WO2024128226A1 - Toner for static charge image development and method for manufacturing same - Google Patents

Toner for static charge image development and method for manufacturing same Download PDF

Info

Publication number
WO2024128226A1
WO2024128226A1 PCT/JP2023/044449 JP2023044449W WO2024128226A1 WO 2024128226 A1 WO2024128226 A1 WO 2024128226A1 JP 2023044449 W JP2023044449 W JP 2023044449W WO 2024128226 A1 WO2024128226 A1 WO 2024128226A1
Authority
WO
WIPO (PCT)
Prior art keywords
toner
resin
less
polyester resin
mass
Prior art date
Application number
PCT/JP2023/044449
Other languages
French (fr)
Japanese (ja)
Inventor
泰輝 山本
寛人 林
丈士 平井
裕司 丸野
将一 村田
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Publication of WO2024128226A1 publication Critical patent/WO2024128226A1/en

Links

Definitions

  • the present invention relates to a toner for developing electrostatic images used to develop latent images formed in electrophotography, electrostatic recording, electrostatic printing, etc., and a method for producing the same.
  • Major media include plastic films such as polyethylene terephthalate film, polypropylene film, and polyethylene film, which are used for PET bottle labels and various packages. Since these plastic films have a smooth surface, the anchor effect between the surface and the coating film (printed coating film) formed by printing electrophotographic toner on the surface is difficult to work, and the printed coating film is easily peeled off from the plastic film. In addition, since these plastic films are sensitive to heat, the print media curls and shrinks when electrophotographic toner is thermally fixed.
  • plastic films such as polyethylene terephthalate film, polypropylene film, and polyethylene film, which are used for PET bottle labels and various packages. Since these plastic films have a smooth surface, the anchor effect between the surface and the coating film (printed coating film) formed by printing electrophotographic toner on the surface is difficult to work, and the printed coating film is easily peeled off from the plastic film. In addition, since these plastic films are sensitive to heat, the print media curls and shrinks when electrophotographic toner is thermally fixed.
  • Patent Document 1 JP 2022-54448 A discloses an image forming method for a polypropylene film or a polyethylene film, which is excellent in image density of the obtained image and further has excellent abrasion resistance of the image.
  • the method is a method of forming an image on a polypropylene film or a polyethylene film by a toner containing a crystalline polyester resin C in a binder resin, and the SP value of the crystalline polyester resin C is 9.0 or more and 10.1 or less, the content of the crystalline polyester resin C in the binder resin is 10% by mass or more and 60% by mass or less, the surface tension of the printed surface of the polypropylene film or polyethylene film is 35 mN / m or more and 49 mN / m or less, and the fixing temperature is 5 ° C.
  • Patent Document 2 JP 2020-60687 A contains an amorphous polyester resin and a crystalline polyester resin, and the amorphous polyester resin is a polycondensate of an alcohol component (A-al) and a carboxylic acid component (A-ac) containing succinic acid or its anhydride substituted with a linear aliphatic hydrocarbon group having 16 to 18 carbon atoms, and the crystalline polyester resin is a polycondensate of an alcohol component (C-al) and a carboxylic acid component (C-ac), and the alcohol component (C-al) is a monoalcohol having 6 to 24 carbon atoms, and the carboxylic acid component (C-ac) is at least one selected from the group consisting of a monocarboxylic acid having 6 to 24 carbon atoms. It is disclosed that a toner for developing an electrostatic image has excellent low-temperature fixability and heat-resistant storage
  • a toner for developing electrostatic images comprising a crystalline polyester resin C, an amorphous polyester resin A, and a colorant
  • the crystalline polyester resin C contains a structural unit derived from an aliphatic diol component containing ethylene glycol and a structural unit derived from an aliphatic dicarboxylic acid component having from 10 to 14 carbon atoms, and has an ester group concentration of from 6.5 mmol/g to 9.0 mmol/g
  • the colorant is a pigment having an NH group amount of 6.0 mmol/g or more when the total number of -NH- and -NH2 groups in one molecule is divided by the molecular weight to define the NH group amount.
  • a method for producing a toner for developing an electrostatic image comprising a step of aggregating and fusing resin particles, the resin particles including a crystalline polyester resin C and an amorphous polyester resin A in the same or different particles, and a colorant in an aqueous medium, the method comprising the steps of: the crystalline polyester resin C contains a structural unit derived from an aliphatic diol component containing ethylene glycol and a structural unit derived from an aliphatic dicarboxylic acid component having from 10 to 14 carbon atoms, and has an ester group concentration of from 6.5 mmol/g to 9.0 mmol/g,
  • the colorant is a pigment having an NH group amount of 6.0 mmol/g or more when the total number of -NH- and -NH2 groups in one molecule is divided by the molecular weight to define the NH group amount.
  • a method for producing a toner for developing electrostatic images comprising a step of aggregating and fusing resin particles, the
  • Printed packaging materials such as PET bottle labels and packaging films are required to have high robustness in terms of protecting the quality of the contents and displaying information.
  • the coating film hardness is evaluated by a pencil hardness test, and a pencil hardness of B or higher is required.
  • the inventors have studied and found that the printed packaging materials obtained by forming a printed coating film on a printing medium such as a plastic film using the image forming method described in Patent Document 1 and the toner for developing an electrostatic image described in Patent Document 2 have robustness to a tape peeling test and a fingernail rubbing test, but robustness to a pencil hardness test needs to be improved.
  • the present invention relates to a toner for developing electrostatic images, which has excellent low-temperature fixing properties and is capable of forming a printing coating film with high fastness on a printing medium (substrate) such as a plastic film, and a method for producing the same.
  • a toner for developing electrostatic images which contains a crystalline polyester resin C, an amorphous polyester resin A, and a colorant, in which the crystalline polyester resin C contains a constituent unit derived from an aliphatic diol component containing ethylene glycol and a constituent unit derived from an aliphatic dicarboxylic acid component having 10 to 14 carbon atoms and has an ester group concentration in a specific range, and the colorant is a pigment in which the amount of NH groups is controlled to a specific value or more, has excellent low-temperature fixing properties, and can form a printed coating film with high robustness using the toner.
  • the present invention provides a toner for developing electrostatic images that has excellent low-temperature fixing properties and can form a highly durable printing coating film on a printing medium (substrate) such as a plastic film, and a method for producing the same.
  • the toner for developing electrostatic images contains at least a crystalline polyester resin C (hereinafter also simply referred to as “resin C”), an amorphous polyester resin A (hereinafter also simply referred to as “resin A”), and a colorant.
  • the crystalline polyester resin C contains a constituent unit derived from an aliphatic diol component containing ethylene glycol and a constituent unit derived from an aliphatic dicarboxylic acid component having from 10 to 14 carbon atoms, and has an ester group concentration of from 6.5 mmol/g to 9.0 mmol/g.
  • the colorant is a pigment having an NH group amount of 6.0 mmol/g or more, when the NH group amount is the value obtained by dividing the total number of -NH- and -NH2 in one molecule by the molecular weight. Due to the above-mentioned characteristics, the toner of the present invention has excellent low-temperature fixing properties, and the toner can provide a printed coating film having high fastness.
  • toner particles containing at least resin C, resin A, and a colorant hereinafter, also simply referred to as "toner particles" can be used as they are as the toner of the present invention, but it is preferable to use the toner particles after adding a fluidizing agent or the like as an external additive to the surface of the toner particles.
  • the toner of the present invention has excellent low-temperature fixability and can provide a printed coating film with excellent fastness is not clear, but is thought to be as follows.
  • the toner of the present invention contains a structural unit derived from an aliphatic diol component containing ethylene glycol in the crystalline polyester resin C, and thus allows two adjacent ester groups to be arranged, which has high cohesive force and allows crystal nuclei to be generated quickly, so that the crystal size does not increase during toner particle formation and the crystal domains are finely dispersed.Then, during fixing, the polarity is increased by the adjacent ester groups, which improves compatibility with the amorphous polyester resin A and allows the toner to melt quickly, which is thought to result in excellent low-temperature fixing properties.
  • the hardness of the printed coating film itself is important in order to improve the fastness of the printed coating film formed on a substrate such as a plastic film in a pencil hardness test. This is believed to be because a strong force is applied locally when the coating film is scraped with a pencil having a sharp tip.
  • the crystalline polyester resin C contained in the toner contains a constitutional unit derived from an aliphatic diol component containing ethylene glycol and a constitutional unit derived from an aliphatic dicarboxylic acid component having 10 to 14 carbon atoms, and the ester group concentration is 6.5 mmol/g to 9.0 mmol/g, thereby ensuring the cohesive force of the crystalline polyester resin C after the coating film is formed, while improving the compatibility with the amorphous polyester resin A, and forming a state in which the crystal domains of the crystalline polyester resin C are finely dispersed in the printed coating film.
  • the NH group amount of the pigment as a colorant is 6.0 mmol/g or more
  • the ester group in the crystalline polyester resin C and the NH group contained in the pigment effectively interact with each other, and the recrystallization of the crystalline polyester resin C after the coating film is formed is promoted.
  • the cohesive force of the crystalline polyester resin C in the printed coating film is significantly improved, leading to an increase in the hardness of the printed coating film and an improvement in fastness.
  • the carboxylic acid component of the polyester resin includes not only the compound itself but also anhydrides that decompose during the reaction to produce a carboxylic acid, and alkyl esters of each carboxylic acid (alkyl groups having 1 to 3 carbon atoms). Whether a resin is crystalline or amorphous is determined by the crystallinity index.
  • the crystallinity index is defined as the ratio of the softening point of the resin to the maximum endothermic peak temperature (softening point (°C)/maximum endothermic peak temperature (°C)) in the measurement method described in the examples below.
  • a crystalline resin is one with a crystallinity index of 0.6 or more and 1.4 or less.
  • a non-crystalline resin is one in which no endothermic peak is observed, or if an endothermic peak is observed, the crystallinity index is less than 0.6 or more than 1.4.
  • the crystallinity index can be appropriately adjusted by the type and ratio of raw material monomers, as well as production conditions such as reaction temperature, reaction time, and cooling rate.
  • the references "(iso or tertiary)” and “(iso)” in parentheses refer to both the cases with and without the presence of these prefixes; the absence of these prefixes indicates normal.
  • (meth)acrylic acid refers to at least one selected from acrylic acid and methacrylic acid.
  • styrenic compound is meant unsubstituted or substituted styrene.
  • the toner particles contain at least a crystalline polyester resin C (hereinafter also simply referred to as "resin C”), an amorphous polyester resin A (hereinafter also simply referred to as “resin A”), and a colorant.
  • a crystalline polyester resin C hereinafter also simply referred to as "resin C”
  • an amorphous polyester resin A hereinafter also simply referred to as "resin A”
  • Resin C is used as a binder resin for toner, and from the viewpoint of low-temperature fixability of the toner and robustness of the printed coating film, is a polycondensate containing, as a constituent unit derived from an aliphatic diol component containing ethylene glycol, a constituent unit derived from an aliphatic dicarboxylic acid component having from 10 to 14 carbon atoms, as a constituent unit derived from a carboxylic acid component, and having an ester group concentration of from 6.5 mmol/g to 9.0 mmol/g.
  • the following alcohol components and carboxylic acid components may be used alone or in combination of two or more.
  • the aliphatic diol component contains ethylene glycol, and may contain an aliphatic diol other than ethylene glycol.
  • aliphatic diols other than ethylene glycol include 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 2-butene-1,4-diol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, neopentyl glycol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, and 1,12-dodecanediol.
  • the amount of the aliphatic diol component in the alcohol component is preferably 80 mol% or more, more preferably 85 mol% or more, even more preferably 90 mol% or more, even more preferably 95 mol% or more, and is 100 mol% or less, even more preferably 100 mol%.
  • the amount of the aliphatic diol component in the alcohol component is the same as the content of the structural units derived from the aliphatic diol component in the structural units derived from the alcohol component. The same applies to the following explanation of the amount of each component of the resin.
  • the amount of ethylene glycol in the aliphatic diol component is preferably 80 mol% or more, more preferably 85 mol% or more, even more preferably 90 mol% or more, even more preferably 95 mol% or more, and is 100 mol% or less, preferably 100 mol%.
  • the amount of ethylene glycol in the alcohol component is preferably 65 mol% or more, more preferably 85 mol% or more, even more preferably 90 mol% or more, still more preferably 95 mol% or more, and is 100 mol% or less, preferably 100 mol%.
  • the alcohol component may contain other alcohol components different from the aliphatic diol component.
  • other alcohol components include alkylene oxide adducts of aromatic diols, such as alkylene oxide adducts of bisphenol A; and trihydric or higher alcohols, such as glycerin, pentaerythritol, and trimethylolpropane.
  • the number of carbon atoms of the aliphatic dicarboxylic acid is 14 or less from the viewpoint of low-temperature fixing property of the toner and fastness of the printed coating film, and from the same viewpoint, is 10 or more, preferably 12 or more.
  • the aliphatic dicarboxylic acid is preferably an ⁇ , ⁇ -straight-chain aliphatic dicarboxylic acid.
  • Specific examples of aliphatic dicarboxylic acids having 10 to 14 carbon atoms include one or more selected from sebacic acid, 1,11-undecanedioic acid, 1,12-dodecanedioic acid, 1,13-tridecanedioic acid, and 1,14-tetradecanedioic acid.
  • one or more selected from sebacic acid, 1,12-dodecanedioic acid, and 1,14-tetradecanedioic acid are more preferred, and one or more selected from 1,12-dodecanedioic acid and 1,14-tetradecanedioic acid are even more preferred.
  • the amount of the aliphatic dicarboxylic acid having 10 or more and 14 or less carbon atoms in the carboxylic acid component is preferably 70 mol % or more, more preferably 75 mol % or more, even more preferably 80 mol % or more, and even more preferably 85 mol % or more, and is 100 mol % or less, preferably 95 mol % or less.
  • the carboxylic acid component preferably contains a monocarboxylic acid component having a carbon number of 6 to 24.
  • the carbon number of the monocarboxylic acid component is 6 or more, preferably 8 or more, more preferably 12 or more, even more preferably 14 or more, still more preferably 16 or more, and is 24 or less, preferably 22 or less, more preferably 20 or less.
  • monocarboxylic acids having 6 to 24 carbon atoms include caprylic acid, pelargonic acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, lignoceric acid, etc.
  • the amount of monocarboxylic acid having 6 to 24 carbon atoms in the carboxylic acid component is preferably 1 mol % or more, more preferably 5 mol % or more, even more preferably 7 mol % or more, and is preferably 35 mol % or less, more preferably 30 mol % or less, even more preferably 20 mol % or less, even more preferably 15 mol % or less.
  • the carboxylic acid component may contain another carboxylic acid component other than the aliphatic dicarboxylic acid having from 10 to 14 carbon atoms and the monocarboxylic acid having from 6 to 24 carbon atoms.
  • the other carboxylic acid component include aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid; and trivalent or higher polyvalent carboxylic acids such as trimellitic acid.
  • the equivalent ratio of the carboxyl groups of the carboxylic acid component to the hydroxyl groups of the alcohol component [COOH groups/OH groups] is preferably 0.7 or more, more preferably 0.8 or more, and is preferably 1.3 or less, more preferably 1.2 or less.
  • the ester group concentration of resin C is 6.5 mmol/g or more and 9.0 mmol/g or less, preferably 6.7 mmol/g or more, and preferably 8.8 mmol/g or less, more preferably 8.6 mmol/g or less.
  • the ester group concentration of resin C is calculated by the following formula.
  • A is the total amount (mol) of ester bonds produced when all the raw material monomers of the crystalline polyester resin C are reacted
  • B is the total mass (g) of the raw material monomers constituting the crystalline polyester resin C.
  • the numbers in parentheses in the formula indicate the units of each value.
  • the weighted average of the ester group concentrations of the crystalline polyester resin C is defined as the ester group concentration of the crystalline polyester resin C.
  • B is defined as the total mass (g) of the raw material monomers of the constituent portion derived from the polyester resin (polyester resin segment).
  • Resin C can be produced, for example, by polycondensing raw material monomers containing an alcohol component and a carboxylic acid component.
  • the polycondensation of the alcohol component and the carboxylic acid component can be carried out, for example, in an inert gas atmosphere, in the presence of an esterification catalyst, an esterification promoter, a polymerization inhibitor, etc., as necessary, at a temperature of about 120° C. or higher and 250° C. or lower.
  • esterification catalyst include tin compounds such as dibutyltin oxide and tin(II) di(2-ethylhexanoate), and titanium compounds such as titanium diisopropoxybis(triethanolaminate).
  • the esterification promoter that can be used together with the esterification catalyst include gallic acid (3,4,5-trihydroxybenzoic acid).
  • the amount of the esterification catalyst used is preferably 0.01 parts by mass or more and 10 parts by mass or less relative to 100 parts by mass in total of the alcohol component and the carboxylic acid component which are raw material monomers for the resin C.
  • the amount of the esterification promoter used is preferably 0.001 part by mass or more and 1 part by mass or less per 100 parts by mass of the total amount of the alcohol component and the carboxylic acid component.
  • examples of the polymerization inhibitor include radical polymerization inhibitors such as 4-tert-butylcatechol. When a polymerization inhibitor is used, the amount of the polymerization inhibitor used is preferably 0.01 part by mass or more and 1 part by mass or less per 100 parts by mass of the total amount of the alcohol component and the carboxylic acid component.
  • the softening point of Resin C is preferably 60° C. or higher, more preferably 65° C. or higher, and even more preferably 70° C. or higher, and from the viewpoint of further improving low-temperature fixability, it is preferably 150° C. or lower, more preferably 120° C. or lower, and even more preferably 100° C. or lower.
  • the melting point of resin C is preferably 50° C. or higher, more preferably 60° C. or higher, and even more preferably 70° C. or higher, and from the viewpoint of further improving low-temperature fixability, it is preferably 100° C. or lower, more preferably 95° C. or lower, and even more preferably 90° C. or lower.
  • the acid value of resin C is preferably 2 mgKOH/g or more, more preferably 4 mgKOH/g or more, and preferably 20 mgKOH/g or less, more preferably 15 mgKOH/g or less, and even more preferably 10 mgKOH/g or less.
  • the solubility parameter (SP C ) of resin C is preferably 8.70 (cal/cm 3 ) 1/2 or more, more preferably 9.00 (cal/cm 3 ) 1/2 or more, even more preferably 9.50 (cal/cm 3 ) 1/2 or more, and preferably 11.00 (cal/cm 3 ) 1/2 or less, more preferably 10.50 (cal/cm 3 ) 1/2 or less, even more preferably 10.20 (cal/cm 3 ) 1/2 or less.
  • SP C is a value calculated by the Fedors method.
  • the ester group concentration, softening point, melting point, acid value and solubility parameter of resin C can be adjusted as appropriate by the type and amount of raw material monomer used, as well as production conditions such as reaction temperature, reaction time and cooling rate, and the softening point, melting point and acid value are determined by the method described in the Examples below.
  • the ester group concentration, softening point, melting point, acid value and solubility parameter values obtained as a mixture of these are each within the above-mentioned ranges.
  • the mass ratio of the content of an amorphous polyester resin (resin A) described below to the content of resin C [resin A/resin C] is, from the viewpoint of the low-temperature fixability of the toner and the robustness of the printed coating film, preferably 55/45 or more, more preferably 60/40 or more, even more preferably 65/35 or more, and is preferably 90/10 or less, more preferably 85/15 or less, even more preferably 78/22 or less.
  • the content of crystalline polyester resin C in the toner particles is preferably 5% by mass or more, more preferably 10% by mass or more, even more preferably 15% by mass or more, and is preferably 40% by mass or less, more preferably 35% by mass or less, even more preferably 30% by mass or less.
  • the toner of the present invention contains an amorphous polyester resin A.
  • Resin A is used as a binder resin for the toner, and is, for example, an amorphous polyester resin containing a polycondensate of an alcohol component and a carboxylic acid component.
  • the resin A include polyester resins and modified polyester resins.
  • the modified polyester resins include urethane modified polyester resins, epoxy modified polyester resins, and composite resins containing polyester resin segments and addition polymerization resin segments.
  • the resin A is preferably a polyester resin or a composite resin, and more preferably a composite resin.
  • Examples of the alcohol component of the resin A include alkylene oxide adducts of aromatic diols, linear or branched aliphatic diols, alicyclic diols, and trivalent or higher polyhydric alcohols.
  • alkylene oxide adducts of aromatic diols and linear or branched aliphatic diols are preferred, and from the viewpoint of fastness of the printed coating film, alkylene oxide adducts of aromatic diols are more preferred.
  • the alkylene oxide adduct of an aromatic diol is preferably an alkylene oxide adduct of bisphenol A, more preferably represented by formula (I):
  • OR 1 and R 2 O are oxyalkylene groups, R 1 and R 2 each independently represent an ethylene group or a propylene group, x and y each represent the average number of moles of alkylene oxide added and are each a positive number, and the sum of x and y is 1 or more, preferably 1.5 or more, and 16 or less, preferably 8 or less, and more preferably 4 or less).
  • Examples of the alkylene oxide adduct of bisphenol A represented by formula (I) include a propylene oxide adduct of bisphenol A and an ethylene oxide adduct of bisphenol A. Among these, it is preferable to contain at least a propylene oxide adduct of bisphenol A.
  • the amount thereof in the alcohol component is preferably 80 mol % or more, more preferably 90 mol % or more, and 100 mol % or less, and even more preferably 100 mol %.
  • linear or branched aliphatic diols examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, neopentyl glycol (2,2-dimethyl-1,3-propanediol), 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, and 1,12-dodecanediol.
  • the amount thereof in the alcohol component is preferably 80 mol % or more, more preferably 90 mol % or more, and 100 mol % or less, and even more preferably 100 mol %.
  • the amount of neopentyl glycol is preferably 65 mol% or more, more preferably 85 mol% or more, even more preferably 90 mol% or more, even more preferably 95 mol% or more, and is 100 mol% or less, preferably 100 mol%.
  • Examples of the alicyclic diol include hydrogenated bisphenol A [2,2-bis(4-hydroxycyclohexyl)propane] and adducts of hydrogenated bisphenol A with alkylene oxides having 2 to 4 carbon atoms (average number of moles added: 2 to 12).
  • Examples of trihydric or higher polyhydric alcohols include glycerin, pentaerythritol, trimethylolpropane, and sorbitol. These alcohol components may be used alone or in combination of two or more.
  • Examples of the carboxylic acid component of the resin A include dicarboxylic acids and polycarboxylic acids having three or more carboxylic acids.
  • Examples of the dicarboxylic acid include aromatic dicarboxylic acids, linear or branched aliphatic dicarboxylic acids, and alicyclic dicarboxylic acids. Among these, at least one selected from aromatic dicarboxylic acids and linear or branched aliphatic dicarboxylic acids is preferred.
  • aromatic dicarboxylic acids include phthalic acid, isophthalic acid, and terephthalic acid. Among these, isophthalic acid and terephthalic acid are preferred, and terephthalic acid is more preferred.
  • the amount of aromatic dicarboxylic acid in the carboxylic acid component is preferably 20 mol% or more, more preferably 30 mol% or more, even more preferably 40 mol% or more, and is 100 mol% or less, preferably 85 mol% or less, more preferably 80 mol% or less, even more preferably 75 mol% or less.
  • the linear or branched aliphatic dicarboxylic acid preferably has 2 or more carbon atoms, more preferably 3 or more carbon atoms, and preferably has 30 or less, more preferably 20 or less carbon atoms.
  • linear or branched aliphatic dicarboxylic acids include oxalic acid, malonic acid, maleic acid, fumaric acid, citraconic acid, itaconic acid, glutaconic acid, succinic acid, adipic acid, sebacic acid, dodecanedioic acid, azelaic acid, and succinic acid substituted with an aliphatic hydrocarbon group having 1 to 20 carbon atoms.
  • succinic acid substituted with an aliphatic hydrocarbon group having 1 to 20 carbon atoms examples include dodecylsuccinic acid, dodecenylsuccinic acid or its anhydride, and octenylsuccinic acid. Among these, fumaric acid, sebacic acid, adipic acid, and succinic acid substituted with an aliphatic hydrocarbon group having 1 to 20 carbon atoms are preferred.
  • the amount thereof in the carboxylic acid component is preferably 5 mol % or more, more preferably 10 mol % or more, even more preferably 15 mol % or more, and is preferably 50 mol % or less, more preferably 45 mol % or less, even more preferably 40 mol % or less.
  • An example of the alicyclic dicarboxylic acid is cyclohexanedicarboxylic acid.
  • the trivalent or higher polyvalent carboxylic acid is preferably a trivalent carboxylic acid, such as trimellitic acid or its anhydride.
  • the amount of the trivalent or higher polycarboxylic acid in the carboxylic acid component is preferably 3 mol % or more, more preferably 6 mol % or more, even more preferably 9 mol % or more, and is preferably 25 mol % or less, more preferably 20 mol % or less, even more preferably 15 mol % or less.
  • These carboxylic acid components may be used alone or in combination of two or more.
  • the equivalent ratio of the carboxyl groups of the carboxylic acid component to the hydroxyl groups of the alcohol component [COOH groups/OH groups] is preferably 0.7 or more, more preferably 0.8 or more, and is preferably 1.3 or less, more preferably 1.2 or less.
  • an example of the addition polymerized resin segment is an addition polymer of raw material monomers containing a styrene-based compound.
  • the styrene-based compound include unsubstituted or substituted styrene.
  • substituent substituted on the styrene include an alkyl group having 1 to 5 carbon atoms, a halogen atom, an alkoxy group having 1 to 5 carbon atoms, a sulfonic acid group, or a salt thereof.
  • styrene-based compounds include styrene, methylstyrene, ⁇ -methylstyrene, ⁇ -methylstyrene, tert-butylstyrene, chlorostyrene, chloromethylstyrene, methoxystyrene, styrenesulfonic acid, and salts thereof. Among these, styrene is preferred.
  • the content of the styrene-based compound is preferably 50% by mass or more, more preferably 65% by mass or more, even more preferably 75% by mass or more, and is 100% by mass or less, preferably 95% by mass or less, more preferably 90% by mass or less, even more preferably 85% by mass or less.
  • raw material monomers other than styrene-based compounds include (meth)acrylic acid esters such as alkyl (meth)acrylate, benzyl (meth)acrylate, and dimethylaminoethyl (meth)acrylate; olefins such as ethylene, propylene, and butadiene; halovinyls such as vinyl chloride; vinyl esters such as vinyl acetate and vinyl propionate; vinyl ethers such as methyl vinyl ether; vinylidene halides such as vinylidene chloride; and N-vinyl compounds such as N-vinylpyrrolidone.
  • (meth)acrylic acid esters such as alkyl (meth)acrylate, benzyl (meth)acrylate, and dimethylaminoethyl (meth)acrylate
  • olefins such as ethylene, propylene, and butadiene
  • halovinyls such as vinyl chloride
  • vinyl esters such as vinyl
  • (meth)acrylic acid esters are preferred, and alkyl (meth)acrylates are more preferred.
  • the number of carbon atoms in the alkyl group in the alkyl (meth)acrylate is preferably 1 or more, more preferably 4 or more, even more preferably 6 or more, and is preferably 24 or less, more preferably 22 or less, even more preferably 20 or less.
  • alkyl (meth)acrylate examples include methyl (meth)acrylate, ethyl (meth)acrylate, (iso)propyl (meth)acrylate, (iso or tertiary)butyl (meth)acrylate, (iso)amyl (meth)acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, (iso)octyl (meth)acrylate, (iso)decyl (meth)acrylate, (iso)dodecyl (meth)acrylate, (iso)palmityl (meth)acrylate, (iso)stearyl (meth)acrylate, and (iso)behenyl (meth)acrylate.
  • 2-ethylhexyl (meth)acrylate or stearyl (meth)acrylate is preferred
  • stearyl (meth)acrylate is more preferred
  • the content of the (meth)acrylic acid ester in the raw material monomer of the addition polymerization resin segment is preferably 5 mass% or more, more preferably 10 mass% or more, even more preferably 15 mass% or more, and preferably 50 mass% or less, more preferably 35 mass% or less, even more preferably 25 mass% or less.
  • the total amount of styrene-based compounds and (meth)acrylic acid esters in the raw material monomers of the addition polymerization resin segment is preferably 80% by mass or more, more preferably 90% by mass or more, even more preferably 95% by mass or more, and even more preferably 100% by mass.
  • the composite resin preferably has a constitutional unit derived from a bireactive monomer bonded via a covalent bond to a polyester resin segment and an addition polymerization resin segment.
  • structural unit derived from a bireactive monomer refers to a unit formed by reaction of a functional group and an addition polymerizable group of a bireactive monomer.
  • An example of the addition polymerizable group is a carbon-carbon unsaturated bond (ethylenically unsaturated bond).
  • the bireactive monomer include addition polymerizable monomers having at least one functional group selected from a hydroxyl group, a carboxyl group, an epoxy group, a primary amino group, and a secondary amino group in the molecule.
  • addition polymerizable monomers having at least one functional group selected from a hydroxyl group and a carboxyl group are preferred, and addition polymerizable monomers having a carboxyl group are more preferred.
  • addition polymerizable monomer having a carboxy group include acrylic acid, methacrylic acid, fumaric acid, and maleic acid.
  • acrylic acid and methacrylic acid are preferred, and acrylic acid is more preferred.
  • the amount of the constitutional unit derived from the dual-reactive monomer is preferably 1 part by mol or more, more preferably 5 parts by mol or more, even more preferably 8 parts by mol or more, and preferably 30 parts by mol or less, more preferably 25 parts by mol or less, even more preferably 20 parts by mol or less, relative to 100 parts by mol of the alcohol component of the polyester resin segment of the composite resin.
  • the content of the polyester resin segment in the composite resin is preferably 40% by mass or more, more preferably 45% by mass or more, even more preferably 55% by mass or more, and preferably 95% by mass or less, more preferably 90% by mass or less, even more preferably 85% by mass or less, based on the total amount of the polyester resin segment and the addition polymerization resin segment.
  • the constituent unit derived from the bireactive monomer is a polyester resin segment.
  • the content of the addition polymerization resin segment in the composite resin is preferably 5% by mass or more, more preferably 10% by mass or more, even more preferably 15% by mass or more, based on the total amount of the polyester resin segment and the addition polymerization resin segment, and is preferably 60% by mass or less, more preferably 55% by mass or less, even more preferably 45% by mass or less.
  • the amount of bireactive monomer-derived structural units in the composite resin is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, even more preferably 0.8% by mass or more, based on the total amount of the polyester resin segment and the addition polymerization resin segment, and is preferably 10% by mass or less, more preferably 7% by mass or less, even more preferably 4% by mass or less.
  • the total amount of polyester resin segments and addition polymerization resin segments in the composite resin is preferably 80% by mass or more, more preferably 90% by mass or more, even more preferably 95% by mass or more, and is 100% by mass or less, preferably 100% by mass.
  • the above amounts are calculated based on the ratio of the amounts of the polyester resin segment, raw material monomer for the addition polymerization resin segment, bireactive monomer, and radical polymerization initiator, and the mass of the polyester resin segment, etc. is based on the mass excluding the mass of water generated by polycondensation.
  • the mass of the radical polymerization initiator is included in the addition polymerization resin segment in the calculation.
  • the resin A is an amorphous polyester resin
  • the resin A may be produced, for example, in the same manner as the resin C described above, by polycondensing raw material monomers containing an alcohol component and a carboxylic acid component.
  • resin A is a composite resin containing a polyester resin segment and an addition polymerization resin segment
  • resin A may be produced, for example, by a method including a step A of polycondensing an alcohol component and a carboxylic acid component, and a step B of addition polymerizing raw material monomers of the addition polymerization resin segment and a bireactive monomer.
  • Step B may be carried out after step A, step A may be carried out after step B, or step A and step B may be carried out simultaneously.
  • step A a part of the carboxylic acid component is subjected to a polycondensation reaction, and then step B is carried out, and thereafter the remainder of the carboxylic acid component is added to the polymerization system to further proceed with the polycondensation reaction of step A and the polycondensation reaction with, for example, a carboxy group possessed by the bireactive monomer or the constituent unit derived from the bireactive monomer.
  • the esterification catalyst and the esterification promoter described in the above-mentioned method for producing the crystalline polyester resin C may be used in the same amounts to carry out polycondensation.
  • the polymerization inhibitor described in the above-mentioned method for producing crystalline polyester resin C may be used in the same amount as above, if necessary.
  • the temperature of the polycondensation reaction is preferably 120° C. or higher, more preferably 160° C. or higher, and even more preferably 180° C. or higher, and is preferably 250° C. or lower, and more preferably 240° C. or lower.
  • the polycondensation may be carried out in an inert gas atmosphere.
  • radical polymerization initiator for the addition polymerization in step B examples include peroxides such as dibutyl peroxide, persulfates such as sodium persulfate, and azo compounds such as 2,2'-azobis(2,4-dimethylvaleronitrile).
  • the amount of the radical polymerization initiator used is preferably 1 part by mass or more and 20 parts by mass or less based on 100 parts by mass of the raw material monomer of the addition polymerization resin segment.
  • the temperature of the addition polymerization is preferably 110° C. or higher, more preferably 130° C. or higher, and preferably 230° C. or lower, more preferably 220° C. or lower, and further preferably 210° C. or lower.
  • the softening point of resin A is preferably 70° C. or higher, more preferably 90° C. or higher, and even more preferably 100° C. or higher, and is preferably 140° C. or lower, more preferably 130° C. or lower, and even more preferably 125° C. or lower.
  • the glass transition temperature of resin A is preferably 30° C. or higher, more preferably 35° C. or higher, and even more preferably 40° C. or higher, and is preferably 80° C. or lower, more preferably 75° C. or lower, and even more preferably 70° C. or lower.
  • the acid value of resin A is preferably 5 mgKOH/g or more, more preferably 10 mgKOH/g or more, even more preferably 15 mgKOH/g or more, and is preferably 40 mgKOH/g or less, more preferably 35 mgKOH/g or less, even more preferably 30 mgKOH/g or less.
  • the difference between SP A and SP C is preferably 0.50 (cal/cm 3 ) 1/2 or more, more preferably 0.55 (cal/cm 3 ) 1/2 or more, even more preferably 0.60 (cal/cm 3 ) 1/2 or more, even more preferably 0.63 (cal/cm 3 ) 1/2 or more, and is preferably 1.50 (cal/cm 3 ) 1/2 or less, more preferably 1.30 (cal/cm 3 ) 1/2 or less, even more preferably 1.00 (cal/cm 3 ) 1/2 or less, even more preferably 0.95 (cal/cm 3 ) 1/2 or less, and even more preferably 0.90 (cal/cm 3 ) 1/2 or less.
  • the solubility parameter (SP A ) of resin A is preferably 9.20 (cal/cm 3 ) 1/2 or more, more preferably 9.50 (cal/cm 3 ) 1/2 or more, even more preferably 10.00 (cal/cm 3 ) 1/2 or more, and preferably 12.00 (cal/cm 3 ) 1/2 or less, more preferably 11.80 (cal/cm 3 ) 1/2 or less, even more preferably 11.50 (cal/cm 3 ) 1/2 or less.
  • SP A is a value calculated by the Fedors method.
  • the softening point, glass transition temperature, acid value and solubility parameter of Resin A can be appropriately adjusted by the types and amounts of raw material monomers used, as well as production conditions such as reaction temperature, reaction time and cooling rate, and these values can be determined by the methods described in the Examples.
  • the softening point, glass transition temperature, acid value and solubility parameter of the resulting mixture are each within the above-mentioned ranges.
  • the content of the amorphous polyester resin A in the toner particles is preferably 50% by mass or more, more preferably 55% by mass or more, even more preferably 60% by mass or more, and is preferably 87% by mass or less, more preferably 85% by mass or less, even more preferably 80% by mass or less.
  • the toner particles contain a pigment as a colorant.
  • the NH group amount of the pigment is 6.0 mmol/g or more.
  • the colorant used in the present invention is preferably a yellow organic pigment, and from the viewpoint of achieving a desired NH group amount, is preferably at least one of an isoindoline pigment and a benzimidazolone pigment.
  • the pigment used in the present invention is preferably at least one selected from C. I. Pigment Yellow 185 and C. I. Pigment Yellow 180 from the viewpoint of obtaining a printed coating film having high fastness.
  • the amount of colorant is preferably 3 parts by mass or more, more preferably 5 parts by mass or more, and even more preferably 7 parts by mass or more, relative to 100 parts by mass of the total of Resin C and Resin A, and is preferably 25 parts by mass or less, more preferably 20 parts by mass or less, and even more preferably 15 parts by mass or less.
  • the content of the colorant in the toner particles is preferably 3% by mass or more, more preferably 5% by mass or more, and preferably 25% by mass or less, more preferably 20% by mass or less, and even more preferably 15% by mass or less.
  • the toner particles of the present invention preferably contain a release agent.
  • the release agent include polypropylene wax, polyethylene wax, ethylene propylene copolymer wax, hydrocarbon wax such as microcrystalline wax, paraffin wax, Fischer-Tropsch wax, or oxides thereof, ester wax such as carnauba wax, montan wax, or deacidified wax thereof, or fatty acid ester wax, fatty acid amides, fatty acids, higher alcohols, and fatty acid metal salts. These may be used alone or in combination of two or more.
  • the melting point of the release agent is preferably 60° C. or higher, more preferably 70° C. or higher, and preferably 160° C. or lower, more preferably 140° C. or lower, even more preferably 120° C. or lower, and even more preferably 100° C. or lower.
  • the content of the release agent in the toner particles is preferably 0.1% by mass or more, more preferably 1% by mass or more, even more preferably 3% by mass or more, and is preferably 20% by mass or less, more preferably 15% by mass or less, even more preferably 10% by mass or less.
  • the toner particles may contain additives such as a charge control agent, a magnetic powder, a flowability improver, a conductivity adjuster, a reinforcing filler such as a fibrous substance, an antioxidant, an antiaging agent, and a cleaning property improver.
  • additives such as a charge control agent, a magnetic powder, a flowability improver, a conductivity adjuster, a reinforcing filler such as a fibrous substance, an antioxidant, an antiaging agent, and a cleaning property improver.
  • the volume median particle diameter D50 of the toner particles is, from the viewpoint of obtaining a printed coating film with good image quality and from the viewpoint of further improving the cleaning property of the toner, preferably 2 ⁇ m or more, more preferably 3 ⁇ m or more, even more preferably 4 ⁇ m or more, and is preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less, even more preferably 7 ⁇ m or less.
  • the circularity of the toner particles is preferably 0.950 or more, more preferably 0.955 or more, and even more preferably 0.960 or more, and from the viewpoint of cleaning properties, it is preferably 0.990 or less, more preferably 0.985 or less, and even more preferably 0.980 or less.
  • the CV value of the toner particles is preferably 10% or more, more preferably 15% or more, and even more preferably 20% or more, from the viewpoint of improving the productivity of the toner, and is preferably 40% or less, more preferably 35% or less, and even more preferably 30% or less, from the viewpoint of obtaining a printed coating film with high robustness.
  • the volume median particle diameter D 50 , circularity and CV value of the toner particles can be measured by the method described in the examples.
  • the toner according to an embodiment of the present invention may be produced by any of the known methods such as a melt kneading method, an emulsion phase inversion method, a suspension polymerization method, and an emulsion aggregation method, but the emulsion aggregation method is preferred.
  • the emulsion aggregation method includes a step of aggregating and fusing resin particles, which contain resin C and resin A in the same or different particles, and a colorant in an aqueous medium.
  • Step of aggregating resin particles In the step of aggregating the resin particles, the resin particles containing the resin C and the resin A in the same or different particles and the colorant are aggregated in an aqueous medium to obtain aggregated particles 1. It is preferable to mix a resin particle dispersion containing the resin particles with a colorant particle dispersion containing a colorant to aggregate these particles and obtain aggregated particles 1. Here, it is preferable to further aggregate the release agent in addition to the resin particles and the colorant, and it is more preferable to mix a resin particle dispersion containing the resin particles, a colorant particle dispersion containing a colorant, and a release agent particle dispersion containing a release agent to aggregate these particles to obtain aggregated particles 1.
  • the resin particle dispersion, the colorant particle dispersion, and the release agent particle dispersion are respectively an aqueous dispersion of resin particles, an aqueous dispersion of colorant particles, and an aqueous dispersion of release agent particles.
  • the aqueous medium used in the aqueous dispersion is a medium containing water as a main component, and the content of water in the aqueous medium is preferably 70% by mass or more, more preferably 80% by mass or more, and even more preferably 90% by mass or more, and 100% by mass or less.
  • water deionized water or distilled water is preferable.
  • components other than water that can constitute the aqueous medium together with water include organic solvents that dissolve in water, such as alkyl alcohols having 1 to 5 carbon atoms, dialkyl ketones having 3 to 5 carbon atoms, such as acetone and methyl ethyl ketone, and cyclic ethers, such as tetrahydrofuran.
  • organic solvents such as alkyl alcohols having 1 to 5 carbon atoms, dialkyl ketones having 3 to 5 carbon atoms, such as acetone and methyl ethyl ketone, and cyclic ethers, such as tetrahydrofuran.
  • alkyl alcohols having 1 to 5 carbon atoms are preferred, and ethanol is more preferred.
  • the resin particles of resin C and the resin particles of resin A may be prepared as an aqueous dispersion of resin particles containing resin C and resin A in the same or different particles.
  • the phase inversion emulsification method includes a method of adding an aqueous medium to an organic solvent solution of resin C and/or resin A or molten resin C and/or resin A to perform phase inversion emulsification.
  • a method of adding an aqueous medium to an organic solvent solution of resin C and/or resin A to perform phase inversion emulsification is preferable.
  • the organic solvent used for phase inversion emulsification is not particularly limited as long as it dissolves the resin C and the resin A and is water-soluble, and examples thereof include methyl ethyl ketone.
  • a neutralizing agent may be added to the organic solvent solution.
  • the neutralizing agent include basic substances.
  • the basic substance include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; and nitrogen-containing basic substances such as ammonia, trimethylamine, and diethanolamine. Among these, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide are preferred.
  • the degree of neutralization of resin C and/or resin A contained in the resin particles is preferably 10 mol% or more, more preferably 20 mol% or more, even more preferably 30 mol% or more, even more preferably 40 mol% or more, and is preferably 100 mol% or less, more preferably 80 mol% or less, even more preferably 70 mol% or less.
  • the degree of neutralization of the resin C and/or the resin A contained in the resin particles can be calculated by the following formula.
  • Degree of neutralization (mol %) [ ⁇ weight of neutralizing agent added (g)/equivalent of neutralizing agent ⁇ /[ ⁇ weighted average acid value of resin constituting resin particle (mg KOH/g) ⁇ weight of resin constituting resin particle (g) ⁇ /(56 ⁇ 1000)]] ⁇ 100
  • the temperature of the organic solvent solution when the aqueous medium is added is preferably not less than the glass transition temperature of resin A, more preferably not less than 60° C., even more preferably not less than 70° C., and is preferably not more than 100° C., more preferably not more than 90° C., even more preferably not more than 80° C.
  • the organic solvent may be removed from the obtained dispersion by distillation or the like, if necessary.
  • the resin particles may also be isolated by filtration or the like. It is preferable to use an aqueous dispersion of resin particles from which the organic solvent has been removed from the dispersion obtained after phase inversion emulsification.
  • the remaining amount of organic solvent in the dispersion is preferably 1 mass % or less, more preferably 0.5 mass % or less, and even more preferably substantially 0 mass %.
  • the volume median particle size D50 of the resin particles in the dispersion is preferably 0.05 ⁇ m or more, more preferably 0.08 ⁇ m or more, and preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less, and further preferably 0.3 ⁇ m or less.
  • the CV value of the resin particles in the dispersion is preferably 10% or more, more preferably 20% or more, and is preferably 40% or less, more preferably 35% or less.
  • the volume median particle diameter D50 and CV value of the resin particles in the dispersion are measured by the method described in the examples.
  • the solids concentration of the aqueous dispersion of the resin particles is preferably 5% by mass or more, more preferably 10% by mass or more, even more preferably 15% by mass or more, and is preferably 50% by mass or less, more preferably 40% by mass or less, even more preferably 30% by mass or less.
  • the solid content is the total amount of non-volatile components.
  • the aggregated particles 1 may contain a release agent, and may also contain other additives such as a charge control agent, a magnetic powder, a flowability improver, a conductivity adjuster, a reinforcing filler such as a fibrous substance, an antioxidant, an anti-aging agent, and a cleaning property improver.
  • the colorant particle dispersion is preferably obtained by dispersing the pigment and an aqueous medium using a dispersing machine such as a homomixer, a homogenizer, an ultrasonic dispersing machine, etc.
  • the dispersion is preferably carried out in the presence of a surfactant from the viewpoint of improving the dispersion stability of the pigment.
  • the pigment may be dispersed in the presence of the addition polymer E.
  • the addition polymer E preferably has a structural unit derived from an addition polymerizable monomer a having an aromatic group, and further preferably contains at least one selected from the group consisting of an addition polymerizable monomer b having an ionic group, an addition polymerizable monomer c having a polyalkylene oxide group, and a macromonomer d.
  • the addition polymer E described in JP-A-2021-026129 is referred to.
  • Surfactants that improve the dispersion stability of the pigment include, for example, nonionic surfactants, anionic surfactants, and cationic surfactants, and from the viewpoint of improving the dispersion stability of the pigment, nonionic surfactants are preferred.
  • nonionic surfactants include polyoxyalkylene alkyl ethers, polyoxyalkylene alkenyl ethers, and polyoxyalkylene aryl ethers. Among these, polyoxyethylene aryl ethers are preferred, and polyoxyethylene distyrenated phenyl ether is more preferred.
  • the content of the surfactant in the colorant particle dispersion is preferably 1 part by mass or more, more preferably 5 parts by mass or more, and even more preferably 10 parts by mass or more, per 100 parts by mass of pigment, from the viewpoint of improving the dispersion stability of the pigment, and is preferably 50 parts by mass or less, more preferably 45 parts by mass or less, and even more preferably 40 parts by mass or less.
  • the pigment is preferably 5% by mass or more, more preferably 10% by mass or more, and preferably 50% by mass or less, more preferably 40% by mass or less, and even more preferably 30% by mass or less.
  • the solids concentration of the colorant particle dispersion is preferably 5% by mass or more, more preferably 10% by mass or more, even more preferably 15% by mass or more, and is preferably 50% by mass or less, more preferably 40% by mass or less, even more preferably 30% by mass or less.
  • the colorant particles have a volume median particle size D50 of preferably 0.05 ⁇ m or more, more preferably 0.08 ⁇ m or more, even more preferably 0.1 ⁇ m or more, and preferably 0.4 ⁇ m or less, more preferably 0.3 ⁇ m or less, even more preferably 0.2 ⁇ m or less.
  • the CV value of the colorant particles is preferably 10% or more, more preferably 20% or more, and is preferably 45% or less, more preferably 40% or less, and even more preferably 35% or less.
  • the volume median particle diameter D50 and CV value of the colorant particles are measured by the methods described in the Examples.
  • the release agent particle dispersion liquid can be obtained, for example, by dispersing a release agent, a dispersion liquid of resin particles S described below, and, if necessary, an aqueous medium at a temperature equal to or higher than the melting point of the release agent, using a dispersing machine such as a homogenizer, a high-pressure dispersing machine, or an ultrasonic dispersing machine.
  • a dispersing machine such as a homogenizer, a high-pressure dispersing machine, or an ultrasonic dispersing machine.
  • the heating temperature during dispersion is preferably equal to or higher than the melting point of the release agent and equal to or higher than 80°C, more preferably equal to or higher than 85°C, even more preferably equal to or higher than 90°C, and is preferably equal to or lower than 100°C, more preferably equal to or lower than 98°C, even more preferably equal to or lower than 96°C.
  • the release agent particle dispersion can be obtained by using a surfactant, but is preferably obtained by mixing the release agent with resin particles S, which will be described later.
  • the release agent particles are stabilized by the resin particles S, and it becomes possible to disperse the release agent in an aqueous medium without using a surfactant. It is considered that the release agent particle dispersion has a structure in which a large number of resin particles S are attached to the surfaces of the release agent particles.
  • the resin constituting the resin particles S in which the release agent is dispersed is preferably a polyester resin, and it is more preferable to use a composite resin D having a polyester resin segment and an addition polymerization resin segment.
  • a composite resin D having a polyester resin segment and an addition polymerization resin segment.
  • solubility parameter (SP D ) of composite resin D may be approximately the same as that of SP A.
  • the volume median particle diameter D50 of the release agent particles in the release agent particle dispersion is, from the viewpoint of obtaining uniform aggregated particles by aggregation, preferably 0.05 ⁇ m or more, more preferably 0.2 ⁇ m or more, even more preferably 0.4 ⁇ m or more, and is preferably 1 ⁇ m or less, more preferably 0.8 ⁇ m or less, even more preferably 0.6 ⁇ m or less.
  • the CV value of the release agent particles in the release agent particle dispersion is preferably 10% or more, more preferably 20% or more, and is preferably 40% or less, more preferably 35% or less, and further preferably 30% or less.
  • the volume median particle diameter D50 and CV value of the release agent particles in the release agent particle dispersion liquid are measured by the method described in the Examples.
  • the process may be performed in the presence of a surfactant from the viewpoint of improving the dispersion stability of the resin particles, the release agent particles, the colorant particles, etc.
  • a surfactant examples include anionic surfactants such as alkylbenzene sulfonates and alkyl ether sulfates; and nonionic surfactants such as polyoxyethylene alkyl ethers and polyoxyethylene alkenyl ethers.
  • the total amount used is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more, and even more preferably 0.5 parts by mass or more, per 100 parts by mass of the combined amount of Resin C and Resin A, and is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and even more preferably 3 parts by mass or less.
  • the flocculant include cationic surfactants such as quaternary salts, organic flocculants such as polyethyleneimine, and inorganic flocculants.
  • the inorganic flocculant include inorganic metal salts such as sodium sulfate, sodium nitrate, sodium chloride, calcium chloride, and calcium nitrate; inorganic ammonium salts such as ammonium sulfate, ammonium chloride, and ammonium nitrate; and divalent or higher metal complexes.
  • inorganic coagulants having a valence of 1 to 5 are preferred, inorganic metal salts having a valence of 1 to 2 and inorganic ammonium salts are more preferred, inorganic ammonium salts are even more preferred, and ammonium sulfate is even more preferred.
  • the aggregating agent For example, 5 to 50 parts by mass of the aggregating agent is added to a mixed dispersion liquid containing resin particles, release agent particles, and colorant particles at 0°C to 40°C, per 100 parts by mass of resin in the resin particles, and the resin particles, release agent particles, and colorant particles are aggregated in an aqueous medium to obtain aggregated particles 1. Furthermore, from the viewpoint of promoting aggregation, it is preferable to increase the temperature of the dispersion liquid after adding the aggregating agent.
  • Methods for stopping aggregation include cooling the dispersion, adding an aggregation stopper, diluting the dispersion, etc. From the viewpoint of reliably preventing unnecessary aggregation, the method of stopping aggregation by adding an aggregation stopper is preferred.
  • the aggregation terminator is preferably a surfactant, more preferably an anionic surfactant.
  • the anionic surfactant may be, for example, an alkylbenzenesulfonate, an alkyl sulfate, an alkyl ether sulfate, a polyoxyalkylene alkyl ether sulfate, an arylsulfonate, an arylsulfonic acid formalin condensate, etc., and is preferably an alkali metal salt of an arylsulfonic acid formalin condensate, more preferably a sodium salt of a naphthalenesulfonic acid formalin condensate.These may be used alone or in combination.
  • the aggregation terminator may be added in the form of an aqueous solution.
  • the amount of the aggregation terminator added is preferably 1 part by mass or more, and more preferably 5 parts by mass or more, per 100 parts by mass of the total of Resin C and Resin A, from the viewpoint of reliably preventing unnecessary aggregation, and is preferably 60 parts by mass or less, more preferably 30 parts by mass or less, and even more preferably 20 parts by mass or less, from the viewpoint of reducing residue in the toner.
  • the volume median particle diameter D 50 of the aggregated particles 1 is preferably 2 ⁇ m or more, more preferably 3 ⁇ m or more, even more preferably 4 ⁇ m or more, and is preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less, even more preferably 7 ⁇ m or less.
  • a step of adhering shell resin particles containing an amorphous resin preferably amorphous polyester-based resin B
  • an amorphous resin preferably amorphous polyester-based resin B
  • toner particles having a core-shell structure can be obtained.
  • the amorphous polyester resin B used in the shell resin particles include the above-mentioned resin A.
  • the shell resin particles can be obtained by the same method as the method for producing the resin particles containing the above-mentioned resin C and/or resin A.
  • the toner manufacturing method includes a step of aggregating shell resin particles
  • the mass ratio of the shell resin particles to the mass of the aggregated particles 1 [shell resin particles/aggregated particles 1] is preferably 1/99 or more, more preferably 3/97 or more, even more preferably 5/95 or more, and is preferably 25/75 or less, more preferably 20/80 or less, even more preferably 15/85 or less.
  • the aggregated particles 1 or the aggregated particles 2 are fused in an aqueous medium.
  • the particles contained in aggregated particles 1 or aggregated particles 2 are fused together to obtain fused particles.
  • the aggregated particles are maintained at a temperature equal to or higher than the glass transition temperature of the resin having the highest glass transition temperature among the amorphous polyester-based resins contained in the aggregated particles.
  • the holding temperature when fusing the aggregated particles is preferably at least 2° C. higher, more preferably at least 3° C. higher, and even more preferably at least 5° C. higher than the glass transition temperature of the resin having the highest glass transition temperature among the amorphous polyester resins, and is preferably not higher than 30° C. higher, more preferably not higher than 25° C. higher, and even more preferably not higher than 20° C. higher than the glass transition temperature of the resin having the highest glass transition temperature among the amorphous polyester resins.
  • the time for which the toner is maintained at a temperature equal to or higher than the glass transition temperature of the amorphous polyester resin is, from the viewpoint of improving the low-temperature fixing property of the toner, preferably 1 minute or more, more preferably 10 minutes or more, even more preferably 30 minutes or more, and is preferably 240 minutes or less, more preferably 180 minutes or less, even more preferably 120 minutes or less, even more preferably 90 minutes or less. It is preferable to maintain the temperature at the above temperature until the desired circularity is achieved.
  • the volume median particle size D50 of the fused particles obtained by fusion is preferably 2 ⁇ m or more, more preferably 3 ⁇ m or more, even more preferably 4 ⁇ m or more, and is preferably 10 ⁇ m or less, more preferably 8 ⁇ m or less, even more preferably 7 ⁇ m or less.
  • the circularity of the fused particles obtained by fusion is preferably 0.955 or more, more preferably 0.960 or more, and is preferably 0.990 or less, more preferably 0.985 or less, and further preferably 0.980 or less.
  • the fusion is preferably terminated after the above-mentioned preferred circularity is reached.
  • the circularity is measured by the method described in the Examples.
  • a post-treatment process may be performed after the fusion process, and the fused particles are isolated to obtain toner particles. Since the fused particles obtained in the fusion process are present in an aqueous medium, it is preferable to first perform solid-liquid separation. For solid-liquid separation, a suction filtration method or the like is preferably used. It is preferable to wash the solid-liquid separation product. In this case, it is preferable to remove the surfactant added, and therefore it is preferable to wash the product with an aqueous medium at a temperature below the cloud point of the surfactant. It is preferable to wash the product several times. Next, drying is preferably performed. Examples of the drying method include vacuum low-temperature drying, vibration-type fluidized bed drying, spray drying, freeze drying, and flash jet drying.
  • the melt-kneading method involves, for example, uniformly mixing a binder resin, a colorant, and, if necessary, additives such as a release agent in a mixer such as a Henschel mixer, and then melt-kneading the mixture in an internal kneader, a single-screw or twin-screw extruder, an open roll type kneader, etc. The mixture is then cooled, pulverized, and classified to produce toner particles.
  • the toner contains toner particles.
  • the obtained toner particles can be used as is as the toner of the present invention. It is also preferable to use toner particles that have been treated by adding an external additive to the surface thereof as the toner of the present invention.
  • Examples of the external additive include inorganic fine particles such as hydrophobic silica, titanium oxide, alumina, cerium oxide, and carbon black, and polymer fine particles such as polycarbonate, polymethyl methacrylate, and silicone resin. Among these, hydrophobic silica is preferred.
  • the external additive may be used alone or in combination with two or more kinds. In addition, two or more kinds of hydrophobic silica having different particle sizes may be used.
  • the amount of the external additive added is preferably 1 part by mass or more, more preferably 2 parts by mass or more, even more preferably 3 parts by mass or more, and is preferably 5 parts by mass or less, more preferably 4.5 parts by mass or less, and even more preferably 4 parts by mass or less, relative to 100 parts by mass of the toner particles.
  • Toner is used to develop electrostatic images in electrophotographic printing.
  • Toner can be used, for example, as a one-component developer or mixed with a carrier to form a two-component developer.
  • a toner for developing electrostatic images comprising a crystalline polyester resin C, an amorphous polyester resin A, and a colorant
  • the crystalline polyester resin C contains a structural unit derived from an aliphatic diol component containing ethylene glycol and a structural unit derived from an aliphatic dicarboxylic acid component having from 10 to 14 carbon atoms, and has an ester group concentration of from 6.5 mmol/g to 9.0 mmol/g
  • the colorant is a pigment having an NH group amount of 6.0 mmol/g or more when the total number of -NH- and -NH2 groups in one molecule is divided by the molecular weight to define the NH group amount.
  • Toner for developing electrostatic images ⁇ 2> The toner for developing an electrostatic image according to ⁇ 1>, wherein the crystalline polyester resin C further contains a structural unit derived from a monocarboxylic acid component having 6 to 24 carbon atoms. ⁇ 3> The toner for developing electrostatic images according to ⁇ 2>, wherein the number of carbon atoms in the constitutional unit derived from the monocarboxylic acid component having from 6 to 24 carbon atoms is preferably 8 or more, more preferably 12 or more, even more preferably 14 or more, still more preferably 16 or more, and is preferably 22 or less, more preferably 20 or less.
  • the toner for developing electrostatic images according to ⁇ 2> or ⁇ 3> wherein the content of the structural units derived from a monocarboxylic acid component having from 6 to 24 carbon atoms is 1 mol % or more, preferably 5 mol % or more, more preferably 7 mol % or more, and 35 mol % or less, preferably 30 mol % or less, more preferably 20 mol % or less, and even more preferably 15 mol % or less, in the structural units derived from a carboxylic acid component of the crystalline polyester resin C.
  • the toner for developing electrostatic images according to any one of ⁇ 1> to ⁇ 4>, wherein the constitutional unit derived from an aliphatic dicarboxylic acid component having from 10 to 14 carbon atoms includes a constitutional unit derived from an ⁇ , ⁇ -linear aliphatic dicarboxylic acid component having from 10 to 14 carbon atoms.
  • the structural unit derived from an aliphatic dicarboxylic acid component having from 10 to 14 carbon atoms includes at least one selected from a structural unit derived from sebacic acid, a structural unit derived from 1,11-undecanedioic acid, a structural unit derived from 1,12-dodecanedioic acid, a structural unit derived from 1,13-tridecanedioic acid, and a structural unit derived from 1,14-tetradecanedioic acid, preferably at least one selected from a structural unit derived from sebacic acid, a structural unit derived from 1,12-dodecanedioic acid, and a structural unit derived from 1,14-tetradecanedioic acid, more preferably a structural unit derived from 1,12-dodecanedioic acid and/or a structural unit derived from 1,14-
  • the toner for developing electrostatic images according to any one of ⁇ 1> to ⁇ 6>, wherein the content of the constitutional units derived from the aliphatic diol component in the constitutional units derived from the alcohol component of the crystalline polyester resin C is 80 mol % or more, preferably 85 mol % or more, more preferably 90 mol % or more, and even more preferably 95 mol % or more, and 100 mol % or less.
  • the toner for developing electrostatic images according to any one of ⁇ 1> to ⁇ 7>, wherein the content of the constitutional units derived from ethylene glycol in the constitutional units derived from an alcohol component of the crystalline polyester resin C is 65 mol % or more, preferably 85 mol % or more, more preferably 90 mol % or more, and still more preferably 95 mol % or more and 100 mol % or less.
  • the toner for developing electrostatic images according to any one of ⁇ 1> to ⁇ 8>, wherein the content of the constitutional units derived from an aliphatic dicarboxylic acid having from 10 to 14 carbon atoms is 70 mol % or more, preferably 75 mol % or more, more preferably 80 mol % or more, and even more preferably 85 mol % or more, and 100 mol % or less, in the constitutional units derived from a carboxylic acid component of the crystalline polyester resin C.
  • the softening point of the crystalline polyester resin C is 60° C. or higher, preferably 65° C. or higher, more preferably 70° C. or higher, and 150° C. or lower, preferably 120° C. or lower, more preferably 100° C. or lower.
  • the toner for developing electrostatic images according to any one of ⁇ 1> to ⁇ 11>, wherein the melting point of the crystalline polyester resin C is 50° C. or higher, preferably 60° C. or higher, more preferably 70° C. or higher, and 100° C. or lower, preferably 95° C. or lower, more preferably 90° C. or lower.
  • the toner for developing electrostatic images according to any one of ⁇ 1> to ⁇ 12>, wherein the solubility parameter of the crystalline polyester resin C is 8.70 (cal/cm 3 ) 1/2 or more, preferably 9.00 (cal/cm 3 ) 1/2 or more, more preferably 9.50 (cal/cm 3 ) 1/2 or more, and 11.00 (cal/cm 3 ) 1/2 or less, preferably 10.50 (cal/cm 3 ) 1/2 or less, more preferably 10.20 (cal/cm 3 ) 1/2 or less.
  • the solubility parameter of the crystalline polyester resin C is 8.70 (cal/cm 3 ) 1/2 or more, preferably 9.00 (cal/cm 3 ) 1/2 or more, more preferably 9.50 (cal/cm 3 ) 1/2 or more, and 11.00 (cal/cm 3 ) 1/2 or less, preferably 10.50 (cal/cm 3 ) 1/2 or less, more preferably 10.20 (cal/cm 3 ) 1/2 or less.
  • the structural unit derived from an alcohol component of the amorphous polyester resin A is at least one selected from the group consisting of a structural unit derived from an alkylene oxide adduct of an aromatic diol, a structural unit derived from a linear or branched aliphatic diol, a structural unit derived from an alicyclic diol, and a structural unit derived from a trivalent or higher polyhydric alcohol, and preferably includes a structural unit derived from an alkylene oxide adduct of an aromatic diol and/or a structural unit derived from a linear or branched aliphatic diol.
  • the structural unit derived from an alcohol component of the amorphous polyester resin A includes a structural unit derived from an alkylene oxide adduct of an aromatic diol, preferably a structural unit derived from an alkylene oxide adduct of bisphenol A, more preferably a structural unit derived from an alkylene oxide adduct of 2,2-bis(4-hydroxyphenyl)propane represented by the following formula (I), even more preferably a structural unit derived from a propylene oxide adduct of bisphenol A and/or a structural unit derived from an ethylene oxide adduct of bisphenol A, still more preferably a structural unit derived from a propylene oxide adduct of bisphenol A.
  • the structural unit derived from an alcohol component of the amorphous polyester resin A includes a structural unit derived from an alkylene oxide adduct of an aromatic diol, preferably a structural unit derived from an alkylene oxide adduct of bisphenol A, more preferably a structural
  • OR1 and R2O are oxyalkylene groups, R1 and R2 each independently represent an ethylene group or a propylene group, x and y each represent the average number of moles of alkylene oxide added and are each a positive number, and the sum of x and y is 1 or more, preferably 1.5 or more, and 16 or less, preferably 8 or less, more preferably 4 or less.
  • ⁇ 16> The toner for developing electrostatic images according to ⁇ 15>, wherein the content of the structural units derived from an alkylene oxide adduct of bisphenol A is 80 mol % or more, preferably 90 mol % or more and 100 mol % or less, in the structural units derived from an alcohol component of the amorphous polyester resin A.
  • the toner for developing electrostatic images according to any one of ⁇ 1> to ⁇ 14>, wherein the structural unit derived from an alcohol component of the amorphous polyester resin A includes a structural unit derived from the linear or branched aliphatic diol.
  • the toner for developing electrostatic images according to ⁇ 17> wherein the structural units derived from the linear or branched aliphatic diol contain structural units derived from neopentyl glycol, and the content of the structural units derived from neopentyl glycol in the structural units derived from the linear or branched aliphatic diol is 65 mol % or more, preferably 85 mol % or more, more preferably 90 mol % or more, and even more preferably 95 mol % or more and 100 mol % or less.
  • the structural unit derived from a carboxylic acid component of the amorphous polyester resin A includes at least one selected from the group consisting of a structural unit derived from an aromatic dicarboxylic acid, a structural unit derived from a linear or branched aliphatic dicarboxylic acid, and a structural unit derived from an alicyclic dicarboxylic acid, and is preferably at least one selected from the group consisting of a structural unit derived from an aromatic dicarboxylic acid and a structural unit derived from a linear or branched aliphatic dicarboxylic acid.
  • the softening point of the amorphous polyester resin A is 70° C.
  • the toner for developing electrostatic images according to any one of ⁇ 1> to ⁇ 21>, wherein the glass transition temperature of the amorphous polyester resin A is 30° C. or higher, preferably 35° C. or higher, more preferably 40° C. or higher, and 80° C. or lower, preferably 75° C. or lower, more preferably 70° C. or lower.
  • the toner for developing electrostatic images according to any one of ⁇ 1> to ⁇ 22>, wherein the solubility parameter of the amorphous polyester resin A is 9.20 (cal/cm 3 ) 1/2 or more, preferably 9.50 (cal/cm 3 ) 1/2 or more, more preferably 10.00 (cal/cm 3 ) 1/2 or more, and is 12.00 (cal/cm 3 ) 1/2 or less, preferably 11.80 (cal/cm 3 ) 1/2 or less, more preferably 11.50 (cal/cm 3 ) 1/2 or less.
  • the solubility parameter of the amorphous polyester resin A is 9.20 (cal/cm 3 ) 1/2 or more, preferably 9.50 (cal/cm 3 ) 1/2 or more, more preferably 10.00 (cal/cm 3 ) 1/2 or more, and is 12.00 (cal/cm 3 ) 1/2 or less, preferably 11.80 (cal/cm 3 ) 1/2 or less, more preferably 11.50 (cal/cm 3 ) 1/2 or less.
  • a difference in solubility parameter between the amorphous polyester resin A and the crystalline polyester resin C is 0.50 (cal/cm 3 ) 1/2 or more, preferably 0.55 (cal/cm 3 ) 1/2 or more, more preferably 0.60 (cal/cm 3 ) 1/2 or more, even more preferably 0.63 (cal/cm 3 ) 1/2 or more, and is 1.50 (cal/cm 3 ) 1/2 or less, preferably 1.30 (cal/cm 3 ) 1/2 or less , more preferably 1.00 (cal/cm 3 ) 1/2 or less, even more preferably 0.95 (cal/cm 3 ) 1/2 or less, and even more preferably 0.90 (cal/cm 3 ) 1/2 or less.
  • ⁇ 25> The toner for developing electrostatic images according to any one of ⁇ 1> to ⁇ 24>, wherein a mass ratio of a content of the amorphous polyester resin A to a content of the crystalline polyester resin C is 55/45 or more, preferably 60/40 or more, more preferably 65/35 or more, and is 90/10 or less, preferably 85/15 or less, more preferably 78/22 or less.
  • ⁇ 26> The toner for developing electrostatic images according to any one of ⁇ 1> to ⁇ 25> , wherein the colorant is a pigment having an NH group amount of 6.0 mmol/g or more, and the NH group amount is 20.0 mmol/g or less, and preferably 15.0 mmol/g or less, when the NH group amount is the value obtained by dividing the total number of -NH- and -NH2 groups in one molecule by the molecular weight.
  • the colorant is a yellow organic pigment.
  • ⁇ 28> The toner for developing electrostatic images according to any one of ⁇ 1> to ⁇ 27>, wherein the colorant contains at least one pigment selected from the group consisting of isoindoline pigments and benzimidazolone pigments.
  • ⁇ 29> The toner for developing an electrostatic image according to any one of ⁇ 1> to ⁇ 28>, wherein the colorant is at least one selected from the group consisting of C. I. Pigment Yellow 185 and C. I. Pigment Yellow 180.
  • the toner for developing electrostatic images according to any one of ⁇ 1> to ⁇ 29>, wherein the content of the colorant is 3 parts by mass or more, preferably 5 parts by mass or more, and more preferably 7 parts by mass or more, and is 25 parts by mass or less, preferably 20 parts by mass or less, and more preferably 15 parts by mass or less, relative to 100 parts by mass in total of the crystalline polyester resin C and the amorphous polyester resin A.
  • ⁇ 31> The toner for developing electrostatic images according to any one of ⁇ 1> to ⁇ 30>, wherein the toner for developing electrostatic images contains toner particles, and a content of the colorant in the toner particles is 3% by mass or more, preferably 5% by mass or more, and 25% by mass or less, preferably 20% by mass or less, and more preferably 15% by mass or less.
  • ⁇ 32> The toner for developing electrostatic images according to any one of ⁇ 1> to ⁇ 31>, which has a core-shell structure.
  • a method for producing a toner for developing an electrostatic image comprising a step of aggregating and fusing resin particles, the resin particles including a crystalline polyester resin C and an amorphous polyester resin A in the same or different particles, and a colorant in an aqueous medium, the method comprising the steps of: the crystalline polyester resin C contains a structural unit derived from an aliphatic diol component containing ethylene glycol and a structural unit derived from an aliphatic dicarboxylic acid component having from 10 to 14 carbon atoms, and has an ester group concentration of from 6.5 mmol/g to 9.0 mmol/g,
  • the colorant is a pigment having an NH group amount of 6.0 mmol/g or more when the total number of -NH- and -NH2 groups in one molecule is divided by the molecular weight to define the NH group amount.
  • a method for producing a toner for developing electrostatic images ⁇ 34> The method for producing a toner for developing an electrostatic image according to ⁇ 33>, further comprising a step of adhering shell resin particles containing an amorphous resin to aggregate particles 1 obtained in the aggregating step and aggregating the aggregated particles 2, after the aggregating step and before the fusion step.
  • ⁇ 35> The method for producing a toner for developing an electrostatic image according to ⁇ 34>, wherein a mass ratio of the shell resin particles to the mass of the aggregated particles 1 [shell resin particles/aggregated particles 1] is 1/99 or more, preferably 3/97 or more, more preferably 5/95 or more, and is 25/75 or less, preferably 20/80 or less, more preferably 15/85 or less.
  • alkylene oxide (X) the number X in parentheses means the average number of moles of alkylene oxide added.
  • Dispersion conditions 10 mg of a measurement sample of dried toner particles was added to 5 mL of the dispersion liquid, and the mixture was dispersed for 1 minute using an ultrasonic disperser. Thereafter, 25 mL of the electrolyte solution was added, and the mixture was further dispersed for 1 minute using an ultrasonic disperser to prepare a sample dispersion liquid.
  • Measurement conditions The sample dispersion was added to 100 mL of the electrolyte to adjust the concentration to a level that would allow the particle sizes of 30,000 particles to be measured in 20 seconds. The 30,000 particles were then measured, and the volume median particle size D50 and volume average particle size DV were determined from the particle size distribution.
  • Production Example A2 (Production of Resin A-2) Resin A-2 was obtained in the same manner as in Production Example A1, except that the amounts of raw material monomers for the polyester resin segment, etc. were changed as shown in Table 1. The physical properties are shown in Table 1.
  • Production Example B2 (Production of Resin B-2)
  • the raw material monomers of polyester resin other than fumaric acid shown in Table 1, esterification catalyst, and esterification promoter were placed in a 10L four-neck flask equipped with a nitrogen inlet tube, a dehydration tube equipped with a fractionating tube through which hot water of 98 ° C. was passed, a stirrer, and a thermocouple. Under a nitrogen atmosphere, the reaction system was held at 180 ° C. for 1 hour, and then heated from 180 ° C. to 230 ° C. at 10 ° C. / h, and then held at 230 ° C. for 5 hours to perform polycondensation.
  • the pressure in the flask was then reduced and maintained at 8 kPa for 1 hour. After that, the pressure was returned to atmospheric pressure, and the flask was cooled to 160° C., and a mixture of 2133 g of styrene, 533 g of stearyl methacrylate, 114 g of acrylic acid, and 320 g of dibutyl peroxide was added dropwise over 3 hours while maintaining the temperature at 160° C. The reaction system was then held at 160°C for 30 minutes, then heated to 200°C, and the pressure in the flask was further reduced and held at 8 kPa for 1 hour.
  • BPA-PO means a polyoxypropylene (2.2) adduct of bisphenol A.
  • BPA-EO means a polyoxyethylene (2.2) adduct of bisphenol A.
  • Amount (% by mass) relative to 100 parts by mass of the total amount of the polyester resin segment, the addition polymerization resin segment, and the structural units derived from the bireactive monomer The amount of polyester resin segment was calculated as a theoretical yield excluding the amount of reaction water, and the amount of both reactive monomers was calculated as a theoretical yield excluding the amount of reaction water.
  • the amount of addition polymerization resin segment was calculated assuming that the amount of radical polymerization initiator was included.
  • Production Examples X2 and X3 (Production of Amorphous Resin Particle Dispersions X-2 and X-3) Resin particle dispersions X-2 and X-3 were obtained in the same manner as in Production Example X1, except that the resin was changed as shown in Table 3. The physical property values are shown in Table 3.
  • Production Example Z1 (Production of Resin Particle Dispersion Z-1) 100 g of Resin B-1 and 100 g of methyl ethyl ketone were placed in a 3 L vessel equipped with a stirrer, a reflux condenser, a dropping funnel, a thermometer, and a nitrogen inlet tube, and dissolved over 2 hours at 73° C. A 5% by mass aqueous solution of sodium hydroxide was added to the resulting solution so that the degree of neutralization with respect to the acid value of Resin B-1 was 60 mol %, and the mixture was stirred for 30 minutes.
  • Production Example Z2 (Production of Resin Particle Dispersion Z-2) A resin particle dispersion Z-2 was obtained in the same manner as in Production Example Z1, except that Resin B-2 was used instead of Resin B-1.
  • Production Example S1 (Production of Resin Particle Dispersion S-1) Resin particle dispersion S-1 was obtained in the same manner as in Production Example Z1, except that Resin B-1 was changed to Resin D-1.
  • the physical properties are shown in Table 3.
  • Production Example W1 (Production of Release Agent Particle Dispersion W-1) Into a 1 L beaker, 120 g of deionized water, 86 g of resin particle dispersion S-1, and 40 g of paraffin wax "HNP-9" (manufactured by Nippon Seiro Co., Ltd., melting point 75°C) were added, and the mixture was melted by maintaining the temperature at 90 to 95°C and stirred to obtain a molten mixture.
  • HNP-9 paraffin wax
  • the obtained molten mixture was further dispersed for 20 minutes using an ultrasonic homogenizer "US-600T” (manufactured by Nippon Seiki Seisakusho Co., Ltd.) while maintaining the temperature at 90 to 95°C, and then cooled to room temperature (20°C).
  • Deionized water was added to the obtained dispersion to adjust the solid content to 20 mass%, thereby obtaining release agent particle dispersion W-1.
  • the volume median particle diameter D50 of the release agent particles in release agent particle dispersion W-1 was 0.47 ⁇ m, and the CV value was 27%.
  • Production Example W2 (Production of Release Agent Particle Dispersion W-2) Release agent particle dispersion W-2 was obtained in the same manner as in Production Example W1, except that the type of release agent was changed to Fischer-Tropsch wax "FNP-0090" (manufactured by Nippon Seiro Co., Ltd., melting point 90°C).
  • the volume median particle diameter D50 of the release agent particles in the release agent particle dispersion W-2 was 0.45 ⁇ m and the CV value was 28%.
  • Pigment Yellow 185 25 g of polyoxyethylene (13) distyrenated phenyl ether "EMULGEN A-60” (manufactured by Kao Corporation, nonionic surfactant), and 300 g of deionized water were mixed and dispersed at room temperature (20°C) for 1 hour at a stirring blade rotation speed of 8000 rpm using a homomixer "T.K.AGI HOMOMIXER 2M-03" (manufactured by Tokushu Kika Kogyo Co., Ltd.), and then the mixture was treated for 15 passes at a pressure of 150 MPa using a "Microfluidizer M-110EH" (manufactured by Microfluidics Co., Ltd.), and then deionized water was added so that the solid content concentration was 20 mass%, to obtain colorant particle dispersion E-1.
  • Table 4 The physical properties are shown in Table 4.
  • Example 1 (Production of Toner 1) Into a 3 L four-neck flask equipped with a dehydration tube, a stirrer, and a thermocouple, 350 g of amorphous resin particle dispersion X-1, 150 g of crystalline resin particle dispersion Y-1, 49 g of release agent particle dispersion W-1, 49 g of release agent particle dispersion W-2, and 63 g of colorant particle dispersion E-1 were added and mixed at a temperature of 25° C.
  • the obtained dispersion of aggregated particles 1 was cooled to 55° C., and while maintaining the temperature at 55° C., 48 g of resin particle dispersion Z-1 was added over 90 minutes to obtain a dispersion of aggregated particles 2 in which resin particles were aggregated into aggregated particles 1.
  • 50 g of a 20% by mass aqueous solution of sodium salt of naphthalenesulfonic acid-formalin condensate "Demol MS" (manufactured by Kao Corporation) and 1,500 g of deionized water were added.
  • toner particles 1 100 parts by mass of toner particles 1, 2.5 parts by mass of hydrophobic silica "RY50” (manufactured by Nippon Aerosil Co., Ltd., number average particle size; 0.04 ⁇ m), and 1.0 part by mass of hydrophobic silica "Cabosil (registered trademark) TS720" (manufactured by Cabot Japan Co., Ltd., number average particle size; 0.012 ⁇ m) were placed in a Henschel mixer, stirred, and passed through a 150 mesh sieve to obtain toner 1.
  • hydrophobic silica "RY50” manufactured by Nippon Aerosil Co., Ltd., number average particle size; 0.04 ⁇ m
  • hydrophobic silica "Cabosil (registered trademark) TS720” manufactured by Cabot Japan Co., Ltd., number average particle size; 0.012 ⁇ m
  • the obtained toner 1 was evaluated as follows. [Evaluation of Low Temperature Fixability] A solid image with a toner adhesion amount of 0.43 to 0.45 mg/cm2 on a polypropylene film label "Forest PP Clear FTC50" ( manufactured by UPM Kummene Japan Co., Ltd.) cut to A4 size was printed using a commercially available printer "Microline (registered trademark) 5400" (manufactured by Oki Electric Industry Co., Ltd.) with a length of 50 mm, leaving a margin of 5 mm from the top end of the A4 size film label, without fixing.
  • the optical reflection density before and after the tape was applied was measured using a reflection densitometer "RD-915" (manufactured by GretagMacbeth), and the temperature of the fixing roll at which the ratio of the two (100 x optical reflection density after peeling/optical reflection density before application) first exceeded 90% was defined as the minimum fixing temperature.
  • the same printer was prepared with a temperature-variable fixing device, the fixing device temperature was set to 100°C, and toner 1 was fixed at a speed of 3 seconds per sheet in the A4 portrait direction to form a printed coating film, and a label print was obtained (equivalent to 20 sheets/min in A4 portrait).
  • the pencil hardness of the printed coating film of the obtained label print was measured in accordance with JIS K5600-5-4 using a pencil scratch coating film hardness tester ("D-NP (model number)" manufactured by Toyo Seiki Seisakusho Co., Ltd.) and pencils for pencil scratch value test (6B, 5B, 4B, 3B, 2B, B, HB, F, H) (manufactured by Mitsubishi Pencil Co., Ltd.).
  • the printed coating film was scratched five times with pencils of each hardness in the order of 6B, 5B, 4B, 3B, 2B, B, HB, F, and H, and the hardest pencil that did not produce scratches three or more times was taken as the pencil hardness of the printed coating film of the label print.
  • "H” is the most excellent in pencil hardness of the printed coating film (fastness of the printed coating film).
  • the pencil hardness of the printed coating film obtained from the toner of the present invention is preferably B or higher. The evaluation results are shown in Table 5.
  • Examples 2 to 7 and Comparative Examples 1 to 5 (Production of Toners 2 to 7 and 1c to 5c) Toner particles 2 to 7, toner particles 1c to 5c, and toners 2 to 7 and 1c to 5c were obtained in the same manner as in Example 1, except that the amorphous resin particle dispersion, crystalline resin particle dispersion, and colorant particle dispersion were changed as shown in Table 5.
  • the physical property values of toner particles 2 to 7 and toner particles 1c to 5c are shown in Table 5.
  • the evaluation results of toners 2 to 7 and toners 1c to 5c are also shown in Table 5.
  • Example 8 (Preparation of Toner 8) Toner particles 8 and toner 8 were obtained in the same manner as in Example 1, except that the amount of amorphous resin particle dispersion X-1 was changed to 400 g and the amount of crystalline resin particle dispersion Y-1 was changed to 100 g.
  • the physical property values of toner particles 8 and the evaluation results of toner 8 are shown in Table 5.
  • Example 9 (Preparation of Toner 9) Toner particles 9 and toner 9 were obtained in the same manner as in Example 1, except that the amount of amorphous resin particle dispersion X-1 was changed to 425 g and the amount of crystalline resin particle dispersion Y-1 was changed to 75 g.
  • the physical property values of toner particles 9 and the evaluation results of toner 9 are shown in Table 5.
  • Example 10 (Production of Toner 10) Toner particles 10 and toner 10 were obtained in the same manner as in Example 1, except that the amorphous resin particle dispersion, crystalline resin particle dispersion, and colorant particle dispersion were changed as shown in Table 5, and resin particle dispersion Z-1 was changed to resin particle dispersion Z-2.
  • the physical property values of toner particles 10 are shown in Table 5.
  • the evaluation results of toner 10 are also shown in Table 5.
  • Example 11 (Production of Toner 11) 80 parts by mass of amorphous polyester resin A-1, 20 parts by mass of crystalline polyester resin C-1, 5 parts by mass of colorant PY185 ("Paliotol Yellow D1155", manufactured by BASF Color & Effect Japan Co., Ltd., C.I.
  • Pigment Yellow 185 1 part by mass of charge control agent "LR-147" (manufactured by Nippon Carlit Co., Ltd.), and 2 parts by mass of paraffin wax "HNP-9” (manufactured by Nippon Seiro Co., Ltd., melting point 75 ° C.) and 2 parts by mass of paraffin wax "FNP-0090” (manufactured by Nippon Seiro Co., Ltd., melting point 90 ° C.) as release agents were thoroughly stirred with a Henschel mixer, and then melt-kneaded using a co-rotating twin-screw extruder with a kneading section having a total length of 1560 mm, a screw diameter of 42 mm, and a barrel inner diameter of 43 mm.
  • the screw rotation speed was 200 r/min
  • the heating temperature inside the screw was set to 90° C.
  • the temperature of the kneaded material was 140° C.
  • the feed rate of the kneaded material was 10 kg/h
  • the average residence time was about 18 seconds.
  • the kneaded material obtained was cooled from 140° C. to 50° C. in 1.5 hours, rolled and cooled at 50° C. with a cooling roller, and then allowed to stand at 45° C. for 4 hours, and then pulverized and classified with a jet mill to obtain toner particles 11.
  • the physical properties of toner particles 11 are shown in Table 6.
  • toner particles 11 100 parts by mass of toner particles 11, 2.5 parts by mass of hydrophobic silica "RY50” (manufactured by Nippon Aerosil Co., Ltd., number average particle size: 0.04 ⁇ m), and 1.0 part by mass of hydrophobic silica "Cabosil (registered trademark) TS720" (manufactured by Cabot Japan Co., Ltd., number average particle size: 0.012 ⁇ m) were placed in a Henschel mixer, stirred, and passed through a 150 mesh sieve to obtain toner 11.
  • Table 6 100 parts by mass of toner particles 11, 2.5 parts by mass of hydrophobic silica "RY50” (manufactured by Nippon Aerosil Co., Ltd., number average particle size: 0.04 ⁇ m), and 1.0 part by mass of hydrophobic silica "Cabosil (registered trademark) TS720" (manufactured by Cabot Japan Co., Ltd., number average particle size: 0.012 ⁇
  • the toners (Examples 1 to 11) produced using the resin C, the resin A and the pigment specified in the present invention are excellent in low-temperature fixing property, and the printed coating film obtained from the toner has a pencil hardness of "B" or higher, and the printed coating film is excellent in fastness.
  • the toners of Comparative Examples 1 and 2 were produced using the resin C and resin A specified in the present invention, but because a pigment having an NH group amount of less than 6.0 mmol/g was used, the pencil hardness of the printed coating film obtained from the toner was "3B", and sufficient fastness of the printed coating film was not obtained.
  • the toner of Comparative Example 3 was produced using the resin A and pigment specified in the present invention, but because a crystalline polyester resin having an ester group concentration of more than 9.0 mmol/g was used, the pencil hardness of the printed coating film was "6B", and the fastness of the printed coating film was poor.
  • the toner of Comparative Example 4 was produced using the resin A and pigment specified in the present invention, but because a crystalline polyester resin having an ester group concentration of less than 6.5 mmol/g was used, the pencil hardness of the printed coating film was "6B", and the fastness of the printed coating film was poor.
  • the toners of Comparative Examples 4 and 5 were produced using the resin A and pigment specified in the present invention, but because a crystalline polyester resin not containing a structural unit derived from an aliphatic diol component containing ethylene glycol was used, the low-temperature fixability of the toner was poor.

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

The present invention relates to toner for static charge image development, the toner containing a crystalline polyester resin C, an amorphous polyester-based resin A, and a coloring agent. The crystalline polyester resin C includes a constitutional unit that is derived from an aliphatic diol component containing ethylene glycol, and a constitutional unit that is derived from an aliphatic dicarboxylic acid component having a carbon number of 10 to 14. The crystalline polyester resin C has an ester group concentration of 6.5 mmol/g to 9.0 mmol/g. The coloring agent is a pigment having an NH group amount of 6.0 mmol/g or greater, the NH group amount being a value that is the total number of -NH- and -NH2 per molecule divided by the molecular weight.

Description

静電荷像現像用トナー及びその製造方法Toner for developing electrostatic images and method for producing the same
 本発明は、電子写真法、静電記録法、静電印刷法等において形成される潜像の現像に用いられる静電荷像現像用トナー及びその製造方法に関する。 The present invention relates to a toner for developing electrostatic images used to develop latent images formed in electrophotography, electrostatic recording, electrostatic printing, etc., and a method for producing the same.
 印刷メディアの多様化により、紙以外の印刷メディアへの電子写真印刷が求められ始めている。主要なメディアとして、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム、及びポリエチレンフィルムなどのプラスチックフィルムがあり、ペットボトルラベルや種々のパッケージなどに用いられている。これらプラスチックフィルムは、表面が平滑であるために、当該表面と、当該表面に電子写真用トナーを印刷して形成される塗膜(印刷塗膜)との間にアンカー効果が働きにくく、プラスチックフィルムから印刷塗膜が剥がれやすい。また、これらプラスチックフィルムは熱に弱いために、電子写真用トナーを熱定着させると印刷メディアがカールやシュリンクを引き起こす。
 特許文献1(特開2022-54448号公報)には、ポリプロピレンフィルム又はポリエチレンフィルムへの画像形成方法であって、得られる画像の画像濃度に優れ、更に、画像の耐擦過性に優れる画像形成方法を提供することを目的として、結着樹脂中に結晶性ポリエステル樹脂Cを含有するトナーにより、ポリプロピレンフィルム又はポリエチレンフィルムに画像を形成する方法であり、該結晶性ポリエステル樹脂CのSP値が9.0以上10.1以下であり、結着樹脂中の結晶性ポリエステル樹脂Cの含有量が10質量%以上60質量%以下であり、該ポリプロピレンフィルム又はポリエチレンフィルムの印刷面の表面張力が35mN/m以上49mN/m以下であり、定着温度が、ポリプロピレンフィルム又はポリエチレンフィルムの融点より5℃高い温度以下である、画像形成方法が開示されている。
 特許文献2(特開2020-60687号公報)には、非晶質ポリエステル樹脂と、結晶性ポリエステル樹脂とを含有し、前記非晶質ポリエステル樹脂が、アルコール成分(A-al)と、炭素数16以上18以下の直鎖脂肪族炭化水素基が置換したコハク酸又はその無水物を含むカルボン酸成分(A-ac)との重縮合物であり、前記結晶性ポリエステル樹脂が、アルコール成分(C-al)とカルボン酸成分(C-ac)との重縮合物であり、前記アルコール成分(C-al)として炭素数6以上24以下のモノアルコール、及び前記カルボン酸成分(C-ac)として炭素数6以上24以下のモノカルボン酸からなる群から選ばれる少なくとも1種を含有する静電荷像現像用トナーが、低温定着性、及びトナーの耐熱保存性に優れ、かつ、印刷物の保存性が優れることが開示されている。
With the diversification of print media, there is an increasing demand for electrophotographic printing on print media other than paper. Major media include plastic films such as polyethylene terephthalate film, polypropylene film, and polyethylene film, which are used for PET bottle labels and various packages. Since these plastic films have a smooth surface, the anchor effect between the surface and the coating film (printed coating film) formed by printing electrophotographic toner on the surface is difficult to work, and the printed coating film is easily peeled off from the plastic film. In addition, since these plastic films are sensitive to heat, the print media curls and shrinks when electrophotographic toner is thermally fixed.
Patent Document 1 (JP 2022-54448 A) discloses an image forming method for a polypropylene film or a polyethylene film, which is excellent in image density of the obtained image and further has excellent abrasion resistance of the image. The method is a method of forming an image on a polypropylene film or a polyethylene film by a toner containing a crystalline polyester resin C in a binder resin, and the SP value of the crystalline polyester resin C is 9.0 or more and 10.1 or less, the content of the crystalline polyester resin C in the binder resin is 10% by mass or more and 60% by mass or less, the surface tension of the printed surface of the polypropylene film or polyethylene film is 35 mN / m or more and 49 mN / m or less, and the fixing temperature is 5 ° C. higher than the melting point of the polypropylene film or polyethylene film. An image forming method is disclosed.
Patent Document 2 (JP 2020-60687 A) contains an amorphous polyester resin and a crystalline polyester resin, and the amorphous polyester resin is a polycondensate of an alcohol component (A-al) and a carboxylic acid component (A-ac) containing succinic acid or its anhydride substituted with a linear aliphatic hydrocarbon group having 16 to 18 carbon atoms, and the crystalline polyester resin is a polycondensate of an alcohol component (C-al) and a carboxylic acid component (C-ac), and the alcohol component (C-al) is a monoalcohol having 6 to 24 carbon atoms, and the carboxylic acid component (C-ac) is at least one selected from the group consisting of a monocarboxylic acid having 6 to 24 carbon atoms. It is disclosed that a toner for developing an electrostatic image has excellent low-temperature fixability and heat-resistant storage stability of the toner, and excellent storage stability of printed matter.
 本発明は、以下の〔1〕及び〔2〕に関する。
〔1〕結晶性ポリエステル樹脂C、非晶性ポリエステル系樹脂A、及び着色剤を含有する静電荷像現像用トナーであって、
 前記結晶性ポリエステル樹脂Cが、エチレングリコールを含む脂肪族ジオール成分由来の構成単位と、炭素数10以上14以下の脂肪族ジカルボン酸成分由来の構成単位とを含み、かつエステル基濃度が6.5mmol/g以上9.0mmol/g以下であり、
 前記着色剤は、1分子中に有する-NH-及び-NHの合計数を、分子量で除した値をNH基量としたとき、NH基量が6.0mmol/g以上の顔料である、
 静電荷像現像用トナー。
〔2〕結晶性ポリエステル樹脂C及び非晶性ポリエステル系樹脂Aを同一又は異なる粒子に含有する樹脂粒子と、着色剤とを、水系媒体中で凝集させる工程及び融着させる工程を有する、静電荷像現像用トナーの製造方法であって、
 前記結晶性ポリエステル樹脂Cが、エチレングリコールを含む脂肪族ジオール成分由来の構成単位と、炭素数10以上14以下の脂肪族ジカルボン酸成分由来の構成単位とを含み、かつエステル基濃度が6.5mmol/g以上9.0mmol/g以下であり、
 前記着色剤は、1分子中に有する-NH-及び-NHの合計数を、分子量で除した値をNH基量としたとき、NH基量が6.0mmol/g以上の顔料である、
 静電荷像現像用トナーの製造方法。
The present invention relates to the following [1] and [2].
[1] A toner for developing electrostatic images, comprising a crystalline polyester resin C, an amorphous polyester resin A, and a colorant,
the crystalline polyester resin C contains a structural unit derived from an aliphatic diol component containing ethylene glycol and a structural unit derived from an aliphatic dicarboxylic acid component having from 10 to 14 carbon atoms, and has an ester group concentration of from 6.5 mmol/g to 9.0 mmol/g,
The colorant is a pigment having an NH group amount of 6.0 mmol/g or more when the total number of -NH- and -NH2 groups in one molecule is divided by the molecular weight to define the NH group amount.
Toner for developing electrostatic images.
[2] A method for producing a toner for developing an electrostatic image, comprising a step of aggregating and fusing resin particles, the resin particles including a crystalline polyester resin C and an amorphous polyester resin A in the same or different particles, and a colorant in an aqueous medium, the method comprising the steps of:
the crystalline polyester resin C contains a structural unit derived from an aliphatic diol component containing ethylene glycol and a structural unit derived from an aliphatic dicarboxylic acid component having from 10 to 14 carbon atoms, and has an ester group concentration of from 6.5 mmol/g to 9.0 mmol/g,
The colorant is a pigment having an NH group amount of 6.0 mmol/g or more when the total number of -NH- and -NH2 groups in one molecule is divided by the molecular weight to define the NH group amount.
A method for producing a toner for developing electrostatic images.
発明の詳細な説明Detailed Description of the Invention
 ペットボトルラベルやパッケージフィルムなどの包装印刷物は、内容物の品質保護や情報表示の観点から、印刷塗膜に高い堅牢性が求められる。包装印刷物用の印刷インキを用いて形成される印刷塗膜では、鉛筆硬度試験による塗膜硬度の評価がなされており、鉛筆硬度でB以上の硬度が求められている。本発明者らが検討したところ、プラスチックフィルム等の印刷媒体に、特許文献1に記載の画像形成方法及び特許文献2に記載の静電荷像現像用トナーにより印刷塗膜を形成して得られる上記包装印刷物は、テープ剥離試験や爪擦り試験に対する印刷塗膜の堅牢性は得られるものの、鉛筆硬度試験に対する堅牢性は改善が必要であることが分かった。また、プラスチックフィルム等の印刷媒体の熱収縮を抑制するため、トナーには低温定着性が求められる。
 本発明は、低温定着性に優れ、プラスチックフィルムなどの印刷媒体(基材)に対して、堅牢性の高い印刷塗膜を形成できる静電荷像現像用トナー及びその製造方法に関する。
Printed packaging materials such as PET bottle labels and packaging films are required to have high robustness in terms of protecting the quality of the contents and displaying information. In the printed coating film formed using the printing ink for printed packaging materials, the coating film hardness is evaluated by a pencil hardness test, and a pencil hardness of B or higher is required. The inventors have studied and found that the printed packaging materials obtained by forming a printed coating film on a printing medium such as a plastic film using the image forming method described in Patent Document 1 and the toner for developing an electrostatic image described in Patent Document 2 have robustness to a tape peeling test and a fingernail rubbing test, but robustness to a pencil hardness test needs to be improved. In addition, in order to suppress the thermal shrinkage of a printing medium such as a plastic film, the toner is required to have low-temperature fixability.
The present invention relates to a toner for developing electrostatic images, which has excellent low-temperature fixing properties and is capable of forming a printing coating film with high fastness on a printing medium (substrate) such as a plastic film, and a method for producing the same.
 本発明者らは、結晶性ポリエステル樹脂C、非晶性ポリエステル系樹脂A、及び着色剤を含有し、結晶性ポリエステル樹脂Cが、エチレングリコールを含む脂肪族ジオール成分由来の構成単位と、炭素数10以上14以下の脂肪族ジカルボン酸成分由来の構成単位とを含み、かつ特定の範囲のエステル基濃度を有し、着色剤が、NH基量が特定の値以上に制御された顔料である、静電荷像現像用トナーが低温定着性に優れ、当該トナーにより堅牢性の高い印刷塗膜を形成できることを見出した。 The present inventors have found that a toner for developing electrostatic images, which contains a crystalline polyester resin C, an amorphous polyester resin A, and a colorant, in which the crystalline polyester resin C contains a constituent unit derived from an aliphatic diol component containing ethylene glycol and a constituent unit derived from an aliphatic dicarboxylic acid component having 10 to 14 carbon atoms and has an ester group concentration in a specific range, and the colorant is a pigment in which the amount of NH groups is controlled to a specific value or more, has excellent low-temperature fixing properties, and can form a printed coating film with high robustness using the toner.
 本発明によれば、低温定着性に優れ、プラスチックフィルムなどの印刷媒体(基材)に対して、堅牢性の高い印刷塗膜を形成できる静電荷像現像用トナー及びその製造方法が提供される。 The present invention provides a toner for developing electrostatic images that has excellent low-temperature fixing properties and can form a highly durable printing coating film on a printing medium (substrate) such as a plastic film, and a method for producing the same.
[静電荷像現像用トナー]
 本発明の静電荷像現像用トナー(以下、単に「トナー」ともいう)は、少なくとも、結晶性ポリエステル樹脂C(以下、単に「樹脂C」ともいう)、非晶性ポリエステル系樹脂A(以下、単に「樹脂A」ともいう)、及び着色剤を含有する。
 前記結晶性ポリエステル樹脂Cが、エチレングリコールを含む脂肪族ジオール成分由来の構成単位と、炭素数10以上14以下の脂肪族ジカルボン酸成分由来の構成単位とを含み、かつエステル基濃度が6.5mmol/g以上9.0mmol/g以下であり、前記着色剤は、1分子中に有する-NH-及び-NHの合計数を、分子量で除した値をNH基量としたとき、NH基量が6.0mmol/g以上の顔料である。
 以上の特徴により、本発明のトナーは低温定着性に優れ、当該トナーにより堅牢性の高い印刷塗膜が得られる。
 なお、少なくとも、樹脂C、樹脂A、及び着色剤を含有するトナー粒子(以下、単に「トナー粒子」ともいう)を、本発明のトナーとしてそのまま用いることもできるが、流動化剤等を外添剤としてトナー粒子表面に添加処理したものをトナーとして使用することが好ましい。
[Toner for developing electrostatic images]
The toner for developing electrostatic images (hereinafter also simply referred to as "toner") of the present invention contains at least a crystalline polyester resin C (hereinafter also simply referred to as "resin C"), an amorphous polyester resin A (hereinafter also simply referred to as "resin A"), and a colorant.
The crystalline polyester resin C contains a constituent unit derived from an aliphatic diol component containing ethylene glycol and a constituent unit derived from an aliphatic dicarboxylic acid component having from 10 to 14 carbon atoms, and has an ester group concentration of from 6.5 mmol/g to 9.0 mmol/g. The colorant is a pigment having an NH group amount of 6.0 mmol/g or more, when the NH group amount is the value obtained by dividing the total number of -NH- and -NH2 in one molecule by the molecular weight.
Due to the above-mentioned characteristics, the toner of the present invention has excellent low-temperature fixing properties, and the toner can provide a printed coating film having high fastness.
In addition, toner particles containing at least resin C, resin A, and a colorant (hereinafter, also simply referred to as "toner particles") can be used as they are as the toner of the present invention, but it is preferable to use the toner particles after adding a fluidizing agent or the like as an external additive to the surface of the toner particles.
 本発明のトナーが低温定着性に優れ、当該トナーにより、堅牢性の高い印刷塗膜が得られる理由は定かではないが、次のように考えられる。
 本発明のトナーは、結晶性ポリエステル樹脂Cにエチレングリコールを含む脂肪族ジオール成分由来の構成単位を含むことで、2つの近接したエステル基を配置することができ、これにより凝集力が高く結晶核を速やかに生成できるため、トナー粒子形成時に結晶サイズが肥大化せず結晶ドメインが微分散した状態となる。そして、定着時には近接したエステル基により極性が高まることで非晶性ポリエステル系樹脂Aとの相溶性が向上し、トナーの溶融が素早く進むため、低温定着性に優れると考えられる。
 また、本発明者らが検討した結果、プラスチックフィルム等の基材に形成された印刷塗膜の鉛筆硬度試験に対する堅牢性を向上させるには、印刷塗膜自体の硬さが重要であることが分かった。これは先端が尖った鉛筆で塗膜を削る際に、局所的に強い力が加わるためであると考えられる。本発明のトナーでは、該トナーが含有する結晶性ポリエステル樹脂Cが、エチレングリコールを含む脂肪族ジオール成分由来の構成単位と、炭素数10以上14以下の脂肪族ジカルボン酸成分由来の構成単位とを含み、かつエステル基濃度が6.5mmol/g以上9.0mmol/g以下であることで、塗膜形成後の結晶性ポリエステル樹脂Cの凝集力を確保しつつ、非晶性ポリエステル樹脂Aとの相溶性が向上して、結晶性ポリエステル樹脂Cの結晶ドメインが印刷塗膜中で微分散した状態が形成される。更に、着色剤である顔料のNH基量が6.0mmol/g以上であることにより、結晶性ポリエステル樹脂C中のエステル基と顔料に含まれるNH基が効果的に相互作用することで、塗膜形成後に結晶性ポリエステル樹脂Cの再結晶化が促進される。その結果、印刷塗膜中での結晶性ポリエステル樹脂Cの凝集力が大幅に向上して印刷塗膜の硬度が高まり、堅牢性が向上すると考えられる。
The reason why the toner of the present invention has excellent low-temperature fixability and can provide a printed coating film with excellent fastness is not clear, but is thought to be as follows.
The toner of the present invention contains a structural unit derived from an aliphatic diol component containing ethylene glycol in the crystalline polyester resin C, and thus allows two adjacent ester groups to be arranged, which has high cohesive force and allows crystal nuclei to be generated quickly, so that the crystal size does not increase during toner particle formation and the crystal domains are finely dispersed.Then, during fixing, the polarity is increased by the adjacent ester groups, which improves compatibility with the amorphous polyester resin A and allows the toner to melt quickly, which is thought to result in excellent low-temperature fixing properties.
In addition, as a result of the study by the present inventors, it was found that the hardness of the printed coating film itself is important in order to improve the fastness of the printed coating film formed on a substrate such as a plastic film in a pencil hardness test. This is believed to be because a strong force is applied locally when the coating film is scraped with a pencil having a sharp tip. In the toner of the present invention, the crystalline polyester resin C contained in the toner contains a constitutional unit derived from an aliphatic diol component containing ethylene glycol and a constitutional unit derived from an aliphatic dicarboxylic acid component having 10 to 14 carbon atoms, and the ester group concentration is 6.5 mmol/g to 9.0 mmol/g, thereby ensuring the cohesive force of the crystalline polyester resin C after the coating film is formed, while improving the compatibility with the amorphous polyester resin A, and forming a state in which the crystal domains of the crystalline polyester resin C are finely dispersed in the printed coating film. Furthermore, since the NH group amount of the pigment as a colorant is 6.0 mmol/g or more, the ester group in the crystalline polyester resin C and the NH group contained in the pigment effectively interact with each other, and the recrystallization of the crystalline polyester resin C after the coating film is formed is promoted. As a result, it is believed that the cohesive force of the crystalline polyester resin C in the printed coating film is significantly improved, leading to an increase in the hardness of the printed coating film and an improvement in fastness.
 本明細書における各種用語の定義等を以下に示す。
 明細書中、ポリエステル系樹脂のカルボン酸成分には、その化合物のみならず、反応中に分解してカルボン酸を生成する無水物、及び各カルボン酸のアルキルエステル(アルキル基の炭素数1以上3以下)も含まれる。
 樹脂が結晶性であるか非晶性であるかについては、結晶性指数により判定される。結晶性指数は、後述する実施例に記載の測定方法における、樹脂の軟化点と吸熱の最大ピーク温度との比(軟化点(℃)/吸熱の最大ピーク温度(℃))で定義される。結晶性樹脂とは、結晶性指数が0.6以上1.4以下のものである。非晶性樹脂とは、吸熱ピークが観測されないか、観測される場合は、結晶性指数が0.6未満又は1.4超のものである。結晶性指数は、原料モノマーの種類及びその比率、並びに反応温度、反応時間、冷却速度等の製造条件により適宜調整することができる。
 炭化水素基に関して、「(イソ又はターシャリー)」及び「(イソ)」を括弧とする記載は、これらの接頭辞が存在する場合としない場合の双方を意味し、これらの接頭辞が存在しない場合には、ノルマルを示す。
 「(メタ)アクリル酸」は、アクリル酸及びメタクリル酸から選ばれる少なくとも1種を意味する。
 「スチレン系化合物」とは、無置換又は置換のスチレンを意味する。
The definitions of various terms used in this specification are given below.
In the specification, the carboxylic acid component of the polyester resin includes not only the compound itself but also anhydrides that decompose during the reaction to produce a carboxylic acid, and alkyl esters of each carboxylic acid (alkyl groups having 1 to 3 carbon atoms).
Whether a resin is crystalline or amorphous is determined by the crystallinity index. The crystallinity index is defined as the ratio of the softening point of the resin to the maximum endothermic peak temperature (softening point (°C)/maximum endothermic peak temperature (°C)) in the measurement method described in the examples below. A crystalline resin is one with a crystallinity index of 0.6 or more and 1.4 or less. A non-crystalline resin is one in which no endothermic peak is observed, or if an endothermic peak is observed, the crystallinity index is less than 0.6 or more than 1.4. The crystallinity index can be appropriately adjusted by the type and ratio of raw material monomers, as well as production conditions such as reaction temperature, reaction time, and cooling rate.
With respect to hydrocarbon groups, the references "(iso or tertiary)" and "(iso)" in parentheses refer to both the cases with and without the presence of these prefixes; the absence of these prefixes indicates normal.
The term "(meth)acrylic acid" refers to at least one selected from acrylic acid and methacrylic acid.
By "styrenic compound" is meant unsubstituted or substituted styrene.
〔トナー粒子〕
 本発明において、トナー粒子は、少なくとも、結晶性ポリエステル樹脂C(以下、単に「樹脂C」ともいう)、非晶性ポリエステル系樹脂A(以下、単に「樹脂A」ともいう)、及び着色剤を含有する。
[Toner Particles]
In the present invention, the toner particles contain at least a crystalline polyester resin C (hereinafter also simply referred to as "resin C"), an amorphous polyester resin A (hereinafter also simply referred to as "resin A"), and a colorant.
<結晶性ポリエステル樹脂C>
 樹脂Cは、トナーの結着樹脂として用いられ、トナーの低温定着性及び印刷塗膜の堅牢性の観点から、アルコール成分由来の構成単位として、エチレングリコールを含む脂肪族ジオール成分由来の構成単位を含み、カルボン酸成分由来の構成単位として、炭素数10以上14以下の脂肪族ジカルボン酸成分由来の構成単位を含む重縮合物であり、かつエステル基濃度が6.5mmol/g以上9.0mmol/g以下である。以下のアルコール成分及びカルボン酸成分は、1種を単独で又は2種以上を組み合わせて使用することができる。
<Crystalline Polyester Resin C>
Resin C is used as a binder resin for toner, and from the viewpoint of low-temperature fixability of the toner and robustness of the printed coating film, is a polycondensate containing, as a constituent unit derived from an aliphatic diol component containing ethylene glycol, a constituent unit derived from an aliphatic dicarboxylic acid component having from 10 to 14 carbon atoms, as a constituent unit derived from a carboxylic acid component, and having an ester group concentration of from 6.5 mmol/g to 9.0 mmol/g. The following alcohol components and carboxylic acid components may be used alone or in combination of two or more.
 脂肪族ジオール成分はエチレングリコールを含有し、エチレングリコール以外の脂肪族ジオールを含んでもよい。
 エチレングリコール以外の脂肪族ジオールとしては、例えば、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、2-ブテン-1,4-ジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、ネオペンチルグリコール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオール等が挙げられる。
The aliphatic diol component contains ethylene glycol, and may contain an aliphatic diol other than ethylene glycol.
Examples of aliphatic diols other than ethylene glycol include 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 2-butene-1,4-diol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, neopentyl glycol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, and 1,12-dodecanediol.
 脂肪族ジオール成分の量は、アルコール成分中、好ましくは80モル%以上、より好ましくは85モル%以上、更に好ましくは90モル%以上、更に好ましくは95モル%以上であり、そして100モル%以下であり、更に好ましくは100モル%である。
 なお、アルコール成分中の脂肪族ジオール成分の量は、アルコール成分由来の構成単位中の脂肪族ジオール成分由来の構成単位の含有量と同じである。以降の樹脂の各成分の量の説明も同様である。
The amount of the aliphatic diol component in the alcohol component is preferably 80 mol% or more, more preferably 85 mol% or more, even more preferably 90 mol% or more, even more preferably 95 mol% or more, and is 100 mol% or less, even more preferably 100 mol%.
The amount of the aliphatic diol component in the alcohol component is the same as the content of the structural units derived from the aliphatic diol component in the structural units derived from the alcohol component. The same applies to the following explanation of the amount of each component of the resin.
 脂肪族ジオール成分中のエチレングリコールの量は、好ましくは80モル%以上、より好ましくは85モル%以上、更に好ましくは90モル%以上、更に好ましくは95モル%以上であり、そして100モル%以下であり、好ましくは100モル%である。
 エチレングリコールの量は、アルコール成分中、好ましくは65モル%以上、より好ましくは85モル%以上、更に好ましくは90モル%以上、更に好ましくは95モル%以上であり、そして100モル%以下であり、好ましくは100モル%である。
The amount of ethylene glycol in the aliphatic diol component is preferably 80 mol% or more, more preferably 85 mol% or more, even more preferably 90 mol% or more, even more preferably 95 mol% or more, and is 100 mol% or less, preferably 100 mol%.
The amount of ethylene glycol in the alcohol component is preferably 65 mol% or more, more preferably 85 mol% or more, even more preferably 90 mol% or more, still more preferably 95 mol% or more, and is 100 mol% or less, preferably 100 mol%.
 アルコール成分は、脂肪族ジオール成分とは異なる他のアルコール成分を含有していてもよい。他のアルコール成分としては、例えば、ビスフェノールAのアルキレンオキシド付加物等の芳香族ジオールのアルキレンオキシド付加物;グリセリン、ペンタエリスリトール、トリメチロールプロパン等の3価以上のアルコールが挙げられる。 The alcohol component may contain other alcohol components different from the aliphatic diol component. Examples of other alcohol components include alkylene oxide adducts of aromatic diols, such as alkylene oxide adducts of bisphenol A; and trihydric or higher alcohols, such as glycerin, pentaerythritol, and trimethylolpropane.
 脂肪族ジカルボン酸の炭素数は、トナーの低温定着性及び印刷塗膜の堅牢性の観点から、14以下であり、そして、同様の観点から、10以上であり、好ましくは12以上である。脂肪族ジカルボン酸は、α、ω-直鎖脂肪族ジカルボン酸であることが好ましい。
 炭素数10以上14以下の脂肪族ジカルボン酸の具体例としては、セバシン酸、1,11-ウンデカン二酸、1,12-ドデカン二酸、1,13-トリデカン二酸及び1,14-テトラデカン二酸から選ばれる1種以上が好ましく、中でもトナーの低温定着性及び印刷塗膜の堅牢性の観点から、セバシン酸、1,12-ドデカン二酸及び1,14-テトラデカン二酸から選ばれる1種以上がより好ましく、1,12-ドデカン二酸及び1,14-テトラデカン二酸から選ばれる1種以上が更に好ましい。
 炭素数10以上14以下の脂肪族ジカルボン酸の量は、カルボン酸成分中、好ましくは70モル%以上、より好ましくは75モル%以上、更に好ましくは80モル%以上、更に好ましくは85モル%以上であり、そして、100モル%以下であり、好ましくは95モル%以下である。
The number of carbon atoms of the aliphatic dicarboxylic acid is 14 or less from the viewpoint of low-temperature fixing property of the toner and fastness of the printed coating film, and from the same viewpoint, is 10 or more, preferably 12 or more. The aliphatic dicarboxylic acid is preferably an α,ω-straight-chain aliphatic dicarboxylic acid.
Specific examples of aliphatic dicarboxylic acids having 10 to 14 carbon atoms include one or more selected from sebacic acid, 1,11-undecanedioic acid, 1,12-dodecanedioic acid, 1,13-tridecanedioic acid, and 1,14-tetradecanedioic acid. Among these, from the viewpoints of the low-temperature fixing property of the toner and the fastness of the printed coating film, one or more selected from sebacic acid, 1,12-dodecanedioic acid, and 1,14-tetradecanedioic acid are more preferred, and one or more selected from 1,12-dodecanedioic acid and 1,14-tetradecanedioic acid are even more preferred.
The amount of the aliphatic dicarboxylic acid having 10 or more and 14 or less carbon atoms in the carboxylic acid component is preferably 70 mol % or more, more preferably 75 mol % or more, even more preferably 80 mol % or more, and even more preferably 85 mol % or more, and is 100 mol % or less, preferably 95 mol % or less.
 カルボン酸成分は、トナーの低温定着性及び印刷塗膜の堅牢性の観点から、炭素数6以上24以下のモノカルボン酸成分を含むことが好ましい。モノカルボン酸成分の炭素数は、同様の観点から、6以上であり、好ましくは8以上、より好ましくは12以上、更に好ましくは14以上、より更に好ましくは16以上であり、そして、24以下であり、好ましくは22以下、より好ましくは20以下である。
 炭素数6以上24以下のモノカルボン酸としては、カプリル酸、ペラルゴン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラキジン酸、ベヘン酸、リグノセリン酸等が挙げられる。これらの中でも、好ましくはカプリル酸、ラウリン酸、ステアリン酸、ベヘン酸であり、低温定着性及び堅牢性の高い印刷塗膜を得る観点から、より好ましくはステアリン酸、ベヘン酸であり、更に好ましくはステアリン酸である。
 炭素数6以上24以下のモノカルボン酸の量は、カルボン酸成分中、好ましくは1モル%以上、より好ましくは5モル%以上、更に好ましくは7モル%以上であり、そして、好ましくは35モル%以下、より好ましくは30モル%以下、更に好ましくは20モル%以下、更に好ましくは15モル%以下である。
 カルボン酸成分は、炭素数10以上14以下の脂肪族ジカルボン酸及び炭素数6以上24以下のモノカルボン酸とは異なる他のカルボン酸成分を含有していてもよい。他のカルボン酸成分としては、例えば、テレフタル酸、イソフタル酸等の芳香族ジカルボン酸;トリメリット酸等の3価以上の多価カルボン酸が挙げられる。
From the viewpoints of low-temperature fixability of the toner and fastness of the printed coating film, the carboxylic acid component preferably contains a monocarboxylic acid component having a carbon number of 6 to 24. From the same viewpoints, the carbon number of the monocarboxylic acid component is 6 or more, preferably 8 or more, more preferably 12 or more, even more preferably 14 or more, still more preferably 16 or more, and is 24 or less, preferably 22 or less, more preferably 20 or less.
Examples of monocarboxylic acids having 6 to 24 carbon atoms include caprylic acid, pelargonic acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, lignoceric acid, etc. Among these, preferred are caprylic acid, lauric acid, stearic acid, and behenic acid, and from the viewpoint of obtaining a printing coating film having high low-temperature fixability and fastness, more preferred are stearic acid and behenic acid, and even more preferred is stearic acid.
The amount of monocarboxylic acid having 6 to 24 carbon atoms in the carboxylic acid component is preferably 1 mol % or more, more preferably 5 mol % or more, even more preferably 7 mol % or more, and is preferably 35 mol % or less, more preferably 30 mol % or less, even more preferably 20 mol % or less, even more preferably 15 mol % or less.
The carboxylic acid component may contain another carboxylic acid component other than the aliphatic dicarboxylic acid having from 10 to 14 carbon atoms and the monocarboxylic acid having from 6 to 24 carbon atoms. Examples of the other carboxylic acid component include aromatic dicarboxylic acids such as terephthalic acid and isophthalic acid; and trivalent or higher polyvalent carboxylic acids such as trimellitic acid.
 アルコール成分の水酸基に対するカルボン酸成分のカルボキシ基の当量比〔COOH基/OH基〕は、好ましくは0.7以上、より好ましくは0.8以上であり、そして、好ましくは1.3以下、より好ましくは1.2以下である。 The equivalent ratio of the carboxyl groups of the carboxylic acid component to the hydroxyl groups of the alcohol component [COOH groups/OH groups] is preferably 0.7 or more, more preferably 0.8 or more, and is preferably 1.3 or less, more preferably 1.2 or less.
 樹脂Cは、トナーの低温定着性及び印刷塗膜の堅牢性の観点から、エステル基濃度が6.5mmol/g以上9.0mmol/g以下であり、好ましくは6.7mmol/g以上であり、そして、好ましくは8.8mmol/g以下、より好ましくは8.6mmol/g以下である。樹脂Cのエステル基濃度は、次の式により算出される。 From the viewpoint of the low-temperature fixing property of the toner and the robustness of the printed coating film, the ester group concentration of resin C is 6.5 mmol/g or more and 9.0 mmol/g or less, preferably 6.7 mmol/g or more, and preferably 8.8 mmol/g or less, more preferably 8.6 mmol/g or less. The ester group concentration of resin C is calculated by the following formula.
Figure JPOXMLDOC01-appb-M000001

〔式中、Aは結晶性ポリエステル樹脂Cの原料モノマーがすべて反応した際に生成する全エステル結合量(mol)であり、Bは、結晶性ポリエステル樹脂Cを構成する原料モノマーの全質量(g)である。なお、式中の( )内は、各数値の単位を意味する。〕
 なお、結晶性ポリエステル樹脂Cとして、2種以上の樹脂を混合して使用する場合には、結晶性ポリエステル樹脂Cのエステル基濃度の加重平均を結晶性ポリエステル樹脂Cのエステル基濃度とする。また、結晶性ポリエステル樹脂Cが、複合樹脂である場合、Bは、ポリエステル樹脂由来の構成部分(ポリエステル樹脂セグメント)の原料モノマーの全質量(g)とする。
Figure JPOXMLDOC01-appb-M000001

(In the formula, A is the total amount (mol) of ester bonds produced when all the raw material monomers of the crystalline polyester resin C are reacted, and B is the total mass (g) of the raw material monomers constituting the crystalline polyester resin C. The numbers in parentheses in the formula indicate the units of each value.)
When two or more resins are mixed and used as the crystalline polyester resin C, the weighted average of the ester group concentrations of the crystalline polyester resin C is defined as the ester group concentration of the crystalline polyester resin C. When the crystalline polyester resin C is a composite resin, B is defined as the total mass (g) of the raw material monomers of the constituent portion derived from the polyester resin (polyester resin segment).
(結晶性ポリエステル樹脂Cの製造方法)
 樹脂Cは、例えば、アルコール成分及びカルボン酸成分を含む原料モノマーを重縮合することにより製造することができる。
(Method for producing crystalline polyester resin C)
Resin C can be produced, for example, by polycondensing raw material monomers containing an alcohol component and a carboxylic acid component.
 アルコール成分及びカルボン酸成分の重縮合は、例えば、不活性ガス雰囲気中にて、必要に応じて、エステル化触媒、エステル化助触媒、重合禁止剤等の存在下、120℃以上250℃以下程度の温度で行うことができる。
 エステル化触媒としては、例えば、酸化ジブチル錫、ジ(2-エチルヘキサン酸)錫(II)等の錫化合物、チタニウムジイソプロポキシビス(トリエタノールアミネート)等のチタン化合物が挙げられる。エステル化触媒と共に用い得るエステル化助触媒としては、例えば、没食子酸(3,4,5-トリヒドロキシ安息香酸)が挙げられる。
 エステル化触媒の使用量は、樹脂Cの原料モノマーであるアルコール成分、及びカルボン酸成分の総量100質量部に対して、好ましくは0.01質量部以上10質量部以下である。
 エステル化助触媒の使用量は、アルコール成分、及びカルボン酸成分の総量100質量部に対して、好ましくは0.001質量部以上1質量部以下である。
 また、重合禁止剤としては、例えば、4-tert-ブチルカテコール等のラジカル重合禁止剤が挙げられる。
 重合禁止剤を用いる場合、重合禁止剤の使用量はアルコール成分、及びカルボン酸成分の総量100質量部に対して、好ましくは0.01質量部以上1質量部以下である。
The polycondensation of the alcohol component and the carboxylic acid component can be carried out, for example, in an inert gas atmosphere, in the presence of an esterification catalyst, an esterification promoter, a polymerization inhibitor, etc., as necessary, at a temperature of about 120° C. or higher and 250° C. or lower.
Examples of the esterification catalyst include tin compounds such as dibutyltin oxide and tin(II) di(2-ethylhexanoate), and titanium compounds such as titanium diisopropoxybis(triethanolaminate). Examples of the esterification promoter that can be used together with the esterification catalyst include gallic acid (3,4,5-trihydroxybenzoic acid).
The amount of the esterification catalyst used is preferably 0.01 parts by mass or more and 10 parts by mass or less relative to 100 parts by mass in total of the alcohol component and the carboxylic acid component which are raw material monomers for the resin C.
The amount of the esterification promoter used is preferably 0.001 part by mass or more and 1 part by mass or less per 100 parts by mass of the total amount of the alcohol component and the carboxylic acid component.
Furthermore, examples of the polymerization inhibitor include radical polymerization inhibitors such as 4-tert-butylcatechol.
When a polymerization inhibitor is used, the amount of the polymerization inhibitor used is preferably 0.01 part by mass or more and 1 part by mass or less per 100 parts by mass of the total amount of the alcohol component and the carboxylic acid component.
(結晶性ポリエステル樹脂Cの物性)
 樹脂Cの軟化点は、好ましくは60℃以上、より好ましくは65℃以上、更に好ましくは70℃以上であり、そして、低温定着性をより向上させる観点から、好ましくは150℃以下、より好ましくは120℃以下、更に好ましくは100℃以下である。
 樹脂Cの融点は、好ましくは50℃以上、より好ましくは60℃以上、更に好ましくは70℃以上であり、そして、低温定着性をより向上させる観点から、好ましくは100℃以下、より好ましくは95℃以下、更に好ましくは90℃以下である。
(Physical Properties of Crystalline Polyester Resin C)
The softening point of Resin C is preferably 60° C. or higher, more preferably 65° C. or higher, and even more preferably 70° C. or higher, and from the viewpoint of further improving low-temperature fixability, it is preferably 150° C. or lower, more preferably 120° C. or lower, and even more preferably 100° C. or lower.
The melting point of resin C is preferably 50° C. or higher, more preferably 60° C. or higher, and even more preferably 70° C. or higher, and from the viewpoint of further improving low-temperature fixability, it is preferably 100° C. or lower, more preferably 95° C. or lower, and even more preferably 90° C. or lower.
 樹脂Cの酸価は、好ましくは2mgKOH/g以上、より好ましくは4mgKOH/g以上であり、そして、好ましくは20mgKOH/g以下、より好ましくは15mgKOH/g以下、更に好ましくは10mgKOH/g以下である。 The acid value of resin C is preferably 2 mgKOH/g or more, more preferably 4 mgKOH/g or more, and preferably 20 mgKOH/g or less, more preferably 15 mgKOH/g or less, and even more preferably 10 mgKOH/g or less.
 樹脂Cの溶解度パラメータ(SPC)は、好ましくは8.70(cal/cm1/2以上、より好ましくは9.00(cal/cm1/2以上、更に好ましくは9.50(cal/cm1/2以上であり、そして、好ましくは11.00(cal/cm1/2以下、より好ましくは10.50(cal/cm1/2以下、更に好ましくは10.20(cal/cm1/2以下である。SPCは、Fedors法により算出される値とする。 The solubility parameter (SP C ) of resin C is preferably 8.70 (cal/cm 3 ) 1/2 or more, more preferably 9.00 (cal/cm 3 ) 1/2 or more, even more preferably 9.50 (cal/cm 3 ) 1/2 or more, and preferably 11.00 (cal/cm 3 ) 1/2 or less, more preferably 10.50 (cal/cm 3 ) 1/2 or less, even more preferably 10.20 (cal/cm 3 ) 1/2 or less. SP C is a value calculated by the Fedors method.
 樹脂Cのエステル基濃度、軟化点、融点、酸価及び溶解度パラメータは、原料モノマーの種類及びその使用量、並びに反応温度、反応時間、冷却速度等の製造条件により適宜調整することができ、軟化点、融点及び酸価は、後述の実施例に記載の方法により求められる。なお、樹脂Cを2種以上組み合わせて使用する場合は、それらの混合物として得られたエステル基濃度、軟化点、融点、酸価及び溶解度パラメータの値がそれぞれ前記範囲内であることが好ましい。 The ester group concentration, softening point, melting point, acid value and solubility parameter of resin C can be adjusted as appropriate by the type and amount of raw material monomer used, as well as production conditions such as reaction temperature, reaction time and cooling rate, and the softening point, melting point and acid value are determined by the method described in the Examples below. When two or more types of resin C are used in combination, it is preferable that the ester group concentration, softening point, melting point, acid value and solubility parameter values obtained as a mixture of these are each within the above-mentioned ranges.
 トナー粒子中、樹脂Cの含有量に対する、後述する非晶性ポリエステル系樹脂(樹脂A)の含有量の質量比[樹脂A/樹脂C]は、トナーの低温定着性及び印刷塗膜の堅牢性の観点から、好ましくは55/45以上、より好ましくは60/40以上、更に好ましくは65/35以上であり、そして、好ましくは90/10以下、より好ましくは85/15以下、更に好ましくは78/22以下である。
 トナー粒子中の結晶性ポリエステル樹脂Cの含有量は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上であり、そして、好ましくは40質量%以下、より好ましくは35質量%以下、更に好ましくは30質量%以下である。
In the toner particles, the mass ratio of the content of an amorphous polyester resin (resin A) described below to the content of resin C [resin A/resin C] is, from the viewpoint of the low-temperature fixability of the toner and the robustness of the printed coating film, preferably 55/45 or more, more preferably 60/40 or more, even more preferably 65/35 or more, and is preferably 90/10 or less, more preferably 85/15 or less, even more preferably 78/22 or less.
The content of crystalline polyester resin C in the toner particles is preferably 5% by mass or more, more preferably 10% by mass or more, even more preferably 15% by mass or more, and is preferably 40% by mass or less, more preferably 35% by mass or less, even more preferably 30% by mass or less.
<非晶性ポリエステル系樹脂A>
 本発明のトナーは、非晶性ポリエステル系樹脂Aを含有する。樹脂Aは、トナーの結着樹脂として用いられ、例えば、アルコール成分とカルボン酸成分との重縮合物を含む非晶性ポリエステル系樹脂である。
 樹脂Aとしては、例えば、ポリエステル樹脂、変性されたポリエステル系樹脂が挙げられる。変性されたポリエステル系樹脂としては、例えば、ポリエステル樹脂のウレタン変性物、ポリエステル樹脂のエポキシ変性物、ポリエステル樹脂セグメントと付加重合樹脂セグメントとを含む複合樹脂が挙げられる。これらの中でも、樹脂Aは、好ましくはポリエステル樹脂及び複合樹脂であり、より好ましくは複合樹脂である。
<Amorphous polyester resin A>
The toner of the present invention contains an amorphous polyester resin A. Resin A is used as a binder resin for the toner, and is, for example, an amorphous polyester resin containing a polycondensate of an alcohol component and a carboxylic acid component.
Examples of the resin A include polyester resins and modified polyester resins. Examples of the modified polyester resins include urethane modified polyester resins, epoxy modified polyester resins, and composite resins containing polyester resin segments and addition polymerization resin segments. Among these, the resin A is preferably a polyester resin or a composite resin, and more preferably a composite resin.
 樹脂Aのアルコール成分としては、例えば、芳香族ジオールのアルキレンオキシド付加物、直鎖又は分岐の脂肪族ジオール、脂環式ジオール、3価以上の多価アルコールが挙げられる。これらの中でも、低温定着性に優れるトナーを得る観点から、芳香族ジオールのアルキレンオキシド付加物、直鎖又は分岐の脂肪族ジオールが好ましく、印刷塗膜の堅牢性の観点から、芳香族ジオールのアルキレンオキシド付加物がより好ましい。
 芳香族ジオールのアルキレンオキシド付加物は、好ましくはビスフェノールAのアルキレンオキシド付加物であり、より好ましくは式(I):
Examples of the alcohol component of the resin A include alkylene oxide adducts of aromatic diols, linear or branched aliphatic diols, alicyclic diols, and trivalent or higher polyhydric alcohols. Among these, from the viewpoint of obtaining a toner having excellent low-temperature fixing properties, alkylene oxide adducts of aromatic diols and linear or branched aliphatic diols are preferred, and from the viewpoint of fastness of the printed coating film, alkylene oxide adducts of aromatic diols are more preferred.
The alkylene oxide adduct of an aromatic diol is preferably an alkylene oxide adduct of bisphenol A, more preferably represented by formula (I):
Figure JPOXMLDOC01-appb-C000002

(式中、OR及びROはオキシアルキレン基であり、R及びRはそれぞれ独立にエチレン基又はプロピレン基であり、x及びyはアルキレンオキシドの平均付加モル数を示し、それぞれ正の数であり、xとyの和の値は、1以上、好ましくは1.5以上であり、16以下、好ましくは8以下、より好ましくは4以下である)で表される2,2-ビス(4-ヒドロキシフェニル)プロパンのアルキレンオキシド付加物である。
Figure JPOXMLDOC01-appb-C000002

(wherein OR 1 and R 2 O are oxyalkylene groups, R 1 and R 2 each independently represent an ethylene group or a propylene group, x and y each represent the average number of moles of alkylene oxide added and are each a positive number, and the sum of x and y is 1 or more, preferably 1.5 or more, and 16 or less, preferably 8 or less, and more preferably 4 or less).
 式(I)で表されるビスフェノールAのアルキレンオキシド付加物としては、例えば、ビスフェノールAのプロピレンオキシド付加物、ビスフェノールAのエチレンオキシド付加物等が挙げられる。これらの中でも、少なくともビスフェノールAのプロピレンオキシド付加物を含有することが好ましい。
 ビスフェノールAのアルキレンオキシド付加物を含む場合、その量は、アルコール成分中、好ましくは80モル%以上、より好ましくは90モル%以上であり、そして、100モル%以下であり、更に好ましくは100モル%である。
Examples of the alkylene oxide adduct of bisphenol A represented by formula (I) include a propylene oxide adduct of bisphenol A and an ethylene oxide adduct of bisphenol A. Among these, it is preferable to contain at least a propylene oxide adduct of bisphenol A.
When an alkylene oxide adduct of bisphenol A is contained, the amount thereof in the alcohol component is preferably 80 mol % or more, more preferably 90 mol % or more, and 100 mol % or less, and even more preferably 100 mol %.
 直鎖又は分岐の脂肪族ジオールとしては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、ネオペンチルグリコール(2,2-ジメチル-1,3-プロパンジオール)、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-ドデカンジオールが挙げられる。
 アルコール成分として、直鎖又は分岐の脂肪族ジオールを使用する場合、その量は、アルコール成分中、好ましくは80モル%以上、より好ましくは90モル%以上であり、そして、100モル%以下であり、更に好ましくは100モル%である。
 直鎖又は分岐の脂肪族ジオール中、ネオペンチルグリコールの量は、好ましくは65モル%以上、より好ましくは85モル%以上、更に好ましくは90モル%以上、更に好ましくは95モル%以上であり、そして100モル%以下であり、好ましくは100モル%である。
Examples of linear or branched aliphatic diols include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, neopentyl glycol (2,2-dimethyl-1,3-propanediol), 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, and 1,12-dodecanediol.
When a linear or branched aliphatic diol is used as the alcohol component, the amount thereof in the alcohol component is preferably 80 mol % or more, more preferably 90 mol % or more, and 100 mol % or less, and even more preferably 100 mol %.
In the linear or branched aliphatic diol, the amount of neopentyl glycol is preferably 65 mol% or more, more preferably 85 mol% or more, even more preferably 90 mol% or more, even more preferably 95 mol% or more, and is 100 mol% or less, preferably 100 mol%.
 脂環式ジオールとしては、例えば、水素添加ビスフェノールA〔2,2-ビス(4-ヒドロキシシクロヘキシル)プロパン〕、水素添加ビスフェノールAの炭素数2以上4以下のアルキレンオキシド(平均付加モル数2以上12以下)付加物が挙げられる。
 3価以上の多価アルコールとしては、例えば、グリセリン、ペンタエリスリトール、トリメチロールプロパン、ソルビトールが挙げられる。
 これらのアルコール成分は、1種又は2種以上を用いてもよい。
Examples of the alicyclic diol include hydrogenated bisphenol A [2,2-bis(4-hydroxycyclohexyl)propane] and adducts of hydrogenated bisphenol A with alkylene oxides having 2 to 4 carbon atoms (average number of moles added: 2 to 12).
Examples of trihydric or higher polyhydric alcohols include glycerin, pentaerythritol, trimethylolpropane, and sorbitol.
These alcohol components may be used alone or in combination of two or more.
 樹脂Aのカルボン酸成分としては、例えば、ジカルボン酸、3価以上の多価カルボン酸が挙げられる。
 ジカルボン酸としては、例えば、芳香族ジカルボン酸、直鎖又は分岐の脂肪族ジカルボン酸、脂環式ジカルボン酸が挙げられる。これらの中でも、芳香族ジカルボン酸、及び、直鎖又は分岐の脂肪族ジカルボン酸から選ばれる少なくとも1種が好ましい。
 芳香族ジカルボン酸としては、例えば、フタル酸、イソフタル酸、テレフタル酸が挙げられる。これらの中でも、イソフタル酸、テレフタル酸が好ましく、テレフタル酸がより好ましい。
 芳香族ジカルボン酸の量は、カルボン酸成分中、好ましくは20モル%以上、より好ましくは30モル%以上、更に好ましくは40モル%以上であり、そして、100モル%以下であり、好ましくは85モル%以下、より好ましくは80モル%以下、更に好ましくは75モル%以下である。
Examples of the carboxylic acid component of the resin A include dicarboxylic acids and polycarboxylic acids having three or more carboxylic acids.
Examples of the dicarboxylic acid include aromatic dicarboxylic acids, linear or branched aliphatic dicarboxylic acids, and alicyclic dicarboxylic acids. Among these, at least one selected from aromatic dicarboxylic acids and linear or branched aliphatic dicarboxylic acids is preferred.
Examples of aromatic dicarboxylic acids include phthalic acid, isophthalic acid, and terephthalic acid. Among these, isophthalic acid and terephthalic acid are preferred, and terephthalic acid is more preferred.
The amount of aromatic dicarboxylic acid in the carboxylic acid component is preferably 20 mol% or more, more preferably 30 mol% or more, even more preferably 40 mol% or more, and is 100 mol% or less, preferably 85 mol% or less, more preferably 80 mol% or less, even more preferably 75 mol% or less.
 直鎖又は分岐の脂肪族ジカルボン酸の炭素数は、好ましくは2以上、より好ましくは3以上であり、そして、好ましくは30以下、より好ましくは20以下である。
 直鎖又は分岐の脂肪族ジカルボン酸としては、例えば、シュウ酸、マロン酸、マレイン酸、フマル酸、シトラコン酸、イタコン酸、グルタコン酸、コハク酸、アジピン酸、セバシン酸、ドデカン二酸、アゼライン酸、炭素数1以上20以下の脂肪族炭化水素基で置換されたコハク酸が挙げられる。炭素数1以上20以下の脂肪族炭化水素基で置換されたコハク酸としては、例えば、ドデシルコハク酸、ドデセニルコハク酸又はその無水物、オクテニルコハク酸が挙げられる。これらの中でも、フマル酸、セバシン酸、アジピン酸、炭素数1以上20以下の脂肪族炭化水素基で置換されたコハク酸が好ましい。
 直鎖又は分岐の脂肪族ジカルボン酸を含む場合、その量は、カルボン酸成分中、好ましくは5モル%以上、より好ましくは10モル%以上、更に好ましくは15モル%以上であり、そして、好ましくは50モル%以下、より好ましくは45モル%以下、更に好ましくは40モル%以下である。
 脂環式ジカルボン酸としては、例えば、シクロヘキサンジカルボン酸が挙げられる。
The linear or branched aliphatic dicarboxylic acid preferably has 2 or more carbon atoms, more preferably 3 or more carbon atoms, and preferably has 30 or less, more preferably 20 or less carbon atoms.
Examples of linear or branched aliphatic dicarboxylic acids include oxalic acid, malonic acid, maleic acid, fumaric acid, citraconic acid, itaconic acid, glutaconic acid, succinic acid, adipic acid, sebacic acid, dodecanedioic acid, azelaic acid, and succinic acid substituted with an aliphatic hydrocarbon group having 1 to 20 carbon atoms. Examples of succinic acid substituted with an aliphatic hydrocarbon group having 1 to 20 carbon atoms include dodecylsuccinic acid, dodecenylsuccinic acid or its anhydride, and octenylsuccinic acid. Among these, fumaric acid, sebacic acid, adipic acid, and succinic acid substituted with an aliphatic hydrocarbon group having 1 to 20 carbon atoms are preferred.
When a linear or branched aliphatic dicarboxylic acid is contained, the amount thereof in the carboxylic acid component is preferably 5 mol % or more, more preferably 10 mol % or more, even more preferably 15 mol % or more, and is preferably 50 mol % or less, more preferably 45 mol % or less, even more preferably 40 mol % or less.
An example of the alicyclic dicarboxylic acid is cyclohexanedicarboxylic acid.
 3価以上の多価カルボン酸としては、好ましくは3価のカルボン酸であり、例えばトリメリット酸又はその無水物が挙げられる。
 3価以上の多価カルボン酸を含む場合、3価以上の多価カルボン酸の量は、カルボン酸成分中、好ましくは3モル%以上、より好ましくは6モル%以上、更に好ましくは9モル%以上であり、そして、好ましくは25モル%以下、より好ましくは20モル%以下、更に好ましくは15モル%以下である。
 これらのカルボン酸成分は、1種又は2種以上を用いてもよい。
The trivalent or higher polyvalent carboxylic acid is preferably a trivalent carboxylic acid, such as trimellitic acid or its anhydride.
When a trivalent or higher polycarboxylic acid is contained, the amount of the trivalent or higher polycarboxylic acid in the carboxylic acid component is preferably 3 mol % or more, more preferably 6 mol % or more, even more preferably 9 mol % or more, and is preferably 25 mol % or less, more preferably 20 mol % or less, even more preferably 15 mol % or less.
These carboxylic acid components may be used alone or in combination of two or more.
 アルコール成分の水酸基に対するカルボン酸成分のカルボキシ基の当量比〔COOH基/OH基〕は、好ましくは0.7以上、より好ましくは0.8以上であり、そして、好ましくは1.3以下、より好ましくは1.2以下である。 The equivalent ratio of the carboxyl groups of the carboxylic acid component to the hydroxyl groups of the alcohol component [COOH groups/OH groups] is preferably 0.7 or more, more preferably 0.8 or more, and is preferably 1.3 or less, more preferably 1.2 or less.
 樹脂Aが複合樹脂である場合、付加重合樹脂セグメントとしては、例えば、スチレン系化合物を含む原料モノマーの付加重合物が挙げられる。
 スチレン系化合物としては、例えば、無置換又は置換スチレンが挙げられる。スチレンに置換される置換基としては、例えば、炭素数1以上5以下のアルキル基、ハロゲン原子、炭素数1以上5以下のアルコキシ基、スルホン酸基又はその塩が挙げられる。
 スチレン系化合物としては、例えば、スチレン、メチルスチレン、α-メチルスチレン、β-メチルスチレン、tert-ブチルスチレン、クロロスチレン、クロロメチルスチレン、メトキシスチレン、スチレンスルホン酸又はその塩が挙げられる。これらの中でも、スチレンが好ましい。
 付加重合樹脂セグメントの原料モノマー中、スチレン系化合物の含有量は、好ましくは50質量%以上、より好ましくは65質量%以上、更に好ましくは75質量%以上であり、そして、100質量%以下であり、好ましくは95質量%以下、より好ましくは90質量%以下、更に好ましくは85質量%以下である。
When the resin A is a composite resin, an example of the addition polymerized resin segment is an addition polymer of raw material monomers containing a styrene-based compound.
Examples of the styrene-based compound include unsubstituted or substituted styrene. Examples of the substituent substituted on the styrene include an alkyl group having 1 to 5 carbon atoms, a halogen atom, an alkoxy group having 1 to 5 carbon atoms, a sulfonic acid group, or a salt thereof.
Examples of styrene-based compounds include styrene, methylstyrene, α-methylstyrene, β-methylstyrene, tert-butylstyrene, chlorostyrene, chloromethylstyrene, methoxystyrene, styrenesulfonic acid, and salts thereof. Among these, styrene is preferred.
In the raw material monomers for the addition polymerization resin segment, the content of the styrene-based compound is preferably 50% by mass or more, more preferably 65% by mass or more, even more preferably 75% by mass or more, and is 100% by mass or less, preferably 95% by mass or less, more preferably 90% by mass or less, even more preferably 85% by mass or less.
 スチレン系化合物以外の原料モノマーとしては、例えば、(メタ)アクリル酸アルキル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ジメチルアミノエチル等の(メタ)アクリル酸エステル;エチレン、プロピレン、ブタジエン等のオレフィン類;塩化ビニル等のハロビニル類;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;メチルビニルエーテル等のビニルエーテル類;ビニリデンクロリド等のハロゲン化ビニリデン;N-ビニルピロリドン等のN-ビニル化合物が挙げられる。これらの中でも、(メタ)アクリル酸エステルが好ましく、(メタ)アクリル酸アルキルがより好ましい。
 (メタ)アクリル酸アルキルにおけるアルキル基の炭素数は、好ましくは1以上、より好ましくは4以上、更に好ましくは6以上であり、そして、好ましくは24以下、より好ましくは22以下、更に好ましくは20以下である。
 (メタ)アクリル酸アルキルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸(イソ)プロピル、(メタ)アクリル酸(イソ又はターシャリー)ブチル、(メタ)アクリル酸(イソ)アミル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸(イソ)オクチル、(メタ)アクリル酸(イソ)デシル、(メタ)アクリル酸(イソ)ドデシル、(メタ)アクリル酸(イソ)パルミチル、(メタ)アクリル酸(イソ)ステアリル、(メタ)アクリル酸(イソ)ベヘニル等が挙げられ、好ましくは(メタ)アクリル酸2-エチルヘキシル又は(メタ)アクリル酸ステアリル、より好ましくは(メタ)アクリル酸ステアリル、更に好ましくはメタクリル酸ステアリルである。
Examples of raw material monomers other than styrene-based compounds include (meth)acrylic acid esters such as alkyl (meth)acrylate, benzyl (meth)acrylate, and dimethylaminoethyl (meth)acrylate; olefins such as ethylene, propylene, and butadiene; halovinyls such as vinyl chloride; vinyl esters such as vinyl acetate and vinyl propionate; vinyl ethers such as methyl vinyl ether; vinylidene halides such as vinylidene chloride; and N-vinyl compounds such as N-vinylpyrrolidone. Among these, (meth)acrylic acid esters are preferred, and alkyl (meth)acrylates are more preferred.
The number of carbon atoms in the alkyl group in the alkyl (meth)acrylate is preferably 1 or more, more preferably 4 or more, even more preferably 6 or more, and is preferably 24 or less, more preferably 22 or less, even more preferably 20 or less.
Examples of the alkyl (meth)acrylate include methyl (meth)acrylate, ethyl (meth)acrylate, (iso)propyl (meth)acrylate, (iso or tertiary)butyl (meth)acrylate, (iso)amyl (meth)acrylate, cyclohexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, (iso)octyl (meth)acrylate, (iso)decyl (meth)acrylate, (iso)dodecyl (meth)acrylate, (iso)palmityl (meth)acrylate, (iso)stearyl (meth)acrylate, and (iso)behenyl (meth)acrylate. Of these, 2-ethylhexyl (meth)acrylate or stearyl (meth)acrylate is preferred, stearyl (meth)acrylate is more preferred, and stearyl methacrylate is even more preferred.
 付加重合樹脂セグメント中に(メタ)アクリル酸エステル由来の構成単位を含む場合、付加重合樹脂セグメントの原料モノマー中、(メタ)アクリル酸エステルの含有量は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上であり、そして、好ましくは50質量%以下、より好ましくは35質量%以下、更に好ましくは25質量%以下である。 When the addition polymerization resin segment contains a constituent unit derived from a (meth)acrylic acid ester, the content of the (meth)acrylic acid ester in the raw material monomer of the addition polymerization resin segment is preferably 5 mass% or more, more preferably 10 mass% or more, even more preferably 15 mass% or more, and preferably 50 mass% or less, more preferably 35 mass% or less, even more preferably 25 mass% or less.
 付加重合樹脂セグメントの原料モノマー中における、スチレン系化合物と(メタ)アクリル酸エステルとの総量は、好ましくは80質量%以上、より好ましくは90質量%以上、更に好ましくは95質量%以上、更に好ましくは100質量%である。 The total amount of styrene-based compounds and (meth)acrylic acid esters in the raw material monomers of the addition polymerization resin segment is preferably 80% by mass or more, more preferably 90% by mass or more, even more preferably 95% by mass or more, and even more preferably 100% by mass.
 複合樹脂は、好ましくは、ポリエステル樹脂セグメント及び付加重合樹脂セグメントと共有結合を介して結合した両反応性モノマー由来の構成単位を有する。
 「両反応性モノマー由来の構成単位」とは、両反応性モノマーの官能基、付加重合性基が反応した単位を意味する。
 付加重合性基としては、例えば、炭素-炭素不飽和結合(エチレン性不飽和結合)が挙げられる。
 両反応性モノマーとしては、例えば、分子内に、水酸基、カルボキシ基、エポキシ基、第1級アミノ基及び第2級アミノ基から選ばれる少なくとも1種の官能基を有する付加重合性モノマーが挙げられる。これらの中でも、反応性の観点から、水酸基及びカルボキシ基から選ばれる少なくとも1種の官能基を有する付加重合性モノマーが好ましく、カルボキシ基を有する付加重合性モノマーがより好ましい。
 カルボキシ基を有する付加重合性モノマーとしては、例えば、アクリル酸、メタクリル酸、フマル酸、マレイン酸が挙げられる。これらの中でも、重縮合反応と付加重合反応の双方の反応性の観点から、アクリル酸、メタクリル酸が好ましく、アクリル酸がより好ましい。
 両反応性モノマーがカルボキシ基を有する付加重合性モノマーである場合、両反応性モノマー由来の構成単位の量は、複合樹脂のポリエステル樹脂セグメントのアルコール成分100モル部に対して、好ましくは1モル部以上、より好ましくは5モル部以上、更に好ましくは8モル部以上であり、そして、好ましくは30モル部以下、より好ましくは25モル部以下、更に好ましくは20モル部以下である。
The composite resin preferably has a constitutional unit derived from a bireactive monomer bonded via a covalent bond to a polyester resin segment and an addition polymerization resin segment.
The term "structural unit derived from a bireactive monomer" refers to a unit formed by reaction of a functional group and an addition polymerizable group of a bireactive monomer.
An example of the addition polymerizable group is a carbon-carbon unsaturated bond (ethylenically unsaturated bond).
Examples of the bireactive monomer include addition polymerizable monomers having at least one functional group selected from a hydroxyl group, a carboxyl group, an epoxy group, a primary amino group, and a secondary amino group in the molecule. Among these, from the viewpoint of reactivity, addition polymerizable monomers having at least one functional group selected from a hydroxyl group and a carboxyl group are preferred, and addition polymerizable monomers having a carboxyl group are more preferred.
Examples of the addition polymerizable monomer having a carboxy group include acrylic acid, methacrylic acid, fumaric acid, and maleic acid. Among these, from the viewpoint of reactivity in both the polycondensation reaction and the addition polymerization reaction, acrylic acid and methacrylic acid are preferred, and acrylic acid is more preferred.
When the dual-reactive monomer is an addition-polymerizable monomer having a carboxy group, the amount of the constitutional unit derived from the dual-reactive monomer is preferably 1 part by mol or more, more preferably 5 parts by mol or more, even more preferably 8 parts by mol or more, and preferably 30 parts by mol or less, more preferably 25 parts by mol or less, even more preferably 20 parts by mol or less, relative to 100 parts by mol of the alcohol component of the polyester resin segment of the composite resin.
 複合樹脂中のポリエステル樹脂セグメントの含有量は、ポリエステル樹脂セグメント及び付加重合樹脂セグメントの合計量に対して、好ましくは40質量%以上、より好ましくは45質量%以上、更に好ましくは55質量%以上であり、そして、好ましくは95質量%以下、より好ましくは90質量%以下、更に好ましくは85質量%以下である。なお、両反応性モノマー由来の構成単位は、ポリエステル樹脂セグメントとする。 The content of the polyester resin segment in the composite resin is preferably 40% by mass or more, more preferably 45% by mass or more, even more preferably 55% by mass or more, and preferably 95% by mass or less, more preferably 90% by mass or less, even more preferably 85% by mass or less, based on the total amount of the polyester resin segment and the addition polymerization resin segment. The constituent unit derived from the bireactive monomer is a polyester resin segment.
 複合樹脂中の付加重合樹脂セグメントの含有量は、ポリエステル樹脂セグメント及び付加重合樹脂セグメントの合計量に対して、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上であり、そして、好ましくは60質量%以下、より好ましくは55質量%以下、更に好ましくは45質量%以下である。 The content of the addition polymerization resin segment in the composite resin is preferably 5% by mass or more, more preferably 10% by mass or more, even more preferably 15% by mass or more, based on the total amount of the polyester resin segment and the addition polymerization resin segment, and is preferably 60% by mass or less, more preferably 55% by mass or less, even more preferably 45% by mass or less.
 複合樹脂中の両反応性モノマー由来の構成単位の量は、ポリエステル樹脂セグメント及び付加重合樹脂セグメントの合計量に対して、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは0.8質量%以上であり、そして、好ましくは10質量%以下、より好ましくは7質量%以下、更に好ましくは4質量%以下である。 The amount of bireactive monomer-derived structural units in the composite resin is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, even more preferably 0.8% by mass or more, based on the total amount of the polyester resin segment and the addition polymerization resin segment, and is preferably 10% by mass or less, more preferably 7% by mass or less, even more preferably 4% by mass or less.
 複合樹脂中の、ポリエステル樹脂セグメントと付加重合樹脂セグメントの総量は、好ましくは80質量%以上、より好ましくは90質量%以上、更に好ましくは95質量%以上であり、そして、100質量%以下、好ましくは100質量%である。 The total amount of polyester resin segments and addition polymerization resin segments in the composite resin is preferably 80% by mass or more, more preferably 90% by mass or more, even more preferably 95% by mass or more, and is 100% by mass or less, preferably 100% by mass.
 上記量は、ポリエステル樹脂セグメント、付加重合樹脂セグメントの原料モノマー、両反応性モノマー、ラジカル重合開始剤の量の比率を基準に算出し、ポリエステル樹脂セグメント等の質量は、重縮合により生じた水の質量を除いた質量を基準とする。なお、ラジカル重合開始剤を用いた場合、ラジカル重合開始剤の質量は、付加重合樹脂セグメントに含めて計算する。 The above amounts are calculated based on the ratio of the amounts of the polyester resin segment, raw material monomer for the addition polymerization resin segment, bireactive monomer, and radical polymerization initiator, and the mass of the polyester resin segment, etc. is based on the mass excluding the mass of water generated by polycondensation. When a radical polymerization initiator is used, the mass of the radical polymerization initiator is included in the addition polymerization resin segment in the calculation.
(非晶性ポリエステル系樹脂Aの製造方法)
≪非晶性ポリエステル樹脂の製造方法≫
 樹脂Aが非晶性ポリエステル樹脂である場合、樹脂Aは、例えば、上記の樹脂Cと同様に、アルコール成分及びカルボン酸成分を含む原料モノマーを重縮合することにより製造してもよい。
(Method for producing amorphous polyester resin A)
<Method for producing amorphous polyester resin>
When the resin A is an amorphous polyester resin, the resin A may be produced, for example, in the same manner as the resin C described above, by polycondensing raw material monomers containing an alcohol component and a carboxylic acid component.
≪複合樹脂の製造方法≫
 樹脂Aがポリエステル樹脂セグメントと付加重合樹脂セグメントとを含む複合樹脂である場合、例えば、アルコール成分及びカルボン酸成分を重縮合させる工程Aと、付加重合樹脂セグメントの原料モノマー及び両反応性モノマーを付加重合させる工程Bとを含む方法により製造してもよい。
 工程Aの後に工程Bを行ってもよいし、工程Bの後に工程Aを行ってもよく、工程Aと工程Bを同時に行ってもよい。
 工程Aにおいて、カルボン酸成分の一部を重縮合反応に供し、次いで工程Bを実施した後に、カルボン酸成分の残部を重合系に添加し、工程Aの重縮合反応及び両反応性モノマー又は両反応性モノマーに由来する構成単位が有する、例えばカルボキシ基との重縮合反応を更に進める方法が好ましい。
<Method for producing composite resin>
When resin A is a composite resin containing a polyester resin segment and an addition polymerization resin segment, it may be produced, for example, by a method including a step A of polycondensing an alcohol component and a carboxylic acid component, and a step B of addition polymerizing raw material monomers of the addition polymerization resin segment and a bireactive monomer.
Step B may be carried out after step A, step A may be carried out after step B, or step A and step B may be carried out simultaneously.
In step A, a part of the carboxylic acid component is subjected to a polycondensation reaction, and then step B is carried out, and thereafter the remainder of the carboxylic acid component is added to the polymerization system to further proceed with the polycondensation reaction of step A and the polycondensation reaction with, for example, a carboxy group possessed by the bireactive monomer or the constituent unit derived from the bireactive monomer.
 工程Aでは、必要に応じて、上記結晶性ポリエステル樹脂Cの製造方法に記載したエステル化触媒及びエステル化助触媒を、同様の使用量で用いて重縮合してもよい。
 また、重縮合にフマル酸等の不飽和結合を有するモノマーを使用する際には、必要に応じて、上記結晶性ポリエステル樹脂Cの製造方法に記載した重合禁止剤を、同様の使用量で用いてもよい。
 重縮合反応の温度は、好ましくは120℃以上、より好ましくは160℃以上、更に好ましくは180℃以上であり、そして、好ましくは250℃以下、より好ましくは240℃以下である。なお、重縮合は、不活性ガス雰囲気中にて行ってもよい。
In the step A, if necessary, the esterification catalyst and the esterification promoter described in the above-mentioned method for producing the crystalline polyester resin C may be used in the same amounts to carry out polycondensation.
When a monomer having an unsaturated bond such as fumaric acid is used in the polycondensation, the polymerization inhibitor described in the above-mentioned method for producing crystalline polyester resin C may be used in the same amount as above, if necessary.
The temperature of the polycondensation reaction is preferably 120° C. or higher, more preferably 160° C. or higher, and even more preferably 180° C. or higher, and is preferably 250° C. or lower, and more preferably 240° C. or lower. The polycondensation may be carried out in an inert gas atmosphere.
 工程Bの付加重合のラジカル重合開始剤としては、例えば、ジブチルパーオキシド等の過酸化物、過硫酸ナトリウム等の過硫酸塩、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ化合物が挙げられる。
 ラジカル重合開始剤の使用量は、付加重合樹脂セグメントの原料モノマー100質量部に対して、好ましくは1質量部以上20質量部以下である。
 付加重合の温度は、好ましくは110℃以上、より好ましくは130℃以上であり、そして、好ましくは230℃以下、より好ましくは220℃以下、更に好ましくは210℃以下である。
Examples of the radical polymerization initiator for the addition polymerization in step B include peroxides such as dibutyl peroxide, persulfates such as sodium persulfate, and azo compounds such as 2,2'-azobis(2,4-dimethylvaleronitrile).
The amount of the radical polymerization initiator used is preferably 1 part by mass or more and 20 parts by mass or less based on 100 parts by mass of the raw material monomer of the addition polymerization resin segment.
The temperature of the addition polymerization is preferably 110° C. or higher, more preferably 130° C. or higher, and preferably 230° C. or lower, more preferably 220° C. or lower, and further preferably 210° C. or lower.
(非晶性ポリエステル系樹脂Aの物性)
 樹脂Aの軟化点は、好ましくは70℃以上、より好ましくは90℃以上、更に好ましくは100℃以上であり、そして、好ましくは140℃以下、より好ましくは130℃以下、更に好ましくは125℃以下である。
 樹脂Aのガラス転移温度は、好ましくは30℃以上、より好ましくは35℃以上、更に好ましくは40℃以上であり、そして、好ましくは80℃以下、より好ましくは75℃以下、更に好ましくは70℃以下である。
(Physical Properties of Amorphous Polyester Resin A)
The softening point of resin A is preferably 70° C. or higher, more preferably 90° C. or higher, and even more preferably 100° C. or higher, and is preferably 140° C. or lower, more preferably 130° C. or lower, and even more preferably 125° C. or lower.
The glass transition temperature of resin A is preferably 30° C. or higher, more preferably 35° C. or higher, and even more preferably 40° C. or higher, and is preferably 80° C. or lower, more preferably 75° C. or lower, and even more preferably 70° C. or lower.
 樹脂Aの酸価は、好ましくは5mgKOH/g以上、より好ましくは10mgKOH/g以上、更に好ましくは15mgKOH/g以上であり、そして、好ましくは40mgKOH/g以下、より好ましくは35mgKOH/g以下、更に好ましくは30mgKOH/g以下である。 The acid value of resin A is preferably 5 mgKOH/g or more, more preferably 10 mgKOH/g or more, even more preferably 15 mgKOH/g or more, and is preferably 40 mgKOH/g or less, more preferably 35 mgKOH/g or less, even more preferably 30 mgKOH/g or less.
 樹脂Cと樹脂Aとの相溶性と、樹脂Cの再結晶化の観点から、SPとSPとの差(SP-SP)は、好ましくは0.50(cal/cm1/2以上、より好ましくは0.55(cal/cm1/2以上、更に好ましくは0.60(cal/cm1/2以上、更に好ましくは0.63(cal/cm1/2以上であり、そして、好ましくは1.50(cal/cm1/2以下、より好ましくは1.30(cal/cm1/2以下、さらに好ましくは1.00(cal/cm1/2以下、更に好ましくは0.95(cal/cm1/2以下、更に好ましくは0.90(cal/cm1/2以下である。 From the viewpoint of compatibility between resin C and resin A and recrystallization of resin C, the difference between SP A and SP C (SP A - SP C ) is preferably 0.50 (cal/cm 3 ) 1/2 or more, more preferably 0.55 (cal/cm 3 ) 1/2 or more, even more preferably 0.60 (cal/cm 3 ) 1/2 or more, even more preferably 0.63 (cal/cm 3 ) 1/2 or more, and is preferably 1.50 (cal/cm 3 ) 1/2 or less, more preferably 1.30 (cal/cm 3 ) 1/2 or less, even more preferably 1.00 (cal/cm 3 ) 1/2 or less, even more preferably 0.95 (cal/cm 3 ) 1/2 or less, and even more preferably 0.90 (cal/cm 3 ) 1/2 or less.
 樹脂Aの溶解度パラメータ(SP)は、「SP-SP」を上記範囲に制御する観点から、好ましくは9.20(cal/cm1/2以上、より好ましくは9.50(cal/cm1/2以上、更に好ましくは10.00(cal/cm1/2以上であり、そして、好ましくは12.00(cal/cm1/2以下、より好ましくは11.80(cal/cm1/2以下、更に好ましくは11.50(cal/cm1/2以下である。SPは、Fedors法により算出される値とする。 From the viewpoint of controlling "SP A - SP C " within the above range, the solubility parameter (SP A ) of resin A is preferably 9.20 (cal/cm 3 ) 1/2 or more, more preferably 9.50 (cal/cm 3 ) 1/2 or more, even more preferably 10.00 (cal/cm 3 ) 1/2 or more, and preferably 12.00 (cal/cm 3 ) 1/2 or less, more preferably 11.80 (cal/cm 3 ) 1/2 or less, even more preferably 11.50 (cal/cm 3 ) 1/2 or less. SP A is a value calculated by the Fedors method.
 樹脂Aの軟化点、ガラス転移温度、酸価及び溶解度パラメータは、原料モノマーの種類及びその使用量、並びに反応温度、反応時間、冷却速度等の製造条件により適宜調整することができ、また、それらの値は、実施例に記載の方法により求められる。
 なお、樹脂Aを2種以上組み合わせて使用する場合は、それらの混合物として得られた軟化点、ガラス転移温度、酸価及び溶解度パラメータがそれぞれ上記の範囲内であることが好ましい。
 トナー粒子中の非晶性ポリエステル系樹脂Aの含有量は、好ましくは50質量%以上、より好ましくは55質量%以上、更に好ましくは60質量%以上であり、そして、好ましくは87質量%以下、より好ましくは85質量%以下、更に好ましくは80質量%以下である。
The softening point, glass transition temperature, acid value and solubility parameter of Resin A can be appropriately adjusted by the types and amounts of raw material monomers used, as well as production conditions such as reaction temperature, reaction time and cooling rate, and these values can be determined by the methods described in the Examples.
When two or more resins A are used in combination, it is preferable that the softening point, glass transition temperature, acid value and solubility parameter of the resulting mixture are each within the above-mentioned ranges.
The content of the amorphous polyester resin A in the toner particles is preferably 50% by mass or more, more preferably 55% by mass or more, even more preferably 60% by mass or more, and is preferably 87% by mass or less, more preferably 85% by mass or less, even more preferably 80% by mass or less.
<着色剤>
 本発明において、トナー粒子は着色剤として、顔料を含有する。
 ここで、顔料が1分子中に有する-NH-及び-NHの合計数を、当該顔料の分子量で除した値をNH基量としたとき、当該顔料のNH基量が6.0mmol/g以上である。上限は特に制限されないが、好ましくは20.0mmol/g以下であり、より好ましくは15.0mmol/g以下である。
 本発明に用いられる着色剤は、黄色有機顔料であることが好ましく、所望のNH基量とする観点から、イソインドリン系顔料及びベンズイミダゾロン顔料の少なくとも1種であることが好ましい。
 イソインドリン系顔料としては、C.I.ピグメントイエロー139(1分子中に有する-NH-及び-NHの合計数=5、分子量=367、NH基量=13.6mmol/g)、C.I.ピグメントイエロー185(1分子中に有する-NH-及び-NHの合計数=4、分子量=337、NH基量=11.9mmol/g)が例示される。
 ベンズイミダゾロン顔料としては、C.I.ピグメントイエロー180(1分子中に有する-NH-及び-NHの合計数=6、分子量=733、NH基量=8.2mmol/g)が例示される。
 本発明に用いられる顔料は、堅牢性の高い印刷塗膜を得る観点から、C.I.ピグメントイエロー185及びC.I.ピグメントイエロー180から選択される少なくとも1種であることが好ましい。
<Coloring Agent>
In the present invention, the toner particles contain a pigment as a colorant.
When the total number of -NH- and -NH2 groups in one molecule of the pigment is divided by the molecular weight of the pigment to define the NH group amount, the NH group amount of the pigment is 6.0 mmol/g or more. There is no particular upper limit, but it is preferably 20.0 mmol/g or less, and more preferably 15.0 mmol/g or less.
The colorant used in the present invention is preferably a yellow organic pigment, and from the viewpoint of achieving a desired NH group amount, is preferably at least one of an isoindoline pigment and a benzimidazolone pigment.
Examples of isoindoline pigments include C.I. Pigment Yellow 139 (total number of -NH- and -NH2 in one molecule = 5, molecular weight = 367, NH group amount = 13.6 mmol / g), and C.I. Pigment Yellow 185 (total number of -NH- and -NH2 in one molecule = 4, molecular weight = 337, NH group amount = 11.9 mmol / g).
An example of the benzimidazolone pigment is C.I. Pigment Yellow 180 (total number of -NH- and -NH2 in one molecule = 6, molecular weight = 733, NH group amount = 8.2 mmol/g).
The pigment used in the present invention is preferably at least one selected from C. I. Pigment Yellow 185 and C. I. Pigment Yellow 180 from the viewpoint of obtaining a printed coating film having high fastness.
 着色剤の量は、樹脂Cと樹脂Aの合計100質量部に対して、トナー粒子中での分散性向上の観点から、好ましくは3質量部以上、より好ましくは5質量部以上、更に好ましくは7質量部以上であり、そして、好ましくは25質量部以下、より好ましくは20質量部以下、更に好ましくは15質量部以下である。
 また、着色剤の含有量は、トナー粒子中、好ましくは3質量%以上、より好ましくは5質量%以上であり、そして、好ましくは25質量%以下、より好ましくは20質量%以下、更に好ましくは15質量%以下である。
From the viewpoint of improving dispersibility in the toner particles, the amount of colorant is preferably 3 parts by mass or more, more preferably 5 parts by mass or more, and even more preferably 7 parts by mass or more, relative to 100 parts by mass of the total of Resin C and Resin A, and is preferably 25 parts by mass or less, more preferably 20 parts by mass or less, and even more preferably 15 parts by mass or less.
The content of the colorant in the toner particles is preferably 3% by mass or more, more preferably 5% by mass or more, and preferably 25% by mass or less, more preferably 20% by mass or less, and even more preferably 15% by mass or less.
<離型剤>
 本発明のトナー粒子は、離型剤を含有することが好ましい。
 離型剤としては、例えば、ポリプロピレンワックス、ポリエチレンワックス、エチレンプロピレン共重合体ワックス;マイクロクリスタリンワックス、パラフィンワックス、フィッシャートロプシュワックス等の炭化水素系ワックス又はそれらの酸化物;カルナウバワックス、モンタンワックス又はそれらの脱酸ワックス、脂肪酸エステルワックス等のエステル系ワックス;脂肪酸アミド類、脂肪酸類、高級アルコール類、脂肪酸金属塩が挙げられる。これらは1種又は2種以上を用いてもよい。
<Release Agent>
The toner particles of the present invention preferably contain a release agent.
Examples of the release agent include polypropylene wax, polyethylene wax, ethylene propylene copolymer wax, hydrocarbon wax such as microcrystalline wax, paraffin wax, Fischer-Tropsch wax, or oxides thereof, ester wax such as carnauba wax, montan wax, or deacidified wax thereof, or fatty acid ester wax, fatty acid amides, fatty acids, higher alcohols, and fatty acid metal salts. These may be used alone or in combination of two or more.
 離型剤の融点は、好ましくは60℃以上、より好ましくは70℃以上であり、そして、好ましくは160℃以下、より好ましくは140℃以下、更に好ましくは120℃以下、更に好ましくは100℃以下である。
 離型剤の含有量は、トナー粒子中、好ましくは0.1質量%以上、より好ましくは1質量%以上、更に好ましくは3質量%以上であり、そして、好ましくは20質量%以下、より好ましくは15質量%以下、更に好ましくは10質量%以下である。
 その他、トナー粒子は、荷電制御剤、磁性粉、流動性向上剤、導電性調整剤、繊維状物質等の補強充填剤、酸化防止剤、老化防止剤、クリーニング性向上剤等の添加剤を含んでいてもよい。
The melting point of the release agent is preferably 60° C. or higher, more preferably 70° C. or higher, and preferably 160° C. or lower, more preferably 140° C. or lower, even more preferably 120° C. or lower, and even more preferably 100° C. or lower.
The content of the release agent in the toner particles is preferably 0.1% by mass or more, more preferably 1% by mass or more, even more preferably 3% by mass or more, and is preferably 20% by mass or less, more preferably 15% by mass or less, even more preferably 10% by mass or less.
In addition, the toner particles may contain additives such as a charge control agent, a magnetic powder, a flowability improver, a conductivity adjuster, a reinforcing filler such as a fibrous substance, an antioxidant, an antiaging agent, and a cleaning property improver.
(トナー粒子の物性)
 トナー粒子の体積中位粒径D50は、良好な画質の印刷塗膜を得る観点、トナーのクリーニング性をより向上させる観点から、好ましくは2μm以上、より好ましくは3μm以上、更に好ましくは4μm以上であり、そして、好ましくは10μm以下、より好ましくは8μm以下、更に好ましくは7μm以下である。
(Physical Properties of Toner Particles)
The volume median particle diameter D50 of the toner particles is, from the viewpoint of obtaining a printed coating film with good image quality and from the viewpoint of further improving the cleaning property of the toner, preferably 2 μm or more, more preferably 3 μm or more, even more preferably 4 μm or more, and is preferably 10 μm or less, more preferably 8 μm or less, even more preferably 7 μm or less.
 トナー粒子の円形度は、良好な画質の印刷塗膜(画像)を得る観点から、好ましくは0.950以上、より好ましくは0.955以上、さらに好ましくは0.960以上であり、そして、クリーニング性の観点から、好ましくは0.990以下、より好ましくは0.985以下、更に好ましくは0.980以下である。 From the viewpoint of obtaining a printed coating (image) of good quality, the circularity of the toner particles is preferably 0.950 or more, more preferably 0.955 or more, and even more preferably 0.960 or more, and from the viewpoint of cleaning properties, it is preferably 0.990 or less, more preferably 0.985 or less, and even more preferably 0.980 or less.
 トナー粒子のCV値は、トナーの生産性を向上させる観点から、好ましくは10%以上、より好ましくは15%以上、更に好ましくは20%以上であり、そして、堅牢性の高い印刷塗膜を得る観点から、好ましくは40%以下、より好ましくは35%以下、更に好ましくは30%以下である。
 トナー粒子の体積中位粒径D50、円形度及びCV値は、実施例に記載の方法により測定できる。
The CV value of the toner particles is preferably 10% or more, more preferably 15% or more, and even more preferably 20% or more, from the viewpoint of improving the productivity of the toner, and is preferably 40% or less, more preferably 35% or less, and even more preferably 30% or less, from the viewpoint of obtaining a printed coating film with high robustness.
The volume median particle diameter D 50 , circularity and CV value of the toner particles can be measured by the method described in the examples.
〔トナーの製造方法〕
 本発明の一実施態様に係るトナーの製造方法は、溶融混練法、乳化転相法、懸濁重合法、乳化凝集法等の公知のいずれの方法であってもよいが、乳化凝集法が好ましい。
[Toner manufacturing method]
The toner according to an embodiment of the present invention may be produced by any of the known methods such as a melt kneading method, an emulsion phase inversion method, a suspension polymerization method, and an emulsion aggregation method, but the emulsion aggregation method is preferred.
<乳化凝集法>
 乳化凝集法は、樹脂C及び樹脂Aを同一又は異なる粒子に含有する樹脂粒子と、着色剤とを、水系媒体中で凝集させる工程及び融着させる工程を含む。
<Emulsion aggregation method>
The emulsion aggregation method includes a step of aggregating and fusing resin particles, which contain resin C and resin A in the same or different particles, and a colorant in an aqueous medium.
(樹脂粒子を凝集させる工程)
 樹脂粒子を凝集させる工程では、水系媒体中で、樹脂C及び樹脂Aを同一又は異なる粒子に含有する樹脂粒子と、着色剤を凝集させて、凝集粒子1を得る。樹脂粒子を含む樹脂粒子分散液と、着色剤を含有する着色剤粒子分散液とを混合して、これらの粒子を凝集させて凝集粒子1を得ることが好ましい。ここで、樹脂粒子と着色剤に加えて、離型剤を更に凝集させることが好ましく、樹脂粒子を含む樹脂粒子分散液と、着色剤を含む着色剤粒子分散液と、離型剤を含む離型剤粒子分散液とを混合して、これらの粒子を凝集させて凝集粒子1を得ることがより好ましい。また、樹脂粒子分散液、着色剤粒子分散液、及び離型剤粒子分散液は、それぞれ樹脂粒子の水系分散液、着色剤粒子の水系分散液、及び離型剤粒子の水系分散液であることが更に好ましい。
(Step of aggregating resin particles)
In the step of aggregating the resin particles, the resin particles containing the resin C and the resin A in the same or different particles and the colorant are aggregated in an aqueous medium to obtain aggregated particles 1. It is preferable to mix a resin particle dispersion containing the resin particles with a colorant particle dispersion containing a colorant to aggregate these particles and obtain aggregated particles 1. Here, it is preferable to further aggregate the release agent in addition to the resin particles and the colorant, and it is more preferable to mix a resin particle dispersion containing the resin particles, a colorant particle dispersion containing a colorant, and a release agent particle dispersion containing a release agent to aggregate these particles to obtain aggregated particles 1. It is more preferable that the resin particle dispersion, the colorant particle dispersion, and the release agent particle dispersion are respectively an aqueous dispersion of resin particles, an aqueous dispersion of colorant particles, and an aqueous dispersion of release agent particles.
 本発明において、水系分散液に用いる水系媒体は、水を主成分とする媒体であり、水系媒体中の水の含有量は、好ましくは70質量%以上、より好ましくは80質量%以上、更に好ましくは90質量%以上であり、そして、100質量%以下である。水としては、脱イオン水又は蒸留水が好ましい。
 水と共に水系媒体を構成し得る水以外の成分としては、炭素数1以上5以下のアルキルアルコール;アセトン、メチルエチルケトン等の炭素数3以上5以下のジアルキルケトン;テトラヒドロフラン等の環状エーテル等の水に溶解する有機溶媒が用いられる。これらの中でも、炭素数1以上5以下のアルキルアルコールが好ましく、より好ましくはエタノールである。
In the present invention, the aqueous medium used in the aqueous dispersion is a medium containing water as a main component, and the content of water in the aqueous medium is preferably 70% by mass or more, more preferably 80% by mass or more, and even more preferably 90% by mass or more, and 100% by mass or less. As the water, deionized water or distilled water is preferable.
Examples of components other than water that can constitute the aqueous medium together with water include organic solvents that dissolve in water, such as alkyl alcohols having 1 to 5 carbon atoms, dialkyl ketones having 3 to 5 carbon atoms, such as acetone and methyl ethyl ketone, and cyclic ethers, such as tetrahydrofuran. Among these, alkyl alcohols having 1 to 5 carbon atoms are preferred, and ethanol is more preferred.
≪樹脂粒子分散液の製造方法≫
 樹脂Cの樹脂粒子及び樹脂Aの樹脂粒子は、樹脂C及び樹脂Aを同一又は異なる粒子に含有する樹脂粒子の水系分散液として製造してもよい。
<Method for producing resin particle dispersion>
The resin particles of resin C and the resin particles of resin A may be prepared as an aqueous dispersion of resin particles containing resin C and resin A in the same or different particles.
 分散は、公知の方法を用いて行うことができるが、転相乳化法により分散することが好ましい。転相乳化法としては、例えば、樹脂C及び/又は樹脂Aの有機溶媒溶液又は溶融した樹脂C及び/又は樹脂Aに水系媒体を添加して転相乳化する方法が挙げられる。樹脂C及び/又は樹脂Aの有機溶媒溶液に水系媒体を添加して転相乳化する方法が好ましい。
 転相乳化に用いる有機溶媒としては、樹脂C及び樹脂Aを溶解し、水溶性であれば特に限定されないが、例えば、メチルエチルケトンが挙げられる。
 有機溶媒溶液には、中和剤を添加してもよい。中和剤としては、例えば、塩基性物質が挙げられる。塩基性物質としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物;アンモニア、トリメチルアミン、ジエタノールアミン等の含窒素塩基性物質が挙げられる。これらの中でも、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物が好ましい。
 樹脂粒子に含まれる樹脂C及び/又は樹脂Aの中和度は、好ましくは10モル%以上、より好ましくは20モル%以上、更に好ましくは30モル%以上、更に好ましくは40モル%以上であり、そして、好ましくは100モル%以下、より好ましくは80モル%以下、更に好ましくは70モル%以下である。
 なお、樹脂粒子に含まれる樹脂C及び/又は樹脂Aの中和度は、下記式によって求めることができる。
 中和度(モル%)=〔{中和剤の添加質量(g)/中和剤の当量}/[{樹脂粒子を構成する樹脂の加重平均酸価(mgKOH/g)×樹脂粒子を構成する樹脂の質量(g)}/(56×1000)]〕×100
Dispersion can be performed using a known method, but it is preferable to disperse by a phase inversion emulsification method. For example, the phase inversion emulsification method includes a method of adding an aqueous medium to an organic solvent solution of resin C and/or resin A or molten resin C and/or resin A to perform phase inversion emulsification. A method of adding an aqueous medium to an organic solvent solution of resin C and/or resin A to perform phase inversion emulsification is preferable.
The organic solvent used for phase inversion emulsification is not particularly limited as long as it dissolves the resin C and the resin A and is water-soluble, and examples thereof include methyl ethyl ketone.
A neutralizing agent may be added to the organic solvent solution. Examples of the neutralizing agent include basic substances. Examples of the basic substance include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; and nitrogen-containing basic substances such as ammonia, trimethylamine, and diethanolamine. Among these, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide are preferred.
The degree of neutralization of resin C and/or resin A contained in the resin particles is preferably 10 mol% or more, more preferably 20 mol% or more, even more preferably 30 mol% or more, even more preferably 40 mol% or more, and is preferably 100 mol% or less, more preferably 80 mol% or less, even more preferably 70 mol% or less.
The degree of neutralization of the resin C and/or the resin A contained in the resin particles can be calculated by the following formula.
Degree of neutralization (mol %)=[{weight of neutralizing agent added (g)/equivalent of neutralizing agent}/[{weighted average acid value of resin constituting resin particle (mg KOH/g)×weight of resin constituting resin particle (g)}/(56×1000)]]×100
 有機溶媒溶液又は溶融した樹脂C及び/又は樹脂Aを撹拌しながら、水系媒体を徐々に添加して転相させる。
 水系媒体を添加する際の有機溶媒溶液の温度は、樹脂C及び/又は樹脂Aを含む樹脂粒子の分散安定性を向上させる観点から、好ましくは樹脂Aのガラス転移温度以上、より好ましくは60℃以上、更に好ましくは70℃以上であり、そして、好ましくは100℃以下、より好ましくは90℃以下、更に好ましくは80℃以下である。
While stirring the organic solvent solution or the molten resin C and/or resin A, the aqueous medium is gradually added to cause phase inversion.
From the viewpoint of improving the dispersion stability of the resin particles containing resin C and/or resin A, the temperature of the organic solvent solution when the aqueous medium is added is preferably not less than the glass transition temperature of resin A, more preferably not less than 60° C., even more preferably not less than 70° C., and is preferably not more than 100° C., more preferably not more than 90° C., even more preferably not more than 80° C.
 転相乳化の後に、必要に応じて、得られた分散液から蒸留等により有機溶媒を除去してもよい。また、濾過等によって樹脂粒子を単離してもよい。転相乳化の後に得られた分散液から有機溶媒を除去した樹脂粒子の水系分散液を用いることが好ましい。この場合、有機溶媒の残存量は、分散液中、好ましくは1質量%以下、より好ましくは0.5質量%以下、更に好ましくは実質的に0質量%である。 After phase inversion emulsification, the organic solvent may be removed from the obtained dispersion by distillation or the like, if necessary. The resin particles may also be isolated by filtration or the like. It is preferable to use an aqueous dispersion of resin particles from which the organic solvent has been removed from the dispersion obtained after phase inversion emulsification. In this case, the remaining amount of organic solvent in the dispersion is preferably 1 mass % or less, more preferably 0.5 mass % or less, and even more preferably substantially 0 mass %.
 分散液中の樹脂粒子の体積中位粒径D50は、好ましくは0.05μm以上、より好ましくは0.08μm以上であり、そして、好ましくは1μm以下、より好ましくは0.5μm以下、更に好ましくは0.3μm以下である。
 分散液中の樹脂粒子のCV値は、好ましくは10%以上、より好ましくは20%以上であり、そして、好ましくは40%以下、より好ましくは35%以下である。
 分散液中の樹脂粒子の体積中位粒径D50及びCV値は、実施例に記載の方法により測定される。
The volume median particle size D50 of the resin particles in the dispersion is preferably 0.05 μm or more, more preferably 0.08 μm or more, and preferably 1 μm or less, more preferably 0.5 μm or less, and further preferably 0.3 μm or less.
The CV value of the resin particles in the dispersion is preferably 10% or more, more preferably 20% or more, and is preferably 40% or less, more preferably 35% or less.
The volume median particle diameter D50 and CV value of the resin particles in the dispersion are measured by the method described in the examples.
 樹脂粒子の水系分散液の固形分濃度は、トナーの生産性を向上させる観点、及び樹脂粒子の水系分散液の分散安定性を向上させる観点から、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上であり、そして、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下である。
 なお、固形分は不揮発性成分の総量である。
 また、樹脂粒子を凝集させる工程において、凝集粒子1は離型剤を含んでいてもよく、その他、荷電制御剤、磁性粉、流動性向上剤、導電性調整剤、繊維状物質等の補強充填剤、酸化防止剤、老化防止剤、クリーニング性向上剤等の添加剤を含んでいてもよい。
From the viewpoint of improving the productivity of the toner and the dispersion stability of the aqueous dispersion of the resin particles, the solids concentration of the aqueous dispersion of the resin particles is preferably 5% by mass or more, more preferably 10% by mass or more, even more preferably 15% by mass or more, and is preferably 50% by mass or less, more preferably 40% by mass or less, even more preferably 30% by mass or less.
The solid content is the total amount of non-volatile components.
In the process of aggregating the resin particles, the aggregated particles 1 may contain a release agent, and may also contain other additives such as a charge control agent, a magnetic powder, a flowability improver, a conductivity adjuster, a reinforcing filler such as a fibrous substance, an antioxidant, an anti-aging agent, and a cleaning property improver.
≪着色剤粒子分散液の製造方法≫
 着色剤粒子分散液は、顔料と水系媒体とを、ホモミキサー、ホモジナイザー、超音波分散機等の分散機を用いて分散して得ることが好ましい。当該分散は、顔料の分散安定性を向上させる観点から、界面活性剤の存在下で行うことが好ましい。
 また、顔料の分散は、顔料の分散安定性を向上させる観点から、付加重合体Eの存在下で行ってもよい。付加重合体Eは芳香族基を有する付加重合性モノマーaに由来する構成単位を有することが好ましく、更に、イオン性基を有する付加重合性モノマーb、ポリアルキレンオキシド基を有する付加重合性モノマーc、及びマクロモノマーdからなる群から選ばれる少なくとも1種を更に含有することが好ましい。付加重合体Eを用いた着色剤粒子分散液については、特開2021-026129号公報に記載の付加重合体Eが参照される。
<<Method for producing colorant particle dispersion>>
The colorant particle dispersion is preferably obtained by dispersing the pigment and an aqueous medium using a dispersing machine such as a homomixer, a homogenizer, an ultrasonic dispersing machine, etc. The dispersion is preferably carried out in the presence of a surfactant from the viewpoint of improving the dispersion stability of the pigment.
In addition, from the viewpoint of improving the dispersion stability of the pigment, the pigment may be dispersed in the presence of the addition polymer E. The addition polymer E preferably has a structural unit derived from an addition polymerizable monomer a having an aromatic group, and further preferably contains at least one selected from the group consisting of an addition polymerizable monomer b having an ionic group, an addition polymerizable monomer c having a polyalkylene oxide group, and a macromonomer d. For the colorant particle dispersion using the addition polymer E, the addition polymer E described in JP-A-2021-026129 is referred to.
 顔料の分散安定性を向上させる界面活性剤としては、例えば、非イオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤が挙げられ、顔料の分散安定性を向上させる観点から、好ましくは非イオン性界面活性剤である。非イオン性界面活性剤としては、例えば、ポリオキシアルキレンアルキルエーテル類、ポリオキシアルキレンアルケニルエーテル類、ポリオキシアルキレンアリールエーテル類が挙げられる。これらの中でも、ポリオキシエチレンアリールエーテル類が好ましく、ポリオキシエチレンジスチレン化フェニルエーテルがより好ましい。 Surfactants that improve the dispersion stability of the pigment include, for example, nonionic surfactants, anionic surfactants, and cationic surfactants, and from the viewpoint of improving the dispersion stability of the pigment, nonionic surfactants are preferred. Examples of nonionic surfactants include polyoxyalkylene alkyl ethers, polyoxyalkylene alkenyl ethers, and polyoxyalkylene aryl ethers. Among these, polyoxyethylene aryl ethers are preferred, and polyoxyethylene distyrenated phenyl ether is more preferred.
 着色剤粒子分散液中の界面活性剤の含有量は、顔料の分散安定性を向上させる観点から、顔料100質量部に対して、好ましくは1質量部以上、より好ましくは5質量部以上、更に好ましくは10質量部以上であり、そして、好ましくは50質量部以下、より好ましくは45質量部以下、更に好ましくは40質量部以下である。 The content of the surfactant in the colorant particle dispersion is preferably 1 part by mass or more, more preferably 5 parts by mass or more, and even more preferably 10 parts by mass or more, per 100 parts by mass of pigment, from the viewpoint of improving the dispersion stability of the pigment, and is preferably 50 parts by mass or less, more preferably 45 parts by mass or less, and even more preferably 40 parts by mass or less.
 着色剤粒子分散液中、顔料は、好ましくは5質量%以上、より好ましくは10質量%以上であり、そして、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下である。
 着色剤粒子分散液の固形分濃度は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは15質量%以上であり、そして、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下である。
In the colorant particle dispersion, the pigment is preferably 5% by mass or more, more preferably 10% by mass or more, and preferably 50% by mass or less, more preferably 40% by mass or less, and even more preferably 30% by mass or less.
The solids concentration of the colorant particle dispersion is preferably 5% by mass or more, more preferably 10% by mass or more, even more preferably 15% by mass or more, and is preferably 50% by mass or less, more preferably 40% by mass or less, even more preferably 30% by mass or less.
 着色剤粒子の体積中位粒径D50は、トナー粒子中での分散性向上の観点から、好ましくは0.05μm以上、より好ましくは0.08μm以上、更に好ましくは0.1μm以上であり、そして、好ましくは0.4μm以下、より好ましくは0.3μm以下、更に好ましくは0.2μm以下である。
 着色剤粒子のCV値は、トナー粒子中での分散性向上の観点から、好ましくは10%以上、より好ましくは20%以上であり、そして、好ましくは45%以下、より好ましくは40%以下、更に好ましくは35%以下である。
 着色剤粒子の体積中位粒径D50及びCV値は、実施例の方法によって測定される。
From the viewpoint of improving dispersibility in toner particles, the colorant particles have a volume median particle size D50 of preferably 0.05 μm or more, more preferably 0.08 μm or more, even more preferably 0.1 μm or more, and preferably 0.4 μm or less, more preferably 0.3 μm or less, even more preferably 0.2 μm or less.
From the viewpoint of improving dispersibility in the toner particles, the CV value of the colorant particles is preferably 10% or more, more preferably 20% or more, and is preferably 45% or less, more preferably 40% or less, and even more preferably 35% or less.
The volume median particle diameter D50 and CV value of the colorant particles are measured by the methods described in the Examples.
(離型剤粒子分散液の製造方法)
 離型剤粒子分散液は、例えば、離型剤と後述する樹脂粒子Sの分散液と必要に応じて水系媒体とを、離型剤の融点以上の温度で、ホモジナイザー、高圧分散機、超音波分散機等の分散機を用いて分散することによって得られる。
 分散時の加熱温度は、好ましくは離型剤の融点以上かつ80℃以上、より好ましくは85℃以上、更に好ましくは90℃以上であり、そして、好ましくは、100℃以下、より好ましくは98℃以下、更に好ましくは96℃以下である。
(Method for producing release agent particle dispersion)
The release agent particle dispersion liquid can be obtained, for example, by dispersing a release agent, a dispersion liquid of resin particles S described below, and, if necessary, an aqueous medium at a temperature equal to or higher than the melting point of the release agent, using a dispersing machine such as a homogenizer, a high-pressure dispersing machine, or an ultrasonic dispersing machine.
The heating temperature during dispersion is preferably equal to or higher than the melting point of the release agent and equal to or higher than 80°C, more preferably equal to or higher than 85°C, even more preferably equal to or higher than 90°C, and is preferably equal to or lower than 100°C, more preferably equal to or lower than 98°C, even more preferably equal to or lower than 96°C.
 離型剤粒子分散液は、界面活性剤を用いて得ることも可能であるが、離型剤と後述する樹脂粒子Sとを混合して得ることが好ましい。離型剤と樹脂粒子Sを用いて離型剤粒子を調製することで、樹脂粒子Sにより離型剤粒子が安定化され、界面活性剤を使用しなくても離型剤を水系媒体中に分散させることが可能となる。離型剤粒子分散液中では、離型剤粒子の表面に樹脂粒子Sが多数付着した構造を有していると考えられる。 The release agent particle dispersion can be obtained by using a surfactant, but is preferably obtained by mixing the release agent with resin particles S, which will be described later. By preparing the release agent particles using the release agent and resin particles S, the release agent particles are stabilized by the resin particles S, and it becomes possible to disperse the release agent in an aqueous medium without using a surfactant. It is considered that the release agent particle dispersion has a structure in which a large number of resin particles S are attached to the surfaces of the release agent particles.
 離型剤を分散する樹脂粒子Sを構成する樹脂は、好ましくはポリエステル系樹脂であり、ポリエステル樹脂セグメントと付加重合樹脂セグメントを有する複合樹脂Dを用いることがより好ましい。複合樹脂Dについては、例えば、特開2021-026129号公報が参照される。 The resin constituting the resin particles S in which the release agent is dispersed is preferably a polyester resin, and it is more preferable to use a composite resin D having a polyester resin segment and an addition polymerization resin segment. For details of the composite resin D, see, for example, JP 2021-026129 A.
 複合樹脂Dの溶解度パラメータ(SP)は、樹脂Aとの親和性の観点から、SPと同程度であればよい。 From the viewpoint of affinity with resin A, the solubility parameter (SP D ) of composite resin D may be approximately the same as that of SP A.
 離型剤粒子分散液中の離型剤粒子の体積中位粒径D50は、凝集により均一な凝集粒子を得る観点から、好ましくは0.05μm以上、より好ましくは0.2μm以上、更に好ましくは0.4μm以上であり、そして、好ましくは1μm以下、より好ましくは0.8μm以下、更に好ましくは0.6μm以下である。
 離型剤粒子分散液中の離型剤粒子のCV値は、好ましくは10%以上、より好ましくは20%以上であり、そして、好ましくは40%以下、より好ましくは35%以下、更に好ましくは30%以下である。
 離型剤粒子分散液中の離型剤粒子の体積中位粒径D50及びCV値は、実施例に記載の方法により測定される。
The volume median particle diameter D50 of the release agent particles in the release agent particle dispersion is, from the viewpoint of obtaining uniform aggregated particles by aggregation, preferably 0.05 μm or more, more preferably 0.2 μm or more, even more preferably 0.4 μm or more, and is preferably 1 μm or less, more preferably 0.8 μm or less, even more preferably 0.6 μm or less.
The CV value of the release agent particles in the release agent particle dispersion is preferably 10% or more, more preferably 20% or more, and is preferably 40% or less, more preferably 35% or less, and further preferably 30% or less.
The volume median particle diameter D50 and CV value of the release agent particles in the release agent particle dispersion liquid are measured by the method described in the Examples.
-界面活性剤-
 樹脂粒子を凝集させる工程では、各粒子の分散液を混合し、混合分散液を調製する際、樹脂粒子、離型剤粒子、着色剤粒子等の分散安定性を向上させる観点から、界面活性剤の存在下で行ってもよい。界面活性剤としては、例えば、アルキルベンゼンスルホン酸塩、アルキルエーテル硫酸塩等のアニオン性界面活性剤;ポリオキシエチレンアルキルエーテル及びポリオキシエチレンアルケニルエーテル類等の非イオン性界面活性剤が挙げられる。
 界面活性剤を使用する場合、その総使用量は、樹脂Cと樹脂Aの合計量100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.3質量部以上、更に好ましくは0.5質量部以上であり、そして、好ましくは10質量部以下、より好ましくは5質量部以下、更に好ましくは3質量部以下である。
-Surfactants-
In the step of aggregating the resin particles, when the dispersions of the respective particles are mixed to prepare a mixed dispersion, the process may be performed in the presence of a surfactant from the viewpoint of improving the dispersion stability of the resin particles, the release agent particles, the colorant particles, etc. Examples of the surfactant include anionic surfactants such as alkylbenzene sulfonates and alkyl ether sulfates; and nonionic surfactants such as polyoxyethylene alkyl ethers and polyoxyethylene alkenyl ethers.
When a surfactant is used, the total amount used is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more, and even more preferably 0.5 parts by mass or more, per 100 parts by mass of the combined amount of Resin C and Resin A, and is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and even more preferably 3 parts by mass or less.
-凝集剤-
 樹脂粒子を凝集させる工程では、凝集を効率的に行う観点から、凝集剤を添加することが好ましい。
 凝集剤としては、例えば、第四級塩等のカチオン性界面活性剤、ポリエチレンイミン等の有機系凝集剤、無機系凝集剤が挙げられる。無機系凝集剤としては、例えば、硫酸ナトリウム、硝酸ナトリウム、塩化ナトリウム、塩化カルシウム、硝酸カルシウム等の無機金属塩;硫酸アンモニウム、塩化アンモニウム、硝酸アンモニウム等の無機アンモニウム塩;2価以上の金属錯体が挙げられる。
 凝集性を向上させ均一な凝集粒子1を得る観点から、1価以上5価以下の無機系凝集剤が好ましく、1価以上2価以下の無機金属塩、無機アンモニウム塩がより好ましく、無機アンモニウム塩が更に好ましく、硫酸アンモニウムが更に好ましい。
- Flocculant -
In the step of aggregating the resin particles, it is preferable to add an aggregating agent from the viewpoint of efficient aggregation.
Examples of the flocculant include cationic surfactants such as quaternary salts, organic flocculants such as polyethyleneimine, and inorganic flocculants. Examples of the inorganic flocculant include inorganic metal salts such as sodium sulfate, sodium nitrate, sodium chloride, calcium chloride, and calcium nitrate; inorganic ammonium salts such as ammonium sulfate, ammonium chloride, and ammonium nitrate; and divalent or higher metal complexes.
From the viewpoint of improving the coagulation properties and obtaining uniformly aggregated particles 1, inorganic coagulants having a valence of 1 to 5 are preferred, inorganic metal salts having a valence of 1 to 2 and inorganic ammonium salts are more preferred, inorganic ammonium salts are even more preferred, and ammonium sulfate is even more preferred.
 凝集剤を用いて、例えば、0℃以上40℃以下の樹脂粒子、離型剤粒子、及び着色剤粒子を含む混合分散液に、樹脂粒子中の樹脂100質量部に対し5質量部以上50質量部以下の凝集剤を添加し、樹脂粒子、離型剤粒子、及び着色剤粒子を水系媒体中で凝集させて、凝集粒子1を得る。更に、凝集を促進させる観点から、凝集剤を添加した後に分散液の温度を上げることが好ましい。 For example, 5 to 50 parts by mass of the aggregating agent is added to a mixed dispersion liquid containing resin particles, release agent particles, and colorant particles at 0°C to 40°C, per 100 parts by mass of resin in the resin particles, and the resin particles, release agent particles, and colorant particles are aggregated in an aqueous medium to obtain aggregated particles 1. Furthermore, from the viewpoint of promoting aggregation, it is preferable to increase the temperature of the dispersion liquid after adding the aggregating agent.
 凝集を停止させる方法としては、分散液を冷却する方法、凝集停止剤を添加する方法、分散液を希釈する方法等が挙げられる。不必要な凝集を確実に防止する観点からは、凝集停止剤を添加して凝集を停止させる方法が好ましい。 Methods for stopping aggregation include cooling the dispersion, adding an aggregation stopper, diluting the dispersion, etc. From the viewpoint of reliably preventing unnecessary aggregation, the method of stopping aggregation by adding an aggregation stopper is preferred.
-凝集停止剤-
 凝集停止剤としては、界面活性剤が好ましく、アニオン性界面活性剤がより好ましい。アニオン性界面活性剤としては、例えば、アルキルベンゼンスルホン酸塩、アルキル硫酸塩、アルキルエーテル硫酸塩、ポリオキシアルキレンアルキルエーテル硫酸塩、アリールスルホン酸塩、アリールスルホン酸ホルマリン縮合物等が挙げられ、好ましくはアリールスルホン酸ホルマリン縮合物のアルカリ金属塩、より好ましくはナフタレンスルホン酸ホルマリン縮合物のナトリウム塩である。これらは、1種又は2種以上を用いてもよい。凝集停止剤は、水溶液で添加してもよい。
 凝集停止剤の添加量は、不必要な凝集を確実に防止する観点から、樹脂Cと樹脂Aの合計100質量部に対して、好ましくは1質量部以上、より好ましくは5質量部以上であり、そして、トナーへの残留を低減する観点から、好ましくは60質量部以下、より好ましくは30質量部以下、更に好ましくは20質量部以下である。
- Aggregation stopper -
The aggregation terminator is preferably a surfactant, more preferably an anionic surfactant.The anionic surfactant may be, for example, an alkylbenzenesulfonate, an alkyl sulfate, an alkyl ether sulfate, a polyoxyalkylene alkyl ether sulfate, an arylsulfonate, an arylsulfonic acid formalin condensate, etc., and is preferably an alkali metal salt of an arylsulfonic acid formalin condensate, more preferably a sodium salt of a naphthalenesulfonic acid formalin condensate.These may be used alone or in combination.The aggregation terminator may be added in the form of an aqueous solution.
The amount of the aggregation terminator added is preferably 1 part by mass or more, and more preferably 5 parts by mass or more, per 100 parts by mass of the total of Resin C and Resin A, from the viewpoint of reliably preventing unnecessary aggregation, and is preferably 60 parts by mass or less, more preferably 30 parts by mass or less, and even more preferably 20 parts by mass or less, from the viewpoint of reducing residue in the toner.
 凝集粒子1の体積中位粒径D50は、好ましくは2μm以上、より好ましくは3μm以上、更に好ましくは4μm以上であり、そして、好ましくは10μm以下、より好ましくは8μm以下、更に好ましくは7μm以下である。 The volume median particle diameter D 50 of the aggregated particles 1 is preferably 2 μm or more, more preferably 3 μm or more, even more preferably 4 μm or more, and is preferably 10 μm or less, more preferably 8 μm or less, even more preferably 7 μm or less.
 なお、本発明において、樹脂粒子を凝集させる工程の後、融着させる工程の前に、得られた凝集粒子1に非晶性樹脂(好ましくは非晶性ポリエステル系樹脂B)を含むシェル用樹脂粒子を付着させて凝集させ、凝集粒子2を得る工程を有していてもよい。シェル用樹脂粒子を凝集させる工程を有することで、コアシェル構造を有するトナー粒子を得ることができる。
 ここで、シェル用樹脂粒子に使用される非晶性ポリエステル系樹脂Bとしては、上述した樹脂Aが例示される。シェル用樹脂粒子は、前述の樹脂C及び/又は樹脂Aを含む樹脂粒子の製造方法と同様の方法により得られる。
 また、トナーの製造方法がシェル用樹脂粒子を凝集させる工程を有する場合には、該工程において凝集粒子2が、トナー粒子として適度な粒径に成長したところで凝集を停止させることが好ましく、上述の凝集停止剤を添加して凝集を停止させる方法が好ましい。
 凝集粒子1の質量に対する、シェル用樹脂粒子の質量比[シェル用樹脂粒子/凝集粒子1]は、トナーの低温定着性の観点から、好ましくは1/99以上、より好ましくは3/97以上、更に好ましくは5/95以上であり、そして、好ましくは25/75以下、より好ましくは20/80以下、更に好ましくは15/85以下である。
In the present invention, after the step of aggregating the resin particles and before the step of fusing, a step of adhering shell resin particles containing an amorphous resin (preferably amorphous polyester-based resin B) to the obtained aggregated particles 1 and aggregating them to obtain aggregated particles 2 may be included. By including the step of aggregating the shell resin particles, toner particles having a core-shell structure can be obtained.
Here, examples of the amorphous polyester resin B used in the shell resin particles include the above-mentioned resin A. The shell resin particles can be obtained by the same method as the method for producing the resin particles containing the above-mentioned resin C and/or resin A.
Furthermore, when the toner manufacturing method includes a step of aggregating shell resin particles, it is preferable to stop the aggregation in the step when the aggregated particles 2 have grown to an appropriate particle size as toner particles, and a method of stopping the aggregation by adding the above-mentioned aggregation terminator is preferable.
From the viewpoint of low-temperature fixing property of the toner, the mass ratio of the shell resin particles to the mass of the aggregated particles 1 [shell resin particles/aggregated particles 1] is preferably 1/99 or more, more preferably 3/97 or more, even more preferably 5/95 or more, and is preferably 25/75 or less, more preferably 20/80 or less, even more preferably 15/85 or less.
(融着させる工程)
 融着させる工程では、例えば、凝集粒子1又は凝集粒子2を水系媒体中で融着させる。
 融着によって、凝集粒子1又は凝集粒子2に含まれる各粒子を融着し、融着粒子が得られる。
 融着させる工程においては、凝集粒子1又は凝集粒子2の融着性を向上させる観点、並びにトナーの低温定着性を向上させる観点から、凝集粒子に含まれる非晶性ポリエステル系樹脂のうち最も高いガラス転移温度を有する樹脂のガラス転移温度以上の温度で保持する。
 凝集粒子を融着させる際の保持温度は、凝集粒子の融着性を向上させる観点及びトナーの生産性を向上させる観点から、非晶性ポリエステル系樹脂中の最も高いガラス転移温度を有する樹脂のガラス転移温度より、好ましくは2℃高い温度以上、より好ましくは3℃高い温度以上、更に好ましくは5℃高い温度以上であり、そして、非晶性ポリエステル系樹脂中の最も高いガラス転移温度を有する樹脂のガラス転移温度より、好ましくは30℃高い温度以下、より好ましくは25℃高い温度以下、更に好ましくは20℃高い温度以下である。
 その際、非晶性ポリエステル系樹脂のガラス転移温度以上の温度で保持する時間は、トナーの低温定着性を向上させる観点から、好ましくは1分間以上、より好ましくは10分間以上、更に好ましくは30分間以上であり、そして、好ましくは240分間以下、より好ましくは180分間以下、更に好ましくは120分間以下、更に好ましくは90分間以下である。
 なお、所望の円形度となるまで、上記の温度で保持することが好ましい。
(Fusing process)
In the fusion step, for example, the aggregated particles 1 or the aggregated particles 2 are fused in an aqueous medium.
By fusion, the particles contained in aggregated particles 1 or aggregated particles 2 are fused together to obtain fused particles.
In the fusion step, from the viewpoint of improving the fusion properties of the aggregated particles 1 or 2 and from the viewpoint of improving the low-temperature fixing properties of the toner, the aggregated particles are maintained at a temperature equal to or higher than the glass transition temperature of the resin having the highest glass transition temperature among the amorphous polyester-based resins contained in the aggregated particles.
The holding temperature when fusing the aggregated particles, from the viewpoint of improving the fusing property of the aggregated particles and improving the productivity of the toner, is preferably at least 2° C. higher, more preferably at least 3° C. higher, and even more preferably at least 5° C. higher than the glass transition temperature of the resin having the highest glass transition temperature among the amorphous polyester resins, and is preferably not higher than 30° C. higher, more preferably not higher than 25° C. higher, and even more preferably not higher than 20° C. higher than the glass transition temperature of the resin having the highest glass transition temperature among the amorphous polyester resins.
In this case, the time for which the toner is maintained at a temperature equal to or higher than the glass transition temperature of the amorphous polyester resin is, from the viewpoint of improving the low-temperature fixing property of the toner, preferably 1 minute or more, more preferably 10 minutes or more, even more preferably 30 minutes or more, and is preferably 240 minutes or less, more preferably 180 minutes or less, even more preferably 120 minutes or less, even more preferably 90 minutes or less.
It is preferable to maintain the temperature at the above temperature until the desired circularity is achieved.
 融着により得られた融着粒子の体積中位粒径D50は、好ましくは2μm以上、より好ましくは3μm以上、更に好ましくは4μm以上であり、そして、好ましくは10μm以下、より好ましくは8μm以下、更に好ましくは7μm以下である。 The volume median particle size D50 of the fused particles obtained by fusion is preferably 2 μm or more, more preferably 3 μm or more, even more preferably 4 μm or more, and is preferably 10 μm or less, more preferably 8 μm or less, even more preferably 7 μm or less.
 融着により得られる融着粒子の円形度は、好ましくは0.955以上、より好ましくは0.960以上であり、そして、好ましくは0.990以下、より好ましくは0.985以下、更に好ましくは0.980以下である。
 融着は、上記好ましい円形度に達した後に終了することが好ましい。
 円形度は、実施例に記載の方法により測定される。
The circularity of the fused particles obtained by fusion is preferably 0.955 or more, more preferably 0.960 or more, and is preferably 0.990 or less, more preferably 0.985 or less, and further preferably 0.980 or less.
The fusion is preferably terminated after the above-mentioned preferred circularity is reached.
The circularity is measured by the method described in the Examples.
(後処理工程)
 融着させる工程の後に後処理工程を行ってもよく、融着粒子を単離することによってトナー粒子が得られる。融着させる工程で得られた融着粒子は、水系媒体中に存在するため、まず、固液分離を行うことが好ましい。固液分離には、吸引濾過法等が好ましく用いられる。
 固液分離後に洗浄を行うことが好ましい。このとき、添加した界面活性剤も除去することが好ましいため、界面活性剤の曇点以下で水系媒体により洗浄することが好ましい。洗浄は複数回行うことが好ましい。
 次に乾燥を行うことが好ましい。乾燥方法としては、例えば、真空低温乾燥法、振動型流動乾燥法、スプレードライ法、冷凍乾燥法、フラッシュジェット法が挙げられる。
(Post-processing process)
A post-treatment process may be performed after the fusion process, and the fused particles are isolated to obtain toner particles. Since the fused particles obtained in the fusion process are present in an aqueous medium, it is preferable to first perform solid-liquid separation. For solid-liquid separation, a suction filtration method or the like is preferably used.
It is preferable to wash the solid-liquid separation product. In this case, it is preferable to remove the surfactant added, and therefore it is preferable to wash the product with an aqueous medium at a temperature below the cloud point of the surfactant. It is preferable to wash the product several times.
Next, drying is preferably performed. Examples of the drying method include vacuum low-temperature drying, vibration-type fluidized bed drying, spray drying, freeze drying, and flash jet drying.
<溶融混練法>
 本発明において、溶融混練法は、例えば、結着樹脂、着色剤、及び必要に応じて、離型剤等の添加剤をヘンシェルミキサー等の混合機で均一に混合した後、密閉式ニーダー、1軸もしくは2軸の押出機、オープンロール型混練機等で溶融混練する。続いて、冷却、粉砕、分級して製造することによりトナー粒子を得ることができる。
<Melt kneading method>
In the present invention, the melt-kneading method involves, for example, uniformly mixing a binder resin, a colorant, and, if necessary, additives such as a release agent in a mixer such as a Henschel mixer, and then melt-kneading the mixture in an internal kneader, a single-screw or twin-screw extruder, an open roll type kneader, etc. The mixture is then cooled, pulverized, and classified to produce toner particles.
 トナーはトナー粒子を含む。得られたトナー粒子はそのまま本発明のトナーとして用いることができる。また、トナー粒子の表面に、外添剤を添加処理したものを本発明のトナーとして用いることが好ましい。 The toner contains toner particles. The obtained toner particles can be used as is as the toner of the present invention. It is also preferable to use toner particles that have been treated by adding an external additive to the surface thereof as the toner of the present invention.
<外添剤>
 外添剤としては、例えば、疎水性シリカ、酸化チタン、アルミナ、酸化セリウム、カーボンブラック等の無機材料の微粒子、ポリカーボネート、ポリメタクリル酸メチル、シリコーン樹脂等のポリマー微粒子が挙げられる。これらの中でも、疎水性シリカが好ましい。外添剤は1種単独で使用してもよく、2種以上を使用してもよい。また、粒径の異なる疎水性シリカを2種以上使用してもよい。
 外添剤を用いてトナー粒子の表面処理を行う場合、外添剤の添加量は、トナー粒子100質量部に対して、好ましくは1質量部以上、より好ましくは2質量部以上、更に好ましくは3質量部以上であり、そして、好ましくは5質量部以下、より好ましくは4.5質量部以下、更に好ましくは4質量部以下である。
<External Additives>
Examples of the external additive include inorganic fine particles such as hydrophobic silica, titanium oxide, alumina, cerium oxide, and carbon black, and polymer fine particles such as polycarbonate, polymethyl methacrylate, and silicone resin. Among these, hydrophobic silica is preferred. The external additive may be used alone or in combination with two or more kinds. In addition, two or more kinds of hydrophobic silica having different particle sizes may be used.
When the surface treatment of the toner particles is performed using an external additive, the amount of the external additive added is preferably 1 part by mass or more, more preferably 2 parts by mass or more, even more preferably 3 parts by mass or more, and is preferably 5 parts by mass or less, more preferably 4.5 parts by mass or less, and even more preferably 4 parts by mass or less, relative to 100 parts by mass of the toner particles.
 トナーは、電子写真方式の印刷において、静電荷像現像に用いられる。トナーは、例えば、一成分系現像剤として、又はキャリアと混合して二成分系現像剤として使用することができる。 Toner is used to develop electrostatic images in electrophotographic printing. Toner can be used, for example, as a one-component developer or mixed with a carrier to form a two-component developer.
 上記実施形態と合わせて、本発明は以下の実施形態を開示する。
<1>
 結晶性ポリエステル樹脂C、非晶性ポリエステル系樹脂A、及び着色剤を含有する静電荷像現像用トナーであって、
 前記結晶性ポリエステル樹脂Cが、エチレングリコールを含む脂肪族ジオール成分由来の構成単位と、炭素数10以上14以下の脂肪族ジカルボン酸成分由来の構成単位とを含み、かつエステル基濃度が6.5mmol/g以上9.0mmol/g以下であり、
 前記着色剤は、1分子中に有する-NH-及び-NHの合計数を、分子量で除した値をNH基量としたとき、NH基量が6.0mmol/g以上の顔料である、
 静電荷像現像用トナー。
<2>
 前記結晶性ポリエステル樹脂Cが、更に炭素数6以上24以下のモノカルボン酸成分由来の構成単位を含む、<1>に記載の静電荷像現像用トナー。
<3>
 前記炭素数6以上24以下のモノカルボン酸成分由来の構成単位の炭素数が、好ましくは8以上、より好ましくは12以上、更に好ましくは14以上、更に好ましくは16以上であり、好ましくは22以下、より好ましくは20以下である、<2>に記載の静電荷像現像用トナー。
<4>
 前記炭素数6以上24以下のモノカルボン酸成分由来の構成単位の含有量が、前記結晶性ポリエステル樹脂Cのカルボン酸成分由来の構成単位中、1モル%以上であって、好ましくは5モル%以上、より好ましくは7モル%以上であり、35モル%以下であって、好ましくは30モル%以下、より好ましくは20モル%以下、更に好ましくは15モル%以下である、<2>又は<3>に記載の静電荷像現像用トナー。
<5>
 前記炭素数10以上14以下の脂肪族ジカルボン酸成分由来の構成単位が、炭素数10以上14以下のα、ω-直鎖脂肪族ジカルボン酸成分由来の構成単位を含む、<1>~<4>のいずれかに記載の静電荷像現像用トナー。
<6>
 前記炭素数10以上14以下の脂肪族ジカルボン酸成分由来の構成単位が、セバシン酸由来の構成単位、1,11-ウンデカン二酸由来の構成単位、1,12-ドデカン二酸由来の構成単位、1,13-トリデカン二酸由来の構成単位、及び1,14-テトラデカン二酸由来の構成単位から選択される少なくとも1種、好ましくはセバシン酸由来の構成単位、1,12-ドデカン二酸由来の構成単位、及び1,14-テトラデカン二酸由来の構成単位から選択される少なくとも1種、より好ましくは1,12-ドデカン二酸由来の構成単位及び/又は1,14-テトラデカン二酸由来の構成単位を含む、<1>~<5>のいずれかに記載の静電荷像現像用トナー。
<7>
 前記脂肪族ジオール成分由来の構成単位の含有量が、前記結晶性ポリエステル樹脂Cのアルコール成分由来の構成単位中、80モル%以上であって、好ましくは85モル%以上、より好ましくは90モル%以上、更に好ましくは95モル%以上であり、100モル%以下である、<1>~<6>のいずれかに記載の静電荷像現像用トナー。
<8>
 エチレングリコール由来の構成単位の含有量が、前記結晶性ポリエステル樹脂Cのアルコール成分由来の構成単位中、65モル%以上であって、好ましくは85モル%以上、より好ましくは90モル%以上、更に好ましくは95モル%以上であり、100モル%以下である、<1>~<7>のいずれかに記載の静電荷像現像用トナー。
<9>
 前記炭素数10以上14以下の脂肪族ジカルボン酸由来の構成単位の含有量が、前記結晶性ポリエステル樹脂Cのカルボン酸成分由来の構成単位中、70モル%以上であって、好ましくは75モル%以上、より好ましくは80モル%以上、更に好ましくは85モル%以上であり、100モル%以下である、<1>~<8>のいずれかに記載の静電荷像現像用トナー。
<10>
 前記結晶性ポリエステル樹脂Cのエステル基濃度が、6.7mmol/g以上であり、8.8mmol/g以下であって、好ましくは8.6mmol/g以下である、<1>~<9>のいずれかに記載の静電荷像現像用トナー。
<11>
 前記結晶性ポリエステル樹脂Cの軟化点が、60℃以上であって、好ましくは65℃以上、より好ましくは70℃以上であり、150℃以下であって、好ましくは120℃以下、より好ましくは100℃以下である、<1>~<10>のいずれかに記載の静電荷像現像用トナー。
<12>
 前記結晶性ポリエステル樹脂Cの融点が、50℃以上であって、好ましくは60℃以上、より好ましくは70℃以上であり、100℃以下であって、好ましくは95℃以下、より好ましくは90℃以下である、<1>~<11>のいずれかに記載の静電荷像現像用トナー。
<13>
 前記結晶性ポリエステル樹脂Cの溶解度パラメータが、8.70(cal/cm1/2以上であって、好ましくは9.00(cal/cm1/2以上、より好ましくは9.50(cal/cm1/2以上であり、11.00(cal/cm1/2以下であって、好ましくは10.50(cal/cm1/2以下、より好ましくは10.20(cal/cm1/2以下である、<1>~<12>のいずれかに記載の静電荷像現像用トナー。
<14>
 前記非晶性ポリエステル系樹脂Aのアルコール成分由来の構成単位が、芳香族ジオールのアルキレンオキシド付加物由来の構成単位、直鎖又は分岐の脂肪族ジオール由来の構成単位、脂環式ジオール由来の構成単位、及び3価以上の多価アルコール由来の構成単位から選択される少なくとも1種、好ましくは芳香族ジオールのアルキレンオキシド付加物由来の構成単位及び/又は直鎖又は分岐の脂肪族ジオール由来の構成単位を含む、<1>~<13>のいずれかに記載の静電荷像現像用トナー。
<15>
 前記非晶性ポリエステル系樹脂Aのアルコール成分由来の構成単位が、芳香族ジオールのアルキレンオキシド付加物由来の構成単位、好ましくはビスフェノールAのアルキレンオキシド付加物由来の構成単位、より好ましくは下記式(I)で表される2,2-ビス(4-ヒドロキシフェニル)プロパンのアルキレンオキシド付加物由来の構成単位、更に好ましくはビスフェノールAのプロピレンオキシド付加物由来の構成単位及び/又はビスフェノールAのエチレンオキシド付加物由来の構成単位、更に好ましくはビスフェノールAのプロピレンオキシド付加物由来の構成単位を含む、<1>~<14>のいずれかに記載の静電荷像現像用トナー。
Figure JPOXMLDOC01-appb-C000003

(式中、OR及びROはオキシアルキレン基であり、R及びRはそれぞれ独立にエチレン基又はプロピレン基であり、x及びyはアルキレンオキシドの平均付加モル数を示し、それぞれ正の数であり、xとyの和の値は、1以上、好ましくは1.5以上であり、16以下、好ましくは8以下、より好ましくは4以下である。)
<16>
 前記ビスフェノールAのアルキレンオキシド付加物由来の構成単位の含有量が、前記非晶性ポリエステル系樹脂Aのアルコール成分由来の構成単位中、80モル%以上であって、好ましくは90モル%以上であり、100モル%以下である、<15>に記載の静電荷像現像用トナー。
<17>
 前記非晶性ポリエステル系樹脂Aのアルコール成分由来の構成単位が、前記直鎖又は分岐の脂肪族ジオール由来の構成単位を含む、<1>~<14>のいずれかに記載の静電荷像現像用トナー。
<18>
 前記直鎖又は分岐の脂肪族ジオール由来の構成単位がネオペンチルグリコール由来の構成単位を含み、ネオペンチルグリコール由来の構成単位の含有量が、前記直鎖又は分岐の脂肪族ジオール由来の構成単位中、65モル%以上であって、好ましくは85モル%以上、より好ましくは90モル%以上、更に好ましくは95モル%以上であり、100モル%以下である、<17>に記載の静電荷像現像用トナー。
<19>
 前記非晶性ポリエステル系樹脂Aのカルボン酸成分由来の構成単位が、芳香族ジカルボン酸由来の構成単位、直鎖又は分岐の脂肪族ジカルボン酸由来の構成単位、及び脂環式ジカルボン酸由来の構成単位から選択される少なくとも1種、好ましくは芳香族ジカルボン酸由来の構成単位及び直鎖又は分岐の脂肪族ジカルボン酸由来の構成単位から選択される少なくとも1種を含む、<1>~<18>のいずれかに記載の静電荷像現像用トナー。
<20>
 前記芳香族ジカルボン酸由来の構成単位が、フタル酸由来の構成単位、イソフタル酸由来の構成単位、及びテレフタル酸由来の構成単位から選択される少なくとも1種、好ましくはイソフタル酸由来の構成単位及び/又はテレフタル酸由来の構成単位、より好ましくはテレフタル酸由来の構成単位を含む、<1>~<19>のいずれかに記載の静電荷像現像用トナー。
<21>
 前記非晶性ポリエステル系樹脂Aの軟化点が70℃以上であって、好ましくは90℃以上、より好ましくは100℃以上であり、140℃以下であって、好ましくは130℃以下、より好ましくは125℃以下である、<1>~<20>のいずれかに記載の静電荷像現像用トナー。
<22>
 前記非晶性ポリエステル系樹脂Aのガラス転移温度が30℃以上であって、好ましくは35℃以上、より好ましくは40℃以上であり、80℃以下であって、好ましくは75℃以下、より好ましくは70℃以下である、<1>~<21>のいずれかに記載の静電荷像現像用トナー。
<23>
 前記非晶性ポリエステル系樹脂Aの溶解度パラメータが9.20(cal/cm1/2以上であって、好ましくは9.50(cal/cm1/2以上、より好ましくは10.00(cal/cm1/2以上であり、12.00(cal/cm1/2以下であって、好ましくは11.80(cal/cm1/2以下、より好ましくは11.50(cal/cm1/2以下である、<1>~<22>のいずれかに記載の静電荷像現像用トナー。
<24>
 前記非晶性ポリエステル系樹脂Aと前記結晶性ポリエステル樹脂Cの溶解度パラメータの差が0.50(cal/cm1/2以上であって、好ましくは0.55(cal/cm1/2以上、より好ましくは0.60(cal/cm1/2以上、更に好ましくは0.63(cal/cm1/2以上であり、1.50(cal/cm1/2以下であって、好ましくは1.30(cal/cm1/2以下、より好ましくは1.00(cal/cm1/2以下、更に好ましくは0.95(cal/cm1/2以下、更に好ましくは0.90(cal/cm1/2以下である、<1>~<23>のいずれかに記載の静電荷像現像用トナー。
<25>
 前記結晶性ポリエステル樹脂Cの含有量に対する前記非晶性ポリエステル系樹脂Aの含有量の質量比が55/45以上であって、好ましくは60/40以上、より好ましくは65/35以上であり、90/10以下であって、好ましくは85/15以下、より好ましくは78/22以下である、<1>~<24>のいずれかに記載の静電荷像現像用トナー。
<26>
 前記着色剤が、1分子中に有する-NH-及び-NHの合計数を、分子量で除した値をNH基量としたとき、NH基量が6.0mmol/g以上の顔料であり、NH基量が20.0mmol/g以下であって、好ましくは15.0mmol/g以下である、<1>~<25>のいずれかに記載の静電荷像現像用トナー。
<27>
 前記着色剤が黄色有機顔料である、<1>~<26>のいずれかに記載の静電荷像現像用トナー。
<28>
 前記着色剤が、イソインドリン系顔料及びベンズイミダゾロン顔料から選択される少なくとも1種を含む、<1>~<27>のいずれかに記載の静電荷像現像用トナー。
<29>
 前記着色剤が、C.I.ピグメントイエロー185及びC.I.ピグメントイエロー180から選択される少なくとも1種である、<1>~<28>のいずれかに記載の静電荷像現像用トナー。
<30>
 前記着色剤の含有量が、前記結晶性ポリエステル樹脂Cと前記非晶性ポリエステル系樹脂Aの合計100質量部に対して、3質量部以上であって、好ましくは5質量部以上、より好ましくは7質量部以上であり、25質量部以下であって、好ましくは20質量部以下、より好ましくは15質量部以下である、<1>~<29>のいずれかに記載の静電荷像現像用トナー。
<31>
 前記静電荷像現像用トナーがトナー粒子を含み、前記着色剤の含有量が、当該トナー粒子中、3質量%以上であって、好ましくは5質量%以上であり、25質量%以下であって、好ましくは20質量%以下、より好ましくは15質量%以下である、<1>~<30>のいずれかに記載の静電荷像現像用トナー。
<32>
 コアシェル構造を有する、<1>~<31>のいずれかに記載の静電荷像現像用トナー。
<33>
 結晶性ポリエステル樹脂C及び非晶性ポリエステル系樹脂Aを同一又は異なる粒子に含有する樹脂粒子と、着色剤とを、水系媒体中で凝集させる工程及び融着させる工程を有する、静電荷像現像用トナーの製造方法であって、
 前記結晶性ポリエステル樹脂Cが、エチレングリコールを含む脂肪族ジオール成分由来の構成単位と、炭素数10以上14以下の脂肪族ジカルボン酸成分由来の構成単位とを含み、かつエステル基濃度が6.5mmol/g以上9.0mmol/g以下であり、
 前記着色剤は、1分子中に有する-NH-及び-NHの合計数を、分子量で除した値をNH基量としたとき、NH基量が6.0mmol/g以上の顔料である、
 静電荷像現像用トナーの製造方法。
<34>
 前記凝集させる工程後、前記融着させる工程前に、前記凝集させる工程で得られた凝集粒子1に、非晶性樹脂を含むシェル用樹脂粒子を付着させて凝集させ、凝集粒子2を得る工程を有する、<33>に記載の静電荷像現像用トナーの製造方法。
<35>
 前記凝集粒子1の質量に対する、前記シェル用樹脂粒子の質量比[シェル用樹脂粒子/凝集粒子1]が、1/99以上であって、好ましくは3/97以上、より好ましくは5/95以上であり、25/75以下であって、好ましくは20/80以下、より好ましくは15/85以下である、<34>に記載の静電荷像現像用トナーの製造方法。
In combination with the above embodiment, the present invention discloses the following embodiments.
<1>
A toner for developing electrostatic images, comprising a crystalline polyester resin C, an amorphous polyester resin A, and a colorant,
the crystalline polyester resin C contains a structural unit derived from an aliphatic diol component containing ethylene glycol and a structural unit derived from an aliphatic dicarboxylic acid component having from 10 to 14 carbon atoms, and has an ester group concentration of from 6.5 mmol/g to 9.0 mmol/g,
The colorant is a pigment having an NH group amount of 6.0 mmol/g or more when the total number of -NH- and -NH2 groups in one molecule is divided by the molecular weight to define the NH group amount.
Toner for developing electrostatic images.
<2>
The toner for developing an electrostatic image according to <1>, wherein the crystalline polyester resin C further contains a structural unit derived from a monocarboxylic acid component having 6 to 24 carbon atoms.
<3>
The toner for developing electrostatic images according to <2>, wherein the number of carbon atoms in the constitutional unit derived from the monocarboxylic acid component having from 6 to 24 carbon atoms is preferably 8 or more, more preferably 12 or more, even more preferably 14 or more, still more preferably 16 or more, and is preferably 22 or less, more preferably 20 or less.
<4>
The toner for developing electrostatic images according to <2> or <3>, wherein the content of the structural units derived from a monocarboxylic acid component having from 6 to 24 carbon atoms is 1 mol % or more, preferably 5 mol % or more, more preferably 7 mol % or more, and 35 mol % or less, preferably 30 mol % or less, more preferably 20 mol % or less, and even more preferably 15 mol % or less, in the structural units derived from a carboxylic acid component of the crystalline polyester resin C.
<5>
The toner for developing electrostatic images according to any one of <1> to <4>, wherein the constitutional unit derived from an aliphatic dicarboxylic acid component having from 10 to 14 carbon atoms includes a constitutional unit derived from an α,ω-linear aliphatic dicarboxylic acid component having from 10 to 14 carbon atoms.
<6>
The toner for developing electrostatic images according to any one of <1> to <5>, wherein the structural unit derived from an aliphatic dicarboxylic acid component having from 10 to 14 carbon atoms includes at least one selected from a structural unit derived from sebacic acid, a structural unit derived from 1,11-undecanedioic acid, a structural unit derived from 1,12-dodecanedioic acid, a structural unit derived from 1,13-tridecanedioic acid, and a structural unit derived from 1,14-tetradecanedioic acid, preferably at least one selected from a structural unit derived from sebacic acid, a structural unit derived from 1,12-dodecanedioic acid, and a structural unit derived from 1,14-tetradecanedioic acid, more preferably a structural unit derived from 1,12-dodecanedioic acid and/or a structural unit derived from 1,14-tetradecanedioic acid.
<7>
The toner for developing electrostatic images according to any one of <1> to <6>, wherein the content of the constitutional units derived from the aliphatic diol component in the constitutional units derived from the alcohol component of the crystalline polyester resin C is 80 mol % or more, preferably 85 mol % or more, more preferably 90 mol % or more, and even more preferably 95 mol % or more, and 100 mol % or less.
<8>
The toner for developing electrostatic images according to any one of <1> to <7>, wherein the content of the constitutional units derived from ethylene glycol in the constitutional units derived from an alcohol component of the crystalline polyester resin C is 65 mol % or more, preferably 85 mol % or more, more preferably 90 mol % or more, and still more preferably 95 mol % or more and 100 mol % or less.
<9>
The toner for developing electrostatic images according to any one of <1> to <8>, wherein the content of the constitutional units derived from an aliphatic dicarboxylic acid having from 10 to 14 carbon atoms is 70 mol % or more, preferably 75 mol % or more, more preferably 80 mol % or more, and even more preferably 85 mol % or more, and 100 mol % or less, in the constitutional units derived from a carboxylic acid component of the crystalline polyester resin C.
<10>
The toner for developing electrostatic images according to any one of <1> to <9>, wherein the ester group concentration of the crystalline polyester resin C is 6.7 mmol/g or more and 8.8 mmol/g or less, and preferably 8.6 mmol/g or less.
<11>
The toner for developing electrostatic images according to any one of <1> to <10>, wherein the softening point of the crystalline polyester resin C is 60° C. or higher, preferably 65° C. or higher, more preferably 70° C. or higher, and 150° C. or lower, preferably 120° C. or lower, more preferably 100° C. or lower.
<12>
The toner for developing electrostatic images according to any one of <1> to <11>, wherein the melting point of the crystalline polyester resin C is 50° C. or higher, preferably 60° C. or higher, more preferably 70° C. or higher, and 100° C. or lower, preferably 95° C. or lower, more preferably 90° C. or lower.
<13>
The toner for developing electrostatic images according to any one of <1> to <12>, wherein the solubility parameter of the crystalline polyester resin C is 8.70 (cal/cm 3 ) 1/2 or more, preferably 9.00 (cal/cm 3 ) 1/2 or more, more preferably 9.50 (cal/cm 3 ) 1/2 or more, and 11.00 (cal/cm 3 ) 1/2 or less, preferably 10.50 (cal/cm 3 ) 1/2 or less, more preferably 10.20 (cal/cm 3 ) 1/2 or less.
<14>
The toner for developing electrostatic images according to any one of <1> to <13>, wherein the structural unit derived from an alcohol component of the amorphous polyester resin A is at least one selected from the group consisting of a structural unit derived from an alkylene oxide adduct of an aromatic diol, a structural unit derived from a linear or branched aliphatic diol, a structural unit derived from an alicyclic diol, and a structural unit derived from a trivalent or higher polyhydric alcohol, and preferably includes a structural unit derived from an alkylene oxide adduct of an aromatic diol and/or a structural unit derived from a linear or branched aliphatic diol.
<15>
The toner for developing electrostatic images according to any one of <1> to <14>, wherein the structural unit derived from an alcohol component of the amorphous polyester resin A includes a structural unit derived from an alkylene oxide adduct of an aromatic diol, preferably a structural unit derived from an alkylene oxide adduct of bisphenol A, more preferably a structural unit derived from an alkylene oxide adduct of 2,2-bis(4-hydroxyphenyl)propane represented by the following formula (I), even more preferably a structural unit derived from a propylene oxide adduct of bisphenol A and/or a structural unit derived from an ethylene oxide adduct of bisphenol A, still more preferably a structural unit derived from a propylene oxide adduct of bisphenol A.
Figure JPOXMLDOC01-appb-C000003

(In the formula, OR1 and R2O are oxyalkylene groups, R1 and R2 each independently represent an ethylene group or a propylene group, x and y each represent the average number of moles of alkylene oxide added and are each a positive number, and the sum of x and y is 1 or more, preferably 1.5 or more, and 16 or less, preferably 8 or less, more preferably 4 or less.)
<16>
The toner for developing electrostatic images according to <15>, wherein the content of the structural units derived from an alkylene oxide adduct of bisphenol A is 80 mol % or more, preferably 90 mol % or more and 100 mol % or less, in the structural units derived from an alcohol component of the amorphous polyester resin A.
<17>
The toner for developing electrostatic images according to any one of <1> to <14>, wherein the structural unit derived from an alcohol component of the amorphous polyester resin A includes a structural unit derived from the linear or branched aliphatic diol.
<18>
The toner for developing electrostatic images according to <17>, wherein the structural units derived from the linear or branched aliphatic diol contain structural units derived from neopentyl glycol, and the content of the structural units derived from neopentyl glycol in the structural units derived from the linear or branched aliphatic diol is 65 mol % or more, preferably 85 mol % or more, more preferably 90 mol % or more, and even more preferably 95 mol % or more and 100 mol % or less.
<19>
The toner for developing electrostatic images according to any one of <1> to <18>, wherein the structural unit derived from a carboxylic acid component of the amorphous polyester resin A includes at least one selected from the group consisting of a structural unit derived from an aromatic dicarboxylic acid, a structural unit derived from a linear or branched aliphatic dicarboxylic acid, and a structural unit derived from an alicyclic dicarboxylic acid, and is preferably at least one selected from the group consisting of a structural unit derived from an aromatic dicarboxylic acid and a structural unit derived from a linear or branched aliphatic dicarboxylic acid.
<20>
The toner for developing electrostatic images according to any one of <1> to <19>, wherein the structural unit derived from an aromatic dicarboxylic acid includes at least one selected from the group consisting of a structural unit derived from phthalic acid, a structural unit derived from isophthalic acid, and a structural unit derived from terephthalic acid, preferably a structural unit derived from isophthalic acid and/or a structural unit derived from terephthalic acid, and more preferably a structural unit derived from terephthalic acid.
<21>
The toner for developing electrostatic images according to any one of <1> to <20>, wherein the softening point of the amorphous polyester resin A is 70° C. or higher, preferably 90° C. or higher, more preferably 100° C. or higher, and is 140° C. or lower, preferably 130° C. or lower, more preferably 125° C. or lower.
<22>
The toner for developing electrostatic images according to any one of <1> to <21>, wherein the glass transition temperature of the amorphous polyester resin A is 30° C. or higher, preferably 35° C. or higher, more preferably 40° C. or higher, and 80° C. or lower, preferably 75° C. or lower, more preferably 70° C. or lower.
<23>
The toner for developing electrostatic images according to any one of <1> to <22>, wherein the solubility parameter of the amorphous polyester resin A is 9.20 (cal/cm 3 ) 1/2 or more, preferably 9.50 (cal/cm 3 ) 1/2 or more, more preferably 10.00 (cal/cm 3 ) 1/2 or more, and is 12.00 (cal/cm 3 ) 1/2 or less, preferably 11.80 (cal/cm 3 ) 1/2 or less, more preferably 11.50 (cal/cm 3 ) 1/2 or less.
<24>
The toner for developing electrostatic images according to any one of <1> to <23>, wherein a difference in solubility parameter between the amorphous polyester resin A and the crystalline polyester resin C is 0.50 (cal/cm 3 ) 1/2 or more, preferably 0.55 (cal/cm 3 ) 1/2 or more, more preferably 0.60 (cal/cm 3 ) 1/2 or more, even more preferably 0.63 (cal/cm 3 ) 1/2 or more, and is 1.50 (cal/cm 3 ) 1/2 or less, preferably 1.30 (cal/cm 3 ) 1/2 or less , more preferably 1.00 (cal/cm 3 ) 1/2 or less, even more preferably 0.95 (cal/cm 3 ) 1/2 or less, and even more preferably 0.90 (cal/cm 3 ) 1/2 or less.
<25>
The toner for developing electrostatic images according to any one of <1> to <24>, wherein a mass ratio of a content of the amorphous polyester resin A to a content of the crystalline polyester resin C is 55/45 or more, preferably 60/40 or more, more preferably 65/35 or more, and is 90/10 or less, preferably 85/15 or less, more preferably 78/22 or less.
<26>
The toner for developing electrostatic images according to any one of <1> to <25> , wherein the colorant is a pigment having an NH group amount of 6.0 mmol/g or more, and the NH group amount is 20.0 mmol/g or less, and preferably 15.0 mmol/g or less, when the NH group amount is the value obtained by dividing the total number of -NH- and -NH2 groups in one molecule by the molecular weight.
<27>
The toner for developing electrostatic images according to any one of <1> to <26>, wherein the colorant is a yellow organic pigment.
<28>
The toner for developing electrostatic images according to any one of <1> to <27>, wherein the colorant contains at least one pigment selected from the group consisting of isoindoline pigments and benzimidazolone pigments.
<29>
The toner for developing an electrostatic image according to any one of <1> to <28>, wherein the colorant is at least one selected from the group consisting of C. I. Pigment Yellow 185 and C. I. Pigment Yellow 180.
<30>
The toner for developing electrostatic images according to any one of <1> to <29>, wherein the content of the colorant is 3 parts by mass or more, preferably 5 parts by mass or more, and more preferably 7 parts by mass or more, and is 25 parts by mass or less, preferably 20 parts by mass or less, and more preferably 15 parts by mass or less, relative to 100 parts by mass in total of the crystalline polyester resin C and the amorphous polyester resin A.
<31>
The toner for developing electrostatic images according to any one of <1> to <30>, wherein the toner for developing electrostatic images contains toner particles, and a content of the colorant in the toner particles is 3% by mass or more, preferably 5% by mass or more, and 25% by mass or less, preferably 20% by mass or less, and more preferably 15% by mass or less.
<32>
The toner for developing electrostatic images according to any one of <1> to <31>, which has a core-shell structure.
<33>
A method for producing a toner for developing an electrostatic image, comprising a step of aggregating and fusing resin particles, the resin particles including a crystalline polyester resin C and an amorphous polyester resin A in the same or different particles, and a colorant in an aqueous medium, the method comprising the steps of:
the crystalline polyester resin C contains a structural unit derived from an aliphatic diol component containing ethylene glycol and a structural unit derived from an aliphatic dicarboxylic acid component having from 10 to 14 carbon atoms, and has an ester group concentration of from 6.5 mmol/g to 9.0 mmol/g,
The colorant is a pigment having an NH group amount of 6.0 mmol/g or more when the total number of -NH- and -NH2 groups in one molecule is divided by the molecular weight to define the NH group amount.
A method for producing a toner for developing electrostatic images.
<34>
The method for producing a toner for developing an electrostatic image according to <33>, further comprising a step of adhering shell resin particles containing an amorphous resin to aggregate particles 1 obtained in the aggregating step and aggregating the aggregated particles 2, after the aggregating step and before the fusion step.
<35>
The method for producing a toner for developing an electrostatic image according to <34>, wherein a mass ratio of the shell resin particles to the mass of the aggregated particles 1 [shell resin particles/aggregated particles 1] is 1/99 or more, preferably 3/97 or more, more preferably 5/95 or more, and is 25/75 or less, preferably 20/80 or less, more preferably 15/85 or less.
 以下に、実施例により本発明を具体的に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。
 なお、「アルキレンオキシド(X)」等の標記において、かっこ内の数値Xは、アルキレンオキシドの平均付加モル数を意味する。
The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples in any way.
In the notation "alkylene oxide (X)", the number X in parentheses means the average number of moles of alkylene oxide added.
[測定方法]
 ポリエステル樹脂、樹脂粒子、トナー等の各性状値は次の方法により測定、評価した。
〔樹脂の軟化点、結晶性指数、融点及びガラス転移温度〕
(1)軟化点
 フローテスター「CFT-500D」(株式会社島津製作所製)を用い、1gの試料を昇温速度6℃/minで加熱しながら、プランジャーにより1.96MPaの荷重を与え、直径1mm、長さ1mmのノズルから押し出した。温度に対し、フローテスターのプランジャー降下量をプロットし、試料の半量が流出した温度を軟化点とした。
(2)結晶性指数
 示差走査熱量計「Q100」(ティー エイ インスツルメント ジャパン株式会社製)を用いて、試料0.02gをアルミパンに計量し、降温速度10℃/minで0℃まで冷却した。次いで試料をそのまま1分間静止させ、その後、昇温速度10℃/minで180℃まで昇温し熱量を測定した。観測される吸熱ピークのうち、ピーク面積が最大のピークの温度を吸熱の最大ピーク温度(1)として、(軟化点(℃))/(吸熱の最大ピーク温度(1)(℃))により、結晶性指数を求めた。
(3)融点及びガラス転移温度
 示差走査熱量計「Q100」(ティー エイ インスツルメント ジャパン株式会社製)を用いて、試料0.02gをアルミパンに計量し、200℃まで昇温し、その温度から降温速度10℃/minで0℃まで冷却した。次いで試料を昇温速度10℃/minで昇温し、熱量を測定した。観測される吸熱ピークのうち、ピーク面積が最大のピークの温度を吸熱の最大ピーク温度(2)とした。結晶性樹脂の時には該ピーク温度を融点とした。
 また、非晶性樹脂の場合にピークが観測されるときはそのピークの温度を、ピークが観測されずに段差が観測されるときは該段差部分の曲線の最大傾斜を示す接線と該段差の低温側のベースラインの延長線との交点の温度をガラス転移温度とした。
[Measuring method]
The properties of the polyester resin, the resin particles, the toner, etc. were measured and evaluated by the following methods.
[Softening point, crystallinity index, melting point and glass transition temperature of resin]
(1) Softening point Using a flow tester "CFT-500D" (manufactured by Shimadzu Corporation), 1 g of a sample was extruded from a nozzle having a diameter of 1 mm and a length of 1 mm under a load of 1.96 MPa applied by a plunger while heating the sample at a temperature increase rate of 6°C/min. The plunger descent amount of the flow tester was plotted against the temperature, and the temperature at which half of the sample flowed out was taken as the softening point.
(2) Crystallinity Index Using a differential scanning calorimeter "Q100" (manufactured by TA Instruments Japan Co., Ltd.), 0.02 g of a sample was weighed into an aluminum pan and cooled to 0°C at a temperature drop rate of 10°C/min. The sample was then left to stand for 1 minute, and then heated to 180°C at a temperature increase rate of 10°C/min to measure the amount of heat. The temperature of the peak with the largest peak area among the observed endothermic peaks was defined as the endothermic maximum peak temperature (1), and the crystallinity index was calculated by (softening point (°C))/(endothermic maximum peak temperature (1) (°C)).
(3) Melting point and glass transition temperature Using a differential scanning calorimeter "Q100" (manufactured by TA Instruments Japan Co., Ltd.), 0.02 g of a sample was weighed into an aluminum pan, heated to 200°C, and cooled from that temperature to 0°C at a rate of 10°C/min. The sample was then heated at a rate of 10°C/min, and the amount of heat was measured. Among the endothermic peaks observed, the temperature of the peak with the largest peak area was taken as the maximum endothermic peak temperature (2). In the case of a crystalline resin, this peak temperature was taken as the melting point.
In the case of an amorphous resin, when a peak was observed, the temperature of the peak was taken as the glass transition temperature. When no peak was observed but a step was observed, the temperature at the intersection of the tangent showing the maximum slope of the curve at the step and an extension of the baseline on the low temperature side of the step was taken as the glass transition temperature.
〔樹脂の酸価〕
 樹脂の酸価は、JIS K0070:1992に従って測定した。但し、測定溶媒をアセトンとトルエンの混合溶媒(アセトン:トルエン=1:1(容量比))とした。
[Acid value of resin]
The acid value of the resin was measured in accordance with JIS K0070:1992, except that the measurement solvent was a mixed solvent of acetone and toluene (acetone:toluene=1:1 (volume ratio)).
〔離型剤の融点〕
 示差走査熱量計「Q100」(ティー エイ インスツルメント ジャパン株式会社製)を用いて、試料0.02gをアルミパンに計量し、200℃まで昇温した後、200℃から降温速度10℃/minで0℃まで冷却した。次いで、試料を昇温速度10℃/minで昇温し、熱量を測定し、吸熱の最大ピーク温度を融点とした。
[Melting point of release agent]
Using a differential scanning calorimeter "Q100" (manufactured by TA Instruments Japan Co., Ltd.), 0.02 g of a sample was weighed into an aluminum pan, heated to 200°C, and then cooled from 200°C to 0°C at a temperature drop rate of 10°C/min. The sample was then heated at a temperature rise rate of 10°C/min, the amount of heat was measured, and the maximum endothermic peak temperature was taken as the melting point.
〔樹脂粒子、着色剤粒子、及び離型剤粒子の体積中位粒径D50及びCV値〕
(1)測定装置:レーザー回折型粒径測定機「LA-920」(株式会社堀場製作所製)
(2)測定条件:測定用セルに試料分散液をとり、蒸留水を加え、吸光度が適正範囲になる濃度で体積中位粒径D50及び体積平均粒径Dvを測定した。また、CV値は次の式に従って算出した。
 CV値(%)=(粒径分布の標準偏差/体積平均粒径Dv)×100
[Volume Median Particle Size D50 and CV Value of Resin Particles, Colorant Particles, and Release Agent Particles]
(1) Measuring device: Laser diffraction type particle size measuring instrument "LA-920" (manufactured by Horiba, Ltd.)
(2) Measurement conditions: A sample dispersion was placed in a measurement cell, distilled water was added, and the volume median particle size D50 and the volume average particle size Dv were measured at a concentration where the absorbance was in the appropriate range. The CV value was calculated according to the following formula.
CV value (%) = (standard deviation of particle size distribution / volume average particle size Dv) x 100
〔樹脂粒子分散液、着色剤粒子分散液、及び離型剤粒子分散液の固形分濃度〕
 赤外線水分計「FD-230」(株式会社ケツト科学研究所製)を用いて、測定試料5gを乾燥温度150℃、測定モード96(監視時間2.5分、水分量の変動幅0.05%)にて、水分(質量%)を測定した。固形分濃度は次の式に従って算出した。
 固形分濃度(質量%)=100-水分(質量%)
[Solid Content Concentration of Resin Particle Dispersion, Colorant Particle Dispersion, and Release Agent Particle Dispersion]
Using an infrared moisture meter "FD-230" (Kett Electric Laboratory Co., Ltd.), the moisture content (mass%) of 5 g of the measurement sample was measured at a drying temperature of 150°C and measurement mode 96 (monitoring time 2.5 minutes, moisture content fluctuation range 0.05%). The solid content concentration was calculated according to the following formula.
Solid content (mass%)=100-moisture (mass%)
〔凝集粒子の体積中位粒径D50
 ・測定機:「コールターマルチサイザー(登録商標)III」(ベックマンコールター株式会社製)
 ・アパチャー径:50μm
 ・解析ソフト:「マルチサイザー(登録商標)IIIバージョン3.51」(ベックマンコールター株式会社製)
 ・電解液:「アイソトン(登録商標)II」(ベックマンコールター株式会社製)
 ・測定条件:試料分散液を前記電解液100mLに加えることにより、3万個の粒子の粒径を20秒で測定できる濃度に調整した後、改めて3万個の粒子を測定し、その粒径分布から体積中位粒径D50を求めた。
[Volume Median Particle Diameter D50 of Agglomerated Particles]
・Measuring instrument: "Coulter Multisizer (registered trademark) III" (manufactured by Beckman Coulter, Inc.)
Aperture diameter: 50 μm
Analysis software: "Multisizer (registered trademark) III version 3.51" (Beckman Coulter, Inc.)
・Electrolyte: "Isoton (registered trademark) II" (Beckman Coulter, Inc.)
Measurement conditions: The sample dispersion was added to 100 mL of the electrolyte to adjust the concentration to a level where the particle sizes of 30,000 particles could be measured in 20 seconds, and then the 30,000 particles were measured again, and the volume median particle size D50 was calculated from the particle size distribution.
〔融着粒子の円形度〕
 ・測定装置:フロー式粒子像分析装置「FPIA-3000」(シスメックス株式会社製)
 ・分散液の調製:融着粒子の分散液を固形分濃度が0.001~0.05質量%になるように脱イオン水で希釈して調製した。
 ・測定モード:HPF測定モード
[Circularity of fused particles]
・Measuring device: Flow type particle image analyzer "FPIA-3000" (manufactured by Sysmex Corporation)
Preparation of dispersion: A dispersion of fused particles was prepared by diluting with deionized water to a solids concentration of 0.001 to 0.05% by mass.
Measurement mode: HPF measurement mode
〔トナー粒子の体積中位粒径D50及びCV値〕
 測定装置、アパチャー径、解析ソフト、電解液は、前述の凝集粒子の体積中位粒径D50の測定で用いたものと同様のものを用いた。
 ・分散液:ポリオキシエチレンラウリルエーテル「エマルゲン(登録商標)109P」(花王株式会社製、HLB(Hydrophile-Lipophile Balance)=13.6)を前記電解液に溶解させ、濃度5質量%の分散液を得た。
 ・分散条件:前記分散液5mLに乾燥後のトナー粒子の測定試料10mgを添加し、超音波分散機にて1分間分散させ、その後、前記電解液25mLを添加し、更に、超音波分散機にて1分間分散させて、試料分散液を調製した。
 ・測定条件:前記試料分散液を前記電解液100mLに加えることにより、3万個の粒子の粒径を20秒で測定できる濃度に調整した後、3万個の粒子を測定し、その粒径分布から体積中位粒径D50及び体積平均粒径Dを求めた。
 また、CV値(%)は次の式に従って算出した。
 CV値(%)=(粒径分布の標準偏差/体積平均粒径D)×100
[Volume Median Particle Size D50 and CV Value of Toner Particles]
The measuring device, aperture diameter, analysis software, and electrolyte used were the same as those used in the measurement of the volume median particle diameter D 50 of the agglomerated particles described above.
Dispersion: Polyoxyethylene lauryl ether "EMULGEN (registered trademark) 109P" (manufactured by Kao Corporation, HLB (hydrophile-lipophile balance) = 13.6) was dissolved in the electrolyte to obtain a dispersion with a concentration of 5 mass %.
Dispersion conditions: 10 mg of a measurement sample of dried toner particles was added to 5 mL of the dispersion liquid, and the mixture was dispersed for 1 minute using an ultrasonic disperser. Thereafter, 25 mL of the electrolyte solution was added, and the mixture was further dispersed for 1 minute using an ultrasonic disperser to prepare a sample dispersion liquid.
Measurement conditions: The sample dispersion was added to 100 mL of the electrolyte to adjust the concentration to a level that would allow the particle sizes of 30,000 particles to be measured in 20 seconds. The 30,000 particles were then measured, and the volume median particle size D50 and volume average particle size DV were determined from the particle size distribution.
The CV value (%) was calculated according to the following formula:
CV value (%) = (standard deviation of particle size distribution / volume average particle size D V ) × 100
〔トナー粒子の円形度〕
 ・測定装置:フロー式粒子像分析装置「FPIA-3000」(シスメックス株式会社製)
 ・分散液の調製:トナー粒子の分散液を固形分濃度が0.001~0.05質量%になるように脱イオン水で希釈して調製した。
 ・測定モード:HPF測定モード
[Circularity of Toner Particles]
・Measuring device: Flow type particle image analyzer "FPIA-3000" (manufactured by Sysmex Corporation)
Preparation of dispersion: A dispersion of toner particles was prepared by diluting with deionized water so that the solid content concentration was 0.001 to 0.05% by mass.
Measurement mode: HPF measurement mode
[樹脂の製造]
〔非晶性ポリエステル系樹脂Aの製造〕
製造例A1(樹脂A-1の製造)
 窒素導入管、脱水管、撹拌機、及び熱電対を装備した10L容の四つ口フラスコの内部を窒素置換し、ビスフェノールAのプロピレンオキシド(2.2)付加物4367g、テレフタル酸1098g、ジ(2-エチルヘキサン酸)錫(II)32g、及び没食子酸(3,4,5-トリヒドロキシ安息香酸)3.2gを入れ、窒素雰囲気下、反応系を撹拌しながら、235℃に昇温し、235℃で5時間保持した後、フラスコ内の圧力を下げ、8kPaにて1時間保持した。その後、大気圧に戻した後、160℃まで冷却し、160℃に保持した状態で、スチレン1070g、メタクリル酸ステアリル267g、アクリル酸144g、及びジブチルパーオキシド160gの混合物を3時間かけて反応系に滴下した。その後、反応系を30分間160℃に保持した後、200℃まで昇温し、更にフラスコ内の圧力を下げ、8kPaにて1時間保持した。その後、大気圧に戻した後、190℃まで冷却し、フマル酸174g、セバシン酸378g、トリメリット酸無水物240g、及び4-tert-ブチルカテコール3.2gを加え、210℃まで10℃/hrで昇温し、その後、4kPaにて表1に示す軟化点まで反応を行って、樹脂A-1を得た。物性値を表1に示す。
[Production of resin]
[Production of amorphous polyester resin A]
Production Example A1 (Production of Resin A-1)
The inside of a 10 L four-neck flask equipped with a nitrogen inlet tube, a dehydration tube, a stirrer, and a thermocouple was replaced with nitrogen, and 4367 g of a propylene oxide (2.2) adduct of bisphenol A, 1098 g of terephthalic acid, 32 g of tin (II) di(2-ethylhexanoate), and 3.2 g of gallic acid (3,4,5-trihydroxybenzoic acid) were placed in the flask. The reaction system was heated to 235° C. under a nitrogen atmosphere while stirring, and then maintained at 235° C. for 5 hours. The pressure in the flask was then reduced and maintained at 8 kPa for 1 hour. After that, the pressure was returned to atmospheric pressure, and the flask was cooled to 160° C., and a mixture of 1070 g of styrene, 267 g of stearyl methacrylate, 144 g of acrylic acid, and 160 g of dibutyl peroxide was added dropwise to the reaction system over 3 hours while maintaining the temperature at 160° C. The reaction system was then held at 160°C for 30 minutes, then heated to 200°C, and the pressure in the flask was further reduced and held at 8 kPa for 1 hour. After that, the pressure was returned to atmospheric pressure, and the mixture was cooled to 190°C, and 174 g of fumaric acid, 378 g of sebacic acid, 240 g of trimellitic anhydride, and 3.2 g of 4-tert-butylcatechol were added, and the temperature was raised to 210°C at 10°C/hr, and then the reaction was continued at 4 kPa until the softening point shown in Table 1 was reached, to obtain Resin A-1. The physical properties are shown in Table 1.
製造例A2(樹脂A-2の製造)
 製造例A1において、ポリエステル樹脂セグメントの原料モノマーの量等を表1に示すように変更した以外は同様にして、樹脂A-2を得た。物性値を表1に示す。
Production Example A2 (Production of Resin A-2)
Resin A-2 was obtained in the same manner as in Production Example A1, except that the amounts of raw material monomers for the polyester resin segment, etc. were changed as shown in Table 1. The physical properties are shown in Table 1.
製造例A3(樹脂A-3の製造)
 表1に示すイソフタル酸以外のポリエステル樹脂の原料モノマー、エステル化触媒、エステル化助触媒を、窒素導入管、98℃の熱水を通した分留管を装着した脱水管、撹拌器及び熱電対を装備した10L容の四つ口フラスコに入れた。窒素雰囲気下、反応系を180℃で1時間保持した後に180℃から230℃まで10℃/hで昇温し、その後230℃で5時間保持し、重縮合させた。その後、180℃まで冷却した後、イソフタル酸を反応系に投入し、180℃から230℃まで10℃/hで昇温し、230℃にて1時間反応を行い、230℃、10kPaにて表1に示す軟化点まで反応を行い、樹脂A-3を得た。物性値を表1に示す。
Production Example A3 (Production of Resin A-3)
The raw material monomers of polyester resin other than isophthalic acid shown in Table 1, esterification catalyst, and esterification promoter were placed in a 10L four-neck flask equipped with a nitrogen inlet tube, a dehydration tube equipped with a fractionating tube through which hot water of 98 ° C. was passed, a stirrer, and a thermocouple. Under a nitrogen atmosphere, the reaction system was held at 180 ° C. for 1 hour, and then heated from 180 ° C. to 230 ° C. at 10 ° C. / h, and then held at 230 ° C. for 5 hours to perform polycondensation. After that, after cooling to 180 ° C., isophthalic acid was added to the reaction system, the temperature was raised from 180 ° C. to 230 ° C. at 10 ° C. / h, and the reaction was carried out at 230 ° C. for 1 hour, and the reaction was carried out at 230 ° C. and 10 kPa until the softening point shown in Table 1 was obtained. The physical properties are shown in Table 1.
〔非晶性ポリエステル系樹脂Bの製造〕
製造例B1(樹脂B-1の製造)
 窒素導入管、脱水管、撹拌器及び熱電対を装備した20L容のステンレス釜に、表1に示すトリメリット酸無水物を除くポリエステル樹脂の原料モノマーを入れた。窒素雰囲気下、230℃で8時間反応させた後、1.3kPa~2.0kPaの減圧下で4時間反応させた。更に、トリメリット酸無水物を加えた後、180℃で表1に示す軟化点まで反応を行って、樹脂B-1を得た。物性値を表1に示す。
[Production of amorphous polyester resin B]
Production Example B1 (Production of Resin B-1)
In a 20 L stainless steel kettle equipped with a nitrogen inlet tube, a dehydration tube, a stirrer, and a thermocouple, the raw material monomers of the polyester resin, except for trimellitic anhydride, shown in Table 1, were placed. The mixture was reacted at 230°C for 8 hours under a nitrogen atmosphere, and then reacted under a reduced pressure of 1.3 kPa to 2.0 kPa for 4 hours. Trimellitic anhydride was further added, and the mixture was reacted at 180°C until the softening point shown in Table 1 was reached, yielding Resin B-1. The physical properties are shown in Table 1.
製造例B2(樹脂B-2の製造)
 表1に示すフマル酸以外のポリエステル樹脂の原料モノマー、エステル化触媒、エステル化助触媒を、窒素導入管、98℃の熱水を通した分留管を装着した脱水管、撹拌器及び熱電対を装備した10L容の四つ口フラスコに入れた。窒素雰囲気下、反応系を180℃で1時間保持した後に180℃から230℃まで10℃/hで昇温し、その後230℃で5時間保持し、重縮合させた。その後、180℃まで冷却した後、フマル酸及びラジカル重合禁止剤5gを反応系に投入し、180℃から210℃まで10℃/hで昇温し、210℃で1時間反応を行い、210℃、10kPaにて表1に示す軟化点まで反応を行い、樹脂B-2を得た。物性値を表1に示す。
Production Example B2 (Production of Resin B-2)
The raw material monomers of polyester resin other than fumaric acid shown in Table 1, esterification catalyst, and esterification promoter were placed in a 10L four-neck flask equipped with a nitrogen inlet tube, a dehydration tube equipped with a fractionating tube through which hot water of 98 ° C. was passed, a stirrer, and a thermocouple. Under a nitrogen atmosphere, the reaction system was held at 180 ° C. for 1 hour, and then heated from 180 ° C. to 230 ° C. at 10 ° C. / h, and then held at 230 ° C. for 5 hours to perform polycondensation. After that, after cooling to 180 ° C., 5 g of fumaric acid and radical polymerization inhibitor were added to the reaction system, the temperature was raised from 180 ° C. to 210 ° C. at 10 ° C. / h, and the reaction was carried out at 210 ° C. for 1 hour, and the reaction was carried out at 210 ° C. and 10 kPa until the softening point shown in Table 1 was obtained. The physical properties are shown in Table 1.
〔複合樹脂Dの製造〕
製造例D1(樹脂D-1の製造)
 窒素導入管、脱水管、撹拌機、及び熱電対を装備した10L容の四つ口フラスコの内部を窒素置換し、ビスフェノールAのプロピレンオキシド(2.2)付加物3450g、テレフタル酸655g、ジ(2-エチルヘキサン酸)錫(II)24g、及び没食子酸(3,4,5-トリヒドロキシ安息香酸)2.4gを入れ、窒素雰囲気下、反応系を撹拌しながら、235℃に昇温し、235℃で5時間保持した後、フラスコ内の圧力を下げ、8kPaにて1時間保持した。その後、大気圧に戻した後、160℃まで冷却し、160℃に保持した状態で、スチレン2133g、メタクリル酸ステアリル533g、アクリル酸114g、及びジブチルパーオキシド320gの混合物を3時間かけて滴下した。その後、反応系を30分間160℃に保持した後、200℃まで昇温し、更にフラスコ内の圧力を下げ、8kPaにて1時間保持した。その後、大気圧に戻した後、190℃まで冷却し、コハク酸582gを加え、210℃まで10℃/hrで昇温し、その後、4kPaにて表1に示す軟化点まで反応を行って、樹脂D-1を得た。物性値を表1に示す。
[Production of Composite Resin D]
Production Example D1 (Production of Resin D-1)
The inside of a 10 L four-neck flask equipped with a nitrogen inlet tube, a dehydration tube, a stirrer, and a thermocouple was replaced with nitrogen, and 3450 g of a propylene oxide (2.2) adduct of bisphenol A, 655 g of terephthalic acid, 24 g of tin (II) di(2-ethylhexanoate), and 2.4 g of gallic acid (3,4,5-trihydroxybenzoic acid) were placed in the flask. The reaction system was heated to 235° C. under a nitrogen atmosphere while stirring, and then maintained at 235° C. for 5 hours. The pressure in the flask was then reduced and maintained at 8 kPa for 1 hour. After that, the pressure was returned to atmospheric pressure, and the flask was cooled to 160° C., and a mixture of 2133 g of styrene, 533 g of stearyl methacrylate, 114 g of acrylic acid, and 320 g of dibutyl peroxide was added dropwise over 3 hours while maintaining the temperature at 160° C. The reaction system was then held at 160°C for 30 minutes, then heated to 200°C, and the pressure in the flask was further reduced and held at 8 kPa for 1 hour. After that, the pressure was returned to atmospheric pressure, and the mixture was cooled to 190°C, 582 g of succinic acid was added, and the mixture was heated to 210°C at 10°C/hr, and then reacted at 4 kPa until the softening point shown in Table 1 was reached, to obtain Resin D-1. The physical properties are shown in Table 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<表1の注>
*1:BPA-POはビスフェノールAのポリオキシプロピレン(2.2)付加物を意味する。BPA-EOはビスフェノールAのポリオキシエチレン(2.2)付加物を意味する。
*2:原料モノマー(P)のアルコール成分を100モル部としたときの、原料モノマー(P)及び両反応性モノマーを構成する各モノマーのモル部を意味する。
*3:原料モノマー(V)の総量中における、原料モノマー(V)を構成する各モノマーの含有量(質量%)を意味する。
*4:ポリエステル樹脂セグメント、付加重合樹脂セグメント、及び両反応性モノマー由来の構成単位の合計量100質量部に対する量(質量%)
 ポリエステル樹脂セグメント量を反応水量を除いた理論収量とし、両反応性モノマーについても反応水量を除いた理論収量とした。また、付加重合樹脂セグメントの量には、ラジカル重合開始剤量を含むものとして算出した。
<Notes for Table 1>
*1: BPA-PO means a polyoxypropylene (2.2) adduct of bisphenol A. BPA-EO means a polyoxyethylene (2.2) adduct of bisphenol A.
*2: This refers to the molar parts of each monomer constituting the raw material monomer (P) and the bireactive monomer when the alcohol component of the raw material monomer (P) is taken as 100 molar parts.
*3: This refers to the content (mass%) of each monomer constituting the raw material monomer (V) in the total amount of the raw material monomer (V).
*4: Amount (% by mass) relative to 100 parts by mass of the total amount of the polyester resin segment, the addition polymerization resin segment, and the structural units derived from the bireactive monomer
The amount of polyester resin segment was calculated as a theoretical yield excluding the amount of reaction water, and the amount of both reactive monomers was calculated as a theoretical yield excluding the amount of reaction water. The amount of addition polymerization resin segment was calculated assuming that the amount of radical polymerization initiator was included.
〔結晶性ポリエステル樹脂Cの製造〕
製造例C1(樹脂C-1の製造)
 窒素導入管、脱水管、撹拌機及び熱電対を装備した10L容の四つ口フラスコの内部を窒素置換し、表2に示すポリエステル樹脂の原料モノマーを入れ、反応系を撹拌しながら、135℃に昇温し、135℃で3時間保持した後、135℃から200℃まで10時間かけて昇温した。その後、ジ(2-エチルヘキサン酸)錫(II)10gを反応系に加え、更に200℃にて1時間保持した後、フラスコ内の圧力を下げ、8kPaの減圧下にて1時間保持し、結晶性ポリエステル樹脂である樹脂C-1を得た。物性値を表2に示す。
[Production of Crystalline Polyester Resin C]
Production Example C1 (Production of Resin C-1)
The inside of a 10 L four-neck flask equipped with a nitrogen inlet tube, a dehydration tube, a stirrer and a thermocouple was replaced with nitrogen, the raw material monomers of the polyester resin shown in Table 2 were added, and the reaction system was heated to 135°C while stirring, and then held at 135°C for 3 hours, and then heated from 135°C to 200°C over 10 hours. Thereafter, 10 g of tin(II) di(2-ethylhexanoate) was added to the reaction system, and the system was further held at 200°C for 1 hour, after which the pressure in the flask was reduced and the system was held under a reduced pressure of 8 kPa for 1 hour, to obtain Resin C-1, a crystalline polyester resin. The physical properties are shown in Table 2.
製造例C2、C3、C’4、C5、C’6、C’7(樹脂C-2、C-3、C’-4、C-5、C’-6、C’-7の製造)
 製造例C1において、ポリエステル樹脂の原料モノマーを表2に示すように変更した以外は同様にして、樹脂C-2、C-3、C’-4、C-5、C’-6、C’-7を得た。物性値を表2に示す。
Production Examples C2, C3, C'4, C5, C'6, and C'7 (Production of Resins C-2, C-3, C'-4, C-5, C'-6, and C'-7)
Resins C-2, C-3, C'-4, C-5, C'-6 and C'-7 were obtained in the same manner as in Production Example C1, except that the raw material monomers for the polyester resin were changed as shown in Table 2. The physical properties are shown in Table 2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
[非晶性樹脂粒子分散液の製造]
製造例X1(非晶性樹脂粒子分散液X-1の製造)
 撹拌機、還流冷却器、滴下ロート、温度計及び窒素導入管を備えた2L容の容器に、表3に示す樹脂A-1 100g、メチルエチルケトン100gを入れ、73℃にて2時間かけて溶解させた。得られた溶液に、5質量%水酸化ナトリウム水溶液を、樹脂の酸価に対して中和度60モル%になるように添加して、30分間撹拌した。
 次いで、73℃に保持したまま、200r/minで撹拌しながら、脱イオン水100gを50分間かけて添加し、転相乳化した。得られた溶液を、73℃に保持したまま、メチルエチルケトンを減圧下で留去し分散液を得た。その後、撹拌を継続しながら分散液を30℃に冷却した後、固形分濃度が20質量%になるように脱イオン水を加えることにより、樹脂粒子分散液X-1を得た。物性値を表3に示す。
[Production of amorphous resin particle dispersion]
Production Example X1 (Production of Amorphous Resin Particle Dispersion X-1)
In a 2 L vessel equipped with a stirrer, a reflux condenser, a dropping funnel, a thermometer, and a nitrogen inlet tube, 100 g of Resin A-1 shown in Table 3 and 100 g of methyl ethyl ketone were placed and dissolved at 73° C. for 2 hours. A 5% by mass aqueous solution of sodium hydroxide was added to the resulting solution so that the degree of neutralization with respect to the acid value of the resin was 60 mol %, and the mixture was stirred for 30 minutes.
Next, while maintaining the temperature at 73° C., 100 g of deionized water was added over 50 minutes while stirring at 200 rpm to cause phase inversion emulsification. While maintaining the temperature of the obtained solution at 73° C., methyl ethyl ketone was distilled off under reduced pressure to obtain a dispersion. Thereafter, while continuing to stir, the dispersion was cooled to 30° C., and deionized water was added so that the solids concentration became 20% by mass, thereby obtaining resin particle dispersion X-1. The physical properties are shown in Table 3.
製造例X2、X3(非晶性樹脂粒子分散液X-2、X-3の製造)
 製造例X1において、樹脂を表3に示すように変更した以外は同様にして、樹脂粒子分散液X-2及びX-3を得た。物性値を表3に示す。
Production Examples X2 and X3 (Production of Amorphous Resin Particle Dispersions X-2 and X-3)
Resin particle dispersions X-2 and X-3 were obtained in the same manner as in Production Example X1, except that the resin was changed as shown in Table 3. The physical property values are shown in Table 3.
製造例Y1~Y3、Y’4、Y5、Y’6、Y’7(結晶性樹脂粒子分散液Y-1~Y-3、Y’-4、Y-5、Y’-6、Y’-7の製造)
 製造例X1において、樹脂を表3に示すように変更した以外は同様にして、樹脂粒子分散液Y-1~Y-3、Y’-4、Y-5、Y’-6、及びY’-7を得た。物性値を表3に示す。
Production Examples Y1 to Y3, Y'4, Y5, Y'6, and Y'7 (Production of Crystalline Resin Particle Dispersions Y-1 to Y-3, Y'-4, Y-5, Y'-6, and Y'-7)
Resin particle dispersions Y-1 to Y-3, Y'-4, Y-5, Y'-6, and Y'-7 were obtained in the same manner as in Production Example X1, except that the resin was changed as shown in Table 3. The physical property values are shown in Table 3.
製造例Z1(樹脂粒子分散液Z-1の製造)
 撹拌機、還流冷却器、滴下ロート、温度計及び窒素導入管を備えた3L容の容器に、樹脂B-1を100g、及びメチルエチルケトン100gを入れ、73℃にて2時間かけて溶解させた。得られた溶液に、5質量%水酸化ナトリウム水溶液を、樹脂B-1の酸価に対して中和度60モル%になるように添加して、30分間撹拌した。
 次いで、73℃に保持したまま、200r/min(周速度63m/min)で撹拌しながら、脱イオン水200gを50分間かけて添加し、転相乳化した。得られた溶液を、73℃に保持したまま、メチルエチルケトンを減圧下で留去し分散液を得た。その後、撹拌を継続しながら分散液を30℃に冷却した後、固形分濃度が20質量%になるように脱イオン水を加えることにより、樹脂粒子分散液Z-1を得た。物性値を表3に示す。
Production Example Z1 (Production of Resin Particle Dispersion Z-1)
100 g of Resin B-1 and 100 g of methyl ethyl ketone were placed in a 3 L vessel equipped with a stirrer, a reflux condenser, a dropping funnel, a thermometer, and a nitrogen inlet tube, and dissolved over 2 hours at 73° C. A 5% by mass aqueous solution of sodium hydroxide was added to the resulting solution so that the degree of neutralization with respect to the acid value of Resin B-1 was 60 mol %, and the mixture was stirred for 30 minutes.
Next, while maintaining the temperature at 73° C., 200 g of deionized water was added over 50 minutes while stirring at 200 r/min (circumferential speed 63 m/min) to cause phase inversion emulsification. The resulting solution was maintained at 73° C., and methyl ethyl ketone was distilled off under reduced pressure to obtain a dispersion. Thereafter, while continuing to stir, the dispersion was cooled to 30° C., and deionized water was added so that the solid content concentration was 20 mass %, thereby obtaining resin particle dispersion Z-1. The physical properties are shown in Table 3.
製造例Z2(樹脂粒子分散液Z-2の製造)
 製造例Z1において、樹脂B-1を樹脂B-2に変更した以外は同様にして、樹脂粒子分散液Z-2を得た。物性値を表3に示す。
Production Example Z2 (Production of Resin Particle Dispersion Z-2)
A resin particle dispersion Z-2 was obtained in the same manner as in Production Example Z1, except that Resin B-2 was used instead of Resin B-1.
製造例S1(樹脂粒子分散液S-1の製造)
 製造例Z1において、樹脂B-1を樹脂D-1に変更した以外は同様にして、樹脂粒子分散液S-1を得た。物性値を表3に示す。
Production Example S1 (Production of Resin Particle Dispersion S-1)
Resin particle dispersion S-1 was obtained in the same manner as in Production Example Z1, except that Resin B-1 was changed to Resin D-1. The physical properties are shown in Table 3.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
[離型剤粒子分散液の製造]
製造例W1(離型剤粒子分散液W-1の製造)
 1L容のビーカーに、脱イオン水120g、樹脂粒子分散液S-1 86g、及びパラフィンワックス「HNP-9」(日本精鑞株式会社製、融点75℃)40gを添加し、90~95℃に温度を保持して溶融させて、撹拌し、溶融混合物を得た。
 得られた溶融混合物を更に90~95℃に温度を保持しながら、超音波ホモジナイザー「US-600T」(株式会社日本精機製作所製)を用いて20分間分散処理した後に、室温(20℃)まで冷却した。得られた分散物に脱イオン水を加え、固形分濃度を20質量%に調整し、離型剤粒子分散液W-1を得た。離型剤粒子分散液W-1中の離型剤粒子の体積中位粒径D50は0.47μm、CV値は27%であった。
[Preparation of release agent particle dispersion]
Production Example W1 (Production of Release Agent Particle Dispersion W-1)
Into a 1 L beaker, 120 g of deionized water, 86 g of resin particle dispersion S-1, and 40 g of paraffin wax "HNP-9" (manufactured by Nippon Seiro Co., Ltd., melting point 75°C) were added, and the mixture was melted by maintaining the temperature at 90 to 95°C and stirred to obtain a molten mixture.
The obtained molten mixture was further dispersed for 20 minutes using an ultrasonic homogenizer "US-600T" (manufactured by Nippon Seiki Seisakusho Co., Ltd.) while maintaining the temperature at 90 to 95°C, and then cooled to room temperature (20°C). Deionized water was added to the obtained dispersion to adjust the solid content to 20 mass%, thereby obtaining release agent particle dispersion W-1. The volume median particle diameter D50 of the release agent particles in release agent particle dispersion W-1 was 0.47 μm, and the CV value was 27%.
製造例W2(離型剤粒子分散液W-2の製造)
 製造例W1において、離型剤の種類をフィッシャートロプシュワックス「FNP-0090」(日本精蝋株式会社製、融点90℃)に変更した以外は、同様にして、離型剤粒子分散液W-2を得た。離型剤粒子分散液W-2中の離型剤粒子の体積中位粒径D50は0.45μm、CV値は28%であった。
Production Example W2 (Production of Release Agent Particle Dispersion W-2)
Release agent particle dispersion W-2 was obtained in the same manner as in Production Example W1, except that the type of release agent was changed to Fischer-Tropsch wax "FNP-0090" (manufactured by Nippon Seiro Co., Ltd., melting point 90°C). The volume median particle diameter D50 of the release agent particles in the release agent particle dispersion W-2 was 0.45 μm and the CV value was 28%.
[着色剤粒子分散液の製造]
製造例E1(着色剤粒子分散液E-1の製造)
 1L容のビーカーに、イエロー顔料「パリオトールイエローD1155」(BASFカラー&エフェクトジャパン株式会社製、C.I.ピグメントイエロー185)75g、ポリオキシエチレン(13)ジスチレン化フェニルエーテル「エマルゲンA-60」(花王株式会社製、ノニオン性界面活性剤)25g、及び脱イオン水300gを混合し、ホモミキサー「T.K.AGI HOMOMIXER 2M-03」(特殊機化工業株式会社製)を用いて室温(20℃)で撹拌翼の回転速度8000rpmで1時間分散させた後、「Microfluidizer M-110EH」(Microfluidics社製)を用いて150MPaの圧力で15パス処理した後、200メッシュのフィルターを通し、固形分濃度が20質量%になるように脱イオン水を加えることにより着色剤粒子分散液E-1を得た。物性値を表4に示す。
[Preparation of Colorant Particle Dispersion]
Production Example E1 (Production of Colorant Particle Dispersion E-1)
In a 1 L beaker, 75 g of yellow pigment "Paliotol Yellow D1155" (manufactured by BASF Color & Effects Japan, Ltd., C.I. Pigment Yellow 185), 25 g of polyoxyethylene (13) distyrenated phenyl ether "EMULGEN A-60" (manufactured by Kao Corporation, nonionic surfactant), and 300 g of deionized water were mixed and dispersed at room temperature (20°C) for 1 hour at a stirring blade rotation speed of 8000 rpm using a homomixer "T.K.AGI HOMOMIXER 2M-03" (manufactured by Tokushu Kika Kogyo Co., Ltd.), and then the mixture was treated for 15 passes at a pressure of 150 MPa using a "Microfluidizer M-110EH" (manufactured by Microfluidics Co., Ltd.), and then deionized water was added so that the solid content concentration was 20 mass%, to obtain colorant particle dispersion E-1. The physical properties are shown in Table 4.
製造例E2、E’3、E’4(着色剤粒子分散液E-2、E’-3、E’-4の製造)
 製造例E1において、イエロー顔料を表4のように変更した以外は同様にして、着色剤粒子分散液E-2、E’-3、E’-4を得た。物性値を表4に示す。
Production Examples E2, E'3, and E'4 (Production of Colorant Particle Dispersions E-2, E'-3, and E'-4)
Colorant particle dispersions E-2, E'-3 and E'-4 were obtained in the same manner as in Production Example E1, except that the yellow pigment was changed as shown in Table 4. The physical properties are shown in Table 4.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
[トナーの製造]
実施例1(トナー1の製造)
 脱水管、撹拌装置及び熱電対を装備した3L容の4つ口フラスコに、非晶性樹脂粒子分散液X-1を350g、結晶性樹脂粒子分散液Y-1を150g、離型剤粒子分散液W-1を49g、離型剤粒子分散液W-2を49g、着色剤粒子分散液E-1を63g添加し、温度25℃で混合した。次に、当該混合物を撹拌しながら、硫酸アンモニウム40gを脱イオン水570gに溶解した水溶液に4.8質量%水酸化カリウム水溶液を添加してpH8.2に調整した溶液を、25℃で10分間かけて滴下した後、58℃まで2時間かけて昇温し、凝集粒子の体積中位粒径D50が6.5μmになるまで、58℃で保持し、凝集粒子1の分散液を得た。得られた凝集粒子1の分散液を55℃に冷却し、55℃で保持しながら、樹脂粒子分散液Z-1 48gを90分かけて添加し、凝集粒子1に樹脂粒子が凝集した凝集粒子2の分散液を得た。
 得られた凝集粒子2の分散液に、ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩「デモールMS」(花王株式会社製)の20質量%水溶液50g、脱イオン水1500gを添加した。その後、75℃まで1時間かけて昇温し、円形度が0.970になるまで75℃で保持することにより、凝集粒子2が融着した融着粒子の分散液を得た。
 得られた融着粒子の分散液を30℃に冷却し、吸引濾過して固形分を分離した後、25℃の脱イオン水で洗浄した後、25℃で2時間吸引濾過した。その後、真空定温乾燥機「DRV622DA」(ADVANTEC社製)を用いて、33℃で24時間真空乾燥を行って、コアシェル構造を有するトナー粒子を得た。トナー粒子1の物性値を表5に示す。
 トナー粒子1 100質量部、疎水性シリカ「RY50」(日本アエロジル株式会社製、個数平均粒径;0.04μm)2.5質量部、及び疎水性シリカ「キャボシル(登録商標)TS720」(キャボットジャパン株式会社製、個数平均粒径;0.012μm)1.0質量部をヘンシェルミキサーに入れて撹拌し、150メッシュの篩を通過させてトナー1を得た。
[Toner Production]
Example 1 (Production of Toner 1)
Into a 3 L four-neck flask equipped with a dehydration tube, a stirrer, and a thermocouple, 350 g of amorphous resin particle dispersion X-1, 150 g of crystalline resin particle dispersion Y-1, 49 g of release agent particle dispersion W-1, 49 g of release agent particle dispersion W-2, and 63 g of colorant particle dispersion E-1 were added and mixed at a temperature of 25° C. Next, while stirring the mixture, a solution obtained by dissolving 40 g of ammonium sulfate in 570 g of deionized water and adding a 4.8 mass % potassium hydroxide aqueous solution to adjust the pH to 8.2 was dropped over 10 minutes at 25° C., and then the temperature was raised to 58° C. over 2 hours and maintained at 58° C. until the volume median particle diameter D 50 of the aggregated particles became 6.5 μm, thereby obtaining a dispersion of aggregated particles 1. The obtained dispersion of aggregated particles 1 was cooled to 55° C., and while maintaining the temperature at 55° C., 48 g of resin particle dispersion Z-1 was added over 90 minutes to obtain a dispersion of aggregated particles 2 in which resin particles were aggregated into aggregated particles 1.
To the obtained dispersion liquid of aggregated particles 2, 50 g of a 20% by mass aqueous solution of sodium salt of naphthalenesulfonic acid-formalin condensate "Demol MS" (manufactured by Kao Corporation) and 1,500 g of deionized water were added. Thereafter, the temperature was raised to 75°C over one hour, and the temperature was maintained at 75°C until the circularity reached 0.970, thereby obtaining a dispersion liquid of fused particles in which aggregated particles 2 were fused.
The obtained dispersion of fused particles was cooled to 30° C., and the solid content was separated by suction filtration, washed with deionized water at 25° C., and then suction filtered for 2 hours at 25° C. Thereafter, the solid content was vacuum dried at 33° C. for 24 hours using a vacuum constant temperature dryer "DRV622DA" (manufactured by ADVANTEC Corporation), to obtain toner particles having a core-shell structure. The physical properties of toner particle 1 are shown in Table 5.
100 parts by mass of toner particles 1, 2.5 parts by mass of hydrophobic silica "RY50" (manufactured by Nippon Aerosil Co., Ltd., number average particle size; 0.04 μm), and 1.0 part by mass of hydrophobic silica "Cabosil (registered trademark) TS720" (manufactured by Cabot Japan Co., Ltd., number average particle size; 0.012 μm) were placed in a Henschel mixer, stirred, and passed through a 150 mesh sieve to obtain toner 1.
[トナーの評価]
 得られたトナー1を以下のように評価した。
〔低温定着性の評価〕
 A4サイズにカットしたポリプロピレンフィルムラベル「フォレストPPクリアFTC50」(UPMキュンメネ・ジャパン株式会社製)に、市販のプリンタ「Microline(登録商標)5400」(沖電気工業株式会社製)を用いて、トナーのフィルムラベル上の付着量が0.43~0.45mg/cmとなるベタ画像を、A4サイズのフィルムラベルの上端から5mmの余白部分を残し、50mmの長さで定着させずに出力した。次に、定着器を温度可変に改造した同プリンタを用意し、定着器の温度を70℃から120℃へと5℃ずつ順次上昇させながら、各温度で印刷物の定着試験を行った。得られたラベル印刷物の画像部分にセロハン粘着テープ「ユニセフセロハン」(三菱鉛筆株式会社製、幅:18mm、JIS Z1522:2009)を貼り付け、テープを剥がした。テープを貼る前と剥がした後の光学反射密度を反射濃度計「RD-915」(グレタグマクベス社製)を用いて測定し、両者の比率(100×剥離後の光学反射密度/貼付前の光学反射密度)が最初に90%を越える定着ロールの温度を最低定着温度とした。最低定着温度が低いほど、低温定着性が優れる。
[Toner Evaluation]
The obtained toner 1 was evaluated as follows.
[Evaluation of Low Temperature Fixability]
A solid image with a toner adhesion amount of 0.43 to 0.45 mg/cm2 on a polypropylene film label "Forest PP Clear FTC50" ( manufactured by UPM Kummene Japan Co., Ltd.) cut to A4 size was printed using a commercially available printer "Microline (registered trademark) 5400" (manufactured by Oki Electric Industry Co., Ltd.) with a length of 50 mm, leaving a margin of 5 mm from the top end of the A4 size film label, without fixing. Next, the same printer with a temperature-variable fixing device was prepared, and a fixing test of the printed matter was performed at each temperature while increasing the temperature of the fixing device from 70°C to 120°C in 5°C increments. A cellophane adhesive tape "UNICEF Cellophane" (manufactured by Mitsubishi Pencil Co., Ltd., width: 18 mm, JIS Z1522:2009) was attached to the image portion of the obtained label print, and the tape was peeled off. The optical reflection density before and after the tape was applied was measured using a reflection densitometer "RD-915" (manufactured by GretagMacbeth), and the temperature of the fixing roll at which the ratio of the two (100 x optical reflection density after peeling/optical reflection density before application) first exceeded 90% was defined as the minimum fixing temperature. The lower the minimum fixing temperature, the better the low-temperature fixing property.
〔印刷塗膜の硬度(印刷塗膜の堅牢性)評価〕
 A4サイズにカットしたポリプロピレンフィルムラベル「フォレストPPクリアFTC50」(UPMキュンメネ・ジャパン株式会社製)に、市販のプリンタ「Microline(登録商標)5400」(沖電気工業株式会社製)を用いて、トナーのフィルムラベル上の付着量が0.43~0.45mg/cmとなるベタ画像を、A4サイズのフィルムラベルの上端から5mmの余白部分を残し、50mmの長さで定着させずに出力した。次に、定着器を温度可変に改造した同プリンタを用意し、定着器の温度を100℃にし、A4縦方向に1枚あたり3秒の速度でトナー1を定着させて印刷塗膜を形成して、ラベル印刷物を得た(A4縦で20枚/分相当)。
 得られたラベル印刷物について、JIS K5600-5-4に準拠して、鉛筆引掻き塗膜硬さ試験機(「D-NP(型番)」、株式会社東洋精機製作所製)、及び鉛筆引掻き値試験用鉛筆(6B、5B、4B、3B、2B、B、HB、F、H)(三菱鉛筆株式会社製)を用いて、印刷塗膜の鉛筆硬度を測定した。6B、5B、4B、3B、2B、B、HB、F、Hの順に、各硬度の鉛筆で印刷塗膜を引掻く試験を5回行い、3回以上傷跡が生じなかった鉛筆の最も大きい硬度を、ラベル印刷物の印刷塗膜の鉛筆硬度とした。「H」が最も印刷塗膜の鉛筆硬度(印刷塗膜の堅牢性)に優れる。本発明のトナーから得られる印刷塗膜の鉛筆硬度は、好ましくはB以上である。評価結果を表5に示す。
[Evaluation of hardness of printed coating film (fastness of printed coating film)]
A solid image was printed on a polypropylene film label "Forest PP Clear FTC50" (manufactured by UPM Kummene Japan Co., Ltd.) cut to A4 size, with a toner adhesion amount of 0.43 to 0.45 mg/ cm2 on the film label, with a length of 50 mm, leaving a margin of 5 mm from the top end of the A4 size film label, without fixing. Next, the same printer was prepared with a temperature-variable fixing device, the fixing device temperature was set to 100°C, and toner 1 was fixed at a speed of 3 seconds per sheet in the A4 portrait direction to form a printed coating film, and a label print was obtained (equivalent to 20 sheets/min in A4 portrait).
The pencil hardness of the printed coating film of the obtained label print was measured in accordance with JIS K5600-5-4 using a pencil scratch coating film hardness tester ("D-NP (model number)" manufactured by Toyo Seiki Seisakusho Co., Ltd.) and pencils for pencil scratch value test (6B, 5B, 4B, 3B, 2B, B, HB, F, H) (manufactured by Mitsubishi Pencil Co., Ltd.). The printed coating film was scratched five times with pencils of each hardness in the order of 6B, 5B, 4B, 3B, 2B, B, HB, F, and H, and the hardest pencil that did not produce scratches three or more times was taken as the pencil hardness of the printed coating film of the label print. "H" is the most excellent in pencil hardness of the printed coating film (fastness of the printed coating film). The pencil hardness of the printed coating film obtained from the toner of the present invention is preferably B or higher. The evaluation results are shown in Table 5.
実施例2~7、比較例1~5(トナー2~7、トナー1c~5cの製造)
 実施例1において、非晶性樹脂粒子分散液、結晶性樹脂粒子分散液、着色剤粒子分散液を表5のように変更した以外は同様にしてトナー粒子2~7、トナー粒子1c~5c及びトナー2~7、トナー1c~5cを得た。トナー粒子2~7及びトナー粒子1c~5cの物性値を表5に示す。また、トナー2~7及びトナー1c~5cの評価結果を表5に示す。
Examples 2 to 7 and Comparative Examples 1 to 5 (Production of Toners 2 to 7 and 1c to 5c)
Toner particles 2 to 7, toner particles 1c to 5c, and toners 2 to 7 and 1c to 5c were obtained in the same manner as in Example 1, except that the amorphous resin particle dispersion, crystalline resin particle dispersion, and colorant particle dispersion were changed as shown in Table 5. The physical property values of toner particles 2 to 7 and toner particles 1c to 5c are shown in Table 5. The evaluation results of toners 2 to 7 and toners 1c to 5c are also shown in Table 5.
実施例8(トナー8の製造)
 実施例1において、非晶性樹脂粒子分散液X-1を400g、結晶性樹脂粒子分散液Y-1を100gに変更した以外は同様にしてトナー粒子8、及びトナー8を得た。トナー粒子8の物性値及びトナー8の評価結果を表5に示す。
Example 8 (Preparation of Toner 8)
Toner particles 8 and toner 8 were obtained in the same manner as in Example 1, except that the amount of amorphous resin particle dispersion X-1 was changed to 400 g and the amount of crystalline resin particle dispersion Y-1 was changed to 100 g. The physical property values of toner particles 8 and the evaluation results of toner 8 are shown in Table 5.
実施例9(トナー9の製造)
 実施例1において、非晶性樹脂粒子分散液X-1を425g、結晶性樹脂粒子分散液Y-1を75gに変更した以外は同様にしてトナー粒子9、及びトナー9を得た。トナー粒子9の物性値及びトナー9の評価結果を表5に示す。
Example 9 (Preparation of Toner 9)
Toner particles 9 and toner 9 were obtained in the same manner as in Example 1, except that the amount of amorphous resin particle dispersion X-1 was changed to 425 g and the amount of crystalline resin particle dispersion Y-1 was changed to 75 g. The physical property values of toner particles 9 and the evaluation results of toner 9 are shown in Table 5.
実施例10(トナー10の製造)
 実施例1において、非晶性樹脂粒子分散液、結晶性樹脂粒子分散液、着色剤粒子分散液を表5のように変更し、樹脂粒子分散液Z-1を樹脂粒子分散液Z-2に変更した以外は同様にしてトナー粒子10及びトナー10を得た。トナー粒子10の物性値を表5に示す。また、トナー10の評価結果を表5に示す。
Example 10 (Production of Toner 10)
Toner particles 10 and toner 10 were obtained in the same manner as in Example 1, except that the amorphous resin particle dispersion, crystalline resin particle dispersion, and colorant particle dispersion were changed as shown in Table 5, and resin particle dispersion Z-1 was changed to resin particle dispersion Z-2. The physical property values of toner particles 10 are shown in Table 5. The evaluation results of toner 10 are also shown in Table 5.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
実施例11(トナー11の製造)
 非晶性ポリエステル樹脂A-1 80質量部、結晶性ポリエステル樹脂C-1 20質量部、着色剤PY185(「パリオトールイエローD1155」、BASFカラー&エフェクトジャパン株式会社製、C.I.ピグメントイエロー185)5質量部、荷電制御剤「LR-147」(日本カーリット株式会社製)1質量部、及び離型剤としてパラフィンワックス「HNP-9」(日本精鑞株式会社製、融点75℃)2質量部、パラフィンワックス「FNP-0090」(日本精蝋株式会社製、融点90℃)2質量部を、ヘンシェルミキサーでよく撹拌した後、混練部分の全長1560mm、スクリュー径42mm、バレル内径43mmの同方向回転二軸押出機を用いて溶融混練した。スクリューの回転速度は200r/min、スクリュー内の加熱設定温度は90℃であり、混練物の温度は140℃、混練物の供給速度は10kg/h、平均滞留時間は約18秒であった。得られた混練物を140℃から50℃まで1.5時間で冷却し、50℃で、冷却ローラーで圧延冷却した後、45℃で4時間静置後、ジェットミルで粉砕、分級し、トナー粒子11を得た。トナー粒子11の物性値を表6に示す。
 トナー粒子11 100質量部、疎水性シリカ「RY50」(日本アエロジル株式会社製、個数平均粒径;0.04μm)2.5質量部、及び疎水性シリカ「キャボシル(登録商標)TS720」(キャボットジャパン株式会社製、個数平均粒径;0.012μm)1.0質量部をヘンシェルミキサーに入れて撹拌し、150メッシュの篩を通過させてトナー11を得た。トナー11の評価結果を表6に示す。
Example 11 (Production of Toner 11)
80 parts by mass of amorphous polyester resin A-1, 20 parts by mass of crystalline polyester resin C-1, 5 parts by mass of colorant PY185 ("Paliotol Yellow D1155", manufactured by BASF Color & Effect Japan Co., Ltd., C.I. Pigment Yellow 185), 1 part by mass of charge control agent "LR-147" (manufactured by Nippon Carlit Co., Ltd.), and 2 parts by mass of paraffin wax "HNP-9" (manufactured by Nippon Seiro Co., Ltd., melting point 75 ° C.) and 2 parts by mass of paraffin wax "FNP-0090" (manufactured by Nippon Seiro Co., Ltd., melting point 90 ° C.) as release agents were thoroughly stirred with a Henschel mixer, and then melt-kneaded using a co-rotating twin-screw extruder with a kneading section having a total length of 1560 mm, a screw diameter of 42 mm, and a barrel inner diameter of 43 mm. The screw rotation speed was 200 r/min, the heating temperature inside the screw was set to 90° C., the temperature of the kneaded material was 140° C., the feed rate of the kneaded material was 10 kg/h, and the average residence time was about 18 seconds. The kneaded material obtained was cooled from 140° C. to 50° C. in 1.5 hours, rolled and cooled at 50° C. with a cooling roller, and then allowed to stand at 45° C. for 4 hours, and then pulverized and classified with a jet mill to obtain toner particles 11. The physical properties of toner particles 11 are shown in Table 6.
100 parts by mass of toner particles 11, 2.5 parts by mass of hydrophobic silica "RY50" (manufactured by Nippon Aerosil Co., Ltd., number average particle size: 0.04 μm), and 1.0 part by mass of hydrophobic silica "Cabosil (registered trademark) TS720" (manufactured by Cabot Japan Co., Ltd., number average particle size: 0.012 μm) were placed in a Henschel mixer, stirred, and passed through a 150 mesh sieve to obtain toner 11. The evaluation results of toner 11 are shown in Table 6.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 本発明で規定する樹脂C、樹脂A及び顔料を用いて製造したトナー(実施例1~11)は、低温定着性に優れ、該トナーから得られた印刷塗膜の鉛筆硬度が「B」以上であり、印刷塗膜の堅牢性に優れる。
 これに対して、比較例1及び2のトナーは、本発明で規定する樹脂C及び樹脂Aを用いて製造したが、NH基量6.0mmol/g未満の顔料を用いたことから、該トナーから得られた印刷塗膜の鉛筆硬度が「3B」であり、十分な印刷塗膜の堅牢性が得られなかった。また、比較例3のトナーは、本発明で規定する樹脂A及び顔料を用いて製造したが、エステル基濃度が9.0mmol/gを超える結晶性ポリエステル樹脂を用いたことから、印刷塗膜の鉛筆硬度が「6B」であり、印刷塗膜の堅牢性が劣っている。また、比較例4のトナーは、本発明で規定する樹脂A及び顔料を用いて製造したが、エステル基濃度が6.5mmol/g未満の結晶性ポリエステル樹脂を用いたことから、印刷塗膜の鉛筆硬度が「6B」であり、印刷塗膜の堅牢性が劣っている。また、比較例4及び5のトナーは、本発明で規定する樹脂A及び顔料を用いて製造したが、エチレングリコールを含む脂肪族ジオール成分由来の構成単位を含まない結晶性ポリエステル樹脂を用いたことから、トナーの低温定着性が劣っている。
The toners (Examples 1 to 11) produced using the resin C, the resin A and the pigment specified in the present invention are excellent in low-temperature fixing property, and the printed coating film obtained from the toner has a pencil hardness of "B" or higher, and the printed coating film is excellent in fastness.
In contrast, the toners of Comparative Examples 1 and 2 were produced using the resin C and resin A specified in the present invention, but because a pigment having an NH group amount of less than 6.0 mmol/g was used, the pencil hardness of the printed coating film obtained from the toner was "3B", and sufficient fastness of the printed coating film was not obtained. The toner of Comparative Example 3 was produced using the resin A and pigment specified in the present invention, but because a crystalline polyester resin having an ester group concentration of more than 9.0 mmol/g was used, the pencil hardness of the printed coating film was "6B", and the fastness of the printed coating film was poor. The toner of Comparative Example 4 was produced using the resin A and pigment specified in the present invention, but because a crystalline polyester resin having an ester group concentration of less than 6.5 mmol/g was used, the pencil hardness of the printed coating film was "6B", and the fastness of the printed coating film was poor. The toners of Comparative Examples 4 and 5 were produced using the resin A and pigment specified in the present invention, but because a crystalline polyester resin not containing a structural unit derived from an aliphatic diol component containing ethylene glycol was used, the low-temperature fixability of the toner was poor.

Claims (14)

  1.  結晶性ポリエステル樹脂C、非晶性ポリエステル系樹脂A、及び着色剤を含有する静電荷像現像用トナーであって、
     前記結晶性ポリエステル樹脂Cが、エチレングリコールを含む脂肪族ジオール成分由来の構成単位と、炭素数10以上14以下の脂肪族ジカルボン酸成分由来の構成単位とを含み、かつエステル基濃度が6.5mmol/g以上9.0mmol/g以下であり、
     前記着色剤は、1分子中に有する-NH-及び-NHの合計数を、分子量で除した値をNH基量としたとき、NH基量が6.0mmol/g以上の顔料である、
     静電荷像現像用トナー。
    A toner for developing electrostatic images, comprising a crystalline polyester resin C, an amorphous polyester resin A, and a colorant,
    the crystalline polyester resin C contains a structural unit derived from an aliphatic diol component containing ethylene glycol and a structural unit derived from an aliphatic dicarboxylic acid component having from 10 to 14 carbon atoms, and has an ester group concentration of from 6.5 mmol/g to 9.0 mmol/g,
    The colorant is a pigment having an NH group amount of 6.0 mmol/g or more when the total number of -NH- and -NH2 groups in one molecule is divided by the molecular weight to define the NH group amount.
    Toner for developing electrostatic images.
  2.  前記結晶性ポリエステル樹脂Cが、更に炭素数6以上24以下のモノカルボン酸成分由来の構成単位を含む、請求項1に記載の静電荷像現像用トナー。 The toner for developing electrostatic images according to claim 1, wherein the crystalline polyester resin C further contains a structural unit derived from a monocarboxylic acid component having 6 to 24 carbon atoms.
  3.  前記着色剤が黄色有機顔料である、請求項1又は2に記載の静電荷像現像用トナー。 The toner for developing electrostatic images according to claim 1 or 2, wherein the colorant is a yellow organic pigment.
  4.  前記着色剤が、イソインドリン系顔料及びベンズイミダゾロン顔料から選択される少なくとも1種を含む、請求項1~3のいずれかに記載の静電荷像現像用トナー。 The toner for developing electrostatic images according to any one of claims 1 to 3, wherein the colorant contains at least one selected from the group consisting of isoindoline pigments and benzimidazolone pigments.
  5.  前記着色剤が、C.I.ピグメントイエロー185及びC.I.ピグメントイエロー180から選択される少なくとも1種である、請求項1~4のいずれかに記載の静電荷像現像用トナー。 The toner for developing electrostatic images according to any one of claims 1 to 4, wherein the colorant is at least one selected from C.I. Pigment Yellow 185 and C.I. Pigment Yellow 180.
  6.  前記非晶性ポリエステル系樹脂Aと前記結晶性ポリエステル樹脂Cの溶解度パラメータの差が0.50(cal/cm1/2以上1.00(cal/cm1/2以下である、請求項1~5のいずれかに記載の静電荷像現像用トナー。 6. The toner for developing electrostatic images according to claim 1, wherein a difference in solubility parameter between the amorphous polyester resin A and the crystalline polyester resin C is 0.50 (cal/cm 3 ) 1/2 or more and 1.00 (cal/cm 3 ) 1/2 or less.
  7.  前記結晶性ポリエステル樹脂Cの含有量に対する前記非晶性ポリエステル系樹脂Aの含有量の質量比が60/40以上85/15以下である、請求項1~6のいずれかに記載の静電荷像現像用トナー。 The toner for developing electrostatic images according to any one of claims 1 to 6, wherein the mass ratio of the content of the amorphous polyester resin A to the content of the crystalline polyester resin C is 60/40 or more and 85/15 or less.
  8.  前記脂肪族ジオール成分由来の構成単位の含有量が、前記結晶性ポリエステル樹脂Cのアルコール成分由来の構成単位中、80モル%以上100モル%以下である、請求項1~7のいずれかに記載の静電荷像現像用トナー。 The toner for developing electrostatic images according to any one of claims 1 to 7, wherein the content of the constituent units derived from the aliphatic diol component is 80 mol% or more and 100 mol% or less in the constituent units derived from the alcohol component of the crystalline polyester resin C.
  9.  エチレングリコール由来の構成単位の含有量が、前記結晶性ポリエステル樹脂Cのアルコール成分由来の構成単位中、65モル%以上100モル%以下である、請求項1~8のいずれかに記載の静電荷像現像用トナー。 The toner for developing electrostatic images according to any one of claims 1 to 8, wherein the content of the constituent units derived from ethylene glycol is 65 mol % or more and 100 mol % or less in the constituent units derived from the alcohol component of the crystalline polyester resin C.
  10.  前記炭素数10以上14以下の脂肪族ジカルボン酸由来の構成単位の含有量が、前記結晶性ポリエステル樹脂Cのカルボン酸成分由来の構成単位中、70モル%以上100モル%以下である、請求項1~9のいずれかに記載の静電荷像現像用トナー。 The toner for developing electrostatic images according to any one of claims 1 to 9, wherein the content of the structural units derived from the aliphatic dicarboxylic acid having 10 to 14 carbon atoms is 70 mol % or more and 100 mol % or less in the structural units derived from the carboxylic acid component of the crystalline polyester resin C.
  11.  前記着色剤の含有量が、前記結晶性ポリエステル樹脂Cと前記非晶性ポリエステル系樹脂Aの合計100質量部に対して、3質量部以上25質量部以下である、請求項1~10のいずれかに記載の静電荷像現像用トナー。 The toner for developing electrostatic images according to any one of claims 1 to 10, wherein the content of the colorant is 3 parts by mass or more and 25 parts by mass or less per 100 parts by mass of the total of the crystalline polyester resin C and the amorphous polyester resin A.
  12.  前記静電荷像現像用トナーがトナー粒子を含み、前記着色剤の含有量が、当該トナー粒子中、3質量%以上25質量%以下である、請求項1~11のいずれかに記載の静電荷像現像用トナー。 The toner for developing electrostatic images according to any one of claims 1 to 11, wherein the toner for developing electrostatic images contains toner particles, and the content of the colorant in the toner particles is 3% by mass or more and 25% by mass or less.
  13.  コアシェル構造を有する、請求項1~12のいずれかに記載の静電荷像現像用トナー。 The toner for developing electrostatic images according to any one of claims 1 to 12, which has a core-shell structure.
  14.  結晶性ポリエステル樹脂C及び非晶性ポリエステル系樹脂Aを同一又は異なる粒子に含有する樹脂粒子と、着色剤とを、水系媒体中で凝集させる工程及び融着させる工程を有する、静電荷像現像用トナーの製造方法であって、
     前記結晶性ポリエステル樹脂Cが、エチレングリコールを含む脂肪族ジオール成分由来の構成単位と、炭素数10以上14以下の脂肪族ジカルボン酸成分由来の構成単位とを含み、かつエステル基濃度が6.5mmol/g以上9.0mmol/g以下であり、
     前記着色剤は、1分子中に有する-NH-及び-NHの合計数を、分子量で除した値をNH基量としたとき、NH基量が6.0mmol/g以上の顔料である、
     静電荷像現像用トナーの製造方法。
    A method for producing a toner for developing an electrostatic image, comprising a step of aggregating and fusing resin particles, the resin particles including a crystalline polyester resin C and an amorphous polyester resin A in the same or different particles, and a colorant in an aqueous medium, the method comprising the steps of:
    the crystalline polyester resin C contains a structural unit derived from an aliphatic diol component containing ethylene glycol and a structural unit derived from an aliphatic dicarboxylic acid component having from 10 to 14 carbon atoms, and has an ester group concentration of from 6.5 mmol/g to 9.0 mmol/g,
    The colorant is a pigment having an NH group amount of 6.0 mmol/g or more when the total number of -NH- and -NH2 groups in one molecule is divided by the molecular weight to define the NH group amount.
    A method for producing a toner for developing electrostatic images.
PCT/JP2023/044449 2022-12-12 2023-12-12 Toner for static charge image development and method for manufacturing same WO2024128226A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-198126 2022-12-12
JP2022198126 2022-12-12

Publications (1)

Publication Number Publication Date
WO2024128226A1 true WO2024128226A1 (en) 2024-06-20

Family

ID=91485757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/044449 WO2024128226A1 (en) 2022-12-12 2023-12-12 Toner for static charge image development and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP2024084148A (en)
WO (1) WO2024128226A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014085443A (en) * 2012-10-22 2014-05-12 Fuji Xerox Co Ltd Toner for electrostatic charge image development, manufacturing method thereof, developer for electrostatic charge image development, toner cartridge, process cartridge, and image forming method
JP2019174672A (en) * 2018-03-28 2019-10-10 花王株式会社 Toner for electrostatic charge image development
JP2021026129A (en) * 2019-08-06 2021-02-22 花王株式会社 Method for manufacturing toner for electrostatic charge image development
JP2022043593A (en) * 2020-09-04 2022-03-16 花王株式会社 Toner for electrostatic charge image development

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014085443A (en) * 2012-10-22 2014-05-12 Fuji Xerox Co Ltd Toner for electrostatic charge image development, manufacturing method thereof, developer for electrostatic charge image development, toner cartridge, process cartridge, and image forming method
JP2019174672A (en) * 2018-03-28 2019-10-10 花王株式会社 Toner for electrostatic charge image development
JP2021026129A (en) * 2019-08-06 2021-02-22 花王株式会社 Method for manufacturing toner for electrostatic charge image development
JP2022043593A (en) * 2020-09-04 2022-03-16 花王株式会社 Toner for electrostatic charge image development

Also Published As

Publication number Publication date
JP2024084148A (en) 2024-06-24

Similar Documents

Publication Publication Date Title
JP6018684B2 (en) Toner for electrostatic image development
JP6216005B2 (en) Method for producing aqueous dispersion of release agent particles
JP7042226B2 (en) Toner manufacturing method
JP6018661B2 (en) Method for producing toner for developing electrostatic image
JP7141181B2 (en) Toner manufacturing method
JP6335044B2 (en) Method for producing toner for developing electrostatic image
JP7160256B2 (en) toner
JP7257282B2 (en) Method for producing toner for electrostatic charge image development
JP7432368B2 (en) Method for manufacturing toner for developing electrostatic images
JP7164367B2 (en) Method for producing toner for electrostatic charge image development
JP7171375B2 (en) Method for producing toner for electrostatic charge image development
JP2018101114A (en) Toner for electrostatic charge image development
WO2024128226A1 (en) Toner for static charge image development and method for manufacturing same
JP7001223B2 (en) Manufacturing method of toner for static charge image development
JP7278892B2 (en) Method for producing toner for electrostatic charge image development
WO2019156232A1 (en) Toner production method
JP7506134B2 (en) Toner manufacturing method
JP7309844B2 (en) Toner for electrostatic charge image development
JP7278844B2 (en) Toner manufacturing method
JP7278843B2 (en) Toner manufacturing method
JP6632096B2 (en) Manufacturing method of electrophotographic toner
JP7198639B2 (en) Toner for electrostatic charge image development
JP7129037B2 (en) Method for producing toner for electrostatic charge image development
JP6954607B2 (en) Manufacturing method of toner for static charge image development
JP7274369B2 (en) Method for producing toner for electrostatic charge image development