WO2024124430A1 - Connector interface for engagement with plate - Google Patents

Connector interface for engagement with plate Download PDF

Info

Publication number
WO2024124430A1
WO2024124430A1 PCT/CN2022/138974 CN2022138974W WO2024124430A1 WO 2024124430 A1 WO2024124430 A1 WO 2024124430A1 CN 2022138974 W CN2022138974 W CN 2022138974W WO 2024124430 A1 WO2024124430 A1 WO 2024124430A1
Authority
WO
WIPO (PCT)
Prior art keywords
connector
slot
thermal plate
projection
depth
Prior art date
Application number
PCT/CN2022/138974
Other languages
French (fr)
Inventor
Yunxiang LIU
Luyun Yi
Original Assignee
Amphenol Commercial Products (Chengdu) Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amphenol Commercial Products (Chengdu) Co., Ltd. filed Critical Amphenol Commercial Products (Chengdu) Co., Ltd.
Priority to PCT/CN2022/138974 priority Critical patent/WO2024124430A1/en
Publication of WO2024124430A1 publication Critical patent/WO2024124430A1/en

Links

Images

Definitions

  • This disclosure relates generally to an electrical connector and, more specifically, to an electrical connector for mounting a thermal plate covering a subassembly inserted into the connector.
  • An electronic system may be manufactured as a collection of separate electronic assemblies that are joined with electrical connectors.
  • a known architecture of an electronic system has a printed circuit board (PCB) , sometimes called a mother board, to which are mounted many electronic components.
  • the motherboard may contain a processor and supporting chips.
  • Other electronic components, such as solid state memories, may be mounted on a separate PCB, sometimes called a daughter card.
  • the daughter card may be inserted into a port of a connector mounted to the motherboard for interconnection with the electronic components on the motherboard.
  • thermal plate may be pressed against components generating large amounts of heat. Thermal contact between the electronic components and the thermal plate enables transfer of heat from the components to the thermal plate.
  • the thermal plate has a high thermal conductivity and can distribute the generated heat to reduce temperature rise and to facilitate dissipation of heat to the outside with cooling air flowing over the thermal plate.
  • Such thermal plates have been used in connection with solid state drives.
  • thermal plate examples of electronic systems designs in which a thermal plate is used in connection with a solid state drive are shown in DE 20 2022 104 224 U1 and DE 20 2022 103 824 U1.
  • the thermal plate is attached to an electrical connector housing that houses the connector to which the solid state drive is mated.
  • the thermal plates in the designs extend beyond the connector, requiring a clearance space to be maintained around the connector.
  • a thermal plate which covers the components of a solid state drive mated to a connector, might have a portion inserted into an opening of the connector for mechanical attachment of the thermal plate.
  • a grounded pin extending into the opening might connect the thermal plate to ground.
  • a connector includes a mounting face and a first slot in a first surface on a first side of the connector.
  • the first surface is orthogonal to the mounting face and the first slot extending along a first direction on the first surface.
  • the connector also includes a third surface on a third side orthogonal to the first side and a first opening through the third surface adjacent the first side of the connector.
  • the first slot includes an open end at an edge of the first surface and extends along the first surface to a closed end, and the first slot is made up of a variable-depth region having a depth that decreases from a first depth at a first end adjacent the open end to a second depth, smaller than the first depth at a second end, opposite the first end and a second region extending between the second end of the variable-depth region and the closed end, the second region having a depth greater than the second depth.
  • variable-depth region includes a ramped floor of the first slot and a boundary between the variable-depth region and the second depth region includes a surface perpendicular to the first surface of the connector.
  • the connector includes an insulative housing and a ground pin including an intermediate portion engaged to the insulative housing with a first portion extending through the opening.
  • the connector includes a second slot in a second surface on a second side of the connector, the second surface being orthogonal to the mounting face and parallel to the first surface and the second lot extending along a first direction on the second surface, and a second opening at the second side of the connector.
  • the second slot includes an open end an edge of the second surface and extends along the second surface to a closed end
  • the second slot is made up of a variable-depth region having a depth that decreases from a first depth at a first end adjacent the open end to a second depth, smaller than the first depth at a second end, opposite the first end and a second region extending between the second end of the variable-depth region and the closed end, the second region having a depth greater than the second depth.
  • variable-depth region includes a ramped floor of the first slot and a boundary between the variable-depth region and the second depth region includes a surface perpendicular to the first surface of the connector.
  • a connector to engage a thermal plate includes a mating face including a port mates with a solid state device that is in thermal contact with the thermal plate.
  • a connector housing includes a first surface on a first side of the connector and a third surface, orthogonal to the first surface and the mating face.
  • the connector housing includes a first slot formed in the first surface, the first slot engages a first projection of the thermal plate and the first slot extending along a first direction on the first surface, and a first opening through the third surface.
  • the connector housing also includes a mounting face to mount the connector on a first printed circuit board (PCB) .
  • PCB printed circuit board
  • the first slot includes an open end at an edge of the first surface and extends along the first surface to a closed end whereby the connector engages the thermal plate by the first projection of the thermal plate entering the first slot at the open end and sliding toward the closed end
  • the first slot includes a first region includes a first depth adjacent the open end, the first depth being greater than the height of the first projection and a second depth, less than the height of the first projection, offset from to the open end and a second region extending between the first region and the closed end, the second region having a depth greater than the height of the first projection
  • a boundary between the first region and the second region includes a surface perpendicular to the first surface of the connector blocks the first projection of the thermal plate from being withdrawn from the second region after engagement.
  • the connector includes a conductor disposed, at least in part, in the first opening. A first portion of the conductor contacts the thermal plate and a second portion of the conductor engages a ground structure of the first PCB.
  • the first portion of the conductor is compliant and, in an uncompressed state, extends through the third surface of the connector housing and retracts into the opening when the conductor is in a compressed state during engagement of the connector with the thermal plate.
  • the second portion of the conductor includes a tail projecting from the connector housing for connection to the first PCB, and the conductor also includes an intermediate portion within the connector housing.
  • the connector housing also includes a second slot formed in a second surface of the connector housing on a second side of the connector.
  • the second slot engages a second projection of the thermal plate and the second slot extending along the first direction on the second surface.
  • the connector housing also includes a second opening through the third surface.
  • the second slot includes an open end at an edge of the second surface and extends along the second surface to a closed end whereby the connector engages the thermal plate by the second projection of the thermal plate entering the second slot at the open end and sliding toward the closed end.
  • the second slot includes a first region including a first depth adjacent the open end, the first depth being greater than the height of the second projection and a second depth, less than the height of the second projection, offset from to the open end and a second region extending between the first region and the closed end, the second region having a depth greater than the height of the second projection.
  • a boundary between the first region and the second region includes a surface perpendicular to the second surface of the connector blocks the second projection of the thermal plate from being withdrawn from the second region after engagement.
  • the connector also includes a second conductor disposed, at least in part, in the second opening. A first portion of the second conductor contacts the thermal plate and a second portion of the second conductor engages a ground structure of the first PCB.
  • the first conductor and the second conductor include connector hold downs.
  • the first portion of the second conductor is compliant and in an uncompressed state, extends through the third surface of the connector housing and retracts into the opening when the conductor is in a compressed state during engagement of the connector with the thermal plate.
  • the second portion of the second conductor includes a tail projecting through the connector housing for connection to the first PCB.
  • the second conductor further includes an intermediate portion within the connector housing.
  • a method of assembling an electronic assembly includes mounting a connector on a printed circuit board, inserting a solid state device into a port of the connector, and engaging a first projection of a thermal plate in a first slot on a first side of the connector and engaging a second projection of the thermal plate in a second slot on a second side of the connector.
  • the method also includes pivoting the thermal plate about the first projection and second projection into contact with a portion of a first ground pin extending out of the connector adjacent the first side of the connector and with a portion of a second ground pin extending out of the connector adjacent the second side of the connector.
  • pivoting the thermal plate about the first projection and second projection includes compressing the portion of the first ground pin into a first recess in the first side of the connector, and compressing the portion of the second ground pin into a second recess in the second side of the connector.
  • pivoting the thermal plate about the first projection and second projection further includes placing the thermal plate in thermal contact with the solid state device.
  • engaging the first projection of the thermal plate in the first slot includes inserting the first projection into an open end of the first slot and sliding the first projection along the first slot to a closed end.
  • the sliding the first projection along the first slot includes flexing away from the connector a leg of the thermal plate that includes the first projection.
  • engaging the second projection of the thermal plate in the second slot includes inserting the second projection into an open end of the second slot and sliding the second projection along the second slot to a closed end.
  • sliding the second projection along the second slot includes flexing away from the connector a second leg of the thermal plate that includes the second projection.
  • the solid state device is a subassembly includes a second printed circuit board on which solid state components are mounted.
  • the second printed circuit board includes an edge. Inserting the solid state device into the port of the connector includes inserting the edge of second printed circuit board into the port.
  • FIG. 1 is an exploded view of an electronic assembly showing aspects of a connector interface for engagement with a thermal plate;
  • FIG. 2 is a perspective view of the connector detailing aspects of an interface for engagement with the thermal plate
  • FIG. 3 is a side view illustrating aspects of a process of engaging the connector with the thermal plate
  • FIG. 4 is an enlarged view of a slot in the connector for interface with the thermal plate.
  • FIG. 5 is a rear view of the connector ofFIG. 1, with the thermal plate, portions of the connector housing and portions of conductive elements within the connector housing shown in phantom to reveal a ground pin with a conductive compliant portion in a compressed state.
  • the inventors have recognized and appreciated reliable, easy to use, and low-cost designs for a connector that may both mate with a subassembly and provide a mounting location for a thermal plate that dissipates heat from electronic components of the subassembly.
  • the subassembly may be a solid state device card, an example of which is a solid state drive (SSD) card. Solid state devices and the SSD card are discussed in particular for explanatory purposes. However, add-in cards that serve different functions (e.g., wireless communication cards, radio frequency modules) may also mate to the connector detailed herein.
  • These connector designs may require a relatively small area on the surface of the PCB to which the connector is mounted in comparison to conventional designs in which a thermal plate is mounted over an SSD card inserted in a connector. Further, the designs may provide a secure mounting of the thermal plate and enable the thermal plate to be pressed against the components on the SSD card to facilitate efficient thermal transfer.
  • the connector may include a conductor extending through the top surface of the connector. That conductor may have a compliant portion extending above the top surface such that when the thermal plate is engaged to the connector and pivoted onto the upper surface of the SSD, the conductor may be pressed into the connector housing, compressing the compliant portion and generating a spring force sufficient to make reliable electrical contact with the thermal plate.
  • Such a conductor may be readily integrated into a connector by forming a hold down, such as might otherwise be used in mounting the connector to a PCB, with a compliant portion.
  • the hold down may have a tail that is connected to a structure of the PCB, which may be grounded.
  • Such a grounding technique need not increase component count of the connector and/or may require little or no expansion of the size of the connector or the area of the PCB in which the connector is mounted.
  • the thermal plate may be engaged to one or more engagement features on a side or sides of the connector.
  • the engagement features may support pivotal engagement of the thermal plate to the connector such that the thermal plate, once engaged to the connector, may be rotated to make contact with an upper surface of the SSD card. When secured in this position, the thermal plate may be in thermal contact with the components of the SSD so that there is a high rate of heat transfer from the SSD components to the thermal plate.
  • the engagement features on the sides of the connector may be implemented as slots extending into the side walls of the connector.
  • the thermal plate for example, may have one or more legs extending transversely to the body of the thermal plate and parallel to the side walls of the connector. Each of these legs may include a projection that fits into a slot.
  • the projection may have a curved outer surface or may otherwise be shaped to provide a pivot point when the projection enters the slot.
  • Such engagement features may enable the thermal plate to be attached to the PCB to which the connector is mounted without occupying significant space around the SSD card or connector. Little or no clearance may be required in front of the connector, where the SSD card is mated to the connector, or behind the connector or to the sides.
  • the legs of the thermal plate may extend beyond the sidewall of the connector by approximately the thickness of the thermal plate.
  • the legs may have a thickness on the order of 1 mm,for example, such as 2 mm or less or 1 mm or less, in some examples, and the thermal plate may be configured such that the legs extend beyond the sidewalls of the connector by these dimensions.
  • Engagement features on the connector may similarly be integrated without significantly increasing the size of the connector.
  • the engagement features on the connector housing may span only a portion of the side wall of the connector housing, such as 50%or less of the distance between the front of the connector, where the mating interface is located to the rear, where the slot may be open to enable projections from the thermal plate to enter the slot.
  • the width of the slot may be on the order of0.8 to 0.9 millimeters (mm) and the length of the slot may be on the order of 1.8 to 2.2 mm, as one non-limiting example.
  • the slot may occupy less than 40%of the distance between a mounting interface and a top surface.
  • the engagement features may occupy 20%or less of the area of the side wall. As a result, the slot may be recessed into the housing with little or no thickening of the sidewalls to ensure adequate mechanical integrity of the housing.
  • Mounting features may be incorporated into a relatively small area of the side walls of the connector.
  • the mounting features may occupy between 7.3%and 8.9%of the side wall by area.
  • the mounting features may occupy between 8.2%and 10%of the side wall by area, or approximately 8.5%by area.
  • the mounting features may occupy between 5.1%and 6.3%of the side wall by area.
  • the mounting features may occupy between 5.7%and 7%of the side wall by area, or approximately 5.9%by area.
  • the mounting features may occupy between 9.5%and 11.5%of the side wall by area.
  • the mounting features may occupy between 10.7%and 13%of the side wall by area, or approximately 11%by area.
  • FIGs. 1-5 illustrate aspects of an electrical connector of an electronic assembly.
  • FIG. 1 is an exploded view of a portion of electronic assembly 100 showing aspects of connector 110 configured to engage with thermal plate 140.
  • Connector 110 includes mounting face 116 used to mount connector 110 to PCB 120.
  • PCB 120 may be a motherboard in a computer or other electronic assembly.
  • other components that may be mounted on PCB 120, such as a processor, are not expressly illustrated.
  • Connector 110 may include an engagement feature for engaging thermal plate 140 on first surface 114a.
  • the engagement feature is illustrated as first slot 112a formed in first surface 114a.
  • An expanded view of first slot 112a is shown in FIG. 4.
  • Connector 110 may have multiple engagement features.
  • a second, similar engagement feature is formed in second surface 114b of housing 108 of connector 110, discussed with reference to FIG. 2.
  • First surface 114a and second surface 114b are orthogonal to mounting face 116 and parallel with each other.
  • port 118 of connector 110 couples connector 110 to a subassembly, here illustrated as a solid state device card comprising double-sided PCB 130 with components 132a and 132b mounted on opposite sides.
  • Components 132a and 132b may be, for example, solid state memories, such that the subassembly is a solid state drive.
  • connector 110 is a card edge connector, and port 118 may be configured as in an M. 2 connector such that it can receive an edge of double-sided PCB 130 on which solid state components 132a, 132b are mounted.
  • Port 118 is more clearly visible in FIG. 2.
  • Thermal plate 140 is shown on an opposite side of electronic assembly 100 from PCB 120.
  • First slot 112a and second slot 112b (FIG. 2) of connector 110 are used to engage one end of thermal plate 140 to connector 110.
  • Thermal plate 140 may have complementary engagement features that engage with these engagement features on connector 110.
  • thermal plate 140 snap into slots 112a and 112b to form a pivotal mounting such that, though an end of thermal plate 140 is engaged to connector 110, an opposite end may be rotated towards and away from an upper surface of the subassembly inserted into port 118.
  • the engagement features on thermal plate 140 includes projections 148 that may be locked within first slot 112a or second slot 112b.
  • thermal plate 140 is shown with legs 146a and 146b on either side at the end configured to engage with connector 110.
  • An enlarged view of one of the legs 146b shows projection 148 from the leg 146b, projecting toward second surface 114b of connector 110.
  • a projection 148 on leg 146a projects toward first surface 114a of connector 110.
  • Projections 148 on legs 146a, 146b of thermal plate 140 are exemplary engagement features that support pivotal engagement of thermal plate 140 to connector 110. This engagement between thermal plate 140 and connector 110 and, more specifically, between projection 148 on each leg 146a, 146b of thermal plate 140 and each slot 112a, 112b of connector 110, is further discussed with reference to FIGs. 2 and 3.
  • thermal plate 140 may be rotated to make thermal contact with an upper surface of the subassembly inserted in port 118, as indicated in FIG. 3. That is, a body of thermal plate 140, here illustrated as plate portion 142, dissipates heat from the components 132a and 132b of the subassembly.
  • thermal plate portion 142 of thermal plate 140 also covers connector 110.
  • Thermal plate 140 does not extend beyond an edge 212 (FIG. 2) of connector 110 that is farthest from component 132a.
  • thermal plate 140 may be engaged to connector 110 without encroaching into an area around connector 110, such that space withing electronic assembly 100 that might otherwise be required for mounting thermal plate 140 may be used for other purposes or the overall size of electronic assembly 100 may be reduced.
  • thermal plate 140 need not even extend to edge 212 of connector 110 or may not cover any portion of connector 110.
  • plate portion 142 of thermal plate 140 may only cover component 132a or may only partially cover connector 110.
  • legs 146a, 146b of thermal plate 140 may extend (e.g., in an L shape) beyond plate portion 142 of thermal plate 140 such that projections 148 on legs 146a, 146b still align, respectively, with slots 112a, 112b of connector 110 when plate portion 142 covers component 132a.
  • Legs 146a, 146b of thermal plate 140 may be formed separately from plate portion 142 and attached, such as by welding, for example.
  • Legs 146a, 146b may be formed from a different material than plate portion 142.
  • the material of legs 146a, 146b may be springier or may have a different thickness to facilitate flexing of legs 146a, 146b.
  • Projections 148 may be formed as an embossment on legs 146a, 146b.
  • Thermal plate 140 may be affixed to one or more components of electronic assembly 100 at one or more locations separated from connector 110.
  • thermal plate 140 is affixed at an end of thermal plate 140 that is opposite the end engaged to connector 110.
  • thermal plate 140 is affixed with a fastener, such as screw 124 inserted in screw hole 144 of thermal plate 140.
  • screw 124 passes through screw hole 144 of thermal plate 140.
  • Screw 124 may be secured to PCB 120 and/or double-sided PCB 130.
  • fastening screw 124 to PCB 120 sandwiches double-sided PCB 130 and components 132a, 132b that are mounted thereon between plate portion 142 and PCB 120.
  • a stand-offnut 122 is shown as providing space for component 132b between PCB 120 and double-sided PCB 130.
  • Connector 110 may also include one or more conductive structures that may be connected to ground and to thermal plate 140 when it is thermally coupled to the components of a subassembly inserted in port 118, such that thermal plate 140 may be grounded.
  • those conductive structures are ground pins 150a, 150b.
  • Ground pins 150a, 150b may have at one end first portions 220a and 220b, respectively, that make an electrical connection to thermal plate 140.
  • First portions 220a and 220b may be compliant portions that may be compressed when thermal plate 140 is pressed towards connector 110, generating a counter force that ensures an electrical contact with thermal plate 140.
  • first portions 220a and 220b have a serpentine shape, acting as a spring when compressed.
  • Connector housing 108 may have openings that enable first portions 220a and 220b to be compressed.
  • those openings are shaped as recesses 230a, 230b in the side surfaces 114a and 114b of connector housing 108.
  • First portions 220a and 220b are partially disposed within recesses 230a, 230b, respectively. When compressed, first portions 220a and 220b may be compressed into recesses 230a and 230b.
  • first portions 220a and 220b are hook-shaped such that a distal-most end bends back into recesses 230a, 230b when the first portions 220a and 220b are not compressed. Such a configuration, when present, may aid in reliable operation of the compressive contact.
  • Ground pins 150a, 150b may have a second portion 222a and 222b, here shown at an opposite end with respect to first portions 220a and 220b.
  • Second portions 222a and 222b may be configured as tails that may be connected to ground at mounting face 116.
  • second portions 222a and 222b extend sufficiently past the connector housing 108 that they can engage with structures on a PCB 120 to which connector 110 is mounted.
  • second portion 222a and 222b are planar segments configured to extend into holes of the PCB 120.
  • ground pins 150a and 150b may replace board hold downs that might otherwise be used in a connector mounted to a PCB.
  • second portions 222a and 222b extend into plated holes 152a, 152b of the PCB 120 where they may be fixed to PCB 120.
  • Ground pins 150a and 150b may be soldered within plated holes 152a, 152b, providing both an electrical and a mechanical connection to PCB 120, though other mounting technologies may be used, such as surface mount soldering or press fit.
  • Ground pins 150a and 150b may further have intermediate portions, such as intermediation portion 224a (FIG. 5) .
  • intermediate portion 224a is fixed within the connector housing, such as by barbs digging into the insulative connector housing, or interference fit as a result of being pressed into the housing or as a result of an overmolding operation, for example.
  • FIG. 2 is a perspective view of connector 110 detailing aspects of a feature for engaging with the thermal plate 140.
  • Mounting face 116 that faces PCB 120 and port 118 that connects to double-sided PCB 130 are visible in FIG. 2, as is second surface 114b.
  • second slot 112b that is formed in second surface 114b extends along second surface 114b from edge 212 of connector 110, which is an edge that is farthest from components 132a, 132b. Edge 212 is more clearly shown in FIG. 4.
  • Second slot 112b like first slot 112a, includes an open end 210 at edge 212 and a closed end 214. Projection 148 from second leg 146b may be inserted at open end 210 of second slot 112b and slid to closed end 214. Similarly, projection 148 from first leg 146a of thermal plate 140 may be inserted at open end 210 of first slot 112a and slid to closed end 214. This engagement of projections 148 of thermal plate 140 is further discussed with reference to FIG. 4.
  • the depiction of the second surface 114b in FIG. 2 also shows the second recess 230b formed in the second surface 114b.
  • a similar, first recess 230a is formed in the first surface 114a.
  • the generally horizontal direction in which the second slot 112b extends is different than the generally vertical direction in which the second recess 230b extends.
  • First portions 220a, 220b of ground pins 150a, 150b are each shown in a recess 230a, 230b, respectively.
  • the first portion 220a, 220b that contacts the thermal plate 140 and the second portion 222a, 222b that contacts the PCB 120 on which the connector 110 is mounted are visible in the example ofFIG. 2.
  • each recess 230a, 230b is in communication with an opening (e.g. 524a, FIG. 5) in the housing 108 of connector 110 that extends all the way through the connector 110 such that the intermediate portions, such as intermediate portion 224a (FIG. 5) , of ground pins 150a, 150b may be inserted into the opening with second portions 222a and 222b extending below the connector 110.
  • second portions 222a, 222b extend below the connector 110 and into the plated holes 152a, 152b of the PCB 120 (shown in FIG. 1) that are electrically connected to ground.
  • the connector 110 not only physically engages the thermal plate 140 in the slots 112a, 112b but also grounds the thermal plate 140 via the ground pins 150a, 150b.
  • the thermal plate 140 contacts the first portions 220a, 220b of the ground pins 150a, 150b while the second portions 222a, 222b of the ground pins 150a, 150b are in the plated holes 152a, 152b of the PCB 120.
  • This grounding of the thermal plate 140 provides improved shielding of the electronic assembly 100 from electromagnetic interference (EMI) .
  • EMI electromagnetic interference
  • FIG. 3 is a side view illustrating aspects of electronic assembly 300 during a process of engaging thermal plate 140 with connector 110.
  • First leg 146a of thermal plate 140 and first surface 114a of connector 110 with first slot 112a formed therein are shown.
  • projection 148 from first leg 146a of thermal plate 140 is slid into first slot 112a.
  • projection 148 from second leg 146b of thermal plate 140 is slid into second slot 112b formed in second surface 114b of connector 110.
  • thermal plate 140 may be brought into contact with the subassembly inserted in port 118.
  • plate 142 may be rotated to press against component 132a, using projections 148 as pivot points.
  • a second end of thermal plate 140 may be held down, such as by screw 124 securing thermal plate 140 to PCB 120, thereby sandwiching double-sided PCB 130 and components 132a, 132b therebetween.
  • Pivotally engaging thermal plate 140 to connector housing 108 may simplify the manufacture of the electronic assembly 100 and/or enhance the effectiveness of thermal plate 140 at removing heat from a subassembly mated to connector 110.
  • Thermal plate 140 may be engaged to connector 100 either before or after the subassembly is mated to connector 110.
  • thermal plate 140 may be engaged to connector 110 as part of the manufacture of an assembly including PCB 120.
  • Connector 110 may be attached to PCB 120 as part of one manufacturing operation in one location or at one time.
  • a subassembly may be inserted into connector 110 at a different location at a different time.
  • connector 110 may be attached to PCB 120 as part of the manufacture of the motherboard.
  • that computer may be configured with solid state memory.
  • Thermal plate 140 may be engaged to connector 110 in conjunction with the manufacture of the motherboard at the first time, or at the later time in connection with the configuration of the computer containing the motherboard, or at any time in between. Because of the engagement to connector 110, thermal plate 140 may stay attached to connector 110 during transport of the motherboard.
  • thermal plate 140 might be pivoted out of the way to enable the subassembly to be inserted.
  • thermal plate 140 may be fastened to PCB 120 before the subassembly is inserted in connector 110, such as by insertion of a screw 124. That fastening may be removed to enable insertion of a subassembly into connector 110.
  • thermal plate 140 can make contact with the first portion of the ground pins 150a, 150b when the thermal plate 140 is rotated down (per arrow B) with the projections 148 acting as hinges. Specifically, first portions 220a, 220b of ground pins 150a, 150b are pushed down into the recesses 230a, 230b, respectively. In this compressed state, first portions 220a and 220b store spring energy that generates a force, which may be greater than 40 N for example, against thermal plate 140.
  • FIG. 5 Such a compressed state in which first portions 220a, 220b push up into the thermal plate 140, resulting in secure contact being maintained between the ground pins 150a, 150b and the thermal plate 140 is illustrated in FIG. 5.
  • FIG. 4 is an enlarged view 400 of first slot 112a formed in first surface 114a of connector 110.
  • First slot 112a like second slot 112b, includes variable-depth region 402 and constant-depth region 404.
  • Constant-depth region 404 may have a depth that equals or exceeds the height of projection 148.
  • Variable-depth region 402 has a depth, at one end, that is greater than or equal to the height of projection 148 and a depth, at an opposite end, that is less than the height of projection 148.
  • a floor of slot 112a is formed as a ramp 410 with first depth 412 at open end 210.
  • the ramp 410 is formed such that the depth of first slot 112a decreases over variable-depth region 402 from first depth at open end 210 to smallest depth 416 at the end of variable-depth region 402.
  • the depth of constant-depth region 404 is a second depth 414.
  • Second depth 414 is deeper than the smallest depth 416.
  • the ramped floor of slot 112a in variable-depth region 402 may act as a camming surface, providing outward force, normal to surface 114a, on projection 148 as thermal plate 140 slides in direction A (FIG. 3) .
  • Projection 148 may be a portion of a compliant structure that will flex in response to that force.
  • projection 148 is formed as an embossment on leg 146a.
  • Leg 146a may be formed as a thin sheet of metal, which may be on the order of 2 mm thick, or less.
  • Leg 146a is positioned such that its broadside is parallel to surface 114a such that leg 146a flexes about an axis parallel to its broadside and perpendicular to its thickness, enabling leg 146a to flex in response to the camming force.
  • projection 148 is formed at a location offset from the attachment point of leg 146a to plate 142 in the elongated dimension of leg 146a. Such a consideration further enables compliance of leg 146a.
  • leg 146a of thermal plate 140 flexes outward to slide along variable-depth region 402, which has decreasing depth.
  • leg 146a of thermal plate 140 relaxes to its un-deformed position as projection 148 enters constant-depth region 404 with greater depth. This is also true for projection 148 that is inserted in second slot 112b of second surface 114b.
  • variable-depth region 402 is asymmetrical, such that more force is required to slide thermal plate 140 to remove projections 148 from constant-depth regions 404 than to slide thermal plate 140 such that projections 148 enter constant-depth regions 404. As a result, projections 148 are held in constant-depth regions 404 without easily disengaging from connector 110.
  • variable-depth region 402 has a ramped floor facing open end 210 of slot 112a or 112b.
  • the openings into slots 112a and 112b may be flared, as shown in the illustrated example.
  • the opposite end of variable-depth region 402 presents a surface perpendicular to the respective surface 114a or 114b containing slot 112a or 112b. Such a surface provides little camming force on projection 148 ifthermal plate 140 is pushed in a withdrawal direction (opposite direction A) , facilitating reliable engagement of projections 148 within slots 112a and 112b.
  • surfaces 114a, 114b of connector housing 108 bounding constant-depth regions 404 may serve as bearing surfaces for projections 148, creating a pivotal mounting. Pivoting may be facilitated by providing projections 148 with curved outer surfaces. Similarly, some or all of the surfaces of the connector housing 108 bounding constant-depth regions 404 may be curved, such as are illustrated in FIG. 4. In this example, the connector housing 108 is molded from a thermoplastic and slots 112a, 112b with such features may be readily integrated in the connector housing 108 during the molding operation.
  • FIG. 5 illustrates aspects of a ground pin 150a making an electrical connection between connector 110 and thermal plate 140.
  • thermal plate 140, as well as housing 108 of connector 110 are shown in phantom to reveal details of ground pin 150a.
  • intermediate portion 224a is visible in a state in which it is engaged in the connector housing 108.
  • intermediate portion 224a may be inserted into housing 108 through recess 230a, but is too large to fit through opening 524a.
  • Second portion 222a may fit through opening 524a such that attaching second portion 222a to PCB 120 holds the connector 110 to PCB 120.
  • ground pin 150a is electrically and mechanically connected to PCB 120, serving both as a connector hold down and grounding structure for thermal plate 140.
  • first portion 220a of ground pin 150a is in contact with plate portion 142 of thermal plate 140.
  • FIG. 5 shows first portion 220a in a compressed state (e.g., when ground pin 150a is pushed down by the thermal plate 140) .
  • Ground pin 150b although not visible in FIG. 5, is in a similar state, providing a second conductive path between thermal plate 140 and a ground structure of PCB 120.
  • a connector may comprise a mounting face, a first slot in a first surface of the connector, the first surface being orthogonal to the mounting face; and a second slot in a second surface of the connector, the second surface being orthogonal to the mounting face and parallel to the first surface.
  • such a connector may include one or more of the following features:
  • the first slot may include an open end at an edge of the first surface and extends along the first surface to a closed end.
  • the first slot may comprise a variable-depth region having a depth that decreases from a first depth at a first end adjacent the open end to a second depth, smaller than the first depth at a second end, opposite the first end, and a second region extending between the second end of the variable-depth region and the closed end, the second region having a depth greater than the second depth.
  • the variable-depth region may comprise a ramped floor of the first slot.
  • a boundary between the variable-depth region and the second depth region comprises a surface perpendicular to the first surface of the connector.
  • the second slot may comprise a variable-depth region having a depth that decreases from a first depth at a first end adjacent the open end to a second depth, smaller than the first depth at a second end, opposite the first end and a second region extending between the second end of the variable-depth region and the closed end, the second region having a depth greater than the second depth.
  • the variable-depth region may comprise a ramped floor of the first slot and a boundary between the variable-depth region and the second depth region comprises a surface perpendicular to the first surface of the connector.
  • a connector may be configured to engage a thermal plate.
  • the connector may comprise a first slot formed in a first surface on a first side of the connector, the first slot configured to engage a first projection of the thermal plate.
  • the connector may also comprise a second slot formed in a second surface on a second side of the connector, the second surface being parallel with the first surface and the second slot being configured to engage a second projection of the thermal plate.
  • the connector may further comprise a port on a third side of the connector, the third side being orthogonal to the first side and the second side, the port being configured to mate with a solid state device that is in thermal contact with the thermal plate.
  • a connector according to the foregoing examples may include one or more of the following features:
  • the first slot may include an open end at an edge of the first surface and extends along the first surface to a closed end whereby the connector is configured to engage the thermal plate by the first projection of the thermal plate entering the first slot at the open end and sliding toward the closed end.
  • the connector may be in combination with a thermal plate.
  • the first projection of the thermal plate may have a height
  • the first slot may comprise a first region comprising a first depth adjacent the open end, the first depth being greater than the height of the first projection and a second depth, less than the height of the first projection, offset from to the open end, and a second region extending between the first region and the closed end, the second region having a depth greater than the height of the first projection.
  • a boundary between the first region and the second region comprises a surface perpendicular to the first surface of the connector configured to block the first projection of the thermal plate from being withdrawn from the second region after engagement.
  • the second slot may include an open end at an edge of the second surface and extends along the second surface to a closed end whereby the connector is configured to engage the thermal plate by the second projection of the thermal plate entering the second slot at the open end and sliding toward the closed end.
  • the connector may be in combination with a thermal plate.
  • the second projection of the thermal plate may have a height.
  • the second slot may comprise a first region comprising a first depth adjacent the open end, the first depth being greater than the height of the second projection and a second depth, less than the height of the second projection, offset from to the open end, and a second region extending between the first region and the closed end, the second region having a depth greater than the height of the second projection.
  • a boundary between the first region and the second region may comprise a surface perpendicular to the second surface of the connector configured to block the sec projection of the thermal plate from being withdrawn from the second region after engagement.
  • an electronic assembly comprising a connector mounted on a printed circuit board, the connector comprising a port in a mating face and a first side and a second side orthogonal to the mating face, may be assembled according to a method comprising: inserting a solid state device into a port of the connector; and engaging a first projection of a thermal plate in a first slot in the first side of the connector and a second projection of the thermal plate in a second slot in the second side of the connector.
  • a method according to the foregoing example may include one or more of the following acts:
  • engaging the first projection of the thermal plate in the first slot comprises inserting the first projection into an open end of the first slot and sliding the first projection along the first slot to a closed end.
  • sliding the first projection along the first slot comprises flexing a first leg of the thermal plate that includes the first projection away from the connector.
  • Engaging the second projection of the thermal plate in the second slot may comprise inserting the second projection into an open end of the second slot and sliding the second projection along the second slot to a closed end and the sliding the second projection along the second slot comprises flexing a second leg of the thermal plate that includes the second projection away from the connector.
  • inserting the solid state device into the port of the connector comprises connecting the solid state device to a second printed circuit board on which the solid state device is mounted.
  • an M. 2 connector mating with an edge of a card of a subassembly was used as an example of a connector that might be adapted for mounting of a thermal plate.
  • Techniques as described herein may be used with connectors of other configurations or in systems in which other types of components are mated with the connector.
  • Thermal plate mounting as described here, for example, may be used in a two-piece connector.
  • a grounded thermal plate may have a plate-like body pressing against a top surface of a subassembly inserted in a connector.
  • a grounded thermal may optionally have sides, extending perpendicular to the plate-like body to more fully enclose the subassembly within a grounded structure and reduce electromagnetic interference involving the subassembly.
  • an electrically conductive structure may be mounted to a connector using techniques as described herein, even if having a low thermal conductivity such that it is not configured as a thermal plate.
  • connection between a thermal plate and a grounded structure withing a connector was described being made with a serpentine metal beam that is compressed. Connection may be made of beams of other shape, such as a beam shaped as a spring finger. Moreover, though an example was provided in which the beam extended from a component of the connector, the beam could alternatively be on the thermal plate and press against a grounded component of the connector.
  • one or more interior surfaces of a slot such as slot 112a or 112b, may be conductive such and the projections 148 may be sized press against that grounded structure even when fully inserted in the slot.
  • spring force for making an electrical connection may be provided by flexing of the legs 146a and 146b when the projection is in the slot.
  • the slots may be positioned to expose a grounded hold down at floor of the slot.
  • an electrical connector may be configured to engage a thermal plate.
  • the thermal plate may be pivotally mounted to sides of the connector.
  • the thermal plate may be rotated to press against components of a subassembly inserted into a port of the connector and fixed in this position.
  • Protrusions on legs extending from the thermal plate may engage slots in sides of the connector.
  • Each slot may have a first region with a ramped floor open to an exterior of the connector and a second region.
  • the ramped floor may generate a camming force that deflects the legs, enabling the projections to clear the ramped portion. Once the projections pass the first region, they snap into the second region, interfering with the thermal plate being removed from the connector yet enabling pivoting.
  • the invention may be embodied as a method, of which an example has been provided.
  • the acts performed as part of the method may be ordered in any suitable way. Accordingly, embodiments may be constructed in which acts are performed in an order different than illustrated, which may include performing some acts simultaneously, even though shown as sequential acts in illustrative embodiments.
  • the phrase “at least one, ” in reference to a list of one or more elements should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements.
  • This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified.
  • a reference to “A and/or B” when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B) ; in another embodiment, to B only (optionally including elements other than A) ; in yet another embodiment, to both A and B (optionally including other elements) ; etc.

Landscapes

  • Coupling Device And Connection With Printed Circuit (AREA)

Abstract

An electrical connector configured to electrically and mechanically engage a thermal plate. The thermal plate may be pivotally mounted to sides of the connector. The thermal plate may be rotated to press against a subassembly inserted into a port of the connector and fixed in this position. Protrusions on legs extending from the thermal plate may engage slots in sides of the connector, providing a pivotal mounting of the thermal plate to the connector. The thermal plate, when fixed against the subassembly, may compress grounded conductors extending through a surface of the connector, grounding the thermal plate. The ground conductors may also be electrically and mechanically be attached to a ground structure of a PCB to which the connector is mounted, enabling the grounding conductors to also function as connector hold downs.

Description

CONNECTOR INTERFACE FOR ENGAGEMENT WITH A PLATE BACKGROUND
This disclosure relates generally to an electrical connector and, more specifically, to an electrical connector for mounting a thermal plate covering a subassembly inserted into the connector.
An electronic system (e.g., smart phone, tablet computer, desktop computer, digital camera) may be manufactured as a collection of separate electronic assemblies that are joined with electrical connectors. For example, a known architecture of an electronic system has a printed circuit board (PCB) , sometimes called a mother board, to which are mounted many electronic components. For example, in a server, the motherboard may contain a processor and supporting chips. Other electronic components, such as solid state memories, may be mounted on a separate PCB, sometimes called a daughter card. The daughter card may be inserted into a port of a connector mounted to the motherboard for interconnection with the electronic components on the motherboard.
Some electronic components may generate large amounts of heat in operation. To reduce the negative effects of a large amount of heat generated in a small space, a thermal plate may be pressed against components generating large amounts of heat. Thermal contact between the electronic components and the thermal plate enables transfer of heat from the components to the thermal plate. The thermal plate has a high thermal conductivity and can distribute the generated heat to reduce temperature rise and to facilitate dissipation of heat to the outside with cooling air flowing over the thermal plate. Such thermal plates have been used in connection with solid state drives.
Examples of electronic systems designs in which a thermal plate is used in connection with a solid state drive are shown in DE 20 2022 104 224 U1 and DE 20 2022 103 824 U1. In these examples, the thermal plate is attached to an electrical connector housing that houses the connector to which the solid state drive is mated. The thermal plates in the designs extend beyond the connector, requiring a clearance space to be maintained around the connector.
In another design, it was suggested that a thermal plate, which covers the components of a solid state drive mated to a connector, might have a portion inserted into an opening of the connector for mechanical attachment of the thermal plate. A grounded pin extending into the opening might connect the thermal plate to ground.
SUMMARY
According to an aspect of the present disclosure, a connector includes a mounting face and a first slot in a first surface on a first side of the connector. The first surface is orthogonal to the mounting face and the first slot extending along a first direction on the first surface. The connector also includes a third surface on a third side orthogonal to the first side and a first opening through the third surface adjacent the first side of the connector.
Optionally, the first slot includes an open end at an edge of the first surface and extends along the first surface to a closed end, and the first slot is made up of a variable-depth region having a depth that decreases from a first depth at a first end adjacent the open end to a second depth, smaller than the first depth at a second end, opposite the first end and a second region extending between the second end of the variable-depth region and the closed end, the second region having a depth greater than the second depth.
Optionally, the variable-depth region includes a ramped floor of the first slot and a boundary between the variable-depth region and the second depth region includes a surface perpendicular to the first surface of the connector.
Optionally, the connector includes an insulative housing and a ground pin including an intermediate portion engaged to the insulative housing with a first portion extending through the opening.
Optionally, the connector includes a second slot in a second surface on a second side of the connector, the second surface being orthogonal to the mounting face and parallel to the first surface and the second lot extending along a first direction on the second surface, and a second opening at the second side of the connector.
Optionally, the second slot includes an open end an edge of the second surface and extends along the second surface to a closed end, the second slot is made up of a variable-depth region having a depth that decreases from a first depth at a first end adjacent the open end to a second depth, smaller than the first depth at a second end, opposite the first end and a second region extending between the second end of the variable-depth region and the closed end, the second region having a depth greater than the second depth.
Optionally, the variable-depth region includes a ramped floor of the first slot and a boundary between the variable-depth region and the second depth region includes a surface perpendicular to the first surface of the connector.
According to another aspect of the disclosure, a connector to engage a thermal plate includes a mating face including a port mates with a solid state device that is in thermal contact with the thermal plate. A connector housing includes a first surface on a first side of the connector and a third surface, orthogonal to the first surface and the mating face. The connector housing includes a first slot formed in the first surface, the first slot engages a first projection of the thermal plate and the first slot extending along a first direction on the first surface, and a first opening through the third surface. The connector housing also includes a mounting face to mount the connector on a first printed circuit board (PCB) .
Optionally, the first slot includes an open end at an edge of the first surface and extends along the first surface to a closed end whereby the connector engages the thermal plate by the first projection of the thermal plate entering the first slot at the open end and sliding toward the closed end, the first slot includes a first region includes a first depth adjacent the open end, the first depth being greater than the height of the first projection and a second depth, less than the height of the first projection, offset from to the open end and a second region extending between the first region and the closed end, the second region having a depth greater than the height of the first projection, and a boundary between the first region and the second region includes a surface perpendicular to the first surface of the connector blocks the first projection of the thermal plate from being withdrawn from the second region after engagement.
Optionally, the connector includes a conductor disposed, at least in part, in the first opening. A first portion of the conductor contacts the thermal plate and a second portion of the conductor engages a ground structure of the first PCB.
Optionally, the first portion of the conductor is compliant and, in an uncompressed state, extends through the third surface of the connector housing and retracts into the opening when the conductor is in a compressed state during engagement of the connector with the thermal plate. In addition, the second portion of the conductor includes a tail projecting from the connector housing for connection to the first PCB, and the conductor also includes an intermediate portion within the connector housing.
Optionally, the connector housing also includes a second slot formed in a second surface of the connector housing on a second side of the connector. The second slot engages a second projection of the thermal plate and the second slot extending along the first direction on the second surface. The connector housing also includes a second opening through the third surface. The second slot includes an open end at an edge of the second surface and extends along the second surface to a closed end whereby the connector engages the thermal  plate by the second projection of the thermal plate entering the second slot at the open end and sliding toward the closed end. The second slot includes a first region including a first depth adjacent the open end, the first depth being greater than the height of the second projection and a second depth, less than the height of the second projection, offset from to the open end and a second region extending between the first region and the closed end, the second region having a depth greater than the height of the second projection. A boundary between the first region and the second region includes a surface perpendicular to the second surface of the connector blocks the second projection of the thermal plate from being withdrawn from the second region after engagement. The connector also includes a second conductor disposed, at least in part, in the second opening. A first portion of the second conductor contacts the thermal plate and a second portion of the second conductor engages a ground structure of the first PCB.
Optionally, the first conductor and the second conductor include connector hold downs.
Optionally, the first portion of the second conductor is compliant and in an uncompressed state, extends through the third surface of the connector housing and retracts into the opening when the conductor is in a compressed state during engagement of the connector with the thermal plate. The second portion of the second conductor includes a tail projecting through the connector housing for connection to the first PCB. The second conductor further includes an intermediate portion within the connector housing.
According to another aspect of the disclosure, a method of assembling an electronic assembly includes mounting a connector on a printed circuit board, inserting a solid state device into a port of the connector, and engaging a first projection of a thermal plate in a first slot on a first side of the connector and engaging a second projection of the thermal plate in a second slot on a second side of the connector. The method also includes pivoting the thermal plate about the first projection and second projection into contact with a portion of a first ground pin extending out of the connector adjacent the first side of the connector and with a portion of a second ground pin extending out of the connector adjacent the second side of the connector.
Optionally, pivoting the thermal plate about the first projection and second projection includes compressing the portion of the first ground pin into a first recess in the first side of the connector, and compressing the portion of the second ground pin into a second recess in the second side of the connector.
Optionally, pivoting the thermal plate about the first projection and second projection further includes placing the thermal plate in thermal contact with the solid state device.
Optionally, engaging the first projection of the thermal plate in the first slot includes inserting the first projection into an open end of the first slot and sliding the first projection along the first slot to a closed end. In addition, the sliding the first projection along the first slot includes flexing away from the connector a leg of the thermal plate that includes the first projection.
Optionally, engaging the second projection of the thermal plate in the second slot includes inserting the second projection into an open end of the second slot and sliding the second projection along the second slot to a closed end. In addition, sliding the second projection along the second slot includes flexing away from the connector a second leg of the thermal plate that includes the second projection.
Optionally, the solid state device is a subassembly includes a second printed circuit board on which solid state components are mounted. The second printed circuit board includes an edge. Inserting the solid state device into the port of the connector includes inserting the edge of second printed circuit board into the port.
The foregoing features may be used, separately or together in any combination in any of the foregoing embodiments.
BRIEF DESCRIPTION OF DRAWINGS
The accompanying drawings are not necessarily drawn to scale. For the purposes of clarity, not every component may be labeled in every drawing. In the drawings:
FIG. 1 is an exploded view of an electronic assembly showing aspects of a connector interface for engagement with a thermal plate;
FIG. 2 is a perspective view of the connector detailing aspects of an interface for engagement with the thermal plate;
FIG. 3 is a side view illustrating aspects of a process of engaging the connector with the thermal plate;
FIG. 4 is an enlarged view of a slot in the connector for interface with the thermal plate; and
FIG. 5 is a rear view of the connector ofFIG. 1, with the thermal plate, portions of the connector housing and portions of conductive elements within the connector housing  shown in phantom to reveal a ground pin with a conductive compliant portion in a compressed state.
DETAILED DESCRIPTION
The inventors have recognized and appreciated reliable, easy to use, and low-cost designs for a connector that may both mate with a subassembly and provide a mounting location for a thermal plate that dissipates heat from electronic components of the subassembly. The subassembly may be a solid state device card, an example of which is a solid state drive (SSD) card. Solid state devices and the SSD card are discussed in particular for explanatory purposes. However, add-in cards that serve different functions (e.g., wireless communication cards, radio frequency modules) may also mate to the connector detailed herein. These connector designs may require a relatively small area on the surface of the PCB to which the connector is mounted in comparison to conventional designs in which a thermal plate is mounted over an SSD card inserted in a connector. Further, the designs may provide a secure mounting of the thermal plate and enable the thermal plate to be pressed against the components on the SSD card to facilitate efficient thermal transfer.
Engagement of a thermal plate to a connector may facilitate grounding the thermal plate. The connector may include a conductor extending through the top surface of the connector. That conductor may have a compliant portion extending above the top surface such that when the thermal plate is engaged to the connector and pivoted onto the upper surface of the SSD, the conductor may be pressed into the connector housing, compressing the compliant portion and generating a spring force sufficient to make reliable electrical contact with the thermal plate.
Such a conductor may be readily integrated into a connector by forming a hold down, such as might otherwise be used in mounting the connector to a PCB, with a compliant portion. The hold down may have a tail that is connected to a structure of the PCB, which may be grounded. Such a grounding technique need not increase component count of the connector and/or may require little or no expansion of the size of the connector or the area of the PCB in which the connector is mounted.
In some examples, the thermal plate may be engaged to one or more engagement features on a side or sides of the connector. The engagement features may support pivotal engagement of the thermal plate to the connector such that the thermal plate, once engaged to  the connector, may be rotated to make contact with an upper surface of the SSD card. When secured in this position, the thermal plate may be in thermal contact with the components of the SSD so that there is a high rate of heat transfer from the SSD components to the thermal plate.
In some examples, the engagement features on the sides of the connector may be implemented as slots extending into the side walls of the connector. The thermal plate, for example, may have one or more legs extending transversely to the body of the thermal plate and parallel to the side walls of the connector. Each of these legs may include a projection that fits into a slot. The projection may have a curved outer surface or may otherwise be shaped to provide a pivot point when the projection enters the slot.
Such engagement features may enable the thermal plate to be attached to the PCB to which the connector is mounted without occupying significant space around the SSD card or connector. Little or no clearance may be required in front of the connector, where the SSD card is mated to the connector, or behind the connector or to the sides. The legs of the thermal plate, for example, may extend beyond the sidewall of the connector by approximately the thickness of the thermal plate. The legs, for example, may have a thickness on the order of 1 mm,for example, such as 2 mm or less or 1 mm or less, in some examples, and the thermal plate may be configured such that the legs extend beyond the sidewalls of the connector by these dimensions.
Engagement features on the connector may similarly be integrated without significantly increasing the size of the connector. The engagement features on the connector housing, for example, may span only a portion of the side wall of the connector housing, such as 50%or less of the distance between the front of the connector, where the mating interface is located to the rear, where the slot may be open to enable projections from the thermal plate to enter the slot. The width of the slot may be on the order of0.8 to 0.9 millimeters (mm) and the length of the slot may be on the order of 1.8 to 2.2 mm, as one non-limiting example. The slot may occupy less than 40%of the distance between a mounting interface and a top surface. In some examples, the engagement features may occupy 20%or less of the area of the side wall. As a result, the slot may be recessed into the housing with little or no thickening of the sidewalls to ensure adequate mechanical integrity of the housing.
Features for mounting a thermal plate as described herein may be simply incorporated into a connector adapted to mate with an add-in card without compromising the mechanical integrity of the connector. Mounting features, such as the slot detailed herein, may be incorporated into a relatively small area of the side walls of the connector. As one  specific example, for a connector with a height such that, when mounted to a PCB, the connector extends approximately 3.2 mm above the PCB, the mounting features may occupy between 7.3%and 8.9%of the side wall by area. In other examples, the mounting features may occupy between 8.2%and 10%of the side wall by area, or approximately 8.5%by area. For connectors with a height of approximately 2.25 mm the mounting features may occupy between 5.1%and 6.3%of the side wall by area. In other examples, the mounting features may occupy between 5.7%and 7%of the side wall by area, or approximately 5.9%by area. For connectors with a height of approximately 4.2 mm the mounting features may occupy between 9.5%and 11.5%of the side wall by area. In other examples, the mounting features may occupy between 10.7%and 13%of the side wall by area, or approximately 11%by area.
Turning to the figures, FIGs. 1-5 illustrate aspects of an electrical connector of an electronic assembly.
FIG. 1 is an exploded view of a portion of electronic assembly 100 showing aspects of connector 110 configured to engage with thermal plate 140. Connector 110 includes mounting face 116 used to mount connector 110 to PCB 120. PCB 120, for example, may be a motherboard in a computer or other electronic assembly. For simplicity of illustration, other components that may be mounted on PCB 120, such as a processor, are not expressly illustrated.
First surface 114a of housing 108 of connector 110 is visible in the view ofFIG. 1. Connector 110 may include an engagement feature for engaging thermal plate 140 on first surface 114a. In this example, the engagement feature is illustrated as first slot 112a formed in first surface 114a. An expanded view of first slot 112a is shown in FIG. 4.
Connector 110 may have multiple engagement features. In the example illustrated, a second, similar engagement feature is formed in second surface 114b of housing 108 of connector 110, discussed with reference to FIG. 2. First surface 114a and second surface 114b are orthogonal to mounting face 116 and parallel with each other.
In the exemplary illustration of FIG. 1, port 118 of connector 110 couples connector 110 to a subassembly, here illustrated as a solid state device card comprising double-sided PCB 130 with  components  132a and 132b mounted on opposite sides.  Components  132a and 132b may be, for example, solid state memories, such that the subassembly is a solid state drive. In this example, connector 110 is a card edge connector, and port 118 may be configured as in an M. 2 connector such that it can receive an edge of double-sided PCB 130 on which  solid state components  132a, 132b are mounted. Port 118 is more clearly visible in FIG. 2.
Thermal plate 140 is shown on an opposite side of electronic assembly 100 from PCB 120. First slot 112a and second slot 112b (FIG. 2) of connector 110 are used to engage one end of thermal plate 140 to connector 110. Thermal plate 140 may have complementary engagement features that engage with these engagement features on connector 110.
In the example illustrated, the engagement features of thermal plate 140 snap into  slots  112a and 112b to form a pivotal mounting such that, though an end of thermal plate 140 is engaged to connector 110, an opposite end may be rotated towards and away from an upper surface of the subassembly inserted into port 118. In this example, the engagement features on thermal plate 140 includes projections 148 that may be locked within first slot 112a or second slot 112b. In this example, thermal plate 140 is shown with  legs  146a and 146b on either side at the end configured to engage with connector 110. An enlarged view of one of the legs 146b shows projection 148 from the leg 146b, projecting toward second surface 114b of connector 110. Similarly, although not visible in the view ofFIG. 1, a projection 148 on leg 146a projects toward first surface 114a of connector 110.
Projections 148 on  legs  146a, 146b of thermal plate 140 are exemplary engagement features that support pivotal engagement of thermal plate 140 to connector 110. This engagement between thermal plate 140 and connector 110 and, more specifically, between projection 148 on each  leg  146a, 146b of thermal plate 140 and each  slot  112a, 112b of connector 110, is further discussed with reference to FIGs. 2 and 3. Once engaged to connector 110, thermal plate 140 may be rotated to make thermal contact with an upper surface of the subassembly inserted in port 118, as indicated in FIG. 3. That is, a body of thermal plate 140, here illustrated as plate portion 142, dissipates heat from the  components  132a and 132b of the subassembly.
In the arrangement shown in FIG. 1, plate portion 142 of thermal plate 140 also covers connector 110. Thermal plate 140 does not extend beyond an edge 212 (FIG. 2) of connector 110 that is farthest from component 132a. Thus, as previously noted, thermal plate 140 may be engaged to connector 110 without encroaching into an area around connector 110, such that space withing electronic assembly 100 that might otherwise be required for mounting thermal plate 140 may be used for other purposes or the overall size of electronic assembly 100 may be reduced.
In alternate arrangements, thermal plate 140 need not even extend to edge 212 of connector 110 or may not cover any portion of connector 110. For example, plate portion 142 of thermal plate 140 may only cover component 132a or may only partially cover connector 110. In these alternate arrangements,  legs  146a, 146b of thermal plate 140 may  extend (e.g., in an L shape) beyond plate portion 142 of thermal plate 140 such that projections 148 on  legs  146a, 146b still align, respectively, with  slots  112a, 112b of connector 110 when plate portion 142 covers component 132a.  Legs  146a, 146b of thermal plate 140 may be formed separately from plate portion 142 and attached, such as by welding, for example.  Legs  146a, 146b may be formed from a different material than plate portion 142. The material of  legs  146a, 146b may be springier or may have a different thickness to facilitate flexing of  legs  146a, 146b. Projections 148 may be formed as an embossment on  legs  146a, 146b.
Thermal plate 140 may be affixed to one or more components of electronic assembly 100 at one or more locations separated from connector 110. In this example, thermal plate 140 is affixed at an end of thermal plate 140 that is opposite the end engaged to connector 110. In this example, thermal plate 140 is affixed with a fastener, such as screw 124 inserted in screw hole 144 of thermal plate 140. As shown, screw 124 passes through screw hole 144 of thermal plate 140. Screw 124 may be secured to PCB 120 and/or double-sided PCB 130. In the illustrated example, fastening screw 124 to PCB 120 sandwiches double-sided PCB 130 and  components  132a, 132b that are mounted thereon between plate portion 142 and PCB 120. A stand-offnut 122 is shown as providing space for component 132b between PCB 120 and double-sided PCB 130.
Connector 110 may also include one or more conductive structures that may be connected to ground and to thermal plate 140 when it is thermally coupled to the components of a subassembly inserted in port 118, such that thermal plate 140 may be grounded. In the illustrated example, those conductive structures are  ground pins  150a, 150b.  Ground pins  150a, 150b may have at one end  first portions  220a and 220b, respectively, that make an electrical connection to thermal plate 140.  First portions  220a and 220b may be compliant portions that may be compressed when thermal plate 140 is pressed towards connector 110, generating a counter force that ensures an electrical contact with thermal plate 140. In this example,  first portions  220a and 220b have a serpentine shape, acting as a spring when compressed.
Connector housing 108 may have openings that enable  first portions  220a and 220b to be compressed. In the illustrated example, those openings are shaped as  recesses  230a, 230b in the  side surfaces  114a and 114b of connector housing 108.  First portions  220a and 220b are partially disposed within  recesses  230a, 230b, respectively. When compressed,  first portions  220a and 220b may be compressed into  recesses  230a and 230b. In this example,  first portions  220a and 220b are hook-shaped such that a distal-most end bends  back into  recesses  230a, 230b when the  first portions  220a and 220b are not compressed. Such a configuration, when present, may aid in reliable operation of the compressive contact.
Ground pins  150a, 150b may have a  second portion  222a and 222b, here shown at an opposite end with respect to  first portions  220a and 220b.  Second portions  222a and 222b may be configured as tails that may be connected to ground at mounting face 116. In the illustrated example,  second portions  222a and 222b extend sufficiently past the connector housing 108 that they can engage with structures on a PCB 120 to which connector 110 is mounted. In this example,  second portion  222a and 222b are planar segments configured to extend into holes of the PCB 120.
In this example, ground pins 150a and 150b may replace board hold downs that might otherwise be used in a connector mounted to a PCB. In the illustrated example,  second portions  222a and 222b extend into plated  holes  152a, 152b of the PCB 120 where they may be fixed to PCB 120. Ground pins 150a and 150b, for example, may be soldered within plated  holes  152a, 152b, providing both an electrical and a mechanical connection to PCB 120, though other mounting technologies may be used, such as surface mount soldering or press fit.
Ground pins 150a and 150b may further have intermediate portions, such as intermediation portion 224a (FIG. 5) . In this example, intermediate portion 224a is fixed within the connector housing, such as by barbs digging into the insulative connector housing, or interference fit as a result of being pressed into the housing or as a result of an overmolding operation, for example.
FIG. 2 is a perspective view of connector 110 detailing aspects of a feature for engaging with the thermal plate 140. Mounting face 116 that faces PCB 120 and port 118 that connects to double-sided PCB 130 are visible in FIG. 2, as is second surface 114b. As shown in FIG. 2, second slot 112b that is formed in second surface 114b extends along second surface 114b from edge 212 of connector 110, which is an edge that is farthest from  components  132a, 132b. Edge 212 is more clearly shown in FIG. 4.
Second slot 112b, like first slot 112a, includes an open end 210 at edge 212 and a closed end 214. Projection 148 from second leg 146b may be inserted at open end 210 of second slot 112b and slid to closed end 214. Similarly, projection 148 from first leg 146a of thermal plate 140 may be inserted at open end 210 of first slot 112a and slid to closed end 214. This engagement of projections 148 of thermal plate 140 is further discussed with reference to FIG. 4.
The depiction of the second surface 114b in FIG. 2 also shows the second recess 230b formed in the second surface 114b. A similar, first recess 230a is formed in the first surface 114a. As FIG. 2 shows, the generally horizontal direction in which the second slot 112b extends is different than the generally vertical direction in which the second recess 230b extends.  First portions  220a, 220b of  ground pins  150a, 150b are each shown in a  recess  230a, 230b, respectively. The  first portion  220a, 220b that contacts the thermal plate 140 and the  second portion  222a, 222b that contacts the PCB 120 on which the connector 110 is mounted are visible in the example ofFIG. 2.
In this example, each  recess  230a, 230b is in communication with an opening (e.g. 524a, FIG. 5) in the housing 108 of connector 110 that extends all the way through the connector 110 such that the intermediate portions, such as intermediate portion 224a (FIG. 5) , of  ground pins  150a, 150b may be inserted into the opening with  second portions  222a and 222b extending below the connector 110. Specifically, as shown,  second portions  222a, 222b extend below the connector 110 and into the plated  holes  152a, 152b of the PCB 120 (shown in FIG. 1) that are electrically connected to ground.
Thus, the connector 110 not only physically engages the thermal plate 140 in the  slots  112a, 112b but also grounds the thermal plate 140 via the ground pins 150a, 150b. Specifically, the thermal plate 140 contacts the  first portions  220a, 220b of the ground pins 150a, 150b while the  second portions  222a, 222b of the ground pins 150a, 150b are in the plated  holes  152a, 152b of the PCB 120. This grounding of the thermal plate 140 provides improved shielding of the electronic assembly 100 from electromagnetic interference (EMI) .
FIG. 3 is a side view illustrating aspects of electronic assembly 300 during a process of engaging thermal plate 140 with connector 110. First leg 146a of thermal plate 140 and first surface 114a of connector 110 with first slot 112a formed therein are shown. As the arrow A indicates, projection 148 from first leg 146a of thermal plate 140 is slid into first slot 112a. Similarly, on the side that is not visible in FIG. 3, projection 148 from second leg 146b of thermal plate 140 is slid into second slot 112b formed in second surface 114b of connector 110.
As the arrow B indicates, once projections 148 engage thermal plate 140 to connector 110 on one side of thermal plate 140, the other side of thermal plate 140 may be brought into contact with the subassembly inserted in port 118. In this example, plate 142 may be rotated to press against component 132a, using projections 148 as pivot points. As previously noted, a second end of thermal plate 140 may be held down, such as by screw 124  securing thermal plate 140 to PCB 120, thereby sandwiching double-sided PCB 130 and  components  132a, 132b therebetween.
Pivotally engaging thermal plate 140 to connector housing 108, as shown in FIG. 3, may simplify the manufacture of the electronic assembly 100 and/or enhance the effectiveness of thermal plate 140 at removing heat from a subassembly mated to connector 110. Thermal plate 140 may be engaged to connector 100 either before or after the subassembly is mated to connector 110. In some examples, thermal plate 140 may be engaged to connector 110 as part of the manufacture of an assembly including PCB 120. Connector 110 may be attached to PCB 120 as part of one manufacturing operation in one location or at one time.
A subassembly may be inserted into connector 110 at a different location at a different time. In the example in which PCB 120 is a motherboard of a computer, connector 110 may be attached to PCB 120 as part of the manufacture of the motherboard. At a later time, that computer may be configured with solid state memory. Thermal plate 140 may be engaged to connector 110 in conjunction with the manufacture of the motherboard at the first time, or at the later time in connection with the configuration of the computer containing the motherboard, or at any time in between. Because of the engagement to connector 110, thermal plate 140 may stay attached to connector 110 during transport of the motherboard. When a subassembly is to be inserted in connector 110, thermal plate 140 might be pivoted out of the way to enable the subassembly to be inserted. Optionally, thermal plate 140 may be fastened to PCB 120 before the subassembly is inserted in connector 110, such as by insertion of a screw 124. That fastening may be removed to enable insertion of a subassembly into connector 110.
With  first portions  220a and 220b of  ground pins  150a, 150b in an uncompressed state, as shown in FIG. 3, thermal plate 140 can make contact with the first portion of the ground pins 150a, 150b when the thermal plate 140 is rotated down (per arrow B) with the projections 148 acting as hinges. Specifically,  first portions  220a, 220b of  ground pins  150a, 150b are pushed down into the  recesses  230a, 230b, respectively. In this compressed state,  first portions  220a and 220b store spring energy that generates a force, which may be greater than 40 N for example, against thermal plate 140. Such a compressed state in which  first portions  220a, 220b push up into the thermal plate 140, resulting in secure contact being maintained between the ground pins 150a, 150b and the thermal plate 140 is illustrated in FIG. 5.
FIG. 4 is an enlarged view 400 of first slot 112a formed in first surface 114a of connector 110. First slot 112a, like second slot 112b, includes variable-depth region 402 and constant-depth region 404. Constant-depth region 404 may have a depth that equals or exceeds the height of projection 148. Variable-depth region 402 has a depth, at one end, that is greater than or equal to the height of projection 148 and a depth, at an opposite end, that is less than the height of projection 148. In the variable-depth region 402, which begins at the open end 210, a floor of slot 112a is formed as a ramp 410 with first depth 412 at open end 210.
The ramp 410 is formed such that the depth of first slot 112a decreases over variable-depth region 402 from first depth at open end 210 to smallest depth 416 at the end of variable-depth region 402. The depth of constant-depth region 404 is a second depth 414. Second depth 414 is deeper than the smallest depth 416. The ramped floor of slot 112a in variable-depth region 402 may act as a camming surface, providing outward force, normal to surface 114a, on projection 148 as thermal plate 140 slides in direction A (FIG. 3) .
Projection 148 may be a portion of a compliant structure that will flex in response to that force. In the illustrated example, projection 148 is formed as an embossment on leg 146a. Leg 146a may be formed as a thin sheet of metal, which may be on the order of 2 mm thick, or less. Leg 146a is positioned such that its broadside is parallel to surface 114a such that leg 146a flexes about an axis parallel to its broadside and perpendicular to its thickness, enabling leg 146a to flex in response to the camming force. In the illustrated example, projection 148 is formed at a location offset from the attachment point of leg 146a to plate 142 in the elongated dimension of leg 146a. Such a consideration further enables compliance of leg 146a.
When projection 148 is inserted at open end 210 and slid along slot 112a, leg 146a of thermal plate 140 flexes outward to slide along variable-depth region 402, which has decreasing depth.
After passing smallest depth 416, leg 146a of thermal plate 140 relaxes to its un-deformed position as projection 148 enters constant-depth region 404 with greater depth. This is also true for projection 148 that is inserted in second slot 112b of second surface 114b.
In the example illustrated, variable-depth region 402 is asymmetrical, such that more force is required to slide thermal plate 140 to remove projections 148 from constant-depth regions 404 than to slide thermal plate 140 such that projections 148 enter constant-depth regions 404. As a result, projections 148 are held in constant-depth regions 404 without easily disengaging from connector 110.
In the illustrated example, variable-depth region 402 has a ramped floor facing open end 210 of  slot  112a or 112b. The openings into  slots  112a and 112b may be flared, as shown in the illustrated example. The opposite end of variable-depth region 402 presents a surface perpendicular to the  respective surface  114a or  114b containing slot  112a or 112b. Such a surface provides little camming force on projection 148 ifthermal plate 140 is pushed in a withdrawal direction (opposite direction A) , facilitating reliable engagement of projections 148 within  slots  112a and 112b.
With projections 148 blocked in constant-depth regions 404,  surfaces  114a, 114b of connector housing 108 bounding constant-depth regions 404 may serve as bearing surfaces for projections 148, creating a pivotal mounting. Pivoting may be facilitated by providing projections 148 with curved outer surfaces. Similarly, some or all of the surfaces of the connector housing 108 bounding constant-depth regions 404 may be curved, such as are illustrated in FIG. 4. In this example, the connector housing 108 is molded from a thermoplastic and  slots  112a, 112b with such features may be readily integrated in the connector housing 108 during the molding operation.
FIG. 5 illustrates aspects of a ground pin 150a making an electrical connection between connector 110 and thermal plate 140. In FIG. 5, thermal plate 140, as well as housing 108 of connector 110, are shown in phantom to reveal details of ground pin 150a. In this view, intermediate portion 224a is visible in a state in which it is engaged in the connector housing 108. In this example, intermediate portion 224a may be inserted into housing 108 through recess 230a, but is too large to fit through opening 524a. Second portion 222a may fit through opening 524a such that attaching second portion 222a to PCB 120 holds the connector 110 to PCB 120.
In this example, ground pin 150a is electrically and mechanically connected to PCB 120, serving both as a connector hold down and grounding structure for thermal plate 140. As the figure shows, first portion 220a of ground pin 150a is in contact with plate portion 142 of thermal plate 140. FIG. 5 shows first portion 220a in a compressed state (e.g., when ground pin 150a is pushed down by the thermal plate 140) . Ground pin 150b, although not visible in FIG. 5, is in a similar state, providing a second conductive path between thermal plate 140 and a ground structure of PCB 120.
Example Embodiments
A connector may comprise a mounting face, a first slot in a first surface of the connector, the first surface being orthogonal to the mounting face; and a second slot in a  second surface of the connector, the second surface being orthogonal to the mounting face and parallel to the first surface.
Optionally, such a connector may include one or more of the following features:
The first slot may include an open end at an edge of the first surface and extends along the first surface to a closed end. The first slot may comprise a variable-depth region having a depth that decreases from a first depth at a first end adjacent the open end to a second depth, smaller than the first depth at a second end, opposite the first end, and a second region extending between the second end of the variable-depth region and the closed end, the second region having a depth greater than the second depth. Optionally, the variable-depth region may comprise a ramped floor of the first slot. Optionally, a boundary between the variable-depth region and the second depth region comprises a surface perpendicular to the first surface of the connector.
The second slot may comprise a variable-depth region having a depth that decreases from a first depth at a first end adjacent the open end to a second depth, smaller than the first depth at a second end, opposite the first end and a second region extending between the second end of the variable-depth region and the closed end, the second region having a depth greater than the second depth. Optionally, the variable-depth region may comprise a ramped floor of the first slot and a boundary between the variable-depth region and the second depth region comprises a surface perpendicular to the first surface of the connector.
As another example, a connector may be configured to engage a thermal plate. The connector may comprise a first slot formed in a first surface on a first side of the connector, the first slot configured to engage a first projection of the thermal plate. The connector may also comprise a second slot formed in a second surface on a second side of the connector, the second surface being parallel with the first surface and the second slot being configured to engage a second projection of the thermal plate. The connector may further comprise a port on a third side of the connector, the third side being orthogonal to the first side and the second side, the port being configured to mate with a solid state device that is in thermal contact with the thermal plate.
Optionally, a connector according to the foregoing examples may include one or more of the following features:
The first slot may include an open end at an edge of the first surface and extends along the first surface to a closed end whereby the connector is configured to engage the  thermal plate by the first projection of the thermal plate entering the first slot at the open end and sliding toward the closed end.
The connector may be in combination with a thermal plate. The first projection of the thermal plate may have a height, and the first slot may comprise a first region comprising a first depth adjacent the open end, the first depth being greater than the height of the first projection and a second depth, less than the height of the first projection, offset from to the open end, and a second region extending between the first region and the closed end, the second region having a depth greater than the height of the first projection. Optionally, a boundary between the first region and the second region comprises a surface perpendicular to the first surface of the connector configured to block the first projection of the thermal plate from being withdrawn from the second region after engagement.
The second slot may include an open end at an edge of the second surface and extends along the second surface to a closed end whereby the connector is configured to engage the thermal plate by the second projection of the thermal plate entering the second slot at the open end and sliding toward the closed end. Optionally, the connector may be in combination with a thermal plate. The second projection of the thermal plate may have a height. The second slot may comprise a first region comprising a first depth adjacent the open end, the first depth being greater than the height of the second projection and a second depth, less than the height of the second projection, offset from to the open end, and a second region extending between the first region and the closed end, the second region having a depth greater than the height of the second projection. Optionally, a boundary between the first region and the second region may comprise a surface perpendicular to the second surface of the connector configured to block the sec projection of the thermal plate from being withdrawn from the second region after engagement.
As another example, an electronic assembly comprising a connector mounted on a printed circuit board, the connector comprising a port in a mating face and a first side and a second side orthogonal to the mating face, may be assembled according to a method comprising: inserting a solid state device into a port of the connector; and engaging a first projection of a thermal plate in a first slot in the first side of the connector and a second projection of the thermal plate in a second slot in the second side of the connector.
Optionally, a method according to the foregoing example may include one or more of the following acts:
Rotating the thermal plate into thermal contact with the solid state device. Optionally, engaging the first projection of the thermal plate in the first slot comprises inserting the first  projection into an open end of the first slot and sliding the first projection along the first slot to a closed end. Optionally, sliding the first projection along the first slot comprises flexing a first leg of the thermal plate that includes the first projection away from the connector.
Engaging the second projection of the thermal plate in the second slot may comprise inserting the second projection into an open end of the second slot and sliding the second projection along the second slot to a closed end and the sliding the second projection along the second slot comprises flexing a second leg of the thermal plate that includes the second projection away from the connector.
Optionally, inserting the solid state device into the port of the connector comprises connecting the solid state device to a second printed circuit board on which the solid state device is mounted.
Having thus described at least one embodiment, it is to be appreciated various alterations, modifications, and improvements may readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be within the spirit and scope of the invention.
For example, an M. 2 connector mating with an edge of a card of a subassembly was used as an example of a connector that might be adapted for mounting of a thermal plate. Techniques as described herein may be used with connectors of other configurations or in systems in which other types of components are mated with the connector. Thermal plate mounting as described here, for example, may be used in a two-piece connector.
Further, though advantages of the present invention are indicated, it should be appreciated that not every embodiment of the invention will include every described advantage. Some embodiments may not implement any features described as advantageous herein and in some instances. Accordingly, the foregoing description and drawings are by way of example only.
As an additional example, a grounded thermal plate may have a plate-like body pressing against a top surface of a subassembly inserted in a connector. A grounded thermal may optionally have sides, extending perpendicular to the plate-like body to more fully enclose the subassembly within a grounded structure and reduce electromagnetic interference involving the subassembly. Alternatively, an electrically conductive structure may be mounted to a connector using techniques as described herein, even if having a low thermal conductivity such that it is not configured as a thermal plate.
Further, a connection between a thermal plate and a grounded structure withing a connector was described being made with a serpentine metal beam that is compressed.  Connection may be made of beams of other shape, such as a beam shaped as a spring finger. Moreover, though an example was provided in which the beam extended from a component of the connector, the beam could alternatively be on the thermal plate and press against a grounded component of the connector. For example, one or more interior surfaces of a slot, such as  slot  112a or 112b, may be conductive such and the projections 148 may be sized press against that grounded structure even when fully inserted in the slot. In this configuration, spring force for making an electrical connection may be provided by flexing of the  legs  146a and 146b when the projection is in the slot. As a specific example, the slots may be positioned to expose a grounded hold down at floor of the slot.
As another example, an electrical connector may be configured to engage a thermal plate. The thermal plate may be pivotally mounted to sides of the connector. The thermal plate may be rotated to press against components of a subassembly inserted into a port of the connector and fixed in this position. Protrusions on legs extending from the thermal plate may engage slots in sides of the connector. Each slot may have a first region with a ramped floor open to an exterior of the connector and a second region. When the projections on the legs slide along the slot, the ramped floor may generate a camming force that deflects the legs, enabling the projections to clear the ramped portion. Once the projections pass the first region, they snap into the second region, interfering with the thermal plate being removed from the connector yet enabling pivoting.
Various aspects of the present invention may be used alone, in combination, or in a variety of arrangements not specifically discussed in the embodiments described in the foregoing and is therefore not limited in its application to the details and arrangement of components set forth in the foregoing description or illustrated in the drawings. For example, aspects described in one embodiment may be combined in any manner with aspects described in other embodiments.
Also, the invention may be embodied as a method, of which an example has been provided. The acts performed as part of the method may be ordered in any suitable way. Accordingly, embodiments may be constructed in which acts are performed in an order different than illustrated, which may include performing some acts simultaneously, even though shown as sequential acts in illustrative embodiments.
All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.
Terms signifying direction, such as “upwards” and “downwards” or front and back were used in connection with some embodiments. These terms were used to signify direction based on the orientation of components illustrated or connection to another component, such as a surface of a printed circuit board to which a termination assembly is mounted or the mating face of a connector. It should be understood that electronic components may be used in any suitable orientation. Accordingly, terms of direction should be understood to be relative, rather than fixed to a coordinate system perceived as unchanging, such as the earth’s surface.
Use of ordinal terms such as “first, ” “second, ” “third, ” etc., in the claims to modify a claim element does not by itselfconnote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term) to distinguish the claim elements.
The indefinite articles “a” and “an, ” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one. ”
As used herein in the specification and in the claims, the phrase “at least one, ” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified.
The phrase “and/or, ” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to “A and/or B” , when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B) ; in another embodiment,  to B only (optionally including elements other than A) ; in yet another embodiment, to both A and B (optionally including other elements) ; etc.
As used herein in the specification and in the claims, “or” should be understood to have the same meaning as “and/or” as defined above. For example, when separating items in a list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as “only one of” or “exactly one of, ” or, when used in the claims, “consisting of, ” will refer to the inclusion of exactly one element of a number or list of elements. In general, the term “or” as used herein shall only be interpreted as indicating exclusive alternatives (i.e. “one or the other but not both” ) when preceded by terms of exclusivity, such as “either, ” “one of, ” “only one of, ” or “exactly one of. ” “Consisting essentially of, ” when used in the claims, shall have its ordinary meaning as used in the field of patent law.
Also, the phraseology and terminology used herein are for the purpose of description and should not be regarded as limiting. The use of “including, ” “comprising, ” “having, ” “containing, ” or “involving, ” and variations thereof herein, is meant to encompass the items listed thereafter (or equivalents thereof) and/or as additional items.

Claims (20)

  1. A connector comprising:
    a mounting face;
    a first slot in a first surface on a first side of the connector, the first surface being orthogonal to the mounting face and the first slot extending along a first direction on the first surface;
    a third surface on a third side orthogonal to the first side; and
    a first opening through the third surface adjacent the first side of the connector.
  2. The connector according to claim 1, wherein the first slot includes an open end at an edge of the first surface and extends along the first surface to a closed end, and the first slot is made up of a variable-depth region having a depth that decreases from a first depth at a first end adjacent the open end to a second depth, smaller than the first depth at a second end, opposite the first end and a second region extending between the second end of the variable-depth region and the closed end, the second region having a depth greater than the second depth.
  3. The connector according to claim 2, wherein the variable-depth region comprises a ramped floor of the first slot and a boundary between the variable-depth region and the second depth region comprises a surface perpendicular to the first surface of the connector.
  4. The connector according to claim 1, further comprising:
    an insulative housing; and
    a ground pin comprising an intermediate portion engaged to the insulative housing with a first portion extending through the opening.
  5. The connector according to claim 1, further comprising a second slot in a second surface on a second side of the connector, the second surface being orthogonal to the mounting face and parallel to the first surface and the second lot extending along a first direction on the second surface, and a second opening at the second side of the connector.
  6. The connector according to claim 5, wherein the second slot includes an open end an edge of the second surface and extends along the second surface to a closed end, the second slot is made up of a variable-depth region having a depth that decreases from a first depth at a first end adjacent the open end to a second depth, smaller than the first depth at a second end, opposite the first end and a second region extending between the second end of the variable-depth region and the closed end, the second region having a depth greater than the second depth.
  7. The connector according to claim 1, wherein the variable-depth region comprises a ramped floor of the first slot and a boundary between the variable-depth region and the second depth region comprises a surface perpendicular to the first surface of the connector.
  8. A connector configured to engage a thermal plate, the connector comprising:
    a mating face including a port configured to mate with a solid state device that is in thermal contact with the thermal plate;
    a connector housing comprising a first surface on a first side of the connector and a third surface, orthogonal to the first surface and the mating face, the connector housing comprising:
    a first slot formed in the first surface, the first slot configured to engage a first projection of the thermal plate and the first slot extending along a first direction on the first surface; and
    a first opening through the third surface; and
    a mounting face configured to mount the connector on a first printed circuit board (PCB) .
  9. The connector according to claim 8, wherein the first slot includes an open end at an edge of the first surface and extends along the first surface to a closed end whereby the connector is configured to engage the thermal plate by the first projection of the thermal plate entering the first slot at the open end and sliding toward the closed end, the first slot comprises a first region comprising a first depth adjacent the open end, the first depth being greater than the height of the first projection and a second depth, less than the height of the first projection, offset from to the open end and a second region extending between the first region and the closed end, the second region having a depth greater than the height of the first  projection, and a boundary between the first region and the second region comprises a surface perpendicular to the first surface of the connector configured to block the first projection of the thermal plate from being withdrawn from the second region after engagement.
  10. The connector according to claim 8, further comprising a conductor disposed, at least in part, in the first opening, wherein a first portion of the conductor is configured to contact the thermal plate and a second portion of the conductor is configured for engaging a ground structure of the first PCB.
  11. The connector according to claim 10, wherein:
    the first portion of the conductor is compliant and, in an uncompressed state, extends through the third surface of the connector housing and is configured to retract into the opening when the conductor is in a compressed state during engagement of the connector with the thermal plate,
    the second portion of the conductor comprises a tail projecting from the connector housing for connection to the first PCB; and
    the conductor further comprises an intermediate portion within the connector housing.
  12. The connector according to claim 8, wherein the connector housing further comprises:
    a second slot formed in a second surface of the connector housing on a second side of the connector, the second slot configured to engage a second projection of the thermal plate and the second slot extending along the first direction on the second surface, and
    a second opening through the third surface, wherein
    the second slot comprises an open end at an edge of the second surface and extends along the second surface to a closed end whereby the connector is configured to engage the thermal plate by the second projection of the thermal plate entering the second slot at the open end and sliding toward the closed end, the second slot comprises a first region comprising a first depth adjacent the open end, the first depth being greater than the height of the second projection and a second depth, less than the height of the second projection, offset from to the open end and a second region extending between the first region and the closed end, the second region having a depth greater than the height of the second projection, and a boundary between the first region and the second region comprises a surface perpendicular to  the second surface of the connector configured to block the second projection of the thermal plate from being withdrawn from the second region after engagement; and
    the connector further comprises a second conductor disposed, at least in part, in the second opening, wherein a first portion of the second conductor is configured to contact the thermal plate and a second portion of the second conductor is configured for engaging a ground structure of the first PCB.
  13. The connector according to claim 12, wherein the first conductor and the second conductor comprise connector hold downs.
  14. The connector according to claim 13, wherein:
    the first portion of the second conductor is compliant and in an uncompressed state, extends through the third surface of the connector housing and is configured to retract into the opening when the conductor is in a compressed state during engagement of the connector with the thermal plate, and
    the second portion of the second conductor comprises a tail projecting through the connector housing for connection to the first PCB, and
    the second conductor further comprises an intermediate portion within the connector housing.
  15. A method of assembling an electronic assembly, the method comprising:
    mounting a connector on a printed circuit board;
    inserting a solid state device into a port of the connector;
    engaging a first projection of a thermal plate in a first slot on a first side of the connector and engaging a second projection of the thermal plate in a second slot on a second side of the connector; and
    pivoting the thermal plate about the first projection and second projection into contact with a portion of a first ground pin extending out of the connector adjacent the first side of the connector and with a portion of a second ground pin extending out of the connector adjacent the second side of the connector.
  16. The method according to claim 15, wherein pivoting the thermal plate about the first projection and second projection further comprises:
    compressing the portion of the first ground pin into a first recess in the first side of the connector; and
    compressing the portion of the second ground pin into a second recess in the second side of the connector.
  17. The method according to claim 15, wherein pivoting the thermal plate about the first projection and second projection further comprises placing the thermal plate in thermal contact with the solid state device.
  18. The method according to claim 15, wherein:
    engaging the first projection of the thermal plate in the first slot comprises inserting the first projection into an open end of the first slot and sliding the first projection along the first slot to a closed end, and
    the sliding the first projection along the first slot comprises flexing away from the connector a leg of the thermal plate that includes the first projection.
  19. The method according to claim 15, wherein:
    engaging the second projection of the thermal plate in the second slot comprises inserting the second projection into an open end of the second slot and sliding the second projection along the second slot to a closed end, and
    sliding the second projection along the second slot comprises flexing away from the connector a second leg of the thermal plate that includes the second projection.
  20. The method according to claim 15, wherein:
    the solid state device is a subassembly comprising a second printed circuit board on which solid state components are mounted, the second printed circuit board comprising an edge; and
    inserting the solid state device into the port of the connector comprises inserting the edge of second printed circuit board into the port.
PCT/CN2022/138974 2022-12-14 2022-12-14 Connector interface for engagement with plate WO2024124430A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/138974 WO2024124430A1 (en) 2022-12-14 2022-12-14 Connector interface for engagement with plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/138974 WO2024124430A1 (en) 2022-12-14 2022-12-14 Connector interface for engagement with plate

Publications (1)

Publication Number Publication Date
WO2024124430A1 true WO2024124430A1 (en) 2024-06-20

Family

ID=91484243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138974 WO2024124430A1 (en) 2022-12-14 2022-12-14 Connector interface for engagement with plate

Country Status (1)

Country Link
WO (1) WO2024124430A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093521A (en) * 2000-09-18 2002-03-29 Furukawa Electric Co Ltd:The Connector assembly
CN2882003Y (en) * 2005-12-26 2007-03-21 连展科技(深圳)有限公司 Fastening mechanism of card connector
CN200976407Y (en) * 2006-10-31 2007-11-14 达昌电子科技(苏州)有限公司 Electronic card connector
CN102842818A (en) * 2011-06-24 2012-12-26 富士康(昆山)电脑接插件有限公司 Card connector
CN107422804A (en) * 2017-06-08 2017-12-01 得意精密电子(苏州)有限公司 Main frame board component
CN217936059U (en) * 2022-05-27 2022-11-29 恩斯迈电子(深圳)有限公司 Main board set and electronic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093521A (en) * 2000-09-18 2002-03-29 Furukawa Electric Co Ltd:The Connector assembly
CN2882003Y (en) * 2005-12-26 2007-03-21 连展科技(深圳)有限公司 Fastening mechanism of card connector
CN200976407Y (en) * 2006-10-31 2007-11-14 达昌电子科技(苏州)有限公司 Electronic card connector
CN102842818A (en) * 2011-06-24 2012-12-26 富士康(昆山)电脑接插件有限公司 Card connector
CN107422804A (en) * 2017-06-08 2017-12-01 得意精密电子(苏州)有限公司 Main frame board component
CN217936059U (en) * 2022-05-27 2022-11-29 恩斯迈电子(深圳)有限公司 Main board set and electronic device

Similar Documents

Publication Publication Date Title
US5451168A (en) Connector apparatus for memory cards having a one-piece integrated frame
US6773272B2 (en) Electrical connector assembly and module incorporating the same
US7086889B2 (en) Interlocking member for an electrical connector
US20060040556A1 (en) Keyed housing for use with small size plug connectors
US7077678B1 (en) Electrical connector assembly having board hold down
US7052322B2 (en) Stacked electrical connector
US7416449B2 (en) Electrical connector assembly with improved covers
US7874845B1 (en) Scissor-type multi-functional connector
US7467974B2 (en) Electrical connector
US7670174B2 (en) Low profile electrical connector
US20080032560A1 (en) Electrical connector assembly
TWI323532B (en) Panel mounted modular jack terminated to a circuit board
US6419529B1 (en) Side-by-side electrical connector assembly
US20040123458A1 (en) Method of making a straddle mount connector
US20080207052A1 (en) Electrical Connector
US7484974B2 (en) Card connector
US6979206B2 (en) Card edge connector
US20230396008A1 (en) Floating electrical connector
WO2024124430A1 (en) Connector interface for engagement with plate
US7467976B2 (en) Stacked card connector
CN213845629U (en) Shell assembly
WO2024124433A1 (en) Connector interface for engagement with plate
CN114284806B (en) Electric connector and transmission sheet thereof
US7547229B2 (en) Stacked electrical card connector having stand off
US9160113B2 (en) Electrical connector with engaging arms formed on cover