WO2024124858A1 - 一种混合工质沸腾气泡行为特性研究测试系统及方法 - Google Patents

一种混合工质沸腾气泡行为特性研究测试系统及方法 Download PDF

Info

Publication number
WO2024124858A1
WO2024124858A1 PCT/CN2023/103036 CN2023103036W WO2024124858A1 WO 2024124858 A1 WO2024124858 A1 WO 2024124858A1 CN 2023103036 W CN2023103036 W CN 2023103036W WO 2024124858 A1 WO2024124858 A1 WO 2024124858A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixed liquid
temperature
cavity
boiling
bubble
Prior art date
Application number
PCT/CN2023/103036
Other languages
English (en)
French (fr)
Inventor
韩辉
刘亮
李玉星
朱建鲁
苏正雄
杜依帆
Original Assignee
中国石油大学(华东)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油大学(华东) filed Critical 中国石油大学(华东)
Publication of WO2024124858A1 publication Critical patent/WO2024124858A1/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to the technical field of energy heat exchange, and in particular to a system and method for studying and testing the behavior characteristics of boiling bubbles of a mixed working fluid.
  • nucleate boiling is widely used in technical fields with extremely high heat transfer rate requirements, such as nuclear reactors, natural gas and hydrogen liquefaction, and microelectronics.
  • Boiling is a phase change process in which bubbles nucleate and grow continuously on superheated liquids (uniform nucleation) or solid-liquid interfaces (inhomogeneous nucleation).
  • inhomogeneous nucleation occurs when the heated wall reaches a certain degree of superheat.
  • boiling heat transfer of binary or multicomponent mixed working fluids has been widely used in heat exchange systems.
  • a significant advantage of mixed working fluids is that the mixture can achieve the desired physical and chemical properties through the type and concentration of components.
  • the phase change temperature of the mixed working fluid can be intentionally and flexibly controlled under constant pressure, that is, it has a wider boiling starting temperature range under a given pressure.
  • existing studies have shown that due to the different boiling points of the components of the mixed working fluid, during the boiling process, the light component at the bubble interface evaporates first, and there is a concentration gradient in the thin layer of liquid at the bubble interface, which makes the concentration of each component in the bubble different from the concentration of the original component in the liquid.
  • the boiling heat transfer performance of the mixture is lower than that of the pure working fluid.
  • the boiling heat transfer performance is closely related to the behavior characteristics of the bubbles such as nucleation, growth and detachment during the boiling process. The existence of the above phenomenon makes the existing boiling bubble behavior characteristic model less applicable to the mixed working fluid.
  • the inventors have found that, currently, there is still a lack of a visual testing system that can determine the concentration of components in the boiling bubbles of a mixed working fluid to complete the study of bubble behavior characteristics and enhancement methods.
  • the present invention proposes a mixed working fluid boiling bubble behavior characteristics research and testing system and method, which can accurately determine the component concentration of mixed working fluid boiling bubbles and realize the research on bubble behavior characteristics.
  • the present invention adopts the following technical solution:
  • a mixed liquid boiling bubble behavior characteristic research and testing system which includes a visualization chamber, a heating device, a constant temperature water bath, a gas collection chamber, a third pressure sensor, a third temperature sensor and a data processing module;
  • the visualization cavity is used to contain the mixed liquid; the heating device is used to heat the mixed liquid in the visualization cavity and make the mixed liquid produce boiling bubbles; the gas collection cavity is used to collect the boiling bubbles produced by the mixed liquid in the visualization cavity; the constant temperature water bath is used to cool the bubbles collected by the gas collection cavity; the third pressure sensor is used to obtain the gas pressure in the gas collection cavity, and the third temperature sensor is used to obtain the temperature of the constant temperature water bath; the data processing module is used to determine the component concentration of the boiling bubbles of the mixed liquid according to the gas pressure in the gas collection cavity and the temperature of the constant temperature water bath.
  • the mixed liquid in the visualization cavity is heated by a heating device to generate boiling bubbles in the mixed liquid;
  • the boiling bubbles generated by the mixed liquid in the visualization cavity are collected through the gas collection cavity;
  • the gas collected in the gas collection chamber is cooled by a constant temperature water bath
  • the component concentration of boiling bubbles in the mixed liquid is determined according to the gas pressure in the gas collection chamber and the temperature of the constant temperature water bath.
  • the present invention has the following beneficial effects:
  • the present invention can study the behavior characteristics and enhancement methods of boiling bubbles of mixed working fluids under different pressures, heat flux densities, subcooling degrees, and component concentrations, and can collect boiling bubbles to determine the boiling bubble component concentrations.
  • the present invention processes temperature measuring holes at different distances from the top of the side of the heating block to measure the temperature at different positions, and then calculates the heat flux density of the heating block and the top temperature. Compared with determining the heat flux density based on an adjustable power supply, it reduces the experimental error caused by heat leakage between the heating block and the surrounding environment.
  • the present invention extends the bubble collection pipeline into the mixed liquid in the visualization cavity to collect boiling bubbles, thereby reducing the influence of the evaporation of the mixed liquid surface on the boiling bubble gas collection, thereby making the obtained boiling bubble component concentration more accurate.
  • the first heating element is arranged outside the visualization cavity.
  • FIG1 is a schematic diagram of the structure of the system disclosed in Example 1;
  • FIG. 2 is a structural layout diagram of the second heating element disclosed in Example 1.
  • FIG. 2 is a structural layout diagram of the second heating element disclosed in Example 1.
  • a mixed liquid boiling bubble behavior characteristic research and testing system including a visualization cavity, a heating device, a constant temperature water bath, a gas collection cavity, a third pressure sensor, a third temperature sensor and a data processing module;
  • the visualization cavity is used to contain the mixed liquid; the heating device is used to heat the mixed liquid in the visualization cavity and make the mixed liquid produce boiling bubbles; the gas collection cavity is used to collect the boiling bubbles produced by the mixed liquid in the visualization cavity; the constant temperature water bath is used to cool the bubbles collected by the gas collection cavity; the third pressure sensor is used to obtain the gas pressure in the gas collection cavity, and the third temperature sensor is used to obtain the temperature of the constant temperature water bath; the data processing module is used to determine the component concentration of the boiling bubbles of the mixed liquid according to the gas pressure in the gas collection cavity and the temperature of the constant temperature water bath.
  • a mixed liquid boiling bubble behavior characteristic research and testing system disclosed in this embodiment is described in detail. As shown in Figures 1 and 2, a mixed liquid boiling bubble behavior characteristic research and testing system includes: a boiling system, a gas sampling system and a data acquisition system.
  • the boiling system can change the concentration, temperature, pressure and other conditions of the mixed working fluid components and collect the gas in the boiling bubbles of the mixed working fluid.
  • the boiling system includes a visualization cavity 1 for containing a mixed liquid.
  • a heating device is arranged on the visualization cavity 1. The heating device is used to heat the mixed liquid in the visualization cavity so that the mixed liquid generates boiling bubbles.
  • the heating device includes a first heating element and a second heating element.
  • the first heating element is used to heat the mixed liquid in the visualization cavity to a first temperature value;
  • the second heating element is arranged at the bottom of the inner cavity of the visualization cavity, and is used to continue heating the mixed liquid that reaches the first temperature value, and keep the temperature of the second heating element at the second temperature value at all times, so that the mixed liquid produces boiling bubbles.
  • a first heating element is arranged outside the visualization cavity 1, and the mixed liquid in the visualization cavity 1 is heated by the first heating element. Arranging the first heating element outside the visualization cavity 1 can prevent the heating element itself from generating bubbles that affect the collection of boiling bubbles of the mixed working fluid, thereby effectively ensuring the accuracy of the concentration of the boiling bubble components of the obtained mixed liquid.
  • the first heating element is a flexible heating sheet
  • the flexible heating sheet 15 is disposed outside the visualization cavity 1 to heat the mixed solution in the visualization cavity 1 .
  • a temperature sensor 17 is provided, and the temperature sensor 17 includes a first temperature sensor and a fourth temperature sensor, wherein the first temperature sensor is used to obtain the temperature of the mixed liquid in the visualization cavity 1, and the fourth temperature sensor is used to obtain the temperature of the gas space in the visualization cavity 1.
  • two first temperature sensors are provided, and the temperature of the mixed liquid is monitored by the two first temperature sensors.
  • the first heating element, the first temperature sensor and the fourth temperature sensor are all connected to the temperature control cabinet 16.
  • the temperature control cabinet 16 controls the first heating element to heat the mixed liquid in the visualization cavity 1.
  • the first heating element is controlled to stop heating.
  • the second heating element includes a heating block 20, a heating plate 21 and a fixing plate 23.
  • the heating plate 21 is arranged at the bottom of the heating block 20.
  • the bottom of the heating block 20 is also connected to the fixing plate 23.
  • the fixing plate 23 is fixed on the bottom of the inner cavity of the visualization cavity 1.
  • the top of the heating block 20 extends into the mixed liquid.
  • a plurality of second temperature sensors are arranged on the second heating element.
  • the plurality of second temperature sensors are arranged at different distances from the top of the second heating element to obtain the temperature of the second heating element at different distances from the top of the second heating element.
  • the heating plate 21 is connected to the adjustable DC power supply 22, and the heating power of the heating plate 21 is controlled by the adjustable DC power supply 22.
  • the temperature of the second heating element is always maintained at the second temperature value, so that the mixed gas generates boiling bubbles.
  • fixing columns 19 are welded at the lower part of the inner cavity of the visualization cavity 1 for fixing the fixing plate 23.
  • a square hole is cut out at the middle of the fixing column 19 at the bottom of the visualization cavity 1.
  • the heating block 20 passes through, and the top of the heating block 20 extends into the mixed liquid, thereby being able to heat the mixed liquid.
  • the lower part of the front and back of the heating block 20 is bonded to the heating plate 21 with thermal conductive glue.
  • the heating plate 21 is connected to an adjustable DC power supply 22 to adjust its output power.
  • Heating block temperature measuring holes 25 are drilled on the side of the heating block 20 at different heights from its top to place the second temperature sensor.
  • the sensor signal line is connected to the data processing module 30. The lowest hole should be above the top of the heating plate 21.
  • the top of the heating block 20 can be processed into a conventional surface with different roughness and a reinforced surface with different micro-nano structure parameters as needed; in order to avoid direct contact between the heating block 20 and the visualization cavity 1 to cause additional heat conduction, a fixing plate 23 is used to fix the heating block 20, and the fixing plate 23 is then connected to the visualization cavity 1.
  • the material of the fixing plate 23 is polytetrafluoroethylene with a low thermal conductivity coefficient.
  • the fixing plate 23 is a rectangular parallelepiped with a square hole passing through the center. The width of the square hole is consistent with the heating block 20 to clamp the heating block 20, and the length is slightly longer than the heating block 20 to leave space for the outlet of the second temperature sensor on the side of the heating block 20. Holes are drilled at the four corners of the fixing plate 23 to pass through the fixing column 19 at the bottom of the visualization cavity 1, so that the fixing plate 23 fits the visualization cavity 1, and the heating block extends into the visualization cavity 1.
  • the square hole at the bottom of the visualization cavity 1 is immediately sealed by the fixing plate 23, and then the gap between the visualization cavity 1, the fixing plate 23 and the heating block 20 is sealed with epoxy resin glue with a low thermal conductivity coefficient to prevent leakage.
  • the heating block 20 is a copper block
  • the heating plate 21 is a ceramic heating plate.
  • a first pressure sensor is provided to obtain the gas pressure in the visualization cavity 1 .
  • the specific installation method of the temperature sensor 17 and the first pressure sensor 18 is: a plurality of threaded joints are welded on the visualization cavity 1, and the temperature sensor 17 and the first pressure sensor 18 are threadedly connected to the corresponding threaded joints respectively.
  • the visualization cavity 1 is sequentially attached with a gasket 2, a plexiglass window 3 and a window pressing piece 4 at the front and back, and 8 bolt holes are evenly distributed at corresponding positions on the four.
  • Bolts 5 pass through the four bolt holes in turn and cooperate with nuts to tighten the four.
  • the visualization cavity 1 is also connected to the injection pipeline 6 and the bubble collection pipeline 8 respectively.
  • the mixed working fluid liquid is injected into the visualization cavity 1 through the injection pipeline 6, and the boiling bubbles generated by the mixed liquid are collected through the bubble collection pipeline 8.
  • the bubble collection pipeline 8 and the injection pipeline 6 are also connected to the condenser.
  • the bubble collecting pipeline 8 is also connected to one end of the bubble sampling pipeline 10 , and the other end of the bubble sampling pipeline 10 is connected to the gas collecting chamber 26 .
  • An injection pipeline valve 7 is arranged on the injection pipeline 6, a bubble collection pipeline valve 9 is arranged on the bubble collection pipeline 8, and a bubble sampling pipeline valve 11 is arranged on the bubble sampling pipeline 10.
  • the on-off of the corresponding pipeline is controlled by each valve, wherein the bubble collection pipeline valve 9 is located between the bubble sampling pipeline 10 and the condenser, and the injection pipeline valve 7 is arranged on the pipeline for introducing the mixed working fluid liquid from the injection pipeline to the condenser.
  • one end of the bubble collection pipeline 8 is connected to the condenser, and the other end is extended into the mixed liquid in the visualization cavity 1 and is located directly above the heating block.
  • the bubble collection pipeline 8 is in the form of a sleeve, and the length of the bubble collection pipeline 8 is adjusted by stretching or retracting the sleeve, and the adjacent pipelines are connected and fixed by the set fixing pins.
  • the bubble sampling pipeline 10 is connected to the bubble collecting pipeline 8 at a position close to the visualization cavity.
  • the outside of the visualization cavity, the bubble collection pipeline 8 and the bubble sampling pipeline 10 are wrapped with a thermal insulation layer to reduce heat exchange with the environment.
  • the condenser includes a gas recondensing cavity 12, a condensing coil 13 and a condensing water bath 14.
  • the condensing coil 13 is located in the gas recondensing cavity 12. Both ends of the condensing coil 13 are connected to the condensing water bath 14 respectively.
  • the liquid injection pipeline 6 and the bubble collection pipeline 8 are both connected to the gas recondensing cavity 12.
  • the mixed liquid and the boiling bubbles of the mixed liquid are introduced into the gas recondensing cavity 12 through the liquid injection pipeline 6 and the bubble collection pipeline 8.
  • the condensed liquid in the condensing water bath 14 enters the condensing coil 13.
  • the mixed liquid and the boiling bubbles in the gas recondensing cavity 12 are condensed and cooled, and the temperature of the mixed liquid introduced into the visualization cavity 1 is adjusted.
  • the gas sampling system includes a constant temperature water bath 28, a gas collection chamber 26, a third pressure sensor 29 and a third temperature sensor.
  • the constant temperature water bath 28 is used to cool the gas in the gas collection chamber 26.
  • the third temperature sensor is used to obtain the temperature of the constant temperature water bath.
  • the gas collection chamber 26 is connected to the bubble sampling pipeline 10.
  • the boiling bubbles generated by the mixed liquid in the visualization chamber 1 are collected into the gas collection chamber 26 through the bubble sampling pipeline 10.
  • the gas pressure in the gas collection chamber 26 is measured by the third pressure sensor 29.
  • the gas pressure measured by the third pressure sensor 29 reaches a set value, it indicates that the gas amount in the gas collection chamber 26 reaches the set value. After that, the gas collected in the gas collection chamber is cooled by the constant temperature water bath 28.
  • the gas pressure in the gas collection chamber is obtained by the third pressure sensor 29, and the temperature of the constant temperature water bath is obtained by the third temperature sensor.
  • the third pressure sensor 29 and the third temperature sensor are both connected to the data processing module.
  • the data processing module is used to determine the component concentration of the boiling bubbles of the mixed liquid according to the gas pressure in the gas collection chamber and the temperature of the constant temperature water bath through the phase equilibrium principle.
  • the bubble gas generated by boiling liquids of different component concentrations collected in the gas collection chamber has different component concentrations.
  • the equilibrium pressure (temperature) of a gas with a specific component concentration at a specific temperature (or pressure) is determined. Therefore, the gas component concentration can be determined by querying the mixed working fluid phase equilibrium data through the temperature and pressure of the gas collection chamber.
  • a pressure sensor threaded joint is welded on the top of the gas collection chamber to connect the third pressure sensor to measure Gas pressure in the gas collection chamber.
  • a gas collection chamber valve 27 is also provided at the entrance of the gas collection chamber.
  • the gas collection chamber valve 27 is connected to the bubble sampling pipeline 10 to control the on-off of the bubble sampling pipeline 10 .
  • the data acquisition system includes a data processing module, an image acquisition device and a light source 32.
  • the mixed liquid in the visualization cavity 1 is irradiated by the light source 32.
  • the image acquisition device is used to obtain the boiling bubble behavior image of the mixed liquid.
  • the data processing module is connected to the image acquisition device and each sensor to analyze the various types of data obtained.
  • the image acquisition device uses a high-speed camera 31.
  • the high-speed camera 31 and the light source are respectively placed in front and behind the visualization cavity to record the bubble behavior characteristics during the boiling process of the mixed working medium.
  • the process of data processing by the data processing module includes: determining the component concentration of boiling bubbles in the mixed liquid according to the gas pressure in the gas collection chamber and the temperature of the constant temperature water bath; determining the linear function of the temperature changing with the distance from the top of the second heating element according to the distance of the second temperature sensor from the top and the acquired temperature, and determining the top temperature of the second heating element and the slope of the linear function according to the linear function; determining the heat flux density of the heat transferred from the second heating element to the mixed liquid according to the slope of the linear function and the thermal conductivity of the second heating element; determining the boiling heat transfer coefficient at the top of the second heating element according to the heat flux density, the top temperature of the second heating element and the temperature of the mixed liquid.
  • Step 1 Use thermal conductive glue to fix the ceramic heating plate in front and behind the heating block, and place the second temperature sensor in the temperature measuring holes of the heating block, T1 , T2 , T3 , T4 from top to bottom; pass the circular holes around the fixing plate through the fixing columns under the visualization cavity, so that the fixing plate is close to the visualization cavity, and fix it with nuts; pass the heating block through the square hole in the center of the fixing plate and adjust the height so that the upper surface of the heating block is slightly higher than the upper surface of the fixing plate.
  • Step 2 Connect the inlet and outlet of the condensing coil to the inlet and outlet of the condensing water bath; connect the flexible heating plate to the temperature control cabinet, and connect the ceramic heating plate to the adjustable DC power supply; connect a sensor signal line for measuring the temperature of the mixed liquid to the temperature control, and connect the remaining temperature and pressure sensor signal lines to the acquisition card;
  • Step 3 Close the valve of the bubble sampling pipeline, open the valve of the bubble collection pipeline and the valve of the liquid injection pipeline, inject the prepared mixed working fluid liquid into the visualization cavity through the liquid injection pipeline, and then close the valve of the liquid injection pipeline;
  • Step 4 Turn on the temperature control cabinet and adjust the preset temperature of the temperature control cabinet so that the flexible heating sheet heats the mixed working fluid to the first temperature value;
  • Step 5 Turn on the condensing water bath to allow condensed water to enter the condensing coil, and adjust the temperature of the condensing water bath to adjust the boiling system pressure, that is, adjust the pressure in the visualization chamber;
  • Step 6 Turn on the adjustable DC power supply, adjust the output voltage of the adjustable DC power supply to make the mixed working fluid liquid boil and fix the upper surface of the heating block at a certain temperature, turn on the high-speed camera and light source, shoot the boiling bubble behavior of the mixed working fluid under the corresponding conditions, and use the data processing module to quantitatively analyze the nucleation, growth, detachment and other behaviors; drain the gas inside the gas collection chamber and close the gas collection chamber valve; connect the gas collection chamber to the bubble sampling pipeline, close the bubble collection pipeline valve, open the bubble sampling pipeline valve and the gas collection chamber valve, so that the collected boiling bubbles enter the gas collection chamber, and the collected gas After reaching a certain amount, close the bubble sampling pipeline valve and the gas collection chamber valve, and open the bubble collection pipeline valve; turn on the constant temperature water bath, adjust the water bath temperature to a certain value, and place the gas collection chamber in the constant temperature water bath for a period of time, record the constant temperature water bath temperature value and the gas sampling chamber pressure sensor value, and determine the boiling bubble component concentration according to the physical properties
  • Step 7 Record the temperature sensor values of the four heating block temperature measuring holes, and fit the linear function of the temperature change with the distance from the top of the heating block according to the values, and calculate the temperature at the top of the heating block when the distance is 0, and then calculate the heat flux density of the heat transferred from the heating block to the mixed liquid according to the slope of the linear function.
  • q is the heat flux density of heat transferred from the heating block to the mixed liquid, W/m 2 ;
  • is the thermal conductivity of the heating block, W/WmW°CW; and
  • k is the slope of the linear function obtained by fitting, °C/m.
  • h is the boiling heat transfer coefficient at the top of the heating block, W/m 2 W°C; Tw is the top temperature of the heating block, °C; Tf is the temperature of the mixed liquid, °C.
  • Step 8 Repeat steps 6 and 7 to study the boiling bubble behavior characteristics of the mixed working fluid under different heating block heat flux densities
  • Step 9 Repeat steps 5 to 7 to study the boiling bubble behavior characteristics of the mixed working fluid under different pressure conditions
  • Step 10 Repeat steps 4 to 7 to study the boiling bubble behavior characteristics of the mixed working fluid under different mixed liquid subcooling conditions;
  • Step 11 Repeat steps 3 to 7 to perform mixing under different concentrations of mixed working fluid components. Study on the behavior characteristics of bubbles in mass boiling;
  • Step 12 Replace the heating block and repeat steps 1 to 7 to study the boiling enhancement method of the mixed working fluid on conventional surfaces with different roughness and micro-nanostructure enhanced surfaces with different structural parameters.
  • the test system disclosed in this embodiment can study the behavior characteristics and enhancement methods of boiling bubbles of mixed working fluids under conditions of different pressures, heat flux densities, supercooling degrees, and component concentrations, and can collect boiling bubbles to determine the boiling bubble component concentration; control the boiling system pressure by adjusting the temperature of the condensing water bath; control the heat flux density of the heating block and its top temperature by controlling the output voltage of the adjustable DC power supply; control the supercooling degree of the mixed liquid by adjusting the set temperature of the temperature control cabinet; study the behavior characteristics of boiling bubbles of mixed working fluids under conditions of different component concentrations by replacing mixed working fluids with different ratios; study the behavior characteristics of boiling bubbles of mixed working fluids by processing heating copper blocks with different upper surface structures, comprehensively compare the boiling bubble behavior characteristics and the heat transfer coefficient, optimize the surface structure parameters, and determine the method for enhancing the boiling heat transfer of mixed working fluids; and measure the temperature of different positions by processing temperature measuring holes at different heights from the upper surface on the side of the heating block.
  • the temperature can be set by theoretically calculating the heat flux density and the top temperature of the heating block. Compared with determining the heat flux density based on an adjustable power supply, the experimental error caused by heat leakage between the heating block and the surrounding environment is reduced; the bubble collection pipeline is designed to collect boiling bubbles, and the bubble collection pipeline extends into the boiling visualization chamber in the form of a sleeve.
  • the sleeve height can be adjusted so that the sleeve mouth is located below the liquid surface of the mixed liquid, thereby reducing the error caused by the evaporation of the mixed liquid surface on the gas collection; the mixed liquid is heated by attaching a flexible heating sheet to the outer side of the boiling visualization chamber to prevent the heating rod itself from generating boiling bubbles when the mixed liquid is heated by a heating rod placed in the boiling visualization chamber, thereby affecting the collected bubble experimental results; a gas sampling system is designed, and the gas collection chamber collects boiling bubbles.
  • the gas collection chamber is placed in a constant temperature water bath, and the pressure of the gas collection chamber is measured.
  • the component concentration of the boiling bubbles of the mixed working fluid can be conveniently and economically determined based on the phase equilibrium data; Equipped with an overhead camera and light source, it can capture and record micron-sized bubbles, and use post-processing software for quantitative analysis.
  • Example 1 a test method for a mixed liquid boiling bubble behavior characteristic research test system as disclosed in Example 1 is disclosed, comprising:
  • the mixed liquid in the visualization cavity is heated by a heating device to generate boiling bubbles in the mixed liquid;
  • the boiling bubbles generated by the mixed liquid in the visualization cavity are collected through the gas collection cavity;
  • the gas collected in the gas collection chamber is cooled by a constant temperature water bath
  • the component concentration of boiling bubbles in the mixed liquid is determined according to the gas pressure in the gas collection chamber and the temperature of the constant temperature water bath.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)

Abstract

一种混合液体沸腾气泡行为特性研究测试系统及方法,该测试系统包括可视化腔体(1)、加热装置、恒温水浴(28)、气体采集腔(26)、第三压力传感器(29)、第三温度传感器和数据处理模块(30);可视化腔体(1)用于盛装混合液体;加热装置用于对可视化腔体(1)内的混合液体加热,并使混合液体产生沸腾气泡;气体采集腔(26)用于对可视化腔体(1)内混合液体产生的沸腾气泡进行收集;恒温水浴(28)用于对气体采集腔(26)收集的气泡进行冷却;第三压力传感器(29)用于获取气体采集腔(26)内气体压力,第三温度传感器用于获取恒温水浴(28)的温度;数据处理模块(30)用于根据气体采集腔(26)内气体压力和恒温水浴(28)的温度,确定混合液体沸腾气泡的组分浓度。该测试系统及方法实现了对混合液体沸腾气泡组分浓度的准确分析,及对沸腾气泡行为特性的研究。

Description

一种混合工质沸腾气泡行为特性研究测试系统及方法
本发明要求于2022年12月14日提交中国专利局、申请号为202211606870.4、发明名称为“一种混合工质沸腾气泡行为特性研究测试系统及方法”的中国专利申请的优先权,其全部内容通过引用结合在本发明中。
技术领域
本发明涉及能源换热技术领域,尤其涉及一种混合工质沸腾气泡行为特性研究测试系统及方法。
背景技术
本部分的陈述仅仅是提供了与本发明相关的背景技术信息,不必然构成在先技术。
核态沸腾作为最高效的传热方式之一被广泛应用于核反应堆、天然气与氢气液化以及微电子技术等具有极高传热速率需求的技术领域中。沸腾是气泡在过热液体(均匀成核)或固液界面(非均匀成核)上发生成核并不断生长的相变过程。在绝大多数工业应用中,当加热壁面达到一定过热度时,发生非均匀成核。目前二元或多元混合工质的沸腾传热已经广泛应用于热交换系统中。混合工质的一个显著优点是可以通过组分种类和浓度以使混合物达到所期待的物理和化学性质。例如,混合工质的相变温度可以在恒定的压力下有意而灵活的控制,即在给定的压力下拥有较宽的沸腾起始温度范围。然而,现有研究表明,由于混合工质各组分沸点不同,沸腾发生过程中,气泡界面轻组分率先蒸发,气泡界面液体薄层存在浓度梯度,使气泡中各组分浓度与液体原有组分浓度不 一致,并形成传质阻力,导致混合物的沸腾传热性能低于纯工质。沸腾传热性能与沸腾过程中气泡的成核、生长与脱离等行为特性紧密相关,上述现象的存在使现有的沸腾气泡行为特性模型对混合工质的适用性较差。同时,仍需进一步发展混合工质的沸腾传热强化方法以解决混合工质沸腾传热性能弱的问题。
发明人发现,目前,尚缺乏能够确定混合工质沸腾气泡内组分浓度以完成气泡行为特性及强化方法研究的可视化测试系统。
发明内容
本发明为了解决上述问题,提出了一种混合工质沸腾气泡行为特性研究测试系统及方法,能够准确确定混合工质沸腾气泡的组分浓度,并能够实现对气泡行为特性的研究。
为实现上述目的,本发明采用如下技术方案:
第一方面,提出了一种混合液体沸腾气泡行为特性研究测试系统,包括可视化腔体、加热装置、恒温水浴、气体采集腔、第三压力传感器、第三温度传感器和数据处理模块;
可视化腔体用于盛装混合液体;加热装置用于对可视化腔体内的混合液体加热,并使混合液体产生沸腾气泡;气体采集腔用于对可视化腔体内混合液体产生的沸腾气泡进行收集;恒温水浴用于对气体采集腔收集的气泡进行冷却;第三压力传感器用于获取气体采集腔内气体压力,第三温度传感器用于获取恒温水浴的温度;数据处理模块用于根据气体采集腔内气体压力和恒温水浴的温度,确定混合液体沸腾气泡的组分浓度。
第二方面,提出了一种混合液体沸腾气泡行为特性研究测试系统的测试方法,包括:
通过加热装置对可视化腔体内的混合液体进行加热,使混合液体产生沸腾气泡;
通过气体采集腔对可视化腔体内混合液体产生的沸腾气泡进行收集;
当气体采集腔内的气体量达到设定值时,通过恒温水浴对气体采集腔收集的气体进行冷却;
获取冷却过程中,气体采集腔内气体压力和恒温水浴的温度;
根据气体采集腔内气体压力和恒温水浴的温度,确定混合液体沸腾气泡的组分浓度。
与现有技术相比,本发明的有益效果为:
1、本发明可进行不同压力、热流密度、过冷度、组分浓度条件下的混合工质沸腾气泡行为特性与强化方法研究,并可收集沸腾气泡以确定沸腾气泡组分浓度。
2、本发明通过在加热块的侧面距离顶端不同距离位置加工测温孔,测量不同位置温度,进而计算加热块热流密度与顶端温度,相比于根据可调电源确定热流密度减小了加热块与周围环境漏热带来的实验误差。
3、本发明将气泡收集管路伸入可视化腔体中的混合液体中进行沸腾气泡的收集,减小混合液体液面蒸发对沸腾气泡气体采集产生的影响,进而使获得的沸腾气泡组分浓度更准确。
4、本发明为了防止加热件自身产生沸腾气泡对收集的混合工质沸腾气泡产生影响,将第一加热件设置于可视化腔体的外部。
本发明附加方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为实施例1公开系统的结构示意图;
图2为实施例1公开的第二加热件结构布置图。
其中:1、可视化腔体,2、垫片,3、有机玻璃视窗,4、视窗压片,5、螺栓,6、注液管路,7、注液管路阀门,8、气泡收集管路,9、气泡收集管路阀门,10、气泡采样管路,11、气泡采样管路阀门,12、气体再冷凝腔体,13、冷凝盘管,14、冷凝水浴,15、柔性加热片,16、温度控制柜,17、温度传感器,18、压力传感器,19、固定柱,20、加热块,21、加热片,22、可调直流电源,23、固定片,24、环氧树脂胶,25、加热块测温孔,26、气体采集腔,27、气体采集腔阀门,28、恒温水浴,29、第三压力传感器,30、数据处理模块,31、高速摄像机,32、光源。
具体实施方式
下面结合附图与实施例对本发明作进一步说明。
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
实施例1
在该实施例中,公开了一种混合液体沸腾气泡行为特性研究测试系统,包括可视化腔体、加热装置、恒温水浴、气体采集腔、第三压力传感器、第三温度传感器和数据处理模块;
可视化腔体用于盛装混合液体;加热装置用于对可视化腔体内的混合液体加热,并使混合液体产生沸腾气泡;气体采集腔用于对可视化腔体内混合液体产生的沸腾气泡进行收集;恒温水浴用于对气体采集腔收集的气泡进行冷却;第三压力传感器用于获取气体采集腔内气体压力,第三温度传感器用于获取恒温水浴的温度;数据处理模块用于根据气体采集腔内气体压力和恒温水浴的温度,确定混合液体沸腾气泡的组分浓度。
对本实施例公开的一种混合液体沸腾气泡行为特性研究测试系统进行详细说明,如图1、图2所示,一种混合液体沸腾气泡行为特性研究测试系统,包括:沸腾系统、气体采样系统与数据采集系统。
沸腾系统可改变混合工质组分浓度、温度、压力等条件,并收集混合工质沸腾气泡中的气体。
具体的,沸腾系统包括用于盛装混合液体的可视化腔体1,在可视化腔体1上设置加热装置,加热装置用于对可视化腔体内的混合液体进行加热,使混合液体产生沸腾气泡。
加热装置包括第一加热件和第二加热件,第一加热件用于将可视化腔体内的混合液体加热至第一温度值;第二加热件设置于可视化腔体内腔底部,用于对达到第一温度值的混合液体进行继续加热,并使第二加热件的温度始终保持在第二温度值,使混合液体产生沸腾气泡。
可视化腔体1的外部设置第一加热件,通过第一加热件对可视化腔体1中的混合液体进行加热,将第一加热件设置于可视化腔体1的外部,能够防止加热件自身产生气泡对混合工质沸腾气泡的收集产生影响,有效保证获得的混合液体沸腾气泡组分浓度的准确性。
优选的,第一加热件选用柔性加热片,将柔性加热片15设置于可视化腔体1的外部,以对可视化腔体1内的混合溶液进行加热。
为了实现通过第一加热件对混合液体进行精准加热,设置了温度传感器17,温度传感器17包括第一温度传感器和第四温度传感器,第一温度传感器,用于获取可视化腔体1中的混合液体温度,第四温度传感器,用于获取可视化腔体1内的气体空间温度。且为了减少不同测量点测得的液体温度的误差,将第一温度传感器设置为两个,通过两个第一温度传感器对混合液体的温度进行监控。
将第一加热件、第一温度传感器、第四温度传感器均与温度控制柜16连接,通过温度控制柜16控制第一加热件对可视化腔体1内的混合液体进行加热,当第一温度传感器获取的混合液体温度达到设定的第一温度值时,控制第一加热件停止加热。
第二加热件包括加热块20、加热片21和固定片23,加热片21设置于加热块20的底部,加热块20的底部还与固定片23连接,固定片23固定于可视化腔体1内腔底部上,加热块20的顶部伸入混合液体内。
为了实现对第二加热件加热的控制,在第二加热件上设置了多个第二温度传感器,多个第二温度传感器设置于第二加热件距离顶端不同距离位置处,用于获取第二加热件距离其顶端不同距离处温度。
将加热片21与可调直流电源22连接,通过可调直流电源22控制加热片21的加热功率,通过控制加热片21的温度,使得第二加热件的温度始终保持在第二温度值,使混合气体产生沸腾气泡。
在具体实施时,可视化腔体1内腔下部焊接有四个固定柱19,用于固定固定片23,可视化腔体1底部位于固定柱19中间的部分被切割出方孔,该方孔供 加热块20穿过,并使加热块20的顶部伸入混合液体中,进而能够对混合液体进行加热。
加热块20前后面的下部采用导热胶与加热片21贴合,加热片21与可调直流电源22连接以调节其输出功率,在加热块20的侧面距其顶部不同高度的位置钻有加热块测温孔25以放置第二温度传感器,传感器信号线与数据处理模块30相连,位置最低的孔应该在加热片21顶部之上,加热块20顶部可根据需要加工为不同粗糙度的常规表面以及具有不同微纳结构参数的强化表面;为避免加热块20与可视化腔体1直接接触造成额外导热,采用固定片23固定加热块20,固定片23再与可视化腔体1连接的方式,固定片23材质为导热系数较低的聚四氟乙烯。固定片23为长方体,其中心有贯穿的方孔,方孔宽度与加热块20一致以夹住加热块20,长度比加热块20略长以留出加热块20侧面第二温度传感器的出线空间,固定片23四角钻有孔,以穿过可视化腔体1底部的固定柱19,使固定片23与可视化腔体1贴合,加热块伸入可视化腔体1,可视化腔体1底部的方孔随即被固定片23封住,再采用导热系数较低的环氧树脂胶密封可视化腔体1、固定片23、加热块20三者之间的缝隙,防止泄露。
优选的,加热块20选用铜块,加热片21采用陶瓷加热片。
此外,还设置了第一压力传感器,用于获取可视化腔体1内的气体压力。
温度传感器17和第一压力传感器18的具体安装方式为:在可视化腔体1上焊接多个螺纹接头,温度传感器17和第一压力传感器18分别与对应的螺纹接头进行螺纹连接。
可视化腔体1前后均依次贴合有垫片2、有机玻璃视窗3和视窗压片4,四者均在相对应的位置均匀分布8个螺栓孔,螺栓5依次穿过四者螺栓孔并配合螺母将四者压紧。
可视化腔体1还分别与注液管路6和气泡收集管路8连通,通过注液管路6向可视化腔体1中注入混合工质液体,通过气泡收集管路8对混合液体产生的沸腾气泡进行收集,气泡收集管路8和注液管路6均还与冷凝器连通。
气泡收集管路8还与气泡采样管路10的一端连通,气泡采样管路10的另一端与气体采集腔26连通。
在注液管路6上设置注液管路阀门7,在气泡收集管路8上设置气泡收集管路阀门9,在气泡采样管路10上设置气泡采样管路阀门11,通过各阀门控制对应管路的通断,其中,气泡收集管路阀门9位于气泡采样管路10与冷凝器之间,注液管路阀门7设置于注液管路向冷凝器通入混合工质液体的管路上。
为了减少混合液体液面蒸发对沸腾气泡气体采集产生的影响,保证获取的混合液体沸腾气泡组分浓度的准确性,将气泡收集管路8的一端与冷凝器连通,另一端伸入可视化腔体1中的混合液体中,且位于加热块的正上方。
为了方便气泡收集管路8长度的调节,进而使气泡收集管路8能够伸入可视化腔体1中的混合液体中,将气泡收集管路8采用套管形式,通过拉伸或回收套管,调整气泡收集管路8的长度,并通过设置的固定销对相邻管道进行连接固定。
气泡采样管路10在靠近可视化腔体的位置与气泡收集管路8连通。
此外,在可视化腔体、气泡收集管路8和气泡采样管路10的外部均包裹保温层,减少与环境的热量交换。
冷凝器包括气体再冷凝腔体12、冷凝盘管13和冷凝水浴14,冷凝盘管13位于气体再冷凝腔体12内,冷凝盘管13的两端分别与冷凝水浴14连通,注液管路6和气泡收集管路8均与气体再冷凝腔体12连通,通过注液管路6和气泡收集管路8将混合液体、混合液体沸腾气泡通入气体再冷凝腔体12中,将冷凝水浴14中的冷凝液体进入冷凝盘管13中,对气体再冷凝腔体12中的混合液体和沸腾气泡进行冷凝降温,调整通入可视化腔体1的混合液体的温度。
气体采样系统包括恒温水浴28、气体采集腔26、第三压力传感器29和第三温度传感器,恒温水浴28用于对气体采集腔26中气体进行冷却,第三温度传感器用于获取恒温水浴的温度,气体采集腔26与气泡采样管路10连通,通过气泡采样管路10将可视化腔体1中混合液体产生的沸腾气泡收集至气体采集腔26中,通过第三压力传感器29测量气体采集腔26中气体压力,当第三压力传感器29测得气体压力达到设定值时,表明气体采集腔26的气体量达到设定值,之后,通过恒温水浴28对气体采集腔收集的气体进行冷却;在冷却过程中,通过第三压力传感器29获取气体采集腔内气体压力,第三温度传感器获取恒温水浴的温度;第三压力传感器29和第三温度传感器均与数据处理模块连接,数据处理模块,用于通过相平衡原理,根据气体采集腔内气体压力和恒温水浴的温度,确定混合液体沸腾气泡的组分浓度。
气体采集腔内采集的不同组分浓度液体沸腾产生的气泡气体的组分浓度不同,特定组分浓度的气体在特定温度(或压力)下的平衡压力(温度)确定,因此通过气体采集腔的温度、压力查询混合工质相平衡数据可确定气体组分浓度。
气体采集腔顶部焊接有压力传感器螺纹接头,以连接第三压力传感器测量 气体采集腔中气体压力。
在气体采集腔入口处还设置气体采集腔阀门27,气体采集腔阀门27与气泡采样管路10连通,来控制气泡采样管路10的通断。
数据采集系统包括数据处理模块、图像采集装置和光源32,通过光源32对可视化腔体1中的混合液体进行照射,图像采集装置用于获取混合液体的沸腾气泡行为图像,数据处理模块与图像采集装置和各传感器连接,用于对获取的各类数据进行分析。
图像采集装置采用高速摄像机31,高速摄像31与光源分别置于可视化腔体前后记录混合工质沸腾过程中的气泡行为特性。
数据处理模块进行数据处理的过程包括:根据气体采集腔内气体压力和恒温水浴的温度,确定混合液体沸腾气泡的组分浓度;根据第二温度传感器距离顶端的距离及获取的温度,确定温度随与第二加热件顶端距离变化的线性函数,根据线性函数,确定第二加热件顶端温度和线性函数斜率;根据线性函数斜率和第二加热件的导热系数,确定第二加热件向混合液体传递热量的热流密度;根据热流密度、第二加热件顶端温度和混合液体温度,确定第二加热件顶端的沸腾传热系数。
利用本实施例公开的一种混合液体沸腾气泡行为特性研究测试系统进行混合液体沸腾气泡行为特性研究的具体过程为:
步骤一:利用导热胶将陶瓷加热片固定在加热块前后,将第二温度传感器分别置入加热块测温孔中,从上至下依次为T1,T2,T3,T4;将固定片四周圆孔穿过可视化腔体下面的固定柱,使固定片紧贴可视化腔体,并用螺母固定压紧;将加热块穿过固定片中心的方孔并调节高度使加热块上表面略高于固定片上表 面,在加热块、固定片、可视化腔体三者之间的缝隙处倾倒环氧树脂胶,使环氧树脂胶的高度与加热块上表面平齐,并等待其凝固达到密封作用;调节气泡收集管路下方的套管至合适高度,并拧紧固定销;可视化腔体前后依次贴上垫片、有机玻璃视窗与视窗压片,螺栓穿过四者螺栓孔并使用螺母压紧;将温度传感器与压力传感器分别拧进可视化腔体与气体采集腔上传感器螺纹接头;将沸腾系统以及加热块与环境接触部分包裹保温层;
步骤二:将冷凝盘管进出口与冷凝水浴进出口连接;将柔性加热片与温度控制柜连接,将陶瓷加热片与可调直流电源连接;将一个测量混合液体温度的传感器信号线与温度控制相连,将其余温度与压力传感器信号线与采集卡相连;
步骤三:关闭气泡采样管路阀门,打开气泡收集管路阀门与注液管路阀门,将调配好的混合工质液体通过注液管路注入可视化腔体,之后关闭注液管路阀门;
步骤四:开启温度控制柜,调节温度控制柜预设温度,使柔性加热片将混合工质加热到第一温度值;
步骤五:开启冷凝水浴,使冷凝水进入冷凝盘管,并调节冷凝水浴温度以调节沸腾系统压力,即调整可视化腔体内压力;
步骤六:开启可调直流电源,调节可调直流电源输出电压使混合工质液体沸腾并使加热块上表面固定在某一温度,开启高速摄像机与光源,对相应条件下混合工质沸腾气泡行为进行拍摄,并利用数据处理模块对成核、生长、脱离等行为进行定量分析;将气体采集腔内部气体排干,并关闭气体采集腔阀门;将气体采集腔与气泡采样管路连接,关闭气泡收集管路阀门,打开气泡采样管路阀门与气体采集腔阀门,使收集到的沸腾气泡进入气体采集腔,收集的气体 到达一定量后关闭气泡采样管路阀门与气体采集腔阀门,打开气泡收集管路阀门;开启恒温水浴,调节水浴温度至某一值,并将气体采集腔置于恒温水浴中静置一段时间,记录恒温水浴温度数值与气体采样腔压力传感器数值,根据物性确定沸腾气泡组分浓度;
步骤七:记录4个加热块测温孔的温度传感器数值,根据数值拟合温度随距加热块顶端距离变化的线性函数,并据此计算加热块顶端即距离为0时的温度,再根据线性函数斜率计算加热块向混合液体传递热量的热流密度,计算公式为:
q=λk
其中,q为加热块向混合液体传递热量的热流密度,W/m2;λ为加热块导热系数,W/WmW℃W;k为拟合得到的线性函数斜率,℃/m。
计算加热块顶端的沸腾传热系数,计算公式如下:
其中,h为加热块顶端沸腾传热系数,W/m2W℃;Tw为加热块顶端温度,℃;Tf为混合液体温度,℃。
步骤八:重复步骤六和步骤七进行不同加热块热流密度条件下的混合工质沸腾气泡行为特性研究;
步骤九:重复步骤五至七,进行不同压力条件下的混合工质沸腾气泡行为特性研究;
步骤十:重复步骤四至七,进行不同混合液体过冷度条件下的混合工质沸腾气泡行为特性研究;
步骤十一:重复步骤三至七,进行不同混合工质组分浓度条件下的混合工 质沸腾气泡行为特性研究;
步骤十二:更换加热块,重复步骤一至七,进行不同粗糙度的常规表面与不同结构参数的微纳结构强化表面上的混合工质沸腾强化方法研究。
本实施例公开的测试系统,可进行不同压力、热流密度、过冷度、组分浓度条件下的混合工质沸腾气泡行为特性与强化方法研究,并可收集沸腾气泡以确定沸腾气泡组分浓度;通过调节冷凝水浴温度控制沸腾系统压力;通过控制可调直流电源输出电压控制加热块热流密度及其顶端温度;通过调节温度控制柜设定温度可控制混合液体过冷度;通过更换不同配比的混合工质可进行不同组分浓度条件下的混合工质沸腾气泡行为特性研究;通过加工具有不同上表面结构的加热铜块,分别进行混合工质沸腾气泡行为特性研究,综合比较沸腾气泡行为特性与换热系数,对表面结构参数进行优化,确定混合工质沸腾换热强化方法;通过在加热块加工侧面距离上表面不同高度位置加工测温孔,测量不同位置温度可通过理论计算加热块热流密度与顶端温度,相比于根据可调电源确定热流密度减小了加热块与周围环境漏热带来的实验误差;通过设计有气泡收集管路,可收集沸腾气泡,气泡收集管路伸入沸腾可视化腔部分采用套管形式,可调节套管高度,使套管口位于混合液体液面以下,减小混合液体液面蒸发对气体采集产生的误差;加热混合液体采用在沸腾可视化腔外部侧面贴柔性加热片的方式,防止采用置于沸腾可视化腔体的加热棒加热混合液体的方法时,加热棒自身产生沸腾气泡,对收集的气泡实验结果产生影响;设计有气体采样系统,气体采集腔采集沸腾气泡,将气体采集腔置于恒温水浴中,并测量气体采集腔压力,根据相平衡数据可方便经济地确定混合工质沸腾气泡的组分浓度; 配备有高射摄像与光源,可对微米级的气泡进行拍摄记录,并采用后处理软件进行定量分析。
实施例2
在该实施例中,公开了如实施例1公开的一种混合液体沸腾气泡行为特性研究测试系统的测试方法,包括:
通过加热装置对可视化腔体内的混合液体进行加热,使混合液体产生沸腾气泡;
通过气体采集腔对可视化腔体内混合液体产生的沸腾气泡进行收集;
当气体采集腔内的气体量达到设定值时,通过恒温水浴对气体采集腔收集的气体进行冷却;
获取冷却过程中,气体采集腔内气体压力和恒温水浴的温度;
根据气体采集腔内气体压力和恒温水浴的温度,确定混合液体沸腾气泡的组分浓度。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求保护范围之内。

Claims (10)

  1. 一种混合液体沸腾气泡行为特性研究测试系统,其特征在于,包括可视化腔体、加热装置、恒温水浴、气体采集腔、第三压力传感器、第三温度传感器和数据处理模块;
    可视化腔体用于盛装混合液体;加热装置用于对可视化腔体内的混合液体加热,并使混合液体产生沸腾气泡;气体采集腔用于对可视化腔体内混合液体产生的沸腾气泡进行收集;恒温水浴用于对气体采集腔收集的气泡进行冷却;第三压力传感器用于获取气体采集腔内气体压力,第三温度传感器用于获取恒温水浴的温度;数据处理模块用于根据气体采集腔内气体压力和恒温水浴的温度,确定混合液体沸腾气泡的组分浓度。
  2. 如权利要求1所述的一种混合液体沸腾气泡行为特性研究测试系统,其特征在于,加热装置包括第一加热件和第二加热件,第一加热件用于将可视化腔体内的混合液体加热至第一温度值;第二加热件设置于可视化腔体内腔底部,用于对达到第一温度值的混合液体进行继续加热,并使第二加热件的温度始终保持在第二温度值,使混合液体产生沸腾气泡。
  3. 如权利要求2所述的一种混合液体沸腾气泡行为特性研究测试系统,其特征在于,第一加热件设置于可视化腔体外部,第一加热件与温度控制柜连接。
  4. 如权利要求2所述的一种混合液体沸腾气泡行为特性研究测试系统,其特征在于,第二加热件包括加热块、加热片和固定片,加热片设置于加热块的底部,加热块的底部还与固定片连接,固定片固定于可视化腔体内腔上,加热块的顶部伸入混合液体内。
  5. 如权利要求1所述的一种混合液体沸腾气泡行为特性研究测试系统,其特征在于,可视化腔体还分别与注液管路、气泡收集管路连通,气泡收集管路 和注液管路均与冷凝器连通。
  6. 如权利要求5所述的一种混合液体沸腾气泡行为特性研究测试系统,其特征在于,气泡收集管路还与气泡采样管路的一端连通,气泡采样管路的另一端与气体采集腔连通。
  7. 如权利要求5所述的一种混合液体沸腾气泡行为特性研究测试系统,其特征在于,气泡收集管路的一端与冷凝器连通,另一端伸入可视化腔体中的混合液体中。
  8. 如权利要求1所述的一种混合液体沸腾气泡行为特性研究测试系统,其特征在于,还包括第一温度传感器和多个第二温度传感器;
    第一温度传感器,用于获取可视化腔体内混合液体的温度;
    多个第二温度传感器,用于获取第二加热件距离顶端不同距离处温度;
    数据处理模块,还用于根据第二温度传感器距离顶端的距离及获取的温度,确定温度随与第二加热件顶端距离变化的线性函数,根据线性函数,确定第二加热件顶端温度和线性函数斜率;根据线性函数斜率和第二加热件的导热系数,确定第二加热件向混合液体传递热量的热流密度;根据热流密度、第二加热件顶端温度和混合液体温度,确定第二加热件顶端的沸腾传热系数。
  9. 如权利要求1所述的一种混合液体沸腾气泡行为特性研究测试系统,其特征在于,还设置了与数据处理模块连接的图像采集装置,图像采集装置用于获取混合液体的沸腾气泡行为图像。
  10. 如权利要求1-9任一项所述的一种混合液体沸腾气泡行为特性研究测试系统的测试方法,其特征在于,包括:
    通过加热装置对可视化腔体内的混合液体进行加热,使混合液体产生沸腾 气泡;
    通过气体采集腔对可视化腔体内混合液体产生的沸腾气泡进行收集;
    当气体采集腔内的气体量达到设定值时,通过恒温水浴对气体采集腔收集的气体进行冷却;
    获取冷却过程中,气体采集腔内气体压力和恒温水浴的温度;
    根据气体采集腔内气体压力和恒温水浴的温度,确定混合液体沸腾气泡的组分浓度。
PCT/CN2023/103036 2022-12-14 2023-06-28 一种混合工质沸腾气泡行为特性研究测试系统及方法 WO2024124858A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211606870.4A CN115791864A (zh) 2022-12-14 2022-12-14 一种混合工质沸腾气泡行为特性研究测试系统及方法
CN202211606870.4 2022-12-14

Publications (1)

Publication Number Publication Date
WO2024124858A1 true WO2024124858A1 (zh) 2024-06-20

Family

ID=85420106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103036 WO2024124858A1 (zh) 2022-12-14 2023-06-28 一种混合工质沸腾气泡行为特性研究测试系统及方法

Country Status (2)

Country Link
CN (1) CN115791864A (zh)
WO (1) WO2024124858A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115791864A (zh) * 2022-12-14 2023-03-14 中国石油大学(华东) 一种混合工质沸腾气泡行为特性研究测试系统及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4380907A (en) * 1980-07-14 1983-04-26 Cryoplants, Ltd. Method of boiling liquefied gas
CN203132996U (zh) * 2013-03-15 2013-08-14 大连海事大学 一种观察lng 水域爆发沸腾发生过程的观察系统
CN110133037A (zh) * 2019-06-12 2019-08-16 中国核动力研究设计院 一种用于研究不同加热面结构下池式沸腾传热的实验装置
CN110161076A (zh) * 2019-06-03 2019-08-23 哈尔滨工程大学 一种非稳态流动换热特性与气泡行为的分析装置
CN113218990A (zh) * 2021-04-20 2021-08-06 江苏科技大学 一种可视化池沸腾实验系统及其工作方法
CN113834849A (zh) * 2020-06-23 2021-12-24 上海交通大学 用于研究表面特性对临界热流密度影响的可视化试验装置
CN217981318U (zh) * 2022-06-17 2022-12-06 武汉理工大学 一种研究不同表面活性剂水溶液的池沸腾传热装置
CN115791864A (zh) * 2022-12-14 2023-03-14 中国石油大学(华东) 一种混合工质沸腾气泡行为特性研究测试系统及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4380907A (en) * 1980-07-14 1983-04-26 Cryoplants, Ltd. Method of boiling liquefied gas
CN203132996U (zh) * 2013-03-15 2013-08-14 大连海事大学 一种观察lng 水域爆发沸腾发生过程的观察系统
CN110161076A (zh) * 2019-06-03 2019-08-23 哈尔滨工程大学 一种非稳态流动换热特性与气泡行为的分析装置
CN110133037A (zh) * 2019-06-12 2019-08-16 中国核动力研究设计院 一种用于研究不同加热面结构下池式沸腾传热的实验装置
CN113834849A (zh) * 2020-06-23 2021-12-24 上海交通大学 用于研究表面特性对临界热流密度影响的可视化试验装置
CN113218990A (zh) * 2021-04-20 2021-08-06 江苏科技大学 一种可视化池沸腾实验系统及其工作方法
CN217981318U (zh) * 2022-06-17 2022-12-06 武汉理工大学 一种研究不同表面活性剂水溶液的池沸腾传热装置
CN115791864A (zh) * 2022-12-14 2023-03-14 中国石油大学(华东) 一种混合工质沸腾气泡行为特性研究测试系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RUITAO HUANG, CHUN JIANG, ZHANG ZHENG, LI QIFAN, WEN RONGFU: "Boiling refrigerant transition and heat transfer characteristics of HFE-7100/water on the hierarchical structured surfaces", CIESC JOURNAL, HUAXUE GONGYE CHUBANSHE, CN, vol. 72, no. 11, 22 June 2021 (2021-06-22), CN , pages 5510 - 5519, XP093180996, ISSN: 0438-1157, DOI: 10.11949/0438-1157.20210642 *

Also Published As

Publication number Publication date
CN115791864A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
WO2024124858A1 (zh) 一种混合工质沸腾气泡行为特性研究测试系统及方法
Hua et al. Experimental study on thermal performance of micro pin fin heat sinks with various shapes
CN104077943A (zh) 一种深低温冷凝换热过程的可视化实验装置
CN200950129Y (zh) 热管平板式导热系数测定仪
CN112362689B (zh) 一种基于热色液晶的冷凝传热瞬态测量装置及方法
CN109781779B (zh) 一种适用于测量溶气流体比定压热容的方法及装置
Chen et al. Experimental investigation on the suppression factor in subcooled boiling flow
CN106198354A (zh) 一种渗流、应力、温度耦合试验机
CN112798645A (zh) 一种多角度检测沸腾换热的受热件、实验装置及其实验方法
Vermaak et al. Experimental and numerical investigation of micro/mini channel flow-boiling heat transfer with non-uniform circumferential heat fluxes at different rotational orientations
Liu et al. Investigation on visualization and heat transfer performance study of the mini-channel flow boiling
Husain et al. Visualization of flow patterns of water in open-ended vertical annulus during natural convection flow
Bartle et al. Bubble nucleators to enhance external pool boiling from the bottom row of a tube bundle
CN100495005C (zh) 基于换热器翅片单元的性能试验装置
CN217981318U (zh) 一种研究不同表面活性剂水溶液的池沸腾传热装置
CN109342253B (zh) 一种环路热管毛细芯性能测试装置及其测试方法
CN116559009A (zh) 高通量换热管表面质量测试装置及测试和整体性能优化方法
CN216114764U (zh) 一种可变温区冷头传导装置
Kabirnajafi et al. Experimental Approaches to Measurement of Vapor Quality of Two-Phase Flow Boiling
CN106680006B (zh) 一种分体管壳式余热锅炉实验系统及实验方法
CN207300942U (zh) 一种平板微热管的传热性能测试装置
CN210604475U (zh) 一种导热系数测试装置
Lei et al. Electromagnetic effects and accurate wall-temperature measurement method under directly electric heating mode
CN106353360A (zh) 一种低温下不规则形状材料热膨胀系数测试装置
CN207571063U (zh) 一种高温传热性能测定仪