WO2024125607A1 - 一种单极子天线的前向集束和后向空间拒止的改进型天线 - Google Patents

一种单极子天线的前向集束和后向空间拒止的改进型天线 Download PDF

Info

Publication number
WO2024125607A1
WO2024125607A1 PCT/CN2023/138856 CN2023138856W WO2024125607A1 WO 2024125607 A1 WO2024125607 A1 WO 2024125607A1 CN 2023138856 W CN2023138856 W CN 2023138856W WO 2024125607 A1 WO2024125607 A1 WO 2024125607A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
monopole
space
improved
monopole antenna
Prior art date
Application number
PCT/CN2023/138856
Other languages
English (en)
French (fr)
Inventor
邹高迪
孙毅
邹新
Original Assignee
深圳迈睿智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈睿智能科技有限公司 filed Critical 深圳迈睿智能科技有限公司
Publication of WO2024125607A1 publication Critical patent/WO2024125607A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole

Definitions

  • the invention relates to the field of directional microwave detection based on the Doppler effect principle, and in particular to an improved antenna for forward beaming and backward space denial of a monopole antenna suitable for directional microwave detection.
  • microwave detection technology based on the principle of Doppler effect, as an important hub connecting people and objects, and objects and objects, has unique advantages in behavior detection and existence detection technology. It can detect active objects without infringing on human privacy, such as human motion characteristics, movement characteristics, and micro-motion characteristics, and even human heartbeat and breathing characteristics information, so it has broad application prospects.
  • the corresponding microwave detector is fed by an excitation signal and transmits a microwave beam corresponding to the frequency of the excitation signal to the target space through the corresponding antenna, thereby forming a detection area in the target space, and receiving a reflected echo formed by the microwave beam reflected by the corresponding object in the detection area and transmitting an echo signal corresponding to the frequency of the reflected echo to a mixing detection unit, wherein the mixing detection unit mixes the excitation signal and the echo signal and outputs a Doppler intermediate frequency signal corresponding to the frequency/phase difference between the excitation signal and the echo signal, wherein based on the Doppler effect principle, when the object reflecting the microwave beam is in a moving state, there is a certain frequency/phase difference between the echo signal and the excitation signal, and the Doppler intermediate frequency signal presents a corresponding amplitude fluctuation to feedback human activities.
  • the antenna is the core component of the microwave detector, and its structural features and performance features associated with the structural features directly affect the structural design and performance parameters of the microwave detector, especially in the current industry situation where the microwave detector is mostly used as a functional module of the corresponding product and is required to adapt to the use environment of the product, the structural features and performance features of the antenna directly affect the applicability of the microwave detector to the corresponding product.
  • the product's operating environment there are a large number of metal reflectors that are prone to self-excited interference, and there is increasingly intensive electromagnetic radiation interference.
  • the microwave detector In order to achieve the adaptation of the microwave detector to the corresponding product's operating environment, the microwave detector has increasingly stringent requirements on the structural characteristics of the corresponding antenna and the performance characteristics associated with the structural characteristics.
  • the monopole antenna has low requirements on the integrity and size of the reference ground, and has become one of the commonly used antennas for microwave detectors that have at least one of the requirements of concealment, miniaturization and low cost.
  • the cylindrical antenna 10P includes a cylindrical radiation source 11P and a reference ground 12P, wherein the reference ground 12P is provided with a radiation hole 121P, and the cylindrical radiation source 11 P extends straightly from one end thereof to vertically penetrate the reference ground 12P through the radiation hole 121P in a state of being spaced apart from the reference ground 12P, and this end is correspondingly named as the feeding end 111P of the columnar radiation source 11P, wherein the distance between the end of the columnar radiation source 11P away from the feeding
  • the monopole antenna is suitable for microwave detectors that have at least one of the requirements of concealment, miniaturization and low cost, it does not have directional radiation capability and forms a detection dead zone in the extension direction of the two ends of the columnar radiation source 11P like the cylindrical antenna 10P, which easily causes the detection area of the monopole antenna to be unable to match the target space in practical applications. Therefore, as for the technical problem of "how to give the monopole antenna directional radiation characteristics and suppress the reception of signals not in the directional radiation direction when the monopole antenna has directional radiation characteristics", the solution of this technical problem will undoubtedly improve the stability and applicability of the microwave detector when the corresponding microwave detector adopts the monopole antenna, and it has important significance and value.
  • the monopole antenna has omnidirectional radiation characteristics based on its own working principle, this technical problem has never been raised, let alone solved.
  • One object of the present invention is to provide an improved monopole antenna with forward bundling and backward space denial, wherein compared with the traditional monopole antenna with omnidirectional radiation characteristics, the improved antenna has directional radiation characteristics, and has the reception denial characteristic of electromagnetic radiation in the backward space with the directional radiation direction as the forward direction, and the corresponding improved antenna has good applicability and anti-interference performance in the field of microwave detection.
  • Another object of the present invention is to provide an improved antenna with forward bundling and backward spatial denial of a monopole antenna, wherein the improved antenna further includes an electric field isolator based on the structure of the monopole antenna, wherein based on the structure of the electric field isolator and the positional relationship between the electric field isolator and the monopole antenna, the reactance field of the monopole antenna can be directionally enhanced, so that the improved antenna exhibits directional radiation characteristics and has a radiation beam with enhanced bundling in the forward directional radiation direction.
  • Another object of the present invention is to provide an improved antenna with forward bundling and backward space denial of a monopole antenna, wherein the improved antenna has a radiation beam with beam-enhanced forward directional radiation in the forward direction, and the improved antenna has a large forward gain and exhibits a high front-to-back ratio characteristic, which is beneficial to ensuring the detection sensitivity of the improved antenna in the forward directional radiation direction.
  • Another object of the present invention is to provide an improved antenna for forward beaming and backward space denial of a monopole antenna. line, wherein based on the structure of the electric field isolator and the positional relationship between the electric field isolator and the monopole antenna, the electromagnetic induction of the reactance field of the monopole antenna in the backward space can be blocked, so that the electromagnetic radiation generated by the improved antenna in the backward space based on electromagnetic induction can be blocked and the radiation pattern presents a radiation characteristic of low back lobe or even no positive back lobe, which is beneficial to realize the reception rejection of the electromagnetic radiation in the backward space by the improved antenna based on the reciprocal characteristic of the antenna's transmission and reception.
  • Another object of the present invention is to provide an improved antenna with forward bundling and backward space rejection of a monopole antenna, wherein based on the structure of the electric field isolator and its positional relationship with the monopole antenna, the electromagnetic induction of the reactance field of the monopole antenna in the backward space can be blocked, and the blocked reactance field energy can be fed back to the monopole antenna through the electric field isolator with low or even no consumption, thereby enabling the reactance field of the monopole antenna to be forward constrained, thereby achieving the bundling enhancement of the radiation beam of the improved antenna in the forward directional radiation direction.
  • Another object of the present invention is to provide an improved antenna for forward bundling and backward space rejection of a monopole antenna, wherein the electric field isolator has a forward bundling surface formed on a conductive material, wherein based on the structure of the electric field isolator and the positional relationship between the electric field isolator and the monopole antenna, the forward bundling surface satisfies certain size requirements in the reactance field of the monopole antenna along the reactance field direction and satisfies certain distance requirements between the monopole antenna, so that the electromagnetic induction of the reactance field of the monopole antenna in the backward space can be blocked by the forward bundling surface, and the blocked reactance field energy can be fed back to the monopole antenna through the forward bundling surface in a low-consumption or even no-consumption state, correspondingly, the electromagnetic radiation generated by the improved antenna in the backward space based on electromagnetic induction can be blocked, and the radiation characteristics of low back lobes or even no
  • Another object of the present invention is to provide an improved antenna for forward bundling and backward space rejection of a monopole antenna, wherein the forward bundling surface satisfies certain size requirements along the reactance field direction of the monopole antenna and satisfies certain distance requirements between the monopole antenna, and the improved antenna presents a radiation characteristic of low back lobe or even no positive back lobe in the radiation pattern, and can realize reception rejection of electromagnetic radiation in the backward space by the improved antenna based on the antenna's transmit-receive reciprocity characteristics, that is, the design of the forward bundling surface that meets the above requirements can simultaneously realize the forward direction bundling enhancement and the reception rejection of electromagnetic radiation in the backward space of the improved antenna.
  • Another object of the present invention is to provide an improved antenna for forward bundling and backward space rejection of a monopole antenna, wherein the electric field isolator has a backward rejection surface formed on a conductive material, wherein based on the structure of the electric field isolator and the positional relationship between the electric field isolator and the monopole antenna, the backward rejection surface meets certain size requirements in the reactance field of the monopole antenna along the reactance field direction and meets certain distance requirements between the monopole antenna, so that the electromagnetic radiation in the backward space can neither be received by the monopole antenna in the form of electromagnetic waves through diffraction, nor can it affect the monopole antenna based on the coupling between the backward rejection surface and the monopole antenna when it is received by the backward rejection surface.
  • the reception rejection characteristics of the improved antenna for electromagnetic radiation in the backward space can be further enhanced based on the design of the backward rejection surface that meets the above requirements.
  • Another object of the present invention is to provide an improved antenna for forward beaming and backward space rejection of a monopole antenna, wherein the reactance field of the monopole antenna is an induction field and there is no outwardly radiated energy, that is, when the forward beaming plane is located in the reactance field of the monopole antenna, the forward beaming plane does not have a reflection behavior in the forward directional radiation process of the improved antenna based on electromagnetic induction, but when the improved antenna acts independently or simultaneously When it is in the state of a receiving antenna, the reflection capability of the forward beaming surface to the electromagnetic radiation in the forward space will not be limited, and the electromagnetic radiation in the forward space can still be reflected by the forward beaming surface to be received by the monopole antenna, thereby improving the receiving sensitivity of the improved antenna when it is used as a receiving antenna.
  • Another object of the present invention is to provide an improved antenna for forward beam focusing and backward space denial of a monopole antenna, wherein the shape of the electric field isolator and/or the positional relationship between the electric field isolator and the monopole antenna are adjustably set, so that on the basis that the size of the forward beam focusing surface in the reactance field of the monopole antenna along the direction of the reactance field and the distance between the electric field isolator and the monopole antenna meet the above-mentioned requirements, the beam deflection angle and bandwidth of the improved antenna can be adjusted based on the shape adjustment of the electric field isolator and/or the positional relationship between the electric field isolator and the monopole antenna, so that the improved antenna can meet different detection requirements and have better applicability.
  • the present invention provides an improved antenna for forward beamforming and backward space denial of a monopole antenna, the improved antenna comprising:
  • At least one monopole antenna the monopole antenna being arranged in a strip conductor form and having an open end and extending from the open end and having a feeding end, wherein the feeding end is an end of the monopole antenna connected to a feeding signal, and a length between the monopole antenna in the strip conductor form and the open end is greater than or equal to ⁇ /8 and less than or equal to 3 ⁇ /8, wherein ⁇ is a wavelength parameter corresponding to the frequency of the feeding signal; and
  • An electric field isolator wherein the electric field isolator is set with a conductive material and has a forward beam surface, wherein a first spherical surface is defined with an origin O of a three-dimensional coordinate system as the sphere center and a first radius R1 as the radius, a second spherical surface is defined with the origin O of the three-dimensional coordinate system as the sphere center and a second radius R2 greater than R1 as the radius, a first cone is defined with the origin O of the three-dimensional coordinate system as the vertex and the positive X-axis as the axis, and a second cone is defined with the origin O of the three-dimensional coordinate system as the vertex and the positive Z-axis as the axis.
  • a second cone is defined with the origin O of the three-dimensional coordinate system as the vertex and the negative Z axis as the axis to define a third cone, wherein the vertex angle of the cross section of the first cone on the XOZ plane is ⁇ 1, the vertex angle of the cross section of the second cone on the XOZ plane is ⁇ 2, and the vertex angle of the cross section of the third cone on the XOZ plane is ⁇ 3, and a space defined by the first spherical surface, the second spherical surface and the inner side surface of the first cone is defined as a first space, and a space defined by the first spherical surface and the inner side surface of the second cone is defined as a The space defined by the first spherical surface and the inner side surface of the third cone is defined as the third space, wherein the open end and the feeding end of the monopole antenna are respectively located in the second space and the third space, the forward beam-forming surface has a first cross section intercepted by the first space,
  • the improved antenna further includes a circuit substrate and a reference ground carried by the circuit substrate, wherein the monopole antenna is arranged and plugged and fixed to the circuit substrate with a columnar conductor extending from the open end, the end of the monopole antenna plugged and fixed to the circuit substrate is the feeding end, and the distance between the open end and the feeding end corresponds to the length of the monopole antenna and tends to ⁇ /4 within an error of 20%.
  • the monopole antenna is configured as a bent cylindrical conductor to form an inverted "L" shape.
  • the improved antenna further comprises a ground wire, wherein the ground wire is electrically connected to the between the reference ground and the monopole antenna.
  • the number of the monopole antennas is two, and the two monopole antennas are plugged and fixed to the circuit substrate in a state where the two open ends are located at two opposite sides of the circuit substrate.
  • the monopole antenna is arranged with a cylindrical conductor extending from the open end and is fed and connected to a coaxial feed line, and the feeding end corresponding to the monopole antenna is the end of the cylindrical conductor connected to the coaxial feed line.
  • the monopole antenna provided as a cylindrical conductive line is bent relative to the coaxial feeding line.
  • the monopole antenna is implemented as a strip conductor carried on a circuit substrate.
  • the open end and the feeding end of the monopole antenna are both located on the Z axis of the three-dimensional coordinate system.
  • a fourth cone is defined with the origin O of the three-dimensional coordinate system as the vertex and the negative X-axis as the axis, wherein the vertex angle ⁇ 4 of the cross section of the fourth cone in the XOZ plane satisfies ⁇ 4 ⁇ 120°, and the space jointly defined by the first spherical surface, the second spherical surface and the outer side surface of the fourth cone is defined as a fourth space, wherein the electric field isolator is located in the fourth space.
  • the electric field isolator further has a backward rejection surface behind the forward beam focusing surface, wherein the backward rejection surface has a second cross-section intercepted by the first space, and in a state where the first cone takes the second cross-section as the bottom surface, the bottom surface can independently form a shielding for a conical light beam outside the first cone with an angle of 46° taking the origin O of the three-dimensional coordinate system as the source point.
  • the forward focusing surface and the backward rejecting surface are respectively formed on the inner surface and the outer surface of the hemispherical metal layer.
  • the electric field isolator further has at least one annular groove, so as to form at least one primary choke coil based on the arrangement of the annular groove to suppress the radiation energy of the improved antenna in the backward space.
  • FIG. 1A is a schematic diagram showing the structural principle of an existing cylindrical antenna.
  • FIG. 1B is a radiation pattern of the cylindrical antenna.
  • FIG. 1C is an S11 curve of the cylindrical antenna.
  • FIG. 2 is a radiation principle diagram of an existing monopole antenna.
  • FIG. 3 is a radiation principle diagram of an improved antenna according to an embodiment of the present invention.
  • 4A and 4B are schematic diagrams showing the positional relationship between the monopole antenna and the electric field isolator of the improved antenna defined based on a three-dimensional coordinate system.
  • FIG. 5 shows an antenna structure according to the radiation principle of the improved antenna of the above embodiment of the present invention and a radiation pattern and S11 curve corresponding to the antenna structure.
  • FIG. 6 is another antenna structure and a corresponding Radiation pattern and S11 curve of the antenna structure.
  • FIG. 7 shows another antenna structure according to the radiation principle of the improved antenna according to the above embodiment of the present invention and the radiation pattern and S11 curve corresponding to the antenna structure.
  • FIG. 8 shows another antenna structure according to the radiation principle of the improved antenna according to the above embodiment of the present invention and the radiation pattern and S11 curve corresponding to the antenna structure.
  • FIG. 9 shows another antenna structure according to the radiation principle of the improved antenna according to the above embodiment of the present invention and the radiation pattern and S11 curve corresponding to the antenna structure.
  • FIG. 10 shows another antenna structure according to the radiation principle of the improved antenna according to the above embodiment of the present invention and the radiation pattern and S11 curve corresponding to the antenna structure.
  • FIG. 11 shows another antenna structure according to the radiation principle of the improved antenna according to the above embodiment of the present invention and the radiation pattern and S11 curve corresponding to the antenna structure.
  • FIG. 12 shows another antenna structure according to the radiation principle of the improved antenna according to the above embodiment of the present invention and the radiation pattern and S11 curve corresponding to the antenna structure.
  • FIG. 13 is a schematic diagram of a practical application of the improved antenna according to the above embodiment of the present invention.
  • FIG. 14A is a schematic structural diagram of a monopole antenna of the improved antenna according to the above embodiment of the present invention.
  • FIG. 14B is a schematic diagram of the structure of another monopole antenna of the improved antenna according to the above embodiment of the present invention.
  • FIG. 14C is a schematic diagram of the structure of another monopole antenna of the improved antenna according to the above embodiment of the present invention.
  • FIG. 14D is a schematic diagram of the structure of another monopole antenna of the improved antenna according to the above embodiment of the present invention.
  • FIG. 14E is a schematic diagram of the structure of another monopole antenna of the improved antenna according to the above embodiment of the present invention.
  • FIG. 15A is a schematic structural diagram of another monopole antenna of the improved antenna according to the above embodiment of the present invention.
  • FIG. 15B is a schematic structural diagram of another monopole antenna of the improved antenna according to the above embodiment of the present invention.
  • FIG. 16 is a schematic diagram of another antenna structure according to the radiation principle of the improved antenna according to the above embodiment of the present invention.
  • FIG. 17 is a schematic diagram of another antenna structure according to the radiation principle of the improved antenna according to the above embodiment of the present invention.
  • FIG. 18 is a schematic diagram of the structure of the improved antenna in the above embodiment of the present invention when the number of the monopole antennas is multiple.
  • FIG. 19A shows a monopole antenna arrangement when the number of the monopole antennas of the improved antenna of the above embodiment of the present invention is two.
  • FIG. 19B shows another arrangement of monopole antennas when the number of the monopole antennas of the improved antenna of the above embodiment of the present invention is two.
  • FIG. 19C shows another arrangement of monopole antennas when the number of the monopole antennas of the improved antenna of the above embodiment of the present invention is two.
  • FIG. 20A shows another antenna structure according to the radiation principle of the improved antenna according to the above embodiment of the present invention and the radiation pattern and S11 curve corresponding to the antenna structure.
  • FIG. 20B shows another antenna structure according to the radiation principle of the improved antenna of the above embodiment of the present invention and the radiation pattern and S11 curve corresponding to the antenna structure.
  • FIG. 20C shows another antenna structure according to the radiation principle of the improved antenna according to the above embodiment of the present invention and the radiation pattern and S11 curve corresponding to the antenna structure.
  • FIG. 21A is a schematic diagram of an array layout of the improved antenna according to the above embodiment of the present invention.
  • FIG. 21B is a schematic diagram of another array layout of the improved antenna according to the above embodiment of the present invention.
  • FIG. 22 is a schematic diagram of another array layout of the improved antenna according to the above embodiment of the present invention.
  • FIG. 23A is a schematic diagram of another array layout of the improved antenna according to the above embodiment of the present invention.
  • FIG. 23B is a schematic diagram of another array layout of the improved antenna according to the above embodiment of the present invention.
  • FIG. 23C is a schematic diagram of another array layout of the improved antenna according to the above embodiment of the present invention.
  • the present invention provides an improved antenna for forward beam focusing and backward space rejection of a monopole antenna, wherein, compared with a conventional monopole antenna having omnidirectional radiation characteristics, the improved antenna has directional radiation characteristics, and has a reception rejection characteristic for electromagnetic radiation in the backward space with the directional radiation direction as the forward direction, corresponding to the improved antenna having good applicability and anti-interference performance in the field of microwave detection, wherein in order to fully understand the structural principle of the improved antenna of the present invention, the radiation principle of the monopole antenna based on electromagnetic induction is illustrated, specifically referring to FIG.
  • the monopole antenna 10 is arranged in the form of a strip conductor and has an open end 11 and extends from the open end 11 to have a feeding end 12, wherein the feeding end 12 is an end of the monopole antenna 10 for receiving a feeding signal, and has a length greater than or equal to ⁇ /8 and less than or equal to 3 ⁇ /8 between the monopole antenna 10 in the form of a strip conductor and the open end 11, wherein ⁇ is a wavelength parameter corresponding to the frequency of the feeding signal (i.e., the operating frequency of the monopole antenna 10).
  • the monopole antenna 10 when the monopole antenna 10 is set in the form of a strip conductor, the specific form of the monopole antenna 10 does not constitute a limitation to the present invention.
  • the monopole antenna 10 can be implemented as a columnar conductor, including but not limited to a straight columnar conductor, a bent columnar conductor and a spiral columnar conductor. It can also be implemented as a strip conductor carried on a circuit substrate, including but not limited to a strip conductor with a uniform width on the circuit substrate and a strip conductor with a gradient width.
  • the monopole antenna 10 establishes a reactance field with a point on the line connecting the open end 11 and the feeding end 12 as a radiation source point, and the reactance field generates an induced magnetic field based on electromagnetic induction, and the induced magnetic field generates an induced electric field based on electromagnetic induction, so as to form electromagnetic radiation based on electromagnetic induction, wherein the reactance field is the most original electric field generated by the monopole antenna 10 in the fed state, and its range corresponds to the two-dimensional reactance field illustrated in FIG. 2 with the line connecting the open end 11 and the feeding end 12 It is the three-dimensional space formed by rotating the axis 180°.
  • the reactance field is an energy storage field rather than a radiation field, that is, the conversion of the electric field and the magnetic field in the reactance field is similar to the conversion of the electric field and the magnetic field in the transformer. It is an induction field and there is no energy radiated outward.
  • the improved antenna of the present invention is based on the structure of the monopole antenna 10.
  • the electromagnetic induction of the reactance field of the monopole antenna 10 in the backward space can be blocked by the conductive surface, and the blocked reactance field energy can be fed back to the monopole antenna 10 through the conductive surface with low or even no consumption.
  • the electromagnetic radiation generated by the improved antenna in the backward space based on electromagnetic induction can be blocked, and the radiation pattern presents a radiation characteristic with low back lobes or even no positive back lobes, and the improved antenna has a concentrated and enhanced radiation beam in the forward directional radiation direction.
  • the size and area requirements of the conductive surface in the reactance field of the monopole antenna 10 along the reactance field direction are to form a closed loop of the reactance field in the backward space of the monopole antenna 10 to avoid the generation of an induced magnetic field, so that the electromagnetic induction of the reactance field of the monopole antenna 10 in the backward space can be blocked to form the directional radiation of the improved antenna in the forward direction.
  • the distance requirement between the conductive surface and the monopole antenna 10 is to reduce the loss generated by coupling between the conductive surface and the monopole antenna 10, so that the reactance field energy blocked by the conductive surface can be fed back to the monopole antenna 10 through the conductive surface in a low-consumption or even no-consumption state, so that the improved antenna presents a radiation characteristic of low back lobe or even no positive back lobe in the radiation pattern, and has a concentrated and enhanced radiation beam in the forward directional radiation direction.
  • the improved antenna according to an embodiment of the present invention is exemplified, wherein the improved antenna further includes an electric field isolator 20 made of conductive material on the basis of the structure of the monopole antenna 10, so as to directionally enhance the reactance field of the monopole antenna 10 based on the structure of the electric field isolator 20 and the positional relationship between the electric field isolator 20 and the monopole antenna 10, so that the improved antenna exhibits directional radiation characteristics and has a focused and enhanced radiation beam in the directional radiation direction defined as the forward direction.
  • an electric field isolator 20 made of conductive material on the basis of the structure of the monopole antenna 10
  • the improved antenna further includes an electric field isolator 20 made of conductive material on the basis of the structure of the monopole antenna 10, so as to directionally enhance the reactance field of the monopole antenna 10 based on the structure of the electric field isolator 20 and the positional relationship between the electric field isolator 20 and the monopole antenna 10, so that the improved antenna exhibit
  • the electric field isolator 20 has a forward beam-focusing surface 21, wherein based on the structure of the electric field isolator 20 and the positional relationship between the electric field isolator 20 and the monopole antenna 10, the forward beam-focusing surface 21 can form the aforementioned conductive surface by satisfying certain size requirements along the direction of the reactance field of the monopole antenna 10 and certain distance requirements with the monopole antenna 10, so that the electromagnetic induction of the reactance field of the monopole antenna 10 in the backward space can be blocked by the forward beam-focusing surface 21, and the blocked reactance field energy can be fed back to the monopole antenna 10 through the forward beam-focusing surface 21 in a low-consumption or even no-consumption state, correspondingly, the electromagnetic radiation generated by the improved antenna in the backward space based on electromagnetic induction can be blocked, and the radiation characteristic of low back lobe or even no positive back lobe is presented in the radiation pattern, and the improved antenna has a beam-enhanced radiation beam in the forward directional
  • the present invention introduces a three-dimensional coordinate system corresponding to Figures 4A and 4B, wherein a first spherical surface 101 is defined with the origin O of the three-dimensional coordinate system as the center of the sphere and a first radius R1 as the radius, a second spherical surface 102 is defined with the origin O of the three-dimensional coordinate system as the center of the sphere and a second radius R2 greater than R1 as the radius, a first cone 103 is defined with the origin O of the three-dimensional coordinate system as the vertex and the positive X-axis as the axis, a second cone 104 is defined with the origin O of the three-dimensional coordinate system as the vertex and the positive Z-axis as the axis, and a third cone 105
  • the space defined by the first spherical surface 101, the second spherical surface 102 and the inner side surface of the first cone 103 is defined as a first space 100
  • the space defined by the first spherical surface 101 and the inner side surface of the second cone 104 is defined as a second space 200
  • the space defined by the first spherical surface 101 and the inner side surface of the third cone 105 is defined as a third space 300
  • the open end 11 and the feeding end 12 of the monopole antenna 10 are respectively located in the second space 200 and the third space 300, and preferably further satisfy that the open end 11 and the feeding end 12 are both located on the Z axis of the three-dimensional coordinate system, wherein the forward beam
  • the surface 21 has a first cross-section 211 intercepted by the first space 100, and in a state where the first cross-section 211 is used as the bottom surface of the first cone 103, the bottom surface can independently form an obstruction for a conical light beam with an angle of 46° inside the first cone
  • the electromagnetic induction of the reactance field of the monopole antenna 10 in the backward space can be blocked by the forward beam-forming surface 21, and the blocked reactance field energy can be fed back to the monopole antenna 10 through the forward beam-forming surface 21 in a low-consumption or even no-consumption state, so that the electromagnetic radiation generated by the improved antenna in the backward space based on electromagnetic induction can be blocked, and the radiation pattern presents a radiation characteristic of low back lobe or even no positive back lobe, and the improved antenna has a radiation beam that is bunched and enhanced in the forward space (the space facing the negative direction of the X-axis with the YOZ plane of the three-dimensional coordinate system as the boundary), and presents a directional radiation characteristic with the forward direction as the directional radiation direction.
  • the value of R2 is set in the range of R2 ⁇ 3 ⁇ /4 based on the reactance field range of the monopole antenna 10 shown in Figure 2 because a complete induced magnetic field cannot be formed within the distance range of ⁇ /4 from the reactance field of the monopole antenna 10.
  • the setting of the corresponding conductive surface can still block the electromagnetic induction of the reactance field of the monopole antenna 10 in the backward space, but there is a certain loss compared to setting the corresponding conductive surface within the reactance field range of the monopole antenna 10. Therefore, the value of R2 can be selected to be set in the range of R2 ⁇ 3 ⁇ /4, and is preferably set in the range of R2 ⁇ /2 corresponding to the reactance field range shown in Figure 2.
  • the bottom surface can independently block the conical light beam inside the first cone 103 with the origin O of the three-dimensional coordinate system as the source point and the angle of 46°.
  • the forward beam-gathering surface 21 is neither limited to a continuous surface nor a two-dimensional plane. It can be a surface with holes and/or grooves, including planes and non-planes.
  • the forward beam-gathering surface 21 can form the conductive surface that meets the above requirements.
  • the reactance field of the monopole antenna 10 is an induction field and there is no outwardly radiated energy, that is, when the forward beam-focusing surface 21 is located in the reactance field of the monopole antenna 10, the forward beam-focusing surface 21 does not have any reflection behavior in the forward directional radiation process of the improved antenna based on electromagnetic induction, but when the improved antenna is independently or simultaneously used as a receiving antenna, the forward beam-focusing surface 21 will not be limited in its reflection ability to the electromagnetic radiation in the forward space, and the electromagnetic radiation in the forward space can still be reflected by the forward beam-focusing surface 21 to be received by the monopole antenna 10, thereby improving the receiving sensitivity of the improved antenna when it is independently or simultaneously used as a receiving antenna.
  • a fourth cone 106 is defined with the origin O of the three-dimensional coordinate system as the vertex and the negative X-axis as the axis, wherein the vertex angle ⁇ 4 of the cross section of the fourth cone 106 in the XOZ plane satisfies ⁇ 4 ⁇ 120°, and the space defined by the first spherical surface 101, the second spherical surface 102 and the outer side surface of the fourth cone 106 is defined as a fourth space 400, wherein the electric field isolator 20 is preferably located in the fourth space 400 to avoid the extension of the electric field isolator 20 outside the fourth space 400, especially the extension within the fourth cone 106, which may cause damage to the forward beaming characteristics and backward reception rejection characteristics of the improved antenna.
  • the electric field isolator 20 further has a backward rejection surface 22 behind the forward beam-gathering surface 21, wherein the backward rejection surface 22 has a second cross section 221 intercepted by the first space 100, and in a state where the first cone 103 takes the second cross section 221 as the bottom surface, the bottom surface can independently form a shielding of a conical light beam with an angle of 46° with the origin O of the three-dimensional coordinate system as the source point inside the first cone 103, that is, with the second cross section 211
  • the light beam inside the first cone 103 which serves as an independent bottom surface cannot be completely emitted from the bottom surface, so that the electromagnetic radiation in the backward space can neither be received by the monopole antenna 10 in the form of electromagnetic waves by diffraction, nor can it affect the monopole antenna 10 based on the coupling between the backward rejection surface 22 and the monopole antenna 10 when it is received by
  • the conductive material forming the forward focusing surface 21 must have a conductive surface opposite to the forward focusing surface 21, but the conductive surface does not necessarily meet the conditions for forming the rearward rejection surface 22 based on the structural morphology of the conductive material, or when the conductive surface meets the conditions for forming the rearward rejection surface 22, it may not have the function of the rearward rejection surface 22 due to the backward shielding of the conductive surface by other conductive materials. Therefore, the present invention does not limit the coexistence of the rearward rejection surface 22 and the forward focusing surface 21.
  • the monopole antenna 10 has a detection dead zone in the direction of the line connecting the open end 11 and the feeding end 12. Therefore, on the one hand, the values of ⁇ 1 and ⁇ 4 can be set within a range greater than or equal to 120°; on the other hand, the existence of the detection dead zone can naturally enhance
  • the improved antenna has a reception rejection characteristic for electromagnetic radiation in the rear space, especially electromagnetic radiation in the lateral direction of the rear space.
  • the monopole antenna 10 is illustrated as a traditional cylindrical antenna, and the corresponding improved antenna also includes a circuit substrate 30 and a reference ground 40 carried by the circuit substrate 30, wherein the monopole antenna 10 is arranged with a straight cylindrical wire and is plugged and fixed to the circuit substrate 30, the end of the monopole antenna 10 away from the reference ground 40 is the open end 11, and the end plugged and fixed to the circuit substrate 30 is the feeding end 12, and the distance between the open end 11 and the feeding end 12 corresponds to the length of the monopole antenna 10 tends to ⁇ /4 within an error of 20%.
  • the electric field isolator 20 is provided with a hemispherical metal layer/panel with an inner radius R, wherein the open end 11 and the feeding end 12 of the monopole antenna 10 are respectively located in the second space 200 and the third space 300, wherein the monopole antenna 10 provided with a straight cylindrical wire specifically extends along the Z axis of the three-dimensional coordinate system to satisfy that the open end 11 and the feeding end 12 are respectively located in the second space 200 and the third space 300, wherein the center of the hemispherical electric field isolator 20 is located at the origin O of the three-dimensional coordinate system, and the inner radius R of the electric field isolator 20 provided with a hemispherical metal layer/panel is equal to ⁇ /2, so that the inner surface and the outer surface of the hemispherical electric field isolator 20 respectively form the forward beam focusing surface 21 and the rearward rejection surface 22 that meet the above-mentioned requirements.
  • the forward direction of the improved antenna corresponds to the negative direction of the X-axis of the three-dimensional coordinate system, and the improved antenna has a radiation gain of up to 9.11dBi in the forward directional radiation direction, which is far greater than the radiation gain of the traditional cylindrical antenna shown in FIG1B .
  • the corresponding radiation pattern presents a radiation beam that is significantly bunched and enhanced in the forward directional radiation direction, and a radiation characteristic without a positive back lobe in the backward space. This is conducive to ensuring the detection sensitivity of the improved antenna in the forward directional radiation direction, and realizing the reception rejection of electromagnetic radiation in the backward space by the improved antenna based on the antenna's transmit-receive reciprocity characteristic.
  • the inventors Based on the structure of the improved antenna shown in Figure 5, the inventors also simulated the inner radius R of the electric field isolator 20 set in a hemispherical metal layer/panel to 9 ⁇ /16 and 3 ⁇ /4 respectively.
  • the corresponding improved antenna can still show obvious directional radiation characteristics relative to the monopole antenna 10, and has a radiation gain of more than 10dBi in the forward directional radiation direction.
  • the radiation gain in the backward space is maintained below -6dBi, and still has obvious practical value. Therefore, it is reasonable to set the first radius R1 and the second radius R2 to satisfy R1 ⁇ R2 ⁇ 3 ⁇ /4.
  • the electric field isolator 20 is further extended on the basis of the structure shown in FIG. 5 , and the electric field isolator 20 is defined as a metal layer/panel in a spherical shape with an inner radius R, which is surrounded by the outer surface of the fourth cone 106.
  • the improved antenna can still show obvious directional radiation characteristics relative to the monopole antenna 10, and the radiation gain in the directional radiation direction is as high as 8.94dBi. Although it has a significantly larger back lobe than Figure 5, the radiation gain of the improved antenna in the backward space is maintained below -6dBi, and it still has obvious practical value. Therefore, it is reasonable to set the vertex angle ⁇ 4 of the cross section of the fourth cone 106 on the XOZ plane to satisfy ⁇ 4 ⁇ 120°.
  • the improved antenna can still present obvious directional radiation characteristics relative to the monopole antenna 10, and the radiation gain in the directional radiation direction is as high as 7.25dBi. Although it has a significantly increased back lobe compared to Figure 5, the maximum radiation gain of the improved antenna in the backward space is maintained at about -6dBi, and it still has obvious practical value. Therefore, it is reasonable to set the vertex angle ⁇ 1 of the cross section of the first cone 103 in the XOZ plane to satisfy ⁇ 1 ⁇ 120°.
  • the inventor also simulated the electric field isolator 20 provided with a hemispherical metal layer/panel rotating 15° and 30° counterclockwise and 15° and 30° clockwise around the Y-axis of the three-dimensional coordinate system, which is equivalent to rotating the monopole antenna 10 15° and 30° clockwise and 15° and 30° counterclockwise around the Y-axis of the three-dimensional coordinate system, based on the structure of the improved antenna shown in FIG5 . Accordingly, while the improved antenna exhibits obvious directional radiation characteristics relative to the monopole antenna 10, the directional radiation direction has a certain angle deflection relative to the negative X-axis of the three-dimensional coordinate system.
  • the radiation gain of the improved antenna in the directional radiation direction is also above 8dBi, and it still has obvious practical value.
  • the feasibility of adjusting the beam deflection angle of the improved antenna based on the adjustment of the positional relationship between the electric field isolator 20 and the monopole antenna 10 is verified, so that the improved antenna can meet different detection requirements and have better applicability.
  • the shape of the electric field isolator 20 is adjustably set, specifically corresponding to Figures 8 and 9, it is set in a split form and can form shape adjustment of the electric field isolator 20 based on the relative movement between the splits, such as corresponding to Figure 8, the shape adjustment of the electric field isolator 20 is formed based on the relative rotation movement between the splits, or corresponding to Figure 9, the shape adjustment of the electric field isolator 20 is formed based on the relative translation movement between the splits.
  • the corresponding improved antenna presents obvious directional radiation characteristics relative to the monopole antenna 10, and the directional radiation direction has a certain angle deflection relative to the negative X-axis of the three-dimensional coordinate system based on the morphological change of the electric field isolator 20.
  • the radiation gain of the improved antenna in the directional radiation direction is also above 8.8dBi.
  • the feasibility of adjusting the beam deflection angle of the improved antenna based on the shape adjustment of the electric field isolator 20 is verified, so that the improved antenna can meet different detection requirements and have better applicability.
  • the electric field isolator 20 provided with a hemispherical metal layer/panel further has a conductive surface parallel to the YOZ surface of the three-dimensional coordinate system inside the hemisphere, and the bandwidth of the improved antenna is significantly narrowed relative to the improved antenna shown in FIG.
  • the bandwidth of the corresponding improved antenna has no significant change relative to that of the improved antenna shown in FIG10, that is, it is significantly narrowed relative to that of the improved antenna shown in FIG5.
  • the bandwidth of the improved antenna can be adjusted based on the shape adjustment of the electric field isolator 20 and/or the positional relationship between the electric field isolator 20 and the monopole antenna 10, so that the improved antenna can meet different detection requirements and have better applicability.
  • the electric field isolator 20 provided with a hemispherical metal layer/panel is replaced by an arc-shaped metal layer/panel, wherein the arc-shaped electric field isolator 20 specifically has an arc-shaped cross-section parallel to the XOY plane of the three-dimensional coordinate system, and has the forward beam-focusing surface 21 that meets the above-mentioned requirements.
  • the improved antenna exhibits obvious directional radiation characteristics relative to the monopole antenna 10
  • the directional radiation direction has a certain angle deflection relative to the negative X-axis of the three-dimensional coordinate system, further verifying the feasibility of adjusting the beam deflection angle of the improved antenna based on the adjustment of the shape of the electric field isolator 20, so that the improved antenna can meet different detection requirements and have better applicability.
  • the actual product form of the improved antenna can be optionally corresponding to Figure 13, with the backward direction of the improved antenna (the positive direction of the X-axis of the three-dimensional coordinate system) facing the corresponding installation position, and is set in a ground azimuth state with the connection line from the feeding end 12 to the open end 11 of the monopole antenna 10 facing the ground, so that the detection direction of the improved antenna is laterally biased toward the ground, on one hand.
  • the high sensitivity of the Doppler effect to movements in the direction of microwave radiation can be used to improve the detection precision and accuracy of the improved antenna in practical applications, and the low sensitivity of the Doppler effect to movements perpendicular to the direction of microwave radiation can be used to improve the improved antenna's ability to resist wind and rain interference in practical applications;
  • the backward rejection characteristics of the improved antenna can be used to reduce the probability that the improved antenna is interfered with by tiny moving objects such as rain, mosquitoes, fallen leaves, and flying snow in the backward space in practical applications, thereby improving the improved antenna's anti-interference performance in practical applications, especially the anti-interference performance in outdoor use environments.
  • the monopole antenna 10 is illustrated as a traditional cylindrical antenna, which does not constitute a structural limitation on the monopole antenna 10 of the present invention.
  • the monopole antenna 10 can be implemented as a cylindrical conductor, including but not limited to a straight cylindrical conductor, a bent cylindrical conductor and a spiral cylindrical conductor, and can also be implemented as a strip conductor carried on a circuit substrate, including but not limited to a strip conductor with a uniform width on the circuit substrate and a strip conductor with a gradient width.
  • the monopole antenna 10 can also correspond to the bent cylindrical conductor of Figure 14A, and the corresponding improved antenna also includes the circuit substrate 30 and the reference ground 40 carried by the circuit substrate 30, wherein the monopole antenna 10 is arranged and plugged and fixed to the circuit substrate 30 in the form of a bent cylindrical conductor, the end of the monopole antenna 10 away from the reference ground 40 is the open end 11, and the end plugged and fixed to the circuit substrate 30 is the feeding end 12, and the length of the monopole antenna 10 defined between the open end 11 and the feeding end 12 tends to ⁇ /4 within an error of 20%.
  • the monopole antenna 10 can also adopt the structure shown in FIG. 14B based on the grounding design, and the corresponding improved antenna also includes an electrical connection to the A ground line 50 is provided between the reference ground 40 and the monopole antenna 10 .
  • the monopole antenna 10 can also be implemented as a helical antenna corresponding to Figure 14C, and the corresponding improved antenna also includes the circuit substrate 30 and the reference ground 40 carried by the circuit substrate 30, wherein the monopole antenna 10 is arranged and plugged and fixed to the circuit substrate 30 in the form of a spiral cylindrical conductor, the end of the monopole antenna 10 away from the reference ground 40 is the open end 11, and the end plugged and fixed to the circuit substrate 30 is the feeding end 12, and the length of the monopole antenna 10 defined between the open end 11 and the feeding end 12 tends to ⁇ /4 within an error of 20%.
  • the monopole antenna 10 can also be implemented as a columnar conductor connected to the coaxial feed line corresponding to Figures 14D and 14E, including a straight columnar conductor as shown in Figure 14D, and a spiral columnar conductor as shown in Figure 14E, corresponding to the open end 11 of the monopole antenna 10 being the free end of the columnar conductor, and the feeding end 12 of the monopole antenna 10 being the end of the columnar conductor connected to the coaxial feed line.
  • the monopole antenna 10 can also be implemented as a strip conductor carried on a circuit substrate, including but not limited to a strip conductor with uniform width and a strip conductor with gradient width on the circuit substrate, wherein when the circuit substrate corresponds to the state of further carrying reference ground conductors on both sides of the strip conductor respectively in accordance with FIG. 15A and FIG. 15B , the portion of the strip conductor located between the reference ground conductors and the reference ground conductors are equivalent to the coaxial feed line in FIG. 14D and 14E , then the open end 11 of the monopole antenna 10 is the free end of the strip conductor, and the feeding end 12 of the monopole antenna 10 is the end of the strip conductor connected to the coaxial feed line.
  • the strip conductor can also be implemented as a bent strip conductor, for example, bent into an inverted "L" shape as shown in FIG. 14A, and the grounding design can be adopted in the same manner as the monopole antenna 10 shown in FIG. 12B, and the grounding wire 50 can also be implemented as a strip conductor carried on the circuit substrate.
  • the specific forms of the electric field isolator 20 and the monopole antenna 10 do not constitute a limitation to the present invention, as long as the electric field isolator 20 has the forward beam-gathering surface 21 that meets the above requirements.
  • the electric field isolator 20 of different forms can be combined with the monopole antenna 10 and its deformed structures shown in Figures 14A to 15B.
  • the electric field isolator 20 is provided with a hemispherical metal layer/panel as shown in FIG5, and the corresponding monopole antenna 10 corresponds to the bent and deformed structure of the monopole antenna 10 shown in FIG14D.
  • the monopole antenna 10 is implemented as a cylindrical wire connected to a coaxial feed line and bent relative to the coaxial feed line, wherein the coaxial feed line is preferably fixed to the electric field isolator 20 to fix the relative position between the monopole antenna 10 and the electric field isolator 20, which is conducive to ensuring the stability of the improved antenna.
  • the electric field isolator 20 provided in the form of an arc-shaped metal layer/panel further has an extension portion located in the direction from the open end 11 of the monopole antenna 10 to the feeding end 12 (the negative direction of the Z-axis of the three-dimensional coordinate system).
  • the extension portion is provided in the form of a metal layer/panel located in the direction from the open end 11 of the monopole antenna 10 to the feeding end 12 and perpendicular to the direction.
  • the monopole antenna 10 The number is one, and the number of the monopole antennas 10 does not constitute a limitation on the improved antenna. That is to say, in some structures of the improved antenna of the present invention, the number of the monopole antennas 10 of the improved antenna can be multiple, and the present invention does not limit this.
  • the multiple monopole antennas 10 can be arranged in an array to meet the corresponding structural and performance requirements of the improved antenna based on the corresponding array layout of the monopole antennas 10.
  • the electric field isolator 20 can form the forward beam-forming surface 21 that meets the above requirements relative to any monopole antenna 10.
  • the multiple monopole antennas 10 are arranged in an array in a state where the lines connecting the open ends 11 of each monopole antenna 10 and the feeding end 12 tend to be parallel.
  • the monopole antennas 10 are arranged in an array in a state where the lines connecting the open ends 11 of each monopole antenna 10 and the feeding end 12 tend to overlap, and the corresponding electric field isolator 20 is illustrated in the form of a longitudinally sectioned elliptical/capsule-shaped conductive layer, so that the electric field isolator 20 can form the forward beam surface 21 that meets the above-mentioned requirements relative to any of the monopole antennas 10.
  • the improved antenna in the state where the number of the monopole antennas 10 is multiple, for example, the number of the monopole antennas 10 is two, and each of the monopole antennas 10 is set as a traditional cylindrical antenna, the improved antenna optionally corresponds to Figure 19A and also includes a circuit substrate 30 and one or two reference grounds 40 carried on the circuit substrate 30, wherein in the state where the two open ends 11 of the two monopole antennas 10 are located on two opposite sides of the circuit substrate 30, the two monopole antennas 10 are set and plugged and fixed to the circuit substrate 30 with straight cylindrical wires to form a structural dual-columnar antenna structure in which the two monopole antennas 10 share the circuit substrate 30, or further share the reference ground 40.
  • the corresponding improved antenna can be used independently as a transmitting antenna or a receiving antenna, or one of the monopole antennas 10 can be used as a transmitting antenna and the other monopole antenna 10 can be used as a receiving antenna, or the two monopole antennas 10 can be used as both transmitting antennas and receiving antennas, and the present invention is not limited to this.
  • the two monopole antennas 10 can also be independently configured separately.
  • the improved antenna optionally also includes two circuit substrates 30 and a reference ground 40 carried by each of the circuit substrates 30, wherein the two monopole antennas 10 are configured as straight cylindrical wires and are plugged and fixed to different circuit substrates 30.
  • the two monopole antennas 10 can be optionally arranged orthogonally corresponding to FIG. 19B, and the open end 11 of each of the monopole antennas 10 is the free end of the corresponding cylindrical conductor, and the feeding end 12 of each of the monopole antennas 10 is one end of the corresponding cylindrical conductor that is connected to the coaxial feed line, and the line connecting the open end 11 and the feeding end 12 of one of the monopole antennas 10 is perpendicular to the line connecting the open end 11 and the feeding end 12 of the other monopole antenna 10.
  • the corresponding improved antenna can be used independently as a transmitting antenna or a receiving antenna, or one of the monopole antennas 10 can be used as a transmitting antenna and the other monopole antenna 10 can be used as a receiving antenna, or both of the monopole antennas 10 can be used as transmitting antennas and receiving antennas at the same time, and the present invention is not limited to this.
  • the two monopole antennas 10 may further be circularly polarized based on a corresponding feeding design, and the present invention is not limited thereto.
  • the two monopole antennas 10 can optionally be implemented as two strip conductors carried on the same circuit substrate corresponding to FIG. 19C, and the two monopole antennas 10 can optionally be orthogonally arranged corresponding to FIG. 19C, and the line connecting the open end 11 and the feeding end 12 of one of the monopole antennas 10 is perpendicular to the line connecting the open end 11 and the feeding end 12 of the other monopole antenna 10.
  • the corresponding improved antenna can be used independently as a transmitting antenna or a receiving antenna, or one of the monopole antennas 10 can be used as a transmitting antenna and the other monopole antenna 10 can be used as a receiving antenna, or the two monopole antennas 10 can be used as both transmitting antennas and receiving antennas, and the present invention is not limited to this.
  • the electric field isolator 20 has various forms, as long as the electric field isolator 20 has the forward beam focusing surface 21 that meets the aforementioned requirements, and preferably further has the rearward rejection surface 22 that meets the aforementioned requirements, the specific form of the corresponding electric field isolator 20 does not constitute a limitation to the present invention, and the electric field isolator 20 can be an independent conductor, such as a metal body and a non-metal body with conductive properties (such as a carbon-based material with conductive properties), or a conductor carried on an insulating material, such as a conductor formed on an insulating material by processes such as electroplating, spraying, and doping, or a conductor with conductive properties formed based on the interaction between different materials, such as a conductor formed based on doping of a semiconductor, and the present invention does not impose any restrictions on this.
  • the electric field isolator 20 can be an independent conductor, such as a metal body and a non-metal body with
  • the electric field isolator 20 further has at least one annular groove to form at least one primary choke based on the setting of the annular groove to further suppress the radiation energy of the improved antenna in the backward space.
  • the electric field isolator 20 further has an annular groove, wherein the annular groove is formed on the electric field isolator 20 around the X-axis of the three-dimensional coordinate system and is oriented in the radial direction of the X-axis. Accordingly, the improved antenna has significantly suppressed backward radiation energy in the radiation pattern relative to the improved antenna shown in Figure 5.
  • the electric field isolator 20 further has an annular groove, wherein the annular groove is formed on the electric field isolator 20 around the X-axis of the three-dimensional coordinate system and is oriented with the negative direction of the X-axis. Accordingly, the improved antenna also has significantly suppressed backward radiation energy in the radiation pattern relative to the improved antenna shown in Figure 5.
  • the electric field isolator 20 further has an annular groove, wherein the annular groove is formed on the electric field isolator 20 around the X-axis of the three-dimensional coordinate system and is oriented with the positive direction of the X-axis as the groove direction. Accordingly, the improved antenna also has significantly suppressed backward radiation energy in the radiation pattern relative to the improved antenna shown in Figure 5.
  • the radiation pattern of the improved antenna presents a radiation beam that is significantly beam-gathered and enhanced in the forward directional radiation direction, and a radiation characteristic with a low back lobe or even no positive back lobe in the backward space, which is conducive to ensuring the detection sensitivity of the improved antenna in the forward directional radiation direction, and realizing the reception rejection of electromagnetic radiation in the backward space by the improved antenna based on the antenna's reciprocal transmission and reception characteristics.
  • the improved antenna can be used independently as a transmitting antenna or a receiving antenna, or as an antenna that transmits and receives in one, and has obvious advantages over the independent monopole antenna 10 when used independently as a transmitting antenna or a receiving antenna, or as an antenna that transmits and receives in one. Therefore, a plurality of the improved antennas can be combined with each other to realize a transmission-reception separation or an array antenna layout, and the present invention does not limit this.
  • the array layout of the forward beam surface 21 of the electric field isolator 20 that meets the above requirements can be optionally arranged as a pit surface of multiple pits on the same metal layer, such as a pit surface of a pit formed on the metal layer based on a stamping and stretching method; or corresponding to Figure 21A, it can be arranged as a groove surface of multiple grooves on the same plate, such as a groove surface of multiple grooves formed on the plate based on a drilling method, wherein the plate can be a metal plate, or it can be a conductive groove surface in a non-metal plate state through electroplating or spraying process.
  • the array layout of the forward beam surface 21 of the electric field isolator 20 that meets the above-mentioned requirements is formed based on a combination of different plate materials, such as a groove surface with multiple grooves formed based on openings on the same metal plate and a metal layer or a copper-clad circuit board attached to one side of the metal plate.
  • the present invention is not limited to this, and the array layout of the improved antenna realized in this way is particularly suitable for the miniaturization and micro-form and process of the array-type improved antenna at 60G/77G/120G/240G or even higher frequencies.
  • the array layout of the forward beam-forming surface 21 of the electric field isolator 20 that meets the above-mentioned requirements can be optionally arranged as a groove surface of multiple grooves on the same plate material corresponding to FIG22, such as a groove surface of multiple grooves formed on the plate material based on drilling, wherein the plate material can be a metal plate material, or a conductive groove surface formed by electroplating or spraying process in a non-metal plate material state, wherein the monopole antenna 10 carried on the circuit substrate can be optionally assembled and arranged from the rear of the forward beam-forming surface 21 through the forward beam-forming surface 21 corresponding to FIG22, and the present invention does not impose any restrictions on this.
  • the improved antenna presents a radiation characteristic of low back lobe or even no positive back lobe in the radiation pattern and has a reception rejection characteristic for electromagnetic radiation in the backward space.
  • the improved antenna adopts an array layout
  • the isolation between each of the improved antennas can be guaranteed to reduce or even avoid mutual interference between the improved antennas distributed in the array, so that based on the array layout of the improved antenna, under the time-sharing working mechanism, it can form angle/direction/even 360° regional coverage, thereby realizing beam circular or/and overlapping centralized scanning and detection, so that it can be applied to multi-angle/direction detection scenarios of targets in an angle/partition manner, such as angle/multi-angle/360° rotational stereoscopic scanning detection of human bodies or limbs.
  • the array layout of multiple antennas cannot realize the detection of angles/areas in three-dimensional space, and the array layout of multiple antennas will form intersections between the back lobes, resulting in poor isolation between the antennas, which can easily cause serious signal crosstalk problems.
  • the improved antenna of the present invention since the improved antenna presents a radiation characteristic of low back lobes or even no positive back lobes in the radiation pattern and has a reception rejection characteristic for electromagnetic radiation in the backward space, the array layout of the improved antenna can realize time-division/angle-division/region-division detection in three-dimensional space, and each of the improved antennas has good isolation and can suppress signal crosstalk between each other, thereby ensuring the detection performance between time-division/angle-division/region-division.
  • an array layout of the improved antenna can be formed, and then 180° or even 360° large-range detection can be formed through beam synthesis, or time-division/angle-division/partitioned detection can be performed in a spatial range.
  • each of the improved antennas When performing time-division/angle-division/partitioned detection, since the improved antenna exhibits a radiation characteristic of low back lobe or even no positive back lobe in the radiation pattern and has a reception rejection characteristic for electromagnetic radiation in the backward space, each of the improved antennas has good isolation and can suppress signal crosstalk between each other.
  • the two improved antennas when the two monopole antennas 10 are arranged in an array on the same circuit board, and based on the setting of the corresponding electric field isolator 20 that meets the above requirements, the two improved antennas have an array layout with mutually perpendicular directional radiation directions, it is possible to form a large-range detection approaching 180° through beam synthesis, and to perform time-sharing/angle-sharing/region-sharing detection within a 180° spatial range.
  • the two improved antennas When performing time-sharing/angle-sharing/region-sharing detection, based on the improved antenna's reception rejection characteristics for electromagnetic radiation in the backward space, the two improved antennas have good isolation and can suppress signal crosstalk between each other.
  • each of the improved antennas can be connected by different microwave chips through chip cascading, or can be driven and detected in time/angle/region by the same microwave chip.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

本发明提供一种单极子天线的前向集束和后向空间拒止的改进型天线,其中相对于传统具有全向辐射特性的单极子天线,通过于所述单极子天线的电抗场形成沿该电抗场方向满足一定的尺寸和面积要求,并与所述单极子天线之间满足一定的距离要求的导电面的方式,使得所述单极子天线的电抗场在后向空间的电磁感应能够被该导电面阻隔,并且被阻隔的电抗场能量能够经该导电面以低消耗甚至无消耗状态被回馈至所述单极子天线,对应使得所述改进型天线在后向空间基于电磁感应产生的电磁辐射能够被阻断而在辐射方向图上呈现出低后瓣甚至无正后瓣的辐射特性,并使得所述改进型天线在前向定向辐射方向具有被集束强化的辐射波束。

Description

一种单极子天线的前向集束和后向空间拒止的改进型天线 技术领域
本发明涉及基于多普勒效应原理的定向微波探测领域,特别涉及适用于定向微波探测的一种单极子天线的前向集束和后向空间拒止的改进型天线。
背景技术
随着物联网技术的发展,人工智能、智能家居、以及智能安防技术对于环境探测,特别是对于人的存在、移动以及微动的动作特征的探测准确性的需求越来越高,只有获取足够稳定的探测结果,才能够为智能终端设备提供准确的判断依据。其中基于多普勒效应原理的微波探测技术作为人与物,物与物之间相联的重要枢纽在行为探测和存在探测技术中具有独特的优势,其能够在不侵犯人隐私的情况下,探测出活动物体,比如人的动作特征、移动特征、以及微动特征,甚至是人的心跳和呼吸特征信息,因而具有广泛的应用前景。具体地,相应微波探测器被一激励信号馈电而通过相应的天线发射对应所述激励信号的频率一微波波束至所述目标空间,进而于所述目标空间形成一探测区域,和接收所述微波波束被所述探测区域内的相应物体反射形成的一反射回波而传输对应所述反射回波频率的一回波信号至一混频检波单元,其中所述混频检波单元混频所述激励信号和所述回波信号而输出对应于所述激励信号和所述回波信号之间的频率/相位差异的一多普勒中频信号,其中基于多普勒效应原理,在反射所述微波波束的所述物体处于运动的状态时,所述回波信号与所述激励信号之间具有一定的频率/相位差异而于所述多普勒中频信号呈现相应的幅度波动以反馈人体活动。其中天线作为所述微波探测器的核心元件,其结构特征和关联于结构特征的性能特征直接影响着所述微波探测器的结构设计和性能参数,尤其是在所述微波探测器多作为相应产品的功能模块而被要求与该产品的使用环境相适配的行业现状,天线的结构特征和性能特征直接影响着所述微波探测器于相应产品的适用性。在产品的使用环境存在大量金属反射物而易产生自激干扰,和存在越来越密集的电磁辐射干扰的现状,为实现所述微波探测器与相应产品的使用环境的适配,所述微波探测器对相应天线的结构特征和关联于结构特征的性能特征的要求越来越严苛。
单极子天线基于其工作原理对参考地面的完整性和尺寸要求较低而成为对天线具有隐蔽性要求、微型化要求以及低成本要求中的至少一要求的微波探测器常用的天线之一,具体以现有的单极子天线中的柱状天线为例,参考本发明的说明书附图之图1A至图1C所示,现有的柱状天线10P的结构和对应该结构的辐射方向图以及S11曲线分别被示意分别被示意,其中所述柱状天线10P包括一柱状辐射源11P和一参考地面12P,其中所述参考地面12P被设置有一辐射孔121P,其中所述柱状辐射源11P自其一端径直延伸以经所述辐射孔121P在与所述参考地面12P相互间隔的状态垂直穿透所述参考地面12P,对应命名该端为所述柱状辐射源11P的馈电端111P,其中所述柱状辐射源11P的远离所述馈电端111P的一端与所述参考地面12P之间具有大于等于四分之一波长电长度的距离,即所述柱状辐射源11P具有等于四分之一波长电长度的物理长度,对应在所述柱状辐射源11P于所述馈电端111P被相应的激励信号馈电时,所述柱状辐射源11P能够与所述参考地面12P耦合而发 射对应所述激励信号的频率的所述微波波束,从而形成以所述柱状辐射源11P的轴线为中心轴的一辐射空间,其中所述辐射空间为所述柱状天线10P发射的所述微波波束的覆盖范围,其中在相应激励信号的激励下,所述柱状辐射源11P的远离所述馈电端111P的一端的电流密度最大,所述柱状天线10P以所述参考地面12P为界的前后电磁辐射范围趋于一致而不具备定向辐射能力,并在所述柱状辐射源11P的两端的延伸方向形成有探测死区,对应所述辐射空间呈现以所述参考地面12P为界具有较大的后向波瓣,和以所述柱状辐射源11P的轴线为中心轴在所述柱状辐射源11P的两端的延伸方向具有内凹的探测死区,因而在实际应用中易造成所述柱状天线10P的所述探测区域无法与所述目标空间相匹配的状况,例如所述探测区域与所述目标空间部分交叉重合的状况,如此以在所述探测区域之外的所述目标空间无法被有效探测的状态,和/或在所述目标空间之外的所述探测区域存在环境干扰的状态,包括动作干扰、电磁干扰以及因大量金属反射物的存在造成的自激干扰,造成所述柱状天线10P探测精准度差和/或抗干扰性能差的问题,即所述柱状天线10P在实际应用中具有较差的探测稳定性而在实际应用中于不同应用场景的适应能力有限。
也就是说,单极子天线虽然适用于对天线具有隐蔽性要求、微型化要求以及低成本要求中的至少一要求的微波探测器,但由于其不具备定向辐射能力,并同柱状天线10P在所述柱状辐射源11P的两端的延伸方向形成有探测死区,因而在实际应用中易造成所述单极子天线的探测区域无法与所述目标空间相匹配的状况。因此,对于“如何赋予单极子天线定向辐射特性和在单极子天线具备定向辐射特性的状态抑制其对非该定向辐射方向的信号的接收”的技术问题而言,该技术问题的解决无疑能够在相应微波探测器采用单极子天线的状态提高该微波探测器的稳定性和适用性而具有重要的意义和价值,但在本领域技术人员对单极子天线基于其本身的工作原理具有全向辐射特性的普遍认知下,该技术问题从未被提出,更不用说被解决。
发明内容
本发明的一个目的在于提供一种单极子天线的前向集束和后向空间拒止的改进型天线,其中相对于传统具有全向辐射特性的单极子天线,所述改进型天线具有定向辐射特性,并以定向辐射方向为前向方向同时具有对后向空间的电磁辐射的接收拒止特性,对应所述改进型天线在微波探测领域具有良好的适用性和抗干扰性能。
本发明的另一个目的在于提供一种单极子天线的前向集束和后向空间拒止的改进型天线,其中所述改进型天线在单极子天线的结构基础上进一步包括一电场隔离体,其中基于所述电场隔离体的结构和与所述单极子天线之间的位置关系,所述单极子天线的电抗场能够被定向强化,对应使得所述改进型天线呈现出定向辐射特性,并在前向的定向辐射方向具有被集束强化的辐射波束。
本发明的另一个目的在于提供一种单极子天线的前向集束和后向空间拒止的改进型天线,其中所述改进型天线在前向的定向辐射方向具有被集束强化的辐射波束,对应所述改进型天线具有较大前向增益而呈现出高前后比特性,因而有利于保障所述改进型天线在前向定向辐射方向的探测灵敏度。
本发明的另一个目的在于提供一种单极子天线的前向集束和后向空间拒止的改进型天 线,其中基于所述电场隔离体的结构和与所述单极子天线之间的位置关系,所述单极子天线的电抗场在后向空间的电磁感应能够被阻隔,对应使得所述改进型天线在后向空间基于电磁感应产生的电磁辐射能够被阻断而在辐射方向图上呈现出低后瓣甚至无正后瓣的辐射特性,因而有利于基于天线的收发互易特性实现所述改进型天线对后向空间的电磁辐射的接收拒止。
本发明的另一个目的在于提供一种单极子天线的前向集束和后向空间拒止的改进型天线,其中基于所述电场隔离体的结构和与所述单极子天线之间的位置关系,所述单极子天线的电抗场在后向空间的电磁感应能够被阻隔,并且被阻隔的电抗场能量能够经所述电场隔离体以低消耗甚至无消耗状态被回馈至所述单极子天线,对应使得所述单极子天线的电抗场能够被前向约束,因而能够实现所述改进型天线的辐射波束在前向定向辐射方向的集束强化。
本发明的另一个目的在于提供一种单极子天线的前向集束和后向空间拒止的改进型天线,其中所述电场隔离体具有形成于导电材料的一前向集束面,其中基于所述电场隔离体的结构和与所述单极子天线之间的位置关系,所述前向集束面在所述单极子天线的电抗场沿该电抗场方向满足一定的尺寸要求并与所述单极子天线之间满足一定的距离要求,如此以使得所述单极子天线的电抗场在后向空间的电磁感应能够被所述前向集束面阻隔,并且被阻隔的电抗场能量能够经所述前向集束面以低消耗甚至无消耗状态被回馈至所述单极子天线,对应使得所述改进型天线在后向空间基于电磁感应产生的电磁辐射能够被阻断而在辐射方向图上呈现出低后瓣甚至无正后瓣的辐射特性,并使得所述改进型天线在前向定向辐射方向具有被集束强化的辐射波束。
本发明的另一个目的在于提供一种单极子天线的前向集束和后向空间拒止的改进型天线,其中在所述前向集束面在所述单极子天线的电抗场沿该电抗场方向满足一定的尺寸要求并与所述单极子天线之间满足一定的距离要求的状态,所述改进型天线在辐射方向图上呈现出低后瓣甚至无正后瓣的辐射特性而能够基于天线的收发互易特性实现所述改进型天线对后向空间的电磁辐射的接收拒止,即所述前向集束面的满足前述要求的设计即可同时实现所述改进型天线在前向方向的集束强化和对后向空间的电磁辐射的接收拒止。
本发明的另一个目的在于提供一种单极子天线的前向集束和后向空间拒止的改进型天线,其中所述电场隔离体具有形成于导电材料的一后向拒止面,其中基于所述电场隔离体的结构和与所述单极子天线之间的位置关系,所述后向拒止面在所述单极子天线的电抗场沿该电抗场方向满足一定的尺寸要求并与所述单极子天线之间满足一定的距离要求,如此以使得后向空间的电磁辐射既无法通过绕射的方式以电磁波形态被所述单极子天线接收,也无法在被所述后向拒止面接收的状态基于所述后向拒止面与所述单极子天线之间的耦合影响所述单极子天线,对应使得所述改进型天线对后向空间的电磁辐射的接收拒止特性能够基于所述后向拒止面的满足前述要求的设计被进一步强化。
本发明的另一个目的在于提供一种单极子天线的前向集束和后向空间拒止的改进型天线,其中所述单极子天线的电抗场是一种感应场而并不存在向外辐射的能量,即在所述前向集束面位于所述单极子天线的所述电抗场的状态,所述前向集束面在所述改进型天线基于电磁感应的前向定向辐射过程中并不存在反射行为,但在所述改进型天线独立或同时作 为接收天线的状态,所述前向集束面对前向空间的电磁辐射的反射能力不会因此受到限制,前向空间的电磁辐射仍能够被所述前向集束面反射至被所述单极子天线接收而提高所述改进型天线在作为接收天线时的接收灵敏度。
本发明的另一个目的在于提供一种单极子天线的前向集束和后向空间拒止的改进型天线,其中所述电场隔离体的形态和/或与所述单极子天线之间的位置关系被可调地设置,以在所述前向集束面于所述单极子天线的电抗场沿该电抗场方向的尺寸和与所述单极子天线之间的距离满足前述要求的基础上,能够基于所述电场隔离体的形态调整和/或与所述单极子天线之间的位置关系的调整形成对所述改进型天线的波束偏转角度和频带宽度的调整,对应使得所述改进型天线能够满足不同的探测要求而具有更好的适用性。
根据本发明的一个方面,本发明提供一种单极子天线的前向集束和后向空间拒止的改进型天线,所述改进型天线包括:
至少一单极子天线,所述单极子天线以条形导体形态被设置而具有一开放端并自所述开放端延伸而具有一馈电端,其中所述馈电端为所述单极子天线接入馈电信号的一端,并沿条形导体形态的所述单极子天线与所述开放端之间具有大于等于λ/8且小于等于3λ/8的长度,其中λ为与所述馈电信号的频率相对应的波长参数;和
一电场隔离体,其中所述电场隔离体以导电材料被设置并具有一前向集束面,其中以一个三维坐标系的原点O为球心和以一第一半径R1为半径界定一第一球面,以该三维坐标系的原点O为球心和以大于R1的一第二半径R2为半径界定一第二球面,以该三维坐标系的原点O为顶点和以正向X轴为轴界定一第一圆锥,以该三维坐标系的原点O为顶点和以正向Z轴为轴界定一第二圆锥,以该三维坐标系的原点O为顶点和以负向Z轴为轴界定一第三圆锥,其中所述第一圆锥在XOZ面的截面的顶角为θ1,所述第二圆锥在XOZ面的截面的顶角为θ2,所述第三圆锥在XOZ面的截面的顶角为θ3,定义由所述第一球面,所述第二球面以及所述第一圆锥的内侧面共同界定的空间为第一空间,定义由所述第一球面和所述第二圆锥的内侧面共同界定的空间为第二空间,定义由所述第一球面和所述第三圆锥的内侧面共同界定的空间为第三空间,其中所述单极子天线的所述开放端和所述馈电端分别位于所述第二空间和所述第三空间,所述前向集束面具有被所述第一空间截取的第一截面,并在所述第一圆锥以所述第一截面为底面的状态,该底面能够独立形成对所述第一圆锥内部以所述三维坐标系的原点O为源点,角度为46°的圆锥形光束的遮挡,其中在λ/8≤R1<R2<3λ/4,θ1≥120°以及θ2=θ3≤60°的范围设定R1,R2,θ1以及θ2和θ3的取值,如此以在定义以该三维坐标系的YOZ面为界朝向X轴负向的空间为所述改进型天线的前向空间时,所述改进型天线在辐射方向图上具有在前向空间相对于所述单极子天线被集束强化的辐射波束而呈现出前向定向辐射特性。
在一实施例中,其中所述改进型天线还包括一电路基板和承载于所述电路基板的一参考地面,其中所述单极子天线以自所述开放端延伸的柱状导线被设置和被插接固定于所述电路基板,对应所述单极子天线的插接固定于所述电路基板的一端为所述馈电端,并且所述开放端和所述馈电端之间的距离对应于所述单极子天线的长度在20%的误差内趋于λ/4。
在一实施例中,其中所述单极子天线以弯折的柱状导线形态被设置而呈倒“L”型。
在一实施例中,其中所述改进型天线还包括一接地线,其中所述接地线电连接于所述 参考地面和所述单极子天线之间。
在一实施例中,其中所述单极子天线的数量为两个,两所述单极子天线以两所述开放端位于所述电路基板的两相对侧的状态被插接固定于所述电路基板。
在一实施例中,其中所述单极子天线以自所述开放端延伸柱状导线被设置和被馈电连接于一同轴馈电线,对应所述单极子天线的馈电端为该柱状导线的与该同轴馈电线相连的一端。
在一实施例中,其中以柱状导线被设置的所述单极子天线相对于该同轴馈电线被弯折设置。
在一实施例中,其中所述单极子天线被实施为承载于电路基板的带状导线。
在一实施例中,其中所述单极子天线的数量为多个,多个所述单极子天线被阵列布置。
在一实施例中,其中R1=λ/4,R2=λ/2,θ1=120°,且θ2=θ3=60°。
在一实施例中,其中所述单极子天线的所述开放端和所述馈电端均位于所述三维坐标系的Z轴。
在一实施例中,其中以该三维坐标系的原点O为顶点和以负向X轴为轴界定一第四圆锥,其中所述第四圆锥在XOZ面的截面的顶角θ4满足θ4≥120°,定义由所述第一球面,所述第二球面以及所述第四圆锥的外侧面共同界定的空间为第四空间,其中所述电场隔离体位于所述第四空间内。
在一实施例中,其中所述电场隔离体还具有在所述前向集束面后向的一后向拒止面,其中所述后向拒止面具有被所述第一空间截取的第二截面,并在所述第一圆锥以所述第二截面为底面的状态,该底面能够独立形成对所述第一圆锥外部以所述三维坐标系的原点O为源点,角度为46°的圆锥形光束的遮挡。
在一实施例中,其中所述前向集束面和所述后向拒止面分别形成于半球形态的金属层的内表面和外表面。
在一实施例中,其中所述电场隔离体进一步具有至少一环形槽,以基于所述环形槽的设置形成至少一级扼流圈而抑制所述改进型天线在后向空间的辐射能量。
通过对随后的描述和附图的理解,本发明进一步的目的和优势将得以充分体现。
附图说明
图1A为现有的柱状天线的结构原理示意图。
图1B为所述柱状天线的辐射方向图。
图1C为所述柱状天线的S11曲线。
图2为现有单极子天线的辐射原理图。
图3为依本发明的一实施例的一改进型天线的辐射原理图。
图4A和4B为基于三维坐标系定义的所述改进型天线的单极子天线与电场隔离体之间的位置关系示意图。
图5为依本发明的上述实施例的所述改进型天线的辐射原理的一种天线结构和对应该天线结构的辐射方向图和S11曲线。
图6为依本发明的上述实施例的所述改进型天线的辐射原理的另一种天线结构和对应 该天线结构的辐射方向图和S11曲线。
图7为依本发明的上述实施例的所述改进型天线的辐射原理的另一种天线结构和对应该天线结构的辐射方向图和S11曲线。
图8为依本发明的上述实施例的所述改进型天线的辐射原理的另一种天线结构和对应该天线结构的辐射方向图和S11曲线。
图9为依本发明的上述实施例的所述改进型天线的辐射原理的另一种天线结构和对应该天线结构的辐射方向图和S11曲线。
图10为依本发明的上述实施例的所述改进型天线的辐射原理的另一种天线结构和对应该天线结构的辐射方向图和S11曲线。
图11为依本发明的上述实施例的所述改进型天线的辐射原理的另一种天线结构和对应该天线结构的辐射方向图和S11曲线。
图12为依本发明的上述实施例的所述改进型天线的辐射原理的另一种天线结构和对应该天线结构的辐射方向图和S11曲线。
图13为依本发明的上述实施例的所述改进型天线的一种实际应用示意图。
图14A为依本发明的上述实施例的所述改进型天线的一种单极子天线的结构示意图。
图14B为依本发明的上述实施例的所述改进型天线的另一种单极子天线的结构示意图。
图14C为依本发明的上述实施例的所述改进型天线的另一种单极子天线的结构示意图。
图14D为依本发明的上述实施例的所述改进型天线的另一种单极子天线的结构示意图。
图14E为依本发明的上述实施例的所述改进型天线的另一种单极子天线的结构示意图。
图15A为依本发明的上述实施例的所述改进型天线的另一种单极子天线的结构示意图。
图15B为依本发明的上述实施例的所述改进型天线的另一种单极子天线的结构示意图。
图16为依本发明的上述实施例的所述改进型天线的辐射原理的另一种天线结构示意图。
图17为依本发明的上述实施例的所述改进型天线的辐射原理的另一种天线结构示意图。
图18为在本发明的上述实施例的所述改进型天线在所述单极子天线的数量为多个时的一种结构示意图。
图19A为在本发明的上述实施例的所述改进型天线的所述单极子天线的数量为两个时的一种单极子天线排布方式。
图19B为在本发明的上述实施例的所述改进型天线的所述单极子天线的数量为两个时的另一种单极子天线排布方式。
图19C为在本发明的上述实施例的所述改进型天线的所述单极子天线的数量为两个时的另一种单极子天线排布方式。
图20A为依本发明的上述实施例的所述改进型天线的辐射原理的另一种天线结构和对应该天线结构的辐射方向图和S11曲线。
图20B为依本发明的上述实施例的所述改进型天线的辐射原理的另一种天线结构和对应该天线结构的辐射方向图和S11曲线。
图20C为依本发明的上述实施例的所述改进型天线的辐射原理的另一种天线结构和对应该天线结构的辐射方向图和S11曲线。
图21A为依本发明的上述实施例的所述改进型天线的一种阵列式布局示意图。
图21B为依本发明的上述实施例的所述改进型天线的另一种阵列式布局示意图。
图22为依本发明的上述实施例的所述改进型天线的另一种阵列式布局示意图。
图23A为依本发明的上述实施例的所述改进型天线的另一种阵列式布局示意图。
图23B为依本发明的上述实施例的所述改进型天线的另一种阵列式布局示意图。
图23C为依本发明的上述实施例的所述改进型天线的另一种阵列式布局示意图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,所述元件的数量可以为多个,术语“一”不能理解为对数量的限制。
本发明提供一种单极子天线的前向集束和后向空间拒止的改进型天线,其中相对于传统具有全向辐射特性的单极子天线,所述改进型天线具有定向辐射特性,并以定向辐射方向为前向方向同时具有对后向空间的电磁辐射的接收拒止特性,对应所述改进型天线在微波探测领域具有良好的适用性和抗干扰性能,其中为充分理解本发明的所述改进型天线的结构原理,所述单极子天线基于电磁感应的辐射原理被示意,具体参考本发明的说明书附图之图2所示,所述单极子天线10以条形导体形态被设置而具有一开放端11并自所述开放端11延伸而具有一馈电端12,其中所述馈电端12为所述单极子天线10的接入馈电信号的一端,并沿条形导体形态的所述单极子天线10与所述开放端11之间具有大于等于λ/8且小于等于3λ/8的长度,其中λ为与所述馈电信号的频率(即所述单极子天线10的工作频率)相对应的波长参数。值得一提的是,在所述单极子天线10以条形导体形态被设置的状态,所述单极子天线10的具体形态并不构成对本发明的限制,例如所述单极子天线10可以被实施为柱状导线,包括但不限于径直的柱状导线、弯折的柱状导线以及螺旋形柱状导线,也可以被实施为承载于电路基板的带状导线,包括但不限于电路基板上具有均匀宽度的带状导线和具有渐变宽度的带状导线。
进一步地,在所述单极子天线10于所述馈电端12接入所述馈电信号的状态,所述单极子天线10以所述开放端11和所述馈电端12的连线上的一点为辐射源点建立有一电抗场,所述电抗场基于电磁感应产生感应磁场,感应磁场基于电磁感应产生感应电场,如此以基于电磁感应形成电磁辐射,其中所述电抗场是所述单极子天线10在被馈电状态产生的最原始电场,其范围对应于图2示意的二维的电抗场以所述开放端11和所述馈电端12的连线 为轴旋转180°所形成的三维空间范围。从天线的辐射原理讲,所述电抗场是一个储能场而非辐射场,即所述电抗场内的电场与磁场的转换类似于变压器中的电场与磁场的转换,是一种感应场而并不存在向外辐射的能量。
本发明的所述改进型天线在单极子天线10的结构基础上,通过于所述单极子天线10的电抗场形成沿该电抗场方向满足一定的尺寸和面积要求,并与所述单极子天线10之间满足一定的距离要求的导电面的方式,使得所述单极子天线10的电抗场在后向空间的电磁感应能够被该导电面阻隔,并且被阻隔的电抗场能量能够经该导电面以低消耗甚至无消耗状态被回馈至所述单极子天线10,对应使得所述改进型天线在后向空间基于电磁感应产生的电磁辐射能够被阻断而在辐射方向图上呈现出低后瓣甚至无正后瓣的辐射特性,并使得所述改进型天线在前向定向辐射方向具有被集束强化的辐射波束。其中对该导电面在所述单极子天线10的电抗场沿该电抗场方向的尺寸和面积要求,是为了在所述单极子天线10的后向空间形成电抗场的闭环而避免感应磁场的产生,进而使得所述单极子天线10的电抗场在后向空间的电磁感应能够被阻隔而形成所述改进型天线在前向方向的定向辐射。其中对该导电面与所述单极子天线10之间的距离要求,是为了降低该导电面与所述单极子天线10之间基于耦合产生的损耗,对应使得被该导电面阻隔的电抗场能量能够经该导电面以低消耗甚至无消耗状态被回馈至所述单极子天线10,进而使得所述改进型天线在辐射方向图上呈现出低后瓣甚至无正后瓣的辐射特性,和在前向定向辐射方向具有被集束强化的辐射波束。
因此,对应参考本发明的说明书附图之图3,依本发明的一实施例的所述改进型天线被示例,其中所述改进型天线在所述单极子天线10的结构基础上进一步包括以导电材料被设置的一电场隔离体20,以基于所述电场隔离体20的结构和与所述单极子天线10之间的位置关系,定向强化所述单极子天线10的所述电抗场,对应使得所述改进型天线呈现出定向辐射特性,并在定义为前向方向的定向辐射方向具有被集束强化的辐射波束。
具体地,所述电场隔离体20具有一前向集束面21,其中基于所述电场隔离体20的结构和与所述单极子天线10之间的位置关系,所述前向集束面21在所述单极子天线10的电抗场沿该电抗场方向满足一定的尺寸要求并与所述单极子天线10之间满足一定的距离要求而能够形成前述导电面,如此以使得所述单极子天线10的电抗场在后向空间的电磁感应能够被所述前向集束面21阻隔,并且被阻隔的电抗场能量能够经所述前向集束面21以低消耗甚至无消耗状态被回馈至所述单极子天线10,对应使得所述改进型天线在后向空间基于电磁感应产生的电磁辐射能够被阻断而在辐射方向图上呈现出低后瓣甚至无正后瓣的辐射特性,并使得所述改进型天线在前向定向辐射方向具有被集束强化的辐射波束。
进一步地,结合图2和图3参考本发明的说明书附图之图4A和图4B,为清晰界定所述电场隔离体20的结构和与所述单极子天线10之间的位置关系,本发明对应于图4A和图4B引入一个三维坐标系,其中以所述三维坐标系的原点O为球心和以一第一半径R1为半径界定一第一球面101,以所述三维坐标系的原点O为球心和以大于R1的一第二半径R2为半径界定一第二球面102,以所述三维坐标系的原点O为顶点和以正向X轴为轴界定一第一圆锥103,以所述三维坐标系的原点O为顶点和以正向Z轴为轴界定一第二圆锥104,以所述三维坐标系的原点O为顶点和以负向Z轴为轴界定一第三圆锥105,其中所述第一 圆锥103在XOZ面的截面的顶角为θ1,所述第二圆锥104在XOZ面的截面的顶角为θ2,所述第三圆锥105在XOZ面的截面的顶角为θ3,定义由所述第一球面101,所述第二球面102以及所述第一圆锥103的内侧面共同界定的空间为第一空间100,定义由所述第一球面101和所述第二圆锥104的内侧面共同界定的空间为第二空间200,定义由所述第一球面101和所述第三圆锥105的内侧面共同界定的空间为第三空间300,其中所述单极子天线10的所述开放端11和所述馈电端12分别位于所述第二空间200和所述第三空间300,并优选地进一步满足所述开放端11和所述馈电端12均位于所述三维坐标系的Z轴,其中所述前向集束面21具有被所述第一空间100截取的第一截面211,并在所述第一圆锥103以所述第一截面211为底面的状态,该底面能够独立形成对所述第一圆锥103内部以所述三维坐标系的原点O为源点,角度为46°的圆锥形光束的遮挡,即以所述第一截面211独立作为底面的所述第一圆锥103内部的该光束无法自该底面完整射出,其中参考图2所示意的所述单极子天线10的电抗场范围,在λ/8≤R1<R2<3λ/4,θ1≥120°以及θ2=θ3≤60°的范围设定R1,R2,θ1以及θ2和θ3的取值,其中λ为与所述单极子天线的工作频率相对应的波长参数,如此以使得所述前向集束面21的所述第一截面211能够形成满足前述要求的所述导电面。对应使得所述单极子天线10的电抗场在后向空间(以所述三维坐标系的YOZ面为界朝向X轴正向的空间)的电磁感应能够被所述前向集束面21阻隔,并且被阻隔的电抗场能量能够经所述前向集束面21以低消耗甚至无消耗状态被回馈至所述单极子天线10,进而使得所述改进型天线在后向空间基于电磁感应产生的电磁辐射能够被阻断而在辐射方向图上呈现出低后瓣甚至无正后瓣的辐射特性,并使得所述改进型天线在前向空间(以所述三维坐标系的YOZ面为界朝向X轴负向的空间)具有被集束强化的辐射波束而呈现出以前向方向为定向辐射方向的定向辐射特性。
可以理解的是,基于图2所示意的所述单极子天线10的电抗场范围在R2<3λ/4的范围设定R2的取值是由于在离所述单极子天线10的电抗场λ/4的距离范围内,无法形成完整的感应磁场,则相应导电面的设置仍能够阻隔所述单极子天线10的电抗场在后向空间的电磁感应,但相对于在所述单极子天线10的电抗场范围内设置相应导电面具有一定的损耗,因此R2的取值可选择在R2<3λ/4的范围设定,并优选地对应于图2所示意的电抗场范围在R2≤λ/2的范围设定。
值得一提的是,在所述第一圆锥103以所述第一截面211为底面的状态,该底面能够独立形成对所述第一圆锥103内部以所述三维坐标系的原点O为源点,角度为46°的圆锥形光束的遮挡。也就是说,所述前向集束面21既不限定为连续的面,也不限定为二维平面,其可以是具有孔洞和/或切槽的面,包括平面与非平面,只要所述第一截面211满足在作为所述第一圆锥103的底面的状态,该底面能够形成对所述第一圆锥103内部以所述三维坐标系的原点O为源点,角度为46°的圆锥形光束的遮挡,所述前向集束面21即可形成满足前述要求的所述导电面。
可以理解的是,在本发明的描述中,“角度为46°的圆锥形光束”的引入仅为便于理解在所述电场隔离体20具有孔洞和/或槽的状态,所述第一截面211在离所述三维坐标系的原点O不同距离下允许形成的孔洞尺寸和槽尺寸,其并不构成本发明的所述改进型天线是否具备该圆锥形光束或是否能够形成该圆锥形光束的限制。
此外,还值得一提的是,所述单极子天线10的电抗场是一种感应场而并不存在向外辐射的能量,即在所述前向集束面21位于所述单极子天线10的所述电抗场的状态,所述前向集束面21在所述改进型天线基于电磁感应的前向定向辐射过程中并不存在反射行为,但在所述改进型天线独立或同时作为接收天线的状态,所述前向集束面21对前向空间的电磁辐射的反射能力不会因此受到限制,前向空间的电磁辐射仍能够被所述前向集束面21反射至被所述单极子天线10接收而提高所述改进型天线独立或同时作为接收天线时的接收灵敏度。
进一步地,以所述三维坐标系的原点O为顶点和以负向X轴为轴界定一第四圆锥106,其中所述第四圆锥106在XOZ面的截面的顶角θ4满足θ4≥120°,定义由所述第一球面101,所述第二球面102以及所述第四圆锥106的外侧面共同界定的空间为第四空间400,其中所述电场隔离体20优选地位于所述第四空间400内,以避免所述电场隔离体20在所述第四空间400外的延伸,尤其是在所述第四圆锥106内的延伸,造成的对所述改进型天线的前向集束特性和后向接收拒止特性的破坏。
继续结合图2和图3参考本发明的说明书附图之图4A和图4B,其中所述电场隔离体20还具有在所述前向集束面21后向的一后向拒止面22,其中所述后向拒止面22具有被所述第一空间100截取的第二截面221,并在所述第一圆锥103以所述第二截面221为底面的状态,该底面能够独立形成对所述第一圆锥103内部以所述三维坐标系的原点O为源点,角度为46°的圆锥形光束的遮挡,即以所述第二截面211独立作为底面的所述第一圆锥103内部的该光束无法自该底面完整射出,如此以使得后向空间的电磁辐射既无法通过绕射的方式以电磁波形态被所述单极子天线10接收,也无法在被所述后向拒止面22接收的状态基于所述后向拒止面22与所述单极子天线10之间的耦合影响所述单极子天线10,对应使得所述改进型天线对后向空间的电磁辐射的接收拒止特性能够基于所述后向拒止面22的满足前述要求的设计被进一步强化。
可以理解的是,形成有所述前向集束面21的导电材料一定存在与所述前向集束面21相对的导电面,但该导电面基于该导电材料的结构形态设置并不一定满足形成所述后向拒止面22的条件,或在该导电面满足形成所述后向拒止面22的条件时,可能由于其它导电材料对该导电面的后向遮挡导致该导电面并不具备所述后向拒止面22的功能,因此,本发明并不限制所述后向拒止面22与所述前向集束面21共存。
特别地,基于所述单极子天线10的所述电抗场的实际场强分布,所述第一半径R1和所述第二半径R2可取R1=λ/8,且R2趋于3λ/4,并优选地取R1=λ/4,且R2趋于3λ/4,以及进一步优选地取λ/4=R1<R2=λ/2,以在强化所述前向集束面21对所述单极子天线10的电抗场在后向空间的电磁感应的阻隔能力的同时,进一步拉开所述前向集束面21与所述单极子天线10之间的距离,从而进一步降低所述前向集束面21与所述单极子天线10之间基于耦合产生的损耗,进而有利于抑制所述改进型天线在辐射方向图上的后瓣,和强化所述改进型天线在前向定向辐射方向的辐射增益。
值得一提的是,基于所述单极子天线10的所述电抗场的实际场强分布,所述单极子天线10在所述开放端11和所述馈电端12的连线方向存在探测死区,因此,一方面θ1和θ4的值可以分别在大于等于120°的范围内设定;另一方面,该探测死区的存在能够天然强化 所述改进型天线对后向空间的电磁辐射的接收拒止特性,尤其是后向空间的侧方位的电磁辐射,在将传统的所述单极子天线10存在探测死区的缺陷转换为所述改进型天线的优势的同时,能够实现所述改进型天线无后向感应和侧向感应的微波探测应用,因而有利于提高所述改进型天线的适用性,尤其是在小空间和后向空间存在大量金属反射物/电磁辐射干扰源的应用场景,能够有效降低所述改进型天线基于后向空间的多径反射产生自激干扰的概率。
具体地,参考本发明的说明书附图之图5至图12所示,为充分揭露本发明,依本发明的上述实施例的所述改进型天线的不同结构和对应该结构的辐射方向图以及S11曲线分别被示意,其中图示的坐标系是仿真系统内建的坐标系,其不能理解为本发明的所述三维坐标系。
在本发明的这些结构示例中,所述单极子天线10以传统柱状天线被示意,对应所述改进型天线还包括一电路基板30和承载于所述电路基板30的一参考地面40,其中所述单极子天线10以径直的柱状导线被设置和被插接固定于所述电路基板30,对应所述单极子天线10的远离所述参考地面40的一端为所述开放端11,和插接固定于所述电路基板30的一端为所述馈电端12,并且所述开放端11和所述馈电端12之间的距离对应于所述单极子天线10的长度在20%的误差内趋于λ/4。
具体地,在图5所示意的这个结构示例中,所述电场隔离体20以内半径为R的半球形态的金属层/面板被设置,其中所述单极子天线10的所述开放端11和所述馈电端12分别位于所述第二空间200和所述第三空间300,其中以径直的柱状导线被设置的所述单极子天线10具体沿所述三维坐标系的Z轴延伸而满足所述开放端11和所述馈电端12分别位于所述第二空间200和所述第三空间300,其中半球体形态的所述电场隔离体20的球心位于所述三维坐标系的原点O,并且以半球形态的金属层/面板被设置的所述电场隔离体20的内半径R等于λ/2,如此以于半球形态的所述电场隔离体20的内表面和外表面分别形成满足前述要求的所述前向集束面21和所述后向拒止面22。对应在以所述改进型天线的定向辐射方向为前向方向时,所述改进型天线的前向方向对应于所述三维坐标系的X轴负向,并且所述改进型天线在前向的定向辐射方向具有高达9.11dBi的辐射增益,远超图1B所示意的传统柱状天线的辐射增益,相应辐射方向图在前向定向辐射方向呈现出被明显集束强化的辐射波束,和在后向空间呈现出无正后瓣的辐射特性,因而有利于保障所述改进型天线在前向定向辐射方向的探测灵敏度,和基于天线的收发互易特性实现所述改进型天线对后向空间的电磁辐射的接收拒止。
在图5所示意的所述改进型天线的结构基础上,发明人还对以半球形态的金属层/面板被设置的所述电场隔离体20的内半径R分别放大至9λ/16和3λ/4进行了仿真,相应所述改进型天线仍能够相对于所述单极子天线10呈现明显的定向辐射特性,并在前向的定向辐射方向均具有高于10dBi的辐射增益,同时在后向空间的辐射增益也均维持在-6dBi以下,仍具有明显的实用价值,因此,将所述第一半径R1和所述第二半径R2设定满足R1<R2<3λ/4是合理的。
对应于图6,所述电场隔离体20在图5所示意的结构基础上被进一步延伸,对应所述电场隔离体20定义为以内半径为R的球形态的金属层/面板中,被所述第四圆锥106的外 侧面截取的部分,其中R=λ/2,所述第四圆锥106在XOZ面的截面的顶角θ4满足θ4=120°,相应所述电场隔离体20的内表面和外表面仍能够分别形成满足前述要求的所述前向集束面21和所述后向拒止面22。此时所述改进型天线仍能够相对于所述单极子天线10呈现明显的定向辐射特性,并在定向辐射方向的辐射增益也高达8.94dBi,虽然相对于图5具有明显增大的后瓣,但所述改进型天线在后向空间的辐射增益维持在-6dBi以下,仍具有明显的实用价值,因此,将所述第四圆锥106在XOZ面的截面的顶角θ4设定满足θ4≥120°是合理的。
对应于图7,所述电场隔离体20的结构形态对应于以内半径为R的球形态的金属层/面板中,被所述第一圆锥103的内侧面截取的部分,其中R=λ/2,所述第一圆锥103在XOZ面的截面的顶角θ1满足θ1=120°,此时所述改进型天线仍能够相对于所述单极子天线10呈现明显的定向辐射特性,并在定向辐射方向的辐射增益也高达7.25dBi,虽然相对于图5具有明显增大的后瓣,但所述改进型天线在后向空间的最大辐射增益维持在-6dBi左右,仍具有明显的实用价值,因此将所述第一圆锥103在XOZ面的截面的顶角θ1设定满足θ1≥120°是合理的。
值得一提的是,在图5所示意的所述改进型天线的结构基础上,发明人还对以半球形态的金属层/面板被设置的所述电场隔离体20分别绕所述三维坐标系的Y轴逆时针旋转15°和30°以及顺时针旋转15°和30°进行了仿真,等效于在图5所示意的所述改进型天线的结构基础上,将所述单极子天线10分别绕所述三维坐标系的Y轴顺时针旋转15°和30°以及逆时针旋转15°和30°,相应所述改进型天线在相对于所述单极子天线10呈现明显的定向辐射特性的同时,该定向辐射方向相对于所述三维坐标系的X轴负向具有一定的角度偏转,同时所述改进型天线在定向辐射方向的辐射增益也在8dBi以上,仍具有明显的实用价值。并佐证了将所述第二圆锥104在XOZ面的截面的顶角θ2和所述第三圆锥105在XOZ面的截面的顶角θ3设定满足θ2=θ3≤60°的合理性。同时验证了基于所述电场隔离体20与所述单极子天线10之间的位置关系的调整形成对所述改进型天线的波束偏转角度的调整的可行性,以使得所述改进型天线能够满足不同的探测要求而具有更好的适用性。
可以理解的是,基于调节所述电场隔离体20的形态和/或与所述单极子天线10之间的位置关系的目的,在本发明的一些结构示例中,所述电场隔离体20的形态被可调地设置,具体对应于图8和图9以分体形态被设置而能够基于各分体之间的相对活动形成对所述电场隔离体20的形态调节,如对应于图8基于各分体之间的相对旋转活动形成对所述电场隔离体20的形态调节,或对应于图9基于各分体之间的相对平移活动形成对所述电场隔离体20的形态调节,相应所述改进型天线在相对于所述单极子天线10呈现明显的定向辐射特性的同时,该定向辐射方向基于所述电场隔离体20的形态变化相对于所述三维坐标系的X轴负向具有一定的角度偏转,同时所述改进型天线在定向辐射方向的辐射增益也在8.8dBi以上。同时验证了基于所述电场隔离体20形态调整形成对所述改进型天线的波束偏转角度的调整的可行性,以使得所述改进型天线能够满足不同的探测要求而具有更好的适用性。
进一步参考本发明的说明书附图之图10所示,在图5所示意的所述改进型天线的结构基础上,以半球形态的金属层/面板被设置的所述电场隔离体20进一步于该半球体内部设置有平行于所述三维坐标系的YOZ面的导电面,相应所述改进型天线相对于图5所示意的所述改进型天线在带宽上被明显的窄化,并当所述电场隔离体20的被该导电面截取的后向 部分被摘除而呈现出对应于图11所示意的结构时,相应所述改进型天线在带宽上相对于图10所示意的所述改进型天线无明显变化,即相对于图5所示意的所述改进型天线被明显窄化。也就是说,在所述前向集束面21于所述单极子天线的电抗场沿该电抗场方向的尺寸和与所述单极子天线之间的距离满足前述要求的基础上,还能够基于所述电场隔离体20的形态调整和/或与所述单极子天线10之间的位置关系的调整形成对所述改进型天线的频带宽度的调整,对应使得所述改进型天线能够满足不同的探测要求而具有更好的适用性。
进一步参考本发明的说明书附图之图12所示,在图5所示意的所述改进型天线的结构基础上,以半球形态的金属层/面板被设置的所述电场隔离体20被替换为弧形形态的金属层/面板,其中弧形形态的所述电场隔离体20具体在平行所述三维坐标系的XOY面的截面呈弧形,并具有满足前述要求的所述前向集束面21,相应所述改进型天线在相对于所述单极子天线10呈现明显的定向辐射特性的同时,该定向辐射方向相对于所述三维坐标系的X轴负向具有一定的角度偏转,进一步验证了基于所述电场隔离体20形态调整形成对所述改进型天线的波束偏转角度的调整的可行性,以使得所述改进型天线能够满足不同的探测要求而具有更好的适用性。
值得一提的是,在所述改进型天线相对于所述单极子天线10呈现明显的定向辐射特性,并且该定向辐射方向相对于所述三维坐标系的X轴负向具有一定的角度偏转时,所述改进型天线的实际产品形态可选地对应于图13以所述改进型天线的后向方向(所述三维坐标系的X轴正向)朝向相应安装位的方式被侧装于该安装位上,并以所述单极子天线10的所述馈电端12至所述开放端11的连线朝向地面方位状态被设置,如此以使得所述改进型天线的探测方向侧向偏向地面,一方面能够利用多普勒效应对微波辐射方向的动作的高敏感度提高所述改进型天线在实际应用中的探测精度和准确度,和利用多普勒效应对垂直于微波辐射方向的动作的低敏感度提高所述改进型天线在实际应用中的抗风雨干扰能力;另一方面还能够利用所述改进型天线的后向拒止特性,降低所述改进型天线在实际应用中受到后向空间的雨水、蚊虫、落叶、飞雪等微小活动物体干扰的概率,进而提高所述改进型天线在实际应用中的抗干扰性能,尤其是在户外使用环境下的抗干扰性能。
值得一提的是,在本发明的这些结构示例中,所述单极子天线10以传统柱状天线被示意,其并不构成对本发明的所述单极子天线10的结构限制,所述单极子天线10可以被实施为柱状导线,包括但不限于径直的柱状导线、弯折的柱状导线以及螺旋形柱状导线,也可以被实施为承载于电路基板的带状导线,包括但不限于电路基板上具有均匀宽度的带状导线和具有渐变宽度的带状导线。
示例地,所述单极子天线10还能够对应于图14A弯折的柱状导线,对应所述改进型天线还包括所述电路基板30和承载于所述电路基板30的所述参考地面40,其中所述单极子天线10以弯折形态的柱状导线被设置和被插接固定于所述电路基板30,对应所述单极子天线10的远离所述参考地面40的一端为所述开放端11,和插接固定于所述电路基板30的一端为所述馈电端12,并且所述单极子天线10的界定于所述开放端11和所述馈电端12之间的长度在20%的误差内趋于λ/4。
进一步地,在图14A所示意的所述单极子天线10的结构基础上,所述单极子天线10还能够基于接地设计采用图14B所示意的结构,对应所述改进型天线还包括电连接于所述 参考地面40和所述单极子天线10之间的一接地线50。
进一步示例地,所述单极子天线10还能够对应于图14C被实施为螺旋天线,对应所述改进型天线还包括所述电路基板30和承载于所述电路基板30的所述参考地面40,其中所述单极子天线10以螺旋形态的柱状导线被设置和被插接固定于所述电路基板30,对应所述单极子天线10的远离所述参考地面40的一端为所述开放端11,和插接固定于所述电路基板30的一端为所述馈电端12,并且所述单极子天线10的界定于所述开放端11和所述馈电端12之间的长度在20%的误差内趋于λ/4。
此外,所述单极子天线10还能够对应于图14D和图14E被实施为馈电连接于同轴馈电线的柱状导线,包括图14D所示意的径直的柱状导线,和图14E所示意的螺旋形态的柱状导线,对应所述单极子天线10的开放端11为该柱状导线的自由端,所述单极子天线10的馈电端12为该柱状导线的与该同轴馈电线相连的一端。
进一步地,所述单极子天线10还能够被实施为承载于电路基板的带状导线,包括但不限于电路基板上具有均匀宽度的带状导线和具有渐变宽度的带状导线,其中当该电路基板对应于图15A和图15B进一步于该带状导线的两侧分别承载有参考地导体的状态,该带状导线的位于参考地导体之间的部分与该参考地导体等效构成图14D和14E中的同轴馈电线,则所述单极子天线10的开放端11为该带状导线的自由端,所述单极子天线10的馈电端12为该带状导线的与该同轴馈电线相连的一端。
同理,在所述单极子天线10被实施为承载于电路基板的带状导线的状态,该带状导线同样能够被实施为弯折的带状导线,例如被弯折呈图14A所示意的倒“L”型,并能够同12B所示意的所述单极子天线10采用接地设计而将所述接地线50同样实施为承载于该电路基板的带状导线。
可以理解的是,所述电场隔离体20和所述单极子天线10的具体形态并不构成对本发明的限制,只要所述电场隔离体20具有满足前述要求的所述前向集束面21即可。例如,在本发明的所述改进型天线的这些结构示例中,不同形态的所述电场隔离体20能够与图14A至图15B所示意的所述单极子天线10及其变形结构相互组合。
例如在图16所示意的所述改进型天线的结构示例中,所述电场隔离体20同图5以半球形态的金属层/面板被设置,相应所述单极子天线10则对应于图14D所示意的所述单极子天线10的弯折变形结构。对应在图16所示意的所述改进型天线的结构示例中,所述单极子天线10被实施为馈电连接于同轴馈电线并相对于该同轴馈电线弯折的柱状导线,其中该同轴馈电线优选地被固定于所述电场隔离体20,以固定所述单极子天线10与所述电场隔离体20之间的相对位置而有利于保障所述改进型天线的稳定性。
又例如在图17所示意的所述改进型天线的结构示例中,在图12所示意的所述改进型天线的结构基础上,以弧形形态的金属层/面板被设置的所述电场隔离体20进一步具有位于所述单极子天线10的所述开放端11至所述馈电端12指向(所述三维坐标系的Z轴负向指向)的延伸部分,具体在在图17所示意的所述改进型天线的结构示例中,该延伸部分以位于所述单极子天线10的所述开放端11至所述馈电端12指向并与该指向趋于垂直的金属层/面板形态被设置。
值得一提的是,在本发明的所述改进型天线的这些结构示例中,所述单极子天线10的 数量为一个,其中所述单极子天线10的数量并不构成对所述改进型天线的限制。也就是说,在本发明所述改进型天线的一些结构中,所述改进型天线的所述单极子天线10的数量可以是多个,本发明对此并不限制。
例如,在所述单极子天线10的数量为多个的状态,多个所述单极子天线10能够被阵列布置,以基于所述单极子天线10的相应的阵列布局满足所述改进型天线的相应结构和性能要求。其中同一所述改进型天线中,所述电场隔离体20相对于任一所述单极子天线10均能够形成满足前述要求的所述前向集束面21。
示例地,对应于图18,在所述单极子天线10的数量为多个的状态,多个所述单极子天线10以各所述单极子天线10的所述开放端11与所述馈电端12的连线趋于平行的状态被阵列布置,具体在图18中以各所述单极子天线10的所述开放端11与所述馈电端12的连线趋于重合的状态被阵列布置,相应所述电场隔离体20以纵剖的椭圆形/胶囊形导电层形态被示意,以使得所述电场隔离体20相对于任一所述单极子天线10均能够形成满足前述要求的所述前向集束面21。
示例地,参考本发明的说明书附图之图19A至图19C所示,在所述单极子天线10的数量为多个的状态,例如所述单极子天线10的数量为两个,且各所述单极子天线10以传统柱状天线被设置的状态,所述改进型天线可选地对应于图19A还包括一个所述电路基板30和承载于所述电路基板30的一个或两个所述参考地面40,其中在两所述单极子天线10的两所述开放端11位于所述电路基板30的两相对侧的状态,两所述单极子天线10以径直的柱状导线被设置和被插接固定于所述电路基板30,以形成两所述单极子天线10共用所述电路基板30,或进一步共用所述参考地面40的结构双柱状天线结构,相应所述改进型天线既可以独立作为发射天线或接收天线,也可以以其中一所述单极子天线10作为发射天线和以另一所述单极子天线10作为接收天线,还可以以两所述单极子天线10同时作为发射天线和接收天线,本发明对此并不限制。
可以理解的是,在所述单极子天线10的数量为两个,且各所述单极子天线10以传统柱状天线被设置的状态,两所述单极子天线10还能够分别被独立设置,例如在各所述单极子天线10以传统柱状天线被设置的状态,所述改进型天线可选地还包括两所述电路基板30和承载于各所述电路基板30的一个所述参考地面40,其中两所述单极子天线10以径直的柱状导线被设置和被插接固定于不同的所述电路基板30。
进一步地,在所述单极子天线10的数量为两个,且各所述单极子天线10被实施为馈电连接于同轴馈电线的柱状导线时,两所述单极子天线10可选地对应于图19B被正交设置,对应各所述单极子天线10的开放端11为相应柱状导线的自由端,各所述单极子天线10的馈电端12为相应柱状导线中与同轴馈电线相连的一端,且其中一所述单极子天线10的所述开放端11和所述馈电端12的连线垂直于另一所述单极子天线10的所述开放端11和所述馈电端12的连线,相应所述改进型天线既可以独立作为发射天线或接收天线,也可以以其中一所述单极子天线10作为发射天线和以另一所述单极子天线10作为接收天线,还可以以两所述单极子天线10同时作为发射天线和接收天线,本发明对此并不限制。
值得一提的是,在两所述单极子天线10对应于图19B被正交设置的状态,两所述单极子天线10进一步可选地基于相应的馈电设计被圆极化设置,本发明对此并不限制。
进一步地,在所述单极子天线10的数量为两个,且各所述单极子天线10被实施为承载于电路基板的带状导线的状态,两所述单极子天线10可选地对应于图19C被实施为承载于同一电路基板的两带状导线,并且两所述单极子天线10可选地对应于图19C被正交设置,对应其中一所述单极子天线10的所述开放端11和所述馈电端12的连线垂直于另一所述单极子天线10的所述开放端11和所述馈电端12的连线,相应所述改进型天线既可以独立作为发射天线或接收天线,也可以以其中一所述单极子天线10作为发射天线和以另一所述单极子天线10作为接收天线,还可以以两所述单极子天线10同时作为发射天线和接收天线,本发明对此并不限制。
值得一提的是,所述电场隔离体20的形态多样,只要所述电场隔离体20具有满足前述要求的所述前向集束面21即可,并优选地进一步具有满足前述要求的所述后向拒止面22,相应所述电场隔离体20的具体形态并不构成对本发明的限制,并且所述电场隔离体20可以是独立的导体,如金属体和具有导电特性的非金属体(如具有导电特性的碳基材料),也可以是承载于绝缘材料的导体,如通过电镀、喷涂、掺杂等工艺在绝缘材料上形成的导体,还可以是基于不同材料间的相互作用形成的具有导电特性的导体,如基于对半导体的掺杂形成的导体,本发明对此不做限制。
进一步参考本发明的说明书附图之图20A至图20C所示,所述电场隔离体20进一步具有至少一环形槽,以基于所述环形槽的设置形成至少一级扼流圈而进一步抑制所述改进型天线在后向空间的辐射能量。
具体地,对应于图20A,在图5所示意的所述改进型天线的结构基础上,所述电场隔离体20进一步具有一个所述环形槽,其中所述环形槽绕所述三维坐标系的X轴形成于所述电场隔离体20并以X轴径向为槽口朝向,相应所述改进型天线在辐射方向图上相对于图5所示意的所述改进型天线具有被明显抑制的后向辐射能量。
对应于图20B,在图5所示意的所述改进型天线的结构基础上,所述电场隔离体20进一步具有一个所述环形槽,其中所述环形槽绕所述三维坐标系的X轴形成于所述电场隔离体20并以X轴负向为槽口朝向,相应所述改进型天线在辐射方向图上相对于图5所示意的所述改进型天线同样具有被明显抑制的后向辐射能量。
对应于图20C,在图5所示意的所述改进型天线的结构基础上,所述电场隔离体20进一步具有一个所述环形槽,其中所述环形槽绕所述三维坐标系的X轴形成于所述电场隔离体20并以X轴正向为槽口朝向,相应所述改进型天线在辐射方向图上相对于图5所示意的所述改进型天线同样具有被明显抑制的后向辐射能量。
值得一提的是,在所述电场隔离体20具有满足前述要求的所述前向集束面21的状态,所述改进型天线的辐射方向图在前向定向辐射方向呈现出被明显集束强化的辐射波束,和在后向空间呈现出低后瓣甚至无正后瓣的辐射特性,因而有利于保障所述改进型天线在前向定向辐射方向的探测灵敏度,和基于天线的收发互易特性实现所述改进型天线对后向空间的电磁辐射的接收拒止。也就是说,所述改进型天线既可独立作为发射天线或接收天线,也可以作为收发一体的天线,并在独立作为发射天线或接收天线,或在作为收发一体的天线的状态,均相对于独立的所述单极子天线10具有明显的优势。因此,多个数量的所述改进型天线能够相互组合以实现收发分离或阵列式的天线布局,本发明对此并不限制。
例如,为实现所述改进型天线的阵列式布局,满足前述要求的所述电场隔离体20的所述前向集束面21的阵列式布局可选地被布置为同一金属层上的多个凹坑的坑面,如基于冲压延伸的方式在该金属层形成的凹坑的坑面;或对应于图21A被布置为同一板材上的多个凹槽的槽面,如基于钻孔的方式在该板材上形成的多个凹槽的槽面,其中该板材可以是金属板材,也可以在非金属板材状态通过电镀或喷涂工艺的导电槽面;或对应于图21B基于不同板材的组合形成满足前述要求的所述电场隔离体20的所述前向集束面21的阵列式布局,如基于同一金属板材上的开孔和贴附于该金属板材的一面的金属层或覆铜电路板形成的多个凹槽的槽面,本发明对此并不限制,并且以此类方式实现所述改进型天线的阵列式布局尤其适用于阵列式的所述改进型天线在60G/77G/120G/240G甚至更高频率下的小型化与微形化形态与工艺。
此外,在所述单极子天线10被实施为承载于电路基板的带状导线的状态,为实现所述改进型天线的阵列式布局,满足前述要求的所述电场隔离体20的所述前向集束面21的阵列式布局可选地对应于图22被布置为同一板材上的多个凹槽的槽面,如基于钻孔的方式在该板材上形成的多个凹槽的槽面,其中该板材可以是金属板材,也可以在非金属板材状态通过电镀或喷涂工艺的导电槽面,其中被承载于电路基板的所述单极子天线10可选地对应于图22自所述前向集束面21的后向穿过所述前向集束面21地被装配设置,本发明对此亦不做限制。
值得一提的是,基于满足前述要求的所述电场隔离体20的设置,所述改进型天线在辐射方向图上呈现出低后瓣甚至无正后瓣的辐射特性而具有对后向空间的电磁辐射的接收拒止特性。因此,当所述改进型天线采用阵列式布局时,各所述改进型天线之间的隔离能够被保障而减少甚至避免阵列式分布的各所述改进型天线之间出现相互干扰的情况,如此以能够基于所述改进型天线的阵列式布局,在分时工作机制下,形成分角度/方向/甚至360°的区域覆盖,进而实现波束圆周式或/和重叠式的集中扫描和探测,因而能够以分角度/分区的方式应用于对目标进行多角度/方向的侦测场景,如对人体或者肢体的分角度/多角度/360°旋转式的立体扫描探测。
也就是说,对所述单极子天线10而言,在同一电路板上,多天线的阵列布局无法实现在立体空间分角度/区域的探测,并且多天线的阵列布局会形成后瓣之间的交叉而使得各天线之间的隔离度较差,易造成严重的信号串扰问题。但对于本发明的所述改进型天线而言,由于所述改进型天线在辐射方向图上呈现出低后瓣甚至无正后瓣的辐射特性而具有对后向空间的电磁辐射的接收拒止特性,所述改进型天线的阵列布局能够在立体空间实现分时/分角度/分区间的探测,并且各所述改进型天线之间具有良好的隔离度而能够抑制相互之间的信号串扰,进而保障分时/分角度/分区间的探测性能。
示例地,如图23A至23C所示,在至少两个所述单极子天线10在同一电路板上被阵列排布时,基于满足前述要求的相应所述电场隔离体20的设置,能够形成所述改进型天线的阵列布局,进而通过波束合成形成180°甚至360°大范围探测,或在空间范围进行分时/分角度/分区的探测,其中在进行分时/分角度/分区探测时,由于所述改进型天线在辐射方向图上呈现出低后瓣甚至无正后瓣的辐射特性而具有对后向空间的电磁辐射的接收拒止特性,各所述改进型天线之间具有良好的隔离度而能够抑制相互之间的信号串扰。
例如,对应于图23A,当两个所述单极子天线10在同一电路板上被阵列排布,并基于满足前述要求的相应所述电场隔离体20的设置形成两所述改进型天线具有相互垂直的定向辐射方向的阵列布局时,既可以通过波束合成形成趋于180°的大范围探测,也可以在180°空间范围进行分时/分角度/分区的探测,并在进行分时/分角度/分区探测时,基于所述改进型天线具有对后向空间的电磁辐射的接收拒止特性,两所述改进型天线之间具有良好的隔离度而能够抑制相互之间的信号串扰。
对应于图23B,当四个所述单极子天线10在同一电路板上被阵列排布,并基于满足前述要求的相应所述电场隔离体20的设置形成四个所述改进型天线具有等角度排布的定向辐射方向的阵列布局时,可以在360°空间范围实现分时/分角度/分区的探测,并在进行分时/分角度/分区探测时,基于所述改进型天线具有对后向空间的电磁辐射的接收拒止特性,四个所述改进型天线之间具有良好的隔离度而能够抑制相互之间的信号串扰。
对应于图23C,当四个所述单极子天线10在同一电路板上被阵列排布,并基于满足前述要求的相应所述电场隔离体20的设置形成四个所述改进型天线的阵列布局满足四个所述改进型天线的定向辐射波束绕360°的空间范围具有同一重叠空间时,可以在360°空间范围形成定向辐射波束的圆周式或/和重叠式的集中扫描和探测,因而能够以分角度/分区的方式应用于对目标进行多角度/方向的侦测场景,如对人体或者肢体的分角度/多角度/360°旋转式的立体扫描探测。
值得一提的是,当至少两个所述单极子天线10在同一电路板上被阵列排布,并基于满足前述要求的相应所述电场隔离体20的设置形成所述改进型天线的阵列布局时,各所述改进型天线可以分别由不同的微波芯片通过芯片级联方式连接,也可以通过同一微波芯片进行分时/分角度/分区驱动与探测。
本领域的技术人员可以理解的是,以上实施例仅为举例,其中不同实施例的特征可以相互组合,以得到根据本发明揭露的内容很容易想到但是在附图中没有明确指出的实施方式。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (15)

  1. 一种单极子天线的前向集束和后向空间拒止的改进型天线,其特征在于,包括:
    至少一单极子天线,所述单极子天线以条形导体形态被设置而具有一开放端并自所述开放端延伸而具有一馈电端,其中所述馈电端为所述单极子天线接入馈电信号的一端,并沿条形导体形态的所述单极子天线与所述开放端之间具有大于等于λ/8且小于等于3λ/8的长度,其中λ为与所述馈电信号的频率相对应的波长参数;和
    一电场隔离体,其中所述电场隔离体以导电材料被设置并具有一前向集束面,其中以一个三维坐标系的原点O为球心和以一第一半径R1为半径界定一第一球面,以该三维坐标系的原点O为球心和以大于R1的一第二半径R2为半径界定一第二球面,以该三维坐标系的原点O为顶点和以正向X轴为轴界定一第一圆锥,以该三维坐标系的原点O为顶点和以正向Z轴为轴界定一第二圆锥,以该三维坐标系的原点O为顶点和以负向Z轴为轴界定一第三圆锥,其中所述第一圆锥在XOZ面的截面的顶角为θ1,所述第二圆锥在XOZ面的截面的顶角为θ2,所述第三圆锥在XOZ面的截面的顶角为θ3,定义由所述第一球面,所述第二球面以及所述第一圆锥的内侧面共同界定的空间为第一空间,定义由所述第一球面和所述第二圆锥的内侧面共同界定的空间为第二空间,定义由所述第一球面和所述第三圆锥的内侧面共同界定的空间为第三空间,其中所述单极子天线的所述开放端和所述馈电端分别位于所述第二空间和所述第三空间,所述前向集束面具有被所述第一空间截取的第一截面,并在所述第一圆锥以所述第一截面为底面的状态,该底面能够独立形成对所述第一圆锥内部以所述三维坐标系的原点O为源点,角度为46°的圆锥形光束的遮挡,其中在λ/8≤R1<R2<3λ/4,θ1≥120°以及θ2=θ3≤60°的范围设定R1,R2,θ1以及θ2和θ3的取值,如此以在定义以该三维坐标系的YOZ面为界朝向X轴负向的空间为所述改进型天线的前向空间时,所述改进型天线在辐射方向图上具有在前向空间相对于所述单极子天线被集束强化的辐射波束而呈现出前向定向辐射特性。
  2. 根据权利要求1所述的改进型天线,其中所述改进型天线还包括一电路基板和承载于所述电路基板的一参考地面,其中所述单极子天线以自所述开放端延伸的柱状导线被设置和被插接固定于所述电路基板,对应所述单极子天线的插接固定于所述电路基板的一端为所述馈电端,并且所述开放端和所述馈电端之间的距离对应于所述单极子天线的长度在20%的误差内趋于λ/4。
  3. 根据权利要求2所述的改进型天线,其中所述单极子天线以弯折的柱状导线形态被设置而呈倒“L”型。
  4. 根据权利要求3所述的改进型天线,其中所述改进型天线还包括一接地线,其中所述接地线电连接于所述参考地面和所述单极子天线之间。
  5. 根据权利要求2所述的改进型天线,其中所述单极子天线的数量为两个,两所述单极子天线以两所述开放端位于所述电路基板的两相对侧的状态被插接固定于所述电路基板。
  6. 根据权利要求1所述的改进型天线,其中所述单极子天线以自所述开放端延伸柱状导线被设置和被馈电连接于一同轴馈电线,对应所述单极子天线的馈电端为该柱状导线的与该同轴馈电线相连的一端。
  7. 根据权利要求6所述的改进型天线,其中以柱状导线被设置的所述单极子天线相对于该同轴馈电线被弯折设置。
  8. 根据权利要求1所述的改进型天线,其中所述单极子天线被实施为承载于电路基板的带状导线。
  9. 根据权利要求1所述的改进型天线,其中所述单极子天线的数量为多个,多个所述单极子天线被阵列布置。
  10. 根据权利要求1所述的改进型天线,其中R1=λ/4,R2=λ/2,θ1=120°,且θ2=θ3=60°。
  11. 根据权利要求1或10所述的改进型天线,其中所述单极子天线的所述开放 端和所述馈电端均位于所述三维坐标系的Z轴。
  12. 根据权利要求10所述的改进型天线,其中以该三维坐标系的原点O为顶点和以负向X轴为轴界定一第四圆锥,其中所述第四圆锥在XOZ面的截面的顶角θ4满足θ4≥120°,定义由所述第一球面,所述第二球面以及所述第四圆锥的外侧面共同界定的空间为第四空间,其中所述电场隔离体位于所述第四空间内。
  13. 根据权利要求11所述的改进型天线,其中所述电场隔离体还具有在所述前向集束面后向的一后向拒止面,其中所述后向拒止面具有被所述第一空间截取的第二截面,并在所述第一圆锥以所述第二截面为底面的状态,该底面能够独立形成对所述第一圆锥外部以所述三维坐标系的原点O为源点,角度为46°的圆锥形光束的遮挡。
  14. 根据权利要求13所述的改进型天线,其中所述前向集束面和所述后向拒止面分别形成于半球形态的金属层的内表面和外表面。
  15. 根据权利要求11所述的改进型天线,其中所述电场隔离体进一步具有至少一环形槽,以基于所述环形槽的设置形成至少一级扼流圈而抑制所述改进型天线在后向空间的辐射能量。
PCT/CN2023/138856 2022-12-16 2023-12-14 一种单极子天线的前向集束和后向空间拒止的改进型天线 WO2024125607A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211627781.8 2022-12-16
CN202211627781 2022-12-16
CN202311626539 2023-11-29
CN202311626539.3 2023-11-29

Publications (1)

Publication Number Publication Date
WO2024125607A1 true WO2024125607A1 (zh) 2024-06-20

Family

ID=89751320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/138856 WO2024125607A1 (zh) 2022-12-16 2023-12-14 一种单极子天线的前向集束和后向空间拒止的改进型天线

Country Status (2)

Country Link
CN (1) CN117525840A (zh)
WO (1) WO2024125607A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117525840A (zh) * 2022-12-16 2024-02-06 深圳迈睿智能科技有限公司 一种单极子天线的前向集束和后向空间拒止的改进型天线

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102637947A (zh) * 2012-04-28 2012-08-15 东南大学 避雷反射式高强度双波段定向天线
CN103414021A (zh) * 2013-08-22 2013-11-27 中国航天科工集团第三研究院第八三五七研究所 不需要旋转关节的360°扫描天线
CN112421236A (zh) * 2020-10-14 2021-02-26 西安电子科技大学 一种沿载体表面定向辐射的共面天线
US20210305716A1 (en) * 2020-03-27 2021-09-30 Airbus Sas End-fire wideband directional antenna
CN117525840A (zh) * 2022-12-16 2024-02-06 深圳迈睿智能科技有限公司 一种单极子天线的前向集束和后向空间拒止的改进型天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102637947A (zh) * 2012-04-28 2012-08-15 东南大学 避雷反射式高强度双波段定向天线
CN103414021A (zh) * 2013-08-22 2013-11-27 中国航天科工集团第三研究院第八三五七研究所 不需要旋转关节的360°扫描天线
US20210305716A1 (en) * 2020-03-27 2021-09-30 Airbus Sas End-fire wideband directional antenna
CN112421236A (zh) * 2020-10-14 2021-02-26 西安电子科技大学 一种沿载体表面定向辐射的共面天线
CN117525840A (zh) * 2022-12-16 2024-02-06 深圳迈睿智能科技有限公司 一种单极子天线的前向集束和后向空间拒止的改进型天线

Also Published As

Publication number Publication date
CN117525840A (zh) 2024-02-06

Similar Documents

Publication Publication Date Title
CN105226400B (zh) 一种宽带双极化相控阵天线及全极化波束形成方法
KR100873100B1 (ko) 전방향성으로 방사되는 전자기파를 수신/송신하는 디바이스
WO2024125607A1 (zh) 一种单极子天线的前向集束和后向空间拒止的改进型天线
WO2018094660A1 (zh) 天线组件及无人飞行器
US6677913B2 (en) Log-periodic antenna
WO2024125608A1 (zh) 一种双极子天线的前向集束和后向空间拒止的改进型天线
WO2001031746A1 (en) Steerable-beam multiple-feed dielectric resonator antenna of various cross-sections
CN106129593A (zh) 一种二维宽角度扫描的全金属相控阵雷达天线单元
CN215771547U (zh) 收发分离的半波回折式定向微波探测天线
WO2019090927A1 (zh) 天线单元及天线阵列
WO2023092469A1 (zh) 一种天线装置
CN207852911U (zh) 一种基于连续波相控阵的带状线天线阵
CN213366792U (zh) 一种基片集成圆极化电磁辐射结构及阵列
CN104362437A (zh) S频段单脉冲自跟踪天线系统
CN110571508A (zh) 一种宽带集成天线
CN102820528B (zh) 一种雷达天线以及雷达系统
CN209056611U (zh) 基于扼流槽和非均匀覆盖层的全金属fp谐振腔天线
CN221328118U (zh) 一种单极子天线的前向集束和后向空间拒止的改进型天线
CN216563519U (zh) 空间交错式一体收发分离微波探测天线
CN102820529B (zh) 一种雷达天线以及雷达系统
CN205680784U (zh) Z字形交叉缝隙圆极化背腔天线
CN114447589A (zh) 一种基片集成圆极化电磁辐射结构及阵列
CN113054418A (zh) 一种堆叠式微带天线阵
CN111370851A (zh) 一种赋形宽波束圆极化天线
Erni et al. Design and implementation of a 3D beam steering antenna for cellular frequencies