175777A1 (en) | Terminal, wireless communication method, and base station | |
WO2023195162A1 (en) | Terminal, wireless communication method, and base station | |
WO2023195161A1 (en) | Terminal, wireless communication method, and base station | |
WO2023209784A1 (en) | Terminal, wireless communication method, and base station |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22969284 Country of ref document: EP Kind code of ref document: A1 |