WO2024126602A1 - Subassembly for a fuel cell stack, fuel cell comprising such a subassembly and method for manufacturing such a subassembly - Google Patents

Subassembly for a fuel cell stack, fuel cell comprising such a subassembly and method for manufacturing such a subassembly Download PDF

Info

Publication number
WO2024126602A1
WO2024126602A1 PCT/EP2023/085657 EP2023085657W WO2024126602A1 WO 2024126602 A1 WO2024126602 A1 WO 2024126602A1 EP 2023085657 W EP2023085657 W EP 2023085657W WO 2024126602 A1 WO2024126602 A1 WO 2024126602A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
membrane
bipolar
plate
orifices
Prior art date
Application number
PCT/EP2023/085657
Other languages
French (fr)
Other versions
WO2024126602A9 (en
Inventor
Vincent Fabrice ROSSIGNOL
Clément Guillaume SANTINI
Original Assignee
Symbio France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Symbio France filed Critical Symbio France
Publication of WO2024126602A1 publication Critical patent/WO2024126602A1/en
Publication of WO2024126602A9 publication Critical patent/WO2024126602A9/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other

Definitions

  • TITLE Subassembly for fuel cell stack, fuel cell comprising such a subassembly and method of manufacturing such a subassembly
  • the present invention relates to a subassembly intended to be integrated into a stack of electrochemical cells, within a fuel cell.
  • the invention also relates to a fuel cell comprising a stack of electrochemical cells, at least one of which comprises, or is constituted by, such a subassembly.
  • the invention finally relates to a method of manufacturing a subassembly as mentioned above.
  • Electrochemical cells are formed by membrane-electrode assemblies and bipolar plates.
  • a membrane-electrode assembly is sometimes called MEA, from the English “Membrane-Electrode Assembly”, and generally comprises a base membrane, which can be coated on one or both of its faces, with a catalytic layer comprising a catalyst, as well as a frame which supports this membrane.
  • the frame may include apertures which, in the stack, define fluid flow galleries within the stack of electrochemical cells for the distribution and recovery of these fluids into the corresponding fluidic compartments of each cell.
  • This frame is most often associated with at least one seal, sometimes called a “gasket”, with which it also provides a sealing function to the flow of fluids within the stack.
  • the membrane when coated with layers comprising a catalyst, is sometimes called CCM, from the English "Catalyst Coated Membrane” and in this case comprises three layers, namely, a membrane itself, a catalytic layer on the anode side and a catalytic layer on the cathode side.
  • a membrane-electrode assembly is inserted between two bipolar plates and thus delimits an anode compartment and a cathode compartment.
  • the membrane coated with catalyst is covered by a gas diffusion layer which is therefore received in the corresponding anodic or cathodic compartment and promotes contacting of the chemical species, present in the corresponding anodic or cathodic compartment. , with the membrane.
  • Each gas diffusion layer also has a role in conducting electrons. These diffusion layers are sometimes called GDL, from English “Gas Diffusion Layer”.
  • bipolar plates formed of two half-plates or sheet metal strips which belong to two adjacent electrochemical cells. This requires handling separately the membrane-electrode assemblies, on the one hand, and the bipolar plates, on the other hand when they are placed within the stack of a fuel cell.
  • This solution requires joining together the two half-plates or strips of a bipolar plate. This joining can be carried out by laser welding or brazing, in particular point by point, by plastic deformation of the strips, in particular by means of an electric tool creating an impact, or by gluing.
  • the membrane-electrode assemblies on the one hand, and the bipolar plates, on the other hand, are formed, they should be arranged alternately along the stacking direction, which in practice turns out to be long and difficult to implement.
  • the invention more particularly intends to remedy by proposing a new subassembly for a fuel cell stack, the manufacture of which is simplified and whose cost price can be reduced compared to previous materials.
  • the invention relates to a subassembly for a fuel cell stack comprising a membrane-electrode assembly including a membrane and a bipartite frame formed by a first half-frame disposed on a first side of the membrane and a second half -frame placed on a second side of the membrane.
  • the membrane-electrode assembly also includes at least a first bipolar half-plate. At least the second half-frame is coated, on a first surface facing a first surface of the first half-frame, with a layer of glue for securing the half-frames.
  • first orifices arranged through the first half-frame are each arranged facing a solid portion of the first bipolar half-plate and facing a solid portion of the second half-frame, according to a direction perpendicular to a main plane of the membrane.
  • the first bipolar half-plate is secured to the frame by a quantity of glue which extends through the first orifices and which comes from the glue coated on the first surface of the second half-frame.
  • the structure of the subassembly makes it possible to use the layer of glue provided primarily to secure together the two frames of the membrane-electrode assembly to ensure an additional function of immobilizing the first half -bipolar plate.
  • This makes it possible to manipulate this subassembly in a unitary manner during the manufacture of a fuel cell incorporating it, which facilitates the work of an operator or a robot and makes it possible to increase production rates, therefore to reduce the cost price of the fuel cell.
  • the mode of connection between the first bipolar half-plate and the frame is precise since the quantity of glue which extends through the first orifices is well positioned in space, thanks to these first orifices.
  • this quantity of glue is not likely to flow outside the subassembly of the invention.
  • the subassembly comprises a second bipolar half-plate, it constitutes a cell unitary electrochemical which can be tested, or even pre-activated, before its incorporation into a stack of cells, which makes a process for manufacturing such a cell more reliable.
  • such a subassembly can incorporate one or more of the following characteristics, taken in any technically admissible combination:
  • the subassembly comprises a second bipolar half-plate arranged, relative to the membrane, opposite the first bipolar plate.
  • the first half-frame is coated, on its first surface, with a layer of glue to secure the half-frames together.
  • Second orifices provided through the second half-frame are each arranged facing a solid portion of the second bipolar half-plate and facing a solid portion of the first half-frame, in the direction perpendicular to a main plane of the membrane.
  • the second bipolar plate is secured to the frame by a quantity of glue which extends through the second orifices and which comes from the glue coated on the first surface of the first half-frame.
  • the first and second orifices are offset relative to each other in at least one direction parallel to the main plane of the membrane, so that there is no superposition between these orifices in the direction perpendicular to the main plane of the membrane. membrane.
  • the first bipolar half-plate is provided with cutouts aligned with the second orifices and/or in that the second bipolar half-plate is provided with cutouts aligned with the first orifices, in the direction perpendicular to the main plane of the membrane.
  • a cutout opens onto at least one longitudinal edge of the bipolar plate in which it is formed.
  • Each orifice provided through a half-frame has a section whose area is greater than or equal to 5 mm 2 , preferably 10 mm 2 , with a preferably circular, rectangular or oblong shape.
  • the glue is heat-activatable and based on thermoplastic polymer, in particular EVA copolymer.
  • At least one of the first orifices provided through the first half-frame is arranged in a peripheral external zone of the sub-assembly which is located outwards relative to a peripheral seal of the sub-assembly.
  • the electrode membrane assembly has four corners, while the sub-assembly comprises at least four first orifices arranged through the first half-frame and arranged in a peripheral external zone of the sub-assembly which is located outwards relative to a peripheral seal of the subassembly, each in a corner of the membrane electrode assembly.
  • At least one of the first orifices arranged through the first half-frame and the facing solid portion belonging to the first bipolar half-plate are arranged in a gallery framing zone, arranged around an opening of the first bipolar half-plate, and fluidly isolated from at least one anodic or cathodic fluid compartment delimited in the subassembly, between the membrane electrode assembly and the first bipolar half-plate.
  • the invention relates to a fuel cell comprising a stack of electrochemical cells, each with a membrane-electrode assembly and two bipolar half-plates, at least one of these cells comprising, or being constituted by, a subset as mentioned above.
  • This fuel cell has the same advantages as those mentioned above.
  • the invention relates to a method of manufacturing a subassembly, in particular a subassembly as mentioned above, comprising a membrane-electrode assembly including a membrane and a bipartite frame formed by a first half -frame placed on a first side of the membrane and a second half-frame placed on a second side of the membrane.
  • the membrane-electrode assembly also includes at least a first bipolar half-plate. This method comprising at least one preliminary step of coating at least one first surface of the second half-frame with an adhesive and a step of joining the frame and the membrane by applying the first surface of the second half-frame, coated of glue, against the first surface of the first half-frame.
  • this method comprises at least one step of applying the first bipolar half-plate against a second surface of the first half-frame opposite the first surface of this first half-frame and a step of securing the first bipolar half-plate and the frame by migration of the glue coated on the first surface of the second half-frame, towards a surface of the first bipolar half-plate, through first orifices arranged in the first half-frame, between its first and second surfaces.
  • the subassembly comprises a second bipolar half-plate and the method comprises at least one preliminary step of coating at least one first surface of the first half-frame with an adhesive, a step of applying the second bipolar half-plate against a second surface of the second half-frame opposite the first surface of this second half-frame and a step of joining the second bipolar half-plate and the frame by migration of the glue coated on the first surface from the first half-frame, towards a surface of the second bipolar half-plate, through first orifices provided in the second half-frame, between its first and second surfaces.
  • the glue coated on the first surface of the second half-frame, and possibly on the first surface of the first half-frame is heated at least in the vicinity of the first orifices , and possibly at the level of the second orifices.
  • Figure 1 is a partially exploded perspective view of a sub-assembly conforming to a first embodiment of the invention, this sub-assembly constituting an electrochemical cell belonging to a stack of a battery. combustible ;
  • Figure 2 is an exploded perspective view of a membrane-electrode assembly belonging to the subassembly shown in Figure 1;
  • Figure 3 is a front view of the subassembly shown in Figure 1;
  • Figure 4 is a longitudinal section of the subassembly shown in Figures 1 and 3, along line IV-IV in Figure 3, during a step of manufacturing a fuel cell including this subassembly. -together ;
  • Figure 5 is a partial view, similar to Figure 4, for a subassembly conforming to a second embodiment of the invention.
  • Figure 6 is a simplified front view, similar to Figure 3, for a subassembly conforming to a third embodiment of the invention.
  • Figure 7 represents, on two inserts A) and B) and on a larger scale, partial sections at the level of cutting lines A-A and B-B in Figure 6 in the case where the subassembly is integrated to a stack of electrochemical cells;
  • Figure 8 is a simplified front view, similar to Figure 6, for a subassembly conforming to a fourth embodiment of the invention. In order to clearly show the characteristics of the invention, the proportions are not necessarily respected between the objects represented in the figures.
  • a membrane-electrode assembly 2 is shown partially exploded in Figure 1.
  • This assembly 2 is associated with a first bipolar half-plate 42 and a second bipolar half-plate 44 to form a subassembly 6 intended to constitute a cell electrochemical, intended to form part of a stack, this stack constituting part of a fuel cell.
  • Such a stack is represented with the reference 60, in Figure 7, within a partially visible fuel cell 8, for the third embodiment of the invention.
  • the bipolar half-plates 42 and 44 can also be called polar plates.
  • A2 a longitudinal axis of the membrane-electrode assembly 2, which coincides with a longitudinal axis A6 of the subassembly 6.
  • the membrane-electrode assembly 2 can be called MEA and comprises a base membrane 22 which, in the example described below, is coated with catalyst. More precisely, the base membrane 22 is a proton exchange polymer membrane. The structure of the membrane electrode assembly 2 is the same as that visible in Figure 7 for the third embodiment. It is described with reference to this figure 7.
  • the base membrane 22 is therefore, in the example, coated, on a first side facing upwards in figures 1, 2 and 7, with a first catalytic layer 23 forming a cathode and, on a second side opposite the first side and oriented downwards in Figures 1, 2 and 7, a second catalytic layer 24 forming an anode.
  • the membrane 22 and the catalytic layers 23 and 24 together form a membrane coated with catalyst 25, otherwise called CCM. In the remainder of this description, this membrane coated with catalyst 25 is called CCM membrane.
  • the base membrane 22 is made of polymer material, in particular of the NAFION type (registered trademark), and has a thickness of the order of 0.005 to 0.050 mm, preferably 0.008 to 0.015 mm.
  • the catalytic layers 23 and 24 are made from a platinum base and each have a thickness of the order of 0.001 to 0.010 mm, preferably 0.002 to 0.005 mm.
  • the thickness of the CCM membrane 25 is preferably between 0.008 and 0.050 mm, preferably of the order of 0.017 mm.
  • TT22 as a median plane of the base membrane 22, which is also a median plane of the CCM membrane 25.
  • the longitudinal axis A2 is included in the median plane TT22.
  • the CCM membrane 25 is mounted on a frame 30 consisting of two half-frames
  • TT30 a support plane of the two half-frames 32 and 34 against each other.
  • the TT30 plane is also a median plane of the frame 30 and it includes the longitudinal axis A2.
  • the two half-frames 32 and 34 are configured to trap between them a peripheral edge 22a of the membrane 22 when they rest against each other along the plane TT30.
  • the half-frames 32 and 34 form a zone, also called "overlap", between the membrane 22 and the two half-frames 32, 34.
  • the overlap has a width for example included in the range from 1 to 5 mm, preferably in the range from 2 to 4 mm.
  • the half-frame 32 is arranged on a first side of the CCM membrane 25, in the example above the membrane in Figures 1, 2 and 7, while the half-frame 34 is arranged on a second side of the CCM membrane 25, in the example below the membrane in Figures 1, 2 and 7. This has the effect of immobilizing the membrane 22, that is to say in practice the CCM membrane 25, by pinching it between the half-frames 32 and 34, within the frame 30.
  • each of the half-frames 32 and 34 is between 0.020 and 0.030 mm, preferably of the order of 0.025 mm.
  • the frame 30 makes it possible to stiffen the CCM membrane 25 and hold it in position within the stack.
  • the half-frames 32 and 34 are secured to each other at the level of the TT30 support plane, preferably by means of glue.
  • the glue is not deformed and remains parallel to the TT30 plane.
  • S32 the surface of the half-frame 32 facing the half-frame 34.
  • S34 the surface of the half-frame 34 facing the half-frame 32. In the mounted configuration of the frame 30 around the membrane 22, the surfaces S32 and S34 are in surface contact with each other, aligned on the TT30 plane and secured to each other by means of glue.
  • the median plane TT22 of the membrane 22 is also aligned with the plane TT30.
  • the glue used to assemble the half-frames 32 and 34 is, preferably, a heat-activatable glue based on a thermoplastic polymer, for example an glue based on an EVA copolymer, such as the glue marketed under the reference AP12 by the company Micel.
  • the thickness of the layer of glue coated, that is to say deposited, on the surface S32 or S34 of each of the half-frames is between 0.01 to 0.02 mm, preferably, of the of the order of 0.013 mm, before application of surfaces S32 and S34 against each other.
  • the frame 30 defines openings 36 intended to form circulation and fluid distribution/collection galleries within the stack, when several subassembly 6 are juxtaposed within the stack, in a direction perpendicular to their TT30 midplanes.
  • the openings 36 are formed by aligning, in directions parallel to the axis A30, individual openings 36s and 364 formed respectively in the half-frames 32 and 34.
  • the frame 30 does not have openings of the type of openings 36.
  • A30 an axis perpendicular to the plane TT30 and passing through the geometric center of the frame 30.
  • the axis A30 is perpendicular to the base membrane 22, as well as to the CCM membrane 25, therefore to their median plane TT22.
  • the axes A30 of the different frames 30 are merged and the frames 30 are oriented around this axis so that the openings 36 together constitute galleries for circulation and distribution/collection of fluid, in particular d hydrogen, air or heat transfer fluid, within the stack.
  • Each bipolar half-plate 42 or 44 is equipped with openings 46 of the same geometry as the openings 36 and which also participate in the definition of these galleries.
  • A32 and A34 a longitudinal axis of the half-frame 32 and a longitudinal axis of the half-frame 34.
  • the axes A2, A32 and A34 are perpendicular to the axis A30 , parallel to each other and, preferably almost merged, to the thickness of the half-frames.
  • B32 and B34 a transverse axis of the half-frame 32 and a transverse axis of the half-frame 34, respectively perpendicular to the axes A32 and A34.
  • the axes B32 and B34 are perpendicular to the axis A30, parallel to each other and, preferably almost identical, to the thickness of the half-frames.
  • the half-frames 32 and 34 each define a central opening 32C, respectively 34C, which passes right through them and opposite which the CCM membrane 25 is arranged in the mounted configuration of this membrane on the frame 30. central openings 32C and 34C of the half-frames 32 and 34 are therefore delimited by internal edges of these half-frames.
  • the meeting of the central openings 32C and 34C defines a central opening 30C of the frame 30, which is closed by the CCM membrane in the mounted configuration of the membrane-electrode assembly 2.
  • the membrane-electrode assembly 2 also comprises a first gas diffusion layer 28 and a second gas diffusion layer 29 which can be called GDL and which have the function of promoting exchanges between the CCM membrane 25 and the fluids. circulating between the two bipolar half-plates 42 and 44 of a subassembly 6 to which this membrane-electrode assembly belongs.
  • the thickness of the diffusion layers 28 and 29 is between 0.050 and 0.320 mm, preferably of the order of 0.250 mm.
  • the diffusion layers 28 and 29 cover the CCM membrane 25 and part of the frame 30, in the vicinity of the central opening 30C, each on one side of the CCM25 membrane.
  • each of the half-frames 32 and 34 is equipped with first orifices 320, respectively second orifices 340, which are arranged on either side and on the other side of its central opening 32C or 34C, along its longitudinal axis A32 or A34, and on either side of its individual openings 36s or 364 along its transverse axis B32 or B34.
  • the first orifices 320 are intended to be covered by the bipolar half-plate 42, while the second orifices 340 are intended to be covered by the bipolar half-plate 44, in the mounted configuration of the subassembly 6.
  • the orifices 320 and 340 are arranged opposite the bipolar half-plates 42 and 44, in a direction parallel to the axis A30, that is to say in a direction perpendicular to the planes TT22 and TT30 .
  • the orifices 320 of the half-frame 32 are 4 in number, as are the orifices 340 of the half-frame 34.
  • the half-frame 32 comprises two rows of two orifices 320 which extend respectively near the ends 32A and 32B of the half-frame 32, on either side of the individual openings 362, and which connect the surface S32 of the half-frame 32. frame 32 to a surface S'32 of the half-frame 32 which is opposite the surface S32 and on which the first bipolar half-plate 42 and the diffusion layer 28 bear.
  • the orifices 320 therefore pass through the thickness of the half -frame 32.
  • the half-frame 34 comprises two rows of two orifices 340 which extend respectively near the ends 34A and 34B of the half-frame 34, on either side of the individual openings 364, and which connect the surface S34 of the half-frame 34 to a surface S'34 of the half-frame 34 which is opposite the surface S34 and on which the second bipolar half-plate 42 and the diffusion layer 28 bear.
  • the orifices 340 therefore pass through the thickness of the half-frame 34.
  • the orifices 320 are distributed on the first half-frame 32 symmetrically with respect to the axes A32 and B32.
  • the orifices 340 are distributed on the first half-frame 34 symmetrically with respect to the axes A34 and B34.
  • the orifices 320 are further away from the transverse edges 32D than the orifices 340 are further away from the transverse edges 34D.
  • the orifices 320 and 340 are offset relative to each other, in a direction parallel to the longitudinal axes A32 and A34, so that there is no superposition between these orifices in the direction of the axis A30.
  • d32 a distance measured parallel to axis A32 between axis B32 and a straight line passing through the geometric centers of the orifices 320.
  • d34 a distance measured parallel to axis A34 between axis B34 and a straight line passing by the geometric centers of the orifices 340.
  • the distances d32 and d34 are different. In the example, the distance d32 is greater, by a non-zero deviation A24, compared to the distance d34 and this deviation A24 induces an offset between the orifices 320 and 340, parallel to the longitudinal axes A32 and A34, such that there is no overlap between them.
  • the orifices 320 and 340 are offset relative to each other, in a direction parallel to the transverse axes B32 and B34, which also avoids superposition between these orifices in a direction parallel to axis A30.
  • each orifice 320 extends, through the half-frame 32, between the surfaces S34 and S42, while each orifice 340 extends, through the half-frame 34, between the surfaces S32 and S44.
  • the first bipolar half-plate 42 is provided with two cutouts 48 which open onto two opposite longitudinal edges of this half-plate and which give access, from above in Figure 1, to two zones Z2 of the first half-frame 32 which are opposite with respect to the axes A32 and B32 and which cover from above the orifices 340 of the second half-frame 34, when the subassembly 6 is mounted.
  • the second bipolar half-plate 44 is provided, at two of its opposite corners, with two cutouts 49 which open onto two longitudinal edges and two opposite transverse edges of this half-plate and which give access, from below in Figure 1, two zones Z4 of the second half-frame 34 which are opposite with respect to the axes A34 and B34 and which cover from below the orifices 320 of the first half-frame 32, when the subassembly 6 is mounted.
  • a system of peripheral seals 50 is arranged between the frame 30 and the bipolar half-plates 42 and 44, on each side of the frame.
  • two peripheral seals 50 are provided, one on surface S’32, the other on surface S’34.
  • These seals 50 surround both the central opening 30C and the openings 36 of the frame, so that they ensure sealing, with respect to the exterior of the subassembly 6, for each of the operational fluids of the battery, to have hydrogen, oxygen, air and possible cooling fluid.
  • These peripheral seals 50 therefore fluidly isolate the cathode compartment from the outside and the anode compartment from the outside.
  • Each of the openings 36, 46 is also surrounded by a system of opening seals 51 which do not allow, for a given fluid compartment, namely one among the anode compartment, the cathode compartment and a possibly compartment of cooling between two adjacent cells, the fluid communication of this compartment given only with the openings 36, 46 which allow the entry and exit of the fluid in this compartment.
  • two series of opening seals 51 are provided, one on the surface S’32, the other on the surface S’34.
  • the joints 50 and 51 are shown in dotted lines, seen through the bipolar half-plate 42.
  • the joints 50 surround an internal zone Z int of the subassembly 6 in which the CCM membrane 25, the layers are located gas diffusion 28 and 29 and the gallery portions formed by the openings 36 and 46.
  • a peripheral external zone Z ext of the subassembly 6 is defined around the joints 50, between these joints and the edges external parts of the subassembly.
  • the joints 50 surround the different joints 51 which connect to the joints 50. In other words, the joints 51 are located in the internal zone Z int .
  • an external peripheral zone Z ext3 o of the frame 30 as the zone of this frame which belongs to the external peripheral zone Z ext of the subset 6 in the mounted configuration of this cell.
  • the external peripheral zone Z ext3 o therefore surrounds the joints 50, on each of the half-frames 32 and 34.
  • the first and second orifices 320 and 340 are preferably provided in the peripheral external zone Z ext3 o of the frame 30, therefore in the peripheral external zone Z ext of subassembly 6.
  • surfaces S32 and S34 are coated with glue.
  • This preliminary step can be carried out on the manufacturing site of the membrane-electrode assembly 2, just before the following steps or in advance. Alternatively, this preliminary step can be carried out at a remote site, from where the half-frames coated with glue are transported to the manufacturing site of the membrane-electrode assembly.
  • the operation of coating surfaces S32 and S34 with glue can therefore be carried out by a manufacturer different from the one manufacturing the membrane-electrode assembly.
  • a protective film can be provided on the glue layer to convey it, this protective film then being removed before the second step described below.
  • the two half-frames 32 and 34 are supported by their surfaces S32 and S34 along the plane TT30, while the membrane 22 is placed between them, which has the effect of pinching the edge 22a of the membrane 22 and to secure the frame 30 and the membrane 22, that is to say the frame 30 and the CCM membrane 25.
  • the frame 30 is constituted by the adhesion of the surfaces S32 and S34 thanks to the glue which is coated there.
  • the assembly of the two half-frames 32 and 34, by trapping the edges of the membrane 25, is carried out by activating the glue by application of ultrasound.
  • the assembly of the two half-frames 32 and 34 imprisoning the membrane 25 is clamped between a sonotrode and an anvil, and the ultrasound transmitted by the sonotrode to the two half-frames 32 and 34 ensures activation of the glue, therefore bonding the two half-frames 32 and 34 together and, in the overlapping zone, bonding the two half-frames 32 and 34 with the membrane.
  • the application of ultrasound can be implemented in particular by means of a ridged sonotrode, such as those known for example from US-B-10981245 or from US- A-2013/213552.
  • the groove can for example be formed of two or three networks of grooves formed on the surface of the sonotrode, each network comprising grooves parallel to each other in a direction specific to each network .
  • the grooves of the networks thus delimit between them projecting pins which are the preferred contact zones with the frame during the application of ultrasound.
  • the use of a ridged sonotrode can form, on the surface at least of the half-frame with which the sonotrode is in contact, a texturing of the surface of the half-frame which is substantially the inverted image of the ridged of the sonotrode. This texturing may have a depth less than the depth of the ridge of the sonotrode.
  • the sonotrode can be grooved over its entire surface in contact with the two half-frames 32 and 34, or over only part of its surface.
  • the entire surface of the two half-frames 32 and 34 is assembled by ultrasound.
  • the bonding zone of the two half-frames, which corresponds to the zone where the ultrasound is applied then corresponds to the entire surface area of the frame 30.
  • the entire bonding zone of the two half-frames, which corresponds to the zone where the ultrasound is applied presents a texturing of the surface of the half-frame which is substantially the inverted image of the streaking of the sonotrode.
  • the ultrasound causes the assembly by gluing of each of the two half-frames 32 and 34 on the corresponding face of the membrane.
  • the sonotrode comes into contact with the membrane 25 inside the window delimited inside each half-frame, to avoid heating and compressing the membrane 25 in its actually active part which will be exposed to the reagents.
  • the sonotrode used can be in the form of a frame, possibly allowing the complete assembly of the frame 30 on the membrane 25 in a single operation.
  • the diffusion layers 28 and 29 are deposited on the frame 30 then assembled thereon by any appropriate technique, for example by gluing.
  • the two bipolar half-plates 42 and 44 are applied on either side of the frame 30 equipped with the CCM membrane 25 and the GDL layers 28 and 29, more precisely on the external surfaces S'32 and S'34 of the half-frames 32 and 34.
  • the locations and dimensions of the cutouts 48 and 49 are chosen such that, at the end of the fourth step, the bipolar half-plate 42 covers the orifices 320 and the cutouts 48 are aligned, parallel to the axis A30, with the orifices 340, while the bipolar half-plate 44 covers the orifices 340 and the cutouts 49 are aligned, parallel to the axis A30, with the orifices 320.
  • each orifice 320 is arranged between a solid portion 42A of the bipolar half-plate 42 and a solid portion 34A or 34B of the half-frame 34, facing a cutout 49
  • each orifice 340 is arranged between a solid portion 44A of the bipolar half-plate 44 and a full portion 32A or 32B of the half-frame 32, facing a cutout 48.
  • the solid portions 32A and 34A of the half-frames 32 and 34 are constituted , in this embodiment, at their longitudinal ends 32A and 34A.
  • the solid portions 32A and 34A of the half-frames 32 and 34 are constituted by zones respectively devoid of openings 36 and orifices 320 or 340.
  • the solid portions 42A and 44A of the bipolar half-plates 42 and 44 are constituted by zones respectively devoid of openings 46 or other orifice or cutout. At the level of these solid portions 42A and 44A, the surfaces S42 and S44 are not interrupted.
  • the geometry of the GDL 28 is such that it does not interpose between the first orifices 320 and the solid portions 42A of the bipolar half-plate 42 which are facing the orifices 320, so as to allow direct contact, at through a first given orifice 320, of the solid portion 34A, corresponding to this first given orifice 320, of the half-frame 34, with the solid portion 42A corresponding to this first given orifice 320, of the bipolar half-plate 44.
  • the geometry of the GDL 29 is such that it does not interpose between the second orifices 340 and the solid portions 44A of the bipolar half-plate 44 which are facing the orifices 340, so as to allow contact direct, through a second given orifice 340, of the solid portion 32A, corresponding to this second given orifice 340, of the half-frame 32, with the solid portion 44A corresponding to this first given orifice 340, of the half-plate bipolar 42.
  • such relative positioning can be achieved by the geometry of the external contour of the GDL 28, 29, as in the example illustrated, or perhaps achieved by the presence of an orifice in the GDL 28, 29.
  • a solid portion of a half-frame or half-bipolar plate corresponds to a first or second orifice when it is aligned with, in other words facing, this orifice, in a parallel direction to the A30 axis.
  • a fifth step of securing the first and second bipolar half-plates 42 and 44 with the frame 30 is implemented by activating, for example by heating, the glue present on the surfaces S32 and S34, at least over the extent of the portions solid portions 34A of the half-frame 34 which are facing the first orifices 320, and over the extent of the solid portions 32A of the half-frame 32 which are facing the second orifices 340.
  • This activation can optionally be completed by a pressing operation to guarantee contact, through first and second orifices 320 and 340, of the glue thus activated with the corresponding solid portion 44A, 42A of the bipolar half-plate 44, 42.
  • the optional pressing can be concomitant, at least in part, upon activation.
  • Pressing may follow activation, or may begin before or during activation and continue beyond activation.
  • the solid portion 34A of the half-frame 34 which is opposite this first given orifice 320, is secured to the corresponding solid portion 42A, of the bipolar half-plate 42 , which is also opposite this first orifice 320 given, this in particular by the glue initially carried by full portion 34A of the half-frame 34.
  • the activation of the glue can, particularly in the case of thermoplastic glues activated by heating, have the effect of fluidifying this glue and allowing a part of this glue, in particular that located in the vicinity around a first and /or second orifice 320 and 340 given, to then migrate into this orifice 320 and 340, respectively towards the surfaces S44 and S42.
  • heating the glue present on the surface S34 can also have the effect of causing part of the glue present between the half-frames 32 and 34 to flow into the orifices 320.
  • heating the glue present on the surface S32 can also have the effect of causing part of the glue present between the half-frames 32 and 34 to flow into the orifices 340.
  • the glue previously coated on the surfaces S32 and S34 can flow between these surfaces and migrate to the nearest hollow volumes which are constituted by the orifices 320 and 340. From there, the glue flows, in these orifices, towards the edges of these orifices which adjoin the surfaces S42 and S44 of the bipolar half-plates 42 and 44 which it reaches at the end of the fifth step.
  • the first bipolar half-plate 42 is secured to the frame 30 thanks to the glue present in the orifices 320
  • the second bipolar half-plate 44 is secured to the frame 30 thanks to the glue present in the orifices 320. 340 holes.
  • the fifth step is advantageously carried out by application of a localized heat source 82 on the half-frame 34, located in the alignment of each orifice 320 in a direction parallel to the axis A30, and by application of a heat source.
  • localized heat 84 on the half-frame 32 located in the alignment of each orifice 340 in a direction parallel to the axis A30, as shown in Figure 4.
  • the application of the heat source 82 or 84 makes it possible to locally raise the temperature of the glue, in order to ensure its activation and, possibly, to facilitate its flow into the orifices 320 and 340.
  • the heat source is advantageously a heating bar which can be manipulated by hand by an operator or by a robot and which includes a heating resistance.
  • the heating bar may in particular be of the type of a manual welding station stylus.
  • the heating bar can also be a system operating by impulse.
  • a mechanical force that is to say a pressure of the heat source towards the frame is exerted jointly with the heat input, which makes it possible to secure the activation of the glue and the assembly of the frame 30 with the bipolar half-plate 42.
  • the heating bar 82 is inserted, in a direction parallel to the axis A30, in a cutout 49 and/or the heating bar 84 is inserted, in a direction parallel to the axis A30, in a cutout 48, to bring heat as close as possible to the glue coated on the surface S34 or S32, by direct application to the zone Z4 or Z2 of the half-frame 34 or 32 accessible through the cutout in question.
  • bipolar half-plates 42 or 44 are equipped with cutouts.
  • cutouts 48 and 49 each open onto at least one longitudinal edge of the bipolar half-plates 42 and 44 facilitates contact between the heating bar 82 or 84 and the half-frame 32 or 34.
  • the heating of the glue is carried out by radiation, by convection, in particular with blown hot air, by application of ultrasound or ultraviolet rays.
  • the choice of heating mode, and therefore the heat source used depends on the type of glue used and the geometry of the bipolar half-plates and the frame.
  • a step of pressing the multilayer structure, in a direction parallel to the axis A30 can be implemented, as well as an application step of vibrations to the glue present in the multilayer structure.
  • This pressing and this vibration facilitate the migration of the glue, from the surfaces S34 and S32 respectively towards the surfaces S42 and S44, within the orifices 320 and 340 and/or can facilitate the bringing into contact of this glue with the surface S42 and S44 through the orifices 320 and 340.
  • the pressing can be localized, for example concentrated on the extent of the first and second orifices, or can be extended to a larger area of the multilayer structure, possibly to the entirety of the surface of the multilayer structure or the entire surface portion of the multilayer structure which is located outside the perimeter of the GDLs 28 and 29.
  • a quantity Q2 of glue initially located on the surface S34 is present in each orifice 320, so that it connects the surface S42 to the portion of the surface S34 located opposite this orifice 320 and possibly at the edge of this orifice which adjoins the surface S34, that is to say at the level of the solid portion 34A of the half-frame 34 which is opposite the orifice 320.
  • a quantity Q4 of glue initially located on the surface S32 is present in each orifice 340, so that it connects the surface S44 to the portion of the surface S32 located opposite this orifice 340 and possibly to the edge of this orifice which adjoins the surface S32, it is that is to say at the level of the solid portion 32A of the half-frame 32 which is opposite the orifice 340.
  • the quantity of glue Q2 generally comes mainly from the glue initially coated on the surface S34
  • the quantity of glue Q4 generally comes mainly from the glue initially coated on the surface S32.
  • the fact that there is no superposition between the orifices 320 and 340 guarantees that a full portion of a half-frame, coated with glue, is exposed, through each orifice 320 or 340, facing a full portion of the opposite half-plate.
  • the quantities of glue Q2 and Q4 which extend respectively into the orifices 320 and 340 ensure the bonding, either of the first bipolar half-plate 42, or of the second bipolar plate 44, on the frame 30, without direct connection between these two half-plates 42, 44 through the frame 30.
  • the glue constituting a quantity Q2 can be formed by the sole quantity of glue present on the portion of the surface S34 facing an orifice 320, while the glue constituting a quantity Q4 can be formed by the sole quantity of glue present on the portion of surface S32 facing an orifice 340.
  • the glue constituting a quantity Q2 can be formed from the glue which was, before the fifth step, on the surface S34, both at and around an orifice 320, while the glue constituting the quantity Q4 is formed by glue which was, before the fourth step, on the surface S32, both at and around an orifice 340.
  • the quantity Q2 of glue extends, within the first orifices 320, parallel to the plane TT30.
  • the quantity Q2 of glue is not deformed during the assembly process, so that the quantity Q2 of glue is, on the finished product, not deformed, but on the contrary parallel to the plane TT30 .
  • the method of manufacturing the subassembly 6 of the invention takes advantage of the fact that a glue is applied to the surfaces S32 and S34 to use it, on the one hand, to join the half -frames 32 and 34 between them and around the CCM membrane 25 and, on the other hand, to secure the bipolar half-plates 42 and 44 on the frame 30, without the use of additional glue, welding or a other means of assembly.
  • the section of the orifices 320 and 340 can be chosen with a relatively small area, less than or equal to 50 mm 2 , preferably 20 mm 2 . This avoids weakening the frame 30, while allowing effective joining of the bipolar half-plates 42 and 44 to the frame.
  • the section of the orifices 320 and 340 can be chosen with an area greater than or equal to 5 mm 2 , preferably 10 mm 2 . This allows the glue surface in contact with a surface S42 or S44 to be sufficient to ensure effective immobilization of the bipolar half-plate 42 or 44.
  • the orifices 320 and 340 can be circular in shape, with a diameter of between 3 and 8 mm, preferably of the order of 5 mm, as shown in the figures.
  • they can be of any other shape, for example in the shape of a polygon (triangle, rectangle, pentagon, hexagon, etc.) or in an oblong shape, with a length in the range from 5 to 10 mm, for example 7 mm and a width included in the range from 2 to 5 mm.
  • a larger size of the orifices is also possible, making it possible in particular to increase the adhesion force, but with potentially repercussions on the total size, or on the positioning with respect to the plate.
  • the subassembly 6 constitutes an electrochemical cell and can be manipulated, by a human operator or a robot, without the risk of its different layers separating from each other, because these are effectively maintained in relation to each other thanks to the glue coated on the surfaces S32 and S3 during the first preliminary step and part of which is in the orifices 320 and 340.
  • the first five steps mentioned above make it possible to constitute cells which have all their main components, including the CCM membrane 25 and the two bipolar half-plates 42 and 44, and which, under normal handling, do not risk prevent them from accidentally separating or shifting, which allows them to be tested or even pre-activated.
  • creating an individual electrochemical cell in this way offers the opportunity to then test it with appropriate tools, tools ensuring the various seals and allowing the reagents and possibly the cooling fluid to be supplied.
  • test tools are advantageously capable of, and designed to, measure the efficiency of the cell.
  • the same tooling, or separate tooling makes it possible to carry out, at least partially, the electrochemical running-in which is usually practiced after the stacking of the cells, when the cell is assembled. Such activation, at least partial, makes it possible to bring the electrochemical performance to or close to the expected level of initial performance.
  • Such testing and/or pre-activation operations make it possible to validate the operation and performance of the cell thus preassembled, before integrating them into the stack.
  • the sealing of the anode compartment, between the membrane-electrode assembly 2 and the anodic bipolar half-plate, and of the cathode compartment, between the membrane-electrode assembly 2 and the cathode bipolar half-plate is ensured by the peripheral seals 50 and the seals opening 51, and not by the pre-assembly of the membrane-electrode assembly 2 with one and/or the other of the bipolar half-plates, as described above.
  • this pre-assembly by the quantities Q2, Q4 of glue which extend through the first and/or second orifices 320, 340 and which come from the glue coated on the first surface S34 of the second half-frame 34 or glue coated on the second surface S32 of the first half-frame 32, only form a pre-assembly at point areas.
  • This pre-assembly is therefore incapable of ensuring fluid sealing of the compartment concerned with respect to the outside.
  • the bipolar half-plates 42 and 44 do not have, for at least one orifice 320 and/or 340, a cutout comparable to the cutouts 48 and 49 of the first embodiment. More particularly, in certain variants of this second embodiment, the bipolar half-plates 42 and 44 are entirely devoid of cutouts comparable to the cutouts 48 and 49 of the first embodiment, so that each second orifice 340 is arranged between a portion full 44A of the second bipolar half-plate 44 and a full portion 32A of the half-frame 32 which is itself arranged opposite a full portion 42A of the first bipolar half-plate 42. In other words, at level of the second orifices, the frame 30 is covered, on its two opposite sides, by the bipolar half-plates 42 and 44. Thus, the bipolar half-plates are simpler to manufacture than in the first embodiment and are interchangeable.
  • the heating of the glue is obtained by applying a heat source 84 not directly to the frame 30, as in the first embodiment, but to the portion 44A of the second half-plate 44, in the area where it is desired to secure it to the frame 30, that is to say opposite an orifice 340.
  • a quantity Q2 of glue which has migrated from the layer of glue previously coated on the surface S32 of the half-frame 32, then ensures the connection between the frame 30 and the bipolar half-plate 44 through the orifice 320.
  • the heat source can be applied to the portion 42A of the first half-plate 42.
  • the situation is symmetrical with respect to the plane TT30, with respect to that shown in Figure 5.
  • This embodiment is simpler to implement than the previous one, at the cost of potentially less efficient heating of the glue.
  • the zones where it is preferable to provide the first and second orifices 320 and 340 are identified with single-line hatching and the exclusion zones, where these orifices are preferably not provided, are identified with cross hatching.
  • the subassembly 6 comprises a system of peripheral seals 50, which is formed of peripheral seals ensuring the same function as the system of peripheral seals 50 of the first embodiment.
  • An opening seal system 51 is also provided, with the same function as the opening seal system 51 of the first embodiment.
  • peripheral seals 50 partly provide the function of sealing the openings, with the opening seals 51 which connect with the peripheral seal 50.
  • an additional peripheral seal 50 is arranged on the surface of the bipolar half-plate 42 opposite the frame 30, as visible in the upper part of the inserts A) and B) of Figure 7. According to a variant not shown of the invention, it is the same at the level of the opening seals 51.
  • the stack 60 of electrochemical cells 6, produced within a fuel cell 8 conforming to the invention comprises several electrochemical cells, formed by subassemblies 6 also conforming to the invention , which are separated by bipolar plates 4 each constituted by a first half-bipolar plate 42 belonging to a cell 6 and by a second half-bipolar plate 44 belonging to an adjacent cell 6, the frames 30 of these subassemblies being maintained tightened in a tight manner relative to the bipolar plates 4, with peripheral seals 50, arranged in particular along the longitudinal edges of the electrochemical cells and opening seals 51 which each surround one of the openings 36, 46 forming the galleries d flow of fluids within the stack of electrochemical cells.
  • the peripheral seals 50 delimit the interior limit of a peripheral external zone Z ext of the subassembly 6 which is delimited in a sealed manner with respect to the anodic, cathode and cooling fluid compartments.
  • the area external peripheral zone Z ext of the subassembly 6 is therefore located outwards relative to at least one peripheral seal 50 of the subassembly 6. It is in this external peripheral zone Z ext , exterior, in particular with respect to the peripheral joint 50 provided between the frame 30 and the first bipolar half-plate 42, which is preferably chosen to place the first orifices 320 arranged through the first half-frame 32 and the solid portions 42A of the first half-plate bipolar 42.
  • the peripheral seals 50 are generally arranged set back radially inwards relative to the external edges of the bipolar half-plates and the external edges of the frame the membrane-electrode assembly, so that it is actually possible to use this peripheral external zone Z ex t to place the first orifices 320 arranged through the first half-frame 32 and the solid portions 42A of the first bipolar half-plate 42, and/or the second orifices 340 arranged through the second half-frame 34 and the solid portions 44A of the second bipolar half-plate 44.
  • the contour of the peripheral seals 50 can be adapted, to locally present a detour towards the interior, in order to increase the peripheral external surface Z ext available around the first orifices 320 and/or second orifices 340.
  • each gallery framing zone Z eg is fluidically isolated from the anodic, cathodic and cooling fluid compartments.
  • Each of the gallery framing zones Z eg can also accommodate at least some of the first orifices 320, arranged through the first half-frame 32 facing a solid portion 42A of the first bipolar half-plate 42, and/or at least some of the second orifices 340, arranged through the second half-frame 34 facing a solid portion 44A of the second bipolar half-plate 44. Note, however, that each gallery framing zone Z eg is capable of be fluidly connected with the gallery it surrounds.
  • Such zones can also be defined in the first and second embodiments, even if they are not formally identified in Figures 1 to 6.
  • the presence of the bonding zones Z2, Z4 is illustrated, which correspond respectively to the position of the first orifices 320 and the second orifices 340, along the longitudinal edges of the subassembly 6, at the height of the active zone corresponding to the presence of the CCM membrane 25.
  • these bonding zones Z2, Z4 could be, as in the example of Figure 3, located near the longitudinal ends of the subassembly 6, for example longitudinally at the height of the openings 36, 46 of the subassembly 6, or even beyond the openings 36, 46 of the subassembly 6 in the longitudinal direction starting from the center of the subassembly 6.
  • these zones Z2, Z4 collage can be located in one or other of the gallery framing zones Z eg .
  • Electrode a corner being defined as being a portion of the electrode membrane assembly which is included in the peripheral external zone Z ext and which is:
  • This position can be exactly that of the median plane TT30 of the frame 30 along the axis A30, or be offset from that of the median plane TT30 of the frame 30 by a value less than or equal to the thickness of the frame 30 along the axis A30 , ideally offset from that of the median plane TT30 of the frame 30 by a value equal to the thickness, along the axis A30, of the half-frame 32, 34 in which the orifice 320, 340 is formed.
  • the bipolar half-plates 42, 44 have reliefs along the axis A30, these reliefs corresponding to the bottoms of reactive fluid circulation channels, to separation teeth between two channels, to bearing surfaces for seals 50, 51.
  • the first bipolar half-plate 42 is formed in such a way that the solid portion 42A facing a first orifice 320 is arranged in a position which, according to the axis A30, is offset from that of the median plane TT30 of the frame 30 by a value equal to the thickness, along the axis A30, of the half-frame 32 in which the first orifice 320 is formed.
  • the solid portion 42A of the first bipolar half-plate 42 which faces a first orifice 320 of the first half-frame 32, may correspond to a stamped shape of the sheet forming the first bipolar half-plate 42 and/or the solid portion 44A of the second bipolar half-plate 44, which faces a second orifice 340 of the second half-frame 34, may correspond to a stamped shape of the sheet forming the second bipolar half-plate 44.
  • the opening seals 51 are separated from the peripheral seals 50 and therefore have a closed contour ensuring in themselves the sealing function, for each anodic, cathodic or fluid compartment. cooling, between the compartment concerned and at least those of the openings 36 and 46 which do not communicate with this given compartment.
  • the opening seals 51 each alone delimit a gallery framing zone Z eg and portions of the internal zone are located between two gallery framing zones Z eg , as represented by the cross-hatched areas arranged between two opening seals 51 in Figure 8.
  • first and second orifices 320 and 340 are preferably provided in the peripheral external zone Z ext of the subassembly 6.
  • some or all of the bonding zones Z2, Z4 can be provided in one or more gallery framing zone(s) Z eg ..
  • only one of the first orifices 320 or only some of them is/are provided in the peripheral external zone Z ext or in one or more of them.
  • gallery framing zone(s) Z eg it can be provided that only one of the second orifices 340 or only some of them is/are provided in the peripheral external zone Z e xt or in one or more gallery framing zone(s) Z eg .
  • the stack such as the stack 60 shown in Figure 7, at least one electrochemical cell 6 conforms to the invention.
  • all the electrochemical cells 6 conform to the invention.
  • the subassembly 6 comprises a first half-polar plate 42 on one side only and this is joined to a second half-polar plate 44 to form a preassembled polar plate 4, before joining the frame 30 and the half-polar plate 42, with the bonding technique using, for example, the first orifices 320.
  • the subassembly 6 is a multilayer structure which is not symmetrical with respect to the plane TT30, since the two joined polar half-plates are located on the side of the half-frame 32.
  • This subassembly 6 can be integrated into a stack of the type of stack 60 shown in Figure 7, in one operation because it can be handled individually by an operator or a robot.
  • Each sub-assembly 6 then constitutes a part of an electrochemical cell, since it must be associated with the second bipolar half-plate 44 itself forming part of another pre-assembled bipolar plate 4 of an adjacent sub-assembly to constitute a cell complete.
  • the first orifices 320 are provided through the first half-frame 32, without the need to provide second orifices through the second half-frame 34, only the component of the fifth step represented in the upper part of the Figure 4, or a component symmetrical to that shown in Figure 6, is implemented and the glue can only be coated on the first surface S34 of the second half-frame 34.
  • This embodiment does not make it possible to test or to pre-activate a cell before the stack is formed.
  • the invention is shown in the figures in the case where the membrane 25 is of the CCM type, the catalytic layers 23, 24 being carried by the base membrane 22. It is also applicable to the case where the catalytic layers 23, 24 are carried by the diffusion layers 28 and 29, according to CCB technology, from the English “Catalyst Coated Baking” or even in the case of a mixed assembly, with one among the catalytic layers 23, 24 which is carried by the base membrane 22, and the other among the catalytic layers 23, 24 which carried by the corresponding diffusion layer 28 or 29.
  • the subassembly 6 does not include the diffusion layers 28 and 29, which can also be omitted, and/or replaced by structures integrated into the bipolar plates 4.
  • the quantity of glue Q2 or Q4 present in an orifice 320 or 340 does not necessarily fill the entire volume of this orifice.
  • the orifices 320 and 340 have the same geometry, as shown in the figures.
  • one or more of the orifices of a half-frame has a geometry different from that of the other orifices of this half-frame and/or one or more of the orifices of a half-frame has a geometry different from that one or more holes in the other half-frame.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

The invention relates to a subassembly for a fuel cell stack comprising at least a first bipolar half-plate (42) and a membrane-electrode assembly including a membrane and a bipartite frame (30) formed by a first half-frame (32) and a second half-frame (34). At least the second half-frame (34) is coated, on a first surface (S34) opposite a first surface (S32) of the first half-frame, with a layer of securing glue. First apertures (320) through the first half-frame (32) are each arranged opposite a solid portion (42A) of the first bipolar half-plate and opposite a solid portion (34A) of the second half-frame in a direction perpendicular to a main plane of the membrane (TT22). The first bipolar half-plate (42) is rigidly attached to the frame (30) by a quantity (Q2) of glue which extends through the first apertures (320) and which comes from the glue coated on the first surface (S34) of the second half-frame (34).

Description

TITRE : Sous-ensemble pour empilement de pile à combustible, pile à combustible comprenant un tel sous-ensemble et procédé de fabrication d’un tel sous-ensemble TITLE: Subassembly for fuel cell stack, fuel cell comprising such a subassembly and method of manufacturing such a subassembly
La présente invention concerne un sous-ensemble destiné à être intégré à un empilement de cellules électrochimiques, au sein d’une pile à combustible. L’invention concerne également une pile à combustible comprenant un empilement de cellules électrochimiques dont l’une au moins comprend, ou est constituée par, un tel sous- ensemble. L’invention concerne enfin un procédé de fabrication d’un sous-ensemble tel que mentionné ci-dessus. The present invention relates to a subassembly intended to be integrated into a stack of electrochemical cells, within a fuel cell. The invention also relates to a fuel cell comprising a stack of electrochemical cells, at least one of which comprises, or is constituted by, such a subassembly. The invention finally relates to a method of manufacturing a subassembly as mentioned above.
Dans le domaine des piles à combustible, il est connu d’insérer un empilement de cellules électrochimiques entre deux plaques terminales, situées de part et d’autre de cet empilement dans une direction d’empilement, et éventuellement de disposer cet empilement dans un carter. Les cellules électrochimiques sont formées par des assemblages membrane-électrode et des plaques bipolaires. Un assemblage membrane- électrode est parfois dénommé MEA, de l’Anglais « Membrane-Electrode Assembly », et comprend généralement une membrane de base, qui peut être revêtue sur l’une ou sur ses deux faces, d’une couche catalytique comprenant un catalyseur, ainsi qu’un cadre qui supporte cette membrane. Le cadre peut comporter des ouvertures qui, dans l’empilement, définissent des galeries d’écoulement de fluide au sein de l’empilement de cellules électrochimiques pour la distribution et la récupération de ces fluides dans les compartiments fluidiques correspondants de chaque cellule. Ce cadre est le plus souvent associé à au moins un joint, parfois dénommé « gasket », avec lequel il assure également une fonction d’étanchéité à l’écoulement des fluides au sein de l’empilement. In the field of fuel cells, it is known to insert a stack of electrochemical cells between two end plates, located on either side of this stack in a stacking direction, and possibly to arrange this stack in a casing. . Electrochemical cells are formed by membrane-electrode assemblies and bipolar plates. A membrane-electrode assembly is sometimes called MEA, from the English “Membrane-Electrode Assembly”, and generally comprises a base membrane, which can be coated on one or both of its faces, with a catalytic layer comprising a catalyst, as well as a frame which supports this membrane. The frame may include apertures which, in the stack, define fluid flow galleries within the stack of electrochemical cells for the distribution and recovery of these fluids into the corresponding fluidic compartments of each cell. This frame is most often associated with at least one seal, sometimes called a “gasket”, with which it also provides a sealing function to the flow of fluids within the stack.
La membrane, lorsqu’elle est revêtue de couches comprenant un catalyseur, est parfois dénommée CCM, de l’Anglais « Catalyst Coated Membrane » et comprend dans ce cas trois couches à savoir, une membrane proprement dite, une couche catalytique côté anode et une couche catalytique côté cathode. The membrane, when coated with layers comprising a catalyst, is sometimes called CCM, from the English "Catalyst Coated Membrane" and in this case comprises three layers, namely, a membrane itself, a catalytic layer on the anode side and a catalytic layer on the cathode side.
Dans l’empilement, un assemblage membrane-électrode est intercalé entre deux plaques bipolaires et délimite ainsi un compartiment anodique et un compartiment cathodique. De chaque côté, la membrane revêtue de catalyseur est recouverte par une couche de diffusion de gaz qui est donc reçue dans le compartiment anodique ou cathodique correspondant et favorise la mise en contact de la ou les espèces chimiques, présentes dans le compartiment anodique ou cathodique correspondant, avec la membrane. Chaque couche de diffusion de gaz a aussi un rôle de conduction des électrons. Ces couches de diffusion sont parfois dénommées GDL, de l’Anglais « Gas Diffusion Layer ». In the stack, a membrane-electrode assembly is inserted between two bipolar plates and thus delimits an anode compartment and a cathode compartment. On each side, the membrane coated with catalyst is covered by a gas diffusion layer which is therefore received in the corresponding anodic or cathodic compartment and promotes contacting of the chemical species, present in the corresponding anodic or cathodic compartment. , with the membrane. Each gas diffusion layer also has a role in conducting electrons. These diffusion layers are sometimes called GDL, from English “Gas Diffusion Layer”.
Il est connu de fabriquer un assemblage membrane-électrode en rapportant la membrane revêtue de catalyseur sur le cadre, ce qui permet notamment de rigidifier cette membrane et d’en faciliter la manipulation. Ceci a lieu en collant de manière étanche la membrane sur le cadre. It is known to manufacture a membrane-electrode assembly by attaching the membrane coated with catalyst to the frame, which in particular makes it possible to stiffen this membrane and facilitate its handling. This takes place by sealing the membrane to the frame.
Il est connu de réaliser, au cours de la fabrication d’une pile à combustible, des plaques bipolaires formées de deux demi-plaques ou feuillards de tôle qui appartiennent à deux cellules électrochimiques adjacentes. Ceci nécessite de manipuler de façon distincte, les assemblages membrane-électrode, d’une part, et les plaques bipolaires, d’autre part lors de leur mise en place au sein de l’empilement d’une pile à combustible. Cette solution impose de solidariser entre elles les deux demi-plaques ou feuillards d’une plaque bipolaire. Cette solidarisation peut être effectuée par soudage laser ou brasage, notamment point par point, par déformation plastique des feuillards, notamment au moyen d’un outil électrique créant un impact, ou par collage. Cependant, on connait aussi la possibilité d’avoir des plaques bipolaires formées de deux demi-plaques ou feuillards de tôle qui appartiennent à deux cellules électrochimiques adjacentes, les deux demi-plaques étant seulement maintenues au contact l’une de l’autre, par la compression de l’empilement, avec généralement interposition d’un ou plusieurs joints d’étanchéité, qui peuvent être des joints libres ou des joints intégrés à l’une ou l’autre des demi-plaques. It is known to produce, during the manufacture of a fuel cell, bipolar plates formed of two half-plates or sheet metal strips which belong to two adjacent electrochemical cells. This requires handling separately the membrane-electrode assemblies, on the one hand, and the bipolar plates, on the other hand when they are placed within the stack of a fuel cell. This solution requires joining together the two half-plates or strips of a bipolar plate. This joining can be carried out by laser welding or brazing, in particular point by point, by plastic deformation of the strips, in particular by means of an electric tool creating an impact, or by gluing. However, we also know the possibility of having bipolar plates formed of two half-plates or strips of sheet metal which belong to two adjacent electrochemical cells, the two half-plates only being kept in contact with each other, by compression of the stack, generally with the interposition of one or more seals, which may be free seals or seals integrated into one or other of the half-plates.
Une fois que les assemblages membrane-électrode, d’une part, et les plaques bipolaires, d’autre part, sont constitués, il convient de les disposer alternativement le long de la direction d’empilement, ce qui s’avère en pratique long et délicat à mettre en œuvre. Once the membrane-electrode assemblies, on the one hand, and the bipolar plates, on the other hand, are formed, they should be arranged alternately along the stacking direction, which in practice turns out to be long and difficult to implement.
Il est connu de WO-A-2014/1 11745 et de US-B-8399150 de coller un cadre de cellule électrochimique sur une plaque bipolaire, au moyen d’une couche d’adhésif intercalée entre ces pièces. Cette approche nécessite de solidariser les feuillards des plaques bipolaires selon l’une des techniques mentionnées ci-dessus et de prévoir une quantité d’adhésif dédiée à la création de la liaison entre le cadre et la plaque bipolaire. Cette approche impose la façon de constituer ensuite l’empilement de cellules électrochimique de la pile à combustible et renchérit son prix de revient, d’une part en termes d’investissement pour les moyens de dépose de l’adhésif et d’autre part en termes de coût de cet adhésif ajouté. It is known from WO-A-2014/1 11745 and US-B-8399150 to stick an electrochemical cell frame on a bipolar plate, by means of a layer of adhesive interposed between these parts. This approach requires joining the strips of the bipolar plates together using one of the techniques mentioned above and providing a quantity of adhesive dedicated to creating the connection between the frame and the bipolar plate. This approach imposes the way of then constituting the stack of electrochemical cells of the fuel cell and increases its cost price, on the one hand in terms of investment for the means of depositing the adhesive and on the other hand in terms of cost of this added adhesive.
Il est également connu de.JP2008084707A de répartir des points de colle entre les deux demi-cadres d’un cadre entourant une membrane de cellule électrochimique et de percer dans ces demi-cadres des orifices traversant qui sont alignés selon une direction perpendiculaire au plan de la membrane. Une demi-plaque bipolaire est rapportée sur chaque demi-cadre au moyen d’autres points de colle. Cette technique d’assemblage avec des points de colle requiert une quantité relativement importante de colle. Chaque demi- plaque bipolaire n’est directement solidarisée qu’au demi-cadre adjacent. En outre, la colle disposée entre les deux demi-cadres risque de déborder sur un côté du sous-ensemble ainsi réalisé. It is also known from.JP2008084707A to distribute glue points between the two half-frames of a frame surrounding an electrochemical cell membrane and to pierce through holes in these half-frames which are aligned in a direction perpendicular to the plane of the membrane. A bipolar half-plate is attached to each half-frame using other glue dots. This assembly technique with glue dots requires a relatively large quantity of glue. Each bipolar half-plate is only directly attached to the adjacent half-frame. In addition, the glue placed between the two half-frames risks overflowing onto one side of the subassembly thus produced.
C’est à ces inconvénients qu’entend plus particulièrement remédier l’invention en proposant un nouveau sous-ensemble pour un empilement de pile à combustible, dont la fabrication est simplifiée et dont le prix de revient peut être diminué par rapport aux matériels antérieurs. It is these drawbacks that the invention more particularly intends to remedy by proposing a new subassembly for a fuel cell stack, the manufacture of which is simplified and whose cost price can be reduced compared to previous materials.
A cet effet, l’invention concerne un sous-ensemble pour empilement de pile à combustible comprenant un assemblage membrane-électrode incluant une membrane et un cadre bipartite formé par un premier demi-cadre disposé sur un premier côté de la membrane et un deuxième demi-cadre disposé sur un deuxième côté de la membrane. L’assemblage membrane-électrode inclut également au moins une première demi-plaque bipolaire. Au moins le deuxième demi-cadre est enduit, sur une première surface en regard d’une première surface du premier demi-cadre, d’une couche de colle pour la solidarisation des demi-cadres. To this end, the invention relates to a subassembly for a fuel cell stack comprising a membrane-electrode assembly including a membrane and a bipartite frame formed by a first half-frame disposed on a first side of the membrane and a second half -frame placed on a second side of the membrane. The membrane-electrode assembly also includes at least a first bipolar half-plate. At least the second half-frame is coated, on a first surface facing a first surface of the first half-frame, with a layer of glue for securing the half-frames.
Conformément à l’invention, des premiers orifices aménagés à travers le premier demi-cadre sont disposés chacun en regard d’une portion pleine de la première demi- plaque bipolaire et en regard d’une portion pleine du deuxième demi-cadre, selon une direction perpendiculaire à un plan principal de la membrane. En outre, la première demi- plaque bipolaire est solidarisée au cadre par une quantité de colle qui s’étend à travers les premiers orifices et qui provient de la colle enduite sur la première surface du deuxième demi-cadre. In accordance with the invention, first orifices arranged through the first half-frame are each arranged facing a solid portion of the first bipolar half-plate and facing a solid portion of the second half-frame, according to a direction perpendicular to a main plane of the membrane. In addition, the first bipolar half-plate is secured to the frame by a quantity of glue which extends through the first orifices and which comes from the glue coated on the first surface of the second half-frame.
Grâce à l’invention, la structure du sous-ensemble permet d’utiliser la couche de colle prévue à titre principal pour solidariser entre eux les deux cadres de l’assemblage membrane-électrode pour assurer une fonction supplémentaire d’immobilisation de la première demi-plaque bipolaire. Ceci permet de manipuler ce sous-ensemble de façon unitaire lors de la fabrication d’une pile à combustible incorporant celui-ci, ce qui facilite le travail d’un opérateur ou d’un robot et permet d’augmenter les cadences de production, donc de diminuer le prix de revient de la pile à combustible. En outre, le mode de solidarisation entre la première demi-plaque bipolaire et le cadre est précis puisque la quantité de colle qui s’étend à travers les premiers orifices est bien positionnée dans l’espace, grâce à ces premiers orifices. En particulier, cette quantité de colle ne risque pas de s’écouler à l’extérieur du sous-ensemble de l’invention. En outre, dans le cas où le sous- ensemble comprend une deuxième demi-plaque bipolaire, il constitue une cellule électrochimique unitaire qui peut être testée, voire pré-activée, avant son incorporation dans un empilement de cellules, ce qui fiabilise un procédé de fabrication d’une telle pile. Thanks to the invention, the structure of the subassembly makes it possible to use the layer of glue provided primarily to secure together the two frames of the membrane-electrode assembly to ensure an additional function of immobilizing the first half -bipolar plate. This makes it possible to manipulate this subassembly in a unitary manner during the manufacture of a fuel cell incorporating it, which facilitates the work of an operator or a robot and makes it possible to increase production rates, therefore to reduce the cost price of the fuel cell. In addition, the mode of connection between the first bipolar half-plate and the frame is precise since the quantity of glue which extends through the first orifices is well positioned in space, thanks to these first orifices. In particular, this quantity of glue is not likely to flow outside the subassembly of the invention. Furthermore, in the case where the subassembly comprises a second bipolar half-plate, it constitutes a cell unitary electrochemical which can be tested, or even pre-activated, before its incorporation into a stack of cells, which makes a process for manufacturing such a cell more reliable.
Selon des aspects avantageux mais non obligatoires de l’invention, un tel sous- ensemble peut incorporer une ou plusieurs des caractéristiques suivantes, prises selon toute combinaison techniquement admissible : According to advantageous but not obligatory aspects of the invention, such a subassembly can incorporate one or more of the following characteristics, taken in any technically admissible combination:
- Le sous-ensemble comprend une deuxième demi-plaque bipolaire disposée, par rapport à la membrane, à l’opposé de la première plaque bipolaire. Le premier demi-cadre est enduit, sur sa première surface, d’une couche de colle pour la solidarisation des demi- cadres. Des deuxièmes orifices aménagés à travers le deuxième demi-cadre sont disposés chacun en regard d’une portion pleine de la deuxième demi-plaque bipolaire et regard d’une portion pleine du premier demi-cadre, selon la direction perpendiculaire à un plan principal de la membrane. En outre, la deuxième plaque bipolaire est solidarisée au cadre par une quantité de colle qui s’étend à travers les deuxièmes orifices et qui provient de la colle enduite sur la première surface du premier demi-cadre. - The subassembly comprises a second bipolar half-plate arranged, relative to the membrane, opposite the first bipolar plate. The first half-frame is coated, on its first surface, with a layer of glue to secure the half-frames together. Second orifices provided through the second half-frame are each arranged facing a solid portion of the second bipolar half-plate and facing a solid portion of the first half-frame, in the direction perpendicular to a main plane of the membrane. In addition, the second bipolar plate is secured to the frame by a quantity of glue which extends through the second orifices and which comes from the glue coated on the first surface of the first half-frame.
- Les premiers et deuxièmes orifices sont décalés les uns par rapport aux autres selon au moins une direction parallèle au plan principal de la membrane, de sorte qu’il n’existe pas de superposition entre ces orifices selon la direction perpendiculaire au plan principal de la membrane. - The first and second orifices are offset relative to each other in at least one direction parallel to the main plane of the membrane, so that there is no superposition between these orifices in the direction perpendicular to the main plane of the membrane. membrane.
- La première demi-plaque bipolaire est pourvue de découpes alignées avec les deuxièmes orifices et/ou en ce que la deuxième demi-plaque bipolaire est pourvue de découpes alignées avec les premiers orifices, selon la direction perpendiculaire au plan principal de la membrane. - The first bipolar half-plate is provided with cutouts aligned with the second orifices and/or in that the second bipolar half-plate is provided with cutouts aligned with the first orifices, in the direction perpendicular to the main plane of the membrane.
- Une découpe débouche sur au moins un bord longitudinal de la plaque bipolaire dans laquelle elle est ménagée. - A cutout opens onto at least one longitudinal edge of the bipolar plate in which it is formed.
- Chaque orifice aménagé à travers un demi-cadre présente une section dont l’aire est supérieure ou égale à 5 mm2, de préférence à 10 mm2, avec une forme préférentiellement circulaire, rectangulaire ou oblongue. - Each orifice provided through a half-frame has a section whose area is greater than or equal to 5 mm 2 , preferably 10 mm 2 , with a preferably circular, rectangular or oblong shape.
- La colle est thermo-activable et à base de polymère thermoplastique, notamment de copolymère EVA. - The glue is heat-activatable and based on thermoplastic polymer, in particular EVA copolymer.
- L’un au moins des premiers orifices aménagés à travers le premier demi-cadre est agencé dans une zone externe périphérique du sous-ensemble qui est située vers l’extérieur par rapport à un joint d’étanchéité périphérique du sous ensemble. - At least one of the first orifices provided through the first half-frame is arranged in a peripheral external zone of the sub-assembly which is located outwards relative to a peripheral seal of the sub-assembly.
- L’assemblage membrane électrode comporte quatre coins, alors que le sous- ensemble comporte au moins quatre premiers orifices aménagés à travers le premier demi- cadre et agencés dans une zone externe périphérique du sous-ensemble qui est située vers l’extérieur par rapport à un joint d’étanchéité périphérique du sous ensemble, chacun dans un coin de l’assemblage membrane électrode. - The electrode membrane assembly has four corners, while the sub-assembly comprises at least four first orifices arranged through the first half-frame and arranged in a peripheral external zone of the sub-assembly which is located outwards relative to a peripheral seal of the subassembly, each in a corner of the membrane electrode assembly.
- L’un au moins des premiers orifices aménagés à travers le premier demi-cadre et la portion pleine en regard appartenant à la première demi-plaque bipolaire sont agencés dans une zone d’encadrement de galerie, agencée autour d’une ouverture de la première demi-plaque bipolaire, et isolée fluidiquement d’au moins un compartiment fluidique anodique ou cathodique délimité dans le sous ensemble, entre l’assemblage membrane électrode et la première demi-plaque bipolaire. - At least one of the first orifices arranged through the first half-frame and the facing solid portion belonging to the first bipolar half-plate are arranged in a gallery framing zone, arranged around an opening of the first bipolar half-plate, and fluidly isolated from at least one anodic or cathodic fluid compartment delimited in the subassembly, between the membrane electrode assembly and the first bipolar half-plate.
Selon un autre aspect, l’invention concerne une pile à combustible comprenant un empilement de cellules électrochimiques, avec chacune un assemblage membrane- électrode et deux demi-plaques bipolaire, l’une au moins de ces cellules comprenant, ou étant constituée par, un sous-ensemble tel que mentionné ci-dessus. According to another aspect, the invention relates to a fuel cell comprising a stack of electrochemical cells, each with a membrane-electrode assembly and two bipolar half-plates, at least one of these cells comprising, or being constituted by, a subset as mentioned above.
Cette pile à combustible présente les mêmes avantages que ceux mentionnés ci- dessus. This fuel cell has the same advantages as those mentioned above.
Selon un troisième aspect, l’invention concerne un procédé de fabrication d’un sous- ensemble, notamment un sous-ensemble tel que mentionné ci-dessus, comprenant un assemblage membrane-électrode incluant une membrane et un cadre bipartite formé par un premier demi-cadre disposé sur un premier côté de la membrane et un deuxième demi- cadre disposé sur un deuxième côté de la membrane. L’assemblage membrane-électrode inclut également au moins une première demi-plaque bipolaire. Ce procédé comprenant au moins une étape préalable d’enduction d’au moins une première surface du deuxième demi-cadre avec une colle et une étape de solidarisation du cadre et de la membrane par application de la première surface du deuxième demi-cadre, enduite de colle, contre la première surface du premier demi-cadre. According to a third aspect, the invention relates to a method of manufacturing a subassembly, in particular a subassembly as mentioned above, comprising a membrane-electrode assembly including a membrane and a bipartite frame formed by a first half -frame placed on a first side of the membrane and a second half-frame placed on a second side of the membrane. The membrane-electrode assembly also includes at least a first bipolar half-plate. This method comprising at least one preliminary step of coating at least one first surface of the second half-frame with an adhesive and a step of joining the frame and the membrane by applying the first surface of the second half-frame, coated of glue, against the first surface of the first half-frame.
Conformément à l’invention ce procédé comprend au moins une étape d’application de la première demi-plaque bipolaire contre une deuxième surface du premier demi-cadre opposée à la première surface de ce premier demi-cadre et une étape de solidarisation de la première demi-plaque bipolaire et du cadre par migration de la colle enduite sur la première surface du deuxième demi-cadre, vers une surface de la première demi-plaque bipolaire, à travers des premiers orifices aménagés dans le premier demi-cadre, entre ses première et deuxième surfaces. According to the invention this method comprises at least one step of applying the first bipolar half-plate against a second surface of the first half-frame opposite the first surface of this first half-frame and a step of securing the first bipolar half-plate and the frame by migration of the glue coated on the first surface of the second half-frame, towards a surface of the first bipolar half-plate, through first orifices arranged in the first half-frame, between its first and second surfaces.
Ce procédé permet de former des cellules électrochimiques ou des parties de cellules électrochimiques qui peuvent être facilement intégrées à un empilement de cellules de pile à combustible, selon une technique qui peut être bien maitrisée, avec des cadences de production élevées. De façon avantageuse, le sous-ensemble comprend une deuxième demi-plaque bipolaire et le procédé comprend au moins une étape préalable d’enduction d’au moins une première surface du premier demi-cadre avec une colle, une étape d’application de la deuxième demi-plaque bipolaire contre une deuxième surface du deuxième demi-cadre opposée à la première surface de ce deuxième demi-cadre et une étape de solidarisation de la deuxième demi-plaque bipolaire et du cadre par migration de la colle enduite sur la première surface du premier demi-cadre, vers une surface de la deuxième demi-plaque bipolaire, à travers des premiers orifices aménagés dans le deuxième demi-cadre, entre ses première et deuxième surfaces. This process makes it possible to form electrochemical cells or parts of electrochemical cells which can be easily integrated into a stack of fuel cell cells, according to a technique which can be well mastered, with high production rates. Advantageously, the subassembly comprises a second bipolar half-plate and the method comprises at least one preliminary step of coating at least one first surface of the first half-frame with an adhesive, a step of applying the second bipolar half-plate against a second surface of the second half-frame opposite the first surface of this second half-frame and a step of joining the second bipolar half-plate and the frame by migration of the glue coated on the first surface from the first half-frame, towards a surface of the second bipolar half-plate, through first orifices provided in the second half-frame, between its first and second surfaces.
On peut en outre prévoir que, au cours de l’étape de solidarisation, la colle enduite sur la première surface du deuxième demi-cadre, et éventuellement sur la première surface du premier demi-cadre, est chauffée au moins au voisinage des premiers orifices, et éventuellement au niveau des deuxièmes orifices. It can also be provided that, during the joining step, the glue coated on the first surface of the second half-frame, and possibly on the first surface of the first half-frame, is heated at least in the vicinity of the first orifices , and possibly at the level of the second orifices.
L’invention sera mieux comprise et d’autres avantages de celle-ci apparaitront plus clairement à la lumière de la description qui va suivre de quatre modes de réalisation d’un sous-ensemble, d’une pile à combustible et d’un procédé conforme à son principe, donnée uniquement à titre d’exemple et faite en référence aux dessins annexés dans lesquels : The invention will be better understood and other advantages thereof will appear more clearly in the light of the following description of four embodiments of a subassembly, a fuel cell and a method. in accordance with its principle, given solely by way of example and made with reference to the appended drawings in which:
[Fig.1] La figure 1 est une vue en perspective partiellement éclatée d’un sous- ensemble conforme à un premier mode de réalisation de l’invention, ce sous-ensemble constituant une cellule électrochimique appartenant à un empilement d’une pile à combustible ; [Fig.1] Figure 1 is a partially exploded perspective view of a sub-assembly conforming to a first embodiment of the invention, this sub-assembly constituting an electrochemical cell belonging to a stack of a battery. combustible ;
[Fig.2] La figure 2 est une vue en perspective éclatée d’un assemblage membrane- électrode appartenant au sous-ensemble représenté à la figure 1 ; [Fig.2] Figure 2 is an exploded perspective view of a membrane-electrode assembly belonging to the subassembly shown in Figure 1;
[Fig .3] La figure 3 est une vue de face du sous-ensemble représenté à la figure 1 ; [Fig.3] Figure 3 is a front view of the subassembly shown in Figure 1;
[Fig.4] La figure 4 est une coupe longitudinale du sous-ensemble représenté aux figures 1 et 3, selon la ligne IV- IV à la figure 3, lors d’une étape de fabrication d’une pile à combustible incluant ce sous-ensemble ; [Fig.4] Figure 4 is a longitudinal section of the subassembly shown in Figures 1 and 3, along line IV-IV in Figure 3, during a step of manufacturing a fuel cell including this subassembly. -together ;
[Fig .5] La figure 5 est une est une vue partielle, analogue à la figure 4, pour un sous- ensemble conforme à un deuxième mode de réalisation de l’invention. [Fig.5] Figure 5 is a partial view, similar to Figure 4, for a subassembly conforming to a second embodiment of the invention.
[Fig.6] La figure 6 est une vue de face simplifiée, analogue à la figure 3, pour un sous-ensemble conforme à un troisième mode de réalisation de l’invention ; [Fig.6] Figure 6 is a simplified front view, similar to Figure 3, for a subassembly conforming to a third embodiment of the invention;
[Fig.7] La figure 7 représente, sur deux inserts A) et B) et à plus grande échelle, des coupes partielles au niveau des lignes de coupe A-A et B-B à la figure 6 dans le cas où le sous-ensemble est intégré à un empilement de cellules électrochimiques ; et [Fig.7] Figure 7 represents, on two inserts A) and B) and on a larger scale, partial sections at the level of cutting lines A-A and B-B in Figure 6 in the case where the subassembly is integrated to a stack of electrochemical cells; And
[Fig.8] La figure 8 est une vue de face simplifiée, analogue à la figure 6, pour un sous-ensemble conforme à un quatrième mode de réalisation de l’invention. Afin de bien montrer les caractéristiques de l’invention, les proportions ne sont pas forcément respectées entre les objets représentés sur les figures. [Fig.8] Figure 8 is a simplified front view, similar to Figure 6, for a subassembly conforming to a fourth embodiment of the invention. In order to clearly show the characteristics of the invention, the proportions are not necessarily respected between the objects represented in the figures.
Un assemblage membrane-électrode 2 est représenté de façon partiellement éclatée à la figure 1. Cet assemblage 2 est associé à une première demi-plaque bipolaire 42 et à une deuxième demi-plaque bipolaire 44 pour former un sous ensemble 6 destiné à constituer une cellule électrochimique, prévue pour faire partie d’un empilement, cet empilement constituant une partie d’une pile à combustible. Un tel empilement est représenté avec la référence 60, à la figure 7, au sein d’une pile à combustible 8 partiellement visible, pour le troisième mode de réalisation de l’invention. A membrane-electrode assembly 2 is shown partially exploded in Figure 1. This assembly 2 is associated with a first bipolar half-plate 42 and a second bipolar half-plate 44 to form a subassembly 6 intended to constitute a cell electrochemical, intended to form part of a stack, this stack constituting part of a fuel cell. Such a stack is represented with the reference 60, in Figure 7, within a partially visible fuel cell 8, for the third embodiment of the invention.
Les demi-plaques bipolaires 42 et 44 peuvent également être dénommées plaques polaires. The bipolar half-plates 42 and 44 can also be called polar plates.
On note A2 un axe longitudinal de l’assemblage membrane-électrode 2, qui est confondu avec un axe longitudinal A6 du sous-ensemble 6. We denote A2 as a longitudinal axis of the membrane-electrode assembly 2, which coincides with a longitudinal axis A6 of the subassembly 6.
L’assemblage membrane-électrode 2 peut être dénommé MEA et comprend une membrane de base 22 qui, dans l’exemple décrit ci-après, est revêtue de catalyseur. Plus précisément, la membrane de base 22 est une membrane polymère échangeuse de protons. La structure de l’assemblage membrane électrode 2 est la même que celle visible à la figure 7 pour le troisième mode de réalisation. Elle est décrite en référence à cette figure 7. La membrane de base 22 est donc, dans l’exemple, revêtue, sur un premier côté orienté vers le haut aux figure 1 , 2 et 7, d’une première couche catalytique 23 formant cathode et, sur un deuxième côté opposé au premier côté et orienté vers le bas aux figure 1 , 2 et 7, d’une deuxième couche catalytique 24 formant anode. La membrane 22 et les couches catalytiques 23 et 24 forment ensemble une membrane revêtue de catalyseur 25, autrement dénommée CCM. Dans la suite de la présente description, cette membrane revêtue de catalyseur 25 est dénommée membrane CCM. The membrane-electrode assembly 2 can be called MEA and comprises a base membrane 22 which, in the example described below, is coated with catalyst. More precisely, the base membrane 22 is a proton exchange polymer membrane. The structure of the membrane electrode assembly 2 is the same as that visible in Figure 7 for the third embodiment. It is described with reference to this figure 7. The base membrane 22 is therefore, in the example, coated, on a first side facing upwards in figures 1, 2 and 7, with a first catalytic layer 23 forming a cathode and, on a second side opposite the first side and oriented downwards in Figures 1, 2 and 7, a second catalytic layer 24 forming an anode. The membrane 22 and the catalytic layers 23 and 24 together form a membrane coated with catalyst 25, otherwise called CCM. In the remainder of this description, this membrane coated with catalyst 25 is called CCM membrane.
Ici, la membrane de base 22 est réalisée en matériau polymère, notamment du type NAFION (marque déposée), et présente une épaisseur de l’ordre de 0,005 à 0,050 mm, de préférence 0,008 à 0,015 mm. Les couches catalytiques 23 et 24 sont réalisées à partir d’une base de platine et présentent chacune une épaisseur de l’ordre de 0,001 à 0,010 mm, de préférence 0,002 à 0,005 mm. L’épaisseur de la membrane CCM 25 est, de préférence, compris entre 0,008 et 0,050 mm, de préférence de l’ordre de 0,017 mm. Here, the base membrane 22 is made of polymer material, in particular of the NAFION type (registered trademark), and has a thickness of the order of 0.005 to 0.050 mm, preferably 0.008 to 0.015 mm. The catalytic layers 23 and 24 are made from a platinum base and each have a thickness of the order of 0.001 to 0.010 mm, preferably 0.002 to 0.005 mm. The thickness of the CCM membrane 25 is preferably between 0.008 and 0.050 mm, preferably of the order of 0.017 mm.
On note TT22 un plan médian de la membrane de base 22, qui est également un plan médian de la membrane CCM 25. L’axe longitudinal A2 est inclus dans le plan médian TT22. We note TT22 as a median plane of the base membrane 22, which is also a median plane of the CCM membrane 25. The longitudinal axis A2 is included in the median plane TT22.
La membrane CCM 25 est montée sur un cadre 30 constitué de deux demi-cadresThe CCM membrane 25 is mounted on a frame 30 consisting of two half-frames
32 et 34 qui sont destinés à venir en appui plan l’un contre l’autre qui sont, par exemple, réalisés en film polymère, par exemple en poly(téréphtalate d'éthylène) ou PET ou en poly(naphtalate d'éthylène) ou PEN. 32 and 34 which are intended to come in plane support against each other which are, for example, made of polymer film, for example poly(ethylene terephthalate) or PET or poly(ethylene naphthalate) or PEN.
On note TT30 un plan d’appui des deux demi-cadres 32 et 34 l’un contre l’autre. Le plan TT30 est également un plan médian du cadre 30 et il inclut l’axe longitudinal A2. Les deux demi-cadres 32 et 34 sont configurés pour emprisonner entre eux un bord périphérique 22a de la membrane 22 lorsqu’ils sont en appui l’un contre l’autre suivant le plan TT30. Dans cette configuration, les demi-cadres 32 et 34 forment une zone, appelée aussi « chevauchement », entre la membrane 22 et les deux demi-cadres 32, 34. Le long de chaque bord longitudinal ou chaque bord transversal du cadre, le chevauchement présente une largeur par exemple incluse dans la gamme allant de 1 à 5 mm, préférentiellement dans la gamme allant de 2 à 4 mm. We note TT30 a support plane of the two half-frames 32 and 34 against each other. The TT30 plane is also a median plane of the frame 30 and it includes the longitudinal axis A2. The two half-frames 32 and 34 are configured to trap between them a peripheral edge 22a of the membrane 22 when they rest against each other along the plane TT30. In this configuration, the half-frames 32 and 34 form a zone, also called "overlap", between the membrane 22 and the two half-frames 32, 34. Along each longitudinal edge or each transverse edge of the frame, the overlap has a width for example included in the range from 1 to 5 mm, preferably in the range from 2 to 4 mm.
Le demi-cadre 32 est disposé sur un premier côté de la membrane CCM 25, dans l’exemple au-dessus de la membrane aux figures 1 , 2 et 7, alors que le demi-cadre 34 est disposé sur un deuxième côté de la membrane CCM 25, dans l’exemple au-dessous de la membrane aux figures 1 , 2 et 7. Ceci a pour effet d’immobiliser la membrane 22, c’est-à- dire en pratique la membrane CCM 25, en la pinçant entre les demi-cadres 32 et 34, au sein du cadre 30. The half-frame 32 is arranged on a first side of the CCM membrane 25, in the example above the membrane in Figures 1, 2 and 7, while the half-frame 34 is arranged on a second side of the CCM membrane 25, in the example below the membrane in Figures 1, 2 and 7. This has the effect of immobilizing the membrane 22, that is to say in practice the CCM membrane 25, by pinching it between the half-frames 32 and 34, within the frame 30.
Avantageusement, l’épaisseur de chacun des demi-cadres 32 et 34 est comprise entre 0,020 et 0,030 mm, de préférence, de l’ordre de 0,025 mm. Advantageously, the thickness of each of the half-frames 32 and 34 is between 0.020 and 0.030 mm, preferably of the order of 0.025 mm.
Le cadre 30 permet de rigidifier la membrane CCM 25 et de la maintenir en position au sein de l’empilement. The frame 30 makes it possible to stiffen the CCM membrane 25 and hold it in position within the stack.
En pratique, les demi-cadres 32 et 34 sont solidarisés l’un contre l’autre au niveau du plan d’appui TT30, de préférence au moyen d’une colle. In practice, the half-frames 32 and 34 are secured to each other at the level of the TT30 support plane, preferably by means of glue.
Préférentiellement, comme on peut le voir sur la figure 4 par exemple, la colle n’est pas déformée et reste parallèle au plan TT30. Preferably, as can be seen in Figure 4 for example, the glue is not deformed and remains parallel to the TT30 plane.
On note S32 la surface du demi-cadre 32 tournée vers le demi-cadre 34. On note S34 la surface du demi-cadre 34 tournée vers le demi-cadre 32. En configuration montée du cadre 30 autour de la membrane 22, les surfaces S32 et S34 sont en contact surfacique l’une contre l’autre, alignées sur le plan TT30 et solidarisées l’une à l’autre au moyen de la colle. We denote S32 the surface of the half-frame 32 facing the half-frame 34. We denote S34 the surface of the half-frame 34 facing the half-frame 32. In the mounted configuration of the frame 30 around the membrane 22, the surfaces S32 and S34 are in surface contact with each other, aligned on the TT30 plane and secured to each other by means of glue.
Dans cette configuration, le plan médian TT22 de la membrane 22 est également aligné sur le plan TT30. In this configuration, the median plane TT22 of the membrane 22 is also aligned with the plane TT30.
La colle utilisée pour assembler les demi-cadres 32 et 34 est, de préférence, une colle thermo-activable à base de polymère thermoplastique, par exemple une colle à base de copolymère EVA, telle que la colle commercialisée sous la référence AP12 par la société Micel. Avantageusement, l’épaisseur de la couche de colle enduite, c’est-à-dire déposée, sur la surface S32 ou S34 de chacun des demi-cadres est comprise entre 0,01 à 0,02 mm, de préférence, de l’ordre de 0,013 mm, avant application des surfaces S32 et S34 l’une contre l’autre. The glue used to assemble the half-frames 32 and 34 is, preferably, a heat-activatable glue based on a thermoplastic polymer, for example an glue based on an EVA copolymer, such as the glue marketed under the reference AP12 by the company Micel. Advantageously, the thickness of the layer of glue coated, that is to say deposited, on the surface S32 or S34 of each of the half-frames is between 0.01 to 0.02 mm, preferably, of the of the order of 0.013 mm, before application of surfaces S32 and S34 against each other.
Avantageusement, le cadre 30 définit des ouvertures 36 destinées à former des galeries de circulation et de distribution/collecte de fluide au sein de l’empilement, lorsque plusieurs sous-ensemble 6 sont juxtaposés au sein de l’empilement, selon une direction perpendiculaire à leurs plans médians TT30. Advantageously, the frame 30 defines openings 36 intended to form circulation and fluid distribution/collection galleries within the stack, when several subassembly 6 are juxtaposed within the stack, in a direction perpendicular to their TT30 midplanes.
Les ouvertures 36 sont constituées en alignant, selon des directions parallèles à l’axe A30, des ouvertures individuelles 36s et 364 formées respectivement dans les demi- cadres 32 et 34. The openings 36 are formed by aligning, in directions parallel to the axis A30, individual openings 36s and 364 formed respectively in the half-frames 32 and 34.
En variante, notamment dans le cas d’une pile à combustible dite avec « manifolds externes », le cadre 30 est dépourvu d’ouvertures du type des ouvertures 36. As a variant, particularly in the case of a so-called fuel cell with “external manifolds”, the frame 30 does not have openings of the type of openings 36.
On note A30 un axe perpendiculaire au plan TT30 et passant par le centre géométrique du cadre 30. L’axe A30 est perpendiculaire à la membrane de base 22, ainsi qu’à la membrane CCM 25, donc à leur plan médian TT22. We note A30 an axis perpendicular to the plane TT30 and passing through the geometric center of the frame 30. The axis A30 is perpendicular to the base membrane 22, as well as to the CCM membrane 25, therefore to their median plane TT22.
Au sein de l’empilement, les axes A30 des différents cadres 30 sont confondus et les cadres 30 sont orientés autour de cet axe de façon à ce que les ouvertures 36 constituent ensemble des galeries de circulation et de distribution/collecte de fluide, notamment d’hydrogène, d’air ou de fluide caloporteur, au sein de l’empilement. Within the stack, the axes A30 of the different frames 30 are merged and the frames 30 are oriented around this axis so that the openings 36 together constitute galleries for circulation and distribution/collection of fluid, in particular d hydrogen, air or heat transfer fluid, within the stack.
Chaque demi-plaque bipolaire 42 ou 44 est équipée d’ouvertures 46 de même géométrie que les ouvertures 36 et qui participent également à la définition de ces galeries. Each bipolar half-plate 42 or 44 is equipped with openings 46 of the same geometry as the openings 36 and which also participate in the definition of these galleries.
On note respectivement 32A et 32B les extrémités longitudinales du demi-cadre 32. On note respectivement 34A et 34B les extrémités longitudinales du demi-cadre 34. We denote respectively 32A and 32B the longitudinal ends of the half-frame 32. We denote respectively 34A and 34B the longitudinal ends of the half-frame 34.
On note respectivement A32 et A34 un axe longitudinal du demi-cadre 32 et un axe longitudinal du demi-cadre 34. En configuration montée de l’assemblage membrane- électrode 2, les axes A2, A32 et A34 sont perpendiculaires à l’axe A30, parallèles entre eux et, de préférence quasi-confondus, à l’épaisseur près des demi-cadres. On note respectivement B32 et B34 un axe transversal du demi-cadre 32 et un axe transversal du demi-cadre 34, respectivement perpendiculaires aux axes A32 et A34. En configuration montée de l’assemblage membrane-électrode 2, les axes B32 et B34 sont perpendiculaires à l’axe A30, parallèles entre eux et, de préférence quasi-confondus, à l’épaisseur près des demi-cadres. We respectively note A32 and A34 a longitudinal axis of the half-frame 32 and a longitudinal axis of the half-frame 34. In the mounted configuration of the membrane-electrode assembly 2, the axes A2, A32 and A34 are perpendicular to the axis A30 , parallel to each other and, preferably almost merged, to the thickness of the half-frames. We note respectively B32 and B34 a transverse axis of the half-frame 32 and a transverse axis of the half-frame 34, respectively perpendicular to the axes A32 and A34. In the mounted configuration of the membrane-electrode assembly 2, the axes B32 and B34 are perpendicular to the axis A30, parallel to each other and, preferably almost identical, to the thickness of the half-frames.
Les demi-cadres 32 et 34 définissent chacun une ouverture centrale 32C, respectivement 34C, qui les traverse de part en part et en regard desquels est disposée la membrane CCM 25 en configuration montée de cette membrane sur le cadre 30. Les ouvertures centrales 32C et 34C des demi-cadres 32 et 34 sont donc délimitées par des bords internes de ces demi-cadres. La réunion des ouvertures centrales 32C et 34C définit une ouverture centrale 30C du cadre 30, qui est obturée par la membrane CCM en configuration montée de l’assemblage membrane-électrode 2. Les demi-cadres 32 et 34, et donc le cadre 30 qu’ils constituent, présentent un contour fermé autour de l’ouverture centrale correspondante. The half-frames 32 and 34 each define a central opening 32C, respectively 34C, which passes right through them and opposite which the CCM membrane 25 is arranged in the mounted configuration of this membrane on the frame 30. central openings 32C and 34C of the half-frames 32 and 34 are therefore delimited by internal edges of these half-frames. The meeting of the central openings 32C and 34C defines a central opening 30C of the frame 30, which is closed by the CCM membrane in the mounted configuration of the membrane-electrode assembly 2. The half-frames 32 and 34, and therefore the frame 30 which They constitute, present a closed contour around the corresponding central opening.
On note 32D les bords transversaux de l’ouverture centrale 32C du demi-cadre 32, chaque bord transversal étant parallèle à l’axe B32. On note 34D les bords transversaux de l’ouverture centrale 34C du demi-cadre 34, chaque bord transversal étant parallèle à l’axe B32. We note 32D the transverse edges of the central opening 32C of the half-frame 32, each transverse edge being parallel to the axis B32. We note 34D the transverse edges of the central opening 34C of the half-frame 34, each transverse edge being parallel to the axis B32.
Avantageusement, l’assemblage membrane-électrode 2 comprend également une première couche de diffusion de gaz 28 et une deuxième couche de diffusion de gaz 29 qui peuvent être dénommées GDL et qui ont pour fonction de favoriser les échanges entre la membrane CCM 25 et les fluides circulant entre les deux demi-plaques bipolaires 42 et 44 d’un sous-ensemble 6 auquel appartient cet assemblage membrane-électrode. Advantageously, the membrane-electrode assembly 2 also comprises a first gas diffusion layer 28 and a second gas diffusion layer 29 which can be called GDL and which have the function of promoting exchanges between the CCM membrane 25 and the fluids. circulating between the two bipolar half-plates 42 and 44 of a subassembly 6 to which this membrane-electrode assembly belongs.
Avantageusement, l’épaisseur des couches de diffusion 28 et 29 est comprise entre 0,050 et 0,320 mm, de préférence de l’ordre de 0,250 mm. Advantageously, the thickness of the diffusion layers 28 and 29 is between 0.050 and 0.320 mm, preferably of the order of 0.250 mm.
En configuration montée de l’assemblage membrane-électrode 2, les couches de diffusion 28 et 29 recouvrent la membrane CCM 25 et une partie du cadre 30, au voisinage de l’ouverture centrale 30C, chacune d’un côté de la membrane CCM25. In the mounted configuration of the membrane-electrode assembly 2, the diffusion layers 28 and 29 cover the CCM membrane 25 and part of the frame 30, in the vicinity of the central opening 30C, each on one side of the CCM25 membrane.
Pour permettre l’immobilisation des demi-plaques bipolaires 42 et 44 sur le cadre 30 équipé de la membrane CCM 25, chacun des demi-cadres 32 et 34 est équipé de premiers orifices 320, respectivement de deuxièmes orifices 340, qui sont disposés de part et d’autre de son ouverture centrale 32C ou 34C, selon son axe longitudinal A32 ou A34, et de part et d’autre de ses ouvertures individuelles 36s ou 364 selon son axe transversal B32 ou B34. Les premiers orifices 320 sont destinés à être recouverts par la demi-plaque bipolaire 42, alors que les deuxièmes orifices 340 sont destinés à être recouverts par la demi-plaque bipolaire 44, en configuration montée du sous-ensemble 6. Ainsi, en configuration montée du sous-ensemble 6, les orifices 320 et 340 sont disposés en regard des demi-plaques bipolaires 42 et 44, selon une direction parallèle à l’axe A30, c’est-à-dire selon une direction perpendiculaire aux plans TT22 et TT30. To allow the immobilization of the bipolar half-plates 42 and 44 on the frame 30 equipped with the CCM membrane 25, each of the half-frames 32 and 34 is equipped with first orifices 320, respectively second orifices 340, which are arranged on either side and on the other side of its central opening 32C or 34C, along its longitudinal axis A32 or A34, and on either side of its individual openings 36s or 364 along its transverse axis B32 or B34. The first orifices 320 are intended to be covered by the bipolar half-plate 42, while the second orifices 340 are intended to be covered by the bipolar half-plate 44, in the mounted configuration of the subassembly 6. Thus, in the mounted configuration of the subassembly 6, the orifices 320 and 340 are arranged opposite the bipolar half-plates 42 and 44, in a direction parallel to the axis A30, that is to say in a direction perpendicular to the planes TT22 and TT30 .
Dans l’exemple, les orifices 320 du demi-cadre 32 sont au nombre de 4, de même que les orifices 340 du demi-cadre 34. In the example, the orifices 320 of the half-frame 32 are 4 in number, as are the orifices 340 of the half-frame 34.
En variante non représentée, un nombre différent d’orifices 320 et 340 peut être prévu, voire des orifices en nombres différents sur les deux demi-cadres. Le demi-cadre 32 comprend deux rangées de deux orifices 320 qui s’étendent respectivement à proximité des extrémités 32A et 32B du demi-cadre 32, de part et d’autre des ouvertures individuelles 362, et qui relient la surface S32 du demi-cadre 32 à une surface S’32 du demi-cadre 32 qui est opposée à la surface S32 et sur laquelle viennent en appui la première demi-plaque bipolaire 42 et la couche de diffusion 28. Les orifices 320 traversent donc l’épaisseur du demi-cadre 32. As a variant not shown, a different number of orifices 320 and 340 can be provided, or even orifices in different numbers on the two half-frames. The half-frame 32 comprises two rows of two orifices 320 which extend respectively near the ends 32A and 32B of the half-frame 32, on either side of the individual openings 362, and which connect the surface S32 of the half-frame 32. frame 32 to a surface S'32 of the half-frame 32 which is opposite the surface S32 and on which the first bipolar half-plate 42 and the diffusion layer 28 bear. The orifices 320 therefore pass through the thickness of the half -frame 32.
De la même façon, le demi-cadre 34 comprend deux rangées de deux orifices 340 qui s’étendent respectivement à proximité des extrémités 34A et 34B du demi-cadre 34, de part et d’autre des ouvertures individuelles 364, et qui relient la surface S34 du demi-cadre 34 à une surface S’34 du demi-cadre 34 qui est opposée à la surface S34 et sur laquelle vient en appui la deuxième demi-plaque bipolaire 42 et la couche de diffusion 28. Les orifices 340 traversent donc l’épaisseur du demi-cadre 34. In the same way, the half-frame 34 comprises two rows of two orifices 340 which extend respectively near the ends 34A and 34B of the half-frame 34, on either side of the individual openings 364, and which connect the surface S34 of the half-frame 34 to a surface S'34 of the half-frame 34 which is opposite the surface S34 and on which the second bipolar half-plate 42 and the diffusion layer 28 bear. The orifices 340 therefore pass through the thickness of the half-frame 34.
Avantageusement, les orifices 320 sont répartis sur le premier demi-cadre 32 de façon symétrique par rapport aux axes A32 et B32. De la même façon, les orifices 340 sont répartis sur le premier demi-cadre 34 de façon symétrique par rapport aux axes A34 et B34. Advantageously, the orifices 320 are distributed on the first half-frame 32 symmetrically with respect to the axes A32 and B32. In the same way, the orifices 340 are distributed on the first half-frame 34 symmetrically with respect to the axes A34 and B34.
Avantageusement, les orifices 320 sont plus éloignés des bords transversaux 32D que les orifices 340 sont éloignés des bords transversaux 34D. Ainsi, les orifices 320 et 340 sont décalés les uns par rapport aux autres, selon une direction parallèle aux axes longitudinaux A32 et A34, de sorte qu’il n’existe pas de superposition entre ces orifices selon la direction de l’axe A30. Advantageously, the orifices 320 are further away from the transverse edges 32D than the orifices 340 are further away from the transverse edges 34D. Thus, the orifices 320 and 340 are offset relative to each other, in a direction parallel to the longitudinal axes A32 and A34, so that there is no superposition between these orifices in the direction of the axis A30.
On note d32 une distance mesurée parallèlement à l’axe A32 entre l’axe B32 et une droite passant par les centres géométriques des orifices 320. On note d34 une distance mesurée parallèlement à l’axe A34 entre l’axe B34 et une droite passant par les centres géométriques des orifices 340. Les distances d32 et d34 sont différentes. Dans l’exemple, la distance d32 est supérieure, d’un écart A24 non nul, par rapport à la distance d34 et cet écart A24 induit un décalage entre les orifices 320 et 340, parallèle aux axes longitudinaux A32 et A34, tel qu’il n’existe pas de superposition entre eux. We note d32 a distance measured parallel to axis A32 between axis B32 and a straight line passing through the geometric centers of the orifices 320. We note d34 a distance measured parallel to axis A34 between axis B34 and a straight line passing by the geometric centers of the orifices 340. The distances d32 and d34 are different. In the example, the distance d32 is greater, by a non-zero deviation A24, compared to the distance d34 and this deviation A24 induces an offset between the orifices 320 and 340, parallel to the longitudinal axes A32 and A34, such that there is no overlap between them.
Selon une variante non représentée de l’invention, en plus ou à la place du décalage selon une direction parallèle aux axes longitudinaux A32 et A34, les orifices 320 et 340 sont décalés les uns par rapport aux autres, selon une direction parallèle aux axes transversaux B32 et B34, ce qui évite également une superposition entre ces orifices selon une direction parallèle à l’axe A30. According to a not shown variant of the invention, in addition to or instead of the offset in a direction parallel to the longitudinal axes A32 and A34, the orifices 320 and 340 are offset relative to each other, in a direction parallel to the transverse axes B32 and B34, which also avoids superposition between these orifices in a direction parallel to axis A30.
On note S42 la surface de la première demi-plaque bipolaire 42 tournée vers le cadre 30 en configuration assemblé du sous-ensemble 6. On note S44 la surface de la deuxième plaque bipolaire 44 tournée vers le cadre 30 en configuration assemblée du sous- ensemble 6. En configuration assemblée du sous-ensemble 6, chaque orifice 320 s’étend, à travers le demi-cadre 32, entre les surfaces S34 et S42, alors que chaque orifice 340 s’étend, à travers le demi-cadre 34, entre les surfaces S32 et S44. We denote S42 the surface of the first bipolar half-plate 42 facing the frame 30 in the assembled configuration of the subassembly 6. We denote S44 the surface of the second bipolar plate 44 facing the frame 30 in the assembled configuration of the subassembly 6. In the assembled configuration of the subassembly 6, each orifice 320 extends, through the half-frame 32, between the surfaces S34 and S42, while each orifice 340 extends, through the half-frame 34, between the surfaces S32 and S44.
Au voisinage de deux de ses coins opposés, la première demi-plaque bipolaire 42 est pourvue de deux découpes 48 qui débouchent sur deux bords longitudinaux opposés de cette demi-plaque et qui donnent accès, par le dessus à la figure 1 , à deux zones Z2 du premier demi-cadre 32 qui sont opposées par rapport aux axes A32 et B32 et qui recouvrent par le dessus les orifices 340 du deuxième demi-cadre 34, lorsque le sous-ensemble 6 est monté. De même, la deuxième demi-plaque bipolaire 44 est pourvue, au niveau de deux de ses coins opposés, de deux découpes 49 qui débouchent sur deux bords longitudinaux et deux bords transversaux opposés de cette demi-plaque et qui donnent accès, par le dessous à la figure 1 , à deux zones Z4 du deuxième demi-cadre 34 qui sont opposées par rapport aux axes A34 et B34 et qui recouvrent par le dessous les orifices 320 du premier demi-cadre 32, lorsque le sous-ensemble 6 est monté. In the vicinity of two of its opposite corners, the first bipolar half-plate 42 is provided with two cutouts 48 which open onto two opposite longitudinal edges of this half-plate and which give access, from above in Figure 1, to two zones Z2 of the first half-frame 32 which are opposite with respect to the axes A32 and B32 and which cover from above the orifices 340 of the second half-frame 34, when the subassembly 6 is mounted. Likewise, the second bipolar half-plate 44 is provided, at two of its opposite corners, with two cutouts 49 which open onto two longitudinal edges and two opposite transverse edges of this half-plate and which give access, from below in Figure 1, two zones Z4 of the second half-frame 34 which are opposite with respect to the axes A34 and B34 and which cover from below the orifices 320 of the first half-frame 32, when the subassembly 6 is mounted.
Un système de joints d’étanchéité périphériques 50 est disposé entre le cadre 30 et les demi-plaques bipolaires 42 et 44, de chaque côté du cadre. En pratique, deux joints d’étanchéité périphériques 50 sont prévus, l’un sur la surface S’32, l’autre sur la surface S’34. Ces joints d’étanchéité 50 entourent à la fois l’ouverture centrale 30C et les ouvertures 36 du cadre, de sorte qu’ils assurent l’étanchéité, par rapport à l’extérieur du sous ensemble 6, pour chacun de fluides opérationnels de la pile, à avoir l’hydrogène, l’oxygène, l’air et l’éventuel fluide de refroidissement. Ces joints d’étanchéité périphériques 50 isolent donc fluidiquement le compartiment cathodique de l’extérieur et le compartiment anodique de l’extérieur. A system of peripheral seals 50 is arranged between the frame 30 and the bipolar half-plates 42 and 44, on each side of the frame. In practice, two peripheral seals 50 are provided, one on surface S’32, the other on surface S’34. These seals 50 surround both the central opening 30C and the openings 36 of the frame, so that they ensure sealing, with respect to the exterior of the subassembly 6, for each of the operational fluids of the battery, to have hydrogen, oxygen, air and possible cooling fluid. These peripheral seals 50 therefore fluidly isolate the cathode compartment from the outside and the anode compartment from the outside.
Chacune des ouvertures 36, 46 est elle aussi entourée par un système de joints d’étanchéité d’ouverture 51 qui ne permettent, pour un compartiment fluidique donné, à savoir l’un parmi le compartiment anodique, le compartiment cathodique et un éventuellement compartiment de refroidissement entre deux cellules adjacentes, la communication fluidique de ce compartiment donné qu’avec les ouvertures 36, 46 qui permettent l’entrée et la sortie du fluide dans ce compartiment. En pratique, deux séries de joints d’étanchéité d’ouverture 51 sont prévues, l’une sur la surface S’32, l’autre sur la surface S’34. Each of the openings 36, 46 is also surrounded by a system of opening seals 51 which do not allow, for a given fluid compartment, namely one among the anode compartment, the cathode compartment and a possibly compartment of cooling between two adjacent cells, the fluid communication of this compartment given only with the openings 36, 46 which allow the entry and exit of the fluid in this compartment. In practice, two series of opening seals 51 are provided, one on the surface S’32, the other on the surface S’34.
A la figure 3, les joints 50 et 51 sont représentés en pointillés, vus à travers la demi- plaque bipolaire 42. Les joints 50 entourent une zone interne Zint du sous-ensemble 6 dans laquelle sont situés la membrane CCM 25, les couches de diffusion de gaz 28 et 29 et les portions de galeries formées par les ouvertures 36 et 46. Une zone externe périphérique Zext du sous-ensemble 6 est définie autour des joints 50, entre ces joints et les bords externes du sous-ensemble. Les joints 50 entourent les différents joints 51 qui se raccordent sur les joints 50. En d’autres termes, les joints 51 sont situés dans la zone interne Zint. In Figure 3, the joints 50 and 51 are shown in dotted lines, seen through the bipolar half-plate 42. The joints 50 surround an internal zone Z int of the subassembly 6 in which the CCM membrane 25, the layers are located gas diffusion 28 and 29 and the gallery portions formed by the openings 36 and 46. A peripheral external zone Z ext of the subassembly 6 is defined around the joints 50, between these joints and the edges external parts of the subassembly. The joints 50 surround the different joints 51 which connect to the joints 50. In other words, the joints 51 are located in the internal zone Z int .
On définit une zone externe périphérique Zext3o du cadre 30 comme la zone de ce cadre qui appartient à la zone externe périphérique Zext du sous-ensemble 6 en configuration montée de cette cellule. La zone externe périphérique Zext3o entoure donc les joints 50, sur chacun des demi-cadres 32 et 34. We define an external peripheral zone Z ext3 o of the frame 30 as the zone of this frame which belongs to the external peripheral zone Z ext of the subset 6 in the mounted configuration of this cell. The external peripheral zone Z ext3 o therefore surrounds the joints 50, on each of the half-frames 32 and 34.
Afin de ne pas rompre l’étanchéité assurée par les joints 50, et comme visible aux figures 1 à 3, les premiers et deuxièmes orifices 320 et 340 sont, de préférence, ménagés dans la zone externe périphérique Zext3o du cadre 30, donc dans la zone externe périphérique Zext du sous-ensemble 6. In order not to break the seal provided by the seals 50, and as visible in Figures 1 to 3, the first and second orifices 320 and 340 are preferably provided in the peripheral external zone Z ext3 o of the frame 30, therefore in the peripheral external zone Z ext of subassembly 6.
On décrit ci-après un procédé de fabrication d’un sous ensemble 6 tel que mentionné ci-dessus. A method of manufacturing a subassembly 6 as mentioned above is described below.
Lors d’une première étape préalable, les surfaces S32 et S34 sont enduites de colle. Cette étape préalable peut être effectuée sur le site de fabrication de l’assemblage membrane-électrode 2, juste avant les étapes suivantes ou de façon anticipée. En variante, cette étape préalable peut être effectuée sur un site distant, à partir duquel les demi-cadres enduits de colles sont acheminés sur le site de fabrication de l’assemblage membrane- électrode. L’opération d’enduction des surfaces S32 et S34 avec la colle peut donc être réalisée par un industriel différent de celui qui fabrique l’assemblage membrane-électrode. Dans un tel cas, un film de protection peut être prévu sur la couche de colle pour l’acheminent, ce film de protection étant alors ôté avant la deuxième étape décrite ci-après. During a first preliminary step, surfaces S32 and S34 are coated with glue. This preliminary step can be carried out on the manufacturing site of the membrane-electrode assembly 2, just before the following steps or in advance. Alternatively, this preliminary step can be carried out at a remote site, from where the half-frames coated with glue are transported to the manufacturing site of the membrane-electrode assembly. The operation of coating surfaces S32 and S34 with glue can therefore be carried out by a manufacturer different from the one manufacturing the membrane-electrode assembly. In such a case, a protective film can be provided on the glue layer to convey it, this protective film then being removed before the second step described below.
Lors d’une deuxième étape, les deux demi-cadres 32 et 34 sont mis en appui par leurs surfaces S32 et S34 le long du plan TT30, alors que la membrane 22 est disposée entre eux, ce qui a pour effet de pincer le bord 22a de la membrane 22 et de solidariser le cadre 30 et la membrane 22, c’est-à-dire le cadre 30 et la membrane CCM 25. Le cadre 30 est constitué par l’adhérence des surfaces S32 et S34 grâce à la colle qui y est enduite. During a second step, the two half-frames 32 and 34 are supported by their surfaces S32 and S34 along the plane TT30, while the membrane 22 is placed between them, which has the effect of pinching the edge 22a of the membrane 22 and to secure the frame 30 and the membrane 22, that is to say the frame 30 and the CCM membrane 25. The frame 30 is constituted by the adhesion of the surfaces S32 and S34 thanks to the glue which is coated there.
Avantageusement, lors de la deuxième étape, l’assemblage des deux demi-cadres 32 et 34, en emprisonnant les bords de la membrane 25, est effectué en activant la colle par application d’ultrasons. Typiquement, l’assemblage des deux demi-cadres 32 et 34 emprisonnant la membrane 25 est serré entre une sonotrode et une enclume, et les ultrasons transmis par la sonotrode aux deux demi-cadres 32 et 34 assurent l’activation de la colle, donc le collage des deux demi-cadres 32 et 34 entre eux et, dans la zone de chevauchement, le collage des deux demi-cadres 32 et 34 avec la membrane. De manière conventionnelle, l’application d’ultrasons peut est mise en œuvre notamment au moyen d’une sonotrode striée, telle que celles connues par exemple de US-B-10981245 ou de US- A-2013/213552. Typiquement, comme illustré dans US-A-2013/213552, le striage peut par exemple être formé de deux ou trois réseaux de gorges formées à la surface de la sonotrode, chaque réseau comportant des gorges parallèles entre elles selon une direction spécifique à chaque réseau. Les gorges des réseaux délimitent ainsi entre elles des picots en saillie qui sont les zones de contact privilégiées avec le cadre lors de l’application des ultrasons. On note que l’utilisation d’une sonotrode striée peut former, à la surface au moins du demi-cadre avec lequel la sonotrode est en contact, une texturation de la surface du demi-cadre qui est sensiblement l’image en inversé du striage de la sonotrode. Cette texturation peut présenter une profondeur inférieure à la profondeur du striage de la sonotrode. La sonotrode peut être striée sur toute sa surface en contact avec les deux demi-cadres 32 et 34, ou sur une partie seulement de sa surface. De préférence, l’intégralité de la surface des deux demi-cadres 32 et 34 est assemblée par ultrasons. Autrement dit la zone de collage des deux demi-cadres, qui correspond à la zone où sont appliqués les ultrasons, correspond alors à l’intégralité de la superficie du cadre 30. Dans certains modes de réalisation, l'intégralité de la zone de collage des deux demi-cadres, qui correspond à la zone où sont appliqués les ultrasons, présente une texturation de la surface du demi-cadre qui est sensiblement l’image en inversé du striage de la sonotrode. Dans d’autres modes de réalisation, seule une ou plusieurs portions de la zone de collage des deux demi-cadres, qui correspond à la zone où sont appliqués les ultrasons, présente une telle texturation, d’autres portions de la zone de collage résultant de l’activation de la colle au moyens de sonotrode lisse ou d’une portion lisse de sonotrode. Dans la zone de chevauchement du cadre 30 avec la membrane 25, les ultrasons provoquent l’assemblage par collage de chacun des deux demi-cadres 32 et 34 sur la face correspondante de la membrane. De préférence, il est évité que la sonotrode vienne en contact avec la membrane 25 à l’intérieur de la fenêtre délimitée à l’intérieur de chaque demi-cadre, pour éviter de chauffer et de comprimer la membrane 25 dans sa partie réellement active qui sera exposée aux réactifs. La sonotrode mise en œuvre peut être en forme de cadre, permettant éventuellement l’assemblage complet du cadre 30 sur la membrane 25 en une seule opération. Alternativement, on peut prévoir la mise en œuvre d’une sonotrode ne couvrant qu’une partie de la zone de collage souhaitée, l’assemblage complet du cadre 30 sur la membrane 25 pouvant alors s’effectuer en plusieurs opérations successives. Alternativement, on peut prévoir la mise en œuvre de plusieurs sonotrodes ne couvrant chacune qu’une partie de la zone de collage, l’assemblage complet du cadre 30 sur la membrane 25 pouvant alors s’effectuer en une seule opération pour toutes les sonotrodes simultanément, ou en plusieurs opérations successives avec une ou plusieurs sonotrodes mises en œuvre à chaque opération. Lors d’une troisième étape, les couches de diffusion 28 et 29 sont déposées sur le cadre 30 puis assemblées sur celui-ci par toute technique appropriée, par exemple par collage. Advantageously, during the second step, the assembly of the two half-frames 32 and 34, by trapping the edges of the membrane 25, is carried out by activating the glue by application of ultrasound. Typically, the assembly of the two half-frames 32 and 34 imprisoning the membrane 25 is clamped between a sonotrode and an anvil, and the ultrasound transmitted by the sonotrode to the two half-frames 32 and 34 ensures activation of the glue, therefore bonding the two half-frames 32 and 34 together and, in the overlapping zone, bonding the two half-frames 32 and 34 with the membrane. Conventionally, the application of ultrasound can be implemented in particular by means of a ridged sonotrode, such as those known for example from US-B-10981245 or from US- A-2013/213552. Typically, as illustrated in US-A-2013/213552, the groove can for example be formed of two or three networks of grooves formed on the surface of the sonotrode, each network comprising grooves parallel to each other in a direction specific to each network . The grooves of the networks thus delimit between them projecting pins which are the preferred contact zones with the frame during the application of ultrasound. Note that the use of a ridged sonotrode can form, on the surface at least of the half-frame with which the sonotrode is in contact, a texturing of the surface of the half-frame which is substantially the inverted image of the ridged of the sonotrode. This texturing may have a depth less than the depth of the ridge of the sonotrode. The sonotrode can be grooved over its entire surface in contact with the two half-frames 32 and 34, or over only part of its surface. Preferably, the entire surface of the two half-frames 32 and 34 is assembled by ultrasound. In other words, the bonding zone of the two half-frames, which corresponds to the zone where the ultrasound is applied, then corresponds to the entire surface area of the frame 30. In certain embodiments, the entire bonding zone of the two half-frames, which corresponds to the zone where the ultrasound is applied, presents a texturing of the surface of the half-frame which is substantially the inverted image of the streaking of the sonotrode. In other embodiments, only one or more portions of the bonding zone of the two half-frames, which corresponds to the zone where the ultrasound is applied, presents such texturing, other portions of the bonding zone resulting the activation of the glue using a smooth sonotrode or a smooth portion of a sonotrode. In the overlapping zone of the frame 30 with the membrane 25, the ultrasound causes the assembly by gluing of each of the two half-frames 32 and 34 on the corresponding face of the membrane. Preferably, it is avoided that the sonotrode comes into contact with the membrane 25 inside the window delimited inside each half-frame, to avoid heating and compressing the membrane 25 in its actually active part which will be exposed to the reagents. The sonotrode used can be in the form of a frame, possibly allowing the complete assembly of the frame 30 on the membrane 25 in a single operation. Alternatively, we can plan to use a sonotrode covering only part of the desired bonding zone, the complete assembly of the frame 30 on the membrane 25 can then be carried out in several successive operations. Alternatively, one can plan to use several sonotrodes, each covering only part of the bonding zone, the complete assembly of the frame 30 on the membrane 25 can then be carried out in a single operation for all the sonotrodes simultaneously. , or in several successive operations with one or more sonotrodes used in each operation. During a third step, the diffusion layers 28 and 29 are deposited on the frame 30 then assembled thereon by any appropriate technique, for example by gluing.
Lors d’une quatrième étape, les deux demi-plaques bipolaires 42 et 44 sont appliquées de part et d’autre du cadre 30 équipé de la membrane CCM 25 et des couches GDL 28 et 29, plus précisément sur les surfaces externes S’32 et S’34 des demi-cadres 32 et 34. Les emplacements et les dimensions des découpes 48 et 49 sont choisis de telle sorte que, au terme de la quatrième étape, la demi-plaque bipolaire 42 recouvre les orifices 320 et les découpes 48 sont alignées, parallèlement à l’axe A30, avec les orifices 340, alors que la demi-plaque bipolaire 44 recouvre les orifices 340 et les découpes 49 sont alignées, parallèlement à l’axe A30, avec les orifices 320. Ainsi, selon une direction parallèle à l’axe A30, chaque orifice 320 est disposé entre une portion pleine 42A de la demi-plaque bipolaire 42 et une portion pleine 34A ou 34B du demi-cadre 34, en regard d’une découpe 49, et chaque orifice 340 est disposé entre une portion pleine 44A de la demi-plaque bipolaire 44 et une portion pleine 32A ou 32B du demi-cadre 32, en regard d’une découpe 48. Les portions pleines 32A et 34A des demi-cadres 32 et 34 sont constituées, dans ce mode de réalisation, à leurs extrémités longitudinales 32A et 34A. Les portions pleines 32A et 34A des demi-cadres 32 et 34 sont constituées par des zones respectivement dépourvues d’ouvertures 36 et d’orifices 320 ou 340. Au niveau de ces portions pleines 32A et 34A, les surfaces S32 et S34 ne sont pas interrompues. Les portions pleines 42A et 44A des demi-plaques bipolaires 42 et 44 sont constituées par des zones respectivement dépourvues d’ouvertures 46 ou autre orifice ou découpe. Au niveau de ces portions pleines 42A et 44A, les surfaces S42 et S44 ne sont pas interrompues. During a fourth step, the two bipolar half-plates 42 and 44 are applied on either side of the frame 30 equipped with the CCM membrane 25 and the GDL layers 28 and 29, more precisely on the external surfaces S'32 and S'34 of the half-frames 32 and 34. The locations and dimensions of the cutouts 48 and 49 are chosen such that, at the end of the fourth step, the bipolar half-plate 42 covers the orifices 320 and the cutouts 48 are aligned, parallel to the axis A30, with the orifices 340, while the bipolar half-plate 44 covers the orifices 340 and the cutouts 49 are aligned, parallel to the axis A30, with the orifices 320. Thus, according to a direction parallel to axis A30, each orifice 320 is arranged between a solid portion 42A of the bipolar half-plate 42 and a solid portion 34A or 34B of the half-frame 34, facing a cutout 49, and each orifice 340 is arranged between a solid portion 44A of the bipolar half-plate 44 and a full portion 32A or 32B of the half-frame 32, facing a cutout 48. The solid portions 32A and 34A of the half-frames 32 and 34 are constituted , in this embodiment, at their longitudinal ends 32A and 34A. The solid portions 32A and 34A of the half-frames 32 and 34 are constituted by zones respectively devoid of openings 36 and orifices 320 or 340. At the level of these solid portions 32A and 34A, the surfaces S32 and S34 are not interrupted. The solid portions 42A and 44A of the bipolar half-plates 42 and 44 are constituted by zones respectively devoid of openings 46 or other orifice or cutout. At the level of these solid portions 42A and 44A, the surfaces S42 and S44 are not interrupted.
La géométrie de la GDL 28 est telle qu’elle ne s’interpose pas entre les premiers orifices 320 et les portion pleines 42A de la demi-plaque bipolaire 42 qui sont en regard des orifices 320, de manière à permettre un contact direct, au travers d'un premier orifice 320 donné, de la portion pleine 34A, correspondant à ce premier orifice 320 donné, du demi- cadre 34, avec la portion pleine 42A correspondant à ce premier orifice 320 donné, de la demi-plaque bipolaire 44. De même, la géométrie de la GDL 29 est telle qu’elle ne s’interpose pas entre les seconds orifices 340 et les portions pleines 44A de la demi-plaque bipolaire 44 qui sont en regard des orifices 340, de manière à permettre un contact direct, au travers d'un second orifice 340 donné, de la portion pleine 32A, correspondant à ce deuxième orifice 340 donné, du demi-cadre 32, avec la portion pleine 44A correspondant à ce premier orifice 340 donné, de la demi-plaque bipolaire 42. Dans les deux cas, un tel positionnement relatif peut être réalisé par la géométrie du contour externe de la GDL 28, 29, comme dans l’exemple illustré, ou peut-être réalisée par la présence d’un orifice dans la GDL 28, 29. Une portion pleine d’un demi-cadre ou d’une demi-plaque bipolaire correspond à un premier ou deuxième orifice lorsqu’elle est alignée avec, autrement dit en regard de, cet orifice, selon une direction parallèle à l’axe A30. The geometry of the GDL 28 is such that it does not interpose between the first orifices 320 and the solid portions 42A of the bipolar half-plate 42 which are facing the orifices 320, so as to allow direct contact, at through a first given orifice 320, of the solid portion 34A, corresponding to this first given orifice 320, of the half-frame 34, with the solid portion 42A corresponding to this first given orifice 320, of the bipolar half-plate 44. Likewise, the geometry of the GDL 29 is such that it does not interpose between the second orifices 340 and the solid portions 44A of the bipolar half-plate 44 which are facing the orifices 340, so as to allow contact direct, through a second given orifice 340, of the solid portion 32A, corresponding to this second given orifice 340, of the half-frame 32, with the solid portion 44A corresponding to this first given orifice 340, of the half-plate bipolar 42. In both cases, such relative positioning can be achieved by the geometry of the external contour of the GDL 28, 29, as in the example illustrated, or perhaps achieved by the presence of an orifice in the GDL 28, 29. A solid portion of a half-frame or half-bipolar plate corresponds to a first or second orifice when it is aligned with, in other words facing, this orifice, in a parallel direction to the A30 axis.
On constitue ainsi une structure à neuf couches, à savoir les trois couches 22, 23 et 24 de la membrane CCM 25, les deux demi-cadres 32 et 34, les deux GDL 28 et 29 et les deux demi-plaques bipolaires 42 et 44. Cette structure multicouche est destinée à former le sous-ensemble 6, au terme du procédé de l’invention. We thus constitute a nine-layer structure, namely the three layers 22, 23 and 24 of the CCM membrane 25, the two half-frames 32 and 34, the two GDL 28 and 29 and the two bipolar half-plates 42 and 44 This multilayer structure is intended to form subassembly 6, at the end of the process of the invention.
Une cinquième étape de solidarisation des première et deuxième demi-plaques bipolaires 42 et 44 avec le cadre 30 est mise en œuvre en activant, par exemple par chauffage, la colle présente sur les surfaces S32 et S34, au moins sur l’étendue des portions pleines 34A du demi-cadre 34 qui sont en regard des premiers orifices 320, et sur l’étendue des portions pleines 32A du demi-cadre 32 qui sont en regard des deuxièmes orifices 340. Cette activation peut optionnellement être complétée par une opération de pressage pour garantir la mise en contact, à travers premiers et deuxièmes orifices 320 et 340, de la colle ainsi activée avec la portion pleine correspondante 44A, 42A de la demi- plaque bipolaire 44, 42. Le pressage optionnel peut être concomitant, au moins en partie, à l’activation. Le pressage peut suivre l’activation, ou peut débuter avant ou pendant l’activation et se poursuivre au-delà de l’activation. Ainsi, au travers d’un premier orifice 320 donné, la portion pleine 34A du demi-cadre 34, qui est en regard de ce premier orifice 320 donné, se trouve solidarisée à la portion pleine correspondante 42A, de la demi-plaque bipolaire 42, qui est également en regard de ce premier orifice 320 donné, ceci notamment par la colle initialement portée par portion pleine 34A du demi-cadre 34. On peut donc considérer qu’au moins une partie de la colle initialement portée par le demi-cadre 34 migre, à travers le premier orifice 320 donné, pour atteindre la surface S42 de la demi-plaque polaire 42. De même, au travers d’un deuxième orifice 340 donné, la portion pleine 32A du demi-cadre 32, qui est en regard de ce deuxième orifice 340 donné, se trouve solidarisée à la portion pleine correspondante 44A de la demi-plaque bipolaire 44, qui est en regard de ce deuxième orifice 340 donné, ceci notamment par la colle initialement portée par portion pleine 32A du demi-cadre 32. On peut donc considérer qu’au moins une partie de la colle initialement portée par le demi-cadre 32 migre à travers le deuxième orifice donné 340 pour atteindre la surface S44 de la demi-plaque polaire 44. A fifth step of securing the first and second bipolar half-plates 42 and 44 with the frame 30 is implemented by activating, for example by heating, the glue present on the surfaces S32 and S34, at least over the extent of the portions solid portions 34A of the half-frame 34 which are facing the first orifices 320, and over the extent of the solid portions 32A of the half-frame 32 which are facing the second orifices 340. This activation can optionally be completed by a pressing operation to guarantee contact, through first and second orifices 320 and 340, of the glue thus activated with the corresponding solid portion 44A, 42A of the bipolar half-plate 44, 42. The optional pressing can be concomitant, at least in part, upon activation. Pressing may follow activation, or may begin before or during activation and continue beyond activation. Thus, through a first given orifice 320, the solid portion 34A of the half-frame 34, which is opposite this first given orifice 320, is secured to the corresponding solid portion 42A, of the bipolar half-plate 42 , which is also opposite this first orifice 320 given, this in particular by the glue initially carried by full portion 34A of the half-frame 34. We can therefore consider that at least part of the glue initially carried by the half-frame 34 migrates, through the first given orifice 320, to reach the surface S42 of the polar half-plate 42. Likewise, through a second given orifice 340, the solid portion 32A of the half-frame 32, which is in facing this second given orifice 340, is secured to the corresponding full portion 44A of the bipolar half-plate 44, which is facing this second given orifice 340, this in particular by the glue initially carried by full portion 32A of the half- frame 32. We can therefore consider that at least part of the glue initially carried by the half-frame 32 migrates through the second given orifice 340 to reach the surface S44 of the half-polar plate 44.
Par ailleurs, l’activation de la colle peut, notamment dans le cas de colles thermoplastiques activées par chauffage, avoir pour effet de fluidifier cette colle et de permettre à une partie de cette colle, notamment celle située au voisinage autour d’un premier et/ou deuxième orifice 320 et 340 donné, de migrer alors jusque dans cet orifice 320 et 340, respectivement en direction des surfaces S44 et S42. En particulier, le chauffage de la colle présente sur la surface S34 peut aussi avoir pour effet de faire s’écouler dans les orifices 320 une partie de la colle présente entre les demi-cadres 32 et 34. De même, le chauffage de la colle présente sur la surface S32 peut aussi avoir pour effet de faire s’écouler dans les orifices 340 une partie de la colle présente entre les demi-cadres 32 et 34. Ainsi, au cours de la cinquième étape, la colle préalablement enduite sur les surfaces S32 et S34 peut s’écouler entre ces surfaces et migrer jusque dans les volumes creux les plus proches qui sont constitués par les orifices 320 et 340. De là, la colle s’écoule, dans ces orifices, en direction des bords de ces orifices qui jouxtent les surfaces S42 et S44 des demi-plaques bipolaires 42 et 44 qu’elle atteint au terme de la cinquième étape. Furthermore, the activation of the glue can, particularly in the case of thermoplastic glues activated by heating, have the effect of fluidifying this glue and allowing a part of this glue, in particular that located in the vicinity around a first and /or second orifice 320 and 340 given, to then migrate into this orifice 320 and 340, respectively towards the surfaces S44 and S42. In particular, heating the glue present on the surface S34 can also have the effect of causing part of the glue present between the half-frames 32 and 34 to flow into the orifices 320. Likewise, heating the glue present on the surface S32 can also have the effect of causing part of the glue present between the half-frames 32 and 34 to flow into the orifices 340. Thus, during the fifth step, the glue previously coated on the surfaces S32 and S34 can flow between these surfaces and migrate to the nearest hollow volumes which are constituted by the orifices 320 and 340. From there, the glue flows, in these orifices, towards the edges of these orifices which adjoin the surfaces S42 and S44 of the bipolar half-plates 42 and 44 which it reaches at the end of the fifth step.
Ce qui précède suppose une telle migration de la colle « au voisinage et autour » des premiers et/ou deuxièmes orifices. Ceci implique que la colle est activée, notamment par chauffage, sur une zone qui recouvre ces orifices et dont l’aire est strictement supérieure à celle de ces orifices. The above assumes such migration of the glue “in the vicinity and around” the first and/or second orifices. This implies that the glue is activated, in particular by heating, on an area which covers these orifices and whose area is strictly greater than that of these orifices.
Au cours de la cinquième étape, la première demi-plaque bipolaire 42 est solidarisée au cadre 30 grâce à la colle présente dans les orifices 320, alors que la deuxième demi- plaque bipolaire 44 est solidarisée au cadre 30 grâce à la colle présente dans les orifices 340. During the fifth step, the first bipolar half-plate 42 is secured to the frame 30 thanks to the glue present in the orifices 320, while the second bipolar half-plate 44 is secured to the frame 30 thanks to the glue present in the orifices 320. 340 holes.
La cinquième étape est avantageusement effectuée par application d’une source de chaleur localisée 82 sur le demi-cadre 34, localisée dans l’alignement de chaque orifice 320 selon une direction parallèle à l’axe A30, et par application d’une source de chaleur localisée 84 sur le demi-cadre 32, localisée dans l’alignement de chaque orifice 340 selon une direction parallèle à l’axe A30, comme représenté à la figure 4. L’application de la source de chaleur 82 ou 84 permet d’élever localement la température de la colle, afin d’assurer son activation et, éventuellement, de faciliter son écoulement dans les orifices 320 et 340. The fifth step is advantageously carried out by application of a localized heat source 82 on the half-frame 34, located in the alignment of each orifice 320 in a direction parallel to the axis A30, and by application of a heat source. localized heat 84 on the half-frame 32, located in the alignment of each orifice 340 in a direction parallel to the axis A30, as shown in Figure 4. The application of the heat source 82 or 84 makes it possible to locally raise the temperature of the glue, in order to ensure its activation and, possibly, to facilitate its flow into the orifices 320 and 340.
La source de chaleur est avantageusement un barreau chauffant qui peut être manipulé à la main par un opérateur ou par un robot et qui inclut une résistance chauffante. Le barreau chauffant peut notamment être du type d’un stylet de poste à souder manuel. Le barreau chauffant peut également être un système fonctionnant par impulsion. The heat source is advantageously a heating bar which can be manipulated by hand by an operator or by a robot and which includes a heating resistance. The heating bar may in particular be of the type of a manual welding station stylus. The heating bar can also be a system operating by impulse.
Eventuellement un effort mécanique, c’est-à-dire une pression de la source de chaleur en direction du cadre est exercée conjointement à l’apport de chaleur, ce qui permet de sécuriser l’activation de la colle et l’assemblage du cadre 30 avec la demi-plaque bipolaire 42. Possibly a mechanical force, that is to say a pressure of the heat source towards the frame is exerted jointly with the heat input, which makes it possible to secure the activation of the glue and the assembly of the frame 30 with the bipolar half-plate 42.
Ici le barreau chauffant 82 est inséré, selon une direction parallèle à l’axe A30, dans une découpe 49 et/ou le barreau chauffant 84 est inséré, selon une direction parallèle à l’axe A30, dans une découpe 48, pour apporter de la chaleur au plus près de la colle enduite sur la surface S34 ou S32, par application directe sur la zone Z4 ou Z2 du demi-cadre 34 ou 32 accessible à travers la découpe en question. Here the heating bar 82 is inserted, in a direction parallel to the axis A30, in a cutout 49 and/or the heating bar 84 is inserted, in a direction parallel to the axis A30, in a cutout 48, to bring heat as close as possible to the glue coated on the surface S34 or S32, by direct application to the zone Z4 or Z2 of the half-frame 34 or 32 accessible through the cutout in question.
En variante, seule une des demi-plaques bipolaires 42 ou 44 est équipée de découpes. Alternatively, only one of the bipolar half-plates 42 or 44 is equipped with cutouts.
Le fait que les découpes 48 et 49 débouchent chacune sur au moins un bord longitudinal des demi-plaques bipolaires 42 et 44 facilite la mise en contact entre le barreau chauffant 82 ou 84 et le demi-cadre 32 ou 34. The fact that the cutouts 48 and 49 each open onto at least one longitudinal edge of the bipolar half-plates 42 and 44 facilitates contact between the heating bar 82 or 84 and the half-frame 32 or 34.
En variante, lors de la cinquième étape, le chauffage de la colle est effectué par radiation, par convection, notamment avec de l’air chaud soufflé, par application d’ultrasons ou de rayons ultraviolets. Le choix du mode de chauffage, donc de la source de chaleur utilisée, dépend du type de la colle utilisée et de la géométrie des demi-plaques bipolaires et du cadre. Alternatively, during the fifth step, the heating of the glue is carried out by radiation, by convection, in particular with blown hot air, by application of ultrasound or ultraviolet rays. The choice of heating mode, and therefore the heat source used, depends on the type of glue used and the geometry of the bipolar half-plates and the frame.
En complément et de façon avantageuse, comme cela a déjà été évoqué plus haut, une étape de pressage de la structure multicouche, selon une direction parallèle à l’axe A30, peut être mise en œuvre, de même qu’une étape d’application de vibrations à la colle présente dans la structure multicouche. Ce pressage et cette mise en vibration facilitent la migration de la colle, des surfaces S34 et S32 respectivement en direction les surfaces S42 et S44, au sein des orifices 320 et 340 et/ou peuvent faciliter la mise en contact de cette colle avec la surface S42 et S44 au travers des orifices 320 et 340. Le pressage peut être localisé, par exemple concentré sur l’étendue des premiers et seconds orifices, ou peut être étendu à une zone plus grande de la structure multicouches, éventuellement à l’intégralité de la surface de la structure multicouches ou à l’intégralité de la portion de surface de la structure multicouches qui se situe à l’extérieur du périmètre des GDL 28 et 29. In addition and advantageously, as has already been mentioned above, a step of pressing the multilayer structure, in a direction parallel to the axis A30, can be implemented, as well as an application step of vibrations to the glue present in the multilayer structure. This pressing and this vibration facilitate the migration of the glue, from the surfaces S34 and S32 respectively towards the surfaces S42 and S44, within the orifices 320 and 340 and/or can facilitate the bringing into contact of this glue with the surface S42 and S44 through the orifices 320 and 340. The pressing can be localized, for example concentrated on the extent of the first and second orifices, or can be extended to a larger area of the multilayer structure, possibly to the entirety of the surface of the multilayer structure or the entire surface portion of the multilayer structure which is located outside the perimeter of the GDLs 28 and 29.
Suite à la cinquième étape, une quantité Q2 de colle initialement située sur la surface S34 est présente dans chaque orifice 320, de sorte qu’elle relie la surface S42 à la portion de la surface S34 située en regard au de cet orifice 320 et éventuellement au bord de cet orifice qui jouxte la surface S34, c’est-à-dire au niveau de la portion pleine 34A du demi-cadre 34 qui est en regard de l’orifice 320. En outre, une quantité Q4 de colle initialement située sur la surface S32 est présente dans chaque orifice 340, de sorte qu’elle relie la surface S44 à la portion de la surface S32 située en regard de cet orifice 340 et éventuellement au bord de cet orifice qui jouxte la surface S32, c’est-à-dire au niveau de la portion pleine 32A du demi-cadre 32 qui est en regard de l’orifice 340. En d’autres termes, la quantité de colle Q2 provient généralement pour l’essentiel de la colle initialement enduite sur la surface S34, alors que la quantité de colle Q4 provient généralement pour l’essentiel de la colle initialement enduite sur la surface S32. A cet égard, le fait qu’il n’existe pas de superposition entre les orifices 320 et 340 garantit qu’une portion pleine d’un demi-cadre, enduite de colle, est exposée, au travers de chaque orifice 320 ou 340, en regard d’une portion pleine de la demi-plaque opposée. Ainsi, les quantités de colle Q2 et Q4 qui s’étendent respectivement dans les orifices 320 et 340 assurent le collage, soit de la première demi-plaque bipolaire 42, soit de la deuxième plaque bipolaire 44, sur le cadre 30, sans liaison directe entre ces deux demi-plaques 42, 44 à travers le cadre 30. Following the fifth step, a quantity Q2 of glue initially located on the surface S34 is present in each orifice 320, so that it connects the surface S42 to the portion of the surface S34 located opposite this orifice 320 and possibly at the edge of this orifice which adjoins the surface S34, that is to say at the level of the solid portion 34A of the half-frame 34 which is opposite the orifice 320. In addition, a quantity Q4 of glue initially located on the surface S32 is present in each orifice 340, so that it connects the surface S44 to the portion of the surface S32 located opposite this orifice 340 and possibly to the edge of this orifice which adjoins the surface S32, it is that is to say at the level of the solid portion 32A of the half-frame 32 which is opposite the orifice 340. In other words, the quantity of glue Q2 generally comes mainly from the glue initially coated on the surface S34, while the quantity of glue Q4 generally comes mainly from the glue initially coated on the surface S32. In this regard, the fact that there is no superposition between the orifices 320 and 340 guarantees that a full portion of a half-frame, coated with glue, is exposed, through each orifice 320 or 340, facing a full portion of the opposite half-plate. Thus, the quantities of glue Q2 and Q4 which extend respectively into the orifices 320 and 340 ensure the bonding, either of the first bipolar half-plate 42, or of the second bipolar plate 44, on the frame 30, without direct connection between these two half-plates 42, 44 through the frame 30.
La colle constituant une quantité Q2 peut être formée par la seule quantité de colle présente sur la portion de la surface S34 en regard d’un orifice 320, alors que colle constituant une quantité Q4 peut être formée par la seule quantité de colle présente sur la portion de la surface S32 en regard d’un orifice 340. The glue constituting a quantity Q2 can be formed by the sole quantity of glue present on the portion of the surface S34 facing an orifice 320, while the glue constituting a quantity Q4 can be formed by the sole quantity of glue present on the portion of surface S32 facing an orifice 340.
En variante et comme expliqué ci-dessus, la colle constituant une quantité Q2 peut être formée de la colle qui se trouvait, avant la cinquième étape, sur la surface S34, à la fois au niveau et autour d’un orifice 320, alors que la colle constituant la quantité Q4 est formée par de la colle qui se trouvait, avant la quatrième étape, sur la surface S32, à la fois au niveau et autour d’un orifice 340. Alternatively and as explained above, the glue constituting a quantity Q2 can be formed from the glue which was, before the fifth step, on the surface S34, both at and around an orifice 320, while the glue constituting the quantity Q4 is formed by glue which was, before the fourth step, on the surface S32, both at and around an orifice 340.
Préférentiellement, la quantité Q2 de colle s’étend, au sein des premiers orifices 320, parallèlement au plan TT30. En d’autres termes, la quantité Q2 de colle n’est pas déformée lors du processus d’assemblage, si bien que la quantité Q2 de colle n’est, sur le produit fini, pas déformée, mais au contraire parallèle au plan TT30. Preferably, the quantity Q2 of glue extends, within the first orifices 320, parallel to the plane TT30. In other words, the quantity Q2 of glue is not deformed during the assembly process, so that the quantity Q2 of glue is, on the finished product, not deformed, but on the contrary parallel to the plane TT30 .
En d’autres termes, le procédé de fabrication du sous-ensemble 6 de l’invention tire parti du fait qu’une colle est appliquée sur les surfaces S32 et S34 pour s’en servir, d’une part, pour solidariser les demi-cadres 32 et 34 entre eux et autour de la membrane CCM 25 et, d’autre part, pour solidariser les demi-plaques bipolaires 42 et 44 sur le cadre 30, sans utilisation d’une colle additionnelle, de soudure ou d’un autre moyen d’assemblage. In other words, the method of manufacturing the subassembly 6 of the invention takes advantage of the fact that a glue is applied to the surfaces S32 and S34 to use it, on the one hand, to join the half -frames 32 and 34 between them and around the CCM membrane 25 and, on the other hand, to secure the bipolar half-plates 42 and 44 on the frame 30, without the use of additional glue, welding or a other means of assembly.
La section des orifices 320 et 340 peut être choisie avec une aire relativement petite, inférieure ou égale à 50 mm2, de préférence à 20 mm2. Ceci évite de fragiliser le cadre 30, tout en permettant une solidarisation efficace des demi-plaques bipolaires 42 et 44 sur le cadre. En outre, la section des orifices 320 et 340 peut être choisie avec une aire supérieure ou égale à 5 mm2, de préférence à 10 mm2. Ceci permet que la surface de colle au contact d’une surface S42 ou S44 soit suffisante pour assurer une immobilisation efficace de la demi-plaque bipolaire 42 ou 44. The section of the orifices 320 and 340 can be chosen with a relatively small area, less than or equal to 50 mm 2 , preferably 20 mm 2 . This avoids weakening the frame 30, while allowing effective joining of the bipolar half-plates 42 and 44 to the frame. In addition, the section of the orifices 320 and 340 can be chosen with an area greater than or equal to 5 mm 2 , preferably 10 mm 2 . This allows the glue surface in contact with a surface S42 or S44 to be sufficient to ensure effective immobilization of the bipolar half-plate 42 or 44.
Par exemple, les orifices 320 et 340 peuvent être de forme circulaire, avec un diamètre de compris entre 3 et 8 mm, de préférence de l’ordre de 5 mm, comme représenté sur les figures. En variante, ils peuvent être de toute autre forme, par exemple en forme de polygone (triangle, rectangle, pentagone, hexagone...) ou en forme oblongue, avec une longueur comprise dans la gamme allant de 5 à 10 mm, par exemple 7 mm et une largeur comprise dans la gamme allant de 2 à 5 mm. Bien entendu, une taille supérieure des orifices est aussi possible, permettant notamment d’augmenter la force d’adhésion, mais avec potentiellement des répercussions sur l’encombrement total, ou sur le positionnement vis- à-vis de la plaque. For example, the orifices 320 and 340 can be circular in shape, with a diameter of between 3 and 8 mm, preferably of the order of 5 mm, as shown in the figures. Alternatively, they can be of any other shape, for example in the shape of a polygon (triangle, rectangle, pentagon, hexagon, etc.) or in an oblong shape, with a length in the range from 5 to 10 mm, for example 7 mm and a width included in the range from 2 to 5 mm. Of course, a larger size of the orifices is also possible, making it possible in particular to increase the adhesion force, but with potentially repercussions on the total size, or on the positioning with respect to the plate.
Au terme de la cinquième étape du procédé de l’invention, le sous-ensemble 6 constitue une cellule électrochimique et peut être manipulé, par un opérateur humain ou un robot, sans risque de voir ses différentes couches se séparer les unes des autres, car celles-ci sont efficacement maintenues les unes par rapport aux autres grâce à la colle enduite sur les surfaces S32 et S3 lors de la première étape préalable et dont une partie est dans les orifices 320 et 340. At the end of the fifth step of the process of the invention, the subassembly 6 constitutes an electrochemical cell and can be manipulated, by a human operator or a robot, without the risk of its different layers separating from each other, because these are effectively maintained in relation to each other thanks to the glue coated on the surfaces S32 and S3 during the first preliminary step and part of which is in the orifices 320 and 340.
Lorsque plusieurs cellules électrochimiques ont ainsi été créées, sous la forme de sous-ensembles 6, en répétant les première à cinquième étapes mentionnées ci-dessus, il est possible de poursuivre la fabrication de la pile à combustible 8 en formant, lors d’une étape ultérieure, un empilement, par juxtaposition des différentes cellules, comme représenté à la figure 7 pour le troisième mode de réalisation. Cette étape ultérieure est facile et rapide à mettre en œuvre, en manipulant les cellules électrochimiques chacune de façon unitaire. When several electrochemical cells have thus been created, in the form of subassemblies 6, by repeating the first to fifth steps mentioned above, it is possible to continue the manufacture of the fuel cell 8 by forming, during a subsequent step, a stacking, by juxtaposition of the different cells, as shown in Figure 7 for the third embodiment. This subsequent step is easy and quick to implement, by manipulating the electrochemical cells each individually.
Les cinq premières étapes mentionnées ci-dessus permettent de constituer des cellules qui ont tous leurs composants principaux, dont la membrane CCM 25 et les deux demi-plaques bipolaires 42 et 44, et qui, dans le cadre d’une manipulation normale, ne risquent pas de se séparer ou de se décaler accidentellement, ce qui permet de les tester, voire de les pré-activer. En effet, créer ainsi une cellule électrochimique individuelle offre l'opportunité de la tester ensuite avec un outillage adéquat, outillage assurant les différentes étanchéités et permettant d'apporter les réactifs et éventuellement le fluide de refroidissement. Un tel outillage de test est avantageusement apte à, et conçu pour, mesurer l'efficacité de la cellule. Avantageusement, le même outillage, ou un outillage distinct permet d'effectuer, au moins partiellement, le rodage électrochimique qui est habituellement pratiqué après l’empilement des cellules, lorsque la pile est assemblée. Une telle activation, au moins partielle, permet de porter les performances électrochimiques au niveau ou proches du niveau attendu de performances initiales. De telles opérations de test et/ou de pré-activation permettent de valider le fonctionnement et les performances la cellule ainsi préassemblée, avant de les intégrer à l’empilement. The first five steps mentioned above make it possible to constitute cells which have all their main components, including the CCM membrane 25 and the two bipolar half-plates 42 and 44, and which, under normal handling, do not risk prevent them from accidentally separating or shifting, which allows them to be tested or even pre-activated. Indeed, creating an individual electrochemical cell in this way offers the opportunity to then test it with appropriate tools, tools ensuring the various seals and allowing the reagents and possibly the cooling fluid to be supplied. Such test tools are advantageously capable of, and designed to, measure the efficiency of the cell. Advantageously, the same tooling, or separate tooling makes it possible to carry out, at least partially, the electrochemical running-in which is usually practiced after the stacking of the cells, when the cell is assembled. Such activation, at least partial, makes it possible to bring the electrochemical performance to or close to the expected level of initial performance. Such testing and/or pre-activation operations make it possible to validate the operation and performance of the cell thus preassembled, before integrating them into the stack.
Dans le premier mode de réalisation, l’étanchéité du compartiment anodique, entre l’assemblage membrane-électrode 2 et la demi-plaque bipolaire anodique, et du compartiment cathodique, entre l’assemblage membrane-électrode 2 et la demi-plaque bipolaire cathodique, est assuré par les joints d’étanchéité périphériques 50 et les joints d’ouverture 51 , et non pas par le pré-assemblage de l’assemblage membrane-électrode 2 avec l’une et/ou l’autre des demi-plaque bipolaires, tel que décrit ci-dessus. En effet, ce pré-assemblage par les quantités Q2, Q4 de colle qui s’étendent à travers les premiers et/ou deuxièmes orifices 320, 340 et qui proviennent de la colle enduite sur la première surface S34 du deuxième demi-cadre 34 ou de la colle enduite sur la deuxième surface S32 du premier demi-cadre 32, ne forment qu’un pré-assemblage au niveau de zones ponctuelles. Ce pré-assemblage est donc inapte à assurer une étanchéité fluidique du compartiment concerné vis-à-vis de l’extérieur. In the first embodiment, the sealing of the anode compartment, between the membrane-electrode assembly 2 and the anodic bipolar half-plate, and of the cathode compartment, between the membrane-electrode assembly 2 and the cathode bipolar half-plate , is ensured by the peripheral seals 50 and the seals opening 51, and not by the pre-assembly of the membrane-electrode assembly 2 with one and/or the other of the bipolar half-plates, as described above. Indeed, this pre-assembly by the quantities Q2, Q4 of glue which extend through the first and/or second orifices 320, 340 and which come from the glue coated on the first surface S34 of the second half-frame 34 or glue coated on the second surface S32 of the first half-frame 32, only form a pre-assembly at point areas. This pre-assembly is therefore incapable of ensuring fluid sealing of the compartment concerned with respect to the outside.
Dans les deuxième à quatrième modes de réalisation représentés sur les figures 5 et suivantes, les éléments analogues à ceux du premier mode de réalisation portent les mêmes références. Dans ce qui suit, on décrit principalement ce qui distingue ces modes de réalisation du premier. Si une référence est mentionnée dans la suite de la description sans être portée sur l’une des figures 6 à 8 ou si une référence est portée sur l’une des figures 6 à 8 sans être mentionnée dans la suite de la description, elle désigne le même objet que celui portant la même référence dans le premier mode de réalisation. In the second to fourth embodiments shown in Figures 5 and following, the elements similar to those of the first embodiment bear the same references. In what follows, we mainly describe what distinguishes these embodiments from the first. If a reference is mentioned in the rest of the description without being mentioned in one of Figures 6 to 8 or if a reference is given in one of Figures 6 to 8 without being mentioned in the rest of the description, it designates the same object as that bearing the same reference in the first embodiment.
Dans le deuxième mode de réalisation, les demi-plaques bipolaires 42 et 44 sont dépourvues, pour au moins un orifice 320 et/ou 340, de découpe comparable aux découpes 48 et 49 du premier mode de réalisation. Plus particulièrement, dans certaines variantes de ce deuxième mode de réalisation, les demi-plaques bipolaires 42 et 44 sont entièrement dépourvues de découpes comparables aux découpes 48 et 49 du premier mode de réalisation, de sorte que chaque deuxième orifice 340 est disposé entre une portion pleine 44A de la deuxième demi-plaque bipolaire 44 et une portion pleine 32A du demi-cadre 32 qui est elle-même disposée en regard d’une portion pleine 42A de la première demi-plaque bipolaire 42. En d’autres termes, au niveau des deuxièmes orifices, le cadre 30 est recouvert, sur ses deux côtés opposés, par les demi-plaques bipolaires 42 et 44. Ainsi, les demi-plaques bipolaires sont plus simples à fabriquer que dans le premier mode de réalisation et sont interchangeables. In the second embodiment, the bipolar half-plates 42 and 44 do not have, for at least one orifice 320 and/or 340, a cutout comparable to the cutouts 48 and 49 of the first embodiment. More particularly, in certain variants of this second embodiment, the bipolar half-plates 42 and 44 are entirely devoid of cutouts comparable to the cutouts 48 and 49 of the first embodiment, so that each second orifice 340 is arranged between a portion full 44A of the second bipolar half-plate 44 and a full portion 32A of the half-frame 32 which is itself arranged opposite a full portion 42A of the first bipolar half-plate 42. In other words, at level of the second orifices, the frame 30 is covered, on its two opposite sides, by the bipolar half-plates 42 and 44. Thus, the bipolar half-plates are simpler to manufacture than in the first embodiment and are interchangeable.
Dans ce deuxième mode de réalisation, le chauffage de la colle est obtenu en appliquant une source de chaleur 84 non pas directement sur le cadre 30, comme dans le premier mode de réalisation, mais sur la portion 44A de la deuxième demi-plaque 44, dans la zone où on souhaite la solidariser au cadre 30, c’est-à-dire en regard d’un orifice 340. Une quantité Q2 de colle, qui a migré à partir de la couche de colle préalablement enduite sur la surface S32 du demi-cadre 32, assure alors la liaison entre le cadre 30 et la demi- plaque bipolaire 44 au travers l’orifice 320. In this second embodiment, the heating of the glue is obtained by applying a heat source 84 not directly to the frame 30, as in the first embodiment, but to the portion 44A of the second half-plate 44, in the area where it is desired to secure it to the frame 30, that is to say opposite an orifice 340. A quantity Q2 of glue, which has migrated from the layer of glue previously coated on the surface S32 of the half-frame 32, then ensures the connection between the frame 30 and the bipolar half-plate 44 through the orifice 320.
En variante non représentée, la source de chaleur peut être appliquée sur la portion 42A de la première demi-plaque 42. Au niveau de chaque orifice 320, la situation est symétrique par rapport au plan TT30, vis-à-vis de celle représentée à la figure 5. As a variant not shown, the heat source can be applied to the portion 42A of the first half-plate 42. At each orifice 320, the situation is symmetrical with respect to the plane TT30, with respect to that shown in Figure 5.
Ce mode de réalisation est plus simple à mettre en œuvre que le précédent, au prix d’un chauffage de la colle potentiellement moins efficace. This embodiment is simpler to implement than the previous one, at the cost of potentially less efficient heating of the glue.
Sur les figures 6 et 8, les zones où il est préférable de ménager les premiers et deuxièmes orifices 320 et 340 sont identifiées avec des hachures à simple trait et les zones d’exclusion, où ces orifices ne sont de préférence pas ménagés, sont identifiées avec des hachures croisées. In Figures 6 and 8, the zones where it is preferable to provide the first and second orifices 320 and 340 are identified with single-line hatching and the exclusion zones, where these orifices are preferably not provided, are identified with cross hatching.
Dans le troisième mode de réalisation des figures 6 et 7, le sous-ensemble 6 comporte un système de joints d’étanchéité périphériques 50, qui est formé de joints d’étanchéité périphériques assurant la même fonction que le système de joints d’étanchéité périphériques 50 du premier mode de réalisation. Un système de joints d’étanchéité d’ouverture 51 est également prévu, avec la même fonction que le système de joints d’étanchéité d’ouverture 51 du premier mode de réalisation. In the third embodiment of Figures 6 and 7, the subassembly 6 comprises a system of peripheral seals 50, which is formed of peripheral seals ensuring the same function as the system of peripheral seals 50 of the first embodiment. An opening seal system 51 is also provided, with the same function as the opening seal system 51 of the first embodiment.
Dans le troisième mode de réalisation des figures 6 et 7, les joints périphériques 50 assurent en partie la fonction d’étanchéité des ouvertures, avec les joints d’étanchéité d’ouverture 51 qui se raccordent avec le joint périphérique 50. In the third embodiment of Figures 6 and 7, the peripheral seals 50 partly provide the function of sealing the openings, with the opening seals 51 which connect with the peripheral seal 50.
Par rapport au premier mode de réalisation, un joint périphérique supplémentaire 50 est disposé sur la surface de la demi-plaque bipolaire 42 opposée au cadre 30, comme visible en partie haute des inserts A) et B) de la figure 7. Selon une variante non- représentée de l’invention, il en est de même au niveau des joints d’étanchéité d’ouverture 51. Compared to the first embodiment, an additional peripheral seal 50 is arranged on the surface of the bipolar half-plate 42 opposite the frame 30, as visible in the upper part of the inserts A) and B) of Figure 7. According to a variant not shown of the invention, it is the same at the level of the opening seals 51.
Comme visible à la figure 7, l’empilement 60 de cellules électrochimiques 6, réalisé au sein d’une pile à combustible 8 conforme à l’invention, comprend plusieurs cellules électrochimiques, formées par des sous-ensembles 6 également conformes à l’invention, qui sont séparées par des plaques bipolaires 4 constituées chacune par une première demi- plaque bipolaire 42 appartenant à une cellule 6 et par une deuxième demi-plaque bipolaire 44 appartenant à une cellule 6 adjacente, les cadres 30 de ces sous-ensembles étant maintenus serrés de façon étanche par rapport aux plaques bipolaires 4, avec des joints d’étanchéité périphériques 50, disposés notamment le long des bords longitudinaux des cellules électrochimiques et des joints d’ouverture 51 qui entourent chacun une des ouvertures 36, 46 formant les galeries d’écoulement de fluides au sein de l’empilement de cellules électrochimiques. As visible in Figure 7, the stack 60 of electrochemical cells 6, produced within a fuel cell 8 conforming to the invention, comprises several electrochemical cells, formed by subassemblies 6 also conforming to the invention , which are separated by bipolar plates 4 each constituted by a first half-bipolar plate 42 belonging to a cell 6 and by a second half-bipolar plate 44 belonging to an adjacent cell 6, the frames 30 of these subassemblies being maintained tightened in a tight manner relative to the bipolar plates 4, with peripheral seals 50, arranged in particular along the longitudinal edges of the electrochemical cells and opening seals 51 which each surround one of the openings 36, 46 forming the galleries d flow of fluids within the stack of electrochemical cells.
Les joints d’étanchéité périphériques 50 délimitent la limite intérieure d’une zone externe périphérique Zext du sous-ensemble 6 qui est délimitée de manière étanche par rapport aux compartiments fluidiques anodique, cathodique et de refroidissement. La zone externe périphérique Zext du sous-ensemble 6 est donc située vers l’extérieur par rapport à au moins un joint d’étanchéité périphérique 50 du sous ensemble 6. C’est dans cette zone externe périphérique Zext, extérieure, notamment par rapport au joint périphérique 50 prévu entre le cadre 30 et la première demi-plaque bipolaire 42, que l’on choisit de préférence de placer les premiers orifices 320 aménagés à travers le premier demi-cadre 32 et les portions pleines 42A de la première demi-plaque bipolaire 42. C’est aussi dans cette zone externe périphérique Zext, extérieure, notamment par rapport au joint périphérique 50 prévu entre le cadre 30 et la deuxième demi-plaque bipolaire 42, que l’on choisit de préférence de placer les seconds orifices 340 aménagés à travers le second demi-cadre 34 et les portions pleines 44A de la seconde demi-plaque bipolaire 44. Pour chaque cellule électrochimique 6, les joints d’étanchéité périphériques 50 sont généralement disposés en retrait radialement vers l’intérieur par rapport aux bords externes des demi-plaques bipolaires et des bords externes du cadre l’assemblage membrane-électrode, de sorte qu’il est effectivement possible d’utiliser cette zone externe périphérique Zext pour y placer les premiers orifices 320 aménagés à travers le premier demi-cadre 32 et les portions pleines 42A de la première demi-plaque bipolaire 42, et/ou les seconds orifices 340 aménagés à travers le second demi-cadre 34 et les portions pleines 44A de la seconde demi-plaque bipolaire 44. On remarque qu’il est possible de prévoir que le contour des joints d’étanchéité périphériques 50 peut être adapté, pour présenter localement un détour vers l’intérieur, afin d’augment la surface externe périphérique Zext disponible autour des premiers orifices 320 et/ou des deuxième orifices 340. The peripheral seals 50 delimit the interior limit of a peripheral external zone Z ext of the subassembly 6 which is delimited in a sealed manner with respect to the anodic, cathode and cooling fluid compartments. The area external peripheral zone Z ext of the subassembly 6 is therefore located outwards relative to at least one peripheral seal 50 of the subassembly 6. It is in this external peripheral zone Z ext , exterior, in particular with respect to the peripheral joint 50 provided between the frame 30 and the first bipolar half-plate 42, which is preferably chosen to place the first orifices 320 arranged through the first half-frame 32 and the solid portions 42A of the first half-plate bipolar 42. It is also in this external peripheral zone Z ext , exterior, in particular with respect to the peripheral joint 50 provided between the frame 30 and the second bipolar half-plate 42, that we preferably choose to place the second orifices 340 arranged through the second half-frame 34 and the solid portions 44A of the second bipolar half-plate 44. For each electrochemical cell 6, the peripheral seals 50 are generally arranged set back radially inwards relative to the external edges of the bipolar half-plates and the external edges of the frame the membrane-electrode assembly, so that it is actually possible to use this peripheral external zone Z ex t to place the first orifices 320 arranged through the first half-frame 32 and the solid portions 42A of the first bipolar half-plate 42, and/or the second orifices 340 arranged through the second half-frame 34 and the solid portions 44A of the second bipolar half-plate 44. Note that it is possible to provide that the contour of the peripheral seals 50 can be adapted, to locally present a detour towards the interior, in order to increase the peripheral external surface Z ext available around the first orifices 320 and/or second orifices 340.
Par ailleurs, de chaque côté du cadre 30, les joints d’étanchéité d’ouverture 51 délimitent, en combinaison avec le joint d’étanchéité périphérique 50 correspondant et autour des ouvertures 36, 46, des zones d’encadrement de galerie Zeg. Six zones d’encadrement de galerie Zeg sont donc visibles à la figure 6. Chacune des zones d’encadrement de galerie Zeg est isolée fluidiquement des compartiments fluidiques anodique, cathodique et de refroidissement. Chacune des zones d’encadrement de galerie Zeg peut aussi accueillir certains au moins des premiers orifices 320, aménagés à travers le premier demi-cadre 32 en regard d’une portion pleine 42A de la première demi-plaque bipolaire 42, et/ou certains au moins des seconds orifices 340, aménagés à travers le second demi-cadre 34 en regard d’une portion pleine 44A de la seconde demi-plaque bipolaire 44. On note toutefois que chaque zone d’encadrement de galerie Zeg est susceptibles d’être reliée fluidiquement avec la galerie qu’elle entoure. Furthermore, on each side of the frame 30, the opening seals 51 delimit, in combination with the corresponding peripheral seal 50 and around the openings 36, 46, gallery framing zones Z eg . Six gallery framing zones Z eg are therefore visible in Figure 6. Each of the gallery framing zones Z eg is fluidically isolated from the anodic, cathodic and cooling fluid compartments. Each of the gallery framing zones Z eg can also accommodate at least some of the first orifices 320, arranged through the first half-frame 32 facing a solid portion 42A of the first bipolar half-plate 42, and/or at least some of the second orifices 340, arranged through the second half-frame 34 facing a solid portion 44A of the second bipolar half-plate 44. Note, however, that each gallery framing zone Z eg is capable of be fluidly connected with the gallery it surrounds.
De telles zones de peuvent également être définies dans les premier et deuxième modes de réalisation, même si elles ne sont pas formellement identifiées sur les figures 1 à 6. Sur les figures 6 et 7, on a illustré la présence des zones Z2, Z4 de collage, qui correspondent respectivement à la position des premiers orifices 320 et des seconds orifices 340, le long des bords longitudinaux du sous ensemble 6, à hauteur de la zone active correspondant à la présence de la membrane CCM 25. Cependant, ces zones Z2, Z4 de collage pourraient être, comme dans l’exemple de la figure 3, situées près des extrémités longitudinales du sous ensemble 6, par exemple longitudinalement à hauteur des ouvertures 36, 46 du sous ensemble 6, voire au-delà des ouvertures 36, 46 du sous ensemble 6 selon la direction longitudinale en partant du centre du sous ensemble 6. En variante, et comme envisagé ci-dessus, ces zones Z2, Z4 de collage peuvent être situées dans l’une ou l’autre des zones d’encadrement de galerie Zeg. Such zones can also be defined in the first and second embodiments, even if they are not formally identified in Figures 1 to 6. In Figures 6 and 7, the presence of the bonding zones Z2, Z4 is illustrated, which correspond respectively to the position of the first orifices 320 and the second orifices 340, along the longitudinal edges of the subassembly 6, at the height of the active zone corresponding to the presence of the CCM membrane 25. However, these bonding zones Z2, Z4 could be, as in the example of Figure 3, located near the longitudinal ends of the subassembly 6, for example longitudinally at the height of the openings 36, 46 of the subassembly 6, or even beyond the openings 36, 46 of the subassembly 6 in the longitudinal direction starting from the center of the subassembly 6. Alternatively, and as envisaged above, these zones Z2, Z4 collage can be located in one or other of the gallery framing zones Z eg .
De manière plus précise, il est particulièrement avantageux, comme illustré à la figure 3, de prévoir au moins quatre premiers orifices 320 et, le cas échéant, au moins quatre seconds orifices 340, situés chacun à un des quatre coins de l’assemblage membrane électrode, un coin étant défini comme étant une portion l’assemblage membrane électrode qui est comprise dans la zone externe périphérique Zext et qui est : More precisely, it is particularly advantageous, as illustrated in Figure 3, to provide at least four first orifices 320 and, where appropriate, at least four second orifices 340, each located at one of the four corners of the membrane assembly. electrode, a corner being defined as being a portion of the electrode membrane assembly which is included in the peripheral external zone Z ext and which is:
- longitudinalement à hauteur des ouvertures 36 du cadre 36 formant galeries de fluide réactif ou de refroidissement du sous ensemble 6, ou au-delà de ces ouvertures 36, 46 selon la direction longitudinale en partant du centre du sous ensemble 6 ; - longitudinally at the height of the openings 36 of the frame 36 forming reactive or cooling fluid galleries of the subassembly 6, or beyond these openings 36, 46 in the longitudinal direction starting from the center of the subassembly 6;
- et/ou transversalement à hauteur de celle des ouvertures 36 du cadre 36, formant galerie de fluide réactif ou de refroidissement du sous ensemble 6, qui est la plus proche transversalement du bord longitudinal considéré, ou au-delà de cette ouverture 36 selon la direction transversale en partant du centre du sous ensemble 6. - and/or transversely at the height of that of the openings 36 of the frame 36, forming a reactive or cooling fluid gallery of the subassembly 6, which is the closest transversely to the longitudinal edge considered, or beyond this opening 36 according to the transverse direction starting from the center of the subassembly 6.
Sur la figure 7, mais aussi sur la figure 4, on a illustré qu’il est avantageux de prévoir que la portion pleine 42A de la première demi-plaque bipolaire 42, qui est en regard d’un premier orifice 320 du premier demi-cadre 32, et/ou la portion pleine 44A de la seconde demi-plaque bipolaire 44, qui est en regard d’un second orifice 340 du second demi-cadre 34, soit rabattue pour être agencée, selon l’axe A30, à une position égale à la position du plan médian TT30 du cadre 30 selon l’axe A30, ou proche de celle-ci, ceci afin de minimiser la déformation du cadre selon l’axe A30 à l’endroit de la jonction du cadre 30 avec la demi- plaque bipolaire 42 correspondante. Cette position peut être exactement celle du plan médian TT30 du cadre 30 selon l’axe A30, ou être décalée de celle du plan médian TT30 du cadre 30 d’une valeur inférieure ou égale à l’épaisseur du cadre 30 selon l’axe A30, idéalement décalée de celle du plan médian TT30 du cadre 30 d’une valeur égale à l’épaisseur, selon l’axe A30, du demi-cadre 32, 34 dans lequel est formé l’orifice 320, 340. Dans l’exemple des figures 6 et 7, les demi-plaque bipolaires 42, 44 présentent des reliefs selon l’axe A30, ces reliefs correspondant à des fonds de canaux de circulation de fluide réactif, à des dents de séparation entre deux canaux, à des surfaces de portée pour des joints d’étanchéité 50, 51 . Ces reliefs peuvent être écartés par rapport au plan médian TT30 du cadre 30 selon l’axe A30. On voit cependant que, tout comme dans l’exemple de la figure 4, la première demi-plaque bipolaire 42 est formée de manière que la portion pleine 42A en regard d’un premier orifice 320 est agencée dans une position qui, selon l’axe A30, est décalée de celle du plan médian TT30 du cadre 30 d’une valeur égale à l’épaisseur, selon l’axe A30, du demi-cadre 32 dans lequel est formé le premier orifice 320. In Figure 7, but also in Figure 4, it is illustrated that it is advantageous to provide that the solid portion 42A of the first half-bipolar plate 42, which faces a first orifice 320 of the first half-plate frame 32, and/or the solid portion 44A of the second bipolar half-plate 44, which faces a second orifice 340 of the second half-frame 34, is folded down to be arranged, along the axis A30, at a position equal to the position of the median plane TT30 of the frame 30 along the axis A30, or close to it, this in order to minimize the deformation of the frame along the axis A30 at the location of the junction of the frame 30 with the corresponding half-bipolar plate 42. This position can be exactly that of the median plane TT30 of the frame 30 along the axis A30, or be offset from that of the median plane TT30 of the frame 30 by a value less than or equal to the thickness of the frame 30 along the axis A30 , ideally offset from that of the median plane TT30 of the frame 30 by a value equal to the thickness, along the axis A30, of the half-frame 32, 34 in which the orifice 320, 340 is formed. In the example of Figures 6 and 7, the bipolar half-plates 42, 44 have reliefs along the axis A30, these reliefs corresponding to the bottoms of reactive fluid circulation channels, to separation teeth between two channels, to bearing surfaces for seals 50, 51. These reliefs can be separated from the median plane TT30 of the frame 30 along the axis A30. We see, however, that, just as in the example of Figure 4, the first bipolar half-plate 42 is formed in such a way that the solid portion 42A facing a first orifice 320 is arranged in a position which, according to the axis A30, is offset from that of the median plane TT30 of the frame 30 by a value equal to the thickness, along the axis A30, of the half-frame 32 in which the first orifice 320 is formed.
Ainsi, dans le cas d’une demi-plaque bipolaire formée d’une tôle métallique emboutie, la portion pleine 42A de la première demi-plaque bipolaire 42, qui est en regard d’un premier orifice 320 du premier demi-cadre 32, peut correspondre à une forme emboutie de la tôle formant la première demi-plaque bipolaire 42 et/ou la portion pleine 44A de la seconde demi-plaque bipolaire 44, qui est en regard d’un second orifice 340 du second demi-cadre 34, peut correspondre à une forme emboutie de la tôle formant la seconde demi-plaque bipolaire 44. Thus, in the case of a bipolar half-plate formed from a stamped metal sheet, the solid portion 42A of the first bipolar half-plate 42, which faces a first orifice 320 of the first half-frame 32, may correspond to a stamped shape of the sheet forming the first bipolar half-plate 42 and/or the solid portion 44A of the second bipolar half-plate 44, which faces a second orifice 340 of the second half-frame 34, may correspond to a stamped shape of the sheet forming the second bipolar half-plate 44.
Dans le mode de réalisation de la figure 8, les joints d’étanchéité d’ouverture 51 sont dissociés des joints périphériques 50 et présentent donc un contour fermé assurant à eux seuls la fonction d’étanchéité, pour chaque compartiment fluidique anodique, cathodique ou de refroidissement, entre le compartiment concerné et au moins celles des ouvertures 36 et 46 qui ne communiquent pas avec ce compartiment donné. Dans le mode de réalisation de la figure 8, les joints d’étanchéité d’ouverture 51 délimitent chacun à lui seul une zone d’encadrement de galerie Zeg et des portions de la zone interne se situent entre deux zones d’encadrement de galerie Zeg, comme représenté par les zones à hachures croisées disposées entre deux joints d’étanchéité d’ouverture 51 sur la figure 8. In the embodiment of Figure 8, the opening seals 51 are separated from the peripheral seals 50 and therefore have a closed contour ensuring in themselves the sealing function, for each anodic, cathodic or fluid compartment. cooling, between the compartment concerned and at least those of the openings 36 and 46 which do not communicate with this given compartment. In the embodiment of Figure 8, the opening seals 51 each alone delimit a gallery framing zone Z eg and portions of the internal zone are located between two gallery framing zones Z eg , as represented by the cross-hatched areas arranged between two opening seals 51 in Figure 8.
Dans ce mode de réalisation également, les premiers et deuxièmes orifices 320 et 340 sont de préférence ménagés dans la zone externe périphérique Zext du sous-ensemble 6. Also in this embodiment, the first and second orifices 320 and 340 are preferably provided in the peripheral external zone Z ext of the subassembly 6.
Selon une variante non-représentée du quatrième mode de réalisation, certaines ou toutes les zones Z2, Z4 de collage peuvent être prévues dans une ou des zone(s) d’encadrement de galerie Zeg.. According to a variant not shown of the fourth embodiment, some or all of the bonding zones Z2, Z4 can be provided in one or more gallery framing zone(s) Z eg ..
Selon une autre variante non représentée de l’invention, applicable à tous les modes de réalisation, un seul des premiers orifices 320 ou seuls certains d’entre eux est/sont ménagé(s) dans la zone externe périphérique Zext ou dans une ou des zone(s) d’encadrement de galerie Zeg. De même, on peut prévoir qu’un seul des deuxièmes orifices 340 ou seuls certains d’entre eux est/sont ménagé(s) dans la zone externe périphérique Zext ou dans une ou des zone(s) d’encadrement de galerie Zeg. According to another variant not shown of the invention, applicable to all embodiments, only one of the first orifices 320 or only some of them is/are provided in the peripheral external zone Z ext or in one or more of them. gallery framing zone(s) Z eg . Likewise, it can be provided that only one of the second orifices 340 or only some of them is/are provided in the peripheral external zone Z e xt or in one or more gallery framing zone(s) Z eg .
Quel que soit le mode de réalisation, dans l’empilement, tel que l’empilement 60 représenté à la figure 7, au moins l’une cellules électrochimiques 6 est conforme à l’invention. De préférence, par souci d’homogénéité, toutes les cellules électrochimiques 6 sont conformes à l’invention. Whatever the embodiment, in the stack, such as the stack 60 shown in Figure 7, at least one electrochemical cell 6 conforms to the invention. Preferably, for the sake of homogeneity, all the electrochemical cells 6 conform to the invention.
Selon une variante non représentée de l’invention, applicable à tous les modes de réalisation, le sous-ensemble 6 comprend une première demi-plaque polaire 42 sur un seul côté et celle-ci est jointe à une deuxième demi-plaque polaire 44 pour former une plaque polaire 4 préassemblée, avant solidarisation du cadre 30 et de la demi-plaque polaire 42, avec la technique de collage utilisant, par exemple, les premiers orifices 320. Dans ce cas, le sous-ensemble 6 est une structure multicouche qui n’est pas symétrique par rapport au plan TT30, puisque les deux demi-plaques polaires jointes sont situées du côté du demi- cadre 32. Ce sous-ensemble 6 peut être intégré à un empilement du type de l’empilement 60 représenté à la figure 7, en une opération car il peut être manipulé de façon unitaire par un opérateur ou un robot. Chaque sous-ensemble 6 constitue alors une partie d’une cellule électrochimique, puisqu’il doit être associé à la deuxième demi-plaque bipolaire 44 faisant elle-même partie autre plaque bipolaire 4 préassemblée d’un sous-ensemble adjacent pour constituer une cellule complète. Dans ce cas, seuls les premiers orifices 320 sont aménagés à travers le premier demi-cadre 32, sans nécessité d’aménager des deuxièmes orifices à travers le deuxième demi-cadre 34, seule la composante de la cinquième étape représentée en partie haute de la figure 4, ou une composante symétrique de celle représentée à la figure 6, est mise en œuvre et la colle peut n’être enduite que sur la première surface S34 du deuxième demi-cadre 34. Ce mode de réalisation ne permet pas de tester ou de pré-activer une cellule avant que l’empilement soit constitué. According to a not shown variant of the invention, applicable to all embodiments, the subassembly 6 comprises a first half-polar plate 42 on one side only and this is joined to a second half-polar plate 44 to form a preassembled polar plate 4, before joining the frame 30 and the half-polar plate 42, with the bonding technique using, for example, the first orifices 320. In this case, the subassembly 6 is a multilayer structure which is not symmetrical with respect to the plane TT30, since the two joined polar half-plates are located on the side of the half-frame 32. This subassembly 6 can be integrated into a stack of the type of stack 60 shown in Figure 7, in one operation because it can be handled individually by an operator or a robot. Each sub-assembly 6 then constitutes a part of an electrochemical cell, since it must be associated with the second bipolar half-plate 44 itself forming part of another pre-assembled bipolar plate 4 of an adjacent sub-assembly to constitute a cell complete. In this case, only the first orifices 320 are provided through the first half-frame 32, without the need to provide second orifices through the second half-frame 34, only the component of the fifth step represented in the upper part of the Figure 4, or a component symmetrical to that shown in Figure 6, is implemented and the glue can only be coated on the first surface S34 of the second half-frame 34. This embodiment does not make it possible to test or to pre-activate a cell before the stack is formed.
L’invention est représentée sur les figures dans le cas où la membrane 25 est de type CCM, les couches catalytiques 23, 24 étant portées par la membrane de base 22. Elle est également applicable au cas où les couches catalytiques 23, 24 sont portées par les couches de diffusion 28 et 29, selon la technologie CCB, de l’Anglais « Catalyst Coated Baking » ou encore dans le cas d’un assemblage mixte, avec l’une parmi les couches catalytiques 23, 24 qui est portée par la membrane de base 22, et l’autre parmi les couches catalytiques 23, 24 qui portée par la couche de diffusion 28 ou 29 correspondante. The invention is shown in the figures in the case where the membrane 25 is of the CCM type, the catalytic layers 23, 24 being carried by the base membrane 22. It is also applicable to the case where the catalytic layers 23, 24 are carried by the diffusion layers 28 and 29, according to CCB technology, from the English “Catalyst Coated Baking” or even in the case of a mixed assembly, with one among the catalytic layers 23, 24 which is carried by the base membrane 22, and the other among the catalytic layers 23, 24 which carried by the corresponding diffusion layer 28 or 29.
En variante, le sous-ensemble 6 ne comprend pas les couches de diffusion 28 et 29, lesquelles peuvent par ailleurs être omises, et/ou remplacées par des structures intégrées aux plaques bipolaires 4. Quel que soit le mode de réalisation ou la variante considéré, la quantité de colle Q2 ou Q4 présente dans un orifice 320 ou 340 ne remplit pas forcément tout le volume de cet orifice. Alternatively, the subassembly 6 does not include the diffusion layers 28 and 29, which can also be omitted, and/or replaced by structures integrated into the bipolar plates 4. Whatever the embodiment or variant considered, the quantity of glue Q2 or Q4 present in an orifice 320 or 340 does not necessarily fill the entire volume of this orifice.
Dans les modes de réalisation mentionnés ci-dessus, les orifices 320 et 340 ont la même géométrie, comme représenté sur les figures. En variante non représentée, un ou plusieurs des orifices d’un demi-cadre a une géométrie différente de celle des autres orifices de ce demi-cadre et/ou un ou plusieurs des orifices d’un demi-cadre a une géométrie différente de celle d’un ou plusieurs orifices de l’autre demi-cadre. In the embodiments mentioned above, the orifices 320 and 340 have the same geometry, as shown in the figures. In a variant not shown, one or more of the orifices of a half-frame has a geometry different from that of the other orifices of this half-frame and/or one or more of the orifices of a half-frame has a geometry different from that one or more holes in the other half-frame.
Les modes de réalisation et variantes envisagés ci-dessus peuvent être combinés pour générer de nouveaux modes de réalisation de l’invention. The embodiments and variants considered above can be combined to generate new embodiments of the invention.

Claims

REVENDICATIONS
1. Sous-ensemble (6) pour empilement de pile à combustible (8) comprenant 1. Subassembly (6) for fuel cell stack (8) comprising
- un assemblage membrane-électrode (2) incluant o une membrane (22, 25) o un cadre bipartite (30) formé par - a membrane-electrode assembly (2) including o a membrane (22, 25) o a bipartite frame (30) formed by
■ un premier demi-cadre (32) disposé sur un premier côté de la membrane ; ■ a first half-frame (32) arranged on a first side of the membrane;
■ un deuxième demi-cadre (34) disposé sur un deuxième côté de la membrane ; ■ a second half-frame (34) arranged on a second side of the membrane;
- et au moins une première demi-plaque bipolaire (42), dans lequel au moins le deuxième demi-cadre (34) est enduit, sur une première surface (S34) en regard d’une première surface (S32) du premier demi-cadre (32), d’une couche de colle pour la solidarisation des demi-cadres, caractérisé en ce que - and at least a first bipolar half-plate (42), in which at least the second half-frame (34) is coated, on a first surface (S34) facing a first surface (S32) of the first half- frame (32), a layer of glue for securing the half-frames, characterized in that
- des premiers orifices (320) aménagés à travers le premier demi-cadre (32) sont disposés chacun en regard d’une portion pleine (42A) de la première demi-plaque bipolaire (42) et en regard d’une portion pleine (34A) du deuxième demi-cadre (34), selon une direction (A30) perpendiculaire à un plan principal de la membrane (TT22) ; et - first orifices (320) arranged through the first half-frame (32) are each arranged facing a solid portion (42A) of the first bipolar half-plate (42) and facing a solid portion ( 34A) of the second half-frame (34), in a direction (A30) perpendicular to a main plane of the membrane (TT22); And
- la première demi-plaque bipolaire (42) est solidarisée au cadre (30) par une quantité (Q2) de colle qui s’étend à travers les premiers orifices (320) et qui provient de la colle enduite sur la première surface (S34) du deuxième demi-cadre (34). - the first bipolar half-plate (42) is secured to the frame (30) by a quantity (Q2) of glue which extends through the first orifices (320) and which comes from the glue coated on the first surface (S34 ) of the second half-frame (34).
2. Sous-ensemble pour empilement de pile à combustible selon la revendication 1 , caractérisé en ce que 2. Subassembly for fuel cell stack according to claim 1, characterized in that
- il comprend une deuxième demi-plaque bipolaire (44) disposée, par rapport à la membrane (22, 25), à l’opposé de la première plaque bipolaire (4A) ; le premier demi-cadre (32) est enduit, sur sa première surface (S32), d’une couche de colle pour la solidarisation des demi-cadres (32, 34); - it comprises a second bipolar half-plate (44) arranged, relative to the membrane (22, 25), opposite the first bipolar plate (4A); the first half-frame (32) is coated, on its first surface (S32), with a layer of glue for joining the half-frames (32, 34);
- des deuxièmes orifices (340) aménagés à travers le deuxième demi-cadre (34) sont disposés chacun en regard d’une portion pleine (44A) de la deuxième demi-plaque bipolaire (44) et regard d’une portion pleine (32A) du premier demi-cadre (32), selon la direction (A30) perpendiculaire à un plan principal de la membrane (TT22) ; et - la deuxième plaque bipolaire (44) est solidarisée au cadre (30) par une quantité (Q4) de colle qui s’étend à travers les deuxièmes orifices (340) et qui provient de la colle enduite sur la première surface (S32) du premier demi-cadre (34). - second orifices (340) arranged through the second half-frame (34) are each arranged facing a solid portion (44A) of the second bipolar half-plate (44) and facing a solid portion (32A) ) of the first half-frame (32), in the direction (A30) perpendicular to a main plane of the membrane (TT22); And - the second bipolar plate (44) is secured to the frame (30) by a quantity (Q4) of glue which extends through the second orifices (340) and which comes from the glue coated on the first surface (S32) of the first half-frame (34).
3. Sous-ensemble pour empilement de pile à combustible selon la revendication 2, caractérisé en ce que les premiers et deuxièmes orifices (320, 340) sont décalés (A24) les uns par rapport aux autres selon au moins une direction parallèle au plan principal (TT22) de la membrane (22, 25), de sorte qu’il n’existe pas de superposition entre ces orifices selon la direction (A30) perpendiculaire au plan principal de la membrane. 3. Subassembly for fuel cell stack according to claim 2, characterized in that the first and second orifices (320, 340) are offset (A24) relative to each other in at least one direction parallel to the main plane (TT22) of the membrane (22, 25), so that there is no superposition between these orifices in the direction (A30) perpendicular to the main plane of the membrane.
4. Sous-ensemble pour empilement de pile à combustible selon l’une des revendications 2 et 3, caractérisé en ce que la première demi-plaque bipolaire (42) est pourvue de découpes (48) alignées avec les deuxièmes orifices (340) et/ou en ce que la deuxième demi-plaque bipolaire (44) est pourvue de découpes (49) alignées avec les premiers orifices (320), selon la direction (A30) perpendiculaire au plan principal de la membrane. 4. Subassembly for fuel cell stack according to one of claims 2 and 3, characterized in that the first bipolar half-plate (42) is provided with cutouts (48) aligned with the second orifices (340) and /or in that the second bipolar half-plate (44) is provided with cutouts (49) aligned with the first orifices (320), in the direction (A30) perpendicular to the main plane of the membrane.
5. Sous-ensemble pour empilement de pile à combustible selon la revendication 4, caractérisé en ce qu’une découpe (48, 49) débouche sur au moins un bord longitudinal de la plaque bipolaire dans laquelle elle est ménagée. 5. Subassembly for fuel cell stack according to claim 4, characterized in that a cutout (48, 49) opens onto at least one longitudinal edge of the bipolar plate in which it is formed.
6. Sous-ensemble pour empilement de pile à combustible selon l’une des revendications précédentes, caractérisé en ce que chaque orifice (320, 340) aménagé à travers un demi-cadre (32, 34) présente une section dont l’aire est supérieure ou égale à 5 mm2, de préférence à 10 mm2, avec une forme préférentiellement circulaire, rectangulaire ou oblongue. 6. Sub-assembly for fuel cell stack according to one of the preceding claims, characterized in that each orifice (320, 340) arranged through a half-frame (32, 34) has a section whose area is greater than or equal to 5 mm 2 , preferably 10 mm 2 , with a preferably circular, rectangular or oblong shape.
7. Sous-ensemble pour empilement de pile à combustible selon l’une des revendications précédentes, caractérisé en ce que la colle est thermo-activable et à base de polymère thermoplastique, notamment de copolymère EVA. 7. Subassembly for fuel cell stack according to one of the preceding claims, characterized in that the glue is heat-activatable and based on thermoplastic polymer, in particular EVA copolymer.
8. Sous-ensemble pour empilement de pile à combustible selon l’une des revendications précédentes, caractérisé en ce que l’un au moins des premiers orifices (320) aménagés à travers le premier demi-cadre (32) est agencé dans une zone externe périphérique (Zext) du sous-ensemble (6) qui est située vers l’extérieur par rapport à un joint d’étanchéité périphérique (50) du sous ensemble (6). 8. Subassembly for fuel cell stack according to one of the preceding claims, characterized in that at least one of the first orifices (320) arranged through the first half-frame (32) is arranged in a zone external peripheral seal (Z ext ) of the sub-assembly (6) which is located outwards relative to a peripheral seal (50) of the sub-assembly (6).
9. Sous-ensemble pour empilement de pile à combustible selon l’une des revendications précédentes, caractérisé en ce de l’assemblage membrane électrode (2) comporte quatre coins, et en ce que le sous-ensemble (6) comporte au moins quatre premiers orifices (320) aménagés à travers le premier demi-cadre (32) et agencés dans une zone externe périphérique (Zext) du sous-ensemble (6) qui est située vers l’extérieur par rapport à un joint d’étanchéité périphérique (50) du sous ensemble (6), chacun dans un coin de l’assemblage membrane électrode. 9. Sub-assembly for fuel cell stack according to one of the preceding claims, characterized in that the membrane electrode assembly (2) has four corners, and in that the sub-assembly (6) has at least four first orifices (320) arranged through the first half-frame (32) and arranged in a peripheral external zone (Z ext ) of the subassembly (6) which is located towards the outside relative to a peripheral seal (50) of the subassembly (6), each in a corner of the membrane electrode assembly.
10. Sous-ensemble pour empilement de pile à combustible selon l’une des revendications précédentes, caractérisé en ce que l’un au moins des premiers orifices (320) aménagés à travers le premier demi-cadre (32) et la portion pleine (42A) en regard appartenant à la première demi-plaque bipolaire (42) sont agencés dans une zone d’encadrement de galerie (Zeg), agencée autour d’une ouverture 46 de la première demi- plaque bipolaire (42), et isolée fluidiquement d’au moins un compartiment fluidique anodique ou cathodique délimité dans le sous ensemble, entre l’assemblage membrane électrode (2) et la première demi-plaque bipolaire (42). 10. Subassembly for fuel cell stack according to one of the preceding claims, characterized in that at least one of the first orifices (320) provided through the first half-frame (32) and the solid portion ( 42A) facing the first bipolar half-plate (42) are arranged in a gallery framing zone (Z eg ), arranged around an opening 46 of the first bipolar half-plate (42), and isolated fluidically of at least one anodic or cathodic fluid compartment delimited in the subassembly, between the electrode membrane assembly (2) and the first bipolar half-plate (42).
11. Pile à combustible (8) comprenant un empilement (60) de cellules électrochimiques, avec chacune un assemblage membrane-électrode (2) et deux demi- plaques bipolaires (42, 44), caractérisée en ce que l’une au moins des cellules comprend, ou est constituée par, un sous-ensemble (6) selon l’une des revendications précédentes. 11. Fuel cell (8) comprising a stack (60) of electrochemical cells, each with a membrane-electrode assembly (2) and two bipolar half-plates (42, 44), characterized in that at least one of the cells comprises, or is constituted by, a subassembly (6) according to one of the preceding claims.
12. Procédé de fabrication d’un sous-ensemble (6) comprenant 12. Method for manufacturing a subassembly (6) comprising
- un assemblage membrane-électrode (2) incluant o une membrane (22, 25) o un cadre bipartite (30) formé par - a membrane-electrode assembly (2) including o a membrane (22, 25) o a bipartite frame (30) formed by
■ un premier demi-cadre (32) disposé sur un premier côté de la membrane ■ a first half-frame (32) arranged on a first side of the membrane
■ un deuxième demi-cadre (34) disposé sur un deuxième côté de la membrane ■ a second half-frame (34) arranged on a second side of the membrane
- et au moins une première demi-plaque bipolaire (42), ce procédé comprenant au moins une étape préalable d’enduction d’au moins une première surface (S34) du deuxième demi-cadre (34) avec une colle ; et - and at least one first bipolar half-plate (42), this process comprising at least one preliminary step of coating at least one first surface (S34) of the second half-frame (34) with an adhesive; And
- une étape de solidarisation du cadre (30) et de la membrane (22, 25) par application de la première surface (S34) du deuxième demi-cadre, enduite de colle, contre la première surface (S32) du premier demi-cadre (32) ; ce procédé étant caractérisé en ce qu’il comprend au moins une étape d’application de la première demi-plaque bipolaire (42) contre une deuxième surface (S’32) du premier demi-cadre (32) opposée à la première surface (S32) de ce premier demi-cadre ; - a step of joining the frame (30) and the membrane (22, 25) by applying the first surface (S34) of the second half-frame, coated with glue, against the first surface (S32) of the first half-frame (32); this method being characterized in that it comprises at least one step of applying the first bipolar half-plate (42) against a second surface (S'32) of the first half-frame (32) opposite the first surface ( S32) of this first half-frame;
- une étape de solidarisation de la première demi-plaque bipolaire (42) et du cadre (30) par migration de la colle enduite sur la première surface (S34) du deuxième demi-cadre (34), vers une surface (S42) de la première demi-plaque bipolaire, à travers des premiers orifices (320) aménagés dans le premier demi-cadre (32), entre ses première et deuxième surfaces (S32, S’32). - a step of joining the first bipolar half-plate (42) and the frame (30) by migration of the glue coated on the first surface (S34) of the second half-frame (34), towards a surface (S42) of the first bipolar half-plate, to through first orifices (320) arranged in the first half-frame (32), between its first and second surfaces (S32, S'32).
13. Procédé selon la revendication 12, caractérisé en ce que le sous- ensemble comprend une deuxième demi-plaque bipolaire (44) et en ce que le procédé comprend au moins une étape préalable d’enduction d’au moins une première surface (S32) du premier demi-cadre (32) avec une colle ; une étape d’application de la deuxième demi-plaque bipolaire (44) contre une deuxième surface (S’34) du deuxième demi-cadre (34) opposée à la première surface (S34) de ce deuxième demi-cadre ; 13. Method according to claim 12, characterized in that the subassembly comprises a second bipolar half-plate (44) and in that the method comprises at least one preliminary step of coating at least one first surface (S32 ) of the first half-frame (32) with glue; a step of applying the second bipolar half-plate (44) against a second surface (S’34) of the second half-frame (34) opposite the first surface (S34) of this second half-frame;
- une étape de solidarisation de la deuxième demi-plaque bipolaire (44) et du cadre (30) par migration de la colle enduite sur la première surface (S32) du premier demi- cadre (32), vers une surface (S44) de la deuxième demi-plaque bipolaire, à travers des premiers orifices (340) aménagés dans le deuxième demi-cadre, entre ses première et deuxième surfaces (S34, S’34). - a step of joining the second bipolar half-plate (44) and the frame (30) by migration of the glue coated on the first surface (S32) of the first half-frame (32), towards a surface (S44) of the second bipolar half-plate, through first orifices (340) provided in the second half-frame, between its first and second surfaces (S34, S'34).
14. Procédé selon l’une des revendications 12 ou 13, caractérisé en ce que, au cours de l’étape de solidarisation, la colle enduite sur la première surface (S34) du deuxième demi-cadre (34), et éventuellement sur la première surface (S32) du premier demi-cadre (32), est chauffée au moins au voisinage des premiers orifices (320), et éventuellement au niveau des deuxièmes orifices (340). 14. Method according to one of claims 12 or 13, characterized in that, during the joining step, the glue coated on the first surface (S34) of the second half-frame (34), and possibly on the first surface (S32) of the first half-frame (32), is heated at least in the vicinity of the first orifices (320), and possibly at the level of the second orifices (340).
PCT/EP2023/085657 2022-12-14 2023-12-13 Subassembly for a fuel cell stack, fuel cell comprising such a subassembly and method for manufacturing such a subassembly WO2024126602A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2213386A FR3143884A1 (en) 2022-12-14 2022-12-14 Subassembly for fuel cell stack, fuel cell comprising such a subassembly and method of manufacturing such a subassembly
FRFR2213386 2022-12-14

Publications (2)

Publication Number Publication Date
WO2024126602A1 true WO2024126602A1 (en) 2024-06-20
WO2024126602A9 WO2024126602A9 (en) 2024-08-02

Family

ID=85462480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/085657 WO2024126602A1 (en) 2022-12-14 2023-12-13 Subassembly for a fuel cell stack, fuel cell comprising such a subassembly and method for manufacturing such a subassembly

Country Status (2)

Country Link
FR (1) FR3143884A1 (en)
WO (1) WO2024126602A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084707A (en) 2006-09-28 2008-04-10 Toyota Motor Corp Fuel cell and its manufacturing method
US8399150B2 (en) 2010-06-23 2013-03-19 GM Global Technology Operations LLC Integrated fuel cell assembly and method of making
US20130213552A1 (en) 2012-02-20 2013-08-22 Branson Ultrasonics Corporation Vibratory welder having low thermal conductivity tool
WO2014111745A2 (en) 2013-01-18 2014-07-24 Daimler Ag Fuel cell assemblies and preparation methods therefor
US10981245B2 (en) 2019-09-24 2021-04-20 GM Global Technology Operations LLC Apparatus for ultrasonic welding of polymers and polymeric composites
DE102020216093A1 (en) * 2020-12-17 2022-06-23 Robert Bosch Gesellschaft mit beschränkter Haftung Membrane electrode assembly for an electrochemical cell and method of making a membrane electrode assembly
DE102020133959A1 (en) * 2020-12-17 2022-06-23 Greenerity Gmbh Procedure for attaching a gasket to a bipolar plate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084707A (en) 2006-09-28 2008-04-10 Toyota Motor Corp Fuel cell and its manufacturing method
US8399150B2 (en) 2010-06-23 2013-03-19 GM Global Technology Operations LLC Integrated fuel cell assembly and method of making
US20130213552A1 (en) 2012-02-20 2013-08-22 Branson Ultrasonics Corporation Vibratory welder having low thermal conductivity tool
WO2014111745A2 (en) 2013-01-18 2014-07-24 Daimler Ag Fuel cell assemblies and preparation methods therefor
US10981245B2 (en) 2019-09-24 2021-04-20 GM Global Technology Operations LLC Apparatus for ultrasonic welding of polymers and polymeric composites
DE102020216093A1 (en) * 2020-12-17 2022-06-23 Robert Bosch Gesellschaft mit beschränkter Haftung Membrane electrode assembly for an electrochemical cell and method of making a membrane electrode assembly
DE102020133959A1 (en) * 2020-12-17 2022-06-23 Greenerity Gmbh Procedure for attaching a gasket to a bipolar plate

Also Published As

Publication number Publication date
FR3143884A1 (en) 2024-06-21
WO2024126602A9 (en) 2024-08-02

Similar Documents

Publication Publication Date Title
BE1008328A6 (en) Assembly method of a bipolar battery lead acid battery and resulting bipolar.
CA2698700C (en) Module for electrical energy storage assemblies having a flat connecting strip
FR2622525A1 (en) METHOD FOR MANUFACTURING BODY PANEL OF VEHICLE WITH SANDWICH STRUCTURE WITH HONEYCOMB
EP2033249B1 (en) Fuel cell bipolar plate and fuel cell with improved fluid distribution employing such plates
FR2949092A1 (en) METHOD FOR REPAIRING A WALL CONSISTING OF MULTIPLE LAYERS
FR3132392A1 (en) Fuel cell membrane-electrode assembly, method of manufacturing such an assembly and fuel cell comprising at least one such assembly
EP1528614B1 (en) Fuel cell assembly
FR3096927A1 (en) Composite conductive film for making electric energy accumulators, method of making such a film, and electric accumulator using such a film.
WO2024126602A1 (en) Subassembly for a fuel cell stack, fuel cell comprising such a subassembly and method for manufacturing such a subassembly
EP3482866B1 (en) Method using a laser for welding between two metallic materials or for sintering of powder(s), application to the production of bipolar plates for pemfc cells
EP3136492B1 (en) Stack of electrochemical cells distributed into separate groups comprising a homogenisation compartment
EP2707920A1 (en) Fuel cell comprising manifolds having individual injector seals
WO2010069608A1 (en) Absorber for a thermal solar panel
CH716259A2 (en) Cellular battery.
WO2021233717A1 (en) System and method for securing composite material bipolar plates of an electrochemical device
CA3062030A1 (en) Fuel cell assembly process
WO2020173853A1 (en) Bonding method which can be applied to fuel cells
FR3120478A1 (en) Process for manufacturing a separator for an electrochemical reactor and a separator for an electrochemical reactor
WO2024156649A1 (en) Cell for a fuel cell and fuel cell comprising such a cell
WO2024126848A1 (en) Fuel cell and method for manufacturing same
WO2024126563A1 (en) Single cell of a fuel cell and associated fuel cell
WO2024038240A1 (en) System and method for manufacturing a battery cell
FR3109673A1 (en) Component with active material retention reliefs for electrical energy accumulator, electrical energy accumulator using the component and manufacturing method
EP4435937A1 (en) Energy storage cell and assembly method therefor
WO2021014104A1 (en) Polymer electrolyte membrane fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23828737

Country of ref document: EP

Kind code of ref document: A1