WO2024125351A1 - 一种用于生产热水的太阳能热利用系统 - Google Patents

一种用于生产热水的太阳能热利用系统 Download PDF

Info

Publication number
WO2024125351A1
WO2024125351A1 PCT/CN2023/136568 CN2023136568W WO2024125351A1 WO 2024125351 A1 WO2024125351 A1 WO 2024125351A1 CN 2023136568 W CN2023136568 W CN 2023136568W WO 2024125351 A1 WO2024125351 A1 WO 2024125351A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
hot water
collection
heat exchange
circulation pipe
Prior art date
Application number
PCT/CN2023/136568
Other languages
English (en)
French (fr)
Inventor
罗载任
冉瑞琼
彭文彬
王海勇
王振
尚宝虎
Original Assignee
玟能(成都)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 玟能(成都)科技有限公司 filed Critical 玟能(成都)科技有限公司
Publication of WO2024125351A1 publication Critical patent/WO2024125351A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • F24S60/30Arrangements for storing heat collected by solar heat collectors storing heat in liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • F24S10/45Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors the enclosure being cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/74Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits are not fixed to heat absorbing plates and are not touching each other
    • F24S10/744Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits the tubular conduits are not fixed to heat absorbing plates and are not touching each other the conduits being helically coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/71Arrangements for concentrating solar-rays for solar heat collectors with reflectors with parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/40Arrangements for controlling solar heat collectors responsive to temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • the present application belongs to the technical field of solar energy utilization, and in particular to a solar energy utilization system for producing hot water.
  • Solar panels directly use sunlight to generate electricity, converting light energy into electrical energy, and are widely used.
  • the conversion efficiency of solar panels is not high, with a normal conversion efficiency of 15%-20%.
  • solar panels are expensive, and the electricity they generate cannot be stored unless additional investment is made to install energy storage batteries. Therefore, there are still many problems that need to be solved in solar panel products.
  • Solar cookers are another way to utilize solar energy. People have designed various solar cookers, such as box-type, flat-plate type, and concentrating type. Solar cookers can directly convert light energy into heat and cook food, but users need to operate them manually under the hot sun, which reduces users' enthusiasm for using the product. In addition, solar cookers are idle when not cooking, and their overall utilization rate is low.
  • solar water heater which uses vacuum tubes or other heat collection devices to collect heat.
  • This is a relatively effective way to utilize solar energy, but this type of solar water heater has high requirements for water quality.
  • the minerals or impurities in the water exceed a certain proportion, the system often reduces efficiency due to the precipitation of impurities, or even fails to work properly.
  • the water heater cannot be used normally because the water in the pipe is easy to freeze.
  • the maintenance cost of the solar water heater is also high, and the function is single, so it cannot be used for other functions such as heating.
  • the purpose of this application is to provide a solar energy utilization system for producing hot water, which introduces the heat energy of solar energy into the room for users to use.
  • the system has low production cost and high efficiency. It has high efficiency and is easy to implement. It can be used in various weather conditions with external power backup energy to maximize the use of solar energy.
  • the present application embodiment provides a solar energy utilization system for producing hot water, comprising:
  • An automatic tracking and concentrating device that can track the sun and concentrate light
  • An outdoor heating heat collecting device which is arranged above the automatic tracking and concentrating device and is capable of converting and absorbing the heat energy of the sunlight collected by the automatic tracking and concentrating device to heat a heat transfer medium;
  • a heat transfer device and a heat collection and storage device wherein the heat transfer device is connected to the outdoor heating and heat collection device and the heat collection and heat storage device, and the heat transfer device transfers the heat transfer medium heated in the outdoor heating and heat collection device to the heat collection and heat storage device for heat exchange;
  • the heat collection and storage device can absorb and store the heat energy in the heat transfer medium transferred from the outdoor heating heat collection device
  • An indoor heat application device which is connected to the heat collection and storage device and applies the heat energy
  • a control device is connected to the automatic tracking and focusing device, the outdoor heating and heat collecting device, the heat transfer device, the heat collecting and heat storing device and the indoor heat application device.
  • the automatic tracking and focusing device comprises:
  • a vertical motion assembly one end of which is connected to the parabolic reflective condenser, and the other end of which is connected to the rotating bracket, and the vertical motion assembly can drive the parabolic reflective condenser to rotate around the transverse rod of the rotating bracket;
  • a first gear connected to a vertical rod of the rotating bracket, wherein the vertical rod of the rotating bracket can rotate around its own axis;
  • a bracket on which a rotating shaft parallel to the vertical rod of the rotating bracket is arranged, and on which a second gear meshing with the first gear is arranged;
  • a first connecting rod and a horizontal electric telescopic rod the edge of the second gear is radially connected to one end of the first connecting rod horizontally arranged, the other end of the first connecting rod is hinged to one end of the horizontal electric telescopic rod, the other end of the horizontal electric telescopic rod is hinged to a third connecting rod arranged on the bracket, and the third connecting rod makes the horizontal electric telescopic rod in a horizontal plane.
  • the vertical motion assembly includes a vertical electric telescopic rod and a second connecting rod, one end of the vertical electric telescopic rod is hinged to the bottom of the parabolic reflective condenser, and the other end is hinged to the second connecting rod, one end of the second connecting rod is connected to the vertical rod of the rotating bracket, and the vertical electric telescopic rod is hinged to the bottom of the parabolic reflective condenser.
  • the movable telescopic rod is extended and retracted to drive the parabolic reflective condenser to rotate around the transverse rod of the rotating bracket.
  • the automatic tracking and concentrating device also includes a solar photosensitive element, a tracking controller and a first power supply, all of which are electrically connected to the control device.
  • the solar photosensitive element is connected to the parabolic reflective concentrator to monitor the intensity of sunlight in real time.
  • the solar photosensitive element is connected to the tracking controller, and the tracking controller controls the vertical electric telescopic rod and the horizontal electric telescopic rod.
  • the first power supply is connected to the tracking controller to provide power for the tracking controller.
  • the outdoor heating heat collection device comprises:
  • a high temperature resistant heat preservation container which is arranged at the focusing point of the automatic tracking focusing device
  • a metal spiral heat exchange tube which is arranged in the high temperature resistant heat preservation container
  • a glass cover is arranged at the bottom of the high temperature resistant heat preservation container, and the sunlight gathered upward by the automatic tracking and focusing device can pass through the glass cover into the high temperature resistant heat preservation container and exchange heat with the heat transfer medium in the metal spiral heat exchange tube;
  • the outlet of the metal spiral heat exchange tube is connected to the high-temperature inlet of the heat collection and storage device through the heat transfer device, and the inlet of the metal spiral heat exchange tube is connected to the low-temperature outlet of the heat collection and storage device through the heat transfer device.
  • the heat transfer device comprises a first heat circulation pipe, a second heat circulation pipe and a first circulation pump, one end of the first heat circulation pipe is connected to the outlet of the metal spiral heat exchange pipe, and the other end is connected to the high temperature inlet;
  • the first circulation pump is arranged on the second heat circulation pipe, and one end of the first circulation pump is connected to the low-temperature outlet of the heat collection and heat storage device, and the other end is connected to the inlet of the metal spiral heat exchange pipe.
  • the first circulation pump is connected to the control device.
  • the heat transfer device further includes a one-way valve, which is disposed on the first heat circulation pipe and located between the outdoor heating heat collection device and the heat collection and storage device.
  • the heat collection and storage device comprises:
  • a heat preservation box body on which a first interface and a second interface are provided;
  • An insulation board is arranged inside the heat preservation box, and the angle ⁇ between the insulation board and the horizontal plane is 0-75°.
  • the insulation board divides the heat preservation box into an upper hot water storage chamber and a lower heat exchange chamber.
  • the first interface is located at the top of the hot water storage chamber and is connected to the inlet of the indoor heat application device.
  • the indoor heat application device supplies heat to the room, and its outlet is connected to the heat exchange chamber through the second interface, and the second interface is connected to an external water source;
  • the indoor heat application device supplies hot water to the room, and the second interface is connected to an external water source;
  • a heat-insulating hot water conduit the bottom end of which is connected to the top of the heat exchange chamber, and the top end of which is connected to the top of the hot water storage chamber;
  • An insulated cold water conduit the bottom end of which is connected to the bottom of the heat exchange chamber, and the top end of which is connected to the bottom of the hot water storage chamber;
  • a heat exchange tube is arranged in the heat exchange cavity, the heat exchange tube is connected to the first heat circulation tube via the high temperature inlet, and the heat exchange tube is connected to the second heat circulation tube via the low temperature outlet.
  • the heat collection and storage device further includes a second temperature sensor connected to the control device, which is configured to detect the temperature of the hot water in the heat preservation box.
  • the indoor heat application device comprises: a heating component, a third heat circulation pipe, a second circulation pump and a fourth heat circulation pipe, one end of the third heat circulation pipe is connected to the first interface, and the other end is connected to the inlet of the heating component, the second circulation pump is connected to the fourth heat circulation pipe or the third heat circulation pipe, one end of the fourth heat circulation pipe is connected to the outlet of the heating component, and the other end is connected to the second interface;
  • the indoor heat application device includes a hot water supply component capable of providing hot water indoors and a fifth heat circulation pipe, the hot water supply component is connected to the first interface via the fifth heat circulation pipe, and the second interface is connected to an external water source.
  • the control device controls the automatic operation of each of the above devices.
  • the above automatic tracking and focusing device can track the sun accurately and automatically in real time at all times and efficiently focus to provide a high-temperature heat source for heating.
  • the outdoor heating heat collection device can conveniently and efficiently use the sunlight gathered by the automatic tracking and focusing device to heat a small volume of heat transfer medium in real time.
  • the heat transfer medium is transmitted to the room through the heat transfer device, and the heat energy is stored in the heat collection and storage device after heat exchange by the heat collection and storage device.
  • the indoor heat application device can utilize the heat in the heat collection and storage device.
  • the above-mentioned heat collection and storage device can not only conveniently use the heat medium generated by the outdoor heating collector, but also has the compensation or alternative heating function generated by automatic or manual electric heating, so that the system can achieve high energy saving, all-weather, uninterrupted heat supply, such as providing hot water for heating, bathing, laundry, cleaning, kitchen water, etc.
  • the solar energy utilization system for producing hot water in this embodiment can bring the heat generated by solar energy into the room for users to use for various purposes.
  • the system has low generation cost, high efficiency, and is easy to implement.
  • With an external power supply as a backup energy source it can be used in various weather conditions to maximize the use of solar energy. Use solar energy.
  • FIG1 is a first structural schematic diagram of a solar energy utilization system for producing hot water in the present application
  • FIG2 is a second structural schematic diagram of a solar energy utilization system for producing hot water in the present application.
  • FIG3 is a schematic diagram of a structure of an automatic tracking and focusing device in the present application (the bracket is installed on a horizontal plane);
  • FIG4 is another structural schematic diagram of the automatic tracking and focusing device in the present application (the bracket is installed on a vertical plane);
  • FIG5 is a third structural schematic diagram of a solar energy utilization system for producing hot water in the present application.
  • FIG6 is a fourth structural schematic diagram of a solar energy utilization system for producing hot water in the present application.
  • FIG. 9 is a schematic diagram of the control operation of the control device in the present application.
  • Heat transfer device 61. First heat circulation pipe; 62. Second heat circulation pipe; 63. First circulation pump; 64. One-way valve;
  • Heat collection and storage device 81. Insulation box; 82. Insulation board; 83. Hot water storage chamber; 84. Heat exchange chamber; 85. Insulated hot water conduit; 86. Insulated cold water conduit; 87. High temperature inlet; 88. Low temperature outlet; 89. First interface; 90. Second interface; 91. Heating assembly; 921. Electric heating rod; 93. Second temperature sensor; 94. Heat exchange tube; 95. Second power supply;
  • the terms “upper”, “lower”, “left”, “right”, “vertical”, “horizontal”, “inside”, “outside”, etc. indicate the orientation or position relationship based on the orientation or position relationship shown in the accompanying drawings, or the orientation or position relationship in which the product of the application is usually placed when in use. They are only for the convenience of describing the present application and simplifying the description, and do not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a limitation on the present application.
  • the terms “first”, “second”, “third”, etc. are only used to distinguish the description, and cannot be understood as indicating or implying relative importance.
  • “multiple" means two or more.
  • a first feature being “above” or “below” a second feature may include that the first and second features are in direct contact, or may include that the first and second features are not in direct contact but are in contact through another feature between them.
  • a first feature being “above”, “above” and “above” a second feature includes that the first feature is directly above and obliquely above the second feature, or simply indicates that the first feature is higher in level than the second feature.
  • a first feature being “below”, “below” and “below” a second feature includes that the first feature is directly below and obliquely below the second feature, or simply indicates that the first feature is lower in level than the second feature.
  • a solar energy utilization system for producing hot water which includes an automatic tracking and concentrating device 1, an outdoor heating and heat collecting device 4, a heat transfer device 6, a heat collecting and heat storage device 8, an indoor heat application device 10 and a control device, wherein the automatic tracking and concentrating device 1 is capable of tracking the sun and concentrating light.
  • the outdoor heating and heat collecting device 4 is arranged above the automatic tracking and concentrating device 1, and is capable of converting and absorbing the heat energy of the sunlight gathered by the automatic tracking and concentrating device 1 to heat the heat transfer medium.
  • the heat transfer device 6 is connected to the outdoor heating and heat collecting device 4 and the heat collecting and heat storage device 8, and the heat transfer device 6 transfers the heat transfer medium heated in the outdoor heating and heat collecting device 4 to the heat collecting and heat storage device 8 for heat exchange.
  • the heat collecting and heat storage device 8 is capable of absorbing and storing the heat energy in the heat transfer medium transferred from the outdoor heating and heat collecting device 4.
  • the indoor heat application device 10 is connected to the heat collection and storage device 8 to apply heat energy.
  • the control device is connected to the automatic tracking and focusing device 1, the outdoor heating and heat collection device 4, the heat transfer device 6, the heat collection and storage device 8 and the indoor heat application device 10.
  • the control device controls each of the above devices to work automatically.
  • the above automatic tracking and focusing device 1 can track the sun accurately and automatically in real time at all times and efficiently focus to provide a high-temperature heat source for heating.
  • the outdoor heating heat collection device 4 can conveniently and efficiently use the sunlight gathered by the automatic tracking and focusing device 1 to heat a small volume of heat transfer medium in real time.
  • the heat transfer medium is transmitted to the room through the heat transfer device 6, and the heat energy is stored in the heat collection and storage device 8 after heat exchange by the heat collection and storage device 8.
  • the indoor heat application device 10 can use the heat in the heat collection and storage device 8.
  • the above-mentioned heat collection and storage device 8 can not only conveniently use the heat medium generated by the outdoor heating collector 4, but also has the compensation or alternative heating function generated by automatic or manual electric heating, so that the system can achieve high energy saving, all-weather, uninterrupted heat supply, such as providing hot water for heating, bathing, laundry, cleaning, kitchen water, etc.
  • the above-mentioned automatic tracking and focusing device 1 includes a parabolic reflection focusing cover 11, a rotating bracket 12 connected to the parabolic reflection focusing cover 11, and a vertical motion component 13, a first gear 14, a second gear 15, a bracket 16, a first connecting rod 17 and a horizontal electric telescopic rod 18, wherein one end of the vertical motion component 13 is connected to the parabolic reflection focusing cover 11, and the other end is connected to the rotating bracket 12, and the vertical motion component 13 can drive the parabolic reflection focusing cover 11 to rotate around the transverse rod of the rotating bracket 12.
  • the first gear 14 is connected to the vertical rod of the rotating bracket 12, and the vertical rod of the rotating bracket 12 can rotate around itself.
  • the bracket 16 is provided with a rotation axis parallel to the vertical rod of the rotating bracket 12 , and the rotation axis is provided with a second gear 15 meshing with the first gear 14 .
  • the parabolic reflective condenser 11 is connected to the rotating bracket 12, and the vertical motion assembly 13 can drive the parabolic reflective condenser 11 to rotate around the horizontal rod of the rotating bracket 12.
  • a vertical rotating shaft is set on the bracket 16, and the second gear 15 is installed on the rotating shaft.
  • the first gear 14 is meshed with the second gear 15 for transmission.
  • One end of the third connecting rod 19 is connected to the bracket 16, and the other end of the third connecting rod 19 is hinged to the horizontal electric telescopic rod 18.
  • the horizontal electric telescopic rod 18 is telescopic in the horizontal plane, and the second gear 15 is driven to rotate through the first connecting rod 17.
  • the second gear 15 is meshed with the first gear 14 for transmission, thereby driving the rotating bracket 12 to rotate in the horizontal plane.
  • the rotation of the parabolic reflective condenser 11 in the horizontal plane and in the vertical direction allows the parabolic reflective condenser 11 to always face the sun.
  • the control device controls the vertical motion assembly 13 and the horizontal electric telescopic rod 18 to work, so as to realize automatic tracking of the sun.
  • the parabolic reflective concentrator 11 will always face the sun and concentrate the sunlight on the focus of the parabolic reflective concentrator 11.
  • the bracket 16 in this embodiment is a triangular bracket installed on a horizontal plane, wherein the third connecting rod 19 is connected to one of the legs of the triangular bracket.
  • the bracket 16 may also be installed on a vertical or non-horizontal plane as shown in FIG. 4 .
  • the vertical motion assembly 13 includes a vertical electric telescopic rod 131 and a second connecting rod 132, wherein one end of the vertical electric telescopic rod 131 is hinged to the bottom of the parabolic reflective condenser 11, and the other end is hinged to the second connecting rod 132, one end of the second connecting rod 132 is connected to the vertical rod of the rotating bracket 12, and the vertical electric telescopic rod 131 is extended to drive the parabolic reflective condenser 11 to rotate around the transverse rod of the rotating bracket 12.
  • the parabolic reflective condenser 11 can rotate 0-90° around the transverse rod of the rotating bracket 12.
  • the vertical rod of the rotating bracket 12 is connected to the bracket 16 via a rotating bearing 20 , and the rotating bracket 12 and the parabolic reflective condenser 11 can be supported and rotated by the rotating bearing 20 , and can move flexibly.
  • the first gear 14 is located above the rotating bearing 20 .
  • the number of teeth of the second gear 15 is 1.5-2 times that of the first gear 14, so that when the parabolic reflective condenser 11 rotates in the horizontal plane, the rotation angle is appropriate.
  • the automatic tracking and focusing device 1 further comprises a support plate with holes, two ends of the transverse rod of the rotating bracket 12 The ends all pass through the holes on the perforated support plate, and the perforated support plate is connected to the parabolic reflective condenser 11.
  • the perforated support plate is fixedly connected to the rotating bracket 12 to ensure the stability of the parabolic reflective condenser 11 during rotation.
  • the automatic tracking and focusing device 1 also includes a solar photosensitive element 23, a tracking controller 24 and a first power supply 25, all of which are electrically connected to the control device.
  • the solar photosensitive element 23 is connected to the parabolic reflective focusing cover 11 to monitor the intensity of sunlight in real time.
  • the solar photosensitive element 23 is connected to the tracking controller 24.
  • the tracking controller 24 controls the vertical electric telescopic rod 131 and the horizontal electric telescopic rod 18.
  • the first power supply 25 is connected to the tracking controller 24 to provide power for the tracking controller 24 to operate.
  • the solar photoreceptor 23 is installed on the top of the parabolic reflective concentrator 11, and the signal line is connected to the tracking controller 24, and the output current signal of the tracking controller 24 is connected to the vertical electric telescopic rod 131 and the horizontal electric telescopic rod 18 respectively.
  • the first power source 25 is a DC power source with a voltage of 12V or other suitable voltages.
  • the automatic tracking and focusing device 1 also includes a heating bracket 26 and a heating fixing sleeve 27, the legs of the heating bracket 26 are arranged at the edge of the parabolic reflection focusing cover 11, the heating fixing sleeve 27 is arranged at the center of the heating bracket 26, the center of the heating fixing sleeve 27 is located at the focus of the parabolic reflection focusing cover 11, and the heating fixing sleeve 27 is configured to install an outdoor heating collector device 4.
  • the sunlight gathered upward by the automatic tracking and focusing device 1 can enter the high-temperature insulation container 41 through the glass cover 43 and exchange heat with the heat transfer medium in the metal spiral heat exchange tube 42; the outlet of the metal spiral heat exchange tube 42 is connected to the high-temperature inlet 87 of the heat collection and storage device 8 via the heat transfer device 6, and the inlet of the metal spiral heat exchange tube 42 is connected to the low-temperature outlet 88 of the heat collection and storage device 8 via the heat transfer device 6.
  • the heat transfer medium is water or oil.
  • a heat insulating layer is provided on the top and the outer wall of the side wall of the high temperature resistant heat preservation container 41 .
  • the heat transfer device 6 includes a first heat circulation pipe 61, a second heat circulation pipe 62 and a first circulation pump 63, wherein one end of the first heat circulation pipe 61 is connected to the outlet of the metal spiral heat exchange pipe 42, and the other end is connected to the high temperature inlet 87 of the heat collection and storage device 8, the first circulation pump 63 is arranged on the second heat circulation pipe 62, and one end of the first circulation pump 63 is connected to the low temperature outlet 88, and the other end is connected to the inlet of the metal spiral heat exchange pipe 42, and the first circulation pump 63 is connected to the control device.
  • the outdoor heating heat collection device 4 forms a closed loop with the first heat circulation pipe 61, the heat collection and heat storage device 8, the second heat circulation pipe 62, and the first circulation pump 63.
  • the closed loop is filled with heat transfer medium, i.e., water or oil.
  • the sunlight is focused on the metal spiral heat exchange pipe 42 at the bottom of the outdoor heating heat collection device 4, so the temperature of the heat transfer medium in the metal spiral heat exchange pipe 42 increases.
  • the first temperature sensor 44 transmits a signal to the control device, starts the first circulation pump 63, and circulates the heat transfer medium in the metal spiral heat exchange pipe 42 to the heat collection and heat storage device 8 for heat exchange.
  • the low-temperature medium in the heat collection and heat storage device 8 is circulated to the metal spiral heat exchange pipe 42 for a new round of heat exchange. Then, the temperature of the heat transfer medium in the metal spiral heat exchange pipe 42 increases after being heated. When the temperature reaches the preset temperature again, the first circulation pump 63 is started for the next round of heat exchange.
  • the second interface 90 is connected to an external water source.
  • the second interface 90 is a two-way joint, a three-way joint or a multi-way joint.
  • the external water source connected to the second interface 90 will inject cold water into the heat exchange chamber 84, and press the hot water in the upper hot water storage chamber 83 out through the first interface 89 to the indoor heat application device 10.
  • the water in the upper part of the hot water storage chamber 83 Due to the large volume of the hot water storage chamber 83, the water in the upper part of the hot water storage chamber 83 has a high temperature and a relatively low density, while the water in the lower part has a low temperature and a relatively high density.
  • An insulated cold water conduit 86 is provided so that the low-temperature water in the lower part of the hot water storage chamber 83 can be effectively diverted to the heat exchange chamber 84 without mixing with the high-temperature water in the upper part of the hot water storage chamber 83.
  • the angle ⁇ between the insulation board 82 and the horizontal plane is 0-75°, so that the hot water in the heat exchange chamber 84 can be more effectively guided to the insulated hot water conduit 85.
  • the angle ⁇ between the insulation board 82 and the horizontal plane is 0-30°.
  • the insulation board 82 is arranged horizontally.
  • the water at the bottom of the hot water storage chamber 83 has the lowest temperature and the highest density, and first flows back to the heat exchange chamber 84 through the insulated cold water conduit.
  • the heat collection and heat storage device 8 also includes a heating component 91, which is arranged in the heat exchange chamber 84 to ensure that the heat collection and heat storage device 8 can normally supply hot water on a non-sunny day.
  • the heating component 91 is connected to the control device so that it can be automatically heated to produce compensatory or alternative heating.
  • the heating component 91 can be an electric heating rod 921, which is connected to an external second power supply 95, and the electric heating rod 921 and the second power supply 95 are both electrically connected to the control device to control the heating time of the electric heating rod 921.
  • the second power supply 95 is an ordinary household AC power or a large-capacity rechargeable battery.
  • the water in the heat exchange chamber 84 is heated. Since the density of hot water is lower than that of cold water, the hot water in the heat exchange chamber 84 will automatically flow to the upper part of the hot water storage chamber 83 through the insulated hot water conduit 85. At the same time, the low-temperature water at the bottom of the hot water storage chamber 83 will flow to the heat exchange chamber 84 through the insulated cold water conduit 86.
  • the heat exchange in the heat exchange chamber 84 is more efficient due to the heat insulation board 82, the heat insulation hot water pipe 85 and the heat insulation cold water pipe 86 in the heat insulation box 81.
  • the above-mentioned hot water storage chamber 83 and the heat exchange chamber 84 can also be two independent insulation containers, and the insulated bottom of the upper insulation container and the insulated top of the lower insulation container serve as the above-mentioned insulation board 82.
  • the above-mentioned insulated hot water conduit 85 and the insulated hot water conduit 85 can also be arranged outside the heat preservation box 81 .
  • the heating component 101 in this embodiment comprises an indoor radiator, one end of the indoor radiator is connected to the first interface 89 via the third heat circulation pipe 103, and the other end is connected to the second interface 90 via the fourth heat circulation pipe 104 and the second circulation pump 102, and at the same time, the second interface 90 is also connected to an external water source, so as to replenish water into the system composed of the indoor heat application device 10 and the heat collection and storage device 8.
  • the first interface 89 can be a two-way joint, a three-way joint or a multi-way joint, one of which is connected to the third heat circulation pipe 103
  • the second interface 90 is a three-way joint, a four-way joint or a multi-way joint, one of which is connected to the fourth heat circulation pipe 104, and the other is connected to the external water source.
  • the indoor heat application device 10 can also include a hot water supply component 106 capable of providing hot water indoors and a fifth heat circulation pipe 107.
  • the hot water supply component 106 is connected to the first interface 89 through the fifth heat circulation pipe 107, and the second interface 90 is connected to an external water source.
  • the hot water supply component 106 in this embodiment includes a hot water switch, a shower with or without an electric heater, or a hot water bath tank, a large-area bathtub or other facilities that require the use of hot water.
  • the second interface 90 is connected to an external water source to inject water into the heat collection and storage device 8 to press out the hot water in the hot water storage chamber 83.
  • the first interface 89 can be a two-way connector, a three-way connector or a multi-way connector.
  • the port 89 is connected to the hot water supply component 106
  • the second interface 90 is a two-way joint, a three-way joint or a four-way joint or a multi-way joint, one of which is connected to an external water source.
  • control device includes a single-chip microcomputer 72 and a relay 71, and the single-chip microcomputer 72 and the relay 71 are electrically connected to the automatic tracking and focusing device 1, the outdoor heating and heat collection device 4, the heat transfer device 6, the heat collection and storage device 8 and the indoor heat application device 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

一种用于生产热水的太阳能利用系统,包括自动跟踪聚光装置,能够跟踪太阳并聚光;室外加热集热装置,其设置于自动跟踪聚光装置的上方,且能够转化和吸收由自动跟踪聚光装置汇聚的阳光的热能以加热传热介质;传热装置和集热储热装置,传热装置连接于室外加热集热装置和集热储热装置,传热装置将室外加热集热装置中加热后的传热介质转移至集热储热装置进行热交换;集热储热装置能够吸收并储存从室外加热集热装置转移来的传热介质中的热能;室内热应用装置,其连接于集热储热装置;控制装置,其连接于自动跟踪聚光装置、室外加热集热装置、传热装置、集热储热装置和室内热应用装置。

Description

一种用于生产热水的太阳能热利用系统
本申请要求申请日为2022年12月15日、申请号为2022116204751的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请属于太阳能利用技术领域,尤其涉及一种用于生产热水的太阳能利用系统。
背景技术
太阳能电池板直接利用太阳光照射发电,将光能转变为电能,被广泛利用。太阳能电池板的转换效率不高,正常的转换效率为15%-20%,另外,太阳能电池板造价高,所产生的电不能储存,除非增加投资配套安装储能电池,因此,太阳能电池板产品仍存在较多的问题需要解决。
太阳灶是利用太阳能的另一方式,人们已经设计了箱式、平板式、聚光式等各种太阳灶,太阳灶可以直接将光能转变成热量并将食物煮熟,但是用户需要在炎热的阳光下进行手动操作,这减少了用户对产品的使用热情,另外,太阳灶在不烹煮时处于闲置状态,整体利用率较低。
对于将阳光直接引进室内的装置,需要涉及到对房屋的专门改造和设计,增加了设备的造价,降低了实施的可行性。
另外一种常见的利用太阳能的装置是太阳能热水器,利用真空管或者其它集热装置来集热,这是一种相对有效的利用太阳能的方式,但是这类太阳能热水器对水质的要求较高,当水中的矿物质或者杂质超过一定比例后,系统常因杂质沉淀降低效率,甚至不能正常工作。在寒冷地区,热水器因管内水易结冰也不能正常使用。此外,该太阳能热水器的维护成本也较高,功能单一,不能用于供暖等其它功能。
发明内容
针对现有技术存在的不足,本申请的目的在于提供一种用于生产热水的太阳能利用系统,将太阳能的热能引入室内供用户使用,该系统生产成本低,效 率高,易于实现,在以外接电源备用能源的情况下,可用于各种天气条件,实现最大限度地使用太阳能。
为达此目的,本申请实施例采用以下技术方案:
本申请实施例提供了一种用于生产热水的太阳能利用系统,包括:
自动跟踪聚光装置,其能够跟踪太阳并聚光;
室外加热集热装置,其设置于所述自动跟踪聚光装置的上方,且能够转化和吸收由所述自动跟踪聚光装置汇聚的阳光的热能以加热传热介质;
传热装置和集热储热装置,所述传热装置连接于所述室外加热集热装置和所述集热储热装置,所述传热装置将所述室外加热集热装置中加热后的所述传热介质转移至所述集热储热装置进行热交换;
所述集热储热装置能够吸收并储存从室外加热集热装置转移来的所述传热介质中的热能;
室内热应用装置,其连接于所述集热储热装置,并应用所述热能;
控制装置,其连接于所述自动跟踪聚光装置、所述室外加热集热装置、所述传热装置、所述集热储热装置和所述室内热应用装置。
可选地,所述自动跟踪聚光装置包括:
抛物面反射聚光罩和连接于所述抛物面反射聚光罩的转动支架;
垂直运动组件,其一端连接于所述抛物面反射聚光罩,另一端连接于所述转动支架,所述垂直运动组件能够驱动所述抛物面反射聚光罩绕所述转动支架的横向杆转动;
第一齿轮,其连接于所述转动支架的竖直杆,所述转动支架的竖直杆能够绕自身轴向转动;
支架,其上设置有与所述转动支架的竖直杆平行的转动轴,所述转动轴上设置有与所述第一齿轮啮合的第二齿轮;
第一连接杆和水平电动伸缩杆,所述第二齿轮的边缘沿其径向连接有水平设置的所述第一连接杆的一端,所述第一连接杆的另一端铰接于所述水平电动伸缩杆的一端,所述水平电动伸缩杆的另一端铰接于所述支架上设置的第三连接杆,所述第三连接杆使所述水平电动伸缩杆处于水平面内。
可选地,所述垂直运动组件包括垂直电动伸缩杆和第二连接杆,所述垂直电动伸缩杆的一端铰接于所述抛物面反射聚光罩的底部,另一端铰接于所述第二连接杆,所述第二连接杆的一端连接于所述转动支架的竖直杆,所述垂直电 动伸缩杆伸缩,以驱动所述抛物面反射聚光罩绕所述转动支架的横向杆转动。
可选地,所述自动跟踪聚光装置还包括均电连接于所述控制装置的太阳感光器、跟踪控制器和第一电源,所述太阳感光器连接于所述抛物面反射聚光罩,以实时监测太阳光的强度,所述太阳感光器连接于所述跟踪控制器,所述跟踪控制器控制所述垂直电动伸缩杆和所述水平电动伸缩杆,所述第一电源连接于所述跟踪控制器,为所述跟踪控制器工作提供电源。
可选地,所述室外加热集热装置包括:
耐高温保温容器,其设置于所述自动跟踪聚光装置上的聚光焦点处;
金属螺旋热交换管,其设置于所述耐高温保温容器内;
玻璃罩,其设置于所述耐高温保温容器的底部,所述自动跟踪聚光装置向上汇聚的阳光能够透过所述玻璃罩进入所述耐高温保温容器内,并与金属螺旋热交换管内的传热介质热交换;
所述金属螺旋热交换管的出口经所述传热装置连接于所述集热储热装置的高温入口,所述金属螺旋热交换管的进口经所述传热装置连接于所述集热储热装置的低温出口。
可选地,所述传热装置包括第一热循环管、第二热循环管和第一循环泵,所述第一热循环管的一端连接于所述金属螺旋热交换管的出口,另一端连接于所述高温入口;
所述第一循环泵设置于所述第二热循环管上,且所述第一循环泵的一端连接于所述集热储热装置的低温出口,另一端连接于所述金属螺旋热交换管的入口,第一循环泵连接于所述控制装置。
可选地,所述传热装置还包括单向阀,其设置于所述第一热循环管上,且位于所述室外加热集热装置和所述集热储热装置之间。
可选地,所述集热储热装置包括:
保温箱体,其上设置有第一接口和第二接口;
隔热板,其设置于所述保温箱体内部,所述隔热板与水平面之间的夹角α为0-75°,所述隔热板将所述保温箱体内分隔为上部的储热水腔和下部的热交换腔,所述第一接口位于所述储热水腔的顶部,且连接于所述室内热应用装置的入口;
所述室内热应用装置向室内供热,其出口经所述第二接口连通于所述热交换腔,同时所述第二接口连通外部水源;
所述室内热应用装置向室内供热水,所述第二接口连通外部水源;
隔热热水导管,其底端连通于所述热交换腔的顶部,其顶端连通于所述储热水腔的顶部;
隔热冷水导管,其底端连通于所述热交换腔的底部,其顶端连通于所述储热水腔的底部;
热交换管,其设置于所述热交换腔内,所述热交换管经所述高温入口连接于所述第一热循环管,所述热交换管经所述低温出口连接于所述第二热循环管。
可选地,所述集热储热装置还包括连接于所述控制装置的第二温度传感器,其被配置为检测所述保温箱体内的热水的温度。
可选地,所述室内热应用装置包括:供热组件、第三热循环管、第二循环泵和第四热循环管,所述第三热循环管的一端连通于所述第一接口,另一端连通于所述供热组件的入口,所述第二循环泵连接于所述第四热循环管或所述第三热循环管上,所述第四热循环管的一端连通于所述供热组件的出口,另一端连通于所述第二接口;
和/或所述室内热应用装置包括能够向室内提供热水的供热水组件以及第五热循环管,所述供热水组件经所述第五热循环管连通于所述第一接口,所述第二接口连通于外部水源。
与现有技术相比,本申请具有以下有益效果:
本申请中控制装置控制上述各个装置自动工作,上述自动跟踪聚光装置能够全时段实时、准确、自动跟踪太阳并高效聚焦提供一个高温热源用于加热。室外加热集热装置能够便利地,高效地利用自动跟踪聚光装置汇聚的阳光以实时加热小体积的传热介质。通过传热装置将传热介质传输至室内,经集热储热装置热交换后热能被储存在集热储热装置。室内热应用装置能够利用集热储热装置内的热量。
上述集热储热装置既能便利地应用室外加热集热装置产生的热介质,还具备自动或手动电加热产生的补偿或者替代加热功能,使该系统可以实现高节能、全天候、不间歇地供应热量,如提供热水,用于供暖、洗澡、洗衣、清洁、厨房用水等。
本实施例中的用于生产热水的太阳能利用系统,能够将太阳能所产生的热量引入室内供用户用于各种用途,该系统生成成本低,效率高,易于实现,在以外接电源作为备用能源的情况下,可以用于各种天气条件,实现最大限度使 用太阳能。
附图说明
图1为本申请中的用于生产热水的太阳能利用系统的第一结构示意图;
图2为本申请中的用于生产热水的太阳能利用系统的第二结构示意图;
图3为本申请中的自动跟踪聚光装置的一结构示意图(支架安装在水平面上);
图4为本申请中的自动跟踪聚光装置的另一结构示意图(支架安装在竖直面上);
图5为本申请中的用于生产热水的太阳能利用系统的第三结构示意图;
图6为本申请中的用于生产热水的太阳能利用系统的第四结构示意图;
图7为本申请中的集热储热装置的一结构示意图(α=0°);
图8为本申请中的集热储热装置的另一结构示意图(α=0°);
图9为本申请中的控制装置控制工作的示意图。
其中,1、自动跟踪聚光装置;11、抛物面反射聚光罩;12、转动支架;13、垂直运动组件;131、垂直电动伸缩杆;132、第二连接杆;14、第一齿轮;15、第二齿轮;16、支架;17、第一连接杆;18、水平电动伸缩杆;19、第三连接杆;20、转动轴承;23、太阳感光器;24、跟踪控制器;25、第一电源;26、加热支架;27、加热固定套;
4、室外加热集热装置;41、耐高温保温容器;42、金属螺旋热交换管;43、玻璃罩;44、第一温度传感器;
6、传热装置;61、第一热循环管;62、第二热循环管;63、第一循环泵;64、单向阀;
8、集热储热装置;81、保温箱体;82、隔热板;83、储热水腔;84、热交换腔;85、隔热热水导管;86、隔热冷水导管;87、高温入口;88、低温出口;89、第一接口;90、第二接口;91、加热组件;921、电加热杆;93、第二温度传感器;94、热交换管;95、第二电源;
10、室内热应用装置;101、供热组件;102、第二循环泵;103、第三热循环管;104、第四热循环管;106、供热水组件;107、第五热循环管;
71、继电器;72、单片机。
具体实施方式
以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请的描述中,需要说明的是,术语“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该申请产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
如图1和图2所示,本实施例中提供了一种用于生产热水的太阳能利用系统,其包括自动跟踪聚光装置1、室外加热集热装置4、传热装置6、集热储热装置8、室内热应用装置10和控制装置,其中,自动跟踪聚光装置1能够跟踪太阳并聚光。室外加热集热装置4设置于自动跟踪聚光装置1的上方,且能够转化和吸收由自动跟踪聚光装置1汇聚的阳光的热能以加热传热介质。传热装置6连接于室外加热集热装置4和集热储热装置8,传热装置6将室外加热集热装置4中加热后的传热介质转移至集热储热装置8进行热交换。集热储热装置8能够吸收并储存从室外加热集热装置4转移来的传热介质中的热能。
室内热应用装置10连接于集热储热装置8,以应用热能。控制装置连接于自动跟踪聚光装置1、室外加热集热装置4、传热装置6、集热储热装置8和室内热应用装置10。
本实施例中,控制装置控制上述各个装置自动工作,上述自动跟踪聚光装置1能够全时段实时、准确、自动跟踪太阳并高效聚焦提供一个高温热源用于加热。室外加热集热装置4能够便利地、高效地利用自动跟踪聚光装置1汇聚的阳光,以实时加热小体积的传热介质。通过传热装置6将传热介质传输至室内,经集热储热装置8热交换后热能被储存在集热储热装置8。室内热应用装置10能够利用集热储热装置8内的热量。
上述集热储热装置8既能便利地应用室外加热集热装置4产生的热介质,还具备自动或手动电加热产生的补偿或者替代加热功能,使该系统可以实现高节能、全天候、不间歇地供应热量,如提供热水,用于供暖、洗澡、洗衣、清洁、厨房用水等。
本实施例中的用于生产热水的太阳能利用系统,能够将太阳能所产生的热量引入室内供用户用于各种用途,该系统生成成本低,效率高,易于实现,在以外接电源作为备用能源的情况下,可以用于各种天气条件,实现最大限度使用太阳能。
可选地,如图3和图4所示,上述自动跟踪聚光装置1包括抛物面反射聚光罩11,及连接于抛物面反射聚光罩11的转动支架12,及垂直运动组件13、第一齿轮14、第二齿轮15、支架16、第一连接杆17和水平电动伸缩杆18,其中,垂直运动组件13一端连接于抛物面反射聚光罩11,另一端连接于转动支架12,垂直运动组件13能够驱动抛物面反射聚光罩11绕转动支架12的横向杆转动。
第一齿轮14连接于转动支架12的竖直杆,转动支架12的竖直杆能够绕自身 轴向转动。支架16上设置有与转动支架12的竖直杆平行的转动轴,转动轴上设置有与第一齿轮14啮合的第二齿轮15。
第二齿轮15的边缘沿其径向连接有水平设置的第一连接杆17的一端,第一连接杆17的另一端铰接于水平电动伸缩杆18的一端,水平电动伸缩杆18的另一端铰接于支架16上设置的第三连接杆19,第三连接杆19使水平电动伸缩杆18处于水平面内。
本实施例中,抛物面反射聚光罩11连接在转动支架12上,垂直运动组件13能够驱动抛物面反射聚光罩11绕转动支架12的横向杆转动,在支架16上设置竖直的转动轴,第二齿轮15安装在转动轴上,第一齿轮14与第二齿轮15啮合传动。第三连接杆19的一端连接于支架16上,第三连接杆19的另一端铰接于水平电动伸缩杆18,水平电动伸缩杆18在水平面内伸缩,通过第一连接杆17带动第二齿轮15转动,第二齿轮15与第一齿轮14啮合传动,从而带动转动支架12在水平面内转动。抛物面反射聚光罩11在水平面内和垂直方向的转动使抛物面反射聚光罩11可以始终正对太阳。控制装置控制垂直运动组件13和水平电动伸缩杆18工作,实现对太阳的自动跟踪,抛物面反射聚光罩11将一直正对太阳并将太阳光聚集在抛物面反射聚光罩11焦点上。
本实施例中的支架16为安装在水平面上的三角支架,其中,第三连接杆19连接于三角支架的其中一个支脚上。
在其它实施例中,支架16也可以安装在如图4所示的竖直或非水平面上。
可选地,垂直运动组件13包括垂直电动伸缩杆131和第二连接杆132,其中,垂直电动伸缩杆131的一端铰接于抛物面反射聚光罩11的底部,另一端铰接于第二连接杆132,第二连接杆132的一端连接于转动支架12的竖直杆,垂直电动伸缩杆131伸缩,以驱动抛物面反射聚光罩11绕转动支架12的横向杆转动。当调节第二连接杆132的长度和位置时,抛物面反射聚光罩11可以绕转动支架12的横向杆转动0-90°。
可选地,上述转动支架12的竖直杆与支架16之间经转动轴承20连接,转动支架12和抛物面反射聚光罩11能够以转动轴承20支撑转动,动作灵活。本实施例中,第一齿轮14位于转动轴承20的上方。
可选地,第二齿轮15的齿数为第一齿轮14的1.5-2倍,以便于抛物面反射聚光罩11在水平面内转动时,转动角度合适。
可选地,自动跟踪聚光装置1还包括带孔支撑板,转动支架12的横向杆的两 端均穿过带孔支撑板上的孔,带孔支撑板连接于抛物面反射聚光罩11。通过带孔支撑板与转动支架12固定连接,以保证抛物面反射聚光罩11转动过程中的稳定性。
可选地,自动跟踪聚光装置1还包括均电连接于控制装置的太阳感光器23、跟踪控制器24和第一电源25,太阳感光器23连接于抛物面反射聚光罩11,以实时监测太阳光的强度,太阳感光器23连接于跟踪控制器24,跟踪控制器24控制垂直电动伸缩杆131和水平电动伸缩杆18,第一电源25连接于跟踪控制器24,为跟踪控制器24工作提供电源。
可选地,太阳感光器23安装在抛物面反射聚光罩11的顶部,信号线连接至跟踪控制器24,跟踪控制器24的输出电流信号分别连接垂直电动伸缩杆131和水平电动伸缩杆18。
本实施例中,第一电源25为直流电源,电压为12V或其它合适的电压。
可选地,自动跟踪聚光装置1还包括加热支架26和加热固定套27,加热支架26的支脚设置于抛物面反射聚光罩11的边缘,加热固定套27设置于加热支架26的中心,加热固定套27的中心位于抛物面反射聚光罩11的焦点处,加热固定套27被配置为安装室外加热集热装置4。
可选地,如图1和图2、图5和图6所示,上述室外加热集热装置4包括设置于自动跟踪聚光装置1上的聚光焦点处的耐高温保温容器41,及设置于耐高温保温容器41内的金属螺旋热交换管42,以及设置于耐高温保温容器41的底部的玻璃罩43,自动跟踪聚光装置1向上汇聚的阳光能够透过玻璃罩43进入耐高温保温容器41内,并与金属螺旋热交换管42内的传热介质热交换;金属螺旋热交换管42的出口经传热装置6连接于集热储热装置8的高温入口87,金属螺旋热交换管42的进口经传热装置6连接于集热储热装置8的低温出口88。
本实施例中,金属螺旋热交换管42内的传热介质吸收自动跟踪聚光装置1汇聚的阳光,阳光所含的热能被金属螺旋热交换管42充分吸收。在耐高温保温容器41的底部设置玻璃罩43以减少热量损失。可选地,在耐高温保温容器41上设置有第一孔和第二孔,金属螺旋热交换管42的进口穿过第一孔,金属螺旋热交换管42的出口穿过第二孔。第一孔与第二孔处均做密封防水处理。
可选地,上述玻璃罩43为双层真空透明耐高温玻璃罩。
可选地,传热介质为水或者油。
可选地,在耐高温保温容器41的顶部与侧壁的外壁均设置隔热保温层。
可选地,室外加热集热装置4还包括第一温度传感器44,第一温度传感器44连接于控制装置,以实时监测耐高温保温容器41内的温度。
可选地,传热装置6包括第一热循环管61、第二热循环管62和第一循环泵63,其中,第一热循环管61的一端连接于金属螺旋热交换管42的出口,另一端连接于集热储热装置8的高温入口87,第一循环泵63设置于第二热循环管62上,且第一循环泵63的一端连接于低温出口88,另一端连接于金属螺旋热交换管42的入口,第一循环泵63连接于控制装置。
本实施例中,室外加热集热装置4与第一热循环管61、集热储热装置8、第二热循环管62、第一循环泵63形成闭环,闭环中充满传热介质,即水或者油,阳光聚焦于室外加热集热装置4底部的金属螺旋热交换管42,于是金属螺旋热交换管42内的传热介质的温度升高。当温度升高至预设温度时,第一温度传感器44将信号传递至控制装置,启动第一循环泵63,将金属螺旋热交换管42内的传热介质循环至集热储热装置8进行热交换,同时集热储热装置8中的低温介质被循环至金属螺旋热交换管42内进行新一轮热交换,然后金属螺旋热交换管42内的传热介质被加热后的温度升高,当温度再次达到预设温度时,启动第一循环泵63进行下一轮热交换。
可选地,传热装置6还包括单向阀64,其设置于第一热循环管61上,且位于室外加热集热装置4和集热储热装置8之间。
可选地,上述集热储热装置8包括保温箱体81,及设置有保温箱体81内部的隔热板82,以及隔热热水导管85、隔热冷水导管86和热交换管94,其中,保温箱体81上设置有第一接口89和第二接口90;隔热板82将保温箱体81内分隔为上部的储热水腔83和下部的热交换腔84。第一接口89位于储热水腔83的顶部,且连接于室内热应用装置10的入口。如图1和图2所示,当室内热应用装置10向室内供热时,其出口经所述第二接口90连通于热交换腔84,同时,第二接口90连通外部水源,本实施例中,第二接口90为二通接头、三通接头或多通接头。如图5和图6所示,当室内热应用装置10向室内供热水时,室内使用热水时,第二接口90处连通的外部水源会向热交换腔84内注入冷水,将上部储热水腔83内的热水压出经第一接口89至室内热应用装置10。
隔热热水导管85的底端连通于热交换腔84的顶部,其顶端连通于储热水腔83的顶部,隔热冷水导管86的底端连通于热交换腔84的底部,其顶端连通于储热水腔83的底部。热交换管94设置于热交换腔84,热交换管94经高温入口87连 通于第一热循环管61,并经第一热循环管61连接于室外加热集热装置4的出口,热交换管94经低温出口88连通于第二热循环管62,并经第二热循环管62连通于室外加热集热装置4的入口。
因储热水腔83的体积大,储热水腔83上部的水的温度高,密度相对小,下部的水的温度低,密度相对大,设置隔热冷水导管86使储热水腔83的下部的低温水能够有效地导流至热交换腔84内而不与储热水腔83上部的高温水混合,循环至热交换腔84内的低温水由热交换管94加热,然后经隔热热水导管85向上对流至储热水腔83上部,从而保证储热水腔83上部始终有高温热水,经第一接口89流出的水的温度为储热水腔83中的最高。
可选地,如图1、图2、图5和图6所示,隔热板82与水平面之间的夹角α为0-75°,以便使热交换腔84中的热水更有效地导向隔热热水导管85。进一步可选地,隔热板82与水平面之间的夹角α为0-30°。如图5所示,当隔热板82与水平面之间的夹角α为0°时,隔热板82水平设置。当隔热板82与水平面之间有夹角时,储热水腔83的最底部的水的温度最低,密度最大,最先经隔热冷水导管回流至热交换腔84内,因此热交换腔84中的水与热交换管94间的温差最大,热交换速度最快,热交换最有效。当隔热板82与水平面之间的夹角α增加至75°时,隔热板82的安装难度大幅增加,成本增加,因此,隔热板82与水平面之间的夹角α不超过75°。
可选地,如图1图2、图5和图6所示,集热储热装置8还包括加热组件91,其设置于热交换腔84内,以保证集热储热装置8在非晴天下能够正常供应热水。进一步可选地,加热组件91连接于控制装置,以便于能自动加热,以产生补偿或替代加热。可选地,加热组件91可为电加热杆921,其连接于外部第二电源95,电加热杆921和第二电源95均电连接于控制装置,以控制电加热杆921的加热时间。可选地,第二电源95为普通家用交流电或大容量充电电池。
为了使金属螺旋热交换管42中的传热介质经第一热循环管61后整体输送至热交换管94中,减少在第一热循环管61中的热量损失,同时,考虑传热介质在转移过程中,与温度低的传热介质有一定的混合,可选地,热交换管94的容积为金属螺旋热交换管42的容积的1.5-2倍。
当传热装置6工作时,热交换腔84中的水被加热,因热水的密度比冷水的密度低,在热交换腔84中,热水会经隔热热水导管85自动对流至储热水腔83的上部,同时,储热水腔83底部的温度低的水经隔热冷水导管86对流至热交换腔84 内进行热交换。保温箱体81中的隔热板82、隔热热水导管85和隔热冷水导管86的设置使在热交换腔84中的热交换更加高效。当把保温箱体81的第一接口89接至家庭设备的热水进口端时,集热储热装置8作为一个热水源,当打开热水阀门时,自来水管中的冷水将自动将热水压出。
在其它实施例中,如图7和图8所示,上述储热水腔83和热交换腔84还能够为两个相互独立的保温容器,上部的保温容器的隔热底部和下部的保温容器的隔热顶部作为上述隔热板82。
在其它实施例中,如图7和图8所示,上述隔热热水导管85和隔热热水导管85还能够设置于保温箱体81的外部。
可选地,集热储热装置8还包括连接于控制装置的第二温度传感器93,其被配置为检测保温箱体81内的热水的温度。可选地,第二温度传感器93能够安装在保温箱体81对应储水腔的外壁,还能够安装在储水腔内部。
可选地,如图1和图2所示,上述室内热应用装置10包括:供热组件101、第二循环泵102、第三热循环管103和第四热循环管104,其中,第三热循环管103的一端连通于第一接口89,另一端连通于供热组件101的入口,第二循环泵102连接于第四热循环管104或者第三热循环管103上,第四热循环管104的一端连通于供热组件101的出口,另一端连通于第二接口90。本实施例中的供热组件101包括室内暖气片,室内暖气片的一端经第三热循环管103连接第一接口89,另一端经第四热循环管104和第二循环泵102连通于第二接口90,同时,第二接口90还连接有外部水源,以便于向室内热应用装置10和集热储热装置8组成的系统内补充水。
本实施例中,第一接口89能够为二通接头、三通接头或多通接头,其中一个口连通第三热循环管103,第二接口90为三通接头或四通接头或多通接头,其中一个口连接第四热循环管104,另一口连接外部水源。
此外,如图5和图6所示,室内热应用装置10还能够为包括能够向室内提供热水的供热水组件106以及第五热循环管107,供热水组件106经第五热循环管107连通于第一接口89,第二接口90连通于外部水源。本实施例中的供热水组件106包括热水开关、带或不带电热器的淋浴、或热水澡水箱、大面积的浴池或其他需要使用热水的设施,当使用热水时,第二接口90处连接外部水源向集热储热装置8注水,将储热水腔83内的热水压出。
本实施例中,第一接口89能够为二通接头、三通接头或多通接头,第一接 口89连通供热水组件106,第二接口90为二通接头,三通接头或四通接头或多通接头,其中一个口连接外部水源。
当室内热应用装置10同时向室内供热和向室内供应热水时,第一接口89能够为二通接头、三通接头或多通接头,其中一个口连通第三热循环管103,另一口连通供热水组件106,第二接口90为三通接头、四通接头或多通接头,其中一个口连接上述第四热循环管104,一个口连接外部水源。
如图9所示,控制装置包括单片机72和继电器71,单片机72和继电器71均电连接于自动跟踪聚光装置1、室外加热集热装置4、传热装置6、集热储热装置8和室内热应用装置10。
可选地,太阳感光器23连接到单片机72和跟踪控制器24,跟踪控制器24输出电流信号连接到水平点动伸缩杆18和垂直电动伸缩杆131,第一温度传感器44和第二温度传感器93连接到单片机72,单片机72输出的信号线连接到继电器71,再将继电器71分别连接到第一循环泵63、第二循环泵102和电加热杆921,第一电源25的5V电压输出连接到单片机72,12V电压输出连接到继电器71。第二电源95为外充电源,可以为第一电源25充电,还能够为电加热杆921提供电源。

Claims (10)

  1. 一种用于生产热水的太阳能利用系统,其包括:
    自动跟踪聚光装置(1),其能够跟踪太阳并聚光;
    室外加热集热装置(4),其设置于所述自动跟踪聚光装置(1)的上方,且能够转化和吸收由所述自动跟踪聚光装置(1)汇聚的阳光的热能以加热传热介质;
    传热装置(6)和集热储热装置(8),所述传热装置(6)连接于所述室外加热集热装置(4)和所述集热储热装置(8),所述传热装置(6)将所述室外加热集热装置(4)中加热后的所述传热介质转移至所述集热储热装置(8)进行热交换;
    所述集热储热装置(8)能够吸收并储存从室外加热集热装置(4)转移来的所述传热介质中的热能;
    室内热应用装置(10),其连接于所述集热储热装置(8),并应用所述热能;
    控制装置,其连接于所述自动跟踪聚光装置(1)、所述室外加热集热装置(4)、所述传热装置(6)、所述集热储热装置(8)和所述室内热应用装置(10)。
  2. 根据权利要求1所述的用于生产热水的太阳能利用系统,其中,所述自动跟踪聚光装置(1)包括:
    抛物面反射聚光罩(11)和连接于所述抛物面反射聚光罩(11)的转动支架(12);
    垂直运动组件(13),其一端连接于所述抛物面反射聚光罩(11),另一端连接于所述转动支架(12),所述垂直运动组件(13)能够驱动所述抛物面反射聚光罩(11)绕所述转动支架(12)的横向杆转动;
    第一齿轮(14),其连接于所述转动支架(12)的竖直杆,所述转动支架(12)的竖直杆能够绕自身轴向转动;
    支架(16),其上设置有与所述转动支架(12)的竖直杆平行的转动轴,所述转动轴上设置有与所述第一齿轮(14)啮合的第二齿轮(15);
    第一连接杆(17)和水平电动伸缩杆(18),所述第二齿轮(15)的边缘沿其径向连接有水平设置的所述第一连接杆(17)的一端,所述第一连接杆(17)的另一端铰接于所述水平电动伸缩杆(18)的一端,所述水平电动伸缩杆(18)的另一端铰接于所述支架(16)上设置的第三连接杆(19),所述第三连接杆(19)使所述水平电动伸缩杆(18)处于水平面内。
  3. 根据权利要求2所述的用于生产热水的太阳能利用系统,其中,所述垂直运动组件(13)包括垂直电动伸缩杆(131)和第二连接杆(132),所述垂直电动伸缩杆(131)的一端铰接于所述抛物面反射聚光罩(11)的底部,另一端铰接于所述第二连接杆(132),所述第二连接杆(132)的一端连接于所述转动支架(12)的竖直杆,所述垂直电动伸缩杆(131)伸缩,以驱动所述抛物面反射聚光罩(11)绕所述转动支架(12)的横向杆转动。
  4. 根据权利要求3所述的用于生产热水的太阳能利用系统,其中,所述自动跟踪聚光装置(1)还包括均电连接于所述控制装置的太阳感光器(23)、跟踪控制器(24)和第一电源(25),所述太阳感光器(23)连接于所述抛物面反射聚光罩(11),以实时监测太阳光的强度,所述太阳感光器(23)连接于所述跟踪控制器(24),所述跟踪控制器(24)控制所述垂直电动伸缩杆(131)和所述水平电动伸缩杆(18),所述第一电源(25)连接于所述跟踪控制器(24),为所述跟踪控制器(24)工作提供电源。
  5. 根据权利要求1-4任一项所述的用于生产热水的太阳能利用系统,其中,所述室外加热集热装置(4)包括:
    耐高温保温容器(41),其设置于所述自动跟踪聚光装置(1)上的聚光焦点处;
    金属螺旋热交换管(42),其设置于所述耐高温保温容器(41)内;
    玻璃罩(43),其设置于所述耐高温保温容器(41)的底部,所述自动跟踪聚光装置(1)向上汇聚的阳光能够透过所述玻璃罩(43)进入所述耐高温保温容器(41)内,并与金属螺旋热交换管(42)内的传热介质热交换;
    所述金属螺旋热交换管(42)的出口经所述传热装置(6)连接于所述集热储热装置(8)的高温入口(87),所述金属螺旋热交换管(42)的进口经所述传热装置(6)连接于所述集热储热装置(8)的低温出口(88)。
  6. 根据权利要求5所述的用于生产热水的太阳能利用系统,其中,所述传热装置(6)包括第一热循环管(61)、第二热循环管(62)和第一循环泵(63),所述第一热循环管(61)的一端连接于所述金属螺旋热交换管(42)的出口,另一端连接于所述高温入口(87);
    所述第一循环泵(63)设置于所述第二热循环管(62)上,且所述第一循环泵(63)的一端连接于所述集热储热装置(8)的低温出口(88),另一端连接于所述金属螺旋热交换管(42)的入口,第一循环泵(63)连接于所述控制 装置。
  7. 根据权利要求6所述的用于生产热水的太阳能利用系统,其中,所述传热装置(6)还包括单向阀(64),其设置于所述第一热循环管(61)上,且位于所述室外加热集热装置(4)和所述集热储热装置(8)之间。
  8. 根据权利要求6所述的用于生产热水的太阳能利用系统,其中,所述集热储热装置(8)包括:
    保温箱体(81),其上设置有第一接口(89)和第二接口(90);
    隔热板(82),其设置于所述保温箱体(81)内部,所述隔热板(82)与水平面之间的夹角α为0-75°,所述隔热板(82)将所述保温箱体(81)内分隔为上部的储热水腔(83)和下部的热交换腔(84),所述第一接口(89)位于所述储热水腔(83)的顶部,且连接于所述室内热应用装置(10)的入口;
    所述室内热应用装置(10)向室内供热,其出口经所述第二接口(90)连通于所述热交换腔(84),同时所述第二接口(90)连通外部水源;
    隔热热水导管(85),其底端连通于所述热交换腔(84)的顶部,其顶端连通于所述储热水腔(83)的顶部;
    隔热冷水导管(86),其底端连通于所述热交换腔(84)的底部,其顶端连通于所述储热水腔(83)的底部;
    热交换管(94),其设置于所述热交换腔(84)内,所述热交换管(94)经所述高温入口(87)连接于所述第一热循环管(61),所述热交换管(94)经所述低温出口(88)连接于所述第二热循环管(62)。
  9. 根据权利要求8所述的用于生产热水的太阳能利用系统,其中,所述集热储热装置(8)还包括连接于所述控制装置的第二温度传感器(93),其被配置为检测所述保温箱体(81)内的热水的温度。
  10. 根据权利要求8所述的用于生产热水的太阳能利用系统,其中,所述室内热应用装置(10)包括:供热组件(101)、第三热循环管(103)、第二循环泵(102)和第四热循环管(104),所述第三热循环管(103)的一端连通于所述第一接口(89),另一端连通于所述供热组件(101)的入口,所述第二循环泵(102)连接于所述第四热循环管(104)或所述第三热循环管(103)上,所述第四热循环管(104)的一端连通于所述供热组件(101)的出口,另一端连通于所述第二接口(90);
    和/或所述室内热应用装置(10)包括能够向室内提供热水的供热水组件 (106)以及第五热循环管(107),所述供热水组件(106)经所述第五热循环管(107)连通于所述第一接口(89),所述第二接口(90)连通于外部水源。
PCT/CN2023/136568 2022-12-15 2023-12-05 一种用于生产热水的太阳能热利用系统 WO2024125351A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211620475.1A CN116839235A (zh) 2022-12-15 2022-12-15 一种用于生产热水的太阳能热水利用系统
CN202211620475.1 2022-12-15

Publications (1)

Publication Number Publication Date
WO2024125351A1 true WO2024125351A1 (zh) 2024-06-20

Family

ID=88169359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/136568 WO2024125351A1 (zh) 2022-12-15 2023-12-05 一种用于生产热水的太阳能热利用系统

Country Status (2)

Country Link
CN (1) CN116839235A (zh)
WO (1) WO2024125351A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116839235A (zh) * 2022-12-15 2023-10-03 玟能(成都)科技有限公司 一种用于生产热水的太阳能热水利用系统

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2497329A1 (fr) * 1980-12-31 1982-07-02 Gravat Michel Dispositif pour capter l'energie solaire comportant un reflecteur parabolique orientable
US20040118449A1 (en) * 2002-12-20 2004-06-24 Murphy Terrence H. Solar dish concentrator with a molten salt receiver incorporating thermal energy storage
CN2765107Y (zh) * 2005-02-01 2006-03-15 朱文祥 聚光、透光式太阳能换热器
CN201259343Y (zh) * 2008-08-21 2009-06-17 柳州理工尚迪太阳能科技有限公司 多曲面复合线聚焦槽式太阳能中高温集热储热系统
CN202216425U (zh) * 2011-08-31 2012-05-09 华南理工大学 含内凹玻璃罩的球形腔式太阳能吸热器
CN202303963U (zh) * 2011-09-19 2012-07-04 姜呈祥 储能式多功能太阳灶
CN202521714U (zh) * 2012-04-17 2012-11-07 内蒙古第一机械集团有限公司 复合媒采暖装置
CN204084912U (zh) * 2014-07-14 2015-01-07 南通河海大学海洋与近海工程研究院 一种用于槽式集热系统中的中高温腔体式集热管
WO2015088301A1 (fr) * 2013-12-09 2015-06-18 Universite Internationale De Rabat Capteur-transmetteur thermique à rendement élevée pour chauffe eau solaire
CN207196599U (zh) * 2017-09-18 2018-04-06 韩宇超 一种太阳能供热系统
KR102428629B1 (ko) * 2021-01-29 2022-08-02 홍국선 단일의 집광초점을 가지는 태양열 저장장치
CN219607413U (zh) * 2022-12-15 2023-08-29 玟能(成都)科技有限公司 一种用于生产热水的太阳能利用系统
CN116839235A (zh) * 2022-12-15 2023-10-03 玟能(成都)科技有限公司 一种用于生产热水的太阳能热水利用系统

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2497329A1 (fr) * 1980-12-31 1982-07-02 Gravat Michel Dispositif pour capter l'energie solaire comportant un reflecteur parabolique orientable
US20040118449A1 (en) * 2002-12-20 2004-06-24 Murphy Terrence H. Solar dish concentrator with a molten salt receiver incorporating thermal energy storage
CN2765107Y (zh) * 2005-02-01 2006-03-15 朱文祥 聚光、透光式太阳能换热器
CN201259343Y (zh) * 2008-08-21 2009-06-17 柳州理工尚迪太阳能科技有限公司 多曲面复合线聚焦槽式太阳能中高温集热储热系统
CN202216425U (zh) * 2011-08-31 2012-05-09 华南理工大学 含内凹玻璃罩的球形腔式太阳能吸热器
CN202303963U (zh) * 2011-09-19 2012-07-04 姜呈祥 储能式多功能太阳灶
CN202521714U (zh) * 2012-04-17 2012-11-07 内蒙古第一机械集团有限公司 复合媒采暖装置
WO2015088301A1 (fr) * 2013-12-09 2015-06-18 Universite Internationale De Rabat Capteur-transmetteur thermique à rendement élevée pour chauffe eau solaire
CN204084912U (zh) * 2014-07-14 2015-01-07 南通河海大学海洋与近海工程研究院 一种用于槽式集热系统中的中高温腔体式集热管
CN207196599U (zh) * 2017-09-18 2018-04-06 韩宇超 一种太阳能供热系统
KR102428629B1 (ko) * 2021-01-29 2022-08-02 홍국선 단일의 집광초점을 가지는 태양열 저장장치
CN219607413U (zh) * 2022-12-15 2023-08-29 玟能(成都)科技有限公司 一种用于生产热水的太阳能利用系统
CN116839235A (zh) * 2022-12-15 2023-10-03 玟能(成都)科技有限公司 一种用于生产热水的太阳能热水利用系统

Also Published As

Publication number Publication date
CN116839235A (zh) 2023-10-03

Similar Documents

Publication Publication Date Title
WO2024125351A1 (zh) 一种用于生产热水的太阳能热利用系统
CN109059313A (zh) 一种高效太阳能集热联合电能供热系统
CN219607413U (zh) 一种用于生产热水的太阳能利用系统
CN103486747A (zh) 一种全天候太阳能储热用热的方法及装置
CN105605807A (zh) 太阳光电光热一体式超导热水系统
CN112146290A (zh) 一种基于自动控制的太阳能供热系统及立式太阳能装置
CN201028835Y (zh) 一种储能型家用太阳能装置
CN201569185U (zh) 一种新型太阳能集热储能装置
CN116499017A (zh) 一种风光互补直驱耦合式清洁能源供暖系统
CN105823230A (zh) 太阳能聚热发电自动跟踪控制超导热水系统
CN208952437U (zh) 太阳能光伏-光热-热风一体化集热装置
CN100572979C (zh) 一种储能型家用太阳能装置
CN109000379A (zh) 太阳能光伏-光热-热风一体化集热装置
CN209495388U (zh) 一种用于太阳能的蓄热舱
CN114593453A (zh) 一种太阳能热柜
CN111322768A (zh) 一种用于开水炉和炊事灶的新型节能环保太阳能供热设备
CN206361962U (zh) 一种抛物面槽式水平轴跟踪太阳能集热器
CN212320111U (zh) 一种用于开水炉和炊事灶的新型节能环保太阳能供热设备
CN205066192U (zh) 一种机电一体化蝶式太阳能聚热装置
CN214250153U (zh) 一种家用太阳能采暖壁挂炉
CN109363506A (zh) 一种新能源饮水机
CN102313363B (zh) 家用太阳能综合利用系统
CN2474963Y (zh) 分体式太阳能热水器
CN218119875U (zh) 一种用于商业供暖的太阳能蓄热供暖装置
CN114322331A (zh) 一种热电联供太阳灶一体化太阳能装置