WO2024131277A1 - 关断器及其控制方法、光伏发电系统 - Google Patents

关断器及其控制方法、光伏发电系统 Download PDF

Info

Publication number
WO2024131277A1
WO2024131277A1 PCT/CN2023/127089 CN2023127089W WO2024131277A1 WO 2024131277 A1 WO2024131277 A1 WO 2024131277A1 CN 2023127089 W CN2023127089 W CN 2023127089W WO 2024131277 A1 WO2024131277 A1 WO 2024131277A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
power supply
shutdown
photovoltaic
circuit breaker
Prior art date
Application number
PCT/CN2023/127089
Other languages
English (en)
French (fr)
Inventor
禹红斌
吴彦伟
赵一
杨波
Original Assignee
杭州禾迈电力电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州禾迈电力电子股份有限公司 filed Critical 杭州禾迈电力电子股份有限公司
Publication of WO2024131277A1 publication Critical patent/WO2024131277A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present application relates to the technical field of photovoltaic power generation, and in particular to a circuit breaker and a control method thereof, and a photovoltaic power generation system.
  • string photovoltaic power generation systems have been widely used in the field of photovoltaic power generation.
  • the DC high voltage of string photovoltaic power generation systems will bring arcing fire and electric shock hazards.
  • a fire occurs in the photovoltaic power generation system, it will bring great safety hazards to the firefighting operations of firefighters.
  • the relevant solution is to configure a component-level fast shutdown device, such as a circuit breaker, for each photovoltaic DC power supply.
  • a component-level fast shutdown device such as a circuit breaker
  • the related technology generally draws power from the photovoltaic DC power supply to which it is connected to supply power to the controller and the driver.
  • the photovoltaic DC power supply is abnormal, for example, when the photovoltaic DC power supply is blocked by shadows, dust, or has large attenuation, the output current of the photovoltaic DC power supply is less than the power bus current, and the output voltage of the photovoltaic DC power supply will be continuously pulled down by the power bus current until the auxiliary power supply module loses power and stops working, the controller is reset, and the switch tube connected between the photovoltaic DC power supply and the power bus inside the circuit breaker is disconnected.
  • the output voltage of the photovoltaic DC power supply rises rapidly. When it is higher than the starting voltage of the auxiliary power supply module, the auxiliary power supply module and the controller restart, causing the auxiliary power supply module and the controller to be in a frequent switching state, affecting the normal operation of the circuit breaker.
  • a circuit breaker and a control method thereof, and a photovoltaic power generation system are provided.
  • an embodiment of the present application provides a circuit breaker, the circuit breaker comprising:
  • a first shutdown module used to control the connection between the first photovoltaic DC power source and the power bus
  • control module connected to the first shutoff module, and configured to control the first shutoff module
  • an auxiliary power supply module connected to the control module, and configured to draw power from the first photovoltaic DC power supply and supply power to the control module;
  • control module is also used to detect the power supply support capacity of the auxiliary power supply module.
  • the first shutdown module is controlled to disconnect to disconnect the connection between the first photovoltaic DC power supply and the power bus.
  • control module obtains a voltage signal representing the power supply support capability of the auxiliary power supply module, and when the voltage signal is lower than a corresponding voltage threshold, controls the first shutdown module to disconnect.
  • the control module obtains the input voltage of the first shutdown module that represents the power supply support capability of the auxiliary power supply module.
  • the first shutdown module is controlled to disconnect.
  • the control module closes the first shutdown module after controlling the first shutdown module to disconnect for a second preset time. After the first shutdown module is closed for a third preset time, if the voltage signal characterizing the power supply support capability of the auxiliary power supply module is not lower than the corresponding voltage threshold, the restart is successful and the first shutdown module is controlled to remain in a normally closed state. If the voltage signal is lower than the corresponding voltage threshold, the restart fails and the first shutdown module is controlled to disconnect.
  • control module controls the first shutdown module to disconnect for a fourth preset time and then restart again, and the fourth preset time is greater than the second preset time.
  • the first shutdown module includes:
  • At least one first switch tube connected between the first photovoltaic DC power source and the power bus;
  • a freewheeling tube connected to the output end of the first shut-off module for providing a freewheeling channel.
  • the control module controls the freewheeling tube to be turned on within a fourth preset time.
  • the auxiliary power supply module includes:
  • a support unit used to draw power from the first photovoltaic DC power source and provide a support voltage
  • a power supply unit is used to convert the support voltage to generate a power supply voltage provided to the control module.
  • control module includes:
  • a detection unit used to obtain a voltage signal representing a power supply support capability; the voltage signal is an input voltage of the first shutdown module or the support voltage or the power supply voltage;
  • a control unit is used to control the first shutdown module to disconnect when the voltage signal is lower than the corresponding voltage threshold.
  • the support unit comprises:
  • a supporting capacitor connected in parallel with the power supply unit.
  • the auxiliary power supply module further includes:
  • the voltage stabilizer connected to the input end of the supporting unit is used to reduce or stabilize the input voltage of the power supply unit.
  • the switch further comprises:
  • At least one second shutdown module connected between the corresponding second photovoltaic DC power source and the power bus, used to control the connection between the corresponding second photovoltaic DC power source and the power bus, the output ends of the first shutdown module and the second shutdown module are connected; the second shutdown module is connected to the control module, and the control module is also used to control the second shutdown module;
  • control module controls the first shutdown module to disconnect the first photovoltaic DC power supply and the power bus, and controls the second shutdown module to maintain normal operation.
  • an embodiment of the present application provides a method for controlling a shutdown device, wherein the shutdown device includes a first shutdown module for controlling the connection between a first photovoltaic DC power source and a power bus, a control module connected to the first shutdown module, and an auxiliary power supply module connected to the control module, wherein the method includes:
  • the control module detects the power supply support capability of the auxiliary power supply module
  • the control module controls the first shutdown module to disconnect to disconnect the connection between the first photovoltaic DC power source and the power bus.
  • control module obtains a voltage signal representing the power supply support capability of the auxiliary power supply module, and when the voltage signal is lower than a corresponding voltage threshold, controls the first shutdown module to disconnect.
  • the control module obtains the input voltage of the first shutdown module representing the power supply support capability of the auxiliary power supply module.
  • the first shutdown module is controlled to disconnect.
  • the control module closes the first shutdown module after controlling the first shutdown module to disconnect for a second preset time. After the first shutdown module is closed for a third preset time, if the voltage signal is not lower than the corresponding voltage threshold, the restart is successful, and the first shutdown module is controlled to remain in a normally closed state. If the voltage signal representing the power supply support capacity of the auxiliary power supply module is lower than the corresponding voltage threshold, the restart fails, and the first shutdown module is controlled to disconnect.
  • control module controls the first shutdown module to disconnect for a fourth preset time and then restart again, and the fourth preset time is greater than the second preset time.
  • the first shutoff module includes a freewheeling tube connected to the output end of the first shutoff module for providing a freewheeling channel;
  • the control module controls the freewheeling tube to be turned on within a fourth preset time.
  • the shutdown device further includes at least one second shutdown module connected between the corresponding second photovoltaic DC power source and the power bus, and is used to control the connection between the corresponding second photovoltaic DC power source and the power bus, the output ends of the first shutdown module and the second shutdown module are connected, and the control module is connected to the second shutdown module;
  • control module controls the first shutdown module to disconnect the first photovoltaic DC power supply and the power bus, and controls the second shutdown module to maintain normal operation.
  • an embodiment of the present application proposes a photovoltaic power generation system, characterized in that it includes at least one photovoltaic DC power supply and at least one circuit breaker as described in the first aspect, and the output end of the photovoltaic DC power supply is connected to a power bus through the circuit breaker.
  • the first shutdown module is controlled to disconnect to disconnect the connection between the first photovoltaic DC power supply and the power bus to prevent the control module from losing power, thereby avoiding frequent power on and off of the auxiliary power supply module and the control module, which affects the normal operation of the shutdown device.
  • FIG. 1 is a schematic diagram of the structure of a circuit breaker in an embodiment provided by the present application.
  • FIG2 is a schematic diagram of the structure of an auxiliary power supply module and a control module in an embodiment provided in the present application.
  • FIG3 is a schematic structural diagram of a circuit breaker according to a first specific embodiment of the present application.
  • FIG. 4 is a schematic diagram of the structure of a circuit breaker in another embodiment provided by the present application.
  • FIG5 is a schematic diagram of the structure of a circuit breaker according to a second specific embodiment of the present application.
  • FIG6 is a schematic structural diagram of a circuit breaker according to a third specific embodiment of the present application.
  • FIG. 7 is a flow chart of a method for controlling a circuit breaker in an embodiment provided in the present application.
  • FIG. 8 is a schematic diagram of signal waveforms of a circuit breaker in the first exemplary embodiment provided by the present application.
  • FIG. 9 is a schematic diagram of signal waveforms of a circuit breaker in a second exemplary embodiment provided by the present application.
  • FIG. 10 is a schematic diagram of signal waveforms of a circuit breaker in the third exemplary embodiment provided in the present application.
  • connection is not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect.
  • the “multiple” involved in this application refers to greater than or equal to two.
  • “And/or” describes the association relationship of associated objects, indicating that there can be three relationships, for example, “A and/or B” can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the terms “first”, “second”, “third” and the like involved in the present application are merely used to distinguish similar objects and do not represent a specific ordering of the objects.
  • the circuit breaker includes: a first circuit breaker module 100 connected between a first photovoltaic DC power source PV1 and a power bus, for controlling the connection between the first photovoltaic DC power source PV1 and the power bus; a control module 200 connected to the first circuit breaker module 100, for controlling the first circuit breaker module 100; an auxiliary power supply module 300 connected to the control module 200, for taking power from the first photovoltaic DC power source PV1 and supplying power to the control module 200; wherein the control module 200 is also used to detect the The power supply support capacity of the auxiliary power supply module 300.
  • the first shutdown module 100 is controlled to disconnect to disconnect the connection between the first photovoltaic DC power source PV1 and the power bus.
  • the first photovoltaic direct current power source PV1 may be a single photovoltaic module, a plurality of photovoltaic modules connected in series or in parallel, or a plurality of photovoltaic cell substrings connected in series or in parallel.
  • the power supply support capability is lower than the support capability threshold, for example, refers to that the voltage signal characterizing the power supply support capability of the auxiliary power supply module is lower than the corresponding voltage threshold, or the voltage signal characterizing the power supply support capability of the auxiliary power supply module is lower than the corresponding voltage threshold and the voltage signal after a period of time is still lower than the corresponding voltage threshold, but is not limited to this.
  • controlling the first shutdown module to disconnect means disconnecting the connection between the correspondingly connected first photovoltaic DC power supply and the power bus, and controlling the first shutdown module to close or be in a normally closed state means connecting the connection between the first photovoltaic DC power supply and the power bus, and the first photovoltaic DC power supply performs normal power output.
  • the control module detects the power supply support capacity of the auxiliary power supply module.
  • the first shutdown module is controlled to disconnect to disconnect the connection between the first photovoltaic DC power supply and the power bus to prevent the control module from losing power.
  • the control module 200 obtains a voltage signal used to characterize the power supply support capability of the auxiliary power supply module 300.
  • the voltage signal is lower than the corresponding voltage threshold, the first circuit breaker module 100 is controlled to disconnect.
  • the voltage threshold corresponds to the support capability threshold of the auxiliary power supply module.
  • the first circuit breaker module 100 is controlled to disconnect, so the auxiliary power supply module 300 will not crash, and the control module 200 will not have a power failure problem, which will not affect the normal operation of the circuit breaker.
  • the startup process of the shutdown device for example, when starting in weak light in the morning and evening, since the power that the first photovoltaic DC power supply can provide is relatively small, directly closing the first shutdown module will cause the output voltage of the first photovoltaic DC power supply (the input voltage of the first shutdown module) to be instantly lowered.
  • the auxiliary power supply module stops working, causing the control module to lose power.
  • the output voltage of the first photovoltaic DC power supply is higher than the startup threshold of the auxiliary power supply module, the auxiliary power supply module starts working again, the control module is powered on and restarted, and the first shutdown module is closed again. It will take several repetitions to successfully start up, and repeated restarts will affect the life of the device and reduce reliability.
  • the control module 200 obtains a voltage signal for characterizing the power supply support capability of the auxiliary power supply module 300.
  • the voltage signal is, for example, the input voltage of the first circuit breaker module.
  • the first shutdown module 100 is controlled to disconnect, thereby avoiding repeated restarts of the auxiliary power supply module and the control module and improving the reliability of the circuit breaker.
  • the voltage threshold and the first preset time correspond to the supporting capacity threshold of the auxiliary power supply module.
  • the control module 200 controls the first shutdown module 100 to close the first shutdown module after disconnecting for a second preset time. After the first shutdown module 100 is closed for a third preset time, if the voltage signal is not lower than the corresponding voltage threshold, the restart is successful, and the first shutdown module 100 is controlled to remain in a normally closed state. If the voltage signal is lower than the corresponding voltage threshold, the restart fails, and the first shutdown module 100 is controlled to disconnect.
  • the frequency of the shutdown module restart is effectively controlled by setting the second preset time to avoid frequent restarts.
  • the third preset time is set to ensure successful restart of the shutdown module.
  • control module controls the first shutdown module to disconnect and restart again after a fourth preset time, and the fourth preset time is greater than the second preset time.
  • the frequency of restarting the shutdown module is effectively controlled by setting the fourth preset time to avoid frequent restarts.
  • the auxiliary power supply module 300 includes: a support unit 310, used to draw power from a first photovoltaic DC power source PV1 and output a support voltage V1; and a power supply unit 320, used to convert the support voltage V1 to generate a power supply voltage.
  • the support unit 310 can prevent the input voltage of the power supply unit 320 from being instantly reduced, and continue to provide a stable support voltage to the power supply unit 320 to keep the control module 200 from being powered off.
  • the power supply unit can convert the support voltage to generate a plurality of supply voltages with different voltage values.
  • the control module 200 includes: a detection unit 220, used to obtain a voltage signal representing the power supply support capability; a control unit 210, used to control the first shutdown module 100 connected to the auxiliary power supply module 300 to disconnect when the voltage signal is lower than the corresponding voltage threshold, and the first photovoltaic DC power supply PV1 is only used to supply power to the auxiliary power supply module 300 to prevent the control module 200 from powering off.
  • the first shutdown module 100 includes at least one first switch tube connected between the first photovoltaic DC power source PV1 and the power bus.
  • the voltage signal representing the power supply support capability is the support voltage V1 output by the support unit 310.
  • the detection unit 220 is used to obtain the support voltage V1.
  • the control unit 210 determines that the support capability of the auxiliary power supply module 300 is insufficient. If the first switch tube between the first photovoltaic DC power source PV1 and the power bus is continuously closed, the control module 200 will be powered off. Therefore, in order to avoid When the control module 200 loses power, the first switch tube between the first photovoltaic DC power source PV1 and the power bus needs to be disconnected. At this time, the first photovoltaic DC power source PV1 is only used to supply power to the auxiliary power supply module 300 to prevent the control module 200 from losing power.
  • the voltage signal characterizing the power supply support capability is the input voltage Vin of the first shutdown module 100.
  • the detection unit 220 obtains the input voltage Vin of the first shutdown module 100.
  • the control unit 210 determines that the support capability of the auxiliary power supply module 300 is insufficient. If the first switch tube between the first photovoltaic DC power supply PV1 and the power bus continues to be closed, the control module 200 will be powered off. Therefore, in order to avoid the control module 200 from being powered off, the first switch tube between the first photovoltaic DC power supply PV1 and the power bus needs to be disconnected. At this time, the first photovoltaic DC power supply PV1 is only used to supply power to the auxiliary power supply module 300 to prevent the control module 200 from being powered off.
  • the voltage signal characterizing the power supply support capability is the power supply voltage V4 output by the power supply unit 320 to the control module 200, and the power supply voltage V4 is, for example, used to power the drive unit in the control module.
  • the detection unit 220 obtains the power supply voltage V4.
  • the control unit 210 determines that the support capability of the auxiliary power supply module 300 is insufficient. If the first switch tube between the photovoltaic DC power supply and the power bus continues to be closed, the control module 200 will be powered off. Therefore, in order to avoid the control module 200 from being powered off, the switch tube between the first photovoltaic DC power supply PV1 and the power bus needs to be disconnected. At this time, the first photovoltaic DC power supply PV1 is only used to supply power to the auxiliary power supply module to prevent the control module 200 from being powered off.
  • FIG 3 is a structural schematic diagram of the circuit breaker of the first specific embodiment of the present application.
  • the control unit 210 includes a controller 211 and a driving unit 212.
  • the detection unit 220 is used to obtain a voltage signal representing the power supply support capability of the auxiliary power supply module.
  • the controller 211 compares the voltage signal with the corresponding voltage threshold to determine the power supply support capability of the auxiliary power supply module 300, and generates a control signal according to the comparison result.
  • the driving unit 212 generates a driving signal Vgs according to the control signal to drive the first switch tube S11 in the first shutdown module 100.
  • the power supply unit 320 includes a first DC/DC conversion unit 321 and a second DC/DC conversion unit 322.
  • the first DC/DC conversion unit 321 is used to generate a power supply voltage V4 according to the support voltage V1 provided by the support unit 310, which is used to power the drive unit 212.
  • the second DC/DC conversion unit 322 generates a power supply voltage V3 according to the power supply voltage V4, which is used to power the controller 211.
  • the power supply voltage V4 is greater than the power supply voltage V3.
  • the power supply voltage V4 is, for example, 12V
  • the power supply voltage V3 is, for example, 3.3V.
  • the first DC/DC conversion unit 321 and the second DC/DC conversion unit 322 may be step-down circuits, such as buck circuits.
  • the auxiliary power supply module 300 also includes a voltage regulator 330 connected to the input end of the support unit 310 , which is used to reduce or stabilize the input voltage of the power supply unit 320 .
  • the voltage regulator 330 may be a low dropout linear regulator LDO, which may support a wide range of input voltages of the first shutdown module. Voltage, for example, the input voltage of the first shutdown module 100 is 8-80V.
  • the supporting unit 310 includes a supporting capacitor connected in parallel with the power supply unit 320 .
  • the power supply supporting capability of the auxiliary power supply module 300 is related to the capacitance of the supporting capacitor. The larger the capacitance, the stronger the power supply supporting capability.
  • the first shutdown module 100 further includes a freewheeling diode D11 connected to the output end of the photovoltaic DC power supply.
  • a plurality of first switch tubes can be provided as required.
  • the freewheeling tube D11 may be a diode, a switch tube (such as MOSFET, etc.) or a combination thereof.
  • the first shutdown module 100 further includes an input capacitor Cin1 and an output capacitor Cout1, which are respectively connected in parallel to the input and output ends of the first shutdown module 100 for voltage stabilization.
  • the voltage across the input capacitor Cin1 is the input voltage Vin of the first shutdown module
  • the voltage across the output capacitor Cout1 is the output voltage Vout of the shutdown module.
  • the auxiliary power supply module 300 further includes an anti-backflow diode D12 for preventing the auxiliary power supply module 300 from reversely supplying power to the circuit breaker.
  • the support unit 310 may be disposed at the input end of the regulator 330 or between the first DC/DC conversion unit 321 and the second DC/DC conversion unit 322 .
  • the shut-off device further includes a second shut-off module 400 connected between the second photovoltaic DC power source PV2 and the power bus.
  • the first shut-off module is controlled to disconnect to disconnect the connection between the corresponding first photovoltaic DC power source PV1 and the power bus to prevent the control module from losing power, while controlling the second shut-off module to maintain normal operation.
  • the first photovoltaic DC power source PV1 that provides power to the auxiliary power supply module 300 When the first photovoltaic DC power source PV1 that provides power to the auxiliary power supply module 300 is in an abnormal or weak light state, controlling the first shutdown module 100 to disconnect will not affect the normal operation of other photovoltaic DC power sources.
  • Other photovoltaic DC power sources can be connected to the power bus to generate electricity, thereby improving the reliability of the shutdown device.
  • circuit breaker may further include more than two second circuit breaker modules, and the structures thereof are substantially the same, so they will not be described in detail.
  • FIG5 is a schematic diagram of the structure of the circuit breaker of the second specific embodiment of the present application.
  • the circuit breaker further includes a second circuit breaker module 400 connected between the photovoltaic DC power source PV2 and the power bus.
  • the second circuit breaker module 400 has the same structure as the first circuit breaker module 100, including a second switch tube S21, a freewheeling tube D21, capacitors Cin2 and Cout2.
  • the control module 200 provides a driving signal Vgs2 to control the closing or opening of the second switch tube S21 , and the auxiliary power supply module 300 obtains power from the first photovoltaic DC power supply connected to the input end of the first shutdown module 100 .
  • the first switch tube S11 can be arranged between the high potential input terminal and the high potential output terminal of the first shutdown module 100, or between the low potential input terminal and the low potential output terminal of the first shutdown module 100
  • the second switch tube S21 can be arranged between the high potential input terminal and the high potential output terminal of the second shutdown module 400, or between the low potential input terminal and the low potential output terminal of the first shutdown module 100. It can be set between the low potential input terminal and the low potential output terminal of the second shutdown module 400.
  • FIG6 is a schematic diagram of the structure of a circuit breaker according to a third specific embodiment of the present application. As shown in FIG6 , the difference from the first specific embodiment is that the freewheeling tube D11 is a switch tube.
  • the control module 200 controls the freewheeling tube D11 to be turned on within the fourth preset time to provide a freewheeling channel, thereby solving the problem in the related art that the freewheeling tube D11 cannot be continuously turned on due to frequent restarts, causing the power bus current to flow through the parasitic freewheeling diode inside the freewheeling tube D11, causing the circuit breaker to heat up severely and affecting its operating reliability.
  • circuit breaker The other structures of the circuit breaker are the same as those in the second specific embodiment, and thus will not be described in detail.
  • the embodiment of the present application further proposes a control method of a circuit breaker, as shown in FIG7 , the method comprising:
  • the first shutdown module is controlled to disconnect to disconnect the connection between the first photovoltaic DC power supply and the power bus to prevent the control module from losing power, thereby avoiding frequent power on and off of the auxiliary power supply module and the control module, which affects the normal operation of the shutdown device.
  • control module obtains a voltage signal representing the power supply support capability of the auxiliary power supply module, and when the voltage signal is lower than a corresponding voltage threshold, controls the first circuit breaker module to disconnect.
  • the control module obtains the input voltage of the first shutdown module.
  • the input voltage is lower than the corresponding voltage threshold, after a first preset time, if the input voltage is still lower than the corresponding voltage threshold, the first shutdown module is controlled to disconnect.
  • the control module closes the first shutdown module after controlling the first shutdown module to disconnect for a second preset time. After the first shutdown module is closed for a third preset time, if the voltage signal is not lower than the corresponding voltage threshold, the restart is successful and the first shutdown module is controlled to remain in a normally closed state. If the voltage signal is lower than the corresponding voltage threshold, the restart fails and the first shutdown module is controlled to disconnect.
  • control module controls the first shutdown module to disconnect for a fourth preset time and then restart again, and the fourth preset time is greater than the second preset time.
  • the control module controls the freewheeling tube to be turned on within a fourth preset time.
  • the shutdown device further includes at least one second shutdown module connected between the second photovoltaic DC power source and the power bus, and is used to control the connection between the second photovoltaic DC power source and the power bus, the output ends of the first shutdown module and the second shutdown module are connected, and the control module is connected to the second shutdown module;
  • control module controls the first shutdown module to disconnect the first photovoltaic DC power supply and the power bus, and controls the second shutdown module to maintain normal operation.
  • control method of the circuit breaker is described by taking the detection unit 220 acquiring the support voltage V1 as an example.
  • the first photovoltaic DC power supply PV1 is abnormal, for example, it is shielded, etc., resulting in a decrease in the output power of the first photovoltaic DC power supply PV1, and the output voltage of the first photovoltaic DC power supply PV1 begins to decrease.
  • the control module 200 detects that the support voltage V1 is lower than the corresponding first voltage threshold Vth1. To prevent the control module 200 from powering off, the first switch tube S11 is controlled to be disconnected, and the support voltage V1 begins to rise. After a second preset time, the circuit breaker enters a restart state.
  • the first switch tube S11 is controlled to be closed for a third preset time.
  • the control module 200 detects that the support voltage V1 is lower than the corresponding first voltage threshold Vth1, and the first switch tube S11 is controlled to be disconnected.
  • the second preset time that is, at time t4
  • the first switch tube S11 is controlled to be closed again.
  • the control module 200 detects that the support voltage V1 is lower than the corresponding first voltage threshold Vth1.
  • the support voltage V1 is lower than the corresponding first voltage threshold Vth1, and the first switch tube S11 is controlled to be disconnected again; after the second preset time, the first switch tube S11 is controlled to be closed again at time t6.
  • the control module 200 detects that the support voltage V1 is still lower than the corresponding first voltage threshold Vth1, and controls the first switch tube S11 to be disconnected. Because the number of restart failures is greater than the number threshold (the number threshold is, for example, 2 times, which can be set as needed) and the restart is still not successful, the first switch tube S11 is controlled to remain disconnected, and the freewheeling tube D11 provides a freewheeling channel. After the fourth preset time, at time t8, the startup state is entered again. If the number of restart failures is greater than the number threshold and the restart is still not successful, the first switch tube S11 is controlled to remain disconnected, and the freewheeling tube D11 provides a freewheeling channel.
  • the number threshold is, for example, 2 times, which can be set as needed
  • the restart state is entered again, and the cycle is repeated until the abnormality disappears and the restart is successful.
  • the first photovoltaic DC power source PV1 returns to normal.
  • the first switch tube S11 is controlled to close. Within the third preset time, it is not detected that the support voltage V1 is lower than the corresponding first voltage threshold Vth1. The first switch tube S11 is controlled to remain in a normally closed state, the restart is successful, and the circuit breaker continues to operate normally.
  • the control module 200 does not have the problem of power failure restart, thus avoiding the problem of frequent power on and off of the auxiliary power supply module and the control module.
  • the control module provides a driving signal Vbs to control the freewheeling tube D11 to be turned on, providing a freewheeling channel, reducing the freewheeling loss, and further
  • the invention solves the problem in the related art that the freewheeling tube cannot be continuously turned on due to frequent restarts of the control module, causing the power bus current to flow through the parasitic freewheeling diode inside the freewheeling tube, thereby causing the circuit breaker to heat up seriously and affecting its operating reliability.
  • the original input voltage monitoring unit of the circuit breaker can be reused, and there is no need to add a detection unit for detecting the support voltage.
  • control method of the circuit breaker is described by taking the detection unit obtaining the input voltage Vin as an example.
  • the first photovoltaic DC power source PV1 is abnormal, for example, it is shielded, etc., resulting in a decrease in the output power of the first photovoltaic DC power source PV1, and the output voltage of the first photovoltaic DC power source PV1 begins to decrease.
  • the control module 200 detects that the input voltage Vin is lower than the corresponding second voltage threshold Vth2.
  • the first switch tube S11 is controlled to be disconnected, and the input voltage Vin begins to rise.
  • the control module 200 enters a restart state.
  • the first switch tube S11 is controlled to be closed.
  • the control module 200 After the third preset time, that is, at time t3, the control module 200 detects that the input voltage Vin is lower than the corresponding second voltage threshold Vth2, and controls the first switch tube S11 to be disconnected. After the second preset time, that is, at time t4, the first switch tube S11 is controlled to be closed again. After the third preset time, at time t5, the control module 200 detects that the input voltage Vin is lower than the corresponding second voltage threshold Vth2. It is detected that the input voltage Vin is still lower than the corresponding second voltage threshold Vth2, and the first switch tube S11 is controlled to be disconnected again; after the second preset time, at time t6, the first switch tube S11 is controlled to be closed again.
  • the control module 200 detects that the input voltage Vin is still lower than the corresponding second voltage threshold Vth2, and the first switch tube S11 is controlled to be disconnected again. Because the number of restart failures is greater than the number threshold (the number threshold is, for example, 2 times, which can be set as needed) and the restart is still not successful, the first switch tube S11 is controlled to remain disconnected, and the freewheeling tube D11 provides a freewheeling channel.
  • the fourth preset time at time t8 the startup state is entered again. If the number of restart failures is greater than the number threshold and the restart is still not successful, the first switch tube S11 is controlled to remain disconnected, and the freewheeling tube D11 provides a freewheeling channel.
  • the restart state is entered again, and the cycle is repeated until the abnormality disappears and the restart is successful.
  • the first photovoltaic DC power supply PV1 returns to normal, and at time t14, the first switch tube S11 is controlled to close.
  • the control module 200 detects that the input voltage Vin is not lower than the corresponding second voltage threshold Vth2, and controls the first switch tube S11 to remain in a normally closed state, and the restart is successful, and the circuit breaker continues to operate normally.
  • the control module does not have a power failure problem, so the photovoltaic system can continue to operate normally according to the state before the abnormality.
  • control method of the circuit breaker is described by taking the detection unit obtaining the input voltage Vin as an example.
  • the working state of the first switch tube S11 is the same as that of the first embodiment, and will not be described in detail. It can be seen from the figure that during the entire process of the first photovoltaic DC power source PV1 recovering from abnormality to normal, the control module 200 does not have a power failure problem, and regardless of the state of the second photovoltaic DC power source PV2, the control module 200 controls The control switch tube S21 is always in a closed state, and the second photovoltaic DC power supply PV2 works normally to provide power output.
  • the control module 200 can start normally without power failure, and will not affect the normal startup of the shutdown modules connected to other photovoltaic DC power sources.
  • Other photovoltaic DC power sources can be connected to the power bus to generate electricity, thereby improving the reliability of the circuit breaker.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

一种关断器及其控制方法、光伏发电系统。关断器包括:第一关断模块(100),用于控制第一光伏直流电源(PV1)和功率总线之间的连接;控制模块(200),用于控制第一关断模块(100);辅助供电模块(300),用于从第一光伏直流电源(PV1)取电,并向控制模块(200)供电;控制模块(200)还用于检测辅助供电模块(300)的供电支撑能力,当辅助供电模块(300)的供电支撑能力低于对应的支撑能力阈值时,控制第一关断模块(100)断开以断开第一光伏直流电源(PV1)和功率总线之间的连接。

Description

关断器及其控制方法、光伏发电系统
相关申请
本申请要求2022年12月22日申请的,申请号为202211651944.6,名称为“关断器及其控制方法、光伏发电系统”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及光伏发电技术领域,特别是涉及一种关断器及其控制方法、光伏发电系统。
背景技术
目前,组串式光伏发电系统在光伏发电领域得到了广泛的应用,组串式光伏发电系统的直流高压会带来拉弧起火及触电危险,在光伏发电系统出现火灾时,给消防员的灭火作业带来极大的安全隐患。相关的解决方案是为每个光伏直流电源配置组件级快速关断设备,例如关断器,在出现火灾等异常情况时,通过关断器来切断每个光伏直流电源的输出,降低光伏直流电源的输出电压,从而降低消防及运维人员的触电风险。
对于关断器,相关技术中一般从其连接的光伏直流电源取电以向控制器和驱动器供电,在正常运行过程中,当光伏直流电源异常时,例如在光伏直流电源受阴影遮挡、灰尘遮挡、衰减较大等工况,光伏直流电源的输出电流小于功率总线电流,光伏直流电源的输出电压就会被功率总线电流持续拉低,直至辅助供电模块掉电停止工作,控制器复位,关断器内部的连接在光伏直流电源和功率总线之间的开关管断开,光伏直流电源输出电压迅速上升,当高于辅助供电模块的启动电压后,辅助供电模块和控制器重新启动,导致辅助供电模块和控制器处于频繁开关机状态,影响关断器的正常运行。
发明内容
根据本申请的各种实施例,提供一种关断器及其控制方法、光伏发电系统。
第一方面,本申请实施例提出一种关断器,所述关断器包括:
第一关断模块,用于控制第一光伏直流电源和功率总线之间的连接;
控制模块,与所述第一关断模块连接,用于控制所述第一关断模块;
辅助供电模块,与所述控制模块连接,用于从所述第一光伏直流电源取电,并向所述控制模块供电;
其中,所述控制模块还用于检测所述辅助供电模块的供电支撑能力,当所述辅助供电模块的供电支撑能力低于支撑能力阈值时,控制所述第一关断模块断开以断开第一光伏直流电源和功率总线之间的连接。
在一实施例中,所述控制模块获取表征所述辅助供电模块的供电支撑能力的电压信号,当所述电压信号低于对应的电压阈值时,控制所述第一关断模块断开。
在一实施例中,在所述关断器启动过程中,所述控制模块获取表征所述辅助供电模块的供电支撑能力的所述第一关断模块的输入电压,当所述输入电压低于对应的电压阈值时,在经过第一预设时间后,若所述输入电压仍低于对应的电压阈值,则控制所述第一关断模块断开。
在一实施例中,在所述第一关断模块重启过程中,所述控制模块在控制所述第一关断模块断开第二预设时间后闭合所述第一关断模块,在所述第一关断模块闭合第三预设时间后,若表征所述辅助供电模块的供电支撑能力的电压信号不低于对应的电压阈值,则重启成功,控制所述第一关断模块保持常闭状态,若所述电压信号低于对应的电压阈值,则重启失败,控制所述第一关断模块断开。
在一实施例中,若重启失败的次数大于次数阈值,则所述控制模块控制所述第一关断模块断开第四预设时间后再次进行重启操作,所述第四预设时间大于所述第二预设时间。
在一实施例中,所述第一关断模块包括:
至少一个连接在所述第一光伏直流电源和所述功率总线之间的第一开关管;
以及连接在所述第一关断模块输出端的用于提供续流通道的续流管。
在一实施例中,当所述续流管为开关管时,若所述第一关断模块重启失败的次数大于次数阈值,则所述控制模块在第四预设时间内控制所述续流管导通。
在一实施例中,所述辅助供电模块包括:
支撑单元,用于从所述第一光伏直流电源取电,并提供支撑电压;
供电单元,用于对所述支撑电压进行转换产生提供至所述控制模块的供电电压。
在一实施例中,所述控制模块包括:
检测单元,用于获取表征供电支撑能力的电压信号;所述电压信号为所述第一关断模块的输入电压或所述支撑电压或供电电压;
控制单元,用于当所述电压信号低于对应的电压阈值时,控制所述第一关断模块断开。
在一实施例中,所述支撑单元包括:
与所述供电单元并联连接的支撑电容。
在一实施例中,所述辅助供电模块还包括:
连接在所述支撑单元输入端的稳压器,用于降低或稳定所述供电单元的输入电压。
在一实施例中,所述关断器还包括:
至少一个连接在相应的第二光伏直流电源与所述功率总线之间的第二关断模块,用于控制相应的第二光伏直流电源和所述功率总线之间的连接,所述第一关断模块和第二关断模块的输出端连接;所述第二关断模块与所述控制模块连接,所述控制模块还用于控制所述第二关断模块;
当所述供电支撑能力低于支撑能力阈值时,所述控制模块控制所述第一关断模块断开第一光伏直流电源和功率总线之间的连接,以及控制所述第二关断模块保持正常工作。
第二方面,本申请实施例提出一种关断器的控制方法,所述关断器包括用于控制第一光伏直流电源和功率总线之间的连接的第一关断模块、与所述第一关断模块连接的控制模块、与所述控制模块连接的辅助供电模块,所述方法包括:
所述控制模块检测所述辅助供电模块的供电支撑能力;
当所述辅助供电模块的供电支撑能力低于支撑能力阈值时,所述控制模块控制所述第一关断模块断开以断开所述第一光伏直流电源和所述功率总线之间的连接。
在一实施例中,所述控制模块获取表征所述辅助供电模块的供电支撑能力的电压信号,当所述电压信号低于对应的电压阈值时,控制所述第一关断模块断开。
在一实施例中,在所述关断器启动过程中,所述控制模块获取表征所述辅助供电模块的供电支撑能力的第一关断模块的输入电压,当所述输入电压低于对应的电压阈值时,在经过第一预设时间后,若所述输入电压仍低于对应的电压阈值,则控制所述第一关断模块断开。
在一实施例中,在所述第一关断模块重启过程中,所述控制模块在控制所述第一关断模块断开第二预设时间后闭合所述第一关断模块,在所述第一关断模块闭合第三预设时间后,若所述电压信号不低于对应的电压阈值,则重启成功,控制所述第一关断模块保持常闭状态,若表征所述辅助供电模块的供电支撑能力的电压信号低于对应的电压阈值,则重启失败,控制所述第一关断模块断开。
在一实施例中,若重启失败的次数大于次数阈值,则所述控制模块控制所述第一关断模块断开第四预设时间后再次进行重启操作,所述第四预设时间大于所述第二预设时间。
在一实施例中,所述第一关断模块包括连接在所述第一关断模块输出端用于提供续流通道的续流管;
当所述续流管为开关管时,若所述第一关断模块重启失败的次数大于次数阈值,则所述控制模块在第四预设时间内控制所述续流管导通。
在一实施例中,所述关断器还包括至少一个连接在对应的第二光伏直流电源与所述功率总线之间的第二关断模块,用于控制对应的第二光伏直流电源和所述功率总线之间的连接,所述第一关断模块和第二关断模块的输出端连接,所述控制模块与所述第二关断模块连接;
当所述供电支撑能力低于支撑能力阈值时,所述控制模块控制所述第一关断模块断开第一光伏直流电源和功率总线之间的连接,以及控制所述第二关断模块保持正常工作。
第三方面,本申请实施例提出一种光伏发电系统,其特征在于,包括至少一个光伏直流电源以及至少一个如第一方面所述的关断器,所述光伏直流电源的输出端经过所述关断器连接至功率总线。
相比于相关技术,通过检测所述辅助供电模块的供电支撑能力,当所述辅助供电模块的供电支撑能力低于支撑能力阈值时,控制所述第一关断模块断开以断开第一光伏直流电源和功率总线之间的连接,以防止控制模块掉电,从而避免辅助供电模块和控制模块频繁开关机,而影响关断器的正常运行。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅是本申请的一些实施例,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请提供的一实施例中关断器的结构示意图。
图2为本申请提供的一实施例中辅助供电模块和控制模块的结构示意图。
图3为本申请提供的第一具体实施例的关断器的结构示意图。
图4为本申请提供的另一实施例中关断器的结构示意图。
图5为本申请提供的第二具体实施例的关断器的结构示意图。
图6为本申请提供的第三具体实施例的关断器的结构示意图。
图7为本申请提供的一实施例中关断器的控制方法的流程示意图。
图8为本申请提供的第一示例实施例中关断器的信号波形示意图。
图9为本申请提供的第二示例实施例中关断器的信号波形示意图。
图10为本申请提供的第三示例实施例中关断器的信号波形示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行描述和说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。基于本申请提供的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。此外,还可以理解的是,虽然这种开发过程中所作出的努力可能是复杂并且冗长的,然而对于与本申请公开的内容相关的本领域的普通技术人员而言,在本申请揭露的技术内容的基础上进行的一些设计,制造或者生产等变更只是常规的技术手段,不应当理解为本申请公开的内容不充分。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域普通技术人员显式地和隐式地理解的是,本申请所描述的实施例在不冲突的情况下,可以与其它实施例相结合。
除非另作定义,本申请所涉及的技术术语或者科学术语应当为本申请所属技术领域内具有一般技能的人士所理解的通常意义。本申请所涉及的“一”、“一个”、“一种”、“该”等类似词语并不表示数量限制,可表示单数或复数。本申请所涉及的术语“包括”、“包含”、“具有”以及它们任何变形,意图在于覆盖不排他的包含;例如包含了一系列步骤或模块(单元)的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可以还包括没有列出的步骤或单元,或可以还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。本申请所涉及的“连接”、“相连”、“耦接”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电气的连接,不管是直接的还是间接的。本申请所涉及的“多个”是指大于或者等于两个。“和/或”描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。本申请所涉及的术语“第一”、“第二”、“第三”等仅仅是区别类似的对象,不代表针对对象的特定排序。
如图1所示,本申请实施例提出一种关断器,如图1所示,所述关断器包括:连接在第一光伏直流电源PV1与功率总线之间的第一关断模块100,用于控制第一光伏直流电源PV1和所述功率总线之间的连接;与所述第一关断模块100连接的控制模块200,用于控制所述第一关断模块100;与控制模块200连接的辅助供电模块300,用于从第一光伏直流电源PV1取电,并向所述控制模块200供电;其中,所述控制模块200还用于检测所述 辅助供电模块300的供电支撑能力,当所述辅助供电模块300的供电支撑能力低于支撑能力阈值时,控制所述第一关断模块100断开以断开第一光伏直流电源PV1和功率总线之间的连接。
第一光伏直流电源PV1可以是单个光伏组件、串联/并联连接的多个光伏组件、串联/并联连接的多个光伏电池子串。
其中,供电支撑能力低于支撑能力阈值例如指的是表征所述辅助供电模块的供电支撑能力的电压信号低于对应的电压阈值,或表征所述辅助供电模块的供电支撑能力的电压信号低于对应的电压阈值且经过一段时间后的电压信号仍低于对应的电压阈值,但不限于此。
在本申请中,控制所述第一关断模块断开是指断开相应连接的第一光伏直流电源和功率总线之间的连接,控制所述第一关断模块闭合或处于常闭状态是指连通第一光伏直流电源和功率总线之间的连接,第一光伏直流电源进行正常的功率输出。
在本实施例中,控制模块检测所述辅助供电模块的供电支撑能力,当所述辅助供电模块的供电支撑能力低于支撑能力阈值时,控制所述第一关断模块断开以断开第一光伏直流电源和功率总线之间的连接,以防止控制模块掉电。解决了当第一光伏直流电源异常时,例如在第一光伏直流电源受阴影遮挡、灰尘遮挡、衰减较大等工况,辅助供电模块和控制模块频繁开关机,而影响关断器的正常运行的问题。
在关断器正常工作过程中,控制模块200获取用于表征所述辅助供电模块300的供电支撑能力的电压信号,当所述电压信号低于对应的电压阈值时,控制第一关断模块100断开,所述电压阈值对应于所述辅助供电模块的支撑能力阈值。
在关断器的正常工作过程中,在用于为辅助供电模块300供电的第一光伏直流电源PV1发生异常时,即电压信号低于对应的电压阈值时,控制第一关断模块100断开,因此辅助供电模块300不会崩溃,控制模块200不存在掉电问题,不会影响关断器的正常工作。
在关断器启动过程中,例如在早晚弱光启动时,由于第一光伏直流电源可提供的功率比较小,直接闭合第一关断模块会使第一光伏直流电源的输出电压(第一关断模块的输入电压)瞬间被拉低,当低于对应的辅助供电模块的运行电压下限时,辅助供电模块停止工作,导致控制模块掉电,当第一光伏直流电源的输出电压高于辅助供电模块的启动阈值时,辅助供电模块再次开始工作,控制模块上电重启,第一关断模块又再次闭合,反复几次后才能启动成功,而反复的重启将影响器件寿命,降低可靠性。
为解决上述技术问题,在关断器启动过程中,控制模块200获取用于表征所述辅助供电模块300的供电支撑能力的电压信号,所述电压信号例如为所述第一关断模块的输入电压。当所述电压信号低于对应的电压阈值时,在经过第一预设时间后,若所述电压信号仍 低于对应的电压阈值,则控制所述第一关断模块100断开,从而避免了辅助供电模块和控制模块的反复重启,提高了关断器的可靠性,所述电压阈值和所述第一预设时间对应于所述辅助供电模块的支撑能力阈值。
进一步的,在第一关断模块重启过程中,即从断开状态到闭合状态,控制模块200在控制所述第一关断模块100断开第二预设时间后闭合所述第一关断模块,在所述第一关断模块100闭合第三预设时间后,若所述电压信号不低于对应的电压阈值,则重启成功,控制所述第一关断模块100保持常闭状态,若所述电压信号低于对应的电压阈值,则重启失败,控制所述第一关断模块100断开。
基于上述控制策略,在关断模块重启过程中,通过设定第二预设时间有效控制关断模块重启的频率,避免频繁重启。通过第三预设时间的设定,保证关断模块的重启成功。
进一步的,若重启失败的次数大于次数阈值,则所述控制模块控制所述第一关断模块断开第四预设时间后再次进行重启操作,所述第四预设时间大于所述第二预设时间。
基于上述控制策略,在关断模块重启过程中,通过设定第四预设时间有效控制关断模块重启的频率,避免频繁重启。
在一实施例中,如图2所示,所述辅助供电模块300包括:支撑单元310,用于从第一光伏直流电源PV1取电,并输出支撑电压V1。供电单元320,用于对所述支撑电压V1进行转换产生供电电压。
所述支撑单元310在第一光伏直流电源PV1异常时,可以防止供电单元320的输入电压被瞬间拉低,继续向供电单元320提供稳定的支撑电压保持控制模块200不掉电。
根据控制模块的需求,供电单元可以对所述支撑电压进行转换产生多个不同电压值的供电电压。
所述控制模块200包括:检测单元220,用于获取表征供电支撑能力的电压信号;控制单元210,用于当所述电压信号低于对应的电压阈值时,控制所述辅助供电模块300所连接的第一关断模块100断开,第一光伏直流电源PV1只用于向辅助供电模块300供电以防止控制模块200掉电。
其中,所述第一关断模块100包括至少一个连接在所述第一光伏直流电源PV1和所述功率总线之间的第一开关管。
具体的,在一实施例中,所述表征供电支撑能力的电压信号为所述支撑单元310输出的支撑电压V1。所述检测单元220用于获取支撑电压V1,当支撑电压V1低于对应的第一电压阈值时,控制单元210判断辅助供电模块300的支撑能力不足,若继续闭合第一光伏直流电源PV1和功率总线之间的第一开关管,会造成控制模块200掉电,因此为了避免 控制模块200掉电,需要断开第一光伏直流电源PV1和功率总线之间的第一开关管,此时第一光伏直流电源PV1只用于向辅助供电模块300供电以防止控制模块200掉电。
在另一实施例中,所述表征供电支撑能力的电压信号为第一关断模块100的输入电压Vin。所述检测单元220获取所述第一关断模块100的输入电压Vin,在运行过程中,当输入电压Vin低于对应的第二电压阈值时,控制单元210判断辅助供电模块300的支撑能力不足,若继续闭合第一光伏直流电源PV1和功率总线之间的第一开关管,会造成控制模块200掉电,因此为了避免控制模块200掉电,需要断开第一光伏直流电源PV1和功率总线之间的第一开关管,此时第一光伏直流电源PV1只用于向辅助供电模块300供电以防止控制模块200掉电。
在又一实施例中,所述表征供电支撑能力的电压信号为所述供电单元320向所述控制模块200输出的供电电压V4,供电电压V4例如为控制模块中的驱动单元供电。所述检测单元220获取供电电压V4,当供电电压V4低于对应的第三电压阈值时,控制单元210判断辅助供电模块300的支撑能力不足,若继续闭合光伏直流电源和功率总线之间第一开关管,会造成控制模块200掉电,因此为了避免控制模块200掉电,需要断开第一光伏直流电源PV1和功率总线之间开关管,此时第一光伏直流电源PV1只用于向辅助供电模块供电以防止控制模块200掉电。
图3为本申请第一具体实施例的关断器的结构示意图,如图3所示,控制单元210包括控制器211以及驱动单元212,检测单元220用于获取表征所述辅助供电模块的供电支撑能力的电压信号,控制器211将该电压信号和对应的电压阈值进行比较,判断辅助供电模块300的供电支撑能力,根据比较结果产生控制信号,驱动单元212根据控制信号产生驱动信号Vgs,用于驱动第一关断模块100中的第一开关管S11。
供电单元320包括第一DC/DC变换单元321和第二DC/DC变换单元322,第一DC/DC变换单元321用于根据支撑单元310提供的支撑电压V1产生供电电压V4,用于为驱动单元212供电,第二DC/DC变换单元322根据供电电压V4产生供电电压V3,用于为控制器211供电,供电电压V4大于供电电压V3,供电电压V4例如为12V,供电电压V3例如为3.3V。
第一DC/DC变换单元321和第二DC/DC变换单元322可以为降压电路,例如为buck电路。
进一步的,辅助供电模块300还包括连接在所述支撑单元310输入端的稳压器330,用于降低或稳定所述供电单元320的输入电压。
稳压器330可以为低压差线性稳压器LDO,其可以支持宽范围的第一关断模块的输入 电压,例如第一关断模块100的输入电压为8-80V。
支撑单元310包括与所述供电单元320并联连接的支撑电容,辅助供电模块300的供电支撑能力和支撑电容的容值相关,容值越大,供电支撑能力越强。
第一关断模块100还包括连接在所述光伏直流电源输出端的续流管D11。
第一开关管可以根据需求设置多个。
续流管D11可以为二极管、开关管(例如为MOSFET等)或其组合。
进一步的,第一关断模块100还包括输入电容Cin1和输出电容Cout1,分别并联在第一关断模块100的输入端和输出端,用于稳压。输入电容Cin1两端的电压为第一关断模块的输入电压Vin,输出电容Cout1两端的电压为关断器的输出电压Vout。
进一步的,辅助供电模块300还包括防倒灌二极管D12,用于防止辅助供电模块300向所述关断器反向供电。
进一步的,支撑单元310可以设置在稳压器330的输入端或第一DC/DC变换单元321和第二DC/DC变换单元322之间。
在一实施例中,如图4所示,与图1所示实施例相比,关断器还包括连接在第二光伏直流电源PV2与功率总线之间的第二关断模块400,当供电支撑能力低于对应的支撑能力阈值时,控制所述第一关断模块断开以断开对应第一光伏直流电源PV1和功率总线之间的连接,以防止控制模块掉电,同时控制所述第二关断模块保持正常工作。
当向辅助供电模块300提供电力的第一光伏直流电源PV1处于异常或弱光状态时,控制所述第一关断模块100断开也不会影响其他光伏直流电源的正常工作,其他光伏直流电源可以接入功率总线进行发电,提高了关断器的可靠性。
可以理解的是,关断器还可以包括两个以上的第二关断模块,其结构基本相同,因此不再赘述。
图5为本申请第二具体实施例的关断器的结构示意图,如图5所示,在第一具体实施例的基础上,关断器还包括连接在光伏直流电源PV2与功率总线之间的第二关断模块400。第二关断模块400与第一关断模块100的结构相同,包括第二开关管S21、续流管D21、电容Cin2和Cout2。
控制模块200提供驱动信号Vgs2控制第二开关管S21的闭合或断开,辅助供电模块300从第一关断模块100的输入端连接的第一光伏直流电源取电。
在一些实施例中,第一开关管S11可以设置在第一关断模块100的高电位输入端和高电位输出端之间,也可以设置在第一关断模块100的低电位输入端和低电位输出端之间,第二开关管S21可以设置在第二关断模块400的高电位输入端和高电位输出端之间,也可 以设置在第二关断模块400的低电位输入端和低电位输出端之间。
图6为本申请第三具体实施例的关断器的结构示意图,如图6所示,与第一具体实施例的区别在于所述续流管D11为开关管。
在该实施例中,若第一关断模块重启失败的次数大于次数阈值,则所述控制模块200在第四预设时间内控制所述续流管D11导通提供续流通道,解决了相关技术中续流管D11因为频繁重启而没法持续导通,导致功率总线电流从续流管D11内部寄生的续流二极管流过,导致关断器发热严重,影响其运行可靠性的问题。
关断器的其他结构与第二具体实施例相同,因此不再赘述。
基于上述硬件实施例,本申请实施例还提出一种关断器的控制方法,如图7所示,所述方法包括:
S701:检测所述辅助供电模块的供电支撑能力;
S702:当所述辅助供电模块的供电支撑能力低于支撑能力阈值时,所述控制模块控制所述第一关断模块断开所述第一光伏直流电源和所述功率总线之间的连接。
在本实施例中,通过检测所述辅助供电模块的供电支撑能力,当所述辅助供电模块的供电支撑能力低于支撑能力阈值时,控制所述第一关断模块断开以断开第一光伏直流电源和功率总线之间的连接,以防止控制模块掉电,从而避免辅助供电模块和控制模块频繁开关机,而影响关断器的正常运行。
在一实施例中,在所述关断器正常工作过程中,所述控制模块获取用于表征所述辅助供电模块的供电支撑能力的电压信号,当所述电压信号低于对应的电压阈值时,控制所述第一关断模块断开。
在一实施例中,在所述关断器启动过程中,所述控制模块获取所述第一关断模块的输入电压,当所述输入电压低于对应的电压阈值时,在经过第一预设时间后,若所述输入电压仍低于对应的电压阈值,则控制所述第一关断模块断开。
在一实施例中,在所述第一关断模块重启过程中,所述控制模块在控制所述第一关断模块断开第二预设时间后闭合所述第一关断模块,在所述第一关断模块闭合第三预设时间后,若所述电压信号不低于对应的电压阈值,则重启成功,控制所述第一关断模块保持常闭状态,若所述电压信号低于对应的电压阈值,则重启失败,控制所述第一关断模块断开。
在一实施例中,若重启失败的次数大于次数阈值,则所述控制模块控制所述第一关断模块断开第四预设时间后再次进行重启操作,所述第四预设时间大于所述第二预设时间。
在一实施例中,当所述第一关断模块所包括的续流管为开关管时,若第一关断模块重启失败的次数大于次数阈值,则所述控制模块在第四预设时间内控制所述续流管导通。
在一实施例中,所述关断器还包括至少一个连接在第二光伏直流电源与所述功率总线之间的第二关断模块,用于控制第二光伏直流电源和所述功率总线之间的连接,所述第一关断模块和第二关断模块的输出端连接,所述控制模块与所述第二关断模块连接;
当所述供电支撑能力低于支撑能力阈值时,所述控制模块控制所述第一关断模块断开第一光伏直流电源和功率总线之间的连接,以及控制所述第二关断模块保持正常工作。
关于关断器的控制方法的具体限定可以参见上文中对于关断器的限定,在此不再赘述。
在第一示例实施例中,以检测单元220获取支撑电压V1为例,对关断器的控制方法进行说明。
结合图3和图8,在关断器的工作过程中,在t0时刻,第一光伏直流电源PV1异常,例如受到遮挡等,导致第一光伏直流电源PV1的输出功率下降,第一光伏直流电源PV1的输出电压开始降低,t1时刻控制模块200检测到支撑电压V1低于对应的第一电压阈值Vth1,为防止控制模块200掉电,控制第一开关管S11断开,支撑电压V1开始上升,经过第二预设时间后,进入重启状态,t2时刻,控制第一开关管S11闭合第三预设时间后,t3时刻,控制模块200检测到支撑电压V1低于对应的第一电压阈值Vth1,控制第一开关管S11断开;经过第二预设时间后,即t4时刻再次控制第一开关管S11闭合,t5时刻,控制模块200检测到支撑电压V1低于对应的第一电压阈值Vth1,控制第一开关管S11再次断开;经过第二预设时间后,在t6时刻再次控制第一开关管S11闭合,在t7时刻,控制模块200检测到支撑电压V1仍低于对应的第一电压阈值Vth1,控制第一开关管S11断开,因重启失败的次数大于次数阈值(次数阈值例如为2次,可根据需要设定)仍未重启成功,此后控制第一开关管S11保持断开,续流管D11提供续流通道,经过第四预设时间后,在t8时刻,再次进入启动状态,若重启失败的次数大于次数阈值仍未重启成功,控制第一开关管S11保持断开,续流管D11提供续流通道,再次经过第四预设时间后,再次进入重启状态,重复循环,直至异常消失,重启成功。如图8所示,在t13时刻,第一光伏直流电源PV1恢复正常,在t14时刻,控制第一开关管S11闭合,在第三预设时间内,未检测到支撑电压V1低于对应的第一电压阈值Vth1,控制第一开关管S11保持常闭状态,重启成功,关断器继续正常运行。
由图8可知在第一光伏直流电源PV1由异常恢复到正常的整个过程,控制模块200不存在掉电重启问题,避免了辅助供电模块和控制模块频繁开关机的问题。
在第二示例实施例中,结合图6和图9,当续流管D11为开关管时,当第一关断模块重启多次或经过一定时间仍未重启成功时,如图所示,在t7-t8期间,即在第四预设时间内控制模块提供驱动信号Vbs控制续流管D11导通,提供续流通道,降低续流损耗,进一步 解决了相关技术中因为控制模块频繁重启,续流管无法持续导通,导致功率总线电流从续流管内部寄生的续流二极管流过,从而引起关断器发热严重,影响其运行可靠性的问题。
因关断器一般都设置有组件级监控,在一些实施例可以复用关断器原有的输入电压监测单元,不需要新增用于检测支撑电压的检测单元。
在第三示例实施例中,以检测单元获取输入电压Vin为例,对关断器的控制方法进行说明。
结合图3和图8,在关断器的工作过程中,在t0时刻,第一光伏直流电源PV1异常,例如受到遮挡等,导致第一光伏直流电源PV1的输出功率下降,第一光伏直流电源PV1的输出电压开始降低,t1时刻,控制模块200检测到输入电压Vin低于对应的第二电压阈值Vth2,为防止控制模块200掉电,控制第一开关管S11断开,输入电压Vin开始上升,经过第二预设时间后,进入重启状态,t2时刻,控制第一开关管S11闭合,经过第三预设时间后,即t3时刻,控制模块200检测到输入电压Vin低于对应的第二电压阈值Vth2,控制第一开关管S11断开;经过第二预设时间后,即t4时刻再次控制第一开关管S11闭合,经过第三预设时间后,t5时刻,控制模块200检测到输入电压Vin仍低于对应的第二电压阈值Vth2,控制第一开关管S11再次断开;经过第二预设时间后,在t6时刻再次控制第一开关管S11闭合,经过第三预设时间后,t7时刻,控制模块200检测到输入电压Vin仍低于对应的第二电压阈值Vth2,控制第一开关管S11再次断开,因重启失败的次数大于次数阈值(次数阈值例如为2次,可根据需要设定)仍未重启成功,此后控制第一开关管S11保持断开,续流管D11提供续流通道,经过第四预设时间后,在t8时刻,再次进入启动状态,若重启失败的次数大于次数阈值仍未重启成功,控制第一开关管S11保持断开,续流管D11提供续流通道,经过第四预设时间后,再次进入重启状态,重复循环,直至异常消失,重启成功。如图所示,在t13时刻,第一光伏直流电源PV1恢复正常,在t14时刻,控制第一开关管S11闭合,经过第三预设时间后,控制模块200检测到输入电压Vin不低于对应的第二电压阈值Vth2,控制第一开关管S11保持常闭状态,重启成功,关断器继续正常运行。由图8可知在第一光伏直流电源PV1由异常恢复到正常的整个过程,控制模块不存在掉电问题,所以光伏系统可以按照异常前的状态继续正常工作。
在第四示例实施例中,以检测单元获取输入电压Vin为例,对关断器的控制方法进行说明。
结合图5和图10,在关断器的正常运行过程中,第一开关管S11的工作状态和第一实施例相同,不再赘述,由图可知在第一光伏直流电源PV1由异常恢复到正常的整个过程,控制模块200不存在掉电问题,不论第二光伏直流电源PV2的状态如何,控制模块200控 制开关管S21一直处于闭合状态,第二光伏直流电源PV2正常工作,提供功率输出。由此可知,当关断器有多个输入,相应连接有多个光伏直流电源时,向辅助供电模块300提供电力的光伏直流电源异常时,控制器不会掉电,不会影响其他光伏直流电源的正常工作,其他光伏直流电源可以接入功率总线进行发电,提高了关断器的可靠性。
在关断器的启动过程中,当向辅助供电模块300提供电力的第一光伏直流电源PV1处于异常或弱光状态时,控制模块200可以正常启动且不会掉电,不会影响其他光伏直流电源所连接的关断模块的正常启动,其他光伏直流电源可以接入功率总线进行发电,提高了关断器的可靠性。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种关断器,其特征在于,所述关断器包括:
    第一关断模块,用于控制第一光伏直流电源和功率总线之间的连接;
    控制模块,与所述第一关断模块连接,用于控制所述第一关断模块;
    辅助供电模块,与所述控制模块连接,用于从所述第一光伏直流电源取电,并向所述控制模块供电;
    其中,所述控制模块还用于检测所述辅助供电模块的供电支撑能力,当所述辅助供电模块的供电支撑能力低于支撑能力阈值时,控制所述第一关断模块断开以断开第一光伏直流电源和功率总线之间的连接。
  2. 根据权利要求1所述的关断器,其中,所述控制模块获取表征所述辅助供电模块的供电支撑能力的电压信号,当所述电压信号低于对应的电压阈值时,控制所述第一关断模块断开。
  3. 根据权利要求1所述的关断器,其中,在所述关断器启动过程中,所述控制模块获取表征所述辅助供电模块的供电支撑能力的所述第一关断模块的输入电压,当所述输入电压低于对应的电压阈值时,在经过第一预设时间后,若所述输入电压仍低于对应的电压阈值,则控制所述第一关断模块断开。
  4. 根据权利要求1所述的关断器,其中,在所述第一关断模块重启过程中,所述控制模块在控制所述第一关断模块断开第二预设时间后闭合所述第一关断模块,在所述第一关断模块闭合第三预设时间后,若表征所述辅助供电模块的供电支撑能力的电压信号不低于对应的电压阈值,则重启成功,控制所述第一关断模块保持常闭状态,若所述电压信号低于对应的电压阈值,则重启失败,控制所述第一关断模块断开。
  5. 根据权利要求4所述的关断器,其中,若重启失败的次数大于次数阈值,则所述控制模块控制所述第一关断模块断开第四预设时间后再次进行重启操作,所述第四预设时间大于所述第二预设时间。
  6. 根据权利要求1所述的关断器,其中,所述第一关断模块包括:
    至少一个连接在所述第一光伏直流电源和所述功率总线之间的第一开关管;
    以及连接在所述第一关断模块输出端的用于提供续流通道的续流管。
  7. 根据权利要求6所述的关断器,其中,当所述续流管为开关管时,若所述第一关断模块重启失败的次数大于次数阈值,所述控制模块在第四预设时间内控制所述续流管导通。
  8. 根据权利要求1所述的关断器,其中,所述辅助供电模块包括:
    支撑单元,用于从所述第一光伏直流电源取电,并提供支撑电压;
    供电单元,用于对所述支撑电压进行转换产生提供至所述控制模块的供电电压。
  9. 根据权利要求8所述的关断器,其中,所述控制模块包括:
    检测单元,用于获取表征供电支撑能力的电压信号;所述电压信号为所述第一关断模块的输入电压或所述支撑电压或供电电压;
    控制单元,用于当所述电压信号低于对应的电压阈值时,控制所述第一关断模块断开。
  10. 根据权利要求8所述的关断器,其中,所述支撑单元包括:
    与所述供电单元并联连接的支撑电容。
  11. 根据权利要求8所述的关断器,其中,所述辅助供电模块还包括:
    连接在所述支撑单元输入端的稳压器,用于降低或稳定所述供电单元的输入电压。
  12. 根据权利要求1所述的关断器,其中,所述关断器还包括:
    至少一个连接在相应的第二光伏直流电源与所述功率总线之间的第二关断模块,用于控制相应的第二光伏直流电源和所述功率总线之间的连接,所述第一关断模块和第二关断模块的输出端连接;所述第二关断模块与所述控制模块连接,所述控制模块还用于控制所述第二关断模块;
    当所述供电支撑能力低于支撑能力阈值时,所述控制模块控制所述第一关断模块断开第一光伏直流电源和功率总线之间的连接,以及控制所述第二关断模块保持正常工作。
  13. 一种关断器的控制方法,所述关断器包括用于控制第一光伏直流电源和功率总线之间的连接的第一关断模块、与所述第一关断模块连接的控制模块、与所述控制模块连接的辅助供电模块,其特征在于,所述方法包括:
    所述控制模块检测所述辅助供电模块的供电支撑能力;
    当所述辅助供电模块的供电支撑能力低于支撑能力阈值时,所述控制模块控制所述第一关断模块断开以断开所述第一光伏直流电源和所述功率总线之间的连接。
  14. 根据权利要求13所述的方法,其中,所述控制模块获取表征所述辅助供电模块的供电支撑能力的电压信号,当所述电压信号低于对应的电压阈值时,控制所述第一关断模块断开。
  15. 根据权利要求13所述的方法,其中,在所述关断器启动过程中,所述控制模块获取表征所述辅助供电模块的供电支撑能力的第一关断模块的输入电压,当所述输入电压低于对应的电压阈值时,在经过第一预设时间后,若所述输入电压仍低于对应的电压阈值,则控制所述第一关断模块断开。
  16. 根据权利要求13所述的方法,其中,在所述第一关断模块重启过程中,所述控制模块在控制所述第一关断模块断开第二预设时间后闭合所述第一关断模块,在所述第一关断模块闭合第三预设时间后,若表征所述辅助供电模块的供电支撑能力的电压信号不低于对应的电压阈值,则重启成功,控制所述第一关断模块保持常闭状态,若所述电压信号低于对应的电压阈值,则重启失败,控制所述第一关断模块断开。
  17. 根据权利要求16所述的方法,其中,若重启失败的次数大于次数阈值,则所述控制模块控制所述第一关断模块断开第四预设时间后再次进行重启操作,所述第四预设时间大于所述第二预设时间。
  18. 根据权利要求13所述的方法,其中,所述第一关断模块包括连接在所述第一关断模块输出端用于提供续流通道的续流管;
    当所述续流管为开关管时,若所述第一关断模块重启失败的次数大于次数阈值,则所述控制模块在第四预设时间内控制所述续流管导通。
  19. 根据权利要求13所述的方法,其中,所述关断器还包括至少一个连接在对应的第二光伏直流电源与所述功率总线之间的第二关断模块,用于控制对应的第二光伏直流电源和所述功率总线之间的连接,所述第一关断模块和第二关断模块的输出端连接,所述控制模块与所述第二关断模块连接;
    当所述供电支撑能力低于支撑能力阈值时,所述控制模块控制所述第一关断模块断开第一光伏直流电源和功率总线之间的连接,以及控制所述第二关断模块保持正常工作。
  20. 一种光伏发电系统,其特征在于,包括至少一个光伏直流电源以及至少一个如权利要求1至权利要求12任一项所述的关断器,所述光伏直流电源的输出端经过所述关断器连接至功率总线。
PCT/CN2023/127089 2022-12-22 2023-10-27 关断器及其控制方法、光伏发电系统 WO2024131277A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211651944.6 2022-12-22
CN202211651944.6A CN115632389B (zh) 2022-12-22 2022-12-22 关断器及其控制方法、光伏发电系统

Publications (1)

Publication Number Publication Date
WO2024131277A1 true WO2024131277A1 (zh) 2024-06-27

Family

ID=84909925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/127089 WO2024131277A1 (zh) 2022-12-22 2023-10-27 关断器及其控制方法、光伏发电系统

Country Status (2)

Country Link
CN (1) CN115632389B (zh)
WO (1) WO2024131277A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115632389B (zh) * 2022-12-22 2023-03-14 杭州禾迈电力电子股份有限公司 关断器及其控制方法、光伏发电系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190074684A1 (en) * 2016-06-17 2019-03-07 Celestica International Lp System and Method for Controlling a String-Level Rapid Shutdown Device for a Solar Panel Array
CN111585307A (zh) * 2020-06-15 2020-08-25 阳光电源股份有限公司 一种光伏快速关断系统的启动方法、应用装置和系统
CN113746314A (zh) * 2021-11-03 2021-12-03 杭州禾迈电力电子股份有限公司 一种光伏逆变器及启动控制方法
CN114050811A (zh) * 2022-01-13 2022-02-15 杭州禾迈电力电子股份有限公司 一种多输入关断器及控制方法、光伏发电系统
CN114336622A (zh) * 2022-02-22 2022-04-12 浙江英达威芯电子有限公司 一种关断器控制方法、系统、装置及关断控制器
CN115632389A (zh) * 2022-12-22 2023-01-20 杭州禾迈电力电子股份有限公司 关断器及其控制方法、光伏发电系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106602504B (zh) * 2017-02-28 2018-11-06 阳光电源股份有限公司 一种光伏快速关断装置及光伏系统
CN115249964A (zh) * 2022-07-08 2022-10-28 深圳市禾望科技有限公司 关断器及其控制方法、逆变器、光伏发电系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190074684A1 (en) * 2016-06-17 2019-03-07 Celestica International Lp System and Method for Controlling a String-Level Rapid Shutdown Device for a Solar Panel Array
CN111585307A (zh) * 2020-06-15 2020-08-25 阳光电源股份有限公司 一种光伏快速关断系统的启动方法、应用装置和系统
CN113746314A (zh) * 2021-11-03 2021-12-03 杭州禾迈电力电子股份有限公司 一种光伏逆变器及启动控制方法
CN114050811A (zh) * 2022-01-13 2022-02-15 杭州禾迈电力电子股份有限公司 一种多输入关断器及控制方法、光伏发电系统
CN114336622A (zh) * 2022-02-22 2022-04-12 浙江英达威芯电子有限公司 一种关断器控制方法、系统、装置及关断控制器
CN115632389A (zh) * 2022-12-22 2023-01-20 杭州禾迈电力电子股份有限公司 关断器及其控制方法、光伏发电系统

Also Published As

Publication number Publication date
CN115632389B (zh) 2023-03-14
CN115632389A (zh) 2023-01-20

Similar Documents

Publication Publication Date Title
EP3945655A1 (en) Method for controlling operation of a module level power electronics device in a photovoltaic system, and photovoltaic system
TWI765084B (zh) 電動汽車高壓下電方法
US10503126B2 (en) Access control method for parallel direct current power supplies and device thereof
US9223394B2 (en) Rack and power control method thereof
WO2024131277A1 (zh) 关断器及其控制方法、光伏发电系统
EP3624333B1 (en) Shutdown method for photovoltaic module
CN101764425B (zh) 单板电源备份电路及单板电源系统
US9356553B2 (en) String continuity monitoring
JP6246771B2 (ja) 太陽光発電システム及びその制御方法
JP6678342B2 (ja) 電力供給システム、及び蓄電装置
WO2022257214A1 (zh) 一种关断设备的控制方法、装置及关断设备
CN103095099B (zh) 一种负载驱动电路
CN102157980A (zh) 基于燃料电池的不间断电源供电系统及其供电方法
CN107171401A (zh) 一种双辅助电源及基于双辅助电源的储能系统
CN109917895B (zh) 一种电压调节模块vrm的控制装置及控制方法
US20140354061A1 (en) Power supply device and switch method thereof
KR101442818B1 (ko) 이중화 제어기의 제어신호 출력방법 및 그 이중화 제어기
WO2014024731A1 (ja) 連系系統切替装置及び電力制御システム
WO2023185016A1 (zh) 一种存储阵列的供电方法、装置及服务器
AU2022243295A1 (en) Photovoltaic assembly shutoff device, inverter, and photovoltaic quick shutoff system and starting method therefor
CN214429313U (zh) 一种电源切换电路
CN109347198A (zh) 不间断电源系统及控制方法
CN202111676U (zh) 一种实现设备重启的系统及电路装置
CN219758407U (zh) 一种监测负载电气连接回路的电路及直流电源系统
CN109038523A (zh) 一种抑制上电浪涌电流的电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23905449

Country of ref document: EP

Kind code of ref document: A1