WO2024131874A1 - Polynucleotides encoding cd19/cd3 bispecific antibodies - Google Patents

Polynucleotides encoding cd19/cd3 bispecific antibodies Download PDF

Info

Publication number
WO2024131874A1
WO2024131874A1 PCT/CN2023/140495 CN2023140495W WO2024131874A1 WO 2024131874 A1 WO2024131874 A1 WO 2024131874A1 CN 2023140495 W CN2023140495 W CN 2023140495W WO 2024131874 A1 WO2024131874 A1 WO 2024131874A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid sequence
nucleic acid
seq
set forth
sequence set
Prior art date
Application number
PCT/CN2023/140495
Other languages
French (fr)
Inventor
Xia ZHONG
Bo YING
Liang Du
Zhenxing Yang
Qianshan QIN
Jijun Yuan
Original Assignee
Abogen Biosciences (Shanghai) Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abogen Biosciences (Shanghai) Co., Ltd. filed Critical Abogen Biosciences (Shanghai) Co., Ltd.
Priority to CN202380014397.7A priority Critical patent/CN118251236A/en
Publication of WO2024131874A1 publication Critical patent/WO2024131874A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7115Nucleic acids or oligonucleotides having modified bases, i.e. other than adenine, guanine, cytosine, uracil or thymine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2809Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)

Definitions

  • the invention relates to compositions comprising mRNA encoded CD19/CD3 bispecific antibodies, and methods of using the same.
  • Immunotherapy is considered to be one of the most promising treatments for systemic tumors.
  • monoclonal antibodies are effective cancer therapies because of their ability to specifically target molecules.
  • monoclonal antibodies directed against a single target are often therapeutically insufficient. Therefore, bispecific antibodies directed against multiple targets have been increasingly utilized in the field of cancer immunotherapy.
  • bispecific antibodies against hematological tumors are currently available.
  • bispecific antibodies have disadvantages in both production and application.
  • the bispecific antibodies often require a complex protein preparation process which requires cell culture and column chromatography. Quality control is challenging, and process scale-up is both costly and time-consuming.
  • clinical application of bispecific antibodies may be limited by poor pharmacokinetics, which results in a narrow therapeutic window and the need for high-frequency and low-dose administration.
  • Blinatumomab is a bispecific CD19-directed CD3 T-cell engager antibody, and has a tandem scFv structure. Compared to bispecific antibodies having an Fc structure, blinatumomab has a lower molecular weight and increased permeability. Therefore, blinatumomab may reach antigen binding sites that are difficult for macromolecular antibodies to reach. Unfortunately, blinatumomab has a short half-life of approximately two hours, and requires frequent dosing due to the absence of Fc-terminally mediated FcRn recycling mechanisms. Thus, there is a large unmet need for additional compositions comprising bispecific antibodies, such as blinatumomab, for the treatment of cancer.
  • the present application provides a messenger ribonucleic acid (mRNA) encoding a bispecific CD19-directed CD3 T-cell engager antibody.
  • mRNA messenger ribonucleic acid
  • one aspect of the present application provides a pharmaceutical composition comprising an mRNA, wherein the mRNA comprises a coding sequence encoding a bispecific antibody, wherein the bispecific antibody comprises a first antibody moiety specifically recognizing CD19 and a second antibody moiety specifically recognizing CD3.
  • the first antibody moiety specifically recognizing CD19 comprises three CDRs of the heavy chain variable region set forth in SEQ ID NO: 26 and/or three CDRs of the light chain variable region set forth in SEQ ID NO: 27.
  • the first antibody moiety specifically recognizing CD19 comprises an amino acid sequence set forth in SEQ ID NO: 16, or an amino acid sequence comprising at least about 80%sequence identity to the amino acid sequence set forth in SEQ ID NO: 16.
  • the portion of the coding sequence encoding the first antibody moiety specifically recognizing CD19 comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 17 and 50-60, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in any one of SEQ ID NOs: 17 and 50-60.
  • the second antibody moiety specifically recognizing CD3 comprises three CDRs of the heavy chain variable region set forth in SEQ ID NO: 34 and/or three CDRs of the light chain variable region set forth in SEQ ID NO: 35.
  • the second antibody moiety specifically recognizing CD3 comprises an amino acid sequence set forth in SEQ ID NO: 18, or an amino acid sequence comprising at least about 80%sequence identity to the amino acid sequence set forth SEQ ID NO: 18.
  • the portion of the coding sequence encoding the second antibody moiety specifically recognizing CD3 comprises the nucleic acid sequence set forth in any one of SEQ ID NOs: 19 and 61-71, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in any one of SEQ ID NOs: 19 and 61-71.
  • the coding sequence encodes an amino acid sequence set forth in SEQ ID NO: 14, or an amino acid sequence comprising at least about 80%sequence identity to the amino acid sequence set forth in SEQ ID NO: 14.
  • the coding sequence comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 15 and 39-49, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in any one of SEQ ID NOs: 15 and 39-49.
  • the mRNA comprises a nucleic acid sequence encoding a signal peptide. In some embodiments, the nucleic acid sequence encoding the signal peptide is at the 5’ end of the coding sequence of the mRNA. In some embodiments, the nucleic acid sequence encoding the signal peptide comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 11-13, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in any one of SEQ ID NOs: 11-13.
  • the signal peptide comprises an amino acid sequence set forth in any one of SEQ ID NOs: 8-10, or an amino acid sequence comprising at least about 80%sequence identity to the amino acid sequence set forth in any one of SEQ ID NOs: 8-10.
  • the mRNA comprises a 5’ untranslated region (UTR) .
  • the 5’ UTR is from Xenopus globin.
  • the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 1, or a nucleic acid sequence comprising at least about 80%sequence identity the nucleic acid sequence set forth in SEQ ID NO: 1.
  • the 5’ UTR is synthetic.
  • the 5’ UTR is UTR32.
  • the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 2, or a nucleic acid sequence comprising at least about 80%sequence identity the nucleic acid sequence set forth in SEQ ID NO: 2. In some embodiments, the 5’ UTR is a 28M mutant. In some embodiments, the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 3, or a nucleic acid sequence comprising at least about 80%sequence identity the nucleic acid sequence set forth in SEQ ID NO: 3. In some embodiments, the 5’ UTR is from ZX. In some embodiments, the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 4, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 4.
  • the mRNA comprises a 3’ UTR.
  • the 3’ UTR is from Homo sapiens hemoglobin.
  • the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 5, or a nucleic acid sequence comprising at least about 80%sequence identity the nucleic acid sequence set forth in SEQ ID NO: 5.
  • the 3’ UTR is synthetic.
  • the 3’ UTR is 28M.
  • the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 6, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 6.
  • the 3’ UTR is from ZX. In some embodiments, the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 7, or a nucleic acid sequence at least comprising about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 7.
  • the mRNA comprises: i) a 5’ UTR from Xenopus globin and a 3’ UTR from Homo sapiens hemoglobin; ii) a 5’ UTR from Xenopus globin and a 3’ UTR that is 28M; iii) a 5’ UTR from Xenopus globin and a 3’ UTR from ZX; iv) a 5’ UTR that is UTR32 and a 3’ UTR from Homo sapiens hemoglobin; v) a 5’ UTR that is UTR32 and a 3’ UTR that is 28M; vi) a 5’ UTR that is UTR32 and a 3’ UTR from ZX; vii) a 5’ UTR that is a 28M mutant and a 3’ UTR from Homo sapiens hemoglobin; viii) a 5’ UTR from ZX and a 3’ UTR from Homo sapiens hemoglobin; ix
  • the mRNA comprises: i) a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 1, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 1, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 5, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 5; ii) a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 1, or a nucleic acid sequence comprising at least about 80%sequence identity to SEQ ID NO: 1, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 6, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 6; i
  • the portion of the coding sequence encoding the first antibody moiety specifically recognizing CD19 comprises a nucleic acid sequence comprising at least about 80%sequence identity to nucleotides 1-750 of any one of SEQ ID NOs: 15 and 39-49.
  • the portion of the coding sequence encoding the second antibody moiety specifically recognizing CD3 comprises a nucleic acid sequence comprising at least about 80%sequence identity to nucleotides 766-1, 494 of any one of SEQ ID NOs: 15 and 39-49.
  • the portion of the coding sequence encoding a linker comprises a nucleic acid sequence comprising at least about 80%identity to nucleotides 751-765 of any one of SEQ ID NOs: 15 and 39-49.
  • the mRNA comprises a poly (A) sequence.
  • the poly (A) sequence has a length of about 50 nucleotides or longer.
  • the mRNA comprises a chemical modification.
  • the mRNA comprises a 5’ cap.
  • the pharmaceutical composition comprises a lipid nanoparticle (LNP) .
  • the mRNA is formulated in the LNP.
  • the LNP comprises a cationic lipid.
  • the cationic lipid is according to Formula 01-I or Formula 01-II, a compound listed in Table 01-1, a compound according to Formula 02-I, a compound listed in Table 02-1, a compound according to Formula 03-I, a compound listed in Table 03-1, a compound according to Formula 04-I, or a compound listed in Table 04-1.
  • the LNP comprises a phospholipid.
  • the LNP comprises a sterol.
  • the LNP comprises a polymer conjugated lipid. In some embodiments, the polymer conjugated lipid is according to Formula 05-I. In some embodiments, the LNP comprises a cationic lipid, a phospholipid, a sterol, and a polymer conjugated lipid. In some embodiments, the LNP comprises a total lipid to mRNA weight ratio of about 10: 1 to about 30:1.
  • the LNP comprises: i) between about 30 molar percent to about 55 molar percent of a cationic lipid; ii) between about 5 molar percent to about 40 molar percent of a phospholipid; iii) between about 20 molar percent to about 50 molar percent of a sterol; and iv) a polymer conjugated lipid.
  • a method treating a disease in an individual comprising administering to the individual a therapeutically effective amount of any of the pharmaceutical compositions provided herein.
  • the disease is cancer.
  • the cancer is acute lymphoblastic leukemia (ALL) .
  • the ALL is B-cell ALL (B-ALL) .
  • provided herein is a method of delivering an antibody to an individual, comprising administering to the individual a therapeutically effective amount of any of the pharmaceutical compositions provided herein.
  • the pharmaceutical composition is administered locally to a tumor. In some embodiments, the pharmaceutical composition is administered systemically, via intravenous injection, or via intraperitoneal injection.
  • provided herein is a method of delivering an mRNA to an individual, comprising administering to the individual a therapeutically effective amount of any of the pharmaceutical compositions provided herein to a somatic cell of the individual.
  • the pharmaceutical composition is administered at a dose of between about 3 ⁇ g/dose and about 2000 ⁇ g/dose. In some embodiments, the pharmaceutical composition is administered to the individual weekly. In some embodiments, the pharmaceutical composition is administered to the individual for no more than 54 weeks.
  • FIG. 1A shows in vitro expression of mRNAs comprising a coding sequence encoding a CD19/CD3 bispecific antibody in HEK293T cells.
  • FIG. 1B shows in vitro expression of seven specific mRNAs comprising a coding sequence encoding a CD19/CD3 bispecific antibody in both HEK293T cells and AML-12 cells.
  • FIG. 2A shows in vitro T cell specific activation by the CD19/CD3 bispecific antibody encoded by mRNA1 compared to the recombinant antibody blinatumomab.
  • FIG. 2B shows in vitro T cell non-specific activation by the CD19/CD3 bispecific antibody encoded by mRNA1 compared to the recombinant antibody blinatumomab.
  • FIG. 2C shows in vitro tumor cell killing activity of the CD19/CD3 bispecific antibody encoded by mRNA1 compared to the recombinant antibody blinatumomab.
  • FIG. 3A shows in vivo expression of seven mRNAs comprising a coding encoding a CD19/CD3 bispecific antibody formulated in LNPs in NOD/SCID mice.
  • FIG. 3B shows in vivo expression of mRNA1 formulated in LNPs comprising different lipids in NOD/SCID mice.
  • FIG. 3C shows identification of the CD19/CD3 bispecific antibody encoded by mRNA1 via immunoblot compared to the recombinant antibody blinatumomab.
  • FIG. 4A shows in vivo tumor growth inhibition by mRNA1 comprising a coding sequence encoding a CD19/CD3 bispecific antibody in Nalm6 PBMC humanized mice.
  • QD abbreviation of quaque die.
  • FIG. 4B shows imaging of tumors in Nalm6 PBMC humanized mice treated with mRNA1.
  • compositions comprising a messenger ribonucleic acid (mRNA) comprising a coding sequence encoding a bispecific antibody that specifically recognizes CD19 and CD3.
  • the mRNA comprises a nucleic acid sequence encoding a signal peptide, a 5’ untranslated region (UTR) , and/or a 3’ UTR.
  • the pharmaceutical composition comprises a lipid nanoparticle (LNP) , and the mRNA may be formulated in the LNP.
  • the pharmaceutical compositions comprising an mRNA formulated in an LNP may be administered to an individual as a vaccine.
  • the bispecific antibody encoded by the mRNA is strongly expressed in vitro and in vivo, and induces T cell activation and tumor-specific killing. Therefore, the pharmaceutical composition may be useful in a method of treating a cancer in an individual.
  • the present invention is based, at least in part, on the inventor’s find that delivery of pharmaceutical composition comprising an mRNA encoding a bispecific antibody specifically recognizing CD3 and CD19 into mice or cynomolgus monkeys enables somatic cells to express and secrete antibodies with tumor cell killing activity. Moreover, the mRNA encoding the bispecific antibody was superior compared to recombinant protein in terms of dosing frequency and efficacy in mouse model of acute leukemia.
  • the pharmaceutical compositions provided herein are advantageous due to their ease of manufacture, robust safety profile, and efficacy. In particular, the preparation process of mRNA is simple, and there is no need to use cell proliferation, virus, or produce recombinant protein. Furthermore, very small doses of the mRNA can achieve sufficient protective effect, and is superior to the existing protein antibody technology in terms of predictable safety and effectiveness.
  • the term “specifically recognizes” refers to measurable and reproducible interactions, such as binding between a target and an antibody or antibody moiety that is determinative of the presence of the target in the presence of a heterogeneous population of molecules, including biological molecules.
  • an antibody or antibody moiety that specifically recognizes a target is an antibody or antibody moiety that binds this target with greater affinity, avidity, more readily, and/or with greater duration than its bindings to other targets.
  • CDR complementarity determining region
  • CDR complementarity determining region
  • Fv is the minimum antibody fragment, which contains a complete antigen-recognition and antigen-binding site. This fragment consists of a dimer of one heavy-and one light-chain variable region domain in tight, non-covalent association.
  • Single-chain Fv also abbreviated as “scFv, ” is an antibody fragment that comprises the V H and V L antibody domains connected into a single polypeptide chain.
  • the scFv polypeptide further comprises a linker, such as a polypeptide linker, between the V H and V L domains, which enables the scFv to form the desired structure for antigen binding.
  • percent (%) sequence identity including percent amino acid sequence identity and percent nucleic acid sequence identity, with respect to a nucleic acid, peptide, polypeptide, or antibody sequence, is defined as the percentage of nucleic acid residues or the percentage of amino acid residues in a candidate sequence that are identical with the nucleic acid residues or the amino acid residues, respectively, in the specific nucleic acid, peptide, polypeptide, or antibody sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent sequence identity can be achieved in various ways that are within the skill in the art.
  • pharmaceutically acceptable or “pharmacologically compatible” is meant a material that is not biologically or otherwise undesirable, e.g., the material may be incorporated into a pharmaceutical composition administered to a patient without causing any significant undesirable biological effects or interacting in a deleterious manner with any of the other components of the composition in which it is contained.
  • Pharmaceutically acceptable carriers or excipients have preferably met the required standards of toxicological and manufacturing testing and/or are included on the Inactive Ingredient Guide prepared by the U.S. Food and Drug administration.
  • a pharmaceutically acceptable carrier refers to a pharmaceutically acceptable substrate, composition or vehicle used in the process of drug delivery, which may have one or more ingredients including, but not limited to, excipient (s) , binder (s) , diluent (s) , solvent (s) , filler (s) , and/or stabilizer (s) .
  • the terms “individual, ” “subject, ” and “patient” are used interchangeably herein to describe a mammal, including humans.
  • the individual is in need of treatment, for example, the individual may have been diagnosed with, or is suspected of having, a cancer.
  • references to "about” a value or parameter herein includes (and describes) variations that are directed to that value or parameter per se. For example, description referring to "about X” includes description of "X” .
  • the present application provides a pharmaceutical composition
  • a pharmaceutical composition comprising a messenger ribonucleic acid (mRNA) , wherein the mRNA comprises a coding sequence encoding a bispecific antibody, wherein the bispecific antibody comprises a first antibody moiety specifically recognizing CD19 and a second antibody moiety specifically recognizing CD3.
  • the first antibody moiety specifically recognizing CD19 and/or the second antibody moiety specifically recognizing CD3 is a full-length antibody (e.g., IgG, IgA, IgM, IgE, or IgD) or any suitable antigen binding fragments thereof.
  • the first antibody moiety specifically recognizing CD19 and/or the second antibody moiety specifically recognizing CD3 is an antigen-binding fragment selected from the group consisting of a Fab, a Fab’ , a (Fab’ ) 2 , an Fv, a single chain Fv (scFv) , an scFv-Fc, a disulfide stabilized Fv fragment (dsFv) , a (dsFv) 2 , an scFv dimer, a domain antibody, a camelized single domain antibody, a bivalent domain antibody, a minibody, and a V H H.
  • the first antibody moiety specifically recognizing CD19 is an scFv.
  • the second antibody moiety specifically recognizing CD3 is an scFv.
  • the bispecific antibody is a tandem scFv, wherein the first antibody moiety specifically recognizing CD19 is an scFv and the second antibody moiety specifically recognizing CD3 is an scFv.
  • the first antibody moiety specifically recognizing CD19 and/or the second antibody moiety specifically recognizing CD3 is an animal, human, humanized, or camelid antibody, or an antigen-binding fragment thereof.
  • the mRNA comprises a nucleic acid sequence encoding a signal peptide. In some embodiments, the mRNA comprises a 5’ UTR.
  • the 5’ UTR is synthetic (e.g., UTR32 or a 28M mutant) , from Xenopus globin, or from ZX.
  • the mRNA comprises a 3’ UTR.
  • the 3’ UTR is synthetic (e.g., 28M) , from Homo sapiens hemoglobin, or from ZX.
  • the mRNA comprises a poly (A) sequence.
  • the mRNA comprises a chemical modification.
  • the mRNA comprises a 5’ cap.
  • a pharmaceutical composition comprising an mRNA, wherein the mRNA comprises a coding sequence encoding a bispecific antibody comprising a first antibody moiety specifically recognizing CD19 and a second antibody moiety specifically recognizing CD3, wherein the first antibody moiety comprises i) a V H comprising an HC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 20, an HC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 21, and an HC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 22; and ii) a V L comprising an LC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 23, an LC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 24, and an LC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 25, and wherein the second antibody moiety comprises a V H comprising an HC-CDR1 comprising an amino acid
  • the first antibody moiety specifically recognizing CD19 comprises a V H comprising an amino acid sequence set forth in SEQ ID NO: 26 and V L comprising an amino acid sequence set forth in SEQ ID NO: 27.
  • the V H and V L of first antibody moiety specifically recognizing CD19 are fused via a peptide linker, for example a peptide linker comprising an amino acid sequence set forth in any one of SEQ ID NOs: 36-38, such as SEQ ID NO: 36.
  • the second antibody moiety specifically recognizing CD3 comprises a V H comprising an amino acid sequence set forth in SEQ ID NO: 34 and V L comprising an amino acid sequence set forth in SEQ ID NO: 35.
  • the V H and V L of second antibody moiety specifically recognizing CD3 are fused via a peptide linker, for example a peptide linker comprising an amino acid sequence set forth in any one of SEQ ID NOs: 36-38, such as SEQ ID NO: 38.
  • the mRNA comprises a nucleic acid sequence encoding a signal peptide.
  • the mRNA comprises a 5’ UTR.
  • the 5’ UTR is synthetic (e.g., UTR32 or a 28M mutant) , from Xenopus globin, or from ZX.
  • the mRNA comprises a 3’ UTR.
  • the 3’ UTR is synthetic (e.g., 28M) , from Homo sapiens hemoglobin, or from ZX.
  • the mRNA comprises a poly (A) sequence.
  • the mRNA comprises a chemical modification.
  • the mRNA comprises a 5’ cap.
  • a pharmaceutical composition comprising an mRNA, wherein the mRNA comprises a coding sequence encoding a tandem scFv bispecific antibody comprising a first scFv specifically recognizing CD19 (e.g., anti-CD19 scFv) and a second scFv specifically recognizing CD3 (e.g., anti-CD3 scFv) .
  • a tandem scFv bispecific antibody comprising a first scFv specifically recognizing CD19 (e.g., anti-CD19 scFv) and a second scFv specifically recognizing CD3 (e.g., anti-CD3 scFv) .
  • the anti-CD19 scFv comprises: i) a V H comprising an HC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 20, an HC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 21, and an HC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 22; and ii) a V L comprising an LC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 23, an LC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 24, and an LC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 25.
  • the anti-CD3 scFv comprises: i) a V H comprising an HC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 28, an HC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 29, and an HC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 30; and ii) a V L comprising an LC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 31, an LC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 32, and an LC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 33.
  • the anti-CD19 scFv comprises a V H comprising an amino acid sequence set forth in SEQ ID NO: 26 and V L comprising an amino acid sequence set forth in SEQ ID NO: 27.
  • the anti-CD3 scFv comprises a V H comprising an amino acid sequence set forth in SEQ ID NO: 34 and V L comprising an amino acid sequence set forth in SEQ ID NO: 35.
  • the anti-CD19 scFv and the anti-CD3 scFv are fused via a peptide linker, such as any of the peptide linkers described herein.
  • the peptide linker comprises an amino acid sequence set forth in any one of SEQ ID NOs: 36-38.
  • the peptide linker comprises an amino acid sequence set forth in SEQ ID NO: 37.
  • the anti-CD19 scFv is indirectly fused to the anti-CD3 scFv.
  • the V H of the anti-CD19 scFv is fused to the V L of the anti-CD3 scFv.
  • the C-terminus of the V H of the anti-CD19 scFv is fused to the N-terminus of the V L of the anti-CD3 scFv.
  • the N-terminus of the V H of the anti-CD19 scFv is fused to the C-terminus of the V L of the anti-CD3 scFv. In some embodiments, the V L of the anti-CD19 scFv is fused to the V H of the anti-CD3 scFv. In some embodiments, the N-terminus of the V L of the anti-CD19 scFv is fused to the C-terminus of the V H of the anti-CD3 scFv. In some embodiments, the C-terminus of the V L of the anti-CD19 scFv is fused to the N-terminus of the V H of the anti-CD3 scFv.
  • the mRNA comprises a nucleic acid sequence encoding a signal peptide.
  • the mRNA comprises a 5’ UTR.
  • the 5’ UTR is synthetic (e.g., UTR32 or a 28M mutant) , from Xenopus globin, or from ZX.
  • the mRNA comprises a 3’ UTR.
  • the 3’ UTR is synthetic (e.g., 28M) , from Homo sapiens hemoglobin, or from ZX.
  • the mRNA comprises a poly (A) sequence.
  • the mRNA comprises a chemical modification.
  • the mRNA comprises a 5’ cap.
  • a pharmaceutical composition comprising an mRNA, wherein the mRNA comprises a coding sequence encoding a bispecific antibody comprising an amino acid sequence set forth in SEQ ID NO: 14, wherein the bispecific antibody comprises a first antibody moiety specifically recognizing CD19 and a second antibody moiety specifically recognizing CD3.
  • the portion of the coding sequence encoding the first antibody moiety specifically recognizing CD19 comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 17 and 50-60, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in any one of SEQ ID NOs: 17 and 50-60.
  • the portion of the coding sequence encoding the second antibody moiety specifically recognizing CD3 comprises the nucleic acid sequence set forth in any one of SEQ ID NOs: 19 and 61-71, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in any one of SEQ ID NOs: 19 and 61-71.
  • the coding sequence comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 15 and 39-49.
  • the portion of the coding sequence encoding the first antibody moiety specifically recognizing CD19 comprises a nucleic acid sequence comprising at least about 80%sequence identity to nucleotides 1-750 of any one of SEQ ID NOs: 15 and 39-49.
  • the portion of the coding sequence encoding the second antibody moiety specifically recognizing CD3 comprises a nucleic acid sequence comprising at least about 80%sequence identity to nucleotides 766-1, 494 of any one of SEQ ID NOs: 15 and 39-49.
  • the mRNA comprises a nucleic acid sequence encoding a signal peptide. In some embodiments, the mRNA comprises a 5’ UTR.
  • the 5’ UTR is synthetic (e.g., UTR32 or a 28M mutant) , from Xenopus globin, or from ZX.
  • the mRNA comprises a 3’ UTR.
  • the 3’ UTR is synthetic (e.g., 28M) , from Homo sapiens hemoglobin, or from ZX.
  • the mRNA comprises a poly (A) sequence.
  • the mRNA comprises a chemical modification.
  • the mRNA comprises a 5’ cap.
  • a pharmaceutical composition comprising an mRNA, wherein the mRNA comprises i) a coding sequence encoding a bispecific antibody comprising a first antibody moiety specifically recognizing CD19 and a second antibody moiety specifically recognizing CD3, ii) a 5’ UTR, and ii) a 3’ UTR.
  • the 5’ UTR is synthetic (e.g., UTR32 or a 28M mutant) , from Xenopus globin, or from ZX.
  • the mRNA comprises a 3’ UTR.
  • the 3’ UTR is synthetic (e.g., 28M) , from Homo sapiens hemoglobin, or from ZX.
  • the mRNA comprises: i) a 5’ UTR from Xenopus globin and a 3’ UTR from Homo sapiens hemoglobin; ii) a 5’ UTR from Xenopus globin and a 3’ UTR that is 28M; iii) a 5’ UTR from Xenopus globin and a 3’ UTR from ZX; iv) a 5’ UTR that is UTR32 and a 3’ UTR from Homo sapiens hemoglobin; v) a 5’ UTR that is UTR32 and a 3’ UTR that is 28M; vi) a 5’ UTR that is UTR32 and a 3’ UTR from ZX;vii) a 5’ UTR that is a 28M mutant and a 3’ UTR from Homo sapiens hemoglobin; viii) a 5’ UTR from ZX and a 3’ UTR from Homo sapiens hemoglobin; ix)
  • the mRNA comprises a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 1, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 5.
  • the mRNA comprises a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 1, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 6.
  • the mRNA comprises a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 1, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 7.
  • the mRNA comprises a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 2, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 5.
  • the mRNA comprises a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 2, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 6.
  • the mRNA comprises a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 2, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 7.
  • the mRNA comprises a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 3, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 5. In some embodiments, the mRNA comprises a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 4, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 5. In some embodiments, the mRNA comprises a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 4, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 6.
  • the mRNA comprises a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 4, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 7.
  • the mRNA comprises a nucleic acid sequence encoding a signal peptide.
  • the nucleic acid sequence encoding the signal peptide comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 11-13.
  • the signal peptide comprises an amino acid sequence set forth in any one of SEQ ID NOs: 8-10.
  • the mRNA comprises a poly (A) sequence.
  • the mRNA comprises a chemical modification.
  • the mRNA comprises a 5’ cap.
  • the first antibody moiety specifically recognizing CD19 comprises a V H comprising an amino acid sequence set forth in SEQ ID NO: 26 and V L comprising an amino acid sequence set forth in SEQ ID NO: 27.
  • the second antibody moiety specifically recognizing CD3 comprises a V H comprising an amino acid sequence set forth in SEQ ID NO: 34 and V L comprising an amino acid sequence set forth in SEQ ID NO: 35.
  • the mRNA comprises a coding sequence encoding a bispecific antibody comprising an amino acid sequence set forth in SEQ ID NO: 14.
  • the coding sequence comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 15 and 39-49.
  • a pharmaceutical composition comprising a lipid nanoparticle (LNP) and an mRNA, wherein the mRNA comprises a coding sequence encoding a bispecific antibody comprising a first antibody moiety specifically recognizing CD19 and a second antibody moiety specifically recognizing CD3.
  • the mRNA is formulated in the LNP.
  • the LNP comprises a cationic lipid, a phospholipid, a sterol, a polymer conjugated lipid, or a combination thereof.
  • the LNP comprises a total lipid to mRNA weight ratio of about 10: 1 to about 30: 1.
  • the first antibody moiety specifically recognizing CD19 comprises a V H comprising an amino acid sequence set forth in SEQ ID NO: 26 and V L comprising an amino acid sequence set forth in SEQ ID NO: 27.
  • the second antibody moiety specifically recognizing CD3 comprises a V H comprising an amino acid sequence set forth in SEQ ID NO: 34 and V L comprising an amino acid sequence set forth in SEQ ID NO: 35.
  • the mRNA comprises a coding sequence encoding a bispecific antibody comprising an amino acid sequence set forth in SEQ ID NO: 14.
  • the coding sequence comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 15 and 39-49.
  • the mRNA comprises a nucleic acid sequence encoding a signal peptide.
  • the mRNA comprises a 5’ UTR.
  • the 5’ UTR is synthetic (e.g., UTR32 or a 28M mutant) , from Xenopus globin, or from ZX.
  • the mRNA comprises a 3’ UTR.
  • the 3’ UTR is synthetic (e.g., 28M) , from Homo sapiens hemoglobin, or from ZX.
  • the mRNA comprises a poly (A) sequence.
  • the mRNA comprises a chemical modification.
  • the mRNA comprises a 5’ cap.
  • the mRNAs provided herein comprise a coding sequence encoding a bispecific antibody comprising a first antibody moiety specifically recognizing CD19 and a second antibody moiety specifically recognizing CD3.
  • Contemplated first and/or second antibody moieties of the bispecific antibody include, for example, scFv, Fab, and full-length antibodies.
  • the bispecific antibody is a tandem scFv bispecific antibody, wherein the first antibody moiety specifically recognizing CD19 is an anti-CD19 scFv and the second antibody moiety specifically recognizing CD3 is an anti-CD3 scFv.
  • tandem scFv bispecific antibodies are known in the art, and are described in, for example, International Applications WO2004106381 and WO1999054440, the contents of each of which are incorporated herein by reference in their entireties.
  • the tandem scFv bispecific antibody has the structure, from N-terminus to C-terminus: i) V H (CD19) -V L (CD19) -V H (CD3) -V L (CD3) ; ii) V H (CD3) -V L (CD3) -V H (CD19) -V L (CD19) ; or, iii) V H (CD3) -V L (CD3) -V L (CD19) -V H (CD19) .
  • the mRNA comprises one or more coding sequences. In some embodiments, the one or more coding sequences have been codon optimized. In some embodiments, the mRNA comprises one or more non-coding sequences. In some embodiments, the one or more non-coding sequences comprise non-coding sequences that are upstream and/or downstream of the coding sequence. In some embodiments, the one or more non-coding sequences comprise non-coding sequences that are within the coding sequence (e.g., introns) . In some embodiments, the introns are spliced out of the mRNA coding sequence.
  • the portion of the coding sequence encoding the first antibody moiety of the bispecific antibody specifically recognizes CD19 (e.g., an “anti-CD19 antibody moiety” ) .
  • the anti-CD19 antibody moieties described in the present application include any antibody moieties that specifically bind to Cluster of Differentiation 19 (CD19) .
  • Human CD19 is a 95 Kd type I transmembrane glycoprotein, that is a member of the immunoglobulin superfamily. CD19 is expressed during each phase of B cell development, until the B cell differentiates into plasma cells, and may be used as a biomarker for normal and neoplastic B cells as well as follicular dendritic cells. Expression of CD19 is crucial for B cell differentiation and survival, as it i) establishes B cell signaling thresholds, and ii) functions as the major signaling component of a multiprotein complex on the surface of mature B cells.
  • CD19 is a marker of B cells, it has high expression on the surface of cancer cells that originate from B cells, such as B cell lymphomas, acute lymphoblastic leukemia (ALL) , B cell ALL (B-ALL) , and chronic lymphocytic leukemia (CLL) . Therefore, anti-CD19 antibodies may be used in CD19-targeted cancer therapies. In some embodiments, the CD19 is human CD19.
  • the first antibody moiety specifically recognizing CD19 comprises an scFv. In some embodiments, the first antibody moiety specifically recognizing CD19 is an scFv. In some embodiments, the scFv comprises a V H fused to a V L via a flexible peptide linker, such as (GS) n , or similar peptides. In some embodiments, the scFv comprises a V L fused to a V H via a peptide linker. In some embodiments, the peptide linker comprises an amino acid sequence set forth in any one of SEQ ID NOs: 36-38.
  • the first antibody moiety specifically recognizing CD19 comprises: i) a V H comprising an HC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 20, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, an HC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 21, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, and an HC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 22, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and ii) a V L comprising an LC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 23, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, an LC-CDR2 comprising an amino acid sequence
  • the first antibody moiety specifically recognizing CD19 comprises: i) a V H comprising an HC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 20, an HC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 21, and an HC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 22; and ii) a V L comprising an LC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 23, an LC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 24, and an LC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 25.
  • the first antibody moiety specifically recognizing CD19 comprises a V H comprising an amino acid sequence set forth in SEQ ID NO: 26, or a variant thereof comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity to the amino acid sequence set forth in SEQ ID NO: 26, and a V L comprising an amino acid sequence set forth in SEQ ID NO: 27, or a variant thereof comprising at least about 80%(such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity to the amino acid sequence set forth in SEQ ID NO: 27.
  • the first antibody moiety specifically recognizing CD19 comprises a V H comprising an amino acid sequence set forth in SEQ ID NO: 26 and V L comprising an amino acid sequence set forth in SEQ ID NO: 27.
  • the V H and V L are fused via a peptide linker, for example a peptide linker comprising an amino acid sequence set forth in any one of SEQ ID NOs: 36-38, such as SEQ ID NO: 36.
  • the portion of the coding sequence encoding the first antibody moiety specifically recognizing CD19 comprises a nucleic acid sequence comprising at least about 80%(such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity to nucleotides 1-750 of any one of SEQ ID NOs: 15 and 39-49. In some embodiments, the portion of the coding sequence encoding the first antibody moiety specifically recognizing CD19 comprises a nucleic acid sequence of nucleotides 1-750 of any one of SEQ ID NOs: 15 and 39-49.
  • the first antibody moiety specifically recognizing CD19 comprises an amino acid sequence set forth in SEQ ID NO: 16, or an amino acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity to the amino acid sequence set forth in SEQ ID NO: 16.
  • the portion of the coding sequence encoding the first antibody moiety specifically recognizing CD19 comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 17 and 50-60, or a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity to the nucleic acid sequence set forth any one of SEQ ID NOs: 17 and 50-60.
  • the portion of the coding sequence encoding the second antibody moiety of the bispecific antibody specifically recognizes CD3 (e.g., an “anti-CD3 antibody moiety” ) .
  • the anti-CD3 antibody moieties described in the present application include any antibody moieties that specifically bind to Cluster of Differentiation 3 (CD3) .
  • CD3 is multimeric protein complex comprising four distinct polypeptide chains; epsilon ( ⁇ ) , gamma ( ⁇ ) , delta ( ⁇ ) and zeta ( ⁇ ) , which assemble and function as three pairs of dimers ( ⁇ , ⁇ , ⁇ ) .
  • the CD3 complex is a T cell co-receptor that associate with the T-cell receptor (TCR) to generate an activation signal in T lymphocytes.
  • TCR T-cell receptor
  • CD3 expression is lost in the cytoplasm and CD3 antigen migrates to the cell membrane. Because CD3 is specific for T cells, and is expressed during all stages of T cell development, it can be used as a biomarker of both normal and neoplastic T cells. Therefore, anti-CD3 antibodies may be used in CD3-targeted cancer therapies.
  • the CD3 is human CD3.
  • the second antibody moiety specifically recognizing CD3 comprises an scFv. In some embodiments, the second antibody moiety specifically recognizing CD3 is an scFv. In some embodiments, the scFv comprises a V H fused to a V L via a flexible peptide linker, such as (GS) n , or similar peptides. In some embodiments, the scFv comprises a V L fused to a V H via a peptide linker. In some embodiments, the peptide linker comprises an amino acid sequence set forth in any one of SEQ ID NOs: 36-38.
  • the second antibody moiety specifically recognizing CD3 comprises: i) a V H comprising an HC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 28, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, an HC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 29, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, and an HC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 30, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and ii) a V L comprising an LC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 31, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, an LC-CDR2 comprising an amino acid sequence
  • the second antibody moiety specifically recognizing CD3 comprises: i) a V H comprising an HC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 28, an HC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 29, and an HC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 30; and ii) a V L comprising an LC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 31, an LC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 32, and an LC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 33.
  • the second antibody moiety specifically recognizing CD3 comprises a V H comprising an amino acid sequence set forth in SEQ ID NO: 34, or a variant thereof comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity to the amino acid sequence set forth in SEQ ID NO: 34, and a V L comprising an amino acid sequence set forth in SEQ ID NO: 35, or a variant thereof comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity to the amino acid sequence set forth in SEQ ID NO: 35.
  • the second antibody moiety specifically recognizing CD3 comprises a V H comprising an amino acid sequence set forth in SEQ ID NO: 34 and V L comprising an amino acid sequence set forth in SEQ ID NO: 35.
  • the V H and V L are fused via a peptide linker, for example a peptide linker comprising an amino acid sequence set forth in any one of SEQ ID NOs: 36-38, such as SEQ ID NO: 38.
  • the portion of the coding sequence encoding the second antibody moiety specifically recognizing CD3 comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity to nucleotides 766-1, 494 of any one of SEQ ID NOs: 15 and 39-49. In some embodiments, the portion of the coding sequence encoding the second antibody moiety specifically recognizing CD3 comprises the nucleic acid sequence of nucleotides 766-1, 494 of any one of SEQ ID NOs: 15 and 39-49.
  • the second antibody moiety specifically recognizing CD3 comprises an amino acid sequence set forth in SEQ ID NO: 18, or an amino acid sequence comprising about at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity to the amino acid sequence set forth in SEQ ID NO: 18.
  • the portion of the coding sequence encoding the second antibody moiety specifically recognizing CD3 comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 19 and 61-71, or a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity to the nucleic acid sequence set forth in any one of SEQ ID NOs: 19 and 61-71.
  • the bispecific antibody comprising a first antibody moiety specifically recognizing CD19 and a second antibody moiety specifically recognizing CD3, such as any of the first antibody moieties specifically recognizing CD19 and second antibody moieties specifically recognizing CD3 described herein, may have any structure, so long as the bispecific antibody maintains its function of specifically recognizing both CD19 and CD3.
  • the bispecific antibody is, for example, a diabody (Db) , a single-chain diabody (scDb) , a tandem scDb (Tandab) , a linear dimeric scDb (LD-scDb) , a circular dimeric scDb (CD-scDb) , a di-diabody, a tandem scFv, a tandem di-scFv (e.g., a bispecific T cell engager) , a bispecific Fab 2 , a di-miniantibody, a tetrabody, an scFv-Fc-scFv fusion, a dual-affinity retargeting (DART) antibody, a dual variable domain (DVD) antibody, an IgG-scFab, an scFab-ds-scFv, an Fv 2 -Fc, an IgG-scFv fusion,
  • DART dual
  • the bispecific antibody is a tandem scFv comprising a first scFv comprising the first antibody moiety specifically recognizing CD19 (e.g., an “anti-CD19 scFv” ) and a second scFv comprising the second antibody moiety specifically recognizing CD3 (e.g., an “anti-CD3 scFv” ) , e.g., a “tandem scFv bispecific antibody” .
  • the tandem scFv bispecific antibody further comprises at least one (such as at least about any of 2, 3, 4, 5, or more) additional scFv.
  • the anti-CD19 scFv is fused to the anti-CD3 scFv. In some embodiments, the anti-CD19 scFv is directly fused to the anti-CD3 scFv. In some embodiments, the anti-CD19 scFv is indirectly fused to the anti-CD3 scFv. In some embodiments, the V H of the anti-CD19 scFv is fused to the V L of the anti-CD3 scFv. In some embodiments, the C-terminus of the V H of the anti-CD19 scFv is fused to the N-terminus of the V L of the anti-CD3 scFv.
  • the N-terminus of the V H of the anti-CD19 scFv is fused to the C-terminus of the V L of the anti-CD3 scFv. In some embodiments, the V L of the anti-CD19 scFv is fused to the V H of the anti-CD3 scFv. In some embodiments, the N-terminus of the V L of the anti-CD19 scFv is fused to the C-terminus of the V H of the anti-CD3 scFv. In some embodiments, the C-terminus of the V L of the anti-CD19 scFv is fused to the N-terminus of the V H of the anti-CD3 scFv. In some embodiments, the first antibody moiety specifically recognizing CD19 and the second antibody moiety specifically recognizing CD3 are fused together via a linker, such as a peptide linker, described herein.
  • a linker such as a peptide linker, described herein.
  • the tandem scFv bispecific antibody has the structure, from N-terminus to C-terminus: i) V H (CD19) -V L (CD19) -V H (CD3) -V L (CD3) ; ii) V H (CD19) -V L (CD19) -V L (CD3) -V H (CD3) ; iii) V L (CD19) -V H (CD19) -V H (CD3) -V L (CD3) ; iv) V L (CD19) -V H (CD19) -V L (CD3) -V H (CD3) ; v) V H (CD3) -V L (CD3) -V H (CD19) -V L (CD19) ; vi) V H (CD3) -V L (CD3) -V L (CD19) -V H (CD19) ; vii) V L (CD3) -V H (CD3) -V H (CD19) ; vii)
  • the tandem scFv bispecific antibody has the structure, from N-terminus to C-terminus: i) V H (CD19) -V L (CD19) -V H (CD3) -V L (CD3) ; ii) V H (CD3) -V L (CD3) -V H (CD19) -V L (CD19) ; or, iii) V H (CD3) -V L (CD3) -V L (CD19) -V H (CD19) .
  • the tandem scFv bispecific antibody has the structure, from N-terminus to C-terminus: V H (CD19) -V L (CD19) -V H (CD3) -V L (CD3) . In some embodiments, the tandem scFv bispecific antibody has the structure, from N-terminus to C-terminus: V H (CD3) -V L (CD3) -V H (CD19) -V L (CD19) . In some embodiments, the tandem scFv bispecific antibody has the structure, from N-terminus to C-terminus: V H (CD3) -V L (CD3) -V L (CD19) -V H (CD19) .
  • the anti-CD19 scFv comprises: i) a V H comprising an HC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 20, an HC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 21, and an HC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 22; and ii) a V L comprising an LC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 23, an LC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 24, and an LC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 25.
  • the anti-CD3 scFv comprises: i) a V H comprising an HC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 28, an HC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 29, and an HC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 30; and ii) a V L comprising an LC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 31, an LC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 32, and an LC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 33.
  • the anti-CD19 scFv comprises a V H comprising an amino acid sequence set forth in SEQ ID NO: 26 and V L comprising an amino acid sequence set forth in SEQ ID NO: 27.
  • the anti-CD3 scFv comprises a V H comprising an amino acid sequence set forth in SEQ ID NO: 34 and V L comprising an amino acid sequence set forth in SEQ ID NO: 35.
  • the anti-CD19 scFv and the anti-CD3 scFv are fused via a peptide linker, such as any of the peptide linkers described herein.
  • the peptide linker comprises an amino acid sequence set forth in any one of SEQ ID NOs: 36-38.
  • the peptide linker comprises an amino acid sequence set forth in SEQ ID NO: 37.
  • the coding sequence encodes a bispecific antibody comprising an amino acid sequence set forth in SEQ ID NO: 14, or an amino acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity to the amino acid sequence set forth in SEQ ID NO: 14.
  • the coding sequence comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 15 and 39-49, or a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity to the nucleic acid sequence set forth in any one of SEQ ID NOs: 15 and 39-49.
  • the bispecific antibody encoded by the mRNA comprises a purification tag, e.g., a His tag.
  • amino acid sequence variants of the bispecific antibodies, first antibody moieties specifically recognizing CD19, and second antibody moieties specifically recognizing CD3 described herein are also contemplated.
  • Amino acid sequence variants of a bispecific antibody provided herein may be prepared by introducing appropriate modifications into the mRNA encoding the bispecific antibody (e.g., the mRNA coding sequence) .
  • modifications include, for example, deletions from, and/or insertions into and/or substitutions of residues within the amino acid sequences of the bispecific antibody (e.g., tandem scFv bispecific antibody) . Any combination of deletion, insertion, and substitution can be made to arrive at the bispecific antibody, so long as the modified bispecific antibody is able to bind CD19 and CD3.
  • variants having one or more amino acid substitutions are provided.
  • Sites of interest for substitutional mutagenesis include the complementarity determining region hypervariable regions (i.e., HVRs) and framework regions of the first antibody moiety specifically recognizing CD19, and HVRs and framework regions of the second antibody moiety specifically recognizing CD3.
  • Amino acid substitutions may be introduced into the bispecific antibody (e.g., tandem scFv bispecific antibody) and the resulting modified bispecific antibodies may be screened for a desired activity, e.g., retained/improved target binding or decreased immunogenicity.
  • Amino acids may be grouped into different classes according to common side-chain properties:
  • Non-conservative substitutions will entail exchanging a member of one of these classes for another class.
  • Exemplary substitutional variants include affinity matured bispecific antibodies, such as bispecific antibodies comprising an affinity matured first antibody moiety specifically recognizing CD19 and/or an affinity matured second antibody moiety specifically recognizing CD3, e.g., using phage display-based affinity maturation techniques. Briefly, one or more CDR residues are mutated and the variant antibody moieties displayed on phage and screened for a particular biological activity (e.g., binding affinity) . Alterations (e.g., substitutions) may be made in HVRs, e.g., to improve affinity of the bispecific antibody to its target.
  • HVR “hotspots, ” i.e., residues encoded by codons that undergo mutation at high frequency during the somatic maturation process (see, e.g., Chowdhury, Methods Mol. Biol. 207: 179-196 (2008) ) , and/or specificity determining residues (SDRs) , with the resulting variant V H or V L being tested for binding affinity.
  • SDRs specificity determining residues
  • a useful method for identification of residues or regions of a target-binding moiety that may be targeted for mutagenesis is called “alanine scanning mutagenesis” as described by Cunningham and Wells (1989) Science, 244: 1081-1085.
  • a residue or group of target residues e.g., charged residues such as arg, asp, his, lys, and glu
  • a neutral or negatively charged amino acid e.g., alanine or polyalanine
  • a crystal structure of the bispecific antibody-target complex can be determined to identify contact points between the bispecific antibody and the target. Such contact residues and neighboring residues may be targeted or eliminated as candidates for substitution. Variants may be screened to determine whether they contain the desired properties.
  • the bispecific antibody, first antibody moiety specifically recognizing CD19, and/or second antibody moiety specifically recognizing CD3 described herein comprise one or more linkers.
  • the first antibody moiety specifically recognizing CD19 is an scFv, and comprises one or more linkers between the V H and V L .
  • the second antibody moiety specifically recognizing CD3 is an scFv, and comprises one or more linkers between the V H and V L .
  • the bispecific antibody comprises one or more linkers between the first antibody moiety specifically recognizing CD19 and the second antibody moiety specifically recognizing CD3.
  • a linker (such as peptide linker) comprises flexible residues (such as glycine (G) and serine (S) ) so that the first antibody moiety specifically recognizing CD19 and the second antibody moiety specifically recognizing CD3 are free to move relative to each other.
  • the linker is a peptide linker.
  • the linker is a non-cleavable linker. In some embodiments, the linker is a cleavable linker.
  • linker considerations include the effect on physical or pharmacokinetic properties of the resulting compound, such as solubility, lipophilicity, hydrophilicity, hydrophobicity, stability (more or less stable as well as planned degradation) , rigidity, flexibility, immunogenicity, modulation of antibody binding, the ability to be incorporated into a micelle or liposome, and the like.
  • the peptide linker may have a naturally occurring sequence, or a non-naturally occurring sequence.
  • a sequence derived from the hinge region of heavy chain only antibodies may be used as the linker. See, for example, WO1996/34103.
  • the peptide linker can be of any suitable length. In some embodiments, the peptide linker is at least about any of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 50, 75, 100, or more, amino acids long. In some embodiments, the peptide linker is no more than about any of 100, 75, 50, 40, 35, 30, 25, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5 or fewer, amino acids long.
  • the length of the peptide linker is any of about 1 amino acid to about 10 amino acids, about 1 amino acid to about 20 amino acids, about 1 amino acid to about 30 amino acids, about 5 amino acids to about 15 amino acids, about 10 amino acids to about 25 amino acids, about 5 amino acids to about 30 amino acids, about 10 amino acids to about 30 amino acids long, about 30 amino acids to about 50 amino acids, about 50 amino acids to about 100 amino acids, or about 1 amino acid to about 100 amino acids.
  • peptide linker does not comprise any polymerization activity.
  • the characteristics of a peptide linker, which comprise the absence of the promotion of secondary structures, are known in the art and described, e.g., in Dall’Acqua et al. (Biochem. (1998) 37, 9266-9273) , Cheadle et al. (Mol Immunol (1992) 29, 21-30) and Raag and Whitlow (FASEB (1995) 9 (1) , 73-80) .
  • the peptide linker does not promote the formation of any secondary structures.
  • the linkage of the domains to each other can be provided by, e.g., genetic engineering.
  • the peptide linker can be a stable linker, which is not cleavable by proteases, especially by Matrix metalloproteinases (MMPs) .
  • MMPs Matrix metalloproteinases
  • the peptide linker is a flexible linker.
  • Exemplary flexible linkers include glycine polymers (G) n , where n is an integer of at least one, and glycine-serine polymers (including, for example, (GS) n , where n is an integer of at least one) , glycine-alanine polymers, alanine-serine polymers, and other flexible linkers known in the art.
  • the linker is a GS linker.
  • the first antibody moiety specifically recognizing CD19 and the second antibody moiety specifically recognizing CD3 are linked together by a linker of sufficient length to enable the antigen binding domains of the first and second antibody moieties to fold in such a way as to permit binding to CD19 and CD3.
  • the linker comprises an amino acid sequence set forth in any one of SEQ ID NOs: 36-38.
  • the portion of the coding sequence encoding the linker comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 72-74, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in any one of SEQ ID NOs: 72-74. In some embodiments, the portion of the coding sequence encoding the linker comprises a nucleic acid sequence comprising at least about 80%sequence identity to nucleotides 334-378 of SEQ ID NO: 15 or 17.
  • the portion of the coding sequence encoding the linker comprises a nucleic acid sequence comprising at least about 80%sequence identity to nucleotides 751-765 of any one of SEQ ID NOs: 15 and 39-49. In some embodiments, the portion of the coding sequence encoding the linker comprises a nucleic acid sequence comprising at least about 80%sequence identity to nucleotides 1, 123-1, 176 of SEQ ID NO: 15, or a nucleic acid sequence comprising at least about 80%sequence identity to nucleotides 299-352 of SEQ ID NO: 19.
  • the mRNAs provided herein may comprise sequences or features in addition to the coding sequence encoding a bispecific antibody. These features may be used, for example, to improve targeting of the bispecific antibody encoded by the mRNA and to increase stability of the mRNA. Exemplary features may include, but are not limited to, a nucleic acid sequence encoding a signal peptide, 5’ and 3’ untranslated regions (UTRs) , poly (A) tails, 5’ caps, and/or chemical modifications of the mRNA.
  • the mRNA provided herein comprises a nucleic acid sequence encoding a signal peptide.
  • the nucleic acid sequence encoding a signal peptide may or may not be present in the mRNA provided herein.
  • Signal peptides are short peptides that may be present at the N-terminus or the C-terminus of a newly synthesized protein, that may function to properly translocate the protein.
  • the signal peptide assists with translocating the bispecific antibody encoded by the coding sequence of the mRNA (e.g., tandem scFv bispecific antibody) .
  • the signal peptide translocates the bispecific antibody to the cellular membrane.
  • the nucleic acid sequence encoding the signal peptide is at the 5’ end of the coding sequence of the mRNA. In some embodiments, the nucleic acid sequence encoding the signal peptide comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity to the nucleic acid sequence set forth in any one of SEQ ID NOs: 11-13. In some embodiments, the nucleic acid sequence encoding the signal peptide comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 11-13.
  • the nucleic acid sequence encoding the signal peptide comprises a nucleic acid sequence set forth in SEQ ID NO: 11. In some embodiments, the nucleic acid sequence encoding the signal peptide comprises a nucleic acid sequence set forth in SEQ ID NO: 12. In some embodiments, the nucleic acid sequence encoding the signal peptide comprises a nucleic acid sequence set forth in SEQ ID NO: 13. In some embodiments, the nucleic acid sequence encoding the signal peptide is at the 5’ end of a 5’ UTR. In some embodiments, the nucleic acid sequence encoding the signal peptide is between a 5’ UTR and the coding sequence of the mRNA.
  • the nucleic acid sequence encoding the signal peptide is at the 3’ end of a 3’ UTR. In some embodiments, the nucleic acid sequence encoding the signal peptide is between a 3’ UTR and the coding sequence of the mRNA.
  • the signal peptide is at the N-terminus of the bispecific antibody encoded by the coding sequence of the mRNA. In some embodiments, the signal peptide comprises an amino acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity to the amino acid sequence set forth in any one of SEQ ID NOs: 8-10. In some embodiments, the signal peptide comprises an amino acid sequence set forth in any one of SEQ ID NOs: 8-10. In some embodiments, the signal peptide comprises an amino acid sequence set forth in SEQ ID NO: 8. In some embodiments, the signal peptide comprises an amino acid sequence set forth in SEQ ID NO: 9. In some embodiments, the signal peptide comprises an amino acid sequence set forth in SEQ ID NO: 10.
  • the mRNA comprises one or more untranslated regions (UTRs) .
  • the UTR of the mRNA may be involved in various regulatory aspects of gene expression. It should be understood that the UTRs (e.g., the 5’ UTRs and/or the 3’ UTRs) provided herein are examples, and that the mRNA may comprise any UTR from any gene. Furthermore, multiple wild-type UTRs of any known gene may be utilized. It is also within the scope of the present invention to provide synthetic (e.g., artificial UTRs) which are not variants of wild type genes. These UTRs or portions thereof may be placed in the same orientation as in the transcript from which they were selected or may be altered in orientation or location.
  • UTR may be inverted, shortened, lengthened, made chimeric with one or more other 5’ UTRs or 3’ UTRs.
  • the term “altered” as it relates to a UTR sequence means that the UTR has been changed in some way in relation to a reference sequence.
  • a 3’ or 5’ UTR may be altered relative to a wild type or native UTR by the change in orientation or location as taught above or may be altered by the inclusion of additional nucleotides, deletion of nucleotides, swapping or transposition of nucleotides. Any of these changes producing an “altered” UTR (whether 3’ or 5’ ) comprise a variant UTR.
  • a double, triple or quadruple UTR such as a 5’ or 3’ UTR may be used.
  • a “double” UTR is one in which two copies of the same UTR are encoded either in series or substantially in series. It is also within the scope of the present invention to have patterned UTRs.
  • patterned UTRs are those UTRs which reflect a repeating or alternating pattern, such as ABABAB or AABBAABBAABB or ABCABCABC or variants thereof repeated once, twice, or more than 3 times. In these patterns, each letter, A, B, or C represent a different UTR at the nucleotide level.
  • the UTRs provided herein may also include translation enhancer elements (TEE) .
  • TEE translation enhancer elements
  • the mRNA comprises a 5’ UTR.
  • the 5’ UTRs provided herein may be recognized by the ribosome, thereby allowing the ribosome to bind and initiate translation of the mRNA (e.g., translation of the coding sequence and/or nucleic acid sequence encoding a signal peptide of the mRNA) .
  • the 5’ UTR is upstream from the coding sequence of the mRNA.
  • the 5’ UTR is from an organism or is synthetic. In some embodiments, the 5’ UTR is UTR32, is a 28M mutant, is from Xenopus globin, or is from ZX (e.g., from tobacco etch virus) . In some embodiments, the 5’ UTR is from Xenopus globin. In some embodiments, the 5’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 1. In some embodiments, the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 1.
  • the 5’ UTR is UTR32.
  • the 5’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 2.
  • the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 2.
  • the 5’ UTR is 28M. In some embodiments, the 5’ UTR is a 28M mutant.
  • the 5’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 3. In some embodiments, the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 3. In some embodiments, the 5’ UTR is from ZX. In some embodiments, the 5’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 4. In some embodiments, the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 4.
  • the mRNA comprises a 3’ UTR.
  • the 3’ UTRs provided herein may be involved in translation termination (e.g., translation of the coding sequence and/or nucleic acid sequence encoding a signal peptide of the mRNA) , and can also be important for post-transcriptional modifications.
  • the 3’ UTR is downstream from the coding sequence of the mRNA.
  • the 3’ UTR immediately follows the translation stop codon of the coding sequence of the mRNA.
  • the mRNA comprises one or more stop codons before the 3’ UTR.
  • the 3’ UTR is from an organism or is synthetic. In some embodiments, the 3’ UTR is 28M, is from Homo sapiens hemoglobin, or is from ZX. In some embodiments, the 3’ UTR is from Homo sapiens hemoglobin. In some embodiments, the 3’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 5. In some embodiments, the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 5. In some embodiments, the 3’ UTR is 28M. In some embodiments, the 3’ UTR is a 28M mutant.
  • the 3’ UTR comprises a nucleic acid sequence comprising at least about 80%(such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 6. In some embodiments, the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 6. In some embodiments, the 3’ UTR is from ZX. In some embodiments, the 3’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 7. In some embodiments, the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 7.
  • the mRNA comprises a 5’ UTR and a 3’ UTR, such as any of the 5’ UTRs and 3’ UTRs provided herein.
  • the 5’ UTR and the 3’ UTR are derived from the same species.
  • the 5’ UTR and the 3’ UTR are not derived from the same species.
  • the 5’ UTR is synthetic, and the 3’ UTR is not synthetic.
  • the 5’ UTR is not synthetic, and the 3’ UTR is synthetic.
  • the 5’ UTR is not synthetic, and the 3’ UTR is synthetic.
  • the mRNA comprises a 5’ UTR from Xenopus globin and a 3’ UTR from Homo sapiens hemoglobin.
  • the 5’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 1
  • the 3’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 5.
  • the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 1
  • the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 5.
  • the mRNA comprises a 5’ UTR from Xenopus globin and a 3’ UTR that is 28M.
  • the 5’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 1
  • the 3’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 6.
  • the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 1
  • the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 6.
  • the mRNA comprises a 5’ UTR from Xenopus globin and a 3’ UTR from ZX.
  • the 5’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 1
  • the 3’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 7.
  • the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 1
  • the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 7.
  • the mRNA comprises a 5’ UTR that is UTR32 and a 3’ UTR from Homo sapiens hemoglobin.
  • the 5’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 2
  • the 3’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 5.
  • the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 2
  • the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 5.
  • the mRNA comprises a 5’ UTR that is UTR32 and a 3’ UTR that is 28M.
  • the 5’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 2
  • the 3’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 6.
  • the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 2
  • the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 6.
  • the mRNA comprises a 5’ UTR that is UTR32 and a 3’ UTR from ZX.
  • the 5’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 2
  • the 3’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 7.
  • the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 2
  • the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 7.
  • the mRNA comprises a 5’ UTR that is a 28M mutant and a 3’ UTR from Homo sapiens hemoglobin.
  • the 5’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 3
  • the 3’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 5.
  • the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 3
  • the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 5.
  • the mRNA comprises a 5’ UTR from ZX and a 3’ UTR from Homo sapiens hemoglobin. In some embodiments, the mRNA comprises a 5’ UTR that is a 28M mutant and a 3’ UTR from Homo sapiens hemoglobin.
  • the 5’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 4, and the 3’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 5.
  • the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 4, and the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 5.
  • the mRNA comprises a 5’ UTR from ZX and a 3’ UTR that is 28M.
  • the 5’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 4
  • the 3’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 6.
  • the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 4
  • the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 6.
  • the mRNA comprises a 5’ UTR from ZX and a 3’ UTR from ZX.
  • the 5’ UTR comprises a nucleic acid sequence comprising at least about 80%(such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 4
  • the 3’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 7.
  • the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 4
  • the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 7.
  • the mRNA comprises one or more additional features, such as but not limited to a poly (A) sequence, one or more chemical modifications, a 5’ cap, or a combination thereof.
  • the mRNA comprises a poly (A) sequence (e.g., a polyadenylation sequence) .
  • Poly (A) sequences consist of multiple adenosine monophosphates in succession.
  • the poly (A) sequence is crucial for translation of the mRNA.
  • the poly (A) sequence is downstream of the coding sequence of the mRNA.
  • the poly (A) sequence is downstream of a 3’ UTR of the mRNA.
  • the poly (A) sequence has a length of about 50 nucleotides or longer, such as about 60 nucleotides, 70 nucleotides, 80 nucleotides, 90 nucleotides, 100 nucleotides, 150 nucleotides, or longer. In some embodiments, the poly (A) sequence has a length of about 150 nucleotides or shorter, such as about 100 nucleotides, 90 nucleotides, 80 nucleotides, 70 nucleotides, 50 nucleotides, or shorter. In some embodiments, the poly (A) sequence has a length of about 105 nucleotides. In some embodiments, the poly (A) sequence comprises a nucleic acid sequence set forth in SEQ ID NO: 75.
  • the mRNA comprises a chemical modification.
  • one or more nucleic acids of the mRNA comprise a chemical modification.
  • each nucleic acid of the mRNA comprises a chemical modification.
  • the chemical modification occurs in the coding sequence, an intron, the 3’ UTR, or the 5’ UTR of the mRNA.
  • the chemical modification includes a modification to an adenosine, cytidine, guanosine, and/or a uridine base.
  • each adenosine base of the mRNA comprises a chemical modification.
  • each cytidine base of the mRNA comprises a chemical modification.
  • each guanosine base of the mRNA comprises a chemical modification.
  • each uridine base of the mRNA comprises a chemical modification.
  • the adenosine is converted to an inosine, or methylated to N 1 -methyladenosine, N 6 -methyladenosine, or N 6 , N 6 -dimethyladenosine.
  • the cytidine is converted to uridine, acetylated to N 4 -acetylcytidine, or methylated to 3-methylcytidine or 5-methylcytidine.
  • the 5-methylcytidine is further converted to 5-hydroxymethylcytidine.
  • the guanosine is methylated to 7-methylguanosine or oxidized to 7, 8-dihydro-8-oxoguanosine.
  • the ribose sugars of all nucleotides can be 2′-O-methylated.
  • the uridine is converted to pseudouridine ( ⁇ ) .
  • each uridine of the mRNA is converted to a pseudouridine.
  • the mRNA comprises an N 1 -methylpseudouridine chemical modification.
  • each uridine of the mRNA is converted to an N 1 -methylpseudouridine.
  • the mRNA comprises a 5’ cap.
  • the 5’ cap comprises a 7-methylguanosine (m 7 G) moiety, a trimethylated m 2′2′7 G moiety, or an NAD + .
  • the 5’ cap is added to the mRNA via a 5’ –5’ triphosphate linkage to the first transcribed nucleotide of the mRNA.
  • Exemplary mRNAs comprising a coding sequence encoding a bispecific antibody comprising a first antibody moiety specifically recognizing CD19 and a second antibody moiety specifically recognizing CD3, and various combinations of i) a signal peptide, ii) a 5’ UTR, and iii) a 3’ UTR, are provided in Table 1.
  • mRNAs comprising different combinations of nucleic acid sequence encoding a signal peptide, 5’ UTR, and 3’ UTR.
  • each combination of mRNA features recited in Table 1 comprises a coding sequence encoding a bispecific antibody, wherein the bispecific antibody comprises a first antibody moiety specifically recognizing CD19 and a second antibody moiety specifically recognizing CD3.
  • the mRNA comprising each of combination #1 –combination #30 may comprise one or more additional features, such as any of the additional features provided herein (e.g., a poly (A) sequence, a chemical modification, a 5’ cap, or a combination thereof) .
  • the mRNA comprising each of combination #1 –combination #30 comprises a poly (A) sequence.
  • the mRNA comprising each of combination #1 –combination #30 may be formulated in an LNP, such as any of the LNPs provided herein.
  • the mRNA comprising each of combination #1 –combination #30 each individually comprise a coding sequence encoding a bispecific antibody comprising a first antibody moiety specifically recognizing CD19, comprising: i) a V H comprising an HC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 20, an HC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 21, and an HC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 22; and ii) a V L comprising an LC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 23, an LC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 24, and an LC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 25.
  • the first antibody moiety specifically recognizing CD19 comprises a V H comprising an amino acid sequence set forth in SEQ ID NO: 26 and V L comprising an amino acid sequence set forth in SEQ ID NO: 27.
  • the V H and V L are fused via a peptide linker, for example a peptide linker comprising an amino acid sequence set forth in any one of SEQ ID NOs: 36-38, such as SEQ ID NO: 36.
  • the mRNA comprises one or more additional features, such as any of the additional features provided herein (e.g., a poly (A) sequence, a chemical modification, a 5’ cap, or a combination thereof) .
  • the mRNA comprises a poly (A) sequence.
  • the mRNA may be formulated in an LNP, such as any of the LNPs provided herein.
  • the mRNA comprising each of combination #1 –combination #30 each individually comprise a coding sequence encoding a bispecific antibody comprising a second antibody moiety specifically recognizing CD3, comprising: i) a V H comprising an HC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 28, an HC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 29, and an HC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 30; and ii) a V L comprising an LC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 31, an LC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 32, and an LC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 33.
  • the second antibody moiety specifically recognizing CD3 comprises a V H comprising an amino acid sequence set forth in SEQ ID NO: 34 and V L comprising an amino acid sequence set forth in SEQ ID NO: 35.
  • the V H and V L are fused via a peptide linker, for example a peptide linker comprising an amino acid sequence set forth in any one of SEQ ID NOs: 36-38, such as SEQ ID NO: 38.
  • the mRNA comprises comprise one or more additional features, such as any of the additional features provided herein (e.g., a poly (A) sequence, a chemical modification, a 5’ cap, or a combination thereof) .
  • the mRNA comprises a poly (A) sequence.
  • the mRNA may be formulated in an LNP, such as any of the LNPs provided herein.
  • the mRNA comprising each of combination #1 –combination #30 each individually comprise a coding sequence encoding a bispecific antibody, wherein the coding sequence comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 15 and 39-49.
  • the mRNA comprising each of combination #1 –combination #30 each individually comprise a coding sequence comprising the nucleic acid sequence set forth in SEQ ID NO: 15.
  • the mRNA comprising each of combination #1 –combination #30 each individually comprise a coding sequence comprising the nucleic acid sequence set forth in SEQ ID NO: 39.
  • the mRNA comprising each of combination #1 –combination #30 each individually comprise a coding sequence comprising the nucleic acid sequence set forth in SEQ ID NO: 40. In some embodiments, the mRNA comprising each of combination #1 –combination #30 each individually comprise a coding sequence comprising the nucleic acid sequence set forth in SEQ ID NO: 41. In some embodiments, the mRNA comprising each of combination #1 –combination #30 each individually comprise a coding sequence comprising the nucleic acid sequence set forth in SEQ ID NO: 42. In some embodiments, the mRNA comprising each of combination #1 –combination #30 each individually comprise a coding sequence comprising the nucleic acid sequence set forth in SEQ ID NO: 43.
  • the mRNA comprising each of combination #1 –combination #30 each individually comprise a coding sequence comprising the nucleic acid sequence set forth in SEQ ID NO: 44. In some embodiments, the mRNA comprising each of combination #1 –combination #30 each individually comprise a coding sequence comprising the nucleic acid sequence set forth in SEQ ID NO: 45. In some embodiments, the mRNA comprising each of combination #1 –combination #30 each individually comprise a coding sequence comprising the nucleic acid sequence set forth in SEQ ID NO: 46. In some embodiments, the mRNA comprising each of combination #1 –combination #30 each individually comprise a coding sequence comprising the nucleic acid sequence set forth in SEQ ID NO: 47.
  • the mRNA comprising each of combination #1 –combination #30 each individually comprise a coding sequence comprising the nucleic acid sequence set forth in SEQ ID NO: 48. In some embodiments, the mRNA comprising each of combination #1 –combination #30 each individually comprise a coding sequence comprising the nucleic acid sequence set forth in SEQ ID NO: 49. In some embodiments, the mRNA comprises one or more additional features, such as any of the additional features provided herein (e.g., a poly (A) sequence, a chemical modification, a 5’ cap, or a combination thereof) . In some embodiments, the mRNA comprises a poly (A) sequence. In some embodiments, the mRNA may be formulated in an LNP, such as any of the LNPs provided herein.
  • the mRNA comprising each of combination #1 –combination #30 each individually comprise a coding sequence encoding a tandem scFv bispecific antibody, comprising an amino acid sequence set forth in SEQ ID NO: 14.
  • the coding sequence comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 15 and 39-49.
  • the mRNA comprises one or more additional features, such as any of the additional features provided herein (e.g., a poly (A) sequence, a chemical modification, a 5’ cap, or a combination thereof) .
  • the mRNA comprises a poly (A) sequence.
  • the mRNA may be formulated in an LNP, such as any of the LNPs provided herein.
  • the pharmaceutical composition of the present invention may comprise one or more components to, for example, increase stability of the mRNA, increase cell transfection of the mRNA, permit sustained or delayed release of the mRNA, change the biodistribution of the mRNA, increase the translation of encoded bispecific antibody in vivo, and/or alter the release profile of the encoded bispecific antibody in vivo.
  • the pharmaceutical composition may include one or more pharmaceutically acceptable excipients or accessory ingredients such as, but not limited to, one or more solvents, dispersion media, diluents, dispersion aids, suspension aids, granulating aids, disintegrants, fillers, glidants, liquid vehicles, binders, surface active agents, isotonic agents, thickening or emulsifying agents, buffering agents, lubricating agents, oils, preservatives, and other species.
  • Excipients such as waxes, butters, coloring agents, coating agents, flavorings, and perfuming agents may also be included.
  • compositions are well known in the art (see for example Remington's The Science and Practice of Pharmacy, 21 st Edition, A. R. Gennaro; Lippincott, Williams &Wilkins, Baltimore, Md., 2006) .
  • the pharmaceutical composition may comprise lipidoids, liposomes, lipid nanoparticles (LNPs) , polymers, lipoplexes, core-shell nanoparticles, peptides, proteins, cells transfected with the mRNA (e.g., for transplantation into an individual) , hyaluronidase, nanoparticle mimics, and combinations thereof.
  • the pharmaceutical compositions of the invention can include one or more excipients provided in a ratio to optimize the properties of the mRNA.
  • the mRNA of the present invention may be formulated in a pharmaceutical composition using self-assembled nucleic acid nanoparticles.
  • the pharmaceutical composition comprises at least one mRNA, such 1, 2, 3, 4 or 5 mRNAs.
  • compositions described herein may be prepared by any method known or hereafter developed in the art of pharmacology. In general, such preparatory methods include the step of associating the mRNA with an excipient and/or one or more other accessory ingredients.
  • the pharmaceutical composition may be prepared, packaged, and/or sold in bulk, as a single unit dose, and/or as a plurality of single unit doses.
  • a “unit dose” refers to a discrete amount of the pharmaceutical composition comprising a predetermined amount of the mRNA.
  • the amount of the mRNA may generally be equal to the dosage of the mRNA which would be administered to an individual and/or a convenient fraction of such a dosage including, but not limited to, one-half or one-third of such a dosage.
  • the relative amounts of the mRNA, the pharmaceutically acceptable excipient, and/or any additional ingredients in the pharmaceutical composition may vary, depending upon the identity, size, and/or condition of the individual being administered the pharmaceutical composition as well as the route by which the pharmaceutical composition is to be administered.
  • the pharmaceutical composition may comprise between 0.1%and 99% (w/w) of the mRNA.
  • LNPs Lipid nanoparticles
  • the pharmaceutical composition comprises an LNP.
  • the mRNA is formulated in the LNP, such as those described in International Publication No. WO2012170930, herein incorporated by reference in its entirety.
  • the particle size of the LNP may be increased and/or decreased. The change in particle size may be able to help counter biological reaction such as, but not limited to, inflammation or may increase the biological effect of the mRNA when administered to an individual.
  • the LNP comprises between about 30 molar percent to about 55 molar percent of a cationic lipid. In some embodiments, the LNP comprises greater than about 30 molar percent of a cationic lipid, such as greater than any of about 35 molar percent, 40 molar percent, 45 molar percent, 50 molar percent, 55 molar percent, or greater, of a cationic lipid. In some embodiments, the LNP comprises less than about 55 molar percent of a cationic lipid, such as less than any of about 50 molar percent, 45 molar percent, 40 molar percent, 35 molar percent, 30 molar percent, or less, of a cationic lipid.
  • the LNP comprises between about 5 molar percent to about 40 molar percent of a phospholipid. In some embodiments, the LNP comprises greater than about 5 molar percent of a phospholipid, such as greater than any of about 10 molar percent, 15 molar percent, 20 molar percent, 25 molar percent, 30 molar percent, 35 molar percent, 40 molar percent, or greater, of a phospholipid.
  • the LNP comprises less than about 40 molar percent of a phospholipid, such as less than any of about 35 molar percent, 30 molar percent, 25 molar percent, 20 molar percent, 15 molar percent, 10 molar percent, 5 molar percent, or less, of a phospholipid.
  • the LNP comprises between about 20 molar percent to about 50 molar percent of a sterol. In some embodiments, the LNP comprises greater than about 20 molar percent of a sterol, such as greater than any of about 25 molar percent, 30 molar percent, 35 molar percent, 40 molar percent, 45 molar percent, 50 molar percent, or greater, of a sterol. In some embodiments, the LNP comprises less than about 50 molar percent of a sterol, such as less than any of about 45 molar percent, 40 molar percent, 35 molar percent, 30 molar percent, 25 molar percent, 20 molar percent, or less, of a sterol.
  • the LNP comprises a cationic lipid, a phospholipid, a sterol, and a polymer conjugated lipid, such as any of the cationic lipids, phospholipids, sterols, and polymer conjugated lipids described herein.
  • the LNP comprises i) between about 30 molar percent to about 55 molar percent of a cationic lipid, ii) between about 5 molar percent to about 40 molar percent of a phospholipid.
  • the LNP comprises a total lipid to mRNA weight ratio of about 10: 1 to about 30: 1, such as any of about 10: 1 to about 20: 1, about 15: 1 to about 25: 1, and about 20: 1 to about 30: 1. In some embodiments, the LNP comprises a total lipid to mRNA weight ratio of greater than about 10: 1, such as greater than any of about 15: 1, 20: 1, 25: 1, 30: 1, or greater. In some embodiments, the LNP comprises a total lipid to mRNA weight ratio of less than about 30: 1, such as less than any of about 25: 1, 20: 1, 15: 1, 10: 1, or less.
  • the total lipid to mRNA weight ratio may be adjusted depending on the other components of the pharmaceutical composition, the individual to be administered, and/or the route of administration.
  • the amount of mRNA in an LNP for example, be measured using absorption spectroscopy (e.g., ultraviolet-visible spectroscopy) .
  • the LNP comprises a cationic lipid, also referred to herein as an “ionizable lipid. ”
  • Cationic lipids that may be comprised in the LNPs provided herein are known in the art.
  • the cationic lipid may include, but is not limited to, the cationic lipids described in International Publication Nos. WO2012040184, WO2011153120, WO2011149733, WO2011090965, WO2011043913, WO2011022460, WO2012061259, WO2012054365, WO2012044638, WO2010080724, WO201021865 and WO2008103276, U.S. Pat. Nos.
  • the cationic lipid is selected from the non-limiting group consisting of 3- (didodecylamino) -N1, N1, 4-tridodecyl-1-piperazineethanamine (KL10) , 14, 25-ditridecyl-15, 18, 21, 24-tetraaza-octatriacontane (KL25) , 1, 2-dilinoleyloxy-N, N-dimethylaminopropane (DLin-DMA) , 2, 2-dilinoleyl-4-dimethylaminomethyl- [1, 3] -dioxolane (DLin-K-DMA) , heptatriaconta-6, 9, 28, 31-tetraen-19-yl 4- (dimethylamino) but
  • the cationic lipid may be synthesized by methods known in the art and/or as described in International Publication Nos. WO2012040184, WO2011153120, WO2011149733, WO2011090965, WO2011043913, WO2011022460, WO2012061259, WO2012054365, WO2012044638, WO2010080724 and WO201021865; each of which is herein incorporated by reference in their entirety.
  • Cationic lipids may include the following Series 01-04 of lipids (and sub-formulas thereof) .
  • the cationic lipid is according to Formula 01-I or Formula 01-II, a compound listed in Table 01-1, a compound according to Formula 02-I, a compound listed in Table 02-1, a compound according to Formula 03-I, a compound listed in Table 03-1, a compound according to Formula 04-I, or a compound listed in Table 04-1.
  • the cationic lipid contained in the pharmaceutical compositions provided herein is a cationic lipid as described in International Patent Publication No. WO2021204175, the entirety of which is incorporated herein by reference.
  • the cationic lipid is a compound of Formula (01-I) :
  • G 1 and G 2 are each independently a bond, C 2 -C 12 alkylene, or C 2 -C 12 alkenylene, wherein one or more -CH 2 -in the alkylene or alkenylene is optionally replaced by -O-;
  • R 1 and R 2 are each independently C 6 -C 32 alkyl or C 6 -C 32 alkenyl
  • R a , R b , R d , and R e are each independently H, C 1 -C 24 alkyl, or C 2 -C 24 alkenyl;
  • R c and R f are each independently C 1 -C 32 alkyl or C 2 -C 32 alkenyl
  • G 3 is C 2 -C 24 alkylene, C 2 -C 24 alkenylene, C 3 -C 8 cycloalkylene, or C 3 -C 8 cycloalkenylene;
  • R 3 is -N (R 4 ) R 5 ;
  • R 4 is C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkenyl, 4-to 8-membered heterocyclyl, or C 6 -C 10 aryl; or R 4 , G 3 or part of G 3 , together with the nitrogen to which they are attached form a cyclic moiety;
  • R 5 is C 1 -C 12 alkyl or C 3 -C 8 cycloalkyl; or R 4 , R 5 , together with the nitrogen to which they are attached form a cyclic moiety;
  • x 0, 1 or 2;
  • alkyl, alkenyl, cycloalkyl, cycloalkenyl, heterocyclyl, aryl, alkylene, alkenylene, cycloalkylene, cycloalkenylene, arylene, heteroarylene, and cyclic moiety is independently optionally substituted.
  • the cationic lipid is a compound of Formula (01-II) :
  • G 1 and G 2 are each independently a bond, C 2 -C 12 alkylene, or C 2 -C 12 alkenylene, wherein one or more -CH 2 -in the alkylene or alkenylene is optionally replaced by -O-;
  • R 1 and R 2 are each independently C 6 -C 32 alkyl or C 6 -C 32 alkenyl
  • R a , R b , R d , and R e are each independently H, C 1 -C 24 alkyl, or C 2 -C 24 alkenyl;
  • R c and R f are each independently C 1 -C 32 alkyl or C 2 -C 32 alkenyl
  • G 4 is a bond, C 1 -C 23 alkylene, C 2 -C 23 alkenylene, C 3 -C 8 cycloalkylene, or C 3 -C 8 cycloalkenylene;
  • R 3 is -N (R 4 ) R 5 ;
  • R 4 is C 1 -C 12 alkyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkenyl, 4-to 8-membered heterocyclyl, or C 6 -C 10 aryl; or R 4 , G 3 or part of G 3 , together with the nitrogen to which they are attached form a cyclic moiety;
  • R 5 is C 1 -C 12 alkyl or C 3 -C 8 cycloalkyl; or R 4 , R 5 , together with the nitrogen to which they are attached form a cyclic moiety;
  • x 0, 1 or 2;
  • alkyl, alkenyl, cycloalkyl, cycloalkenyl, heterocyclyl, aryl, alkylene, alkenylene, cycloalkylene, cycloalkenylene, arylene, heteroarylene, and cyclic moiety is independently optionally substituted.
  • the cationic lipid is a compound in Table 01-1, or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof
  • the cationic lipid contained in the pharmaceutical compositions provided herein is a cationic lipid described in International Patent Application No. PCT/CN2022/116960, the entirety of which is incorporated herein by reference.
  • the cationic lipid is a compound of Formula (02-I) :
  • R 1 and R 2 are each independently C 6 -C 24 alkyl or C 6 -C 24 alkenyl
  • R a , R b , R d , and R e are each independently H, C 1 -C 24 alkyl, or C 2 -C 24 alkenyl;
  • R c and R f are each independently C 1 -C 24 alkyl or C 2 -C 24 alkenyl
  • G 3 is C 2 -C 12 alkylene or C 2 -C 12 alkenylene, wherein part or all of alkylene or alkenylene is optionally replaced by a C 3 -C 8 cycloalkylene or C 3 -C 8 cycloalkenylene;
  • R 3 is -N (R 4 ) R 5 , -OR 6 , or -SR 6 ;
  • R 4 is C 1 -C 12 alkyl, C 2 -C 12 alkenyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkenyl, C 6 -C 10 aryl, or 4-to 8-membered heterocycloalkyl;
  • R 5 is H, C 1 -C 12 alkyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkenyl, C 6 -C 10 aryl, or 4-to 8-membered heterocycloalkyl;
  • R 6 is hydrogen, C 1 -C 12 alkyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkenyl, or C 6 -C 10 aryl;
  • x 0, 1, or 2;
  • each alkyl, alkenyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, aryl, alkylene, alkenylene, cycloalkylene, and cycloalkenylene is independently optionally substituted.
  • the cationic lipid is a compound in Table 02-1, or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof.
  • the cationic lipid contained in the pharmaceutical compositions provided herein is a cationic lipid described in International Patent Publication No. WO2022152109, the entirety of which is incorporated herein by reference.
  • the cationic lipid is a compound of Formula (03-I) :
  • G 1 and G 2 are each independently a bond, C 2 -C 12 alkylene, or C 2 -C 12 alkenylene, wherein one or more -CH 2 -in G 1 and G 2 is optionally replaced by -O-;
  • R 1 and R 2 are each independently C 6 -C 24 alkyl or C 6 -C 24 alkenyl
  • R a , R b , R d , and R e are each independently H, C 1 -C 24 alkyl, or C 2 -C 24 alkenyl;
  • R c and R f are each independently C 1 -C 24 alkyl or C 2 -C 24 alkenyl
  • G 3 is C 2 -C 12 alkylene or C 2 -C 12 alkenylene, wherein part or all of alkylene or alkenylene is optionally replaced by C 3 -C 8 cycloalkylene, C 3 -C 8 cycloalkenylene, C 3 -C 8 cycloalkynylene, 4-to 8-membered heterocyclylene, C 6 -C 10 arylene, or 5-to 10-membered heteroarylene;
  • R 3 is hydrogen, C 1 -C 12 alkyl, C 2 -C 12 alkenyl, C 2 -C 12 alkynyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkenyl, C 3 -C 8 cycloalkynyl, 4-to 8-membered heterocyclyl, C 6 -C 10 aryl, or 5-to 10-membered heteroaryl; or R 3 , G 1 or part of G 1 , together with the nitrogen to which they are attached form a cyclic moiety; or R 3 , G 3 or part of G 3 , together with the nitrogen to which they are attached form a cyclic moiety;
  • R 4 is C 1 -C 12 alkyl or C 3 -C 8 cycloalkyl
  • x 0, 1, or 2;
  • n 1 or 2;
  • n 1 or 2;
  • alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, cycloalkynyl, heterocyclyl, aryl, heteroaryl, alkylene, alkenylene, cycloalkylene, cycloalkenylene, cycloalkynylene, heterocyclylene, arylene, heteroarylene, and cyclic moiety is independently optionally substituted.
  • the cationic lipid is a compound in Table 03-1, or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof.
  • the cationic lipid contained in the pharmaceutical compositions provided herein is a cationic lipid described in International Patent Application No. PCT/CN2022/094227, the entirety of which is incorporated herein by reference.
  • the cationic lipid is a compound of Formula (04-I) :
  • G 1 and G 2 are each independently a bond, C 2 -C 12 alkylene, or C 2 -C 12 alkenylene;
  • R 1 and R 2 are each independently C 5 -C 32 alkyl or C 5 -C 32 alkenyl
  • R a , R b , R d , and R e are each independently H, C 1 -C 24 alkyl, or C 2 -C 24 alkenyl;
  • R c and R f are each independently C 1 -C 32 alkyl or C 2 -C 32 alkenyl
  • R 0 is C 1 -C 12 alkyl, C 2 -C 12 alkenyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkenyl, C 6 -C 10 aryl, or 4-to 8-membered heterocycloalkyl;
  • G 3 is C 2 -C 12 alkylene or C 2 -C 12 alkenylene
  • R 4 is C 1 -C 12 alkyl, C 2 -C 12 alkenyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkenyl, C 6 -C 10 aryl, or 4-to 8-membered heterocycloalkyl;
  • R 5 is C 1 -C 12 alkyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkenyl, C 6 -C 10 aryl, or 4-to 8-membered heterocycloalkyl;
  • x 0, 1, or 2;
  • s is 0 or 1;
  • each alkyl, alkenyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, aryl, alkylene, alkenylene, arylene, and heteroarylene, is independently optionally substituted.
  • the cationic lipid is a compound in Table 04-1, or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof.
  • any embodiment of the cationic lipids used in the lipid nanoparticles provided herein, as set forth above, and any specific substituent and/or variable in the cationic lipid provided herein, as set forth above, may be independently combined with other embodiments and/or substituents and/or variables of the compounds to form embodiments not specifically set forth above.
  • substituents and/or variables may be listed for any particular group or variable, it is understood that each individual substituent and/or variable may be deleted from the particular embodiment and/or claim and that the remaining list of substituents and/or variables will be considered to be within the scope of embodiments provided herein.
  • an LNP provided herein comprises one or more charged or ionizable lipids in addition to a lipid of Series 01, 02, 03, or 04, e.g., a lipid according to Formulae (01-I) , (01-II) , (02-I) , (03-I) , or (04-I) (and sub-formulas thereof) .
  • a lipid according to Formulae (01-I) , (01-II) , (02-I) , (03-I) , or (04-I) (and sub-formulas thereof) .
  • certain charged or zwitterionic lipid components of a nanoparticle composition resembles the lipid component in the cell membrane, thereby can improve cellular uptake of the nanoparticle.
  • Exemplary charged or ionizable lipids that can form part of the present nanoparticle composition include but are not limited to 3- (didodecylamino) -N1, N1, 4-tridodecyl-1-piperazineethanamine (KL10) , N1- [2- (didodecylamino) ethyl] -N1, N4, N4-tridodecyl-1, 4-piperazinediethanamine (KL22) , 14, 25-ditridecyl-15, 18, 21, 24-tetraaza-octatriacontane (KL25) , 1, 2-dilinoleyloxy-N, N-dimethylaminopropane (DLinDMA) , 2, 2-dilinoleyl-4-dimethylaminomethyl- [1, 3] -dioxolane (DLin-K-DMA) , heptatriaconta-6, 9, 28, 31-tetraen-19-yl 4-
  • Additional exemplary charged or ionizable lipids that can form part of the present nanoparticle composition include the lipids (e.g., lipid 5) described in Sabnis et al. “A Novel Amino Lipid Series for mRNA Delivery: Improved Endosomal Escape and Sustained Pharmacology and Safety in Non-human Primates” , Molecular Therapy Vol. 26 No 6, 2018, the entirety of which is incorporated herein by reference.
  • suitable cationic lipids include N- [1- (2, 3-dioleyloxy) propyl] -N, N, N-trimethylammonium chloride (DOTMA) ; N- [1- (2, 3-dioleoyloxy) propyl] -N, N, N-trimethylammonium chloride (DOTAP) ; 1, 2-dioleoyl-sn-glycero-3-ethylphosphocholine (DOEPC) ; 1, 2-dilauroyl-sn-glycero-3-ethylphosphocholine (DLEPC) ; 1, 2-dimyristoyl-sn-glycero-3-ethylphosphocholine (DMEPC) ; 1, 2-dimyristoleoyl-sn-glycero-3-ethylphosphocholine (14: 1) ; N1- [2- ( (1S) -1- [ (3-aminopropyl) amino] -4- [di (3
  • cationic lipids with headgroups that are charged at physiological pH such as primary amines (e.g., DODAG N', N'-dioctadecyl-N-4, 8-diaza-10-aminodecanoylglycine amide) and guanidinium head groups (e.g., bis-guanidinium-spermidine-cholesterol (BGSC) , bis-guanidiniumtren-cholesterol (BGTC) , PONA, and (R) -5-guanidinopentane-1, 2-diyl dioleate hydrochloride (DOPen-G) ) .
  • primary amines e.g., DODAG N', N'-dioctadecyl-N-4, 8-diaza-10-aminodecanoylglycine amide
  • guanidinium head groups e.g., bis-guanidinium-spermidine-cholesterol (BGSC
  • cationic lipid is (R) -5- (dimethylamino) pentane-1, 2-diyl dioleate hydrochloride (DODAPen-Cl) .
  • the cationic lipid is a particular enantiomer or the racemic form, and includes the various salt forms of a cationic lipid as above (e.g., chloride or sulfate) .
  • the cationic lipid is N- [1- (2, 3-dioleoyloxy) propyl] -N, N, N-trimethylammonium chloride (DOTAP-Cl) or N- [1- (2, 3-dioleoyloxy) propyl] -N, N, N-trimethylammonium sulfate (DOTAP-Sulfate) .
  • DOTAP-Cl N-trimethylammonium chloride
  • DOTAP-Sulfate N- [1- (2, 3-dioleoyloxy) propyl] -N, N, N-trimethylammonium sulfate
  • the cationic lipid is an ionizable cationic lipid such as, e.g., dioctadecyldimethylammonium bromide (DDAB) ; 1, 2- dilinoleyloxy-3-dimethylaminopropane (DLinDMA) ; 2, 2-dilinoleyl-4- (2dimethylaminoethyl) - [1, 3] -dioxolane (DLin-KC2-DMA) ; heptatriaconta-6, 9, 28, 31-tetraen-19-yl 4- (dimethylamino) butanoate (DLin-MC3-DMA) ; 1, 2-dioleoyloxy-3-dimethylaminopropane (DODAP) ; 1, 2-dioleyloxy-3-dimethylaminopropane (DODMA) ; and morpholinocholesterol (Mo-CHOL) .
  • DDAB dioc
  • the charged or ionizable lipid that can form part of the present nanoparticle composition is a lipid including a cyclic amine group. Additional cationic lipids that are suitable for the formulations and methods disclosed herein include those described in WO2015199952, WO2016176330, and WO2015011633, the entire contents of each of which are hereby incorporated by reference in their entireties. Additionally, in some embodiments, the charged or ionizable lipid that can form part of the present nanoparticle composition is a lipid including a cyclic amine group. Additional cationic lipids that are suitable for the formulations and methods disclosed herein include those described in WO2015199952, WO2016176330, and WO2015011633, the entire contents of each of which are hereby incorporated by reference in their entireties.
  • the LNP comprises a phospholipid.
  • Exemplary phospholipids are described in US20180000953A1, the contents of which is incorporated by reference in its entirety.
  • the phospholipid may include one or more (poly) unsaturated lipids.
  • a phospholipid of the LNP includes a phospholipid moiety and one or more fatty acid moieties, one or more of which may be unsaturated.
  • the phospholipid moiety may be selected from the non-limiting group consisting of phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl glycerol, phosphatidyl serine, phosphatidic acid, 2-lysophosphatidyl choline, and a sphingomyelin.
  • the fatty acid moiety may be selected from the non-limiting group consisting of lauric acid, myristic acid, myristoleic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, linoleic acid, alpha-linolenic acid, erucic acid, arachidic acid, arachidonic acid, phytanoic acid, eicosapentaenoic acid, behenic acid, docosapentaenoic acid, and docosahexaenoic acid.
  • the phospholipid is selected from the group consisting of 1, 2-dilinoleoyl-sn-glycero-3-phosphocholine (DLPC) , 1, 2-dimyristoyl-sn-glycero-phosphocholine (DMPC) , 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) , 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) , 1, 2-distearoyl-sn-glycero-3-phosphocholine (DSPC) , 1, 2-diundecanoyl-sn-glycero-phosphocholine (DUPC) , 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) , 1, 2-di-O-octadecenyl-sn-glycero-3-phosphocholine (18: 0 Diether PC) , 1-o
  • the LNP comprises a sterol.
  • the sterol is a structural lipid.
  • the sterol is cholesterol fecosterol, sitosterol, campesterol, stigmasterol, brassicasterol, ergosterol, tomatidine, tomatine, ursolic acid, or alpha-tocopherol, or a pharmaceutically acceptable salt thereof.
  • the LNP comprises one or more polymer conjugated lipids, such as PEGylated lipids (PEG lipids) .
  • PEG lipids PEGylated lipids
  • a polymer conjugated lipid component in a nanoparticle composition can improve of colloidal stability and/or reduce protein absorption of the nanoparticles.
  • Exemplary cationic lipids that can be used in connection with the present disclosure include but are not limited to PEG-modified phosphatidylethanolamines, PEG-modified phosphatidic acids, PEG-modified ceramides, PEG-modified dialkylamines, PEG-modified diacylglycerols, PEG-modified dialkylglycerols, and mixtures thereof.
  • a PEG lipid may be PEG-c-DOMG, PEG-DMG, PEG-DLPE, PEG-DMPE, PEG-DPPC, PEG-DSPE, Ceramide-PEG2000, or Chol-PEG2000.
  • the polymer conjugated lipid is a pegylated lipid.
  • some embodiments include a pegylated diacylglycerol (PEG-DAG) such as 1- (monomethoxy-polyethyleneglycol) -2, 3-dimyristoylglycerol (PEG-DMG) , a pegylated phosphatidylethanoloamine (PEG-PE) , a PEG succinate diacylglycerol (PEG-S-DAG) such as 4-O- (2’ , 3’ -di (tetradecanoyloxy) propyl-1-O- ( ⁇ -methoxy (polyethoxy) ethyl) butanedioate (PEG-S-DMG) , a pegylated ceramide (PEG-cer) , or a PEG dialkoxypropylcarbamate such as ⁇ -methoxy (polyethoxy) eth
  • the polymer conjugated lipid is present in a concentration ranging from 1.0 to 2.5 molar percent. In one embodiment, the polymer conjugated lipid is present in a concentration of about 1.7 molar percent. In one embodiment, the polymer conjugated lipid is present in a concentration of about 1.5 molar percent.
  • the molar ratio of cationic lipid to the polymer conjugated lipid ranges from about 35: 1 to about 25: 1. In one embodiment, the molar ratio of cationic lipid to polymer conjugated lipid ranges from about 100: 1 to about 20: 1.
  • the molar ratio of cationic lipid to the polymer conjugated lipid ranges from about 35: 1 to about 25: 1. In one embodiment, the molar ratio of cationic lipid to polymer conjugated lipid ranges from about 100: 1 to about 20: 1.
  • the pegylated lipid has the following Formula:
  • R 12 and R 13 are each independently a straight or branched, saturated or unsaturated alkyl chain containing from 10 to 30 carbon atoms, wherein the alkyl chain is optionally interrupted by one or more ester bonds;
  • w has a mean value ranging from 30 to 60.
  • R 12 and R 13 are each independently straight, saturated alkyl chains containing from 12 to 16 carbon atoms.
  • the average w ranges from 42 to 55, for example, the average w is 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54 or 55. In some specific embodiments, the average w is about 49.
  • the pegylated lipid has the following Formula:
  • Polymer conjugated lipids also include the following Series 05 of lipids (and sub-formulas thereof) .
  • the polymer conjugated lipid is a compound of Formula (05-I) :
  • L is a lipid
  • X is a linker
  • each R 3 is independently H or C 1 -C 6 alkyl
  • each Y 1 is independently a bond, O, S, or NR a ;
  • each G 4 is independently a bond or C 1 -C 12 alkylene, wherein one or more -CH 2 -is independently optionally replaced by -O-, -S-, or -NR a -;
  • each G 5 is independently a bond or C 1 -C 12 alkylene, wherein one or more -CH 2 -is independently optionally replaced by -O-, -S-, or -NR a -;
  • each R a is independently H, C 1 -C 12 alkyl, or C 2 -C 12 alkenyl
  • one of Z 1 and Z 2 is a positively charged moiety and the other of Z 1 and Z 2 is a negatively charged moiety;
  • n is an integer from 2 to 100;
  • each alkyl, alkenyl, alkylene, aryl, and heteroaryl is independently optionally substituted.
  • any embodiment of the compounds provided herein, as set forth above, and any specific substituent and/or variable in the compound provided herein, as set forth above, may be independently combined with other embodiments and/or substituents and/or variables of the compounds to form embodiments not specifically set forth above.
  • substituents and/or variables may be listed for any particular group or variable, it is understood that each individual substituent and/or variable may be deleted from the particular embodiment and/or claim and that the remaining list of substituents and/or variables will be considered to be within the scope of embodiments provided herein.
  • the LNP may comprise one or more additional components.
  • the LNP may comprise one or more small hydrophobic molecules, such as a vitamin (e.g., vitamin A or vitamin E) , permeability enhancer molecules, carbohydrates (e.g., similar sugars or polysaccharides) , polymers, therapeutic agents, surface altering agents, or other components.
  • a polymer may be included in and/or used to encapsulate or partially encapsulate the LNP.
  • a polymer may be biodegradable and/or biocompatible.
  • Therapeutic agents may include, but are not limited to, cytotoxic, chemotherapeutic, and other therapeutic agents.
  • Cytotoxic agents may include, for example, taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, teniposide, vincristine, vinblastine, colchicine, doxorubicin, daunorubicin, dihydroxyanthracinedione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, puromycin, maytansinoids, rachelmycin, and analogs thereof.
  • Radioactive ions may also be used as therapeutic agents and may include, for example, radioactive iodine, strontium, phosphorous, palladium, cesium, iridium, cobalt, yttrium, samarium, and praseodymium.
  • Other therapeutic agents may include, for example, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, and 5-fluorouracil, and decarbazine) , alkylating agents (e.g., mechlorethamine, thiotepa, chlorambucil, rachelmycin, melphalan, carmustine, lomustine, cyclophosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) , and cisplatin) , anthracyclines (e.g., daunorubicin and doxorubicin) , antibiotics (e.g., dactinomycin, bleomycin, mithramycin, and anthramycin) , and anti-mitotic agents (e.g., vincri
  • the pharmaceutical composition and/or LNP comprises a proteinaceous compound capable of providing an additional activation signal for immune effector cells.
  • a proteinaceous compound capable of providing an additional activation signal for immune effector cells.
  • Such compounds may comprise, but are not limited to CD28 engagers, ICOS engagers, 41 BB engagers, OX40 engagers, CD27 engagers, CD30 engagers, NKG2D engagers, IL2-R engagers or IL12-R engagers.
  • the "proteinaceous compounds" providing an activation signal for immune effector cells” may be, e.g. a further primary activation signal, or costimulatory (second) signal or any other accessory (third) activation signal. Examples are a T cell receptor (TCR) or TCR-like signal.
  • Proteinaceous compounds comprise additional bispecific antibodies and fragments or derivatives thereof, e.g., bispecific scFv.
  • Proteinaceous compounds can comprise, but are not limited to, antibody fragments, such as scFv fragments, specific for 4-1BB, OX 40, CD27, CD70 or the receptors for B7-RP1, B7-H3 as well as antibody fragments specific for the TCR or superantigens.
  • Superantigens directly bind to certain subfamilies of TCR variable regions in an MHC-independent manner thus mediating the primary T cell activation signal.
  • the proteinaceous compound may also provide an activation signal for an immune effector cell which is a non-T cell. Examples for immune effector cells which are non-T cells comprise, for example, NK cells.
  • Surface altering agents may include, but are not limited to, anionic proteins (e.g., bovine serum albumin) , surfactants (e.g., cationic surfactants such as dimethyldioctadecyl-ammonium bromide) , sugars or sugar derivatives (e.g., cyclodextrin) , nucleic acids, polymers (e.g., heparin, polyethylene glycol, and poloxamer) , mucolytic agents (e.g., acetylcysteine, mugwort, bromelain, papain, clerodendrum, bromhexine, carbocisteine, eprazinone, mesna, ambroxol, sobrerol, domiodol, letosteine, stepronin, tiopronin, gelsolin, thymosin 134, dornase alfa, neltenexine, and erdosteine
  • an article of manufacture comprising the pharmaceutical compositions provided herein (e.g., a pharmaceutical composition comprising an mRNA comprising a coding sequence encoding a CD19/CD3 bispecific antibody, such as a CD19/CD3 tandem scFv bispecific antibody) .
  • the article of manufacture can comprise a container and a label or package insert on or associated with the container.
  • Suitable containers include, for example, bottles, vials, syringes, etc.
  • the containers may be formed from a variety of materials such as glass or plastic.
  • the container holds a composition, which is effective for treating a cancer, described herein, and may have a sterile access port.
  • Package insert refers to instructions customarily included in commercial packages of therapeutic products that contain information about the indications, usage, dosage, administration, contraindications and/or warnings concerning the use of such therapeutic products.
  • the package insert indicates that the pharmaceutical composition is used for treating a cancer (e.g., B-ALL) .
  • the label or package insert may further comprise instructions for administering the composition to an individual.
  • the article of manufacture may further comprise a second container comprising a pharmaceutically acceptable buffer, such as bacteriostatic water for injection (BWFI) , phosphate-buffered saline, Ringer's solution and dextrose solution. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, and syringes.
  • a pharmaceutically acceptable buffer such as bacteriostatic water for injection (BWFI) , phosphate-buffered saline, Ringer's solution and dextrose solution.
  • Kits comprising a pharmaceutical composition are also provided that are useful for various purposes, e.g., for prevention, treatment, or amelioration of a cancer described herein, for delivery of an mRNA or an antibody to an individual, optionally in combination with the articles of manufacture.
  • Kits of the invention include one or more containers comprising any one of the compositions described herein (or unit dosage form and/or article of manufacture) .
  • the kit further comprises other agents and/or instructions for use in accordance with any of the methods described herein.
  • the kit may further comprise a description of selection of individuals suitable for prevention, treatment, or amelioration of a cancer. Instructions supplied in the kits of the invention may be written instructions on a label or package insert.
  • the kit comprises a pharmaceutical composition comprising an mRNA, wherein the mRNA comprises a coding sequence encoding a bispecific antibody, wherein the bispecific antibody comprises a first antibody moiety specifically recognizing CD19 and a second antibody moiety specifically recognizing CD3.
  • the bispecific antibody is a tandem scFv.
  • kits of the invention are in suitable packaging.
  • suitable packaging includes, but is not limited to, vials, bottles, jars, flexible packaging (e.g., sealed Mylar or plastic bags) , and the like. Kits may optionally provide additional components such as buffers and interpretative information.
  • the present application thus also provides articles of manufacture, which include vials (such as sealed vials) , bottles, jars, flexible packaging, and the like.
  • the containers may be unit doses, bulk packages (e.g., multi-dose packages) or sub-unit doses.
  • Kits may also include multiple unit doses of the pharmaceutical compositions and instructions for use and packaged in quantities sufficient for storage and use in pharmacies, for example, hospital pharmacies and compounding pharmacies.
  • compositions comprising an mRNA comprising a coding sequence encoding a bispecific antibody, such as any of the mRNAs and bispecific antibodies provided herein (e.g., a bispecific single chain antibody construct) , may be used for the prevention, treatment, or amelioration of a disease in an individual.
  • provided herein is a method of preventing, treating, or ameliorating a disease in an individual, comprising administering to the individual a therapeutically effective amount of the pharmaceutical composition provided herein.
  • the administration of the pharmaceutical composition depletes B-cells in the individual.
  • the disease is a proliferative disease, a cancer, such as a minimal residual cancer (e.g., a minimal residual lymphoma or leukemia) , a tumorous disease (e.g., reheumotid arthritis) , an inflammatory disease, an immunological disorder, an autoimmune disease, an infectious disease, a viral disease, an allergic reaction, a parasitic reaction, a graft-versus-host disease, a host-versus-graft diseases, or a B-cell malignancy.
  • the B-cell malignancy is non-Hodgkin lymphoma, B-cell leukemia or Hodgkin lymphoma.
  • the disease is acute lymphoblastic leukemia (ALL) .
  • the ALL is B-cell ALL (B-ALL) .
  • the individual is a mammal (e.g., human, non-human primate, rat, mouse, cow, horse, pig, sheep, goat, dog, cat, etc. ) .
  • the individual is a human.
  • the individual is a clinical patient, a clinical trial volunteer, an experimental animal, etc.
  • the individual is younger than about 60 years old (including for example younger than about any of 50, 40, 30, 25, 20, 15, or 10 years old) .
  • the individual is older than about 60 years old (including for example older than about any of 70, 80, 90, or 100 years old) .
  • the individual is suspected of having the disease (e.g., cancer) .
  • the individual is diagnosed with the disease (e.g., cancer) .
  • the individual is diagnosed with ALL, such as B-ALL.
  • a method of treating a disease in an individual comprising administering to the individual a therapeutically effective amount of a pharmaceutical composition comprising an mRNA, wherein the mRNA comprises a coding sequence encoding a bispecific antibody, wherein the bispecific antibody comprises a first antibody moiety specifically recognizing CD19 and a second antibody moiety specifically recognizing CD3.
  • the bispecific antibody is a tandem scFv, wherein the first antibody moiety specifically recognizing CD19 is an anti-CD19 scFv (such as any of the anti-CD19 scFvs described herein) and the second antibody moiety specifically recognizing CD3 is an anti-CD3 scFv (such as any of the anti-CD3 scFvs described herein) .
  • the coding sequence encodes a bispecific antibody comprising an amino acid sequence set forth in SEQ ID NO: 14.
  • the coding sequence comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 15 and 39-49.
  • the mRNA comprises a nucleic acid sequence encoding a signal peptide.
  • the mRNA comprises a 5’ UTR.
  • the 5’ UTR is synthetic (e.g., UTR32 or a 28M mutant) , from Xenopus globin, or from ZX.
  • the mRNA comprises a 3’ UTR.
  • the 3’ UTR is synthetic (e.g., 28M) , from Homo sapiens hemoglobin, or from ZX.
  • the mRNA comprises a poly (A) sequence.
  • the mRNA comprises a chemical modification.
  • the mRNA comprises a 5’ cap.
  • the disease is cancer.
  • the disease is acute lymphoblastic leukemia (ALL) .
  • the ALL is B-cell ALL (B-ALL) .
  • the pharmaceutical composition e.g., the antibody or the mRNA
  • the pharmaceutical composition is delivered to a somatic cell of the individual.
  • the bispecific antibody is a tandem scFv, wherein the first antibody moiety specifically recognizing CD19 is an anti-CD19 scFv (such as any of the anti-CD19 scFvs described herein) and the second antibody moiety specifically recognizing CD3 is an anti-CD3 scFv (such as any of the anti-CD3 scFvs described herein) .
  • the coding sequence encodes a bispecific antibody comprising an amino acid sequence set forth in SEQ ID NO: 14. In some embodiments, the coding sequence comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 15 and 39-49. In some embodiments, the mRNA comprises a nucleic acid sequence encoding a signal peptide. In some embodiments, the mRNA comprises a 5’ UTR. In some embodiments, the 5’ UTR is synthetic (e.g., UTR32 or a 28M mutant) , from Xenopus globin, or from ZX. In some embodiments, the mRNA comprises a 3’ UTR.
  • the 3’ UTR is synthetic (e.g., 28M) , from Homo sapiens hemoglobin, or from ZX.
  • the mRNA comprises a poly (A) sequence.
  • the mRNA comprises a chemical modification.
  • the mRNA comprises a 5’ cap.
  • the individual has a disease or is suspected of having a disease.
  • the disease is cancer.
  • the disease is acute lymphoblastic leukemia (ALL) .
  • ALL is B-cell ALL (B-ALL) .
  • the pharmaceutical composition is administered locally to a tumor. In some embodiments, the pharmaceutical composition is administered systemically. In some embodiments, the pharmaceutical composition is administered via intravenous injection. In some embodiments, the pharmaceutical composition is administered via intraperitoneal injection.
  • the pharmaceutical composition is administered at a dose of between about 3 ⁇ g/dose and about 2000 ⁇ g/dose, such as between about 3 ⁇ g/dose and about 100 ⁇ g/dose, between about 50 ⁇ g/dose and about 500 ⁇ g/dose, between about 250 ⁇ g/dose and about 1000 ⁇ g/dose, between about 500 ⁇ g/dose and about 1000 ⁇ g/dose, or between about 1000 ⁇ g/dose and about 2000 ⁇ g/dose.
  • the pharmaceutical composition is administered to the individual weekly (e.g., once per week) .
  • the pharmaceutical composition is administered to the individual for no more than about 54 weeks, such as no more than any of about 52 weeks, 50 weeks, 45 weeks, 40 weeks, 35 weeks, 30 weeks, 25 weeks, 20 weeks, 15 weeks, 10 weeks, 5 weeks, or less.
  • the pharmaceutical composition is administered to the individual weekly for no more than about 54 weeks.
  • compositions to be used for in vivo administration must be sterile. This is readily accomplished by, e.g., filtration through sterile filtration membranes.
  • the pharmaceutical composition of the present application is administered as a single agent, or in combination with a second, third, or fourth agent (including, e.g., anti-viral drugs, convalescent plasma, anti-inflammatory drugs, etc. ) to prevent, treat, or ameliorate the disease.
  • a second, third, or fourth agent including, e.g., anti-viral drugs, convalescent plasma, anti-inflammatory drugs, etc.
  • Efficacy of the treatments can be evaluated, for example, by evaluation of the number of cancer cells, tumor size or volume, the amount of tumor in the individual (e.g., tumor load) , duration of survival of the individual, quality of life of the individual, bispecific antibody expression and/or activity, detection of serological antibodies against the cancer, and/or Computerized Tomography (CT) imaging.
  • CT Computerized Tomography
  • the mRNAs described herein can be synthesized by methods known in the art, for example, through in vitro transcription of an appropriate DNA template.
  • the promoter for controlling transcription can be any promoter for any RNA polymerase.
  • a DNA template for in vitro transcription can be obtained, for example, by cloning of a nucleic acid, in particular cDNA, and introducing it into an appropriate vector for in vitro transcription.
  • the RNA may have modified nucleosides, including, for example, pseudouridine, 1-methylpseudouridine.
  • Embodiment 1 A pharmaceutical composition comprising a messenger ribonucleic acid (mRNA) , wherein the mRNA comprises a coding sequence encoding a bispecific antibody, wherein the bispecific antibody comprises a first antibody moiety specifically recognizing CD19 and a second antibody moiety specifically recognizing CD3.
  • mRNA messenger ribonucleic acid
  • Embodiment 2 The pharmaceutical composition of embodiment 1, wherein the first antibody moiety specifically recognizing CD19 comprises an amino acid sequence set forth in SEQ ID NO: 16, or an amino acid sequence comprising at least about 80%sequence identity to the amino acid sequence set forth in SEQ ID NO: 16.
  • Embodiment 3 The pharmaceutical composition of embodiment 1 or embodiment 2, wherein the portion of the coding sequence encoding the first antibody moiety specifically recognizing CD19 comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 17 and 50-60, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in any one of SEQ ID NOs: 17 and 50-60.
  • Embodiment 4 The pharmaceutical composition of any one of embodiments 1-3, wherein the second antibody moiety specifically recognizing CD3 comprises an amino acid sequence set forth in SEQ ID NO: 18, or an amino acid sequence comprising at least about 80%sequence identity to the amino acid sequence set forth SEQ ID NO: 18.
  • Embodiment 5 The pharmaceutical composition of any one of embodiments 1-4, wherein the portion of the coding sequence encoding the second antibody moiety specifically recognizing CD3 comprises the nucleic acid sequence set forth in any one of SEQ ID NOs: 19 and 61-71, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in any one of SEQ ID NOs: 19 and 61-71.
  • Embodiment 6 The pharmaceutical composition of any one of embodiments 1-5, wherein the coding sequence encodes an amino acid sequence set forth in SEQ ID NO: 14, or an amino acid sequence comprising at least about 80%sequence identity to the amino acid sequence set forth in SEQ ID NO: 14.
  • Embodiment 7 The pharmaceutical composition of any one of embodiments 1-6, wherein the coding sequence comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 15 and 39-49, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in any one of SEQ ID NOs: 15 and 39-49.
  • Embodiment 8 The pharmaceutical composition of any one of embodiments 1-7, wherein the mRNA comprises a nucleic acid sequence encoding a signal peptide.
  • Embodiment 9 The pharmaceutical composition of embodiment 8, wherein the nucleic acid sequence encoding the signal peptide is at the 5’ end of the coding sequence of the mRNA.
  • Embodiment 10 The pharmaceutical composition of embodiment 8 or embodiment 9, wherein the nucleic acid sequence encoding the signal peptide comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 11-13, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in any one of SEQ ID NOs: 11-13.
  • Embodiment 11 The pharmaceutical composition of any one of embodiments 8-10, wherein the signal peptide comprises an amino acid sequence set forth in any one of SEQ ID NOs: 8-10, or an amino acid sequence comprising at least about 80%sequence identity to the amino acid sequence set forth in any one of SEQ ID NOs: 8-10.
  • Embodiment 12 The pharmaceutical composition of any one of embodiments 1-11, wherein the mRNA comprises a 5’ untranslated region (UTR) .
  • UTR untranslated region
  • Embodiment 13 The pharmaceutical composition of embodiment 12, wherein the 5’ UTR is from Xenopus globin.
  • Embodiment 14 The pharmaceutical composition of embodiment 12 or embodiment 13, wherein the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 1, or a nucleic acid sequence comprising at least about 80%sequence identity the nucleic acid sequence set forth in SEQ ID NO: 1.
  • Embodiment 15 The pharmaceutical composition of embodiment 12, wherein the 5’ UTR is synthetic.
  • Embodiment 16 The pharmaceutical composition of embodiment 12 or embodiment 15, wherein the 5’ UTR is UTR32.
  • Embodiment 17 The pharmaceutical composition of any one of embodiments 12, 15, and 16, wherein the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 2, or a nucleic acid sequence comprising at least about 80%sequence identity the nucleic acid sequence set forth in SEQ ID NO: 2.
  • Embodiment 18 The pharmaceutical composition of embodiment 12 or embodiment 13, wherein the 5’ UTR is a 28M mutant.
  • Embodiment 19 The pharmaceutical composition of any one of embodiments 12, 13, and 18, wherein the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 3, or a nucleic acid sequence comprising at least about 80%sequence identity the nucleic acid sequence set forth in SEQ ID NO: 3.
  • Embodiment 20 The pharmaceutical composition of embodiment 12, wherein the 5’ UTR is from ZX.
  • Embodiment 21 The pharmaceutical composition of embodiment 12 or embodiment 20, wherein the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 4, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 4.
  • Embodiment 22 The pharmaceutical composition of any one of embodiments 1-21, wherein the mRNA comprises a 3’ UTR.
  • Embodiment 23 The pharmaceutical composition of embodiment 22, wherein the 3’ UTR is from Homo sapiens hemoglobin.
  • Embodiment 24 The pharmaceutical composition of embodiment 22 or embodiment 23, wherein the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 5, or a nucleic acid sequence comprising at least about 80%sequence identity the nucleic acid sequence set forth in SEQ ID NO: 5.
  • Embodiment 25 The pharmaceutical composition of embodiment 22, wherein the 3’ UTR is synthetic.
  • Embodiment 26 The pharmaceutical composition of embodiment 22 or embodiment 25, wherein the 3’ UTR is 28M.
  • Embodiment 27 The pharmaceutical composition of any one of embodiments 22, 25, and 26, wherein the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 6, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 6.
  • Embodiment 28 The pharmaceutical composition of embodiment 22, wherein the 3’ UTR is from ZX.
  • Embodiment 29 The pharmaceutical composition of embodiment 22 or embodiment 28, wherein the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 7, or a nucleic acid sequence at least comprising about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 7.
  • Embodiment 30 The pharmaceutical composition of any one of embodiments 1-29, wherein the mRNA comprises:
  • Embodiment 31 The pharmaceutical composition of any one of embodiments 1-30, wherein the mRNA comprises:
  • a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 1, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 1, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 5, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 5;
  • a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 1, or a nucleic acid sequence comprising at least about 80%sequence identity to SEQ ID NO: 1, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 6, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 6;
  • a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 1, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 1, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 7, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 7;
  • a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 2, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 2, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 5, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 5;
  • a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 2, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 2, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 6, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 6;
  • a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 2, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 2, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 7, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 7;
  • a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 3, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 3, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 5, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 5;
  • a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 4, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 4, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 5, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 5;
  • a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 4, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 4, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 6, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 6; or,
  • a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 4, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 4, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 7, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 7.
  • Embodiment 32 The pharmaceutical composition of any one of embodiments 1-31, wherein the portion of the coding sequence encoding the first antibody moiety specifically recognizing CD19 comprises a nucleic acid sequence comprising at least about 80%sequence identity to nucleotides 1-750 of any one of SEQ ID NOs: 15 and 39-49.
  • Embodiment 33 The pharmaceutical composition of any one of embodiments 1-32, wherein the portion of the coding sequence encoding the second antibody moiety specifically recognizing CD3 comprises a nucleic acid sequence comprising at least about 80%sequence identity to nucleotides 766-1, 494 of any one of SEQ ID NOs: 15 and 39-49.
  • Embodiment 34 The pharmaceutical composition of any one of embodiments 1-33, wherein the portion of the coding sequence encoding a linker comprises a nucleic acid sequence comprising at least about 80%identity to 751-765 of any one of SEQ ID NOs: 15 and 39-49.
  • Embodiment 35 The pharmaceutical composition of any one of embodiments 1-34, wherein the mRNA comprises a poly (A) sequence.
  • Embodiment 36 The pharmaceutical composition of embodiment 35, wherein the poly (A) sequence has a length of about 50 nucleotides or longer.
  • Embodiment 37 The pharmaceutical composition of any one of embodiments 1-36, wherein the mRNA comprises a chemical modification.
  • Embodiment 38 The pharmaceutical composition of any one of embodiments 1-37, wherein the mRNA comprises a 5’ cap.
  • Embodiment 39 The pharmaceutical composition of any one of embodiments 1-38, wherein the pharmaceutical composition comprises a lipid nanoparticle (LNP) .
  • LNP lipid nanoparticle
  • Embodiment 40 The pharmaceutical composition of embodiment 39, wherein the mRNA is formulated in the LNP.
  • Embodiment 41 The pharmaceutical composition of embodiment 39 or embodiment 40, wherein the LNP comprises a cationic lipid.
  • Embodiment 42 The pharmaceutical composition of embodiment 41, wherein the cationic lipid is according to Formula 01-I or Formula 01-II, a compound listed in Table 01-1, a compound according to Formula 02-I, a compound listed in Table 02-1, a compound according to Formula 03-I, a compound listed in Table 03-1, a compound according to Formula 04-I, or a compound listed in Table 04-1.
  • Embodiment 43 The pharmaceutical composition of any one of embodiments 39-42, wherein the LNP comprises a phospholipid.
  • Embodiment 44 The pharmaceutical composition of any one of embodiments 39-43, wherein the LNP comprises a sterol.
  • Embodiment 45 The pharmaceutical composition of any one of embodiments 39-44, wherein the LNP comprises a polymer conjugated lipid.
  • Embodiment 46 The pharmaceutical composition of embodiment 45, wherein the polymer conjugated lipid is according to Formula 05-I.
  • Embodiment 47 The pharmaceutical composition of any one of embodiments 39-46, wherein the LNP comprises a cationic lipid, a phospholipid, a sterol, and a polymer conjugated lipid.
  • Embodiment 48 The pharmaceutical composition of embodiment 47, wherein the LNP comprises a total lipid to mRNA weight ratio of about 10: 1 to about 30: 1.
  • Embodiment 49 The pharmaceutical composition of any one of embodiments 39-48, wherein the LNP comprises:
  • Embodiment 50 A method of treating a disease in an individual, comprising administering to the individual a therapeutically effective amount of the pharmaceutical composition of any of one of embodiments 1-47.
  • Embodiment 51 The method of embodiment 50, wherein the disease is cancer.
  • Embodiment 52 The method of embodiment 51, wherein the cancer is acute lymphoblastic leukemia (ALL) .
  • ALL acute lymphoblastic leukemia
  • Embodiment 53 The method of embodiment 52, wherein the ALL is B-cell ALL (B-ALL) .
  • Embodiment 54 A method of delivering an antibody to an individual, comprising administering to the individual a therapeutically effective amount of the pharmaceutical composition of any one of embodiments 1-49.
  • Embodiment 55 The method of any of embodiments 50-54, wherein the pharmaceutical composition is administered locally to a tumor.
  • Embodiment 56 The method of any of embodiments 50-54, wherein the pharmaceutical composition is administered systemically, via intravenous injection, or via intraperitoneal injection.
  • Embodiment 57 A method of delivering an mRNA to an individual, comprising administering to the individual a therapeutically effective amount of the pharmaceutical composition of any one of embodiments 1-46 to a somatic cell of the individual.
  • Embodiment 58 The method of any one of embodiments 50-56, wherein the pharmaceutical composition is administered at a dose of between about 3 ⁇ g/dose and about 2000 ⁇ g/dose.
  • Embodiment 59 The method of any one of embodiments 50-58, wherein the pharmaceutical composition is administered to the individual weekly.
  • Embodiment 60 The method of any one of embodiments 50-59, wherein the pharmaceutical composition is administered to the individual for no more than 54 weeks.
  • HPLC purification is carried out on an Waters 2767 equipped with a diode array detector (DAD) on an Inertsil Pre-C8 OBD column, generally with water containing 0.1%TFA as solvent A and acetonitrile as solvent B.
  • DAD diode array detector
  • LCMS analysis is conducted on a Shimadzu (LC-MS2020) System. Chromatography is performed on a SunFire C18, generally with water containing 0.1%formic acid as solvent A and acetonitrile containing 0.1%formic acid as solvent B.
  • Example 02-1 Preparation of Compound 02-1 (i.e. Compound 1 in the following scheme) .
  • Example 02-2 Preparation of Compound 02-2 (i.e. Compound 2 in the following scheme) .
  • Example 02-3 Preparation of Compound 02-4 (i.e. Compound 4 in the following scheme) .
  • Example 02-4 Preparation of Compound 02-9 (i.e. Compound 9 in the following scheme) .
  • Example 02-5 Preparation of Compound 02-10 (i.e. Compound 10 in the following scheme) .
  • Example 02-6 Preparation of Compound 02-12 (i.e. Compound 12 in the following scheme) .
  • Example 02-7 Preparation of Compound 02-20 (i.e. Compound 20 in the following scheme) .
  • Example 04-2 Preparation of Compound 04-1 (i.e. Compound 1 in the following scheme) .
  • Example 04-3 Preparation of Compound 04-2 (i.e. Compound 2 in the following scheme) .
  • Example 04-4 Preparation of Compound 04-7 (i.e. Compound 7 in the following scheme) .
  • Example 04-5 Preparation of Compound 04-8 (i.e. Compound 8 in the following scheme) .
  • Example 04-6 Preparation of Compound 04-65 (i.e. Compound 65 in the following scheme) .
  • Example 04-7 Preparation of Compound 04-68 (i.e. Compound 68 in the following scheme) .
  • Example 04-8 Preparation of Compound 04-69 (i.e. Compound 69 in the following scheme) .
  • cationic lipid e.g. compound 01-1, compound 02-1, compound 02-3, compound03-135, compound 03-208
  • DSPC cationic lipid
  • cholesterol lipid
  • DSPC e.g. compound 01-1, compound 02-1, compound 02-3, compound03-135, compound 03-208
  • cholesterol lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid-lipid
  • Lipid nanoparticle size was determined by dynamic light scattering using a Malvern Zetasizer Nano ZS (Malvern UK) using a 173 o backscatter detection mode.
  • the encapsulation efficiency of lipid nanoparticles was determined using a Quant-it Ribogreen RNA quantification assay kit (Thermo Fisher Scientific, UK) according to the manufacturer’s instructions.
  • LNP formulations correlates with the delivery efficiency of LNPs for nucleic acids in vivo.
  • the apparent pKa of each formulation was determined using an assay based on fluorescence of 2- (p-toluidino) -6-napthalene sulfonic acid (TNS) .
  • LNP formulations comprising of cationic lipid /DSPC /cholesterol /DMG-PEG (50 /10 /38.5/1.5 mol %) in PBS were prepared as described above.
  • TNS was prepared as a 300uM stock solution in distilled water.
  • LNP formulations were diluted to 0.1mg/ml total lipid in 3 mL of buffered solutions containing 50 mM sodium citrate, 50 mM sodium phosphate, 50 mM sodium borate, and 30mM sodium chloride where the pH ranged from 3 to 9.
  • An aliquot of the TNS solution was added to give a final concentration of 0.1mg/ml and following vortex mixing fluorescence intensity was measured at room temperature in a Molecular Devices Spectramax iD3 spectrometer using excitation and mission wavelengths of 325 nm and 435 nm.
  • a sigmoidal best fit analysis was applied to the fluorescence data and the pKa value was measured as the pH giving rise to half –maximal fluorescent intensity.
  • Example 3 mRNA synthesis and purification.
  • Plasmid for IVT Plasmid for IVT, pJ241 (developed in house, containing a kanamycin resistance gene, a T7 promoter sequence and a unique type-IIS restriction site downstream of poly (A) sequence) , containing nucleotide sequence encoding blinatumomab, and a signal peptide, 5’ -UTR and 3’ -UTR and polyA signal is linearized with the type-IIS restriction enzyme digestion. Every 10 ⁇ g of plasmid is mixed with 10 U of Esp3I/BsmBI, incubated at 37°Cfor 4 hours to ensure complete linearization.
  • the reaction is terminated by adding 1/10th volume of 3 M Na acetate (pH 5.5) and 2.5 volumes of ethanol, mixed well and chilled at -20°C for 1 hour.
  • Linearized DNA is precipitated by centrifugation at 13800 g for 15 minutes at 4°C, washed twice with 70%ethanol, resuspended in nuclease-free H 2 O.
  • the reaction mixture is incubated at 37°C for 6 hours followed by addition of 1 ⁇ l of DNase I (RNase-free, 1 U/ ⁇ L) to remove the DNA template, incubated for 30 minutes at 37°C.
  • the synthesized RNA is purified by adding 0.5 volume of 7.5 M LiCl, 50 mM EDTA and incubating at -20°C for 45 minutes, followed by centrifugation at 4°C for 15 minutes at 13800 g to pellet the mRNA. Then the supernatant is removed and the pellet is rinsed twice with 500 ⁇ L of ice cold 70%ethanol, mRNA is resuspended in nuclease-free H2O, adjusted concentration to 1 mg/mL, and stored at -20°C.
  • mRNA Capping Each 10 ⁇ g uncapped mRNA is heated at 65°C for 10 minutes, placed on ice for 5 minutes, and mixed with 10 U Vaccinia Capping Enzyme, 50 U mRNA Cap 2′-O-Methyltransferase, 0.2 mM SAM, 0.5 mM GTP and 1 U RNase inhibitor, and incubated at 37°Cfor 60 minutes to generate cap1 modification structure.
  • the modified mRNA is precipitated by LiCl as previously described and the RNA is resuspended in nuclease-free H 2 O, and stored at -20°C.
  • RNA is purified by high performance liquid chromatography (HPLC) using a C4 column (5 ⁇ m) (10 mm ⁇ 250 mm column) .
  • TEAA triethylammonium acetate
  • RNA molecules encoding the Omicron S protein RBD were successfully produced by the in vitro transcription and maturation processes described above and were purified from the reaction system using HPLC.
  • Example 4 Design of mRNA sequences encoding CD19/CD3 bispecific antibodies and preparation of lipid nanoparticles (LNPs) comprising the same
  • This example demonstrates the preparation of mRNA sequences comprising a coding sequence encoding a bispecific antibody, wherein the bispecific antibody comprises a first antibody moiety specifically recognizing CD19 and a second antibody moiety specifically recognizing CD3 (e.g., a CD19/CD3 bispecific antibody) .
  • the resulting CD19/CD3 bispecific antibody was formulated in lipid nanoparticles (LNPs) for use in in vivo experiments.
  • mRNA sequences were designed to comprise a coding sequence encoding the amino acid sequence of blinatumomab (e.g., the amino acid sequence set forth in SEQ ID NO: 14) , an anti-CD19/CD3 bispecific antibody.
  • the coding sequence encoding the amino acid sequence of the CD19/CD3 bispecific antibody comprises the nucleic acid sequence set forth in any one of SEQ ID NOs: 15 and 39-49.
  • mRNA sequences also included each of the following features: a) a 5’ UTR, selected from a Xenopus globin 5’ UTR (SEQ ID NO: 1) , UTR32 (SEQ ID NO: 2) , a 28M mutant 5’ UTR (SEQ ID NO: 3) , and a ZX 5’ UTR (SEQ ID NO: 4) ; b) a nucleic acid sequence encoding a signal peptide, selected from the sequences set forth in any one of SEQ ID NOs: 11-13; c) a nucleic acid sequence encoding a His 6 tag, SEQ ID NO: 76; c) a 3’ UTR, selected from a Homo sapiens hemoglobin 3’ UTR (SEQ ID NO: 5) , a 28M 3’ UTR (SEQ ID NO: 6) , and a ZX 3’ UTR (SEQ ID NO: 7) ; and, d) a poly (A) sequence (SEQ ID
  • the mRNA sequences comprise, from 5’ to 3’ : 5’ UTR-a nucleic acid sequence encoding a signal peptide-a nucleic acid sequence encoding a CD19/CD3 bispecific antibody-a nucleic acid sequence encoding a His 6 tag-3’ UTR--a poly (A) sequence.
  • the mRNAs were generated from DNA templates with a T7 promoter by in vitro transcription as described in Example 3. Each candidate mRNA sequence is shown in Table 2.
  • Each of the mRNAs from Table 2 were formulated into LNPs for use in in vivo assays according to methods described in Example 2.
  • Example 4 demonstrates the that mRNAs designed in Example 4 efficiently express CD19/CD3 bispecific antibodies in vitro.
  • HEK293T and AML-12 cells were transfected with each individual mRNA. Briefly, HEK293T and AML-12 cells were inoculated into 24-well plates with a 1 mL cell suspension per well (cell culture medium: Dulbecco's Modified Eagle Medium (DMEM) (Gibco TM , Cat#11995065) + 10%fetal bovine serum (FBS) (Gibco TM , Cat#10099141C) .
  • DMEM Dulbecco's Modified Eagle Medium
  • FBS fetal bovine serum
  • ELISA enzyme-linked immunosorbent assay
  • 96-well microtiter plates (Thermo Fisher Scientific TM , Cat#468667) were coated overnight at 4°Cwith recombinant CD19 protein (Acro, Cat#CD9-H5251) .
  • Coated plates were washed three times with 1X Phosphate Buffered Saline (PBS) with Tween 20 (PBST) and blocked with 5%bovine serum albumin (BSA) (Sigma, Cat#B2064-100G) for 1 hour at 37°C, and then washed three times with 1X PBST.
  • PBS Phosphate Buffered Saline
  • PBST Tween 20
  • BSA 5%bovine serum albumin
  • HRP horseradish peroxidase
  • TMB 5′-Tetramethylbenzidine
  • the mRNAs shown in Table 2 comprising a coding sequence encoding a CD19/CD3 bispecific antibody were expressed at various levels in HEK293T cells. Based on the expression levels and druggability, seven mRNA candidates were selected for further tests: mRNA1, mRNA2, mRNA3, mRNA4, mRNA5, mRNA6, and mRNA16. As shown in FIG. 1B, the expression of each of these seven mRNAs is higher in both HEK293T cells and AML-12 cells compared to the control group (NST, a non-translated mRNA) , and expression of each of these seven mRNAs is higher in HEK293T cells compared to AML-12 cells.
  • NST a non-translated mRNA
  • mRNAs comprising a coding sequence encoding a CD19/CD3 bispecific antibody were evaluated for T cell specific activation, T cell non-specific activation, and tumor cell-specific killing in vitro.
  • This example demonstrates that the CD19/CD3 bispecific antibody encoded by mRNA1 exemplary mRNA (cell culture supernatant of HEK293T cells transfected with mRNA1 with an antibody concentration of 1466.5 ng/mL measured by ELISA as described in Example 5) has similar in vitro activities as the recombinant antibody blinatumomab.
  • peripheral blood mononuclear cells (PBMCs) (Sailybio, Cat#XFB-hP010B) as a source of CD3+ effector T cells were mixed with target Nalm6 cells (a B cell precursor leukemia cell line with surface expression of CD19) in logarithmic growth phase at an effector/target cell ratio of 5: 1.50 ⁇ L of recombinant antibody blinatumomab or antibody expressed from mRNA1, with concentrations ranging from 1x10 -5 ng/mL to 10 ng/mL, was added to the cells.
  • target Nalm6 cells a B cell precursor leukemia cell line with surface expression of CD19
  • T cell activation detection antibodies (PerCP-Cy5.5 hCD4 (BioGems TM , Cat#06111-70-100) ; AF700 hCD8 (biolegend TM , Cat#344724) ; APC hCD25 (biolegend TM , Cat#302610) ; and, FITC hCD69 (biolegend TM , Cat#310904) were added and incubated at 4°C for 30 minutes, after which the supernatant was discarded. 100 ⁇ L of Prodidium Iodide (PI) (BD, Cat#550825) was added to each well and incubated for 5 minutes. T cell specific activation was detected by flow cytometry (FIG. 2A) .
  • PI Prodidium Iodide
  • T cell specific activation protocol was performed with slight modifications. Specifically, the concentration of the recombinant antibody blinatumomab and CD19/CD3 bispecific antibody expressed from mRNA1 was 10 ng/mL. T cell non-specific activation was detected by flow cytometry (FIG. 2B) .
  • target cells (Nalm6-GFP) (Shanghai Jibei Biotechnology Co., Ltd. ) were labeled with PKH26 (Sigma, Cat#SI-MINI26, ) and carboxyfluorescein succinimidyl ester (CFSE) (Invitrogen TM , Cat#C34554) , and using K562 cell as negative control.
  • PKH26 Sigma, Cat#SI-MINI26, )
  • CFSE carboxyfluorescein succinimidyl ester
  • 2x10 6 target or negative control cells were suspended in 50 ⁇ L Diluent-C solution and mixed with 50 ⁇ L of 5 ⁇ M PKH26 (in Diluent-C) for 6 minutes and then incubated with 100 ⁇ L heat-inactivated fetal bovine serum (FBS) (Gibco TM , Cat#10099141C) for 1 minute. Cells were then pelleted by centrifugation at 400 x g for 5 minutes, washed once with 1 mL PBS (Gibco TM , Cat#10010049) , and suspended in 400 ⁇ L PBS.
  • FBS heat-inactivated fetal bovine serum
  • PBMCs (Sailybio, Cat#XFB-hP010B) and target cells were adjusted to the appropriate concentration (PBMCs: 1x10 5 , target cells 1x10 4 ) using RPMI-1640. Proteins were diluted by doubling in RPMI-1640 complete medium to final concentrations of 6.4, 1.6, 0.4, 0.1, 0.25, 0.00625, and 0.0015625 ng/mL.
  • the CD19/CD3 bispecific antibody expressed from mRNA1 activated CD69+/CD8+ and CD25+/CD4+ T cells comparably with the recombinant antibody blinatumomab.
  • the CD19/CD3 bispecific antibody expressed from mRNA1 induced T cell non-specific activation comparably with the recombinant antibody blinatumomab (FIG. 2B) .
  • CD19/CD3 bispecific antibody expressed from mRNA e.g., mRNA1 comprising a Xenopus globin 5’ UTR (SEQ ID NO: 1) , a nucleic acid sequence encoding a signal peptide (SEQ ID NO: 11) , a nucleic acid sequence encoding blinatumomab (SEQ ID NO: 15) a Homo sapiens hemoglobin 3’ UTR (SEQ ID NO: 5) , and a poly (A) sequence) and the recombinant antibody blinatumomab have similar biological activity in vitro.
  • mRNA e.g., mRNA1 comprising a Xenopus globin 5’ UTR (SEQ ID NO: 1) , a nucleic acid sequence encoding a signal peptide (SEQ ID NO: 11) , a nucleic acid sequence encoding blinatumomab (SEQ ID NO: 15) a Homo
  • Example 7 Expression and efficacy of mRNAs encoding CD19/CD3 bispecific antibodies in vivo
  • mRNAs comprising a coding sequence encoding a CD19/CD3 bispecific antibody express the CD19/CD3 bispecific antibody when formulated in LNPs in vivo, and have improved efficacy for treating B-lymphoid leukemia compared to the recombinant antibody blinatumomab.
  • mRNA1, mRNA2, mRNA3, mRNA4, mRNA5, mRNA6, and mRNA16 was evaluated.
  • NOD/SCID female mice aged 6-8 weeks were randomly divided into a control group (NST group) and an experimental group (mRNA-LNP group) with 5-10 mice in each group.
  • the seven mRNAs were individually formulated into LNPs comprising a cationic lipid selected from compound 01-1, compound 02-1, compound 02-3, compound 03-135, compound 03-208 as described in Example 3. Prior to dosing, mouse serum was collected as blank serum.
  • the drug concentration was adjusted and 200 ⁇ L LNP comprising mRNA was administered into the tail vein of each mouse. Serum was collected at 6 hours, 24 hours, 48 hours, 72 hours, 120 hours, and 168 hours after administration, and then stored at -80°C until testing.
  • mRNA1 One candidate mRNA (mRNA1) was selected for formulation in LNPs comprising different cationic lipids (compound 01-1, compound 03-135, compound 03-208, compound 02-1, and compound 02-3) , and evaluated for expression in NOD/SCID mice. As shown in FIG. 3B, each LNP comprising different cationic lipids expressed the CD19/CD3 bispecific antibody in vivo.
  • the transfer was subsequently blocked using blocking solution (Beyotime, Cat#P0252) at 37°C for 1 hour, followed by proportional dilution of the Horseradish peroxidase (HRP) -conjugated His-Tag antibody (SinoBiological, Cat#105327-MM02T-H) with secondary antibody diluent (Beyotime, Cat#P0258) , and was incubated overnight at 4°C. After incubation, 0.05%PBST (10X PBS buffer (Solarbio TM , Cat#P1022) ; Tween 20 (SINOPHARM, Cat#30189328) was used to wash the membrane three times, and ECL luminescence solution (GE TM , Ca#tRPN2232) was added.
  • HRP Horseradish peroxidase
  • Nalm6 PBMC humanized mice In vivo efficacy of mRNAs comprising a coding sequence encoding CD19/CD3 bispecific antibodies was tested in Nalm6 PBMC humanized mice.
  • the Nalm6-luc B lymphocytic leukemia cell model was established by injecting 1x10 7 PBMCs into M-NSG immunodeficient mice (Shanghai Model Organisms Center, Inc. ) via tail vein on day -2, and injecting 1x10 6 Nalm6- luc cells (Shanghai Jibei Biotechnology Co., Ltd. ) via the tail vein on day 0.
  • mice On day 0 after inoculation, the tumor-bearing mice were divided into groups by randomized block method according to Flux values, and mRNA1 formulated in LNPs (compound 01-1 as a cationic lipid) and recombinant antibody blinatumomab were administered via the tail vein into the respective groups of mice.
  • the signal size of tumor Flux value was measured regularly, and the tumor growth inhibition rate (TGI) was calculated.
  • TGI tumor growth inhibition rate
  • mice treated with a single isodose of mRNA1 formulated in LNPs showed reduced tumor sizes compared to mice in the NST group or mice treated with three consecutive recombinant protein administrations.
  • mRNA1 exemplary shows high efficacy in vivo.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Provided are pharmaceutical compositions comprising a messenger ribonucleic acid (mRNA) encoding a CD19/CD3 bispecific antibody, and lipid nanoparticles comprising the same. Also provided are methods of treating a disease, such as cancer, using the pharmaceutical compositions provided herein.

Description

POLYNUCLEOTIDES ENCODING CD19/CD3 BISPECIFIC ANTIBODIES
CROSS REFERENCE TO RELATED APPLICATIONS
The present application claims priority to International Patent Application No. PCT/CN2022/140722 entitled “POLYNUCLEOTIDES ENCODING CD19/CD3 BISPECIFIC ANTIBODIES” filed December 21, 2022, the entire contents of which is incorporated herein by reference in its entirety.
FIELD
The invention relates to compositions comprising mRNA encoded CD19/CD3 bispecific antibodies, and methods of using the same.
BACKGROUND
Immunotherapy is considered to be one of the most promising treatments for systemic tumors. In particular, monoclonal antibodies are effective cancer therapies because of their ability to specifically target molecules. However, due to the complex disease pathogenesis of tumors, monoclonal antibodies directed against a single target are often therapeutically insufficient. Therefore, bispecific antibodies directed against multiple targets have been increasingly utilized in the field of cancer immunotherapy.
A few bispecific antibodies against hematological tumors are currently available. However, such bispecific antibodies have disadvantages in both production and application. For example, the bispecific antibodies often require a complex protein preparation process which requires cell culture and column chromatography. Quality control is challenging, and process scale-up is both costly and time-consuming. Moreover, clinical application of bispecific antibodies may be limited by poor pharmacokinetics, which results in a narrow therapeutic window and the need for high-frequency and low-dose administration.
Blinatumomab is a bispecific CD19-directed CD3 T-cell engager antibody, and has a tandem scFv structure. Compared to bispecific antibodies having an Fc structure, blinatumomab has a lower molecular weight and increased permeability. Therefore, blinatumomab may reach antigen binding sites that are difficult for macromolecular antibodies to reach. Unfortunately, blinatumomab has a short half-life of approximately two hours, and requires frequent dosing due to the absence of Fc-terminally mediated FcRn recycling mechanisms. Thus, there is a large unmet  need for additional compositions comprising bispecific antibodies, such as blinatumomab, for the treatment of cancer.
BRIEF SUMMARY
The present application provides a messenger ribonucleic acid (mRNA) encoding a bispecific CD19-directed CD3 T-cell engager antibody. Thus, one aspect of the present application provides a pharmaceutical composition comprising an mRNA, wherein the mRNA comprises a coding sequence encoding a bispecific antibody, wherein the bispecific antibody comprises a first antibody moiety specifically recognizing CD19 and a second antibody moiety specifically recognizing CD3.
In some embodiments, the first antibody moiety specifically recognizing CD19 comprises three CDRs of the heavy chain variable region set forth in SEQ ID NO: 26 and/or three CDRs of the light chain variable region set forth in SEQ ID NO: 27.
In some embodiments, the first antibody moiety specifically recognizing CD19 comprises an amino acid sequence set forth in SEQ ID NO: 16, or an amino acid sequence comprising at least about 80%sequence identity to the amino acid sequence set forth in SEQ ID NO: 16. In some embodiments, the portion of the coding sequence encoding the first antibody moiety specifically recognizing CD19 comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 17 and 50-60, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in any one of SEQ ID NOs: 17 and 50-60.
In some embodiments, the second antibody moiety specifically recognizing CD3 comprises three CDRs of the heavy chain variable region set forth in SEQ ID NO: 34 and/or three CDRs of the light chain variable region set forth in SEQ ID NO: 35.
In some embodiments, the second antibody moiety specifically recognizing CD3 comprises an amino acid sequence set forth in SEQ ID NO: 18, or an amino acid sequence comprising at least about 80%sequence identity to the amino acid sequence set forth SEQ ID NO: 18. In some embodiments, the portion of the coding sequence encoding the second antibody moiety specifically recognizing CD3 comprises the nucleic acid sequence set forth in any one of SEQ ID NOs: 19 and 61-71, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in any one of SEQ ID NOs: 19 and 61-71.
In some embodiments, the coding sequence encodes an amino acid sequence set forth in SEQ ID NO: 14, or an amino acid sequence comprising at least about 80%sequence identity to  the amino acid sequence set forth in SEQ ID NO: 14. In some embodiments, the coding sequence comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 15 and 39-49, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in any one of SEQ ID NOs: 15 and 39-49.
In some embodiments, the mRNA comprises a nucleic acid sequence encoding a signal peptide. In some embodiments, the nucleic acid sequence encoding the signal peptide is at the 5’ end of the coding sequence of the mRNA. In some embodiments, the nucleic acid sequence encoding the signal peptide comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 11-13, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in any one of SEQ ID NOs: 11-13. In some embodiments, the signal peptide comprises an amino acid sequence set forth in any one of SEQ ID NOs: 8-10, or an amino acid sequence comprising at least about 80%sequence identity to the amino acid sequence set forth in any one of SEQ ID NOs: 8-10.
In some embodiments, the mRNA comprises a 5’ untranslated region (UTR) . In some embodiments, the 5’ UTR is from Xenopus globin. In some embodiments, the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 1, or a nucleic acid sequence comprising at least about 80%sequence identity the nucleic acid sequence set forth in SEQ ID NO: 1. In some embodiments, the 5’ UTR is synthetic. In some embodiments, the 5’ UTR is UTR32. In some embodiments, the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 2, or a nucleic acid sequence comprising at least about 80%sequence identity the nucleic acid sequence set forth in SEQ ID NO: 2. In some embodiments, the 5’ UTR is a 28M mutant. In some embodiments, the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 3, or a nucleic acid sequence comprising at least about 80%sequence identity the nucleic acid sequence set forth in SEQ ID NO: 3. In some embodiments, the 5’ UTR is from ZX. In some embodiments, the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 4, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 4.
In some embodiments, the mRNA comprises a 3’ UTR. In some embodiments, the 3’ UTR is from Homo sapiens hemoglobin. In some embodiments, the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 5, or a nucleic acid sequence comprising at least about 80%sequence identity the nucleic acid sequence set forth in SEQ ID NO: 5. In some embodiments, the  3’ UTR is synthetic. In some embodiments, the 3’ UTR is 28M. In some embodiments, the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 6, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 6. In some embodiments, the 3’ UTR is from ZX. In some embodiments, the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 7, or a nucleic acid sequence at least comprising about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 7.
In some embodiments, the mRNA comprises: i) a 5’ UTR from Xenopus globin and a 3’ UTR from Homo sapiens hemoglobin; ii) a 5’ UTR from Xenopus globin and a 3’ UTR that is 28M; iii) a 5’ UTR from Xenopus globin and a 3’ UTR from ZX; iv) a 5’ UTR that is UTR32 and a 3’ UTR from Homo sapiens hemoglobin; v) a 5’ UTR that is UTR32 and a 3’ UTR that is 28M; vi) a 5’ UTR that is UTR32 and a 3’ UTR from ZX; vii) a 5’ UTR that is a 28M mutant and a 3’ UTR from Homo sapiens hemoglobin; viii) a 5’ UTR from ZX and a 3’ UTR from Homo sapiens hemoglobin; ix) a 5’ UTR from ZX and a 3’ UTR that is 28M; or, x) a 5’ UTR from ZX and a 3’ UTR from ZX.
In some embodiments, the mRNA comprises: i) a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 1, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 1, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 5, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 5; ii) a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 1, or a nucleic acid sequence comprising at least about 80%sequence identity to SEQ ID NO: 1, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 6, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 6; iii) a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 1, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 1, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 7, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 7; iv) a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 2, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 2, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 5, or a nucleic acid sequence comprising at least about 80%sequence identity to  the nucleic acid sequence set forth in SEQ ID NO: 5; v) a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 2, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 2, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 6, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 6; vi) a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 2, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 2, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 7, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 7; vii) a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 3, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 3, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 5, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 5; viii) a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 4, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 4, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 5, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 5; ix) a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 4, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 4, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 6, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 6; or, x) a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 4, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 4, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 7, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 7.
In some embodiments, the portion of the coding sequence encoding the first antibody moiety specifically recognizing CD19 comprises a nucleic acid sequence comprising at least about 80%sequence identity to nucleotides 1-750 of any one of SEQ ID NOs: 15 and 39-49.
In some embodiments, the portion of the coding sequence encoding the second antibody moiety specifically recognizing CD3 comprises a nucleic acid sequence comprising at least about 80%sequence identity to nucleotides 766-1, 494 of any one of SEQ ID NOs: 15 and 39-49.
In some embodiments, the portion of the coding sequence encoding a linker comprises a nucleic acid sequence comprising at least about 80%identity to nucleotides 751-765 of any one of SEQ ID NOs: 15 and 39-49.
In some embodiments, the mRNA comprises a poly (A) sequence. In some embodiments, the poly (A) sequence has a length of about 50 nucleotides or longer.
In some embodiments, the mRNA comprises a chemical modification.
In some embodiments, the mRNA comprises a 5’ cap.
In some embodiments, the pharmaceutical composition comprises a lipid nanoparticle (LNP) . In some embodiments, the mRNA is formulated in the LNP. In some embodiments, the LNP comprises a cationic lipid. In some embodiments, the cationic lipid is according to Formula 01-I or Formula 01-II, a compound listed in Table 01-1, a compound according to Formula 02-I, a compound listed in Table 02-1, a compound according to Formula 03-I, a compound listed in Table 03-1, a compound according to Formula 04-I, or a compound listed in Table 04-1. In some embodiments, the LNP comprises a phospholipid. In some embodiments, the LNP comprises a sterol. In some embodiments, the LNP comprises a polymer conjugated lipid. In some embodiments, the polymer conjugated lipid is according to Formula 05-I. In some embodiments, the LNP comprises a cationic lipid, a phospholipid, a sterol, and a polymer conjugated lipid. In some embodiments, the LNP comprises a total lipid to mRNA weight ratio of about 10: 1 to about 30:1. In some embodiments, the LNP comprises: i) between about 30 molar percent to about 55 molar percent of a cationic lipid; ii) between about 5 molar percent to about 40 molar percent of a phospholipid; iii) between about 20 molar percent to about 50 molar percent of a sterol; and iv) a polymer conjugated lipid.
In some aspects, provided herein is a method treating a disease in an individual, comprising administering to the individual a therapeutically effective amount of any of the pharmaceutical compositions provided herein. In some embodiments, the disease is cancer. In some embodiments, the cancer is acute lymphoblastic leukemia (ALL) . In some embodiments, the ALL is B-cell ALL (B-ALL) .
In some aspects, provided herein is a method of delivering an antibody to an individual, comprising administering to the individual a therapeutically effective amount of any of the pharmaceutical compositions provided herein.
In some embodiments, the pharmaceutical composition is administered locally to a tumor. In some embodiments, the pharmaceutical composition is administered systemically, via intravenous injection, or via intraperitoneal injection.
In some aspects, provided herein is a method of delivering an mRNA to an individual, comprising administering to the individual a therapeutically effective amount of any of the pharmaceutical compositions provided herein to a somatic cell of the individual.
In some embodiments, the pharmaceutical composition is administered at a dose of between about 3 μg/dose and about 2000 μg/dose. In some embodiments, the pharmaceutical composition is administered to the individual weekly. In some embodiments, the pharmaceutical composition is administered to the individual for no more than 54 weeks.
BRIEF DESCRIPTION OF THE DRAWINGS
The drawings illustrate certain embodiments of the features and advantages of this disclosure. These embodiments are not intended to limit the scope of the appended claims in any manner.
FIG. 1A shows in vitro expression of mRNAs comprising a coding sequence encoding a CD19/CD3 bispecific antibody in HEK293T cells.
FIG. 1B shows in vitro expression of seven specific mRNAs comprising a coding sequence encoding a CD19/CD3 bispecific antibody in both HEK293T cells and AML-12 cells.
FIG. 2A shows in vitro T cell specific activation by the CD19/CD3 bispecific antibody encoded by mRNA1 compared to the recombinant antibody blinatumomab.
FIG. 2B shows in vitro T cell non-specific activation by the CD19/CD3 bispecific antibody encoded by mRNA1 compared to the recombinant antibody blinatumomab.
FIG. 2C shows in vitro tumor cell killing activity of the CD19/CD3 bispecific antibody encoded by mRNA1 compared to the recombinant antibody blinatumomab.
FIG. 3A shows in vivo expression of seven mRNAs comprising a coding encoding a CD19/CD3 bispecific antibody formulated in LNPs in NOD/SCID mice.
FIG. 3B shows in vivo expression of mRNA1 formulated in LNPs comprising different lipids in NOD/SCID mice.
FIG. 3C shows identification of the CD19/CD3 bispecific antibody encoded by mRNA1 via immunoblot compared to the recombinant antibody blinatumomab.
FIG. 4A shows in vivo tumor growth inhibition by mRNA1 comprising a coding sequence encoding a CD19/CD3 bispecific antibody in Nalm6 PBMC humanized mice. QD: abbreviation of quaque die.
FIG. 4B shows imaging of tumors in Nalm6 PBMC humanized mice treated with mRNA1.
DETAILED DESCRIPTION
Provided herein are pharmaceutical compositions comprising a messenger ribonucleic acid (mRNA) comprising a coding sequence encoding a bispecific antibody that specifically recognizes CD19 and CD3. In some embodiments, the mRNA comprises a nucleic acid sequence encoding a signal peptide, a 5’ untranslated region (UTR) , and/or a 3’ UTR. In some aspects, the pharmaceutical composition comprises a lipid nanoparticle (LNP) , and the mRNA may be formulated in the LNP. The pharmaceutical compositions comprising an mRNA formulated in an LNP may be administered to an individual as a vaccine. The bispecific antibody encoded by the mRNA is strongly expressed in vitro and in vivo, and induces T cell activation and tumor-specific killing. Therefore, the pharmaceutical composition may be useful in a method of treating a cancer in an individual.
The present invention is based, at least in part, on the inventor’s find that delivery of pharmaceutical composition comprising an mRNA encoding a bispecific antibody specifically recognizing CD3 and CD19 into mice or cynomolgus monkeys enables somatic cells to express and secrete antibodies with tumor cell killing activity. Moreover, the mRNA encoding the bispecific antibody was superior compared to recombinant protein in terms of dosing frequency and efficacy in mouse model of acute leukemia. The pharmaceutical compositions provided herein are advantageous due to their ease of manufacture, robust safety profile, and efficacy. In particular, the preparation process of mRNA is simple, and there is no need to use cell proliferation, virus, or produce recombinant protein. Furthermore, very small doses of the mRNA can achieve sufficient protective effect, and is superior to the existing protein antibody technology in terms of predictable safety and effectiveness.
I. Definitions
The term “specifically recognizes” refers to measurable and reproducible interactions, such as binding between a target and an antibody or antibody moiety that is determinative of the presence of the target in the presence of a heterogeneous population of molecules, including biological molecules. For example, an antibody or antibody moiety that specifically recognizes a target (which can be an epitope) is an antibody or antibody moiety that binds this target with greater affinity, avidity, more readily, and/or with greater duration than its bindings to other targets.
As used herein, the term “CDR” or “complementarity determining region” is intended to mean the non-contiguous antigen combining sites found within the variable region of both heavy and light chain polypeptides. These particular regions have been described by Kabat et al., J. Biol. Chem. 252: 6609-6616 (1977) ; Kabat et al., U.S. Dept. of Health and Human Services, “Sequences of proteins of immunological interest” (1991) ; Chothia et al., J. Mol. Biol. 196: 901-917 (1987) ; Al-Lazikani B. et al., J. Mol. Biol., 273: 927-948 (1997) ; MacCallum et al., J. Mol. Biol, . 262: 732-745 (1996) ; Abhinandan and Martin, Mol. Immunol., 45: 3832-3839 (2008) ; Lefranc M.P. et al., Dev. Comp. Immunol., 27: 55-77 (2003) ; and Honegger and Plückthun, J. Mol. Biol., 309: 657-670 (2001) , where the definitions include overlapping or subsets of amino acid residues when compared against each other. Nevertheless, application of either definition to refer to a CDR of an antibody or grafted antibodies or variants thereof is intended to be within the scope of the term as defined and used herein. The amino acid residues which encompass the CDRs as defined by each of the above cited references are set forth below in Table A as a comparison. CDR prediction algorithms and interfaces are known in the art, including, for example, Abhinandan and Martin, Mol. Immunol., 45: 3832-3839 (2008) ; Ehrenmann F. et al., Nucleic Acids Res., 38: D301-D307 (2010) ; and Adolf-Bryfogle J. et al., Nucleic Acids Res., 43: D432-D438 (2015) . The contents of the references cited in this paragraph are incorporated herein by reference in their entireties for use in the present invention and for possible inclusion in one or more claims herein.
Table A. CDR Definitions
1Residue numbering follows the nomenclature of Kabat et al., supra
2Residue numbering follows the nomenclature of Chothia et al., supra
3Residue numbering follows the nomenclature of MacCallum et al., supra
4Residue numbering follows the nomenclature of Lefranc et al., supra
5Residue numbering follows the nomenclature of Honegger and Plückthun, supra
“Fv” is the minimum antibody fragment, which contains a complete antigen-recognition and antigen-binding site. This fragment consists of a dimer of one heavy-and one light-chain variable region domain in tight, non-covalent association.
“Single-chain Fv, ” also abbreviated as “scFv, ” is an antibody fragment that comprises the VH and VL antibody domains connected into a single polypeptide chain. In some embodiments, the scFv polypeptide further comprises a linker, such as a polypeptide linker, between the VH and VL domains, which enables the scFv to form the desired structure for antigen binding.
As used herein, “percent (%) sequence identity, ” including percent amino acid sequence identity and percent nucleic acid sequence identity, with respect to a nucleic acid, peptide, polypeptide, or antibody sequence, is defined as the percentage of nucleic acid residues or the percentage of amino acid residues in a candidate sequence that are identical with the nucleic acid residues or the amino acid residues, respectively, in the specific nucleic acid, peptide, polypeptide, or antibody sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent sequence identity can be achieved in various ways that are within the skill in the art.
As used herein, by “pharmaceutically acceptable” or “pharmacologically compatible” is meant a material that is not biologically or otherwise undesirable, e.g., the material may be  incorporated into a pharmaceutical composition administered to a patient without causing any significant undesirable biological effects or interacting in a deleterious manner with any of the other components of the composition in which it is contained. Pharmaceutically acceptable carriers or excipients have preferably met the required standards of toxicological and manufacturing testing and/or are included on the Inactive Ingredient Guide prepared by the U.S. Food and Drug administration.
As used herein, “a pharmaceutically acceptable carrier” refers to a pharmaceutically acceptable substrate, composition or vehicle used in the process of drug delivery, which may have one or more ingredients including, but not limited to, excipient (s) , binder (s) , diluent (s) , solvent (s) , filler (s) , and/or stabilizer (s) .
The terms “individual, ” “subject, ” and “patient” are used interchangeably herein to describe a mammal, including humans. In some embodiments, the individual is in need of treatment, for example, the individual may have been diagnosed with, or is suspected of having, a cancer.
It is understood that embodiments of the invention described herein include “consisting” and/or “consisting essentially of” embodiments.
Reference to "about" a value or parameter herein includes (and describes) variations that are directed to that value or parameter per se. For example, description referring to "about X" includes description of "X" .
As used herein, reference to "not" a value or parameter generally means and describes "other than" a value or parameter.
As used herein and in the appended claims, the singular forms "a, " "an, " and "the" include plural referents unless the context clearly dictates otherwise.
II. mRNAs
The present application provides a pharmaceutical composition comprising a messenger ribonucleic acid (mRNA) , wherein the mRNA comprises a coding sequence encoding a bispecific antibody, wherein the bispecific antibody comprises a first antibody moiety specifically recognizing CD19 and a second antibody moiety specifically recognizing CD3. In some embodiments, the first antibody moiety specifically recognizing CD19 and/or the second antibody moiety specifically recognizing CD3 is a full-length antibody (e.g., IgG, IgA, IgM, IgE, or IgD)  or any suitable antigen binding fragments thereof. In some embodiments, the first antibody moiety specifically recognizing CD19 and/or the second antibody moiety specifically recognizing CD3 is an antigen-binding fragment selected from the group consisting of a Fab, a Fab’ , a (Fab’ ) 2, an Fv, a single chain Fv (scFv) , an scFv-Fc, a disulfide stabilized Fv fragment (dsFv) , a (dsFv) 2, an scFv dimer, a domain antibody, a camelized single domain antibody, a bivalent domain antibody, a minibody, and a VHH. In some embodiments, the first antibody moiety specifically recognizing CD19 is an scFv. In some embodiments, the second antibody moiety specifically recognizing CD3 is an scFv. In some embodiments, the bispecific antibody is a tandem scFv, wherein the first antibody moiety specifically recognizing CD19 is an scFv and the second antibody moiety specifically recognizing CD3 is an scFv. In some embodiments, the first antibody moiety specifically recognizing CD19 and/or the second antibody moiety specifically recognizing CD3 is an animal, human, humanized, or camelid antibody, or an antigen-binding fragment thereof. In some embodiments, the mRNA comprises a nucleic acid sequence encoding a signal peptide. In some embodiments, the mRNA comprises a 5’ UTR. In some embodiments, the 5’ UTR is synthetic (e.g., UTR32 or a 28M mutant) , from Xenopus globin, or from ZX. In some embodiments, the mRNA comprises a 3’ UTR. In some embodiments, the 3’ UTR is synthetic (e.g., 28M) , from Homo sapiens hemoglobin, or from ZX. In some embodiments, the mRNA comprises a poly (A) sequence. In some embodiments, the mRNA comprises a chemical modification. In some embodiments, the mRNA comprises a 5’ cap.
In some embodiments, provided herein is a pharmaceutical composition comprising an mRNA, wherein the mRNA comprises a coding sequence encoding a bispecific antibody comprising a first antibody moiety specifically recognizing CD19 and a second antibody moiety specifically recognizing CD3, wherein the first antibody moiety comprises i) a VH comprising an HC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 20, an HC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 21, and an HC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 22; and ii) a VL comprising an LC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 23, an LC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 24, and an LC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 25, and wherein the second antibody moiety comprises a VH comprising an HC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 28, an HC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 29, and an HC-CDR3 comprising an  amino acid sequence set forth in SEQ ID NO: 30; and ii) a VL comprising an LC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 31, an LC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 32, and an LC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 33. In some embodiments, the first antibody moiety specifically recognizing CD19 comprises a VH comprising an amino acid sequence set forth in SEQ ID NO: 26 and VL comprising an amino acid sequence set forth in SEQ ID NO: 27. In some embodiments, the VH and VL of first antibody moiety specifically recognizing CD19 are fused via a peptide linker, for example a peptide linker comprising an amino acid sequence set forth in any one of SEQ ID NOs: 36-38, such as SEQ ID NO: 36. In some embodiments, the second antibody moiety specifically recognizing CD3 comprises a VH comprising an amino acid sequence set forth in SEQ ID NO: 34 and VL comprising an amino acid sequence set forth in SEQ ID NO: 35. In some embodiments, the VH and VL of second antibody moiety specifically recognizing CD3 are fused via a peptide linker, for example a peptide linker comprising an amino acid sequence set forth in any one of SEQ ID NOs: 36-38, such as SEQ ID NO: 38. In some embodiments, the mRNA comprises a nucleic acid sequence encoding a signal peptide. In some embodiments, the mRNA comprises a 5’ UTR. In some embodiments, the 5’ UTR is synthetic (e.g., UTR32 or a 28M mutant) , from Xenopus globin, or from ZX. In some embodiments, the mRNA comprises a 3’ UTR. In some embodiments, the 3’ UTR is synthetic (e.g., 28M) , from Homo sapiens hemoglobin, or from ZX. In some embodiments, the mRNA comprises a poly (A) sequence. In some embodiments, the mRNA comprises a chemical modification. In some embodiments, the mRNA comprises a 5’ cap.
In some embodiments, provided herein is a pharmaceutical composition comprising an mRNA, wherein the mRNA comprises a coding sequence encoding a tandem scFv bispecific antibody comprising a first scFv specifically recognizing CD19 (e.g., anti-CD19 scFv) and a second scFv specifically recognizing CD3 (e.g., anti-CD3 scFv) . In some embodiments, the anti-CD19 scFv comprises: i) a VH comprising an HC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 20, an HC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 21, and an HC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 22; and ii) a VL comprising an LC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 23, an LC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 24, and an LC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 25. In some embodiments, the anti-CD3 scFv comprises: i) a VH comprising an HC-CDR1 comprising an amino acid sequence set  forth in SEQ ID NO: 28, an HC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 29, and an HC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 30; and ii) a VL comprising an LC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 31, an LC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 32, and an LC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 33. In some embodiments, the anti-CD19 scFv comprises a VH comprising an amino acid sequence set forth in SEQ ID NO: 26 and VL comprising an amino acid sequence set forth in SEQ ID NO: 27. In some embodiments, the anti-CD3 scFv comprises a VH comprising an amino acid sequence set forth in SEQ ID NO: 34 and VL comprising an amino acid sequence set forth in SEQ ID NO: 35. In some embodiments, the anti-CD19 scFv and the anti-CD3 scFv are fused via a peptide linker, such as any of the peptide linkers described herein. In some embodiments, the peptide linker comprises an amino acid sequence set forth in any one of SEQ ID NOs: 36-38. In some embodiments, the peptide linker comprises an amino acid sequence set forth in SEQ ID NO: 37. In some embodiments, the anti-CD19 scFv is indirectly fused to the anti-CD3 scFv. In some embodiments, the VH of the anti-CD19 scFv is fused to the VL of the anti-CD3 scFv. In some embodiments, the C-terminus of the VH of the anti-CD19 scFv is fused to the N-terminus of the VL of the anti-CD3 scFv. In some embodiments, the N-terminus of the VH of the anti-CD19 scFv is fused to the C-terminus of the VL of the anti-CD3 scFv. In some embodiments, the VL of the anti-CD19 scFv is fused to the VH of the anti-CD3 scFv. In some embodiments, the N-terminus of the VL of the anti-CD19 scFv is fused to the C-terminus of the VH of the anti-CD3 scFv. In some embodiments, the C-terminus of the VL of the anti-CD19 scFv is fused to the N-terminus of the VH of the anti-CD3 scFv. In some embodiments, the mRNA comprises a nucleic acid sequence encoding a signal peptide. In some embodiments, the mRNA comprises a 5’ UTR. In some embodiments, the 5’ UTR is synthetic (e.g., UTR32 or a 28M mutant) , from Xenopus globin, or from ZX. In some embodiments, the mRNA comprises a 3’ UTR. In some embodiments, the 3’ UTR is synthetic (e.g., 28M) , from Homo sapiens hemoglobin, or from ZX. In some embodiments, the mRNA comprises a poly (A) sequence. In some embodiments, the mRNA comprises a chemical modification. In some embodiments, the mRNA comprises a 5’ cap.
In some embodiments, provided herein is a pharmaceutical composition comprising an mRNA, wherein the mRNA comprises a coding sequence encoding a bispecific antibody comprising an amino acid sequence set forth in SEQ ID NO: 14, wherein the bispecific antibody  comprises a first antibody moiety specifically recognizing CD19 and a second antibody moiety specifically recognizing CD3. In some embodiments, the portion of the coding sequence encoding the first antibody moiety specifically recognizing CD19 comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 17 and 50-60, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in any one of SEQ ID NOs: 17 and 50-60. In some embodiments, the portion of the coding sequence encoding the second antibody moiety specifically recognizing CD3 comprises the nucleic acid sequence set forth in any one of SEQ ID NOs: 19 and 61-71, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in any one of SEQ ID NOs: 19 and 61-71. In some embodiments, the coding sequence comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 15 and 39-49. In some embodiments, the portion of the coding sequence encoding the first antibody moiety specifically recognizing CD19 comprises a nucleic acid sequence comprising at least about 80%sequence identity to nucleotides 1-750 of any one of SEQ ID NOs: 15 and 39-49. In some embodiments, the portion of the coding sequence encoding the second antibody moiety specifically recognizing CD3 comprises a nucleic acid sequence comprising at least about 80%sequence identity to nucleotides 766-1, 494 of any one of SEQ ID NOs: 15 and 39-49. In some embodiments, the mRNA comprises a nucleic acid sequence encoding a signal peptide. In some embodiments, the mRNA comprises a 5’ UTR. In some embodiments, the 5’ UTR is synthetic (e.g., UTR32 or a 28M mutant) , from Xenopus globin, or from ZX. In some embodiments, the mRNA comprises a 3’ UTR. In some embodiments, the 3’ UTR is synthetic (e.g., 28M) , from Homo sapiens hemoglobin, or from ZX. In some embodiments, the mRNA comprises a poly (A) sequence. In some embodiments, the mRNA comprises a chemical modification. In some embodiments, the mRNA comprises a 5’ cap.
In some embodiments, provided herein is a pharmaceutical composition comprising an mRNA, wherein the mRNA comprises i) a coding sequence encoding a bispecific antibody comprising a first antibody moiety specifically recognizing CD19 and a second antibody moiety specifically recognizing CD3, ii) a 5’ UTR, and ii) a 3’ UTR. In some embodiments, the 5’ UTR is synthetic (e.g., UTR32 or a 28M mutant) , from Xenopus globin, or from ZX. In some embodiments, the mRNA comprises a 3’ UTR. In some embodiments, the 3’ UTR is synthetic (e.g., 28M) , from Homo sapiens hemoglobin, or from ZX. In some embodiments, the mRNA comprises: i) a 5’ UTR from Xenopus globin and a 3’ UTR from Homo sapiens hemoglobin; ii) a  5’ UTR from Xenopus globin and a 3’ UTR that is 28M; iii) a 5’ UTR from Xenopus globin and a 3’ UTR from ZX; iv) a 5’ UTR that is UTR32 and a 3’ UTR from Homo sapiens hemoglobin; v) a 5’ UTR that is UTR32 and a 3’ UTR that is 28M; vi) a 5’ UTR that is UTR32 and a 3’ UTR from ZX;vii) a 5’ UTR that is a 28M mutant and a 3’ UTR from Homo sapiens hemoglobin; viii) a 5’ UTR from ZX and a 3’ UTR from Homo sapiens hemoglobin; ix) a 5’ UTR from ZX and a 3’ UTR that is 28M; or, x) a 5’ UTR from ZX and a 3’ UTR from ZX. In some embodiments, the mRNA comprises a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 1, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 5. In some embodiments, the mRNA comprises a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 1, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 6. In some embodiments, the mRNA comprises a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 1, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 7. In some embodiments, the mRNA comprises a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 2, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 5. In some embodiments, the mRNA comprises a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 2, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 6. In some embodiments, the mRNA comprises a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 2, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 7. In some embodiments, the mRNA comprises a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 3, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 5. In some embodiments, the mRNA comprises a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 4, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 5. In some embodiments, the mRNA comprises a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 4, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 6. In some embodiments, the mRNA comprises a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 4, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 7. In some embodiments, the mRNA comprises a nucleic acid sequence encoding a signal peptide. In some embodiments, the nucleic acid sequence encoding the signal peptide comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 11-13. In some embodiments, the signal peptide comprises an amino acid sequence set forth in any one of SEQ ID NOs: 8-10. In some embodiments, the mRNA comprises a poly (A) sequence. In some embodiments, the mRNA comprises a chemical modification. In  some embodiments, the mRNA comprises a 5’ cap. In some embodiments, the first antibody moiety specifically recognizing CD19 comprises a VH comprising an amino acid sequence set forth in SEQ ID NO: 26 and VL comprising an amino acid sequence set forth in SEQ ID NO: 27. In some embodiments, the second antibody moiety specifically recognizing CD3 comprises a VH comprising an amino acid sequence set forth in SEQ ID NO: 34 and VL comprising an amino acid sequence set forth in SEQ ID NO: 35. In some embodiments, the mRNA comprises a coding sequence encoding a bispecific antibody comprising an amino acid sequence set forth in SEQ ID NO: 14. In some embodiments, the coding sequence comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 15 and 39-49.
In some embodiments, provided herein is a pharmaceutical composition comprising a lipid nanoparticle (LNP) and an mRNA, wherein the mRNA comprises a coding sequence encoding a bispecific antibody comprising a first antibody moiety specifically recognizing CD19 and a second antibody moiety specifically recognizing CD3. In some embodiments, the mRNA is formulated in the LNP. In some embodiments, the LNP comprises a cationic lipid, a phospholipid, a sterol, a polymer conjugated lipid, or a combination thereof. In some embodiments, the LNP comprises a total lipid to mRNA weight ratio of about 10: 1 to about 30: 1. In some embodiments, the first antibody moiety specifically recognizing CD19 comprises a VH comprising an amino acid sequence set forth in SEQ ID NO: 26 and VL comprising an amino acid sequence set forth in SEQ ID NO: 27. In some embodiments, the second antibody moiety specifically recognizing CD3 comprises a VH comprising an amino acid sequence set forth in SEQ ID NO: 34 and VL comprising an amino acid sequence set forth in SEQ ID NO: 35. In some embodiments, the mRNA comprises a coding sequence encoding a bispecific antibody comprising an amino acid sequence set forth in SEQ ID NO: 14. In some embodiments, the coding sequence comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 15 and 39-49. In some embodiments, the mRNA comprises a nucleic acid sequence encoding a signal peptide. In some embodiments, the mRNA comprises a 5’ UTR. In some embodiments, the 5’ UTR is synthetic (e.g., UTR32 or a 28M mutant) , from Xenopus globin, or from ZX. In some embodiments, the mRNA comprises a 3’ UTR. In some embodiments, the 3’ UTR is synthetic (e.g., 28M) , from Homo sapiens hemoglobin, or from ZX. In some embodiments, the mRNA comprises a poly (A) sequence. In some embodiments, the mRNA comprises a chemical modification. In some embodiments, the mRNA comprises a 5’ cap.
A. mRNA coding sequence
The mRNAs provided herein comprise a coding sequence encoding a bispecific antibody comprising a first antibody moiety specifically recognizing CD19 and a second antibody moiety specifically recognizing CD3. Contemplated first and/or second antibody moieties of the bispecific antibody include, for example, scFv, Fab, and full-length antibodies. In some embodiments, the bispecific antibody is a tandem scFv bispecific antibody, wherein the first antibody moiety specifically recognizing CD19 is an anti-CD19 scFv and the second antibody moiety specifically recognizing CD3 is an anti-CD3 scFv. CD19/CD3 tandem scFv bispecific antibodies are known in the art, and are described in, for example, International Applications WO2004106381 and WO1999054440, the contents of each of which are incorporated herein by reference in their entireties. In some embodiments, the tandem scFv bispecific antibody has the structure, from N-terminus to C-terminus: i) VH (CD19) -VL (CD19) -VH (CD3) -VL (CD3) ; ii) VH (CD3) -VL (CD3) -VH (CD19) -VL (CD19) ; or, iii) VH (CD3) -VL (CD3) -VL (CD19) -VH (CD19) .
In some embodiments, the mRNA comprises one or more coding sequences. In some embodiments, the one or more coding sequences have been codon optimized. In some embodiments, the mRNA comprises one or more non-coding sequences. In some embodiments, the one or more non-coding sequences comprise non-coding sequences that are upstream and/or downstream of the coding sequence. In some embodiments, the one or more non-coding sequences comprise non-coding sequences that are within the coding sequence (e.g., introns) . In some embodiments, the introns are spliced out of the mRNA coding sequence.
i. First antibody moiety
In some embodiments, the portion of the coding sequence encoding the first antibody moiety of the bispecific antibody specifically recognizes CD19 (e.g., an “anti-CD19 antibody moiety” ) . The anti-CD19 antibody moieties described in the present application include any antibody moieties that specifically bind to Cluster of Differentiation 19 (CD19) .
Human CD19 is a 95 Kd type I transmembrane glycoprotein, that is a member of the immunoglobulin superfamily. CD19 is expressed during each phase of B cell development, until the B cell differentiates into plasma cells, and may be used as a biomarker for normal and neoplastic B cells as well as follicular dendritic cells. Expression of CD19 is crucial for B cell differentiation and survival, as it i) establishes B cell signaling thresholds, and ii) functions as the major signaling component of a multiprotein complex on the surface of mature B cells. Because  CD19 is a marker of B cells, it has high expression on the surface of cancer cells that originate from B cells, such as B cell lymphomas, acute lymphoblastic leukemia (ALL) , B cell ALL (B-ALL) , and chronic lymphocytic leukemia (CLL) . Therefore, anti-CD19 antibodies may be used in CD19-targeted cancer therapies. In some embodiments, the CD19 is human CD19.
In some embodiments, the first antibody moiety specifically recognizing CD19 comprises an scFv. In some embodiments, the first antibody moiety specifically recognizing CD19 is an scFv. In some embodiments, the scFv comprises a VH fused to a VL via a flexible peptide linker, such as (GS) n, or similar peptides. In some embodiments, the scFv comprises a VL fused to a VH via a peptide linker. In some embodiments, the peptide linker comprises an amino acid sequence set forth in any one of SEQ ID NOs: 36-38.
In some embodiments, the first antibody moiety specifically recognizing CD19 comprises: i) a VH comprising an HC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 20, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, an HC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 21, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, and an HC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 22, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and ii) a VL comprising an LC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 23, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, an LC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 24, or a variant thereof comprising up to about 3 (such as about any of 1, 2, or 3) amino acid substitutions, and an LC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 25, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions. In some embodiments, the first antibody moiety specifically recognizing CD19 comprises: i) a VH comprising an HC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 20, an HC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 21, and an HC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 22; and ii) a VL comprising an LC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 23, an LC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 24, and an LC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 25.
In some embodiments, the first antibody moiety specifically recognizing CD19 comprises a VH comprising an amino acid sequence set forth in SEQ ID NO: 26, or a variant thereof comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity to the amino acid sequence set forth in SEQ ID NO: 26, and a VL comprising an amino acid sequence set forth in SEQ ID NO: 27, or a variant thereof comprising at least about 80%(such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity to the amino acid sequence set forth in SEQ ID NO: 27. In some embodiments, the first antibody moiety specifically recognizing CD19 comprises a VH comprising an amino acid sequence set forth in SEQ ID NO: 26 and VL comprising an amino acid sequence set forth in SEQ ID NO: 27. In some embodiments, the VH and VL are fused via a peptide linker, for example a peptide linker comprising an amino acid sequence set forth in any one of SEQ ID NOs: 36-38, such as SEQ ID NO: 36.
In some embodiments, the portion of the coding sequence encoding the first antibody moiety specifically recognizing CD19 comprises a nucleic acid sequence comprising at least about 80%(such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity to nucleotides 1-750 of any one of SEQ ID NOs: 15 and 39-49. In some embodiments, the portion of the coding sequence encoding the first antibody moiety specifically recognizing CD19 comprises a nucleic acid sequence of nucleotides 1-750 of any one of SEQ ID NOs: 15 and 39-49.
In some embodiments, the first antibody moiety specifically recognizing CD19 comprises an amino acid sequence set forth in SEQ ID NO: 16, or an amino acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity to the amino acid sequence set forth in SEQ ID NO: 16. In some embodiments, the portion of the coding sequence encoding the first antibody moiety specifically recognizing CD19 comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 17 and 50-60, or a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity to the nucleic acid sequence set forth any one of SEQ ID NOs: 17 and 50-60.
ii. Second antibody moiety
In some embodiments, the portion of the coding sequence encoding the second antibody moiety of the bispecific antibody specifically recognizes CD3 (e.g., an “anti-CD3 antibody moiety” ) . The anti-CD3 antibody moieties described in the present application include any antibody moieties that specifically bind to Cluster of Differentiation 3 (CD3) .
CD3 is multimeric protein complex comprising four distinct polypeptide chains; epsilon (ε) , gamma (γ) , delta (δ) and zeta (ζ) , which assemble and function as three pairs of dimers (εγ, εδ, ζζ) . The CD3 complex is a T cell co-receptor that associate with the T-cell receptor (TCR) to generate an activation signal in T lymphocytes. During T cell maturation, CD3 expression is lost in the cytoplasm and CD3 antigen migrates to the cell membrane. Because CD3 is specific for T cells, and is expressed during all stages of T cell development, it can be used as a biomarker of both normal and neoplastic T cells. Therefore, anti-CD3 antibodies may be used in CD3-targeted cancer therapies. In some embodiments, the CD3 is human CD3.
In some embodiments, the second antibody moiety specifically recognizing CD3 comprises an scFv. In some embodiments, the second antibody moiety specifically recognizing CD3 is an scFv. In some embodiments, the scFv comprises a VH fused to a VL via a flexible peptide linker, such as (GS) n, or similar peptides. In some embodiments, the scFv comprises a VL fused to a VH via a peptide linker. In some embodiments, the peptide linker comprises an amino acid sequence set forth in any one of SEQ ID NOs: 36-38.
In some embodiments, the second antibody moiety specifically recognizing CD3 comprises: i) a VH comprising an HC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 28, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, an HC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 29, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, and an HC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 30, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions; and ii) a VL comprising an LC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 31, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions, an LC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 32, or a variant thereof comprising up to about 3 (such as about any of 1, 2, or 3) amino acid substitutions, and an LC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 33, or a variant thereof comprising up to about 5 (such as about any of 1, 2, 3, 4, or 5) amino acid substitutions. In some embodiments, the second antibody moiety specifically recognizing CD3 comprises: i) a VH comprising an HC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 28, an HC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 29, and an HC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 30; and ii) a VL comprising  an LC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 31, an LC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 32, and an LC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 33.
In some embodiments, the second antibody moiety specifically recognizing CD3 comprises a VH comprising an amino acid sequence set forth in SEQ ID NO: 34, or a variant thereof comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity to the amino acid sequence set forth in SEQ ID NO: 34, and a VL comprising an amino acid sequence set forth in SEQ ID NO: 35, or a variant thereof comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity to the amino acid sequence set forth in SEQ ID NO: 35. In some embodiments, the second antibody moiety specifically recognizing CD3 comprises a VH comprising an amino acid sequence set forth in SEQ ID NO: 34 and VL comprising an amino acid sequence set forth in SEQ ID NO: 35. In some embodiments, the VH and VL are fused via a peptide linker, for example a peptide linker comprising an amino acid sequence set forth in any one of SEQ ID NOs: 36-38, such as SEQ ID NO: 38. In some embodiments, the portion of the coding sequence encoding the second antibody moiety specifically recognizing CD3 comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity to nucleotides 766-1, 494 of any one of SEQ ID NOs: 15 and 39-49. In some embodiments, the portion of the coding sequence encoding the second antibody moiety specifically recognizing CD3 comprises the nucleic acid sequence of nucleotides 766-1, 494 of any one of SEQ ID NOs: 15 and 39-49.
In some embodiments, the second antibody moiety specifically recognizing CD3 comprises an amino acid sequence set forth in SEQ ID NO: 18, or an amino acid sequence comprising about at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity to the amino acid sequence set forth in SEQ ID NO: 18. In some embodiments, the portion of the coding sequence encoding the second antibody moiety specifically recognizing CD3 comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 19 and 61-71, or a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity to the nucleic acid sequence set forth in any one of SEQ ID NOs: 19 and 61-71.
iii. Bispecific antibody moieties and constructs
The bispecific antibody comprising a first antibody moiety specifically recognizing CD19 and a second antibody moiety specifically recognizing CD3, such as any of the first antibody moieties specifically recognizing CD19 and second antibody moieties specifically recognizing CD3 described herein, may have any structure, so long as the bispecific antibody maintains its function of specifically recognizing both CD19 and CD3.
In some embodiments, the bispecific antibody is, for example, a diabody (Db) , a single-chain diabody (scDb) , a tandem scDb (Tandab) , a linear dimeric scDb (LD-scDb) , a circular dimeric scDb (CD-scDb) , a di-diabody, a tandem scFv, a tandem di-scFv (e.g., a bispecific T cell engager) , a bispecific Fab2, a di-miniantibody, a tetrabody, an scFv-Fc-scFv fusion, a dual-affinity retargeting (DART) antibody, a dual variable domain (DVD) antibody, an IgG-scFab, an scFab-ds-scFv, an Fv2-Fc, an IgG-scFv fusion, a dock and lock (DNL) antibody, a knob-into-hole (KiH) antibody (bispecific IgG prepared by the KiH technology) , a DuoBody (bispecific IgG prepared by the Duobody technology) , a heteromultimeric antibody, or a heteroconjugate antibody. In some embodiments, the bispecific antibody is a tandem scFv.
In some embodiments, the bispecific antibody is a tandem scFv comprising a first scFv comprising the first antibody moiety specifically recognizing CD19 (e.g., an “anti-CD19 scFv” ) and a second scFv comprising the second antibody moiety specifically recognizing CD3 (e.g., an “anti-CD3 scFv” ) , e.g., a “tandem scFv bispecific antibody” . In some embodiments, the tandem scFv bispecific antibody further comprises at least one (such as at least about any of 2, 3, 4, 5, or more) additional scFv. In some embodiments, the anti-CD19 scFv is fused to the anti-CD3 scFv. In some embodiments, the anti-CD19 scFv is directly fused to the anti-CD3 scFv. In some embodiments, the anti-CD19 scFv is indirectly fused to the anti-CD3 scFv. In some embodiments, the VH of the anti-CD19 scFv is fused to the VL of the anti-CD3 scFv. In some embodiments, the C-terminus of the VH of the anti-CD19 scFv is fused to the N-terminus of the VL of the anti-CD3 scFv. In some embodiments, the N-terminus of the VH of the anti-CD19 scFv is fused to the C-terminus of the VL of the anti-CD3 scFv. In some embodiments, the VL of the anti-CD19 scFv is fused to the VH of the anti-CD3 scFv. In some embodiments, the N-terminus of the VL of the anti-CD19 scFv is fused to the C-terminus of the VH of the anti-CD3 scFv. In some embodiments, the C-terminus of the VL of the anti-CD19 scFv is fused to the N-terminus of the VH of the anti-CD3 scFv. In some embodiments, the first antibody moiety specifically recognizing CD19 and the  second antibody moiety specifically recognizing CD3 are fused together via a linker, such as a peptide linker, described herein.
In some embodiments, the tandem scFv bispecific antibody has the structure, from N-terminus to C-terminus: i) VH (CD19) -VL (CD19) -VH (CD3) -VL (CD3) ; ii) VH (CD19) -VL (CD19) -VL (CD3) -VH (CD3) ; iii) VL (CD19) -VH (CD19) -VH (CD3) -VL (CD3) ; iv) VL (CD19) -VH (CD19) -VL (CD3) -VH (CD3) ; v) VH (CD3) -VL (CD3) -VH (CD19) -VL (CD19) ; vi) VH (CD3) -VL (CD3) -VL (CD19) -VH (CD19) ; vii) VL (CD3) -VH (CD3) -VH (CD19) -VL (CD19) ; or, viii) VL (CD3) -VH (CD3) -VL (CD19) -VH (CD19) . In some embodiments, the tandem scFv bispecific antibody has the structure, from N-terminus to C-terminus: i) VH (CD19) -VL (CD19) -VH (CD3) -VL (CD3) ; ii) VH (CD3) -VL (CD3) -VH (CD19) -VL (CD19) ; or, iii) VH (CD3) -VL (CD3) -VL (CD19) -VH (CD19) . In some embodiments, the tandem scFv bispecific antibody has the structure, from N-terminus to C-terminus: VH (CD19) -VL (CD19) -VH (CD3) -VL (CD3) . In some embodiments, the tandem scFv bispecific antibody has the structure, from N-terminus to C-terminus: VH (CD3) -VL (CD3) -VH (CD19) -VL (CD19) . In some embodiments, the tandem scFv bispecific antibody has the structure, from N-terminus to C-terminus: VH (CD3) -VL (CD3) -VL (CD19) -VH (CD19) .
In some embodiments, the anti-CD19 scFv comprises: i) a VH comprising an HC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 20, an HC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 21, and an HC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 22; and ii) a VL comprising an LC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 23, an LC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 24, and an LC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 25.
In some embodiments, the anti-CD3 scFv comprises: i) a VH comprising an HC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 28, an HC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 29, and an HC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 30; and ii) a VL comprising an LC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 31, an LC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 32, and an LC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 33. In some embodiments, the anti-CD19 scFv comprises a VH comprising an amino acid sequence set forth in SEQ ID NO: 26 and VL comprising an amino acid sequence set forth in SEQ ID NO: 27. In some embodiments, the anti-CD3 scFv comprises a VH comprising an amino acid  sequence set forth in SEQ ID NO: 34 and VL comprising an amino acid sequence set forth in SEQ ID NO: 35.
In some embodiments, the anti-CD19 scFv and the anti-CD3 scFv are fused via a peptide linker, such as any of the peptide linkers described herein. In some embodiments, the peptide linker comprises an amino acid sequence set forth in any one of SEQ ID NOs: 36-38. In some embodiments, the peptide linker comprises an amino acid sequence set forth in SEQ ID NO: 37.
In some embodiments, the coding sequence encodes a bispecific antibody comprising an amino acid sequence set forth in SEQ ID NO: 14, or an amino acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity to the amino acid sequence set forth in SEQ ID NO: 14. In some embodiments, the coding sequence comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 15 and 39-49, or a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity to the nucleic acid sequence set forth in any one of SEQ ID NOs: 15 and 39-49.
In some embodiments, the bispecific antibody encoded by the mRNA comprises a purification tag, e.g., a His tag.
iv. Variants
In some embodiments, amino acid sequence variants of the bispecific antibodies, first antibody moieties specifically recognizing CD19, and second antibody moieties specifically recognizing CD3 described herein are also contemplated. For example, it may be desirable to improve the binding affinity and/or other biological properties of the bispecific antibodies. Amino acid sequence variants of a bispecific antibody provided herein may be prepared by introducing appropriate modifications into the mRNA encoding the bispecific antibody (e.g., the mRNA coding sequence) . Such modifications include, for example, deletions from, and/or insertions into and/or substitutions of residues within the amino acid sequences of the bispecific antibody (e.g., tandem scFv bispecific antibody) . Any combination of deletion, insertion, and substitution can be made to arrive at the bispecific antibody, so long as the modified bispecific antibody is able to bind CD19 and CD3.
In some embodiments, variants having one or more amino acid substitutions are provided. Sites of interest for substitutional mutagenesis include the complementarity determining region hypervariable regions (i.e., HVRs) and framework regions of the first antibody moiety specifically recognizing CD19, and HVRs and framework regions of the second antibody moiety specifically  recognizing CD3. Amino acid substitutions may be introduced into the bispecific antibody (e.g., tandem scFv bispecific antibody) and the resulting modified bispecific antibodies may be screened for a desired activity, e.g., retained/improved target binding or decreased immunogenicity.
Conservative substitutions are shown in Table B below.
Table B. Conservative Amino Acid Substitutions
Amino acids may be grouped into different classes according to common side-chain properties:
a. hydrophobic: Norleucine, Met, Ala, Val, Leu, Ile;
b. neutral hydrophilic: Cys, Ser, Thr, Asn, Gln;
c. acidic: Asp, Glu;
d. basic: His, Lys, Arg;
e. residues that influence chain orientation: Gly, Pro;
f. aromatic: Trp, Tyr, Phe.
Non-conservative substitutions will entail exchanging a member of one of these classes for another class.
Exemplary substitutional variants include affinity matured bispecific antibodies, such as bispecific antibodies comprising an affinity matured first antibody moiety specifically recognizing CD19 and/or an affinity matured second antibody moiety specifically recognizing CD3, e.g., using phage display-based affinity maturation techniques. Briefly, one or more CDR residues are mutated and the variant antibody moieties displayed on phage and screened for a particular biological activity (e.g., binding affinity) . Alterations (e.g., substitutions) may be made in HVRs, e.g., to improve affinity of the bispecific antibody to its target. Such alterations may be made in HVR “hotspots, ” i.e., residues encoded by codons that undergo mutation at high frequency during the somatic maturation process (see, e.g., Chowdhury, Methods Mol. Biol. 207: 179-196 (2008) ) , and/or specificity determining residues (SDRs) , with the resulting variant VH or VL being tested for binding affinity. Affinity maturation by constructing and reselecting from secondary libraries has been described, e.g., in Hoogenboom et al. in Methods in Molecular Biology 178: 1-37 (O'Brien et al., ed., Human Press, Totowa, NJ, (2001) . )
A useful method for identification of residues or regions of a target-binding moiety that may be targeted for mutagenesis is called “alanine scanning mutagenesis” as described by Cunningham and Wells (1989) Science, 244: 1081-1085. In this method, a residue or group of target residues (e.g., charged residues such as arg, asp, his, lys, and glu) are identified and replaced by a neutral or negatively charged amino acid (e.g., alanine or polyalanine) to determine whether the interaction of the bispecific antibody with its target is affected. Further substitutions may be introduced at the amino acid locations demonstrating functional sensitivity to the initial substitutions. Alternatively, or additionally, a crystal structure of the bispecific antibody-target complex can be determined to identify contact points between the bispecific antibody and the target. Such contact residues and neighboring residues may be targeted or eliminated as candidates for substitution. Variants may be screened to determine whether they contain the desired properties.
v. Linkers
In some embodiments, the bispecific antibody, first antibody moiety specifically recognizing CD19, and/or second antibody moiety specifically recognizing CD3 described herein comprise one or more linkers. In some embodiments, the first antibody moiety specifically recognizing CD19 is an scFv, and comprises one or more linkers between the VH and VL. In some embodiments, the second antibody moiety specifically recognizing CD3 is an scFv, and comprises one or more linkers between the VH and VL. In some embodiments, the bispecific antibody comprises one or more linkers between the first antibody moiety specifically recognizing CD19 and the second antibody moiety specifically recognizing CD3. The length, the degree of flexibility and/or other properties of the linker (s) used in the bispecific antibodies may influence the properties of the bispecific antibodies, including but not limited to influencing the affinity, specificity, or avidity, for one or more particular antigens or epitopes. For example, longer linkers may be selected to ensure that two adjacent domains do not sterically interfere with one another. In some embodiments, a linker (such as peptide linker) comprises flexible residues (such as glycine (G) and serine (S) ) so that the first antibody moiety specifically recognizing CD19 and the second antibody moiety specifically recognizing CD3 are free to move relative to each other. In some embodiments, the linker is a peptide linker. In some embodiments, the linker is a non-cleavable linker. In some embodiments, the linker is a cleavable linker.
Other linker considerations include the effect on physical or pharmacokinetic properties of the resulting compound, such as solubility, lipophilicity, hydrophilicity, hydrophobicity, stability (more or less stable as well as planned degradation) , rigidity, flexibility, immunogenicity, modulation of antibody binding, the ability to be incorporated into a micelle or liposome, and the like.
The peptide linker may have a naturally occurring sequence, or a non-naturally occurring sequence. For example, a sequence derived from the hinge region of heavy chain only antibodies may be used as the linker. See, for example, WO1996/34103.
The peptide linker can be of any suitable length. In some embodiments, the peptide linker is at least about any of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 50, 75, 100, or more, amino acids long. In some embodiments, the peptide linker is no more than about any of 100, 75, 50, 40, 35, 30, 25, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5 or fewer, amino acids long. In some embodiments, the length of the peptide linker is any of about  1 amino acid to about 10 amino acids, about 1 amino acid to about 20 amino acids, about 1 amino acid to about 30 amino acids, about 5 amino acids to about 15 amino acids, about 10 amino acids to about 25 amino acids, about 5 amino acids to about 30 amino acids, about 10 amino acids to about 30 amino acids long, about 30 amino acids to about 50 amino acids, about 50 amino acids to about 100 amino acids, or about 1 amino acid to about 100 amino acids.
An essential technical feature of such peptide linker is that said peptide linker does not comprise any polymerization activity. The characteristics of a peptide linker, which comprise the absence of the promotion of secondary structures, are known in the art and described, e.g., in Dall’Acqua et al. (Biochem. (1998) 37, 9266-9273) , Cheadle et al. (Mol Immunol (1992) 29, 21-30) and Raag and Whitlow (FASEB (1995) 9 (1) , 73-80) . In some embodiments, the peptide linker does not promote the formation of any secondary structures. The linkage of the domains to each other can be provided by, e.g., genetic engineering. Methods for preparing fused and operatively linked bispecific single chain constructs and expressing them in mammalian cells or bacteria are well-known in the art (e.g. WO 99/54440, Ausubel, Current Protocols in Molecular Biology, Green Publishing Associates and Wiley Interscience, N. Y. 1989 and 1994 or Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y., 2001) .
The peptide linker can be a stable linker, which is not cleavable by proteases, especially by Matrix metalloproteinases (MMPs) .
In some embodiments, the peptide linker is a flexible linker. Exemplary flexible linkers include glycine polymers (G) n, where n is an integer of at least one, and glycine-serine polymers (including, for example, (GS) n, where n is an integer of at least one) , glycine-alanine polymers, alanine-serine polymers, and other flexible linkers known in the art. In some embodiments, the linker is a GS linker.
In some embodiments, the first antibody moiety specifically recognizing CD19 and the second antibody moiety specifically recognizing CD3 are linked together by a linker of sufficient length to enable the antigen binding domains of the first and second antibody moieties to fold in such a way as to permit binding to CD19 and CD3. In some embodiments, the linker comprises an amino acid sequence set forth in any one of SEQ ID NOs: 36-38.
In some embodiments, the portion of the coding sequence encoding the linker comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 72-74, or a nucleic acid sequence  comprising at least about 80%sequence identity to the nucleic acid sequence set forth in any one of SEQ ID NOs: 72-74. In some embodiments, the portion of the coding sequence encoding the linker comprises a nucleic acid sequence comprising at least about 80%sequence identity to nucleotides 334-378 of SEQ ID NO: 15 or 17. In some embodiments, the portion of the coding sequence encoding the linker comprises a nucleic acid sequence comprising at least about 80%sequence identity to nucleotides 751-765 of any one of SEQ ID NOs: 15 and 39-49. In some embodiments, the portion of the coding sequence encoding the linker comprises a nucleic acid sequence comprising at least about 80%sequence identity to nucleotides 1, 123-1, 176 of SEQ ID NO: 15, or a nucleic acid sequence comprising at least about 80%sequence identity to nucleotides 299-352 of SEQ ID NO: 19.
B. mRNA features
The mRNAs provided herein may comprise sequences or features in addition to the coding sequence encoding a bispecific antibody. These features may be used, for example, to improve targeting of the bispecific antibody encoded by the mRNA and to increase stability of the mRNA. Exemplary features may include, but are not limited to, a nucleic acid sequence encoding a signal peptide, 5’ and 3’ untranslated regions (UTRs) , poly (A) tails, 5’ caps, and/or chemical modifications of the mRNA.
i. Signal peptide
In some aspects, the mRNA provided herein comprises a nucleic acid sequence encoding a signal peptide. The nucleic acid sequence encoding a signal peptide may or may not be present in the mRNA provided herein. Signal peptides are short peptides that may be present at the N-terminus or the C-terminus of a newly synthesized protein, that may function to properly translocate the protein. In some embodiments, the signal peptide assists with translocating the bispecific antibody encoded by the coding sequence of the mRNA (e.g., tandem scFv bispecific antibody) . In some embodiments, the signal peptide translocates the bispecific antibody to the cellular membrane.
In some embodiments, the nucleic acid sequence encoding the signal peptide is at the 5’ end of the coding sequence of the mRNA. In some embodiments, the nucleic acid sequence encoding the signal peptide comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity to the nucleic acid sequence set forth in any one of SEQ ID NOs: 11-13. In some embodiments, the nucleic acid sequence encoding  the signal peptide comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 11-13. In some embodiments, the nucleic acid sequence encoding the signal peptide comprises a nucleic acid sequence set forth in SEQ ID NO: 11. In some embodiments, the nucleic acid sequence encoding the signal peptide comprises a nucleic acid sequence set forth in SEQ ID NO: 12. In some embodiments, the nucleic acid sequence encoding the signal peptide comprises a nucleic acid sequence set forth in SEQ ID NO: 13. In some embodiments, the nucleic acid sequence encoding the signal peptide is at the 5’ end of a 5’ UTR. In some embodiments, the nucleic acid sequence encoding the signal peptide is between a 5’ UTR and the coding sequence of the mRNA. In some embodiments, the nucleic acid sequence encoding the signal peptide is at the 3’ end of a 3’ UTR. In some embodiments, the nucleic acid sequence encoding the signal peptide is between a 3’ UTR and the coding sequence of the mRNA.
In some embodiments, the signal peptide is at the N-terminus of the bispecific antibody encoded by the coding sequence of the mRNA. In some embodiments, the signal peptide comprises an amino acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity to the amino acid sequence set forth in any one of SEQ ID NOs: 8-10. In some embodiments, the signal peptide comprises an amino acid sequence set forth in any one of SEQ ID NOs: 8-10. In some embodiments, the signal peptide comprises an amino acid sequence set forth in SEQ ID NO: 8. In some embodiments, the signal peptide comprises an amino acid sequence set forth in SEQ ID NO: 9. In some embodiments, the signal peptide comprises an amino acid sequence set forth in SEQ ID NO: 10.
ii. 5’ and 3’ untranslated region (UTR)
In some embodiments, the mRNA comprises one or more untranslated regions (UTRs) . The UTR of the mRNA may be involved in various regulatory aspects of gene expression. It should be understood that the UTRs (e.g., the 5’ UTRs and/or the 3’ UTRs) provided herein are examples, and that the mRNA may comprise any UTR from any gene. Furthermore, multiple wild-type UTRs of any known gene may be utilized. It is also within the scope of the present invention to provide synthetic (e.g., artificial UTRs) which are not variants of wild type genes. These UTRs or portions thereof may be placed in the same orientation as in the transcript from which they were selected or may be altered in orientation or location. Hence a 5’ or 3’ , UTR may be inverted, shortened, lengthened, made chimeric with one or more other 5’ UTRs or 3’ UTRs. As used herein, the term “altered” as it relates to a UTR sequence, means that the UTR has been changed in some way in  relation to a reference sequence. For example, a 3’ or 5’ UTR may be altered relative to a wild type or native UTR by the change in orientation or location as taught above or may be altered by the inclusion of additional nucleotides, deletion of nucleotides, swapping or transposition of nucleotides. Any of these changes producing an “altered” UTR (whether 3’ or 5’ ) comprise a variant UTR.
In some embodiments, a double, triple or quadruple UTR, such as a 5’ or 3’ UTR may be used. As used herein, a “double” UTR is one in which two copies of the same UTR are encoded either in series or substantially in series. It is also within the scope of the present invention to have patterned UTRs. As used herein “patterned UTRs” are those UTRs which reflect a repeating or alternating pattern, such as ABABAB or AABBAABBAABB or ABCABCABC or variants thereof repeated once, twice, or more than 3 times. In these patterns, each letter, A, B, or C represent a different UTR at the nucleotide level. The UTRs provided herein may also include translation enhancer elements (TEE) .
In some embodiments, the mRNA comprises a 5’ UTR. The 5’ UTRs provided herein may be recognized by the ribosome, thereby allowing the ribosome to bind and initiate translation of the mRNA (e.g., translation of the coding sequence and/or nucleic acid sequence encoding a signal peptide of the mRNA) . In some embodiments, the 5’ UTR is upstream from the coding sequence of the mRNA.
In some embodiments, the 5’ UTR is from an organism or is synthetic. In some embodiments, the 5’ UTR is UTR32, is a 28M mutant, is from Xenopus globin, or is from ZX (e.g., from tobacco etch virus) . In some embodiments, the 5’ UTR is from Xenopus globin. In some embodiments, the 5’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 1. In some embodiments, the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 1. In some embodiments, the 5’ UTR is UTR32. In some embodiments, the 5’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 2. In some embodiments, the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 2. In some embodiments, the 5’ UTR is 28M. In some embodiments, the 5’ UTR is a 28M mutant. In some embodiments, the 5’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid  sequence set forth in SEQ ID NO: 3. In some embodiments, the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 3. In some embodiments, the 5’ UTR is from ZX. In some embodiments, the 5’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 4. In some embodiments, the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 4.
In some embodiments, the mRNA comprises a 3’ UTR. The 3’ UTRs provided herein may be involved in translation termination (e.g., translation of the coding sequence and/or nucleic acid sequence encoding a signal peptide of the mRNA) , and can also be important for post-transcriptional modifications. In some embodiments, the 3’ UTR is downstream from the coding sequence of the mRNA. In some embodiments, the 3’ UTR immediately follows the translation stop codon of the coding sequence of the mRNA. In some embodiments, the mRNA comprises one or more stop codons before the 3’ UTR.
In some embodiments, the 3’ UTR is from an organism or is synthetic. In some embodiments, the 3’ UTR is 28M, is from Homo sapiens hemoglobin, or is from ZX. In some embodiments, the 3’ UTR is from Homo sapiens hemoglobin. In some embodiments, the 3’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 5. In some embodiments, the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 5. In some embodiments, the 3’ UTR is 28M. In some embodiments, the 3’ UTR is a 28M mutant. In some embodiments, the 3’ UTR comprises a nucleic acid sequence comprising at least about 80%(such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 6. In some embodiments, the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 6. In some embodiments, the 3’ UTR is from ZX. In some embodiments, the 3’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 7. In some embodiments, the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 7.
In some embodiments, the mRNA comprises a 5’ UTR and a 3’ UTR, such as any of the 5’ UTRs and 3’ UTRs provided herein. In some embodiments, the 5’ UTR and the 3’ UTR are derived from the same species. In some embodiments, the 5’ UTR and the 3’ UTR are not derived  from the same species. In some embodiments, the 5’ UTR is synthetic, and the 3’ UTR is not synthetic. In some embodiments, the 5’ UTR is not synthetic, and the 3’ UTR is synthetic. In
In some embodiments, the mRNA comprises a 5’ UTR from Xenopus globin and a 3’ UTR from Homo sapiens hemoglobin. In some embodiments, the 5’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 1, and the 3’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 5. In some embodiments, the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 1, and the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 5.
In some embodiments, the mRNA comprises a 5’ UTR from Xenopus globin and a 3’ UTR that is 28M. In some embodiments, the 5’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 1, and the 3’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 6. In some embodiments, the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 1, and the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 6.
In some embodiments, the mRNA comprises a 5’ UTR from Xenopus globin and a 3’ UTR from ZX. In some embodiments, the 5’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 1, and the 3’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 7. In some embodiments, the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 1, and the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 7.
In some embodiments, the mRNA comprises a 5’ UTR that is UTR32 and a 3’ UTR from Homo sapiens hemoglobin. In some embodiments, the 5’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 2, and the 3’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%)  sequence identity the nucleic acid sequence set forth in SEQ ID NO: 5. In some embodiments, the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 2, and the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 5.
In some embodiments, the mRNA comprises a 5’ UTR that is UTR32 and a 3’ UTR that is 28M. In some embodiments, the 5’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 2, and the 3’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 6. In some embodiments, the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 2, and the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 6.
In some embodiments, the mRNA comprises a 5’ UTR that is UTR32 and a 3’ UTR from ZX. In some embodiments, the 5’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 2, and the 3’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 7. In some embodiments, the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 2, and the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 7.
In some embodiments, the mRNA comprises a 5’ UTR that is a 28M mutant and a 3’ UTR from Homo sapiens hemoglobin. In some embodiments, the 5’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 3, and the 3’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 5. In some embodiments, the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 3, and the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 5.
In some embodiments, the mRNA comprises a 5’ UTR from ZX and a 3’ UTR from Homo sapiens hemoglobin. In some embodiments, the mRNA comprises a 5’ UTR that is a 28M mutant and a 3’ UTR from Homo sapiens hemoglobin. In some embodiments, the 5’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%,  90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 4, and the 3’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 5. In some embodiments, the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 4, and the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 5.
In some embodiments, the mRNA comprises a 5’ UTR from ZX and a 3’ UTR that is 28M. In some embodiments, the 5’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 4, and the 3’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 6. In some embodiments, the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 4, and the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 6.
In some embodiments, the mRNA comprises a 5’ UTR from ZX and a 3’ UTR from ZX. In some embodiments, the 5’ UTR comprises a nucleic acid sequence comprising at least about 80%(such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 4, and the 3’ UTR comprises a nucleic acid sequence comprising at least about 80% (such as about any of 80%, 85%, 90%, 95%, or 99%) sequence identity the nucleic acid sequence set forth in SEQ ID NO: 7. In some embodiments, the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 4, and the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 7.
iii. Additional features
In some embodiments, the mRNA comprises one or more additional features, such as but not limited to a poly (A) sequence, one or more chemical modifications, a 5’ cap, or a combination thereof.
In some embodiments, the mRNA comprises a poly (A) sequence (e.g., a polyadenylation sequence) . Poly (A) sequences consist of multiple adenosine monophosphates in succession. In some embodiments, the poly (A) sequence is crucial for translation of the mRNA. In some embodiments, the poly (A) sequence is downstream of the coding sequence of the mRNA. In some embodiments, the poly (A) sequence is downstream of a 3’ UTR of the mRNA. In some embodiments, the poly (A) sequence has a length of about 50 nucleotides or longer, such as about  60 nucleotides, 70 nucleotides, 80 nucleotides, 90 nucleotides, 100 nucleotides, 150 nucleotides, or longer. In some embodiments, the poly (A) sequence has a length of about 150 nucleotides or shorter, such as about 100 nucleotides, 90 nucleotides, 80 nucleotides, 70 nucleotides, 50 nucleotides, or shorter. In some embodiments, the poly (A) sequence has a length of about 105 nucleotides. In some embodiments, the poly (A) sequence comprises a nucleic acid sequence set forth in SEQ ID NO: 75.
In some embodiments, the mRNA comprises a chemical modification. In some embodiments, one or more nucleic acids of the mRNA comprise a chemical modification. In some embodiments, each nucleic acid of the mRNA comprises a chemical modification. In some embodiments, the chemical modification occurs in the coding sequence, an intron, the 3’ UTR, or the 5’ UTR of the mRNA. In some embodiments, the chemical modification includes a modification to an adenosine, cytidine, guanosine, and/or a uridine base. In some embodiments, each adenosine base of the mRNA comprises a chemical modification. In some embodiments, each cytidine base of the mRNA comprises a chemical modification. In some embodiments, each guanosine base of the mRNA comprises a chemical modification. In some embodiments, each uridine base of the mRNA comprises a chemical modification. In some embodiments, the adenosine is converted to an inosine, or methylated to N1-methyladenosine, N6-methyladenosine, or N6, N6-dimethyladenosine. In some embodiments, the cytidine is converted to uridine, acetylated to N4-acetylcytidine, or methylated to 3-methylcytidine or 5-methylcytidine. In some embodiments, the 5-methylcytidine is further converted to 5-hydroxymethylcytidine. In some embodiments, the guanosine is methylated to 7-methylguanosine or oxidized to 7, 8-dihydro-8-oxoguanosine. In some embodiments, the ribose sugars of all nucleotides can be 2′-O-methylated. In some embodiments, the uridine is converted to pseudouridine (Ψ) . In some embodiments, each uridine of the mRNA is converted to a pseudouridine. In some embodiments, the mRNA comprises an N1-methylpseudouridine chemical modification. In some embodiments, each uridine of the mRNA is converted to an N1-methylpseudouridine.
In some embodiments, the mRNA comprises a 5’ cap. In some embodiments, the 5’ cap comprises a 7-methylguanosine (m7G) moiety, a trimethylated m2′2′7G moiety, or an NAD+. In some embodiments, the 5’ cap is added to the mRNA via a 5’ –5’ triphosphate linkage to the first transcribed nucleotide of the mRNA.
C. Exemplary mRNAs
Exemplary mRNAs comprising a coding sequence encoding a bispecific antibody comprising a first antibody moiety specifically recognizing CD19 and a second antibody moiety specifically recognizing CD3, and various combinations of i) a signal peptide, ii) a 5’ UTR, and iii) a 3’ UTR, are provided in Table 1.
Table 1. Exemplary mRNAs comprising different combinations of nucleic acid sequence encoding a signal peptide, 5’ UTR, and 3’ UTR.
Each combination of mRNA features recited in Table 1 (e.g., combination #1 –combination #30) comprises a coding sequence encoding a bispecific antibody, wherein the bispecific antibody comprises a first antibody moiety specifically recognizing CD19 and a second antibody moiety specifically recognizing CD3. In some embodiments, the mRNA comprising each of combination #1 –combination #30 may comprise one or more additional features, such as any of the additional features provided herein (e.g., a poly (A) sequence, a chemical modification, a 5’ cap, or a combination thereof) . In some embodiments, the mRNA comprising each of combination #1 –combination #30 comprises a poly (A) sequence. In some embodiments, the mRNA comprising each of combination #1 –combination #30 may be formulated in an LNP, such as any of the LNPs provided herein.
In some embodiments, the mRNA comprising each of combination #1 –combination #30 each individually comprise a coding sequence encoding a bispecific antibody comprising a first antibody moiety specifically recognizing CD19, comprising: i) a VH comprising an HC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 20, an HC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 21, and an HC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 22; and ii) a VL comprising an LC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 23, an LC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 24, and an LC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 25. In some embodiments, the first antibody moiety specifically recognizing CD19 comprises a VH comprising an amino acid sequence set forth in SEQ ID NO: 26 and VL comprising an amino acid sequence set forth in SEQ ID NO: 27. In some embodiments, the VH and VL are fused via a peptide linker, for example a peptide linker comprising an amino acid sequence set forth in any one of SEQ ID NOs: 36-38, such as SEQ ID NO: 36. In some embodiments, the mRNA comprises one or more additional features, such as any of the additional features provided herein (e.g., a poly (A) sequence, a chemical modification, a 5’ cap, or a combination thereof) . In some embodiments, the mRNA comprises a poly (A) sequence. In some embodiments, the mRNA may be formulated in an LNP, such as any of the LNPs provided herein.
In some embodiments, the mRNA comprising each of combination #1 –combination #30 each individually comprise a coding sequence encoding a bispecific antibody comprising a second antibody moiety specifically recognizing CD3, comprising: i) a VH comprising an HC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 28, an HC-CDR2 comprising  an amino acid sequence set forth in SEQ ID NO: 29, and an HC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 30; and ii) a VL comprising an LC-CDR1 comprising an amino acid sequence set forth in SEQ ID NO: 31, an LC-CDR2 comprising an amino acid sequence set forth in SEQ ID NO: 32, and an LC-CDR3 comprising an amino acid sequence set forth in SEQ ID NO: 33. In some embodiments, the second antibody moiety specifically recognizing CD3 comprises a VH comprising an amino acid sequence set forth in SEQ ID NO: 34 and VL comprising an amino acid sequence set forth in SEQ ID NO: 35. In some embodiments, the VH and VL are fused via a peptide linker, for example a peptide linker comprising an amino acid sequence set forth in any one of SEQ ID NOs: 36-38, such as SEQ ID NO: 38. In some embodiments, the mRNA comprises comprise one or more additional features, such as any of the additional features provided herein (e.g., a poly (A) sequence, a chemical modification, a 5’ cap, or a combination thereof) . In some embodiments, the mRNA comprises a poly (A) sequence. In some embodiments, the mRNA may be formulated in an LNP, such as any of the LNPs provided herein.
In some embodiments, the mRNA comprising each of combination #1 –combination #30 each individually comprise a coding sequence encoding a bispecific antibody, wherein the coding sequence comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 15 and 39-49. In some embodiments, the mRNA comprising each of combination #1 –combination #30 each individually comprise a coding sequence comprising the nucleic acid sequence set forth in SEQ ID NO: 15. In some embodiments, the mRNA comprising each of combination #1 –combination #30 each individually comprise a coding sequence comprising the nucleic acid sequence set forth in SEQ ID NO: 39. In some embodiments, the mRNA comprising each of combination #1 –combination #30 each individually comprise a coding sequence comprising the nucleic acid sequence set forth in SEQ ID NO: 40. In some embodiments, the mRNA comprising each of combination #1 –combination #30 each individually comprise a coding sequence comprising the nucleic acid sequence set forth in SEQ ID NO: 41. In some embodiments, the mRNA comprising each of combination #1 –combination #30 each individually comprise a coding sequence comprising the nucleic acid sequence set forth in SEQ ID NO: 42. In some embodiments, the mRNA comprising each of combination #1 –combination #30 each individually comprise a coding sequence comprising the nucleic acid sequence set forth in SEQ ID NO: 43. In some embodiments, the mRNA comprising each of combination #1 –combination #30 each individually comprise a coding sequence comprising the nucleic acid sequence set forth in SEQ ID NO: 44. In  some embodiments, the mRNA comprising each of combination #1 –combination #30 each individually comprise a coding sequence comprising the nucleic acid sequence set forth in SEQ ID NO: 45. In some embodiments, the mRNA comprising each of combination #1 –combination #30 each individually comprise a coding sequence comprising the nucleic acid sequence set forth in SEQ ID NO: 46. In some embodiments, the mRNA comprising each of combination #1 –combination #30 each individually comprise a coding sequence comprising the nucleic acid sequence set forth in SEQ ID NO: 47. In some embodiments, the mRNA comprising each of combination #1 –combination #30 each individually comprise a coding sequence comprising the nucleic acid sequence set forth in SEQ ID NO: 48. In some embodiments, the mRNA comprising each of combination #1 –combination #30 each individually comprise a coding sequence comprising the nucleic acid sequence set forth in SEQ ID NO: 49. In some embodiments, the mRNA comprises one or more additional features, such as any of the additional features provided herein (e.g., a poly (A) sequence, a chemical modification, a 5’ cap, or a combination thereof) . In some embodiments, the mRNA comprises a poly (A) sequence. In some embodiments, the mRNA may be formulated in an LNP, such as any of the LNPs provided herein.
In some embodiments, the mRNA comprising each of combination #1 –combination #30 each individually comprise a coding sequence encoding a tandem scFv bispecific antibody, comprising an amino acid sequence set forth in SEQ ID NO: 14. In some embodiments, the coding sequence comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 15 and 39-49. In some embodiments, the mRNA comprises one or more additional features, such as any of the additional features provided herein (e.g., a poly (A) sequence, a chemical modification, a 5’ cap, or a combination thereof) . In some embodiments, the mRNA comprises a poly (A) sequence. In some embodiments, the mRNA may be formulated in an LNP, such as any of the LNPs provided herein.
III. Pharmaceutical compositions
The pharmaceutical composition of the present invention may comprise one or more components to, for example, increase stability of the mRNA, increase cell transfection of the mRNA, permit sustained or delayed release of the mRNA, change the biodistribution of the mRNA, increase the translation of encoded bispecific antibody in vivo, and/or alter the release profile of the encoded bispecific antibody in vivo.
In some embodiments, the pharmaceutical composition may include one or more pharmaceutically acceptable excipients or accessory ingredients such as, but not limited to, one or more solvents, dispersion media, diluents, dispersion aids, suspension aids, granulating aids, disintegrants, fillers, glidants, liquid vehicles, binders, surface active agents, isotonic agents, thickening or emulsifying agents, buffering agents, lubricating agents, oils, preservatives, and other species. Excipients such as waxes, butters, coloring agents, coating agents, flavorings, and perfuming agents may also be included. Pharmaceutically acceptable excipients are well known in the art (see for example Remington's The Science and Practice of Pharmacy, 21st Edition, A. R. Gennaro; Lippincott, Williams &Wilkins, Baltimore, Md., 2006) .
In some aspects, the pharmaceutical composition may comprise lipidoids, liposomes, lipid nanoparticles (LNPs) , polymers, lipoplexes, core-shell nanoparticles, peptides, proteins, cells transfected with the mRNA (e.g., for transplantation into an individual) , hyaluronidase, nanoparticle mimics, and combinations thereof. In some embodiments, the pharmaceutical compositions of the invention can include one or more excipients provided in a ratio to optimize the properties of the mRNA. In some embodiments, the mRNA of the present invention may be formulated in a pharmaceutical composition using self-assembled nucleic acid nanoparticles. In some embodiments, the pharmaceutical composition comprises at least one mRNA, such 1, 2, 3, 4 or 5 mRNAs.
The pharmaceutical compositions described herein may be prepared by any method known or hereafter developed in the art of pharmacology. In general, such preparatory methods include the step of associating the mRNA with an excipient and/or one or more other accessory ingredients. In some embodiments, the pharmaceutical composition may be prepared, packaged, and/or sold in bulk, as a single unit dose, and/or as a plurality of single unit doses. As used herein, a “unit dose” refers to a discrete amount of the pharmaceutical composition comprising a predetermined amount of the mRNA. The amount of the mRNA may generally be equal to the dosage of the mRNA which would be administered to an individual and/or a convenient fraction of such a dosage including, but not limited to, one-half or one-third of such a dosage.
In some embodiments, the relative amounts of the mRNA, the pharmaceutically acceptable excipient, and/or any additional ingredients in the pharmaceutical composition may vary, depending upon the identity, size, and/or condition of the individual being administered the pharmaceutical composition as well as the route by which the pharmaceutical composition is to be  administered. In some embodiments, the pharmaceutical composition may comprise between 0.1%and 99% (w/w) of the mRNA.
A. Lipid nanoparticles (LNPs)
In some embodiments, the pharmaceutical composition comprises an LNP. In some embodiments, the mRNA is formulated in the LNP, such as those described in International Publication No. WO2012170930, herein incorporated by reference in its entirety. In some embodiments, the particle size of the LNP may be increased and/or decreased. The change in particle size may be able to help counter biological reaction such as, but not limited to, inflammation or may increase the biological effect of the mRNA when administered to an individual.
In some embodiments, the LNP comprises between about 30 molar percent to about 55 molar percent of a cationic lipid. In some embodiments, the LNP comprises greater than about 30 molar percent of a cationic lipid, such as greater than any of about 35 molar percent, 40 molar percent, 45 molar percent, 50 molar percent, 55 molar percent, or greater, of a cationic lipid. In some embodiments, the LNP comprises less than about 55 molar percent of a cationic lipid, such as less than any of about 50 molar percent, 45 molar percent, 40 molar percent, 35 molar percent, 30 molar percent, or less, of a cationic lipid.
In some embodiments, the LNP comprises between about 5 molar percent to about 40 molar percent of a phospholipid. In some embodiments, the LNP comprises greater than about 5 molar percent of a phospholipid, such as greater than any of about 10 molar percent, 15 molar percent, 20 molar percent, 25 molar percent, 30 molar percent, 35 molar percent, 40 molar percent, or greater, of a phospholipid. In some embodiments, the LNP comprises less than about 40 molar percent of a phospholipid, such as less than any of about 35 molar percent, 30 molar percent, 25 molar percent, 20 molar percent, 15 molar percent, 10 molar percent, 5 molar percent, or less, of a phospholipid.
In some embodiments, the LNP comprises between about 20 molar percent to about 50 molar percent of a sterol. In some embodiments, the LNP comprises greater than about 20 molar percent of a sterol, such as greater than any of about 25 molar percent, 30 molar percent, 35 molar percent, 40 molar percent, 45 molar percent, 50 molar percent, or greater, of a sterol. In some embodiments, the LNP comprises less than about 50 molar percent of a sterol, such as less than  any of about 45 molar percent, 40 molar percent, 35 molar percent, 30 molar percent, 25 molar percent, 20 molar percent, or less, of a sterol.
In some embodiments, the LNP comprises a cationic lipid, a phospholipid, a sterol, and a polymer conjugated lipid, such as any of the cationic lipids, phospholipids, sterols, and polymer conjugated lipids described herein. In some embodiments, the LNP comprises i) between about 30 molar percent to about 55 molar percent of a cationic lipid, ii) between about 5 molar percent to about 40 molar percent of a phospholipid.
In some embodiments, the LNP comprises a total lipid to mRNA weight ratio of about 10: 1 to about 30: 1, such as any of about 10: 1 to about 20: 1, about 15: 1 to about 25: 1, and about 20: 1 to about 30: 1. In some embodiments, the LNP comprises a total lipid to mRNA weight ratio of greater than about 10: 1, such as greater than any of about 15: 1, 20: 1, 25: 1, 30: 1, or greater. In some embodiments, the LNP comprises a total lipid to mRNA weight ratio of less than about 30: 1, such as less than any of about 25: 1, 20: 1, 15: 1, 10: 1, or less. In some embodiments, the total lipid to mRNA weight ratio may be adjusted depending on the other components of the pharmaceutical composition, the individual to be administered, and/or the route of administration. The amount of mRNA in an LNP, for example, be measured using absorption spectroscopy (e.g., ultraviolet-visible spectroscopy) .
i. Cationic Lipid
In some embodiments, the LNP comprises a cationic lipid, also referred to herein as an “ionizable lipid. ” Cationic lipids that may be comprised in the LNPs provided herein are known in the art. For example, the cationic lipid may include, but is not limited to, the cationic lipids described in International Publication Nos. WO2012040184, WO2011153120, WO2011149733, WO2011090965, WO2011043913, WO2011022460, WO2012061259, WO2012054365, WO2012044638, WO2010080724, WO201021865 and WO2008103276, U.S. Pat. Nos. 7,893,302, 7,404,969 and 8,283,333 and U.S. Patent Publication No. US20100036115 and US20120202871; each of which is herein incorporated by reference in their entirety. In some embodiments, the cationic lipid is selected from the non-limiting group consisting of 3- (didodecylamino) -N1, N1, 4-tridodecyl-1-piperazineethanamine (KL10) , 14, 25-ditridecyl-15, 18, 21, 24-tetraaza-octatriacontane (KL25) , 1, 2-dilinoleyloxy-N, N-dimethylaminopropane (DLin-DMA) , 2, 2-dilinoleyl-4-dimethylaminomethyl- [1, 3] -dioxolane (DLin-K-DMA) , heptatriaconta-6, 9, 28, 31-tetraen-19-yl 4- (dimethylamino) butanoate (DLin-MC3-DMA) , 2, 2- dilinoleyl-4- (2-dimethylaminoethyl) - [1, 3] -dioxolane (DLin-KC2-DMA) , 1, 2-dioleyloxy-N, N-dimethylaminopropane (DODMA) , 2- ( {8- [ (3β) -cholest-5-en-3-yloxy] octyl} oxy) -N, N-dimethyl-3- [(9Z, 12Z) -octadeca-9, 12-dien-1-yloxy] propan-1-amine (Octyl-CLinDMA) , (2R) -2- ( {8- [ (3β) -cholest-5-en-3-yloxy] octyl} oxy) -N, N-dimethyl-3- [ (9Z, 12Z) -octadeca-9, 12-dien-1-yloxy] pro pan-1-amine (Octyl-CLinDMA (2R) ) , and (2S) -2- ( {8- [ (3β) -cholest-5-en-3-yloxy] octyl} oxy) -N, N-di methyl-3- [ (9Z, 12Z) -octadeca-9, 12-dien-1-yloxy] prop an-1-amine (Octyl-CLinDMA (2S) ) , or a pharmaceutically acceptable salt or stereoisomer thereof. In addition to these, the cationic lipid may also be a lipid including a cyclic amine.
In some embodiments, the cationic lipid may be synthesized by methods known in the art and/or as described in International Publication Nos. WO2012040184, WO2011153120, WO2011149733, WO2011090965, WO2011043913, WO2011022460, WO2012061259, WO2012054365, WO2012044638, WO2010080724 and WO201021865; each of which is herein incorporated by reference in their entirety.
Cationic lipids provided herein may include the following Series 01-04 of lipids (and sub-formulas thereof) . In some embodiments, the cationic lipid is according to Formula 01-I or Formula 01-II, a compound listed in Table 01-1, a compound according to Formula 02-I, a compound listed in Table 02-1, a compound according to Formula 03-I, a compound listed in Table 03-1, a compound according to Formula 04-I, or a compound listed in Table 04-1.
a. Series 01 of Lipids
In some embodiments, the cationic lipid contained in the pharmaceutical compositions provided herein is a cationic lipid as described in International Patent Publication No. WO2021204175, the entirety of which is incorporated herein by reference.
In some embodiments, the cationic lipid is a compound of Formula (01-I) :
or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof, wherein:
G1 and G2 are each independently a bond, C2-C12 alkylene, or C2-C12 alkenylene, wherein one or more -CH2-in the alkylene or alkenylene is optionally replaced by -O-;
L1 is –OC (=O) R1, -C (=O) OR1, -OC (=O) OR1, -C (=O) R1, -OR1, -S (O) xR1, -S-SR1, -C (=O) SR1, -SC (=O) R1, -NRaC (=O) R1, -C (=O) NRbRc, -NRaC (=O) NRbRc, -OC (=O) NRbRc, -NRaC (=O) OR1, -SC (=S) R1, -C (=S) SR1, -C (=S) R1, -CH (OH) R1, -P (=O) (ORb) (ORc) , - (C6-C10 arylene) -R1, - (6-to 10-membered heteroarylene) -R1, or R1;
L2 is –OC (=O) R2, -C (=O) OR2, -OC (=O) OR2, -C (=O) R2, -OR2, -S (O) xR2, -S-SR2, -C (=O) SR2, -SC (=O) R2, -NRdC (=O) R2, -C (=O) NReRf, -NRdC (=O) NReRf, -OC (=O) NReRf, -NRdC (=O) OR2, -SC (=S) R2, -C (=S) SR2, -C (=S) R2, -CH (OH) R2, -P (=O) (ORe) (ORf) , - (C6-C10 arylene) -R2, - (6-to 10-membered heteroarylene) -R2, or R2;
R1 and R2 are each independently C6-C32 alkyl or C6-C32 alkenyl;
Ra, Rb, Rd, and Re are each independently H, C1-C24 alkyl, or C2-C24 alkenyl;
Rc and Rf are each independently C1-C32 alkyl or C2-C32 alkenyl;
G3 is C2-C24 alkylene, C2-C24 alkenylene, C3-C8 cycloalkylene, or C3-C8 cycloalkenylene;
R3 is -N (R4) R5;
R4 is C3-C8 cycloalkyl, C3-C8 cycloalkenyl, 4-to 8-membered heterocyclyl, or C6-C10 aryl; or R4, G3 or part of G3, together with the nitrogen to which they are attached form a cyclic moiety;
R5 is C1-C12 alkyl or C3-C8 cycloalkyl; or R4, R5, together with the nitrogen to which they are attached form a cyclic moiety;
x is 0, 1 or 2; and
wherein each alkyl, alkenyl, cycloalkyl, cycloalkenyl, heterocyclyl, aryl, alkylene, alkenylene, cycloalkylene, cycloalkenylene, arylene, heteroarylene, and cyclic moiety is independently optionally substituted.
In some embodiments, the cationic lipid is a compound of Formula (01-II) :
or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof, wherein:
is a single bond or a double bond;
G1 and G2 are each independently a bond, C2-C12 alkylene, or C2-C12 alkenylene, wherein one or more -CH2-in the alkylene or alkenylene is optionally replaced by -O-;
L1 is –OC (=O) R1, -C (=O) OR1, -OC (=O) OR1, -C (=O) R1, -OR1, -S (O) xR1, -S-SR1, -C (=O) SR1, -SC (=O) R1, -NRaC (=O) R1, -C (=O) NRbRc, -NRaC (=O) NRbRc, -OC (=O) NRbRc, -NRaC (=O) OR1, -SC (=S) R1, -C (=S) SR1, -C (=S) R1, -CH (OH) R1, -P (=O) (ORb) (ORc) , - (C6-C10 arylene) -R1, - (6-to 10-membered heteroarylene) -R1, or R1;
L2 is –OC (=O) R2, -C (=O) OR2, -OC (=O) OR2, -C (=O) R2, -OR2, -S (O) xR2, -S-SR2, -C (=O) SR2, -SC (=O) R2, -NRdC (=O) R2, -C (=O) NReRf, -NRdC (=O) NReRf, -OC (=O) NReRf, -NRdC (=O) OR2, -SC (=S) R2, -C (=S) SR2, -C (=S) R2, -CH (OH) R2, -P (=O) (ORe) (ORf) , - (C6-C10 arylene) -R2, - (6-to 10-membered heteroarylene) -R2, or R2;
R1 and R2 are each independently C6-C32 alkyl or C6-C32 alkenyl;
Ra, Rb, Rd, and Re are each independently H, C1-C24 alkyl, or C2-C24 alkenyl;
Rc and Rf are each independently C1-C32 alkyl or C2-C32 alkenyl;
G4 is a bond, C1-C23 alkylene, C2-C23 alkenylene, C3-C8 cycloalkylene, or C3-C8 cycloalkenylene;
R3 is -N (R4) R5;
R4 is C1-C12 alkyl, C3-C8 cycloalkyl, C3-C8 cycloalkenyl, 4-to 8-membered heterocyclyl, or C6-C10 aryl; or R4, G3 or part of G3, together with the nitrogen to which they are attached form a cyclic moiety;
R5 is C1-C12 alkyl or C3-C8 cycloalkyl; or R4, R5, together with the nitrogen to which they are attached form a cyclic moiety;
x is 0, 1 or 2; and
wherein each alkyl, alkenyl, cycloalkyl, cycloalkenyl, heterocyclyl, aryl, alkylene, alkenylene, cycloalkylene, cycloalkenylene, arylene, heteroarylene, and cyclic moiety is independently optionally substituted.
In some embodiments, the cationic lipid is a compound in Table 01-1, or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof
Table 01-1.

b. Series 02 of Lipids
In some embodiments, the cationic lipid contained in the pharmaceutical compositions provided herein is a cationic lipid described in International Patent Application No. PCT/CN2022/116960, the entirety of which is incorporated herein by reference.
In some embodiments, the cationic lipid is a compound of Formula (02-I) :
or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof, wherein:
G1 and G2 are each independently C2-C12 alkylene or C2-C12 alkenylene, wherein one or more -CH2-in G1 and G2 is optionally replaced by -O-, -C (=O) O-, or -OC (=O) -;
each L1 is independently –OC (=O) R1, -C (=O) OR1, -OC (=O) OR1, -C (=O) R1, -OR1, -S (O) xR1, -S-SR1, -C (=O) SR1, -SC (=O) R1, -NRaC (=O) R1, -C (=O) NRbRc, -NRaC (=O) NRbRc, -OC (=O) NRbRc, -NRaC (=O) OR1, -SC (=S) R1, -C (=S) SR1, -C (=S) R1, -CH (OH) R1, -P (=O) (ORb) (ORc) , -NRaP (=O) (ORb) (ORc) ;
each L2 is independently –OC (=O) R2, -C (=O) OR2, -OC (=O) OR2, -C (=O) R2, -OR2, -S (O) xR2, -S-SR2, -C (=O) SR2, -SC (=O) R2, -NRdC (=O) R2, -C (=O) NReRf, -NRdC (=O) NReRf, -OC (=O) NReRf, -NRdC (=O) OR2, -SC (=S) R2, -C (=S) SR2, -C (=S) R2, -CH (OH) R2, -P (=O) (ORe) (ORf) , -NRdP (=O) (ORe) (ORf) ;
R1 and R2 are each independently C6-C24 alkyl or C6-C24 alkenyl;
Ra, Rb, Rd, and Re are each independently H, C1-C24 alkyl, or C2-C24 alkenyl;
Rc and Rf are each independently C1-C24 alkyl or C2-C24 alkenyl;
G3 is C2-C12 alkylene or C2-C12 alkenylene, wherein part or all of alkylene or alkenylene is optionally replaced by a C3-C8 cycloalkylene or C3-C8 cycloalkenylene;
R3 is -N (R4) R5, -OR6, or -SR6;
R4 is C1-C12 alkyl, C2-C12 alkenyl, C3-C8 cycloalkyl, C3-C8 cycloalkenyl, C6-C10 aryl, or 4-to 8-membered heterocycloalkyl;
R5 is H, C1-C12 alkyl, C3-C8 cycloalkyl, C3-C8 cycloalkenyl, C6-C10 aryl, or 4-to 8-membered heterocycloalkyl;
R6 is hydrogen, C1-C12 alkyl, C3-C8 cycloalkyl, C3-C8 cycloalkenyl, or C6-C10 aryl;
x is 0, 1, or 2; and
wherein each alkyl, alkenyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, aryl, alkylene, alkenylene, cycloalkylene, and cycloalkenylene is independently optionally substituted.
In some embodiments, the cationic lipid is a compound in Table 02-1, or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof.
Table 02-1.

c. Series 03 of Lipids
In some embodiments, the cationic lipid contained in the pharmaceutical compositions provided herein is a cationic lipid described in International Patent Publication No. WO2022152109, the entirety of which is incorporated herein by reference.
In some embodiments, the cationic lipid is a compound of Formula (03-I) :
Or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof, wherein:
G1 and G2 are each independently a bond, C2-C12 alkylene, or C2-C12 alkenylene, wherein one or more -CH2-in G1 and G2 is optionally replaced by -O-;
each L1 is independently –OC (=O) R1, -C (=O) OR1, -OC (=O) OR1, -C (=O) R1, -OR1, -S (O) xR1, -S-SR1, -C (=O) SR1, -SC (=O) R1, -NRaC (=O) R1, -C (=O) NRbRc, -NRaC (=O) NRbRc, -OC (=O) NRbRc, -NRaC (=O) OR1, -SC (=S) R1, -C (=S) SR1, -C (=S) R1, -CH (OH) R1, -P (=O) (ORb) (ORc) , -NRaP (=O) (ORb) (ORc) , - (C6-C10 arylene) -R1, - (6-to 10-membered heteroarylene) -R1, - (4-to 8-membered heterocyclylene) -R1, or R1;
each L2 is independently –OC (=O) R2, -C (=O) OR2, -OC (=O) OR2, -C (=O) R2, -OR2, -S (O) xR2, -S-SR2, -C (=O) SR2, -SC (=O) R2, -NRdC (=O) R2, -C (=O) NReRf, -NRdC (=O) NReRf, -OC (=O) NReRf, -NRdC (=O) OR2, -SC (=S) R2, -C (=S) SR2, -C (=S) R2, -CH (OH) R2, -P (=O) (ORe) (ORf) , -NRdP (=O) (ORe) (ORf) , - (C6-C10 arylene) -R2, - (6-to 10-membered heteroarylene) -R2, - (4-to 8-membered heterocyclylene) -R2, or R2;
R1 and R2 are each independently C6-C24 alkyl or C6-C24 alkenyl;
Ra, Rb, Rd, and Re are each independently H, C1-C24 alkyl, or C2-C24 alkenyl;
Rc and Rf are each independently C1-C24 alkyl or C2-C24 alkenyl;
G3 is C2-C12 alkylene or C2-C12 alkenylene, wherein part or all of alkylene or alkenylene is optionally replaced by C3-C8 cycloalkylene, C3-C8 cycloalkenylene, C3-C8 cycloalkynylene, 4-to 8-membered heterocyclylene, C6-C10 arylene, or 5-to 10-membered heteroarylene;
R3 is hydrogen, C1-C12 alkyl, C2-C12 alkenyl, C2-C12 alkynyl, C3-C8 cycloalkyl, C3-C8 cycloalkenyl, C3-C8 cycloalkynyl, 4-to 8-membered heterocyclyl, C6-C10 aryl, or 5-to 10-membered heteroaryl; or R3, G1 or part of G1, together with the nitrogen to which they are attached form a cyclic moiety; or R3, G3 or part of G3, together with the nitrogen to which they are attached form a cyclic moiety;
R4 is C1-C12 alkyl or C3-C8 cycloalkyl;
x is 0, 1, or 2;
n is 1 or 2;
m is 1 or 2; and
wherein each alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, cycloalkynyl, heterocyclyl, aryl, heteroaryl, alkylene, alkenylene, cycloalkylene, cycloalkenylene, cycloalkynylene, heterocyclylene, arylene, heteroarylene, and cyclic moiety is independently optionally substituted.
In some embodiments, the cationic lipid is a compound in Table 03-1, or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof.
Table 03-1.

c. Series 04 of Lipids
In some embodiments, the cationic lipid contained in the pharmaceutical compositions provided herein is a cationic lipid described in International Patent Application No. PCT/CN2022/094227, the entirety of which is incorporated herein by reference.
In some embodiments, the cationic lipid is a compound of Formula (04-I) :
or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof, wherein:
G1 and G2 are each independently a bond, C2-C12 alkylene, or C2-C12 alkenylene;
L1 is –OC (=O) R1, -C (=O) OR1, -OC (=O) OR1, -C (=O) R1, -OR1, -S (O) xR1, -S-SR1, -C (=O) SR1, -SC (=O) R1, -NRaC (=O) R1, -C (=O) NRbRc, -NRaC (=O) NRbRc, -OC (=O) NRbRc, -NRaC (=O) OR1, -SC (=S) R1, -C (=S) SR1, -C (=S) R1, -CH (OH) R1, -P (=O) (ORb) (ORc) , - (C6-C10 arylene) -R1, - (6-to 10-membered heteroarylene) -R1, or R1;
L2 is –OC (=O) R2, -C (=O) OR2, -OC (=O) OR2, -C (=O) R2, -OR2, -S (O) xR2, -S-SR2, -C (=O) SR2, -SC (=O) R2, -NRdC (=O) R2, -C (=O) NReRf, -NRdC (=O) NReRf, -OC (=O) NReRf, -NRdC (=O) OR2, -SC (=S) R2, -C (=S) SR2, -C (=S) R2, -CH (OH) R2, -P (=O) (ORe) (ORf) , - (C6-C10 arylene) -R2, - (6-to 10-membered heteroarylene) -R2, or R2;
R1 and R2 are each independently C5-C32 alkyl or C5-C32 alkenyl;
Ra, Rb, Rd, and Re are each independently H, C1-C24 alkyl, or C2-C24 alkenyl;
Rc and Rf are each independently C1-C32 alkyl or C2-C32 alkenyl;
R0 is C1-C12 alkyl, C2-C12 alkenyl, C3-C8 cycloalkyl, C3-C8 cycloalkenyl, C6-C10 aryl, or 4-to 8-membered heterocycloalkyl;
G3 is C2-C12 alkylene or C2-C12 alkenylene;
R4 is C1-C12 alkyl, C2-C12 alkenyl, C3-C8 cycloalkyl, C3-C8 cycloalkenyl, C6-C10 aryl, or 4-to 8-membered heterocycloalkyl;
R5 is C1-C12 alkyl, C3-C8 cycloalkyl, C3-C8 cycloalkenyl, C6-C10 aryl, or 4-to 8-membered heterocycloalkyl;
x is 0, 1, or 2;
s is 0 or 1; and
wherein each alkyl, alkenyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, aryl, alkylene, alkenylene, arylene, and heteroarylene, is independently optionally substituted.
In some embodiments, the cationic lipid is a compound in Table 04-1, or a pharmaceutically acceptable salt, prodrug or stereoisomer thereof.
Table 04-1.
It should be understood that any embodiment of the cationic lipids used in the lipid nanoparticles provided herein, as set forth above, and any specific substituent and/or variable in the cationic lipid provided herein, as set forth above, may be independently combined with other  embodiments and/or substituents and/or variables of the compounds to form embodiments not specifically set forth above. In addition, in the event that a list of substituents and/or variables is listed for any particular group or variable, it is understood that each individual substituent and/or variable may be deleted from the particular embodiment and/or claim and that the remaining list of substituents and/or variables will be considered to be within the scope of embodiments provided herein.
It should be understood in the present description, combinations of substituents and/or variables of the depicted formulae are permissible only if such contributions result in stable compounds.
d. Other ionizable lipids
As described herein, in some embodiments, an LNP provided herein comprises one or more charged or ionizable lipids in addition to a lipid of Series 01, 02, 03, or 04, e.g., a lipid according to Formulae (01-I) , (01-II) , (02-I) , (03-I) , or (04-I) (and sub-formulas thereof) . Without being bound by the theory, it is contemplated that certain charged or zwitterionic lipid components of a nanoparticle composition resembles the lipid component in the cell membrane, thereby can improve cellular uptake of the nanoparticle. Exemplary charged or ionizable lipids that can form part of the present nanoparticle composition include but are not limited to 3- (didodecylamino) -N1, N1, 4-tridodecyl-1-piperazineethanamine (KL10) , N1- [2- (didodecylamino) ethyl] -N1, N4, N4-tridodecyl-1, 4-piperazinediethanamine (KL22) , 14, 25-ditridecyl-15, 18, 21, 24-tetraaza-octatriacontane (KL25) , 1, 2-dilinoleyloxy-N, N-dimethylaminopropane (DLinDMA) , 2, 2-dilinoleyl-4-dimethylaminomethyl- [1, 3] -dioxolane (DLin-K-DMA) , heptatriaconta-6, 9, 28, 31-tetraen-19-yl 4- (dimethylamino) butanoate (DLin-MC3-DMA) , 2, 2-dilinoleyl-4- (2-dimethylaminoethyl) - [1, 3] -dioxolane (DLin-KC2-DMA) , 1, 2-dioleyloxy-N, N-dimethylaminopropane (DODMA) , 2- ( {8- [ (3β) -cholest-5-en-3-yloxy] octyl} oxy) -N, N-dimethyl-3 [ (9Z, 12Z) -octadeca-9, 12-dien-1-yloxy] propan-1-amine (Octyl-CLinDMA) , (2R) -2- ( {8- [ (3β) -cholest-5-en-3-yloxy] octyl} oxy) -N, N-dimethyl-3- [ (9Z, 12Z) --octadeca-9, 12-dien-1-yloxy] propan-1-amine (Octyl-CLinDMA (2R) ) , (2S) -2- ( {8- [ (3β) -cholest-5-en-3-yloxy] octyl} oxy) -N, N-dimethyl-3- [ (9Z-, 12Z) -octadeca-9, 12-dien-1-yloxy] propan-1-amine (Octyl-CLinDMA (2S) ) , (12Z, 15Z) -N, N-dimethyl-2-nonylhenicosa-12, 15-den-1-amine, N, N-dimethyl-1- { (1S, 2R) -2-octylcyclopropyl} heptadecan-8-amine. Additional exemplary charged or ionizable lipids that can form part of the present nanoparticle composition include the lipids (e.g.,  lipid 5) described in Sabnis et al. “A Novel Amino Lipid Series for mRNA Delivery: Improved Endosomal Escape and Sustained Pharmacology and Safety in Non-human Primates” , Molecular Therapy Vol. 26 No 6, 2018, the entirety of which is incorporated herein by reference.
In some embodiments, suitable cationic lipids include N- [1- (2, 3-dioleyloxy) propyl] -N, N, N-trimethylammonium chloride (DOTMA) ; N- [1- (2, 3-dioleoyloxy) propyl] -N, N, N-trimethylammonium chloride (DOTAP) ; 1, 2-dioleoyl-sn-glycero-3-ethylphosphocholine (DOEPC) ; 1, 2-dilauroyl-sn-glycero-3-ethylphosphocholine (DLEPC) ; 1, 2-dimyristoyl-sn-glycero-3-ethylphosphocholine (DMEPC) ; 1, 2-dimyristoleoyl-sn-glycero-3-ethylphosphocholine (14: 1) ; N1- [2- ( (1S) -1- [ (3-aminopropyl) amino] -4- [di (3-amino-propyl) amino] butylcarboxamido) ethyl] -3, 4-di [oleyloxy] -benzamide (MVL5) ; dioctadecylamido-glycylspermine (DOGS) ; 3b- [N- (N', N'-dimethylaminoethyl) carbamoyl] cholesterol (DC-Chol) ; dioctadecyldimethylammonium bromide (DDAB) ; SAINT-2, N-methyl-4- (dioleyl) methylpyridinium; 1, 2-dimyristyloxypropyl-3-dimethylhydroxyethylammonium bromide (DMRIE) ; 1, 2-dioleoyl-3-dimethyl-hydroxyethyl ammonium bromide (DORIE) ; 1, 2-dioleoyloxypropyl-3-dimethylhydroxyethyl ammonium chloride (DORI) ; di-alkylated amino acid (DILA2) (e.g., C18: 1-norArg-C16) ; dioleyldimethylammonium chloride (DODAC) ; 1-palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine (POEPC) ; 1, 2-dimyristoleoyl-sn-glycero-3-ethylphosphocholine (MOEPC) ; (R) -5- (dimethylamino) pentane-1, 2-diyl dioleate hydrochloride (DODAPen-Cl) ; (R) -5-guanidinopentane-1, 2-diyl dioleate hydrochloride (DOPen-G) ; and (R) -N, N, N-trimethyl-4, 5-bis (oleoyloxy) pentan-1-aminium chloride (DOTAPen) . Also suitable are cationic lipids with headgroups that are charged at physiological pH, such as primary amines (e.g., DODAG N', N'-dioctadecyl-N-4, 8-diaza-10-aminodecanoylglycine amide) and guanidinium head groups (e.g., bis-guanidinium-spermidine-cholesterol (BGSC) , bis-guanidiniumtren-cholesterol (BGTC) , PONA, and (R) -5-guanidinopentane-1, 2-diyl dioleate hydrochloride (DOPen-G) ) . Yet another suitable cationic lipid is (R) -5- (dimethylamino) pentane-1, 2-diyl dioleate hydrochloride (DODAPen-Cl) . In certain embodiments, the cationic lipid is a particular enantiomer or the racemic form, and includes the various salt forms of a cationic lipid as above (e.g., chloride or sulfate) . For example, in some embodiments, the cationic lipid is N- [1- (2, 3-dioleoyloxy) propyl] -N, N, N-trimethylammonium chloride (DOTAP-Cl) or N- [1- (2, 3-dioleoyloxy) propyl] -N, N, N-trimethylammonium sulfate (DOTAP-Sulfate) . In some embodiments, the cationic lipid is an ionizable cationic lipid such as, e.g., dioctadecyldimethylammonium bromide (DDAB) ; 1, 2- dilinoleyloxy-3-dimethylaminopropane (DLinDMA) ; 2, 2-dilinoleyl-4- (2dimethylaminoethyl) - [1, 3] -dioxolane (DLin-KC2-DMA) ; heptatriaconta-6, 9, 28, 31-tetraen-19-yl 4- (dimethylamino) butanoate (DLin-MC3-DMA) ; 1, 2-dioleoyloxy-3-dimethylaminopropane (DODAP) ; 1, 2-dioleyloxy-3-dimethylaminopropane (DODMA) ; and morpholinocholesterol (Mo-CHOL) . In certain embodiments, a lipid nanoparticle includes a combination or two or more cationic lipids (e.g., two or more cationic lipids as above) .
Additionally, in some embodiments, the charged or ionizable lipid that can form part of the present nanoparticle composition is a lipid including a cyclic amine group. Additional cationic lipids that are suitable for the formulations and methods disclosed herein include those described in WO2015199952, WO2016176330, and WO2015011633, the entire contents of each of which are hereby incorporated by reference in their entireties. Additionally, in some embodiments, the charged or ionizable lipid that can form part of the present nanoparticle composition is a lipid including a cyclic amine group. Additional cationic lipids that are suitable for the formulations and methods disclosed herein include those described in WO2015199952, WO2016176330, and WO2015011633, the entire contents of each of which are hereby incorporated by reference in their entireties.
ii. Phospholipid
In some embodiments, the LNP comprises a phospholipid. Exemplary phospholipids are described in US20180000953A1, the contents of which is incorporated by reference in its entirety. In some embodiments, the phospholipid may include one or more (poly) unsaturated lipids. In some embodiments, a phospholipid of the LNP includes a phospholipid moiety and one or more fatty acid moieties, one or more of which may be unsaturated. In some embodiments, the phospholipid moiety may be selected from the non-limiting group consisting of phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl glycerol, phosphatidyl serine, phosphatidic acid, 2-lysophosphatidyl choline, and a sphingomyelin. In some embodiments, the fatty acid moiety may be selected from the non-limiting group consisting of lauric acid, myristic acid, myristoleic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, linoleic acid, alpha-linolenic acid, erucic acid, arachidic acid, arachidonic acid, phytanoic acid, eicosapentaenoic acid, behenic acid, docosapentaenoic acid, and docosahexaenoic acid. In some embodiments, the phospholipid is selected from the group consisting of 1, 2-dilinoleoyl-sn-glycero-3-phosphocholine (DLPC) , 1, 2-dimyristoyl-sn-glycero-phosphocholine (DMPC) , 1, 2-dioleoyl-sn-glycero-3-phosphocholine  (DOPC) , 1, 2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) , 1, 2-distearoyl-sn-glycero-3-phosphocholine (DSPC) , 1, 2-diundecanoyl-sn-glycero-phosphocholine (DUPC) , 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) , 1, 2-di-O-octadecenyl-sn-glycero-3-phosphocholine (18: 0 Diether PC) , 1-oleoyl-2-cholesterylhemisuccinoyl-sn-glycero-3-phosphocholine (OChemsPC) , 1-hexadecyl-sn-glycero-3-phosphocholine (C16 Lyso PC) , 1, 2-dilinolenoyl-sn-glycero-3-phosphocholine, 1, 2-diarachidonoyl-sn-glycero-3-phosphocholine, 1, 2-didocosahexaenoyl-sn-glycero-3-phosphocholine, 1, 2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) , 1, 2-diphytanoyl-sn-glycero-3-phosphoethanolamine (ME 16.0 PE) , 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine, 1, 2-dilinoleoyl-sn-glycero-3-phosphoethanolamine, 1, 2-dilinolenoyl-sn-glycero-3-phosphoethanolamine, 1, 2-diarachidonoyl-sn-glycero-3-phosphoethanolamine, 1, 2-didocosahexaenoyl-sn-glycero-3-phosphoethanolamine, 1, 2-dioleoyl-sn-glycero-3-phospho-rac- (1-glycerol) sodium salt (DOPG) , and sphingomyelin, or a pharmaceutically acceptable salt thereof. Non-natural species including natural species with modifications and substitutions including branching, oxidation, cyclization, and alkynes are also contemplated.
iii. Sterol
In some embodiments, the LNP comprises a sterol. In some embodiments, the sterol is a structural lipid. In some embodiments, the sterol is cholesterol fecosterol, sitosterol, campesterol, stigmasterol, brassicasterol, ergosterol, tomatidine, tomatine, ursolic acid, or alpha-tocopherol, or a pharmaceutically acceptable salt thereof.
iv. Polymer conjugated lipid
In some embodiments, the LNP comprises one or more polymer conjugated lipids, such as PEGylated lipids (PEG lipids) . Without being bound by the theory, it is contemplated that a polymer conjugated lipid component in a nanoparticle composition can improve of colloidal stability and/or reduce protein absorption of the nanoparticles. Exemplary cationic lipids that can be used in connection with the present disclosure include but are not limited to PEG-modified phosphatidylethanolamines, PEG-modified phosphatidic acids, PEG-modified ceramides, PEG-modified dialkylamines, PEG-modified diacylglycerols, PEG-modified dialkylglycerols, and mixtures thereof. For example, a PEG lipid may be PEG-c-DOMG, PEG-DMG, PEG-DLPE, PEG-DMPE, PEG-DPPC, PEG-DSPE, Ceramide-PEG2000, or Chol-PEG2000.
In some embodiments, the polymer conjugated lipid is a pegylated lipid. For example, some embodiments include a pegylated diacylglycerol (PEG-DAG) such as 1- (monomethoxy-polyethyleneglycol) -2, 3-dimyristoylglycerol (PEG-DMG) , a pegylated phosphatidylethanoloamine (PEG-PE) , a PEG succinate diacylglycerol (PEG-S-DAG) such as 4-O- (2’ , 3’ -di (tetradecanoyloxy) propyl-1-O- (ω-methoxy (polyethoxy) ethyl) butanedioate (PEG-S-DMG) , a pegylated ceramide (PEG-cer) , or a PEG dialkoxypropylcarbamate such as ω-methoxy (polyethoxy) ethyl-N- (2, 3-di (tetradecanoxy) propyl) carbamate or 2, 3-di(tetradecanoxy) propyl-N- (ω-methoxy (polyethoxy) ethyl) carbamate.
In some embodiments, the polymer conjugated lipid is present in a concentration ranging from 1.0 to 2.5 molar percent. In one embodiment, the polymer conjugated lipid is present in a concentration of about 1.7 molar percent. In one embodiment, the polymer conjugated lipid is present in a concentration of about 1.5 molar percent.
In some embodiments, the molar ratio of cationic lipid to the polymer conjugated lipid ranges from about 35: 1 to about 25: 1. In one embodiment, the molar ratio of cationic lipid to polymer conjugated lipid ranges from about 100: 1 to about 20: 1.
In some embodiments, the molar ratio of cationic lipid to the polymer conjugated lipid ranges from about 35: 1 to about 25: 1. In one embodiment, the molar ratio of cationic lipid to polymer conjugated lipid ranges from about 100: 1 to about 20: 1.
In some embodiments, the pegylated lipid has the following Formula:
or a pharmaceutically acceptable salt, tautomer or stereoisomer thereof, wherein:
R12 and R13 are each independently a straight or branched, saturated or unsaturated alkyl chain containing from 10 to 30 carbon atoms, wherein the alkyl chain is optionally interrupted by one or more ester bonds; and
w has a mean value ranging from 30 to 60.
In some embodiments, R12 and R13 are each independently straight, saturated alkyl chains containing from 12 to 16 carbon atoms. In other embodiments, the average w ranges from 42 to 55, for example, the average w is 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54 or 55. In some specific embodiments, the average w is about 49.
In some embodiments, the pegylated lipid has the following Formula:
wherein the average w is about 49.
Polymer conjugated lipids also include the following Series 05 of lipids (and sub-formulas thereof) .
a. Series 05 of Lipids
In some embodiments, the polymer conjugated lipid is a compound of Formula (05-I) :
or a pharmaceutically acceptable salt or stereoisomer thereof, wherein:
L is a lipid;
X is a linker;
each R3 is independently H or C1-C6 alkyl;
each Y1 is independently a bond, O, S, or NRa;
each G4 is independently a bond or C1-C12 alkylene, wherein one or more -CH2-is independently optionally replaced by -O-, -S-, or -NRa-;
each G5 is independently a bond or C1-C12 alkylene, wherein one or more -CH2-is independently optionally replaced by -O-, -S-, or -NRa-;
each Ra is independently H, C1-C12 alkyl, or C2-C12 alkenyl;
one of Z1 and Z2 is a positively charged moiety and the other of Z1 and Z2 is a negatively charged moiety;
n is an integer from 2 to 100;
T is hydrogen, halogen, alkyl, alkenyl, -OR”, -SR”, -COOR”, -OCOR”, -NR”R”, -N+ (R”) 3, -P+ (R”) 3, -S-C (=S) -S-R”, -S-C (=S) -O-R”, -S-C (=S) -NR”R”, -S-C (=S) -aryl, cyano, azido, aryl, heteroaryl, or a targeting group, wherein each occurrence of R” is independently hydrogen or alkyl; and
wherein each alkyl, alkenyl, alkylene, aryl, and heteroaryl is independently optionally substituted.
It is understood that any embodiment of the compounds provided herein, as set forth above, and any specific substituent and/or variable in the compound provided herein, as set forth above, may be independently combined with other embodiments and/or substituents and/or variables of the compounds to form embodiments not specifically set forth above. In addition, in the event that a list of substituents and/or variables is listed for any particular group or variable, it is understood that each individual substituent and/or variable may be deleted from the particular embodiment and/or claim and that the remaining list of substituents and/or variables will be considered to be within the scope of embodiments provided herein.
It is understood that in the present description, combinations of substituents and/or variables of the depicted formulae are permissible only if such contributions result in stable compounds.
v. Additional components
In some embodiments, the LNP may comprise one or more additional components. For example, the LNP may comprise one or more small hydrophobic molecules, such as a vitamin (e.g., vitamin A or vitamin E) , permeability enhancer molecules, carbohydrates (e.g., similar sugars or polysaccharides) , polymers, therapeutic agents, surface altering agents, or other components. In some embodiments, a polymer may be included in and/or used to encapsulate or partially encapsulate the LNP. A polymer may be biodegradable and/or biocompatible.
Therapeutic agents may include, but are not limited to, cytotoxic, chemotherapeutic, and other therapeutic agents. Cytotoxic agents may include, for example, taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, teniposide, vincristine, vinblastine, colchicine, doxorubicin, daunorubicin, dihydroxyanthracinedione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, puromycin, maytansinoids, rachelmycin, and analogs thereof. Radioactive ions may also be used as therapeutic agents and may include, for example, radioactive iodine, strontium, phosphorous, palladium, cesium, iridium, cobalt, yttrium, samarium, and praseodymium. Other therapeutic agents may include, for example, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, and 5-fluorouracil, and decarbazine) , alkylating agents (e.g., mechlorethamine, thiotepa, chlorambucil, rachelmycin, melphalan,  carmustine, lomustine, cyclophosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) , and cisplatin) , anthracyclines (e.g., daunorubicin and doxorubicin) , antibiotics (e.g., dactinomycin, bleomycin, mithramycin, and anthramycin) , and anti-mitotic agents (e.g., vincristine, vinblastine, taxol, and maytansinoids) .
In some embodiments, the pharmaceutical composition and/or LNP comprises a proteinaceous compound capable of providing an additional activation signal for immune effector cells. Such compounds may comprise, but are not limited to CD28 engagers, ICOS engagers, 41 BB engagers, OX40 engagers, CD27 engagers, CD30 engagers, NKG2D engagers, IL2-R engagers or IL12-R engagers. In some embodiments, the "proteinaceous compounds" providing an activation signal for immune effector cells" may be, e.g. a further primary activation signal, or costimulatory (second) signal or any other accessory (third) activation signal. Examples are a T cell receptor (TCR) or TCR-like signal. Preferred formats of proteinaceous compounds comprise additional bispecific antibodies and fragments or derivatives thereof, e.g., bispecific scFv. Proteinaceous compounds can comprise, but are not limited to, antibody fragments, such as scFv fragments, specific for 4-1BB, OX 40, CD27, CD70 or the receptors for B7-RP1, B7-H3 as well as antibody fragments specific for the TCR or superantigens. Superantigens directly bind to certain subfamilies of TCR variable regions in an MHC-independent manner thus mediating the primary T cell activation signal. The proteinaceous compound may also provide an activation signal for an immune effector cell which is a non-T cell. Examples for immune effector cells which are non-T cells comprise, for example, NK cells.
Surface altering agents may include, but are not limited to, anionic proteins (e.g., bovine serum albumin) , surfactants (e.g., cationic surfactants such as dimethyldioctadecyl-ammonium bromide) , sugars or sugar derivatives (e.g., cyclodextrin) , nucleic acids, polymers (e.g., heparin, polyethylene glycol, and poloxamer) , mucolytic agents (e.g., acetylcysteine, mugwort, bromelain, papain, clerodendrum, bromhexine, carbocisteine, eprazinone, mesna, ambroxol, sobrerol, domiodol, letosteine, stepronin, tiopronin, gelsolin, thymosin 134, dornase alfa, neltenexine, and erdosteine) , and DNases (e.g., rhDNase) . In some embodiments, the surface altering agent may be disposed within an LNP and/or on the surface of an LNP in the pharmaceutical composition (e.g., by coating, adsorption, covalent linkage, or other process) .
B. Kits and articles of manufacture
In some embodiments, there is provided an article of manufacture comprising the pharmaceutical compositions provided herein (e.g., a pharmaceutical composition comprising an mRNA comprising a coding sequence encoding a CD19/CD3 bispecific antibody, such as a CD19/CD3 tandem scFv bispecific antibody) . The article of manufacture can comprise a container and a label or package insert on or associated with the container. Suitable containers include, for example, bottles, vials, syringes, etc. The containers may be formed from a variety of materials such as glass or plastic. Generally, the container holds a composition, which is effective for treating a cancer, described herein, and may have a sterile access port. Package insert refers to instructions customarily included in commercial packages of therapeutic products that contain information about the indications, usage, dosage, administration, contraindications and/or warnings concerning the use of such therapeutic products. In some embodiments, the package insert indicates that the pharmaceutical composition is used for treating a cancer (e.g., B-ALL) . The label or package insert may further comprise instructions for administering the composition to an individual.
Additionally, the article of manufacture may further comprise a second container comprising a pharmaceutically acceptable buffer, such as bacteriostatic water for injection (BWFI) , phosphate-buffered saline, Ringer's solution and dextrose solution. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, and syringes.
Kits comprising a pharmaceutical composition are also provided that are useful for various purposes, e.g., for prevention, treatment, or amelioration of a cancer described herein, for delivery of an mRNA or an antibody to an individual, optionally in combination with the articles of manufacture. Kits of the invention include one or more containers comprising any one of the compositions described herein (or unit dosage form and/or article of manufacture) . In some embodiments, the kit further comprises other agents and/or instructions for use in accordance with any of the methods described herein. The kit may further comprise a description of selection of individuals suitable for prevention, treatment, or amelioration of a cancer. Instructions supplied in the kits of the invention may be written instructions on a label or package insert.
For example, in some embodiments, the kit comprises a pharmaceutical composition comprising an mRNA, wherein the mRNA comprises a coding sequence encoding a bispecific antibody, wherein the bispecific antibody comprises a first antibody moiety specifically  recognizing CD19 and a second antibody moiety specifically recognizing CD3. In some embodiments, the bispecific antibody is a tandem scFv.
The kits of the invention are in suitable packaging. Suitable packaging includes, but is not limited to, vials, bottles, jars, flexible packaging (e.g., sealed Mylar or plastic bags) , and the like. Kits may optionally provide additional components such as buffers and interpretative information. The present application thus also provides articles of manufacture, which include vials (such as sealed vials) , bottles, jars, flexible packaging, and the like.
The containers may be unit doses, bulk packages (e.g., multi-dose packages) or sub-unit doses. Kits may also include multiple unit doses of the pharmaceutical compositions and instructions for use and packaged in quantities sufficient for storage and use in pharmacies, for example, hospital pharmacies and compounding pharmacies.
IV. Methods of use
The pharmaceutical compositions comprising an mRNA comprising a coding sequence encoding a bispecific antibody, such as any of the mRNAs and bispecific antibodies provided herein (e.g., a bispecific single chain antibody construct) , may be used for the prevention, treatment, or amelioration of a disease in an individual.
Thus, in some aspects, provided herein is a method of preventing, treating, or ameliorating a disease in an individual, comprising administering to the individual a therapeutically effective amount of the pharmaceutical composition provided herein. In some embodiments, the administration of the pharmaceutical composition depletes B-cells in the individual.
In some embodiments, the disease is a proliferative disease, a cancer, such as a minimal residual cancer (e.g., a minimal residual lymphoma or leukemia) , a tumorous disease (e.g., reheumotid arthritis) , an inflammatory disease, an immunological disorder, an autoimmune disease, an infectious disease, a viral disease, an allergic reaction, a parasitic reaction, a graft-versus-host disease, a host-versus-graft diseases, or a B-cell malignancy. In some embodiments, the B-cell malignancy is non-Hodgkin lymphoma, B-cell leukemia or Hodgkin lymphoma. In some embodiments, the disease is acute lymphoblastic leukemia (ALL) . In some embodiments, the ALL is B-cell ALL (B-ALL) .
In some embodiments, the individual is a mammal (e.g., human, non-human primate, rat, mouse, cow, horse, pig, sheep, goat, dog, cat, etc. ) . In some embodiments, the individual is a human. In some embodiments, the individual is a clinical patient, a clinical trial volunteer, an experimental animal, etc. In some embodiments, the individual is younger than about 60 years old (including for example younger than about any of 50, 40, 30, 25, 20, 15, or 10 years old) . In some embodiments, the individual is older than about 60 years old (including for example older than about any of 70, 80, 90, or 100 years old) . In some embodiments, the individual is suspected of having the disease (e.g., cancer) . In some embodiments, the individual is diagnosed with the disease (e.g., cancer) . In some embodiments, the individual is diagnosed with ALL, such as B-ALL.
In some aspects, provided herein is a method of treating a disease in an individual, comprising administering to the individual a therapeutically effective amount of a pharmaceutical composition comprising an mRNA, wherein the mRNA comprises a coding sequence encoding a bispecific antibody, wherein the bispecific antibody comprises a first antibody moiety specifically recognizing CD19 and a second antibody moiety specifically recognizing CD3. In some embodiments, the bispecific antibody is a tandem scFv, wherein the first antibody moiety specifically recognizing CD19 is an anti-CD19 scFv (such as any of the anti-CD19 scFvs described herein) and the second antibody moiety specifically recognizing CD3 is an anti-CD3 scFv (such as any of the anti-CD3 scFvs described herein) . In some embodiments, the coding sequence encodes a bispecific antibody comprising an amino acid sequence set forth in SEQ ID NO: 14. In some embodiments, the coding sequence comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 15 and 39-49. In some embodiments, the mRNA comprises a nucleic acid sequence encoding a signal peptide. In some embodiments, the mRNA comprises a 5’ UTR. In some embodiments, the 5’ UTR is synthetic (e.g., UTR32 or a 28M mutant) , from Xenopus globin, or from ZX. In some embodiments, the mRNA comprises a 3’ UTR. In some embodiments, the 3’ UTR is synthetic (e.g., 28M) , from Homo sapiens hemoglobin, or from ZX. In some embodiments, the mRNA comprises a poly (A) sequence. In some embodiments, the mRNA comprises a chemical modification. In some embodiments, the mRNA comprises a 5’ cap. In some embodiments, the disease is cancer. In some embodiments, the disease is acute lymphoblastic leukemia (ALL) . In some embodiments, the ALL is B-cell ALL (B-ALL) .
Further provided herein are methods of delivering an antibody (e.g., a bispecific antibody) to an individual, and methods of delivering an mRNA to an individual. In some embodiments, the pharmaceutical composition (e.g., the antibody or the mRNA) is delivered to a somatic cell of the individual. In some embodiments, the bispecific antibody is a tandem scFv, wherein the first antibody moiety specifically recognizing CD19 is an anti-CD19 scFv (such as any of the anti-CD19 scFvs described herein) and the second antibody moiety specifically recognizing CD3 is an anti-CD3 scFv (such as any of the anti-CD3 scFvs described herein) . In some embodiments, the coding sequence encodes a bispecific antibody comprising an amino acid sequence set forth in SEQ ID NO: 14. In some embodiments, the coding sequence comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 15 and 39-49. In some embodiments, the mRNA comprises a nucleic acid sequence encoding a signal peptide. In some embodiments, the mRNA comprises a 5’ UTR. In some embodiments, the 5’ UTR is synthetic (e.g., UTR32 or a 28M mutant) , from Xenopus globin, or from ZX. In some embodiments, the mRNA comprises a 3’ UTR. In some embodiments, the 3’ UTR is synthetic (e.g., 28M) , from Homo sapiens hemoglobin, or from ZX. In some embodiments, the mRNA comprises a poly (A) sequence. In some embodiments, the mRNA comprises a chemical modification. In some embodiments, the mRNA comprises a 5’ cap. In some embodiments, the individual has a disease or is suspected of having a disease. In some embodiments, the disease is cancer. In some embodiments, the disease is acute lymphoblastic leukemia (ALL) . In some embodiments, the ALL is B-cell ALL (B-ALL) .
In some embodiments, the pharmaceutical composition is administered locally to a tumor. In some embodiments, the pharmaceutical composition is administered systemically. In some embodiments, the pharmaceutical composition is administered via intravenous injection. In some embodiments, the pharmaceutical composition is administered via intraperitoneal injection.
In some embodiments, the pharmaceutical composition is administered at a dose of between about 3 μg/dose and about 2000 μg/dose, such as between about 3 μg/dose and about 100 μg/dose, between about 50 μg/dose and about 500 μg/dose, between about 250 μg/dose and about 1000 μg/dose, between about 500 μg/dose and about 1000 μg/dose, or between about 1000 μg/dose and about 2000 μg/dose.
In some embodiments, the pharmaceutical composition is administered to the individual weekly (e.g., once per week) .
In some embodiments, the pharmaceutical composition is administered to the individual for no more than about 54 weeks, such as no more than any of about 52 weeks, 50 weeks, 45 weeks, 40 weeks, 35 weeks, 30 weeks, 25 weeks, 20 weeks, 15 weeks, 10 weeks, 5 weeks, or less.
In some embodiments, the pharmaceutical composition is administered to the individual weekly for no more than about 54 weeks.
The pharmaceutical compositions to be used for in vivo administration must be sterile. This is readily accomplished by, e.g., filtration through sterile filtration membranes.
In some embodiments, the pharmaceutical composition of the present application is administered as a single agent, or in combination with a second, third, or fourth agent (including, e.g., anti-viral drugs, convalescent plasma, anti-inflammatory drugs, etc. ) to prevent, treat, or ameliorate the disease.
Efficacy of the treatments can be evaluated, for example, by evaluation of the number of cancer cells, tumor size or volume, the amount of tumor in the individual (e.g., tumor load) , duration of survival of the individual, quality of life of the individual, bispecific antibody expression and/or activity, detection of serological antibodies against the cancer, and/or Computerized Tomography (CT) imaging.
V. Methods of making mRNA
The mRNAs described herein can be synthesized by methods known in the art, for example, through in vitro transcription of an appropriate DNA template. The promoter for controlling transcription can be any promoter for any RNA polymerase. A DNA template for in vitro transcription can be obtained, for example, by cloning of a nucleic acid, in particular cDNA, and introducing it into an appropriate vector for in vitro transcription. In some embodiments, the RNA may have modified nucleosides, including, for example, pseudouridine, 1-methylpseudouridine.
SEQUENCE LISTING























EXEMPLARY EMBODIMENTS
The following exemplary embodiments are provided herein:
Embodiment 1. A pharmaceutical composition comprising a messenger ribonucleic acid (mRNA) , wherein the mRNA comprises a coding sequence encoding a bispecific antibody, wherein the bispecific antibody comprises a first antibody moiety specifically recognizing CD19 and a second antibody moiety specifically recognizing CD3.
Embodiment 2. The pharmaceutical composition of embodiment 1, wherein the first antibody moiety specifically recognizing CD19 comprises an amino acid sequence set forth in SEQ ID NO: 16, or an amino acid sequence comprising at least about 80%sequence identity to the amino acid sequence set forth in SEQ ID NO: 16.
Embodiment 3. The pharmaceutical composition of embodiment 1 or embodiment 2, wherein the portion of the coding sequence encoding the first antibody moiety specifically recognizing CD19 comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 17 and 50-60, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in any one of SEQ ID NOs: 17 and 50-60.
Embodiment 4. The pharmaceutical composition of any one of embodiments 1-3, wherein the second antibody moiety specifically recognizing CD3 comprises an amino acid sequence set forth in SEQ ID NO: 18, or an amino acid sequence comprising at least about 80%sequence identity to the amino acid sequence set forth SEQ ID NO: 18.
Embodiment 5. The pharmaceutical composition of any one of embodiments 1-4, wherein the portion of the coding sequence encoding the second antibody moiety specifically recognizing CD3 comprises the nucleic acid sequence set forth in any one of SEQ ID NOs: 19 and 61-71, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in any one of SEQ ID NOs: 19 and 61-71.
Embodiment 6. The pharmaceutical composition of any one of embodiments 1-5, wherein the coding sequence encodes an amino acid sequence set forth in SEQ ID NO: 14, or an amino acid sequence comprising at least about 80%sequence identity to the amino acid sequence set forth in SEQ ID NO: 14.
Embodiment 7. The pharmaceutical composition of any one of embodiments 1-6, wherein the coding sequence comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 15 and 39-49, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in any one of SEQ ID NOs: 15 and 39-49.
Embodiment 8. The pharmaceutical composition of any one of embodiments 1-7, wherein the mRNA comprises a nucleic acid sequence encoding a signal peptide.
Embodiment 9. The pharmaceutical composition of embodiment 8, wherein the nucleic acid sequence encoding the signal peptide is at the 5’ end of the coding sequence of the mRNA.
Embodiment 10. The pharmaceutical composition of embodiment 8 or embodiment 9, wherein the nucleic acid sequence encoding the signal peptide comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 11-13, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in any one of SEQ ID NOs: 11-13.
Embodiment 11. The pharmaceutical composition of any one of embodiments 8-10, wherein the signal peptide comprises an amino acid sequence set forth in any one of SEQ ID NOs: 8-10, or an amino acid sequence comprising at least about 80%sequence identity to the amino acid sequence set forth in any one of SEQ ID NOs: 8-10.
Embodiment 12. The pharmaceutical composition of any one of embodiments 1-11, wherein the mRNA comprises a 5’ untranslated region (UTR) .
Embodiment 13. The pharmaceutical composition of embodiment 12, wherein the 5’ UTR is from Xenopus globin.
Embodiment 14. The pharmaceutical composition of embodiment 12 or embodiment 13, wherein the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 1, or a nucleic acid sequence comprising at least about 80%sequence identity the nucleic acid sequence set forth in SEQ ID NO: 1.
Embodiment 15. The pharmaceutical composition of embodiment 12, wherein the 5’ UTR is synthetic.
Embodiment 16. The pharmaceutical composition of embodiment 12 or embodiment 15, wherein the 5’ UTR is UTR32.
Embodiment 17. The pharmaceutical composition of any one of embodiments 12, 15, and 16, wherein the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 2, or a nucleic acid sequence comprising at least about 80%sequence identity the nucleic acid sequence set forth in SEQ ID NO: 2.
Embodiment 18. The pharmaceutical composition of embodiment 12 or embodiment 13, wherein the 5’ UTR is a 28M mutant.
Embodiment 19. The pharmaceutical composition of any one of embodiments 12, 13, and 18, wherein the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 3, or a nucleic acid sequence comprising at least about 80%sequence identity the nucleic acid sequence set forth in SEQ ID NO: 3.
Embodiment 20. The pharmaceutical composition of embodiment 12, wherein the 5’ UTR is from ZX.
Embodiment 21. The pharmaceutical composition of embodiment 12 or embodiment 20, wherein the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 4, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 4.
Embodiment 22. The pharmaceutical composition of any one of embodiments 1-21, wherein the mRNA comprises a 3’ UTR.
Embodiment 23. The pharmaceutical composition of embodiment 22, wherein the 3’ UTR is from Homo sapiens hemoglobin.
Embodiment 24. The pharmaceutical composition of embodiment 22 or embodiment 23, wherein the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 5, or a nucleic acid sequence comprising at least about 80%sequence identity the nucleic acid sequence set forth in SEQ ID NO: 5.
Embodiment 25. The pharmaceutical composition of embodiment 22, wherein the 3’ UTR is synthetic.
Embodiment 26. The pharmaceutical composition of embodiment 22 or embodiment 25, wherein the 3’ UTR is 28M.
Embodiment 27. The pharmaceutical composition of any one of embodiments 22, 25, and 26, wherein the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 6, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 6.
Embodiment 28. The pharmaceutical composition of embodiment 22, wherein the 3’ UTR is from ZX.
Embodiment 29. The pharmaceutical composition of embodiment 22 or embodiment 28, wherein the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 7, or a nucleic acid sequence at least comprising about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 7.
Embodiment 30. The pharmaceutical composition of any one of embodiments 1-29, wherein the mRNA comprises:
i) a 5’ UTR from Xenopus globin and a 3’ UTR from Homo sapiens hemoglobin;
ii) a 5’ UTR from Xenopus globin and a 3’ UTR that is 28M;
iii) a 5’ UTR from Xenopus globin and a 3’ UTR from ZX;
iv) a 5’ UTR that is UTR32 and a 3’ UTR from Homo sapiens hemoglobin;
v) a 5’ UTR that is UTR32 and a 3’ UTR that is 28M;
vi) a 5’ UTR that is UTR32 and a 3’ UTR from ZX;
vii) a 5’ UTR that is a 28M mutant and a 3’ UTR from Homo sapiens hemoglobin;
viii) a 5’ UTR from ZX and a 3’ UTR from Homo sapiens hemoglobin;
ix) a 5’ UTR from ZX and a 3’ UTR that is 28M; or,
x) a 5’ UTR from ZX and a 3’ UTR from ZX.
Embodiment 31. The pharmaceutical composition of any one of embodiments 1-30, wherein the mRNA comprises:
i) a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 1, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 1, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 5, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 5;
ii) a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 1, or a nucleic acid sequence comprising at least about 80%sequence identity to SEQ ID NO: 1, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 6, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 6;
iii) a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 1, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 1, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 7, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 7;
iv) a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 2, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 2, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 5, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 5;
v) a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 2, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 2, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 6, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 6;
vi) a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 2, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 2, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 7, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 7;
vii) a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 3, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 3, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 5, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 5;
viii) a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 4, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 4, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 5, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 5;
ix) a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 4, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 4, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 6, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 6; or,
x) a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 4, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 4, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 7, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 7.
Embodiment 32. The pharmaceutical composition of any one of embodiments 1-31, wherein the portion of the coding sequence encoding the first antibody moiety specifically recognizing CD19 comprises a nucleic acid sequence comprising at least about 80%sequence identity to nucleotides 1-750 of any one of SEQ ID NOs: 15 and 39-49.
Embodiment 33. The pharmaceutical composition of any one of embodiments 1-32, wherein the portion of the coding sequence encoding the second antibody moiety specifically recognizing CD3 comprises a nucleic acid sequence comprising at least about 80%sequence identity to nucleotides 766-1, 494 of any one of SEQ ID NOs: 15 and 39-49.
Embodiment 34. The pharmaceutical composition of any one of embodiments 1-33, wherein the portion of the coding sequence encoding a linker comprises a nucleic acid sequence comprising at least about 80%identity to 751-765 of any one of SEQ ID NOs: 15 and 39-49.
Embodiment 35. The pharmaceutical composition of any one of embodiments 1-34, wherein the mRNA comprises a poly (A) sequence.
Embodiment 36. The pharmaceutical composition of embodiment 35, wherein the poly (A) sequence has a length of about 50 nucleotides or longer.
Embodiment 37. The pharmaceutical composition of any one of embodiments 1-36, wherein the mRNA comprises a chemical modification.
Embodiment 38. The pharmaceutical composition of any one of embodiments 1-37, wherein the mRNA comprises a 5’ cap.
Embodiment 39. The pharmaceutical composition of any one of embodiments 1-38, wherein the pharmaceutical composition comprises a lipid nanoparticle (LNP) .
Embodiment 40. The pharmaceutical composition of embodiment 39, wherein the mRNA is formulated in the LNP.
Embodiment 41. The pharmaceutical composition of embodiment 39 or embodiment 40, wherein the LNP comprises a cationic lipid.
Embodiment 42. The pharmaceutical composition of embodiment 41, wherein the cationic lipid is according to Formula 01-I or Formula 01-II, a compound listed in Table 01-1, a compound according to Formula 02-I, a compound listed in Table 02-1, a compound according to Formula 03-I, a compound listed in Table 03-1, a compound according to Formula 04-I, or a compound listed in Table 04-1.
Embodiment 43. The pharmaceutical composition of any one of embodiments 39-42, wherein the LNP comprises a phospholipid.
Embodiment 44. The pharmaceutical composition of any one of embodiments 39-43, wherein the LNP comprises a sterol.
Embodiment 45. The pharmaceutical composition of any one of embodiments 39-44, wherein the LNP comprises a polymer conjugated lipid.
Embodiment 46. The pharmaceutical composition of embodiment 45, wherein the polymer conjugated lipid is according to Formula 05-I.
Embodiment 47. The pharmaceutical composition of any one of embodiments 39-46, wherein the LNP comprises a cationic lipid, a phospholipid, a sterol, and a polymer conjugated lipid.
Embodiment 48. The pharmaceutical composition of embodiment 47, wherein the LNP comprises a total lipid to mRNA weight ratio of about 10: 1 to about 30: 1.
Embodiment 49. The pharmaceutical composition of any one of embodiments 39-48, wherein the LNP comprises:
i) between about 30 molar percent to about 55 molar percent of a cationic lipid;
ii) between about 5 molar percent to about 40 molar percent of a phospholipid;
iii) between about 20 molar percent to about 50 molar percent of a sterol; and
iv) a polymer conjugated lipid.
Embodiment 50. A method of treating a disease in an individual, comprising administering to the individual a therapeutically effective amount of the pharmaceutical composition of any of one of embodiments 1-47.
Embodiment 51. The method of embodiment 50, wherein the disease is cancer.
Embodiment 52. The method of embodiment 51, wherein the cancer is acute lymphoblastic leukemia (ALL) .
Embodiment 53. The method of embodiment 52, wherein the ALL is B-cell ALL (B-ALL) .
Embodiment 54. A method of delivering an antibody to an individual, comprising administering to the individual a therapeutically effective amount of the pharmaceutical composition of any one of embodiments 1-49.
Embodiment 55. The method of any of embodiments 50-54, wherein the pharmaceutical composition is administered locally to a tumor.
Embodiment 56. The method of any of embodiments 50-54, wherein the pharmaceutical composition is administered systemically, via intravenous injection, or via intraperitoneal injection.
Embodiment 57. A method of delivering an mRNA to an individual, comprising administering to the individual a therapeutically effective amount of the pharmaceutical composition of any one of embodiments 1-46 to a somatic cell of the individual.
Embodiment 58. The method of any one of embodiments 50-56, wherein the pharmaceutical composition is administered at a dose of between about 3 μg/dose and about 2000 μg/dose.
Embodiment 59. The method of any one of embodiments 50-58, wherein the pharmaceutical composition is administered to the individual weekly.
Embodiment 60. The method of any one of embodiments 50-59, wherein the pharmaceutical composition is administered to the individual for no more than 54 weeks.
EXAMPLES
The invention will be more fully understood by reference to the following examples. They should not, however, be construed as limiting the scope of the invention. It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the purview of this application and scope of the appended claims.
Example 1. Preparation of lipids
General preparative HPLC method: HPLC purification is carried out on an Waters 2767 equipped with a diode array detector (DAD) on an Inertsil Pre-C8 OBD column, generally with water containing 0.1%TFA as solvent A and acetonitrile as solvent B.
General LCMS method: LCMS analysis is conducted on a Shimadzu (LC-MS2020) System. Chromatography is performed on a SunFire C18, generally with water containing 0.1%formic acid as solvent A and acetonitrile containing 0.1%formic acid as solvent B.
Example 01: Preparation of Compounds of series 01
Please refer to International Patent Application Publication No. WO2021204175.
Example 02: Preparation of Compounds of series 02
Example 02-1: Preparation of Compound 02-1 (i.e. Compound 1 in the following scheme) .
compound 1
1H NMR (400 MHz, CDCl3) δ: 0.86-0.90 (m, 12H) , 1.27-1.63 (m, 53H) , 1.97-2.01 (m, 2H) , 2.28-2.64 (m, 14H) , 3.52-3.58 (m, 2H) , 4.00-4.10 (m, 8H) . LCMS: Rt: 1.080 min; MS m/z (ESI) : 826.0 [M+H] +.
The following compounds were prepared in analogous fashion as Compound 02-1, using corresponding starting material.
Example 02-2: Preparation of Compound 02-2 (i.e. Compound 2 in the following scheme) .
compound 2
1H NMR (400 MHz, CDCl3) δ: 0.86-0.90 (m, 12H) , 1.28-1.67 (m, 54H) , 1.88-2.01 (m, 7H) , 2.28-2.56 (m, 18H) , 3.16-3.20 (m, 1H) , 3.52-3.54 (m, 2H) , 4.00-4.10 (m, 8H) . LCMS: Rt: 1.060 min; MS m/z (ESI) : 923.0 [M+H] +.
Example 02-3: Preparation of Compound 02-4 (i.e. Compound 4 in the following scheme) .
compound 4
1H NMR (400 MHz, CDCl3) δ: 0.86-0.90 (m, 9H) , 1.26-1.32 (m, 34H) , 1.41-1.49 (m, 4H) , 1.61-1.66 (m, 15H) , 2.00-2.03 (m, 1H) , 2.21-2.38 (m, 8H) , 2.43-2.47 (m, 4H) , 2.56-2.60 (m, 2H) , 3.50-3.54 (m, 2H) , 4.03-4.14 (m, 8H) . LCMS: Rt: 1.030 min; MS m/z (ESI) : 798.0 [M+H] +.
Example 02-4: Preparation of Compound 02-9 (i.e. Compound 9 in the following scheme) .
compound 9
1H NMR (400 MHz, CDCl3) δ: 0.86-0.90 (m, 12H) , 1.28-1.30 (m, 33H) , 1.58-2.01 (m, 18H) , 2.30-2.54 (m, 18H) , 3.10-3.19 (m, 1H) , 3.52-3.68 (m, 8H) , 4.09-4.20 (m, 8H) . LCMS: Rt: 1.677 min; MS m/z (ESI) : 927.7 [M+H] +.
The following compounds were prepared in analogous fashion as Compound 02-9, using corresponding starting material.
Example 02-5: Preparation of Compound 02-10 (i.e. Compound 10 in the following scheme) .
compound 10
1H NMR (400 MHz, CDCl3) δ: 0.86-0.90 (m, 12H) , 1.26-1.41 (m, 48H) , 1.51-1.72 (m, 11H) , 1.94-2.03 (m, 1H) , 2.29-2.32 (m, 6H) , 2.41-2.91 (m, 5H) , 3.51-3.76 (m, 2H) , 3.96-4.10 (m, 6H) . LCMS: Rt: 1.327 min; MS m/z (ESI) : 782.6 [M+H] +.
The following compounds were prepared in analogous fashion as Compound 02-10, using corresponding starting material.
Example 02-6: Preparation of Compound 02-12 (i.e. Compound 12 in the following scheme) .
compound 12
1H NMR (400 MHz, CDCl3) δ: 0.86-0.89 (m, 18H) , 1.25-1.35 (m, 53H) , 1.41-1.48 (m, 8H) , 1.56-1.61 (m, 20H) , 1.95-2.01 (m, 2H) , 2.28-2.35 (m, 6H) , 2.43-2.46 (m, 4H) , 2.56-2.58 (m, 2H) , 3.51-3.54 (m, 2H) , 4.00-4.10 (m, 8H) . LCMS: Rt: 0.080 min; MS m/z (ESI) : 1050.8 [M+H] +.
Example 02-7: Preparation of Compound 02-20 (i.e. Compound 20 in the following scheme) .
compound 20
1H NMR (400 MHz, CDCl3) δ: 0.86-0.90 (m, 9H) , 1.25-1.36 (m, 48H) , 1.41-1.48 (m, 5H) , 1.60-1.62 (m, 8H) , 1.97-2.00 (m, 1H) , 2.27-2.32 (m, 6H) , 2.43-2.46 (m, 4H) , 2.56-2.59 (m, 2H) , 3.52-3.54 (m, 2H) , 4.01-4.10 (m, 6H) . LCMS: Rt: 0.093 min; MS m/z (ESI) : 782.6 [M+H] +.
Example 03: Preparation of Compounds of series 03
Please refer to International Patent Application Publication No. WO2022152109.
Example 04: Preparation of Compounds of series 04
Example 04-1: Preparation of Starting Materials and Intermediates.
Preparation of compound A
Preparation of compound B
Preparation of compound C
Preparation of compound D
Preparation of compound E
Preparation of compound F
Preparation of compound G
compound G-1
LCMS: Rt: 0.824 min; MS m/z (ESI) : 394.3 [M+H] +.
compound G
LCMS: Rt: 1.750 min; MS m/z (ESI) : 732.6 [M+H] +.
compound H
compound I
compound J
LCMS: Rt: 1.070 min; MS m/z (ESI) : 584.4 [M+H] +.
Preparation of compound K
Preparation of compound L
Preparation of compound M
Preparation of compound N
Preparation of compound O
Preparation of compound P
Preparation of compound Q
compound Q-1
1H NMR (400 MHz, CCl3D) : δ: 3.70 (s, 6 H) , 1.88-1.84 (m, 4 H) , 1.63 (s, 1 H) , 1.27 (s, 10 H) , 1.13 (s, 5 H) , 0.88-0.86 (m, 6 H) .
compound Q-2
1H NMR (400 MHz, CCl3D) : δ: 3.67 (s, 3 H) , 2.35-2.31 (m, 1 H) , 1.61-1.54 (m, 2 H) , 1.47-1.40 (m, 2 H) , 1.26 (s, 16 H) , 0.89-0.86 (m, 6 H) .
compound Q-3
1H NMR (400 MHz, CCl3D) : δ: 3.54 (d, J=5.2 Hz, 2 H) , 1.47-1.43 (m, 2 H) , 1.28 (s, 20 H) , 0.90-0.87 (m, 6 H) .
Preparation of compound SM2
Preparation of compound R
Preparation of compound S
Preparation of compound SM5
Preparation of compound SM6
Example 04-2: Preparation of Compound 04-1 (i.e. Compound 1 in the following scheme) .
compound 1-1
LCMS: Rt: 0.750 min; MS m/z (ESI) : 206.2 [M+H] +.
compound 1-2
LCMS: Rt: 0.870 min; MS m/z (ESI) : 448.3 [M+H] +.
compound 1-3
LCMS: Rt: 1.360 min; MS m/z (ESI) : 616.5 [M+H] +.
compound 1
1H NMR (400 MHz, CDCl3) δ: 0.79-0.83 (m, 6H) , 1.14-1.26 (m, 38H) , 1.47-1.61 (m, 6H) , 1.86-1.96 (m, 4H) , 2.51-2.58 (m, 4H) , 3.17 (s, 1H) , 3.32-3.44 (m, 5H) , 3.51-3.66 (m, 3H) . LCMS: Rt: 0.94 min; MS m/z (ESI) : 526.5 [M+H] +.
Example 04-3: Preparation of Compound 04-2 (i.e. Compound 2 in the following scheme) .
compound 2-1
LCMS: Rt: 1.340 min; MS m/z (ESI) : 630.5 [M+H] +.
compound 2
1H NMR (400 MHz, CDCl3) δ: 0.86-0.90 (m, 6H) , 1.25-1.33 (m, 35H) , 1.50-1.69 (m, 7H) , 1.87-1.99 (m, 1H) , 2.00-2.08 (m, 2H) , 2.33 (t, J=7.6 Hz, 2H) , 2.56-2.81 (m, 4H) , 3.17-3.27 (m, 1H) , 3.38-3.48 (m, 3H) , 3.50-3.65 (m, 3H) , 5.08-5.14 (m, 1H) . LCMS: Rt: 1.180 min; MS m/z (ESI) : 540.4 [M+H] +.
Example 04-4: Preparation of Compound 04-7 (i.e. Compound 7 in the following scheme) .
compound 7-1
LCMS: Rt: 0.780 min; MS m/z (ESI) : 427.4 [M+H] +.
compound 7
1H NMR (400 MHz, CDCl3) δ: 0.86-0.90 (m, 9H) , 1.26-1.35 (m, 45H) , 1.41-1.67 (m, 7H) , 2.28-2.32 (m, 3H) , 2.36-2.70 (m, 11H) , 2.79-2.83 (m, 2H) , 3.35-3.46 (m, 4H) , 3.77-3.85 (m, 1H) , 3.96-3.97 (m, 2H) . LCMS: Rt: 1.220 min; MS m/z (ESI) : 669.6 [M+H] +.
Example 04-5: Preparation of Compound 04-8 (i.e. Compound 8 in the following scheme) .
compound 8-1
LCMS: Rt: 0.730 min; MS m/z (ESI) : 371.3 [M+H] +.
Step 2: Preparation of compound 8
1H NMR (400 MHz, CDCl3) δ: 0.86-0.90 (m, 9H) , 1.25-1.27 (m, 47H) , 1.40-1.49 (m, 4H) , 1.56-1.73 (m, 8H) , 2.30 (t, J=7.6 Hz, 3H) , 2.40-2.82 (m, 10H) , 3.32-3.38 (m, 1H) , 3.43-3.46 (m, 3H) , 3.70-3.80 (m, 1H) , 3.92-3.97 (m, 2H) . LCMS: Rt: 1.090 min; MS m/z (ESI) : 709.6 [M+H] +.
Example 04-6: Preparation of Compound 04-65 (i.e. Compound 65 in the following scheme) .
compound 65
1H NMR (400 MHz, CCl3D) : δ: 0.79-0.83 (m, 12H) , 1.23-1.27 (m, 62H) , 1.29-1.37 (m, 2H) , 1.51-1.61 (m, 2H) , 1.76-1.93 (m, 7H) , 2.13-2.16 (m, 4H) , 2.17-2.25 (m, 3H) , 2.41-2.51 (m, 7H) , 3.05-3.06 (m, 1H) , 3.52-3.54 (m. 2H) , 3.92-4.03 (m, 4H) . LCMS: Rt: 0.588 min; MS m/z (ESI) : 863.6 [M+H] +.
The following compounds were prepared in analogous fashion as Compound 04-65, using corresponding starting material.

Example 04-7: Preparation of Compound 04-68 (i.e. Compound 68 in the following scheme) .
compound 68-2
1H NMR (400 MHz, CDCl3) δ: 0.86-0.90 (m, 12H) , 1.26-1.46 (m, 53H) , 1.56-1.62 (m, 2H) , 1.83 (s, 2H) , 1.96-2.02 (m, 1H) , 2.23-2.24 (m, 4H) , 3.64 (s, 2H) , 4.02-4.11 (m, 4H) .
compound 68
1H NMR (400 MHz, CDCl3) δ: 0.83-0.92 (m, 12H) , 1.17-1.37 (m, 56H) , 1.38-1.45 (m, 2H) , 1.64-1.67 (m, 2H) , 1.70-1.86 (m, 6H) , 1.92-2.04 (m, 2H) , 2.19-2.26 (m, 4H) , 2.40-2.49 (m, 3H) , 2.57-2.65 (m, 2H) , 3.41-3.51 (m, 2H) , 3.97-4.12 (m, 4H) . LCMS: Rt: 0.080 min; MS m/z (ESI) : 778.5 [M+H] +.
Example 04-8: Preparation of Compound 04-69 (i.e. Compound 69 in the following scheme) .
compound 69-1
LCMS: Rt: 1.290 min; MS m/z (ESI) : 750.7 [M+H] +.
compound 69
1H NMR (400 MHz, CDCl3) δ: 0.83-0.92 (m, 12H) , 0.98-1.06 (m, 3H) , 1.17-1.47 (m, 52H) , 1.54-1.72 (m, 5H) , 1.78-2.06 (m, 8H) , 2.20-2.27 (m, 4H) , 2.37-2.46 (m, 4H) , 2.49-2.66 (m, 5H) , 3.01-3.12 (m, 1H) , 3.52-3.59 (m, 2H) , 3.98-4.11 (m, 4H) . LCMS: Rt: 0.093 min; MS m/z (ESI) : 821.6 [M+H] +.
The following compounds were prepared in analogous fashion as Compound 04-69, using corresponding starting material.

Example 2: Preparation and characterization of lipid nanoparticles
Briefly, cationic lipid (e.g. compound 01-1, compound 02-1, compound 02-3, compound03-135, compound 03-208) , DSPC, cholesterol, and PEG-lipid were solubilized in ethanol at a molar ratio as described herein, and mRNA were diluted in 10 to 50 mM citrate buffer, pH = 4. The LNPs were prepared at a total lipid to mRNA weight ratio of approximately 10: 1 to 30: 1 by mixing the ethanolic lipid solution with the aqueous mRNA solution at a volume ratio of 1: 3 using a microfluidic apparatus, total flow rate ranging from 9-30mL/min. Ethanol was thereby removed and replaced by DPBS using dialysis. Finally, the lipid nanoparticles were filtered through a 0.2 μm sterile filter.
Lipid nanoparticle size was determined by dynamic light scattering using a Malvern Zetasizer Nano ZS (Malvern UK) using a 173o backscatter detection mode. The encapsulation efficiency of lipid nanoparticles was determined using a Quant-it Ribogreen RNA quantification assay kit (Thermo Fisher Scientific, UK) according to the manufacturer’s instructions.
As reported in literature, the apparent pKa of LNP formulations correlates with the delivery efficiency of LNPs for nucleic acids in vivo. The apparent pKa of each formulation was determined using an assay based on fluorescence of 2- (p-toluidino) -6-napthalene sulfonic acid (TNS) . LNP formulations comprising of cationic lipid /DSPC /cholesterol /DMG-PEG (50 /10 /38.5/1.5 mol %) in PBS were prepared as described above. TNS was prepared as a 300uM stock solution in distilled water. LNP formulations were diluted to 0.1mg/ml total lipid in 3 mL of buffered solutions containing 50 mM sodium citrate, 50 mM sodium phosphate, 50 mM sodium borate, and 30mM sodium chloride where the pH ranged from 3 to 9. An aliquot of the TNS solution was added to give a final concentration of 0.1mg/ml and following vortex mixing fluorescence intensity was measured at room temperature in a Molecular Devices Spectramax iD3 spectrometer using excitation and mission wavelengths of 325 nm and 435 nm. A sigmoidal best fit analysis was applied to the fluorescence data and the pKa value was measured as the pH giving rise to half –maximal fluorescent intensity.
Example 3: mRNA synthesis and purification.
DNA Linearization. Plasmid for IVT, pJ241 (developed in house, containing a kanamycin resistance gene, a T7 promoter sequence and a unique type-IIS restriction site downstream of poly (A) sequence) , containing nucleotide sequence encoding blinatumomab, and a signal peptide, 5’ -UTR and 3’ -UTR and polyA signal is linearized with the type-IIS restriction enzyme digestion. Every 10 μg of plasmid is mixed with 10 U of Esp3I/BsmBI, incubated at 37℃for 4 hours to ensure complete linearization. The reaction is terminated by adding 1/10th volume of 3 M Na acetate (pH 5.5) and 2.5 volumes of ethanol, mixed well and chilled at -20℃ for 1 hour. Linearized DNA is precipitated by centrifugation at 13800 g for 15 minutes at 4℃, washed twice with 70%ethanol, resuspended in nuclease-free H2O.
In vitro Transcription of mRNA. Contents of a typical 20 μL reaction mixture are shown in the table below:
The reaction mixture is incubated at 37℃ for 6 hours followed by addition of 1 μl of DNase I (RNase-free, 1 U/μL) to remove the DNA template, incubated for 30 minutes at 37℃. The synthesized RNA is purified by adding 0.5 volume of 7.5 M LiCl, 50 mM EDTA and incubating at -20℃ for 45 minutes, followed by centrifugation at 4℃ for 15 minutes at 13800 g to pellet the mRNA. Then the supernatant is removed and the pellet is rinsed twice with 500 μL of ice cold 70%ethanol, mRNA is resuspended in nuclease-free H2O, adjusted concentration to 1 mg/mL, and stored at -20℃.
mRNA Capping. Each 10 μg uncapped mRNA is heated at 65℃ for 10 minutes, placed on ice for 5 minutes, and mixed with 10 U Vaccinia Capping Enzyme, 50 U mRNA Cap 2′-O-Methyltransferase, 0.2 mM SAM, 0.5 mM GTP and 1 U RNase inhibitor, and incubated at 37℃for 60 minutes to generate cap1 modification structure. The modified mRNA is precipitated by  LiCl as previously described and the RNA is resuspended in nuclease-free H2O, and stored at -20℃.
HPLC Purification. RNA is purified by high performance liquid chromatography (HPLC) using a C4 column (5 μm) (10 mm×250 mm column) . Buffer A contains 0.1 M triethylammonium acetate (TEAA) , pH=7.0 and Buffer B contains 0.1 M TEAA, pH=7.0 and 25%acetonitrile.
Messenger RNA molecules encoding the Omicron S protein RBD were successfully produced by the in vitro transcription and maturation processes described above and were purified from the reaction system using HPLC.
Example 4. Design of mRNA sequences encoding CD19/CD3 bispecific antibodies and preparation of lipid nanoparticles (LNPs) comprising the same
This example demonstrates the preparation of mRNA sequences comprising a coding sequence encoding a bispecific antibody, wherein the bispecific antibody comprises a first antibody moiety specifically recognizing CD19 and a second antibody moiety specifically recognizing CD3 (e.g., a CD19/CD3 bispecific antibody) . The resulting CD19/CD3 bispecific antibody was formulated in lipid nanoparticles (LNPs) for use in in vivo experiments.
mRNA sequences were designed to comprise a coding sequence encoding the amino acid sequence of blinatumomab (e.g., the amino acid sequence set forth in SEQ ID NO: 14) , an anti-CD19/CD3 bispecific antibody. The coding sequence encoding the amino acid sequence of the CD19/CD3 bispecific antibody comprises the nucleic acid sequence set forth in any one of SEQ ID NOs: 15 and 39-49. In addition, the mRNA sequences also included each of the following features: a) a 5’ UTR, selected from a Xenopus globin 5’ UTR (SEQ ID NO: 1) , UTR32 (SEQ ID NO: 2) , a 28M mutant 5’ UTR (SEQ ID NO: 3) , and a ZX 5’ UTR (SEQ ID NO: 4) ; b) a nucleic acid sequence encoding a signal peptide, selected from the sequences set forth in any one of SEQ ID NOs: 11-13; c) a nucleic acid sequence encoding a His6 tag, SEQ ID NO: 76; c) a 3’ UTR, selected from a Homo sapiens hemoglobin 3’ UTR (SEQ ID NO: 5) , a 28M 3’ UTR (SEQ ID NO: 6) , and a ZX 3’ UTR (SEQ ID NO: 7) ; and, d) a poly (A) sequence (SEQ ID NO: 75) . The mRNA sequences comprise, from 5’ to 3’ : 5’ UTR-a nucleic acid sequence encoding a signal peptide-a nucleic acid sequence encoding a CD19/CD3 bispecific antibody-a nucleic acid sequence encoding a His6 tag-3’ UTR--a poly (A) sequence. The mRNAs were generated from DNA  templates with a T7 promoter by in vitro transcription as described in Example 3. Each candidate mRNA sequence is shown in Table 2.
Table 2. mRNA constructs.

Each of the mRNAs from Table 2 were formulated into LNPs for use in in vivo assays according to methods described in Example 2.
Example 5. Expression of CD19/CD3 bispecific antibodies in vitro
This example demonstrates the that mRNAs designed in Example 4 efficiently express CD19/CD3 bispecific antibodies in vitro.
To test in vitro expression and function of CD19/CD3 bispecific antibodies encoded by mRNA sequences provided in Table 2 (as designed in Example 4) , HEK293T and AML-12 cells were transfected with each individual mRNA. Briefly, HEK293T and AML-12 cells were inoculated into 24-well plates with a 1 mL cell suspension per well (cell culture medium: Dulbecco's Modified Eagle Medium (DMEM) (GibcoTM, Cat#11995065) + 10%fetal bovine serum (FBS) (GibcoTM, Cat#10099141C) . After incubation for 18 hours, 2 μg of mRNA was transfected into cells using Lipofectamine2000 transfection reagent (InvitrogenTM, Cat#11668019) . Cell culture supernatants were collected 24 hours after transfection, centrifuged at 200 x g, and stored at -80℃.
In vitro expression was measured by an enzyme-linked immunosorbent assay (ELISA) . 96-well microtiter plates (Thermo Fisher ScientificTM, Cat#468667) were coated overnight at 4℃with recombinant CD19 protein (Acro, Cat#CD9-H5251) . Coated plates were washed three times with 1X Phosphate Buffered Saline (PBS) with Tween 20 (PBST) and blocked with 5%bovine serum albumin (BSA) (Sigma, Cat#B2064-100G) for 1 hour at 37℃, and then washed three times with 1X PBST. 100 mL of standard gradient dilutions and dilutions of HEK293T cell culture  supernatants were added to each well and incubated at 37 ℃ for 1 hour, before washing three more times with 1X PBST. Horseradish peroxidase (HRP) -conjugated His-Tag antibody was subsequently incubated as a secondary antibody (Sino BiologicalTM, Cat#105327-MM02T-H) for 1 hour at 37℃ and washed five times with 1X PBST. 3, 3′, 5, 5′-Tetramethylbenzidine (TMB) substrate (SolarbioTM, Cat#PR1200-500 mL) was then added for 5-6 minutes, followed by STOP solution (SolarbioTM, Cat#C1058-500 mL) to stop the reaction. Absorbance at 450/620 nm was measured using SpectraMax iD5 (Molecular Devices) to determine antibody expression.
As shown in FIG. 1A, the mRNAs shown in Table 2 comprising a coding sequence encoding a CD19/CD3 bispecific antibody were expressed at various levels in HEK293T cells. Based on the expression levels and druggability, seven mRNA candidates were selected for further tests: mRNA1, mRNA2, mRNA3, mRNA4, mRNA5, mRNA6, and mRNA16. As shown in FIG. 1B, the expression of each of these seven mRNAs is higher in both HEK293T cells and AML-12 cells compared to the control group (NST, a non-translated mRNA) , and expression of each of these seven mRNAs is higher in HEK293T cells compared to AML-12 cells.
Example 6. In vitro activities of CD19/CD3 bispecific antibodies
mRNAs comprising a coding sequence encoding a CD19/CD3 bispecific antibody were evaluated for T cell specific activation, T cell non-specific activation, and tumor cell-specific killing in vitro. This example demonstrates that the CD19/CD3 bispecific antibody encoded by mRNA1 exemplary mRNA (cell culture supernatant of HEK293T cells transfected with mRNA1 with an antibody concentration of 1466.5 ng/mL measured by ELISA as described in Example 5) has similar in vitro activities as the recombinant antibody blinatumomab.
T cell specific activation
To evaluate T cell specific activation, peripheral blood mononuclear cells (PBMCs) (Sailybio, Cat#XFB-hP010B) as a source of CD3+ effector T cells were mixed with target Nalm6 cells (a B cell precursor leukemia cell line with surface expression of CD19) in logarithmic growth phase at an effector/target cell ratio of 5: 1.50 μL of recombinant antibody blinatumomab or antibody expressed from mRNA1, with concentrations ranging from 1x10-5 ng/mL to 10 ng/mL, was added to the cells. After culturing at 37℃ in 5%CO2 for 24 hours, the cells were washed once with 200 μL/well staining buffer (BD, Cat#554657) at 400x g for 5 minutes, after which the supernatant was discarded. T cell activation detection antibodies (PerCP-Cy5.5 hCD4  (BioGemsTM, Cat#06111-70-100) ; AF700 hCD8 (biolegendTM, Cat#344724) ; APC hCD25 (biolegendTM, Cat#302610) ; and, FITC hCD69 (biolegendTM, Cat#310904) were added and incubated at 4℃ for 30 minutes, after which the supernatant was discarded. 100 μL of Prodidium Iodide (PI) (BD, Cat#550825) was added to each well and incubated for 5 minutes. T cell specific activation was detected by flow cytometry (FIG. 2A) .
T cell non-specific activation
To evaluate T cell non-specific activation, the T cell specific activation protocol was performed with slight modifications. Specifically, the concentration of the recombinant antibody blinatumomab and CD19/CD3 bispecific antibody expressed from mRNA1 was 10 ng/mL. T cell non-specific activation was detected by flow cytometry (FIG. 2B) .
Tumor cell killing
To evaluate tumor cell-specific killing activity of the CD19/CD3 bispecific antibody expressed from mRNA1, target cells (Nalm6-GFP) (Shanghai Jibei Biotechnology Co., Ltd. ) were labeled with PKH26 (Sigma, Cat#SI-MINI26, ) and carboxyfluorescein succinimidyl ester (CFSE) (InvitrogenTM, Cat#C34554) , and using K562 cell as negative control. Briefly, 2x106 target or negative control cells were suspended in 50 μL Diluent-C solution and mixed with 50 μL of 5 μM PKH26 (in Diluent-C) for 6 minutes and then incubated with 100 μL heat-inactivated fetal bovine serum (FBS) (GibcoTM, Cat#10099141C) for 1 minute. Cells were then pelleted by centrifugation at 400 x g for 5 minutes, washed once with 1 mL PBS (GibcoTM, Cat#10010049) , and suspended in 400 μL PBS. Suspended cells were mixed thoroughly with 2 μL of 50 μM CFSE by pipette for 2 minutes and then incubated with 400 μL of heat-inactivated FBS for 1 minute. Cells were then washed once and suspended in 500 μL RPMI-1640 (GibcoTM, Cat#22400089) medium. Cell density was determined by trypan blue (Sigma, Cat#T8154-100 mL) staining. PBMCs (Sailybio, Cat#XFB-hP010B) and target cells were adjusted to the appropriate concentration (PBMCs: 1x105, target cells 1x104) using RPMI-1640. Proteins were diluted by doubling in RPMI-1640 complete medium to final concentrations of 6.4, 1.6, 0.4, 0.1, 0.25, 0.00625, and 0.0015625 ng/mL.
100 μL of total volume comprising 25 μL of PBMCs, 25 μL of target cells, and 50 μL of recombinant antibody blinatumomab or CD19/CD3 bispecific antibody expressed from mRNA1 were added to each well in 96-well plates (NEST, Cat#701101) and co-cultured for 18 hours. The cell lysis of target cells was evaluated by flow cytometry (FIG. 2C) .
Conclusion
As shown in FIG. 2A, the CD19/CD3 bispecific antibody expressed from mRNA1 activated CD69+/CD8+ and CD25+/CD4+ T cells comparably with the recombinant antibody blinatumomab. In addition, the CD19/CD3 bispecific antibody expressed from mRNA1 induced T cell non-specific activation comparably with the recombinant antibody blinatumomab (FIG. 2B) . Finally, the CD19/CD3 bispecific antibody expressed from mRNA1 induced cell lysis in Nalm6 cells to a similar extent as the recombinant antibody blinatumomab (FIG. 2C) .
These results indicate that the CD19/CD3 bispecific antibody expressed from mRNA (e.g., mRNA1 comprising a Xenopus globin 5’ UTR (SEQ ID NO: 1) , a nucleic acid sequence encoding a signal peptide (SEQ ID NO: 11) , a nucleic acid sequence encoding blinatumomab (SEQ ID NO: 15) a Homo sapiens hemoglobin 3’ UTR (SEQ ID NO: 5) , and a poly (A) sequence) and the recombinant antibody blinatumomab have similar biological activity in vitro.
Example 7. Expression and efficacy of mRNAs encoding CD19/CD3 bispecific antibodies in vivo
This example demonstrates that mRNAs comprising a coding sequence encoding a CD19/CD3 bispecific antibody express the CD19/CD3 bispecific antibody when formulated in LNPs in vivo, and have improved efficacy for treating B-lymphoid leukemia compared to the recombinant antibody blinatumomab.
In vivo expression and efficacy of CD19/CD3 bispecific antibodies expressed from the seven mRNA candidates described in Example 4 (i.e., mRNA1, mRNA2, mRNA3, mRNA4, mRNA5, mRNA6, and mRNA16) was evaluated. NOD/SCID female mice aged 6-8 weeks were randomly divided into a control group (NST group) and an experimental group (mRNA-LNP group) with 5-10 mice in each group. The seven mRNAs were individually formulated into LNPs comprising a cationic lipid selected from compound 01-1, compound 02-1, compound 02-3, compound 03-135, compound 03-208 as described in Example 3. Prior to dosing, mouse serum was collected as blank serum. According to the different doses set by the experimental group, the drug concentration was adjusted and 200 μL LNP comprising mRNA was administered into the tail vein of each mouse. Serum was collected at 6 hours, 24 hours, 48 hours, 72 hours, 120 hours, and 168 hours after administration, and then stored at -80℃ until testing.
In vivo expression of the CD19/CD3 bispecific antibodies encoded by the mRNAs was measured by ELISA as described in Example 5. As shown in FIG. 3A, all seven of the candidate mRNAs expressed the CD19/CD3 bispecific antibody over time in vivo; in contrast, the recombinant antibody blinatumomab remained stable in the serum for a short time.
One candidate mRNA (mRNA1) was selected for formulation in LNPs comprising different cationic lipids (compound 01-1, compound 03-135, compound 03-208, compound 02-1, and compound 02-3) , and evaluated for expression in NOD/SCID mice. As shown in FIG. 3B, each LNP comprising different cationic lipids expressed the CD19/CD3 bispecific antibody in vivo.
Expression of the CD19/CD3 bispecific antibody encoded by mRNA1 in HEK293T cells was also measured by immunoblot. The supernatant of HEK293T cells transfected with mRNA1 and 50 μL of protein loading sample (BYE, Cat#21514501-CHO; ratio of Sample/NuPAGETM LDS Sample Buffer (4X) , InvitrogenTM, Cat#NP0007/NuPAGETM Reducing Agent (10X) InvitrogenTM, Cat#NP0009=6.5: 2.5: 1) were mixed thoroughly and heated in a dry thermostat 70℃ for 10 minutes. SurePAGETM precast gel (GenscriptTM, Cat#M00656) was loaded into an electrophoresis tank, diluted 1X Running Buffer (Thermo FisherTM, Cat#NP0060) was added to the protein marker (Thermo FisherTM, Cat#26616) , and the prepared sample was loaded into the well. The conductive layer, excluding bubbles, was placed in a dry rotator tank and transferred to a membrane at 20 V for 7 minutes. The transfer was subsequently blocked using blocking solution (Beyotime, Cat#P0252) at 37℃ for 1 hour, followed by proportional dilution of the Horseradish peroxidase (HRP) -conjugated His-Tag antibody (SinoBiological, Cat#105327-MM02T-H) with secondary antibody diluent (Beyotime, Cat#P0258) , and was incubated overnight at 4℃. After incubation, 0.05%PBST (10X PBS buffer (SolarbioTM, Cat#P1022) ; Tween 20 (SINOPHARM, Cat#30189328) was used to wash the membrane three times, and ECL luminescence solution (GETM, Ca#tRPN2232) was added. Images were collected using the ECL luminescence instrument. As shown in FIG. 3C, the CD19/CD3 bispecific antibody expressed from the mRNA and recombinant antibody blinatumomab had identical molecular weight, confirming that the protein product of the mRNA was indeed CD19/CD3 bispecific antibody.
In vivo efficacy of mRNAs comprising a coding sequence encoding CD19/CD3 bispecific antibodies was tested in Nalm6 PBMC humanized mice. The Nalm6-luc B lymphocytic leukemia cell model was established by injecting 1x107 PBMCs into M-NSG immunodeficient mice (Shanghai Model Organisms Center, Inc. ) via tail vein on day -2, and injecting 1x106 Nalm6- luc cells (Shanghai Jibei Biotechnology Co., Ltd. ) via the tail vein on day 0. On day 0 after inoculation, the tumor-bearing mice were divided into groups by randomized block method according to Flux values, and mRNA1 formulated in LNPs (compound 01-1 as a cationic lipid) and recombinant antibody blinatumomab were administered via the tail vein into the respective groups of mice. The signal size of tumor Flux value was measured regularly, and the tumor growth inhibition rate (TGI) was calculated. As shown in FIGs. 4A and 4B, mice treated with a single isodose of mRNA1 formulated in LNPs showed reduced tumor sizes compared to mice in the NST group or mice treated with three consecutive recombinant protein administrations. In conclusion, mRNA1 exemplary shows high efficacy in vivo.

Claims (53)

  1. A pharmaceutical composition comprising a messenger ribonucleic acid (mRNA) , wherein the mRNA comprises a coding sequence encoding a bispecific antibody, wherein the bispecific antibody comprises a first antibody moiety specifically recognizing CD19 and a second antibody moiety specifically recognizing CD3.
  2. The pharmaceutical composition of claim 1, wherein the first antibody moiety specifically recognizing CD19 comprises three CDRs of the heavy chain variable region set forth in SEQ ID NO: 26 and/or three CDRs of the light chain variable region set forth in SEQ ID NO: 27.
  3. The pharmaceutical composition of claim 1 or 2, wherein the first antibody moiety specifically recognizing CD19 comprises an amino acid sequence set forth in SEQ ID NO: 16, or an amino acid sequence comprising at least about 80%sequence identity to the amino acid sequence set forth in SEQ ID NO: 16.
  4. The pharmaceutical composition of any one of claims 1-3, wherein the portion of the coding sequence encoding the first antibody moiety specifically recognizing CD19 comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 17 and 50-60, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in any one of SEQ ID NOs: 17 and 50-60.
  5. The pharmaceutical composition of any one of claims 1-4, wherein the second antibody moiety specifically recognizing CD3 comprises a heavy chain variable region comprising three CDRs of the heavy chain variable region set forth in SEQ ID NO: 34 and/or three CDRs of the light chain variable region set forth in SEQ ID NO: 35.
  6. The pharmaceutical composition of any one of claims 1-5, wherein the second antibody moiety specifically recognizing CD3 comprises an amino acid sequence set forth in SEQ ID NO: 18, or an amino acid sequence comprising at least about 80%sequence identity to the amino acid sequence set forth SEQ ID NO: 18.
  7. The pharmaceutical composition of any one of claims 1-6, wherein the portion of the coding sequence encoding the second antibody moiety specifically recognizing CD3 comprises the nucleic acid sequence set forth in any one of SEQ ID NOs: 19 and 61-71, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in any one of SEQ ID NOs: 19 and 61-71.
  8. The pharmaceutical composition of any one of claims 1-7, wherein the coding sequence encodes an amino acid sequence set forth in SEQ ID NO: 14, or an amino acid sequence comprising at least about 80%sequence identity to the amino acid sequence set forth in SEQ ID NO: 14.
  9. The pharmaceutical composition of any one of claims 1-8, wherein the coding sequence comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 15 and 39-49, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in any one of SEQ ID NOs: 15 and 39-49.
  10. The pharmaceutical composition of any one of claims 1-9, wherein the mRNA comprises a nucleic acid sequence encoding a signal peptide.
  11. The pharmaceutical composition of claim 10, wherein the nucleic acid sequence encoding the signal peptide is at the 5’ end of the coding sequence of the mRNA.
  12. The pharmaceutical composition of claim 10 or claim 11, wherein the signal peptide comprises an amino acid sequence set forth in any one of SEQ ID NOs: 8-10, or an amino acid sequence comprising at least about 80%sequence identity to the amino acid sequence set forth in any one of SEQ ID NOs: 8-10.
  13. The pharmaceutical composition of any one of claims 10-12, wherein the nucleic acid sequence encoding the signal peptide comprises a nucleic acid sequence set forth in any one of SEQ ID NOs: 11-13, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in any one of SEQ ID NOs: 11-13.
  14. The pharmaceutical composition of any one of claims 1-13, wherein the mRNA comprises a 5’ untranslated region (UTR) .
  15. The pharmaceutical composition of claim 14, wherein the 5’ UTR is from Xenopus globin.
  16. The pharmaceutical composition of claim 14 or claim 15, wherein the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 1, or a nucleic acid sequence comprising at least about 80%sequence identity the nucleic acid sequence set forth in SEQ ID NO: 1.
  17. The pharmaceutical composition of claim 14, wherein the 5’ UTR is synthetic.
  18. The pharmaceutical composition of claim 14 or claim 17, wherein the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 2, or a nucleic acid sequence comprising at least about 80%sequence identity the nucleic acid sequence set forth in SEQ ID NO: 2.
  19. The pharmaceutical composition of claim 14 or claim 17, wherein the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 3, or a nucleic acid sequence comprising at least about 80%sequence identity the nucleic acid sequence set forth in SEQ ID NO: 3.
  20. The pharmaceutical composition of claim 14, wherein the 5’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 4, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 4.
  21. The pharmaceutical composition of any one of claims 1-20, wherein the mRNA comprises a 3’ UTR.
  22. The pharmaceutical composition of claim 21, wherein the 3’ UTR is from Homo sapiens hemoglobin.
  23. The pharmaceutical composition of claim 21 or claim 22, wherein the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 5, or a nucleic acid sequence comprising at least about 80%sequence identity the nucleic acid sequence set forth in SEQ ID NO: 5.
  24. The pharmaceutical composition of claim 21, wherein the 3’ UTR is synthetic.
  25. The pharmaceutical composition of claim 21 or claim 24, wherein the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 6, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 6.
  26. The pharmaceutical composition of claim 21 or claim 24, wherein the 3’ UTR comprises a nucleic acid sequence set forth in SEQ ID NO: 7, or a nucleic acid sequence at least comprising about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 7.
  27. The pharmaceutical composition of any one of claims 1-26, wherein the mRNA comprises:
    i) a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 1, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 1, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 5, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 5;
    ii) a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 1, or a nucleic acid sequence comprising at least about 80%sequence identity to SEQ ID NO: 1, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 6, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 6;
    iii) a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 1, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 1, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 7, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 7;
    iv) a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 2, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 2, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 5, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 5;
    v) a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 2, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 2, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 6, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 6;
    vi) a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 2, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 2, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 7, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 7;
    vii) a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 3, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 3, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 5, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 5;
    viii) a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 4, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 4, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 5, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 5;
    ix) a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 4, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 4, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 6, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 6; or,
    x) a 5’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 4, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 4, and a 3’ UTR comprising a nucleic acid sequence set forth in SEQ ID NO: 7, or a nucleic acid sequence comprising at least about 80%sequence identity to the nucleic acid sequence set forth in SEQ ID NO: 7.
  28. The pharmaceutical composition of any one of claims 1-27, wherein the mRNA comprises a poly (A) sequence.
  29. The pharmaceutical composition of claim 28, wherein the poly (A) sequence has a length of about 50 nucleotides or longer.
  30. The pharmaceutical composition of any one of claims 1-29, wherein the mRNA comprises a chemical modification.
  31. The pharmaceutical composition of any one of claims 1-30, wherein the mRNA comprises a 5’ cap.
  32. The pharmaceutical composition of any one of claims 1-31, wherein the pharmaceutical composition comprises a lipid nanoparticle (LNP) .
  33. The pharmaceutical composition of claim 32, wherein the mRNA is formulated in the LNP.
  34. The pharmaceutical composition of claim 32 or claim 33, wherein the LNP comprises a cationic lipid.
  35. The pharmaceutical composition of claim 34, wherein the cationic lipid is according to Formula 01-I or Formula 01-II, a compound listed in Table 01-1, a compound according to Formula 02-I, a compound listed in Table 02-1, a compound according to Formula 03-I, a  compound listed in Table 03-1, a compound according to Formula 04-I, or a compound listed in Table 04-1.
  36. The pharmaceutical composition of any one of claims 32-35, wherein the LNP comprises a phospholipid.
  37. The pharmaceutical composition of any one of claims 32-36, wherein the LNP comprises a sterol.
  38. The pharmaceutical composition of any one of claims 32-37, wherein the LNP comprises a polymer conjugated lipid.
  39. The pharmaceutical composition of claim 38, wherein the polymer conjugated lipid is according to Formula 05-I.
  40. The pharmaceutical composition of any one of claims 32-39, wherein the LNP comprises a cationic lipid, a phospholipid, a sterol, and a polymer conjugated lipid.
  41. The pharmaceutical composition of claim 40, wherein the LNP comprises a total lipid to mRNA weight ratio of about 10: 1 to about 30: 1.
  42. The pharmaceutical composition of any one of claims 32-41, wherein the LNP comprises:
    i) between about 30 molar percent to about 55 molar percent of a cationic lipid;
    ii) between about 5 molar percent to about 40 molar percent of a phospholipid;
    iii) between about 20 molar percent to about 50 molar percent of a sterol; and
    iv) a polymer conjugated lipid.
  43. A method of treating a disease in an individual, comprising administering to the individual a therapeutically effective amount of the pharmaceutical composition of any of one of claims 1-42.
  44. The method of claim 43, wherein the disease is cancer.
  45. The method of claim 44, wherein the cancer is acute lymphoblastic leukemia (ALL) .
  46. The method of claim 45, wherein the ALL is B-cell ALL (B-ALL) .
  47. A method of delivering an antibody to an individual, comprising administering to the individual a therapeutically effective amount of the pharmaceutical composition of any one of claims 1-42.
  48. The method of any of claims 43-47, wherein the pharmaceutical composition is administered locally to a tumor.
  49. The method of any of claims 43-47, wherein the pharmaceutical composition is administered systemically, via intravenous injection, or via intraperitoneal injection.
  50. A method of delivering an mRNA to an individual, comprising administering to the individual a therapeutically effective amount of the pharmaceutical composition of any one of claims 1-39 to a somatic cell of the individual.
  51. The method of any one of claims 43-49, wherein the pharmaceutical composition is administered at a dose of between about 3 μg/dose and about 2000 μg/dose.
  52. The method of any one of claims 43-51, wherein the pharmaceutical composition is administered to the individual weekly.
  53. The method of any one of claims 43-52, wherein the pharmaceutical composition is administered to the individual for no more than 54 weeks.
PCT/CN2023/140495 2022-12-21 2023-12-21 Polynucleotides encoding cd19/cd3 bispecific antibodies WO2024131874A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380014397.7A CN118251236A (en) 2022-12-21 2023-12-21 Polynucleotides encoding CD19/CD3 bispecific antibodies

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2022/140722 2022-12-21
CN2022140722 2022-12-21

Publications (1)

Publication Number Publication Date
WO2024131874A1 true WO2024131874A1 (en) 2024-06-27

Family

ID=91587717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/140495 WO2024131874A1 (en) 2022-12-21 2023-12-21 Polynucleotides encoding cd19/cd3 bispecific antibodies

Country Status (1)

Country Link
WO (1) WO2024131874A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011051307A1 (en) * 2009-10-27 2011-05-05 Micromet Ag Dosage regimen for administering a cd19xcd3 bispecific antibody
CN112789058A (en) * 2018-10-11 2021-05-11 安进公司 Downstream processing of bispecific antibody constructs
CN113874507A (en) * 2020-04-09 2021-12-31 苏州艾博生物科技有限公司 Nucleic acid vaccine for coronavirus
CN114206827A (en) * 2020-04-09 2022-03-18 苏州艾博生物科技有限公司 Lipid nanoparticle compositions
WO2022101470A1 (en) * 2020-11-16 2022-05-19 BioNTech SE Lnp compositions comprising rna and methods for preparing, storing and using the same
WO2022152109A2 (en) * 2021-01-14 2022-07-21 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011051307A1 (en) * 2009-10-27 2011-05-05 Micromet Ag Dosage regimen for administering a cd19xcd3 bispecific antibody
CN112789058A (en) * 2018-10-11 2021-05-11 安进公司 Downstream processing of bispecific antibody constructs
CN113874507A (en) * 2020-04-09 2021-12-31 苏州艾博生物科技有限公司 Nucleic acid vaccine for coronavirus
CN114206827A (en) * 2020-04-09 2022-03-18 苏州艾博生物科技有限公司 Lipid nanoparticle compositions
WO2022101470A1 (en) * 2020-11-16 2022-05-19 BioNTech SE Lnp compositions comprising rna and methods for preparing, storing and using the same
WO2022152109A2 (en) * 2021-01-14 2022-07-21 Suzhou Abogen Biosciences Co., Ltd. Lipid compounds and lipid nanoparticle compositions

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DENG, Y.Q. ET AL.: "Lipid nanoparticle-encapsulated mRNA antibody provides longterm protection against SARS-CoV-2 in mice and hamsters", CELL RESEARCH, vol. 32, 24 February 2022 (2022-02-24), pages 375 - 382, XP037789509, DOI: 10.1038/s41422-022-00630-0 *
HUANG CHENG, DUAN XING, WANG JICHAO, TIAN QINGQING, REN YANGMEI, CHEN KEPAN, ZHANG ZONGLIANG, LI YUANYOU, FENG YUNYU, ZHONG KUNHON: "Lipid Nanoparticle Delivery System for mRNA Encoding B7H3‐redirected Bispecific Antibody Displays Potent Antitumor Effects on Malignant Tumors", ADVANCED SCIENCE, JOHN WILEY & SONS, INC, GERMANY, vol. 10, no. 3, 1 January 2023 (2023-01-01), Germany, XP093185101, ISSN: 2198-3844, DOI: 10.1002/advs.202205532 *
SCHLAKE, T. ET AL.: "mRNA as novel technology for passive immunotherapy", CELLULAR AND MOLECULAR LIFE SCIENCES, vol. 76, 17 October 2018 (2018-10-17), pages 301 - 328, XP036679412, DOI: 10.1007/s00018-018-2935-4 *

Similar Documents

Publication Publication Date Title
AU2021202453B2 (en) Methods and compositions for delivering mrna coded antibodies
AU2019253221B2 (en) PD-L1 binding affimers, and uses related thereto
JP2023527309A (en) Circular RNA compositions and methods
CN115867291A (en) Circular RNA compositions and methods
CN116034114A (en) Cyclic RNA compositions and methods
WO2018126084A1 (en) Branched peg molecules and related compositions and methods
JP2019014742A (en) Messenger rna therapy for treatment of articular disease
KR20230069926A (en) Materials and methods for targeted delivery to cells
EP4228601A1 (en) In vivo targeting of fibrosis by anti-cd5-targeted fap-car t mrna-lnp
CA3041853A1 (en) Skin fibrosis treatment agent
WO2024131874A1 (en) Polynucleotides encoding cd19/cd3 bispecific antibodies
CN118251236A (en) Polynucleotides encoding CD19/CD3 bispecific antibodies
WO2023148276A1 (en) Agents and methods for targeted delivery to cells

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202380014397.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23906034

Country of ref document: EP

Kind code of ref document: A1