WO2024122824A1 - High-intensity focused ultrasonic wave generation device for focusing ultrasonic wave by using slit - Google Patents

High-intensity focused ultrasonic wave generation device for focusing ultrasonic wave by using slit Download PDF

Info

Publication number
WO2024122824A1
WO2024122824A1 PCT/KR2023/014165 KR2023014165W WO2024122824A1 WO 2024122824 A1 WO2024122824 A1 WO 2024122824A1 KR 2023014165 W KR2023014165 W KR 2023014165W WO 2024122824 A1 WO2024122824 A1 WO 2024122824A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
waves
transducer
slits
slit
Prior art date
Application number
PCT/KR2023/014165
Other languages
French (fr)
Korean (ko)
Inventor
이원주
공은경
황수민
안철용
강동환
Original Assignee
주식회사 제이시스메디칼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 제이시스메디칼 filed Critical 주식회사 제이시스메디칼
Publication of WO2024122824A1 publication Critical patent/WO2024122824A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia

Definitions

  • the present invention relates to a high-intensity focused ultrasound generator that focuses ultrasonic waves using a slit. More specifically, an ultrasonic focusing module with a slit is placed in front of a transducer to prevent diffraction and interference of ultrasonic waves using the slit. It relates to a high-intensity focused ultrasound generator that focuses ultrasonic waves through diffraction and interference of waves that can implement one or more ultrasonic focusing points by guiding them.
  • a high-intensity focused ultrasound (HIFU) generator generates high-intensity ultrasound energy by focusing ultrasound generated from a transducer and irradiates it to the patient's affected area to increase the temperature of the affected area, thereby performing surgical procedures. It is a device that can treat the affected area without any treatment.
  • HIFU high-intensity focused ultrasound
  • a plurality of transducers are mounted on the front of a concavely formed ultrasonic radiation frame to focus the ultrasound generated by the transducers to a preset position, thereby changing the direction of the focused ultrasound. Because it is very difficult and expensive, commercialization is difficult.
  • the purpose of the present invention is to provide a high-intensity focused ultrasonic wave generator that facilitates focusing of ultrasonic waves using wave diffraction and interference.
  • a high-intensity focused ultrasound generator that focuses ultrasonic waves using a slit includes a transducer that emits ultrasonic waves when power is applied; It is disposed in front of the transducer, is formed to allow ultrasonic waves emitted from the transducer to pass through, and at least one slit is formed to allow the ultrasonic waves to be diffracted while passing through, and at least one of the different phases. It converts the waves into waves having a , and includes an ultrasonic focusing module that induces interference of the converted waves and focuses the waves on a preset ultrasonic focusing point.
  • the ultrasonic focusing module is characterized in that the surface opposing the transducer is formed in a flat plate shape so as to simultaneously receive the ultrasonic waves emitted from the transducer.
  • the ultrasonic focusing module is characterized in that at least a portion of the surface facing the transducer is formed in a three-dimensional shape so that the separation distance from the transducer varies depending on the position.
  • Ultrasound waves that pass through the ultrasonic focusing module are converted into spherical waves.
  • the transducers include a plurality of transducers, and at least one of the plurality of transducers emits a plurality of ultrasonic waves having different phases, and the ultrasonic waves that pass through the ultrasonic focusing module are converted into spherical waves.
  • the separation distance between the transducer and the ultrasonic focusing module is set according to at least one of the diameter of the transducer and the wavelength of the ultrasonic waves.
  • Each size of the slit is set according to the wavelength of the ultrasonic waves.
  • a plurality of slits are formed to be spaced apart from each other, and at least some of the plurality of slits are formed to have different sizes.
  • a plurality of slits are formed to be spaced apart from each other, and the spacing between the plurality of slits is set according to the wavelength of the ultrasonic waves.
  • a plurality of slits are formed to be spaced apart from each other, and the plurality of slits are arranged to form at least one row and at least one column.
  • a plurality of slits are formed to be spaced apart from each other, and the plurality of slits are arranged radially from the center of the ultrasonic focusing module.
  • the slit has a cross-sectional shape of at least one of circular, polygonal, and round shapes.
  • the slit has a cross-sectional shape of at least one of a ring shape and an arc shape.
  • the slit is formed in a shape that expands or contracts in an outward direction from the center of the ultrasonic focusing module.
  • an ultrasonic focusing module that guides and focuses the waves to a preset ultrasonic focusing point; It includes a coupling member that detachably couples the ultrasonic focusing module to the ultrasonic radiation frame.
  • an ultrasonic focusing module that induces interference and focuses the waves on a preset ultrasonic focusing point; It includes a coupling member that detachably couples the ultrasonic focusing module to the ultrasonic radiation frame.
  • the high-intensity focused ultrasound generator according to the present invention is capable of diffracting, converting, and interfering with the ultrasonic waves emitted from the transducer by placing an ultrasonic focusing module with a slit in front of the transducer and focusing it on a preset ultrasonic focusing point.
  • ultrasonic focusing points can be implemented depending on the size or location of the slits.
  • the ultrasonic focusing plate is detachably attached to the front of the transducer, the ultrasonic focusing plate can be replaced and applied depending on the desired ultrasonic focusing point.
  • the ultrasonic focusing plate has a simple structure and has the advantage of being easy to install.
  • Figure 1 is a diagram schematically showing the configuration of a high-intensity focused ultrasound generator that focuses ultrasound waves using diffraction and interference of waves according to a first embodiment of the present invention.
  • Figure 2 is an exploded perspective view of the ultrasonic focusing plate and transducer shown in Figure 1.
  • Figure 3 is a side view of the ultrasonic focusing plate shown in Figure 2.
  • Figure 4 is a diagram schematically showing the ultrasonic focusing principle of the ultrasonic focusing plate according to the first embodiment of the present invention.
  • Figure 5 is a diagram schematically showing the relationship between the distance between slits and the ultrasonic focusing point according to an embodiment of the present invention.
  • Figure 6 shows an example of the size and position of slits when the focal distance is 20 mm in the high-intensity focused ultrasound generator according to an embodiment of the present invention.
  • Figure 7 shows an example of simulating the focusing of ultrasound when the focal distance is 20 mm in the high-intensity focused ultrasound generator according to an embodiment of the present invention.
  • Figure 8 is a diagram schematically showing the ultrasonic focusing principle of the ultrasonic focusing plate according to the second embodiment of the present invention.
  • Figure 9 is a plan view of an ultrasonic focusing plate according to a third embodiment of the present invention.
  • Figure 10 is a plan view of an ultrasonic focusing plate according to a fourth embodiment of the present invention.
  • Figure 11 is a plan view of an ultrasonic focusing plate according to a fifth embodiment of the present invention.
  • Figure 12 is a plan view of an ultrasonic focusing plate according to a sixth embodiment of the present invention.
  • Figure 13 is a plan view of an ultrasonic focusing plate according to a seventh embodiment of the present invention.
  • Figure 14 is a plan view of an ultrasonic focusing plate according to an eighth embodiment of the present invention.
  • Figure 15 is a plan view of an ultrasonic focusing plate according to a ninth embodiment of the present invention.
  • Figure 16 is a plan view of the ultrasonic focusing plate according to the tenth embodiment of the present invention.
  • Figure 17 is a plan view of the ultrasonic focusing plate according to the 11th embodiment of the present invention.
  • Figure 18 is a plan view of an ultrasonic focusing plate according to the twelfth embodiment of the present invention.
  • Figure 19 is a plan view of the ultrasonic focusing plate according to the 13th embodiment of the present invention.
  • Figure 20 is a plan view of the ultrasonic focusing plate according to the fourteenth embodiment of the present invention.
  • Figure 21 is a plan view of an ultrasonic focusing plate according to the 15th embodiment of the present invention.
  • Figure 22 is a diagram schematically showing a high-intensity focused ultrasound generator according to the 16th embodiment of the present invention.
  • Figure 23 is a diagram schematically showing a high-intensity focused ultrasound generator according to the 17th embodiment of the present invention.
  • Figure 24 is a diagram schematically showing a high-intensity focused ultrasound generator according to an 18th embodiment of the present invention.
  • Figure 25 is a diagram schematically showing a high-intensity focused ultrasound generator according to the 19th embodiment of the present invention.
  • Figure 26 is a diagram schematically showing a high-intensity focused ultrasound generator according to the twentieth embodiment of the present invention.
  • Figure 1 is a diagram schematically showing the configuration of a high-intensity focused ultrasound generator that focuses ultrasound waves using diffraction and interference of waves according to a first embodiment of the present invention.
  • Figure 2 is an exploded perspective view of the ultrasonic focusing plate and transducer shown in Figure 1.
  • Figure 3 is a side view of the ultrasonic focusing plate shown in Figure 2.
  • the high-intensity focused ultrasound generator according to the first embodiment of the present invention includes an ultrasonic radiation frame 10, a plurality of transducer holders 20, and a plurality of transducers 30. and an ultrasonic focusing module.
  • the ultrasonic radiation frame 10 is a frame in which a plurality of coupling holes are formed to allow the transducer holder 20 to be coupled thereto.
  • the front surface of the ultrasonic radiation frame 10 will be described as being formed in a flat plane.
  • the present invention is not limited to this, and the front surface of the ultrasonic radiation frame 10 may be formed as a curved surface.
  • the transducer holders 20 are detachably coupled to each of the plurality of coupling holes.
  • the transducer 30 is mounted on the front of the transducer holder 20.
  • the transducer holder 20 includes a head portion 20a formed with a seating groove into which the transducer 30 is inserted and seated, and a head portion 20a formed to extend to the rear of the head portion 20a and coupled to the coupling holes. It includes a body portion (20b).
  • the transducer 30, the transducer holder 20, and the ultrasonic focusing module form one module, and a plurality of modules are configured to form an array.
  • the transducer 30 and the ultrasonic focusing module are matched one-to-one (1:1) to form one module, and a plurality of the modules are arranged in a planar manner.
  • one ultrasonic focusing module to be matched to a plurality of transducers 30, and it is also possible for a plurality of ultrasonic focusing modules to be matched to one transducer 30. possible.
  • the transducer 30 is coupled to the ultrasonic radiation frame 10 through the transducer holder 20 as an example, but this is not limited to this and the transducer 30 is connected to the ultrasonic radiation frame 10 through the transducer holder 20. It is also possible to be directly coupled to the radiation frame 10, in which case the transducer 30 and the ultrasonic focusing module can form one module.
  • the transducers 30 may include piezoelectric elements. In this embodiment, the transducers 30 are described as being formed in a disk shape. The number, size, and shape of the transducers can be varied depending on the ultrasonic energy to be radiated. Wires 31 may be connected to the upper and lower surfaces of the transducer 30.
  • the transducer 30 generates ultrasonic waves when power is applied, and the ultrasonic waves are explained by way of example as a single plane wave. However, it is not limited to this, and the ultrasonic waves may of course be waves of other shapes other than plane waves. In addition, of course, it is possible for at least one of the plurality of transducers 30 to emit ultrasonic waves having different phases.
  • the transducers 30 are arranged to be spaced apart from each other laterally on the plane of the ultrasonic radiation frame 10.
  • the transducers 30 are explained as an example in which they are arranged to be spaced apart from each other at equal intervals. However, the present invention is not limited to this, and at least some of the transducers 30 may of course be arranged to be spaced apart from each other at different intervals. Additionally, the transducers 30 may be arranged regularly to form a matrix, or may be arranged in a radial or staggered form. Additionally, it is possible for the transducers 30 to form a plurality of groups, and for the plurality of groups to be arranged to be spaced apart from each other.
  • the ultrasonic focusing module is disposed in front of each of the transducers 30, so that the ultrasonic wave emitted from the transducer 30 passes through and diffracts, and at least one of the ultrasonic focusing modules has a different phase. It converts them into waves, induces interference of the converted waves, and focuses the waves on a preset ultrasonic focusing point.
  • the ultrasonic focusing module is arranged to be spaced forward from the transducer 30, and at least a portion of the ultrasonic focusing module has a curved surface, an inclined surface, and a stepped surface so that the separation distance from the transducer 30 varies depending on the location. It will be explained as an example that it is an ultrasonic focusing plate 40 formed in a three-dimensional shape.
  • the separation distance between the transducer 30 and the ultrasonic focusing plate 40 is set according to at least one of the wavelength ( ⁇ ) of the ultrasonic wave and the diameter of the transducer 30.
  • the separation distance between the transducer 30 and the ultrasonic focusing plate 40 is set to a range of about 0.01 mm to 10 times the diameter of the transducer 30.
  • the ultrasonic focusing plate 40 is described as an example in which the ultrasonic focusing plate 40 has a disk shape with a larger diameter than the transducer 30.
  • the ultrasonic focusing plate 40 includes a waveform converter 40a facing the transducer 30 and a radial extension from the waveform converter 40a to form the ultrasonic radiation frame 10 as described later. It includes a frame coupling portion (40b) coupled by coupling members (45) and (46).
  • the waveform conversion unit 40a is formed to protrude forward, which is the direction in which the ultrasonic waves travel.
  • the waveform converter 40a is explained by way of example as having a convex shape.
  • the waveform converter 40a is formed in the shape of a square pyramid that protrudes in the direction of travel of the ultrasonic waves and has an open bottom, or is formed so that at least part of it is stepped, or at least part of it is formed so as to have an inclined surface.
  • the waveform converter 40a may of course have a shape that is a combination of at least some of a convex shape, a concave shape, a square pyramid shape, a flat shape, an inclined plane shape, and a stepped shape. That is, the waveform converter 40a can be changed into various shapes if the separation distance between the slits 42 and the transducer 30, which will be described later, is formed to be different.
  • the waveform converter 40a has a protruding shape among the ultrasonic focusing plate 40, but this is not limited to this and the entire ultrasonic focusing plate 40 has a shape protruding forward. Of course, it is also possible for some or several areas of the waveform conversion unit 40a to protrude forward.
  • a plurality of slits 42 are formed to convert the ultrasonic waves emitted from the transducer 30 into waves with at least one different phase.
  • the waveform converter 40a converts the ultrasonic waves emitted from the transducer 30 into spherical waves, induces interference between the plurality of spherical waves, and focuses them on at least one ultrasonic focus point.
  • a plurality of fastening holes 41 are formed in the frame coupling portion 40b to fasten the coupling members 45 and 46 to each other.
  • the coupling members 45 and 46 include a plurality of connecting nuts 46 and a plurality of connecting bolts 45.
  • the connecting nuts 46 are provided on the ultrasonic radiation frame 10 and are formed to be long and protrude forward from the front of the transducer 30 to guide the mounting height of the ultrasonic focusing plate 40. It is a formed nut.
  • the connecting nut 46 is explained as an example of being fastened to a module coupling hole formed in the ultrasonic radiation frame 10. However, it is not limited to this, and the connecting nut 46 may be placed on the front of the ultrasonic radiation frame 10 and then fixed through an adhesive or the like, and of course, it may also be formed integrally with the ultrasonic radiation frame. .
  • the plurality of connecting nuts 46 are arranged to be spaced apart from each other at a predetermined distance, and the ultrasonic focusing plate 40 is placed on the upper surface of the connecting nuts 36.
  • the height at which the connecting nut 46 protrudes forward from the front of the ultrasonic radiation frame 10 is the mounting height of the ultrasonic focusing plate 40 or the separation distance between the ultrasonic focusing plate 40 and the transducer 30. It is set according to.
  • the connecting bolts 45 are fastened to the connecting nuts 46 on the upper side of the ultrasonic focusing plate 40 placed on the connecting nuts 36.
  • the connecting bolts 45 pass through the fastening holes 41 of the ultrasonic focusing plate 40 and are fastened to the connecting nut 46.
  • the plurality of slits 42 are formed on the ultrasonic focusing plate 40 and include all holes or gaps through which the ultrasonic waves pass.
  • the plurality of slits 42 are arranged to form at least one row and at least one column. That is, the slits 42 are explained as an example in which the slits 42 are spaced apart from each other at equal intervals in the horizontal direction and are regularly arranged in a matrix form. However, the present invention is not limited to this, and the plurality of slits 42 may be arranged in various shapes.
  • the slits 42 are described as holes having a circular cross-section, but are not limited to this and the cross-sectional shape of the slits 42 can be changed in various ways.
  • the sizes of the slits 42 are described as being the same, but the slits 42 are not limited to this and may of course be formed in different sizes.
  • Diffraction of the ultrasonic waves is influenced by the size of the slits 42 and the wavelength ( ⁇ ) of the ultrasonic waves.
  • the size of each of the slits 42 is set differently depending on the wavelength ( ⁇ ) of the ultrasonic waves emitted from the transducer 30.
  • the size of the slit 42 includes the diameter of the cross section of the slit 42.
  • the diameter of the slit 42 is set in the range of 0.01 to 10 times the wavelength ( ⁇ ) of the ultrasonic wave.
  • the separation distance between the slits 42 is set according to the wavelength ( ⁇ ) of the ultrasonic waves.
  • the spacing between the slits 42 is set in the range of 0.01 to 10 times the wavelength ⁇ of the ultrasonic waves.
  • Figure 5 is a diagram schematically showing the relationship between the distance between slits and the ultrasonic focusing point when the ultrasonic focusing plate according to an embodiment of the present invention is a flat plate.
  • Figure 6 shows an example of the size and position of slits when the focal distance is 20 mm in the high-intensity focused ultrasound generator according to an embodiment of the present invention.
  • ⁇ y represents the path difference of the wave.
  • the separation distance (d) between the slits 42 is the wavelength ( ⁇ ) of the ultrasonic wave, the arrangement order of the slit (s n ) from the center slit (s0) among the plurality of slits 42, and the center slit. It is set according to the distance (y0) from (s0) to the ultrasonic focusing point (Focal point).
  • Equation 1 the equation for calculating the separation distance d n between the nth slit from the center slit s0 is as shown in Equation 1.
  • n is the arrangement order of the corresponding slits from the central slit
  • is the wavelength of ultrasonic waves
  • y0 is the distance from the central slit to the screen.
  • the screen is a location where a focus point can be created.
  • the positions of the slits 42 can be set according to the separation distance (d n ).
  • d1 is the separation distance between the center slit (s0) and the first slit (s1)
  • d2 is the separation distance between the center slit (s0) and the second slit (s2)
  • d3 is the center slit (s0).
  • ) is the separation distance between the third slit (s3)
  • d4 is the separation distance between the center slit (s0) and the fourth slit (s4)
  • d5 is the separation distance between the center slit (s0) and the fifth slit (s5). Indicates the separation distance.
  • the distance between the slits 42 decreases as the distance from the central slit s0 increases.
  • Figure 7 shows an example of simulating the focusing of ultrasound when the focal distance is 20 mm in the high-intensity focused ultrasound generator according to an embodiment of the present invention.
  • the positions of the slits 42 are set and arranged according to the separation distance calculated according to Equation 1 above, and the ultrasonic focusing point is confirmed through simulation.
  • At least a portion of the surface of the transducer 30 may be coated with a sound-absorbing material (not shown) and provided with a sound-absorbing layer (not shown) that absorbs ultrasonic waves reflected from the ultrasonic focusing plate 40.
  • each transducer 30 When power is applied to the plurality of transducers 30, each transducer 30 generates and emits ultrasonic waves.
  • each ultrasonic wave generated by the transducer 30 is one plane wave.
  • the ultrasonic waves emitted from the transducer 30 pass through the ultrasonic focusing plate 40 disposed in front of the transducer 30.
  • the ultrasonic waves While passing through the ultrasonic focusing plate 40, the ultrasonic waves are diffracted and converted into a plurality of spherical waves, at least one of which has a different phase.
  • the waves of the converted spherical waves cause interference and are focused on a preset ultrasonic focusing point.
  • the ultrasonic waves emitted from the transducer 30 are converted into a plurality of spherical waves while passing through the plurality of slits 42.
  • the plurality of spherical waves are focused on a preset ultrasonic focusing point.
  • the ultrasonic focusing plate 40 in front of the transducer 30, it focuses the ultrasonic waves on the desired area non-invasively, allowing more accurate treatment of the local area, and has the advantage of being able to perform the procedure without wounds or scars. .
  • the ultrasonic focusing point can be changed depending on the size or location of the slits 42 formed in the ultrasonic focusing plate 40 and the separation distance between the ultrasonic focused wave 40 and the transducer 30.
  • the ultrasonic focusing plate 40 is detachably coupled to the front of the transducer 30, the ultrasonic focusing plate 40 can be replaced depending on the desired ultrasonic focusing point and applied to various ultrasonic focusing areas. .
  • the structure is simple and has the advantage of being partially replaceable.
  • Figure 8 is a diagram schematically showing the ultrasonic focusing principle of the ultrasonic focusing plate according to the second embodiment of the present invention.
  • the ultrasonic focusing plate 240 is formed in a three-dimensional shape, but differs from the first embodiment in that it has a convex curved shape backward toward the transducer 30. Since the remaining configuration and operation are similar to the first embodiment, the description will focus on the differences and a detailed description of similar content will be omitted.
  • the ultrasonic focusing plate 240 is formed to extend radially from the waveform converter 240a and the waveform converter 240a facing the transducer 30, and is coupled to the ultrasonic radiation frame 10. Includes a frame coupling portion 240b.
  • the waveform conversion unit 240a will be described as an example in which it is formed in a concave shape to protrude toward the transducer 30.
  • the waveform converter 240a is described as having a curved shape, but is not limited to this, and protrudes in the direction toward the transducer 30 in the shape of a square pyramid with an open bottom, or at least It is also possible that a portion is formed to be stepped, or at least a portion is formed to have an inclined surface. That is, the waveform converter 240a can be changed into various shapes if the separation distance between the slits 242 and the transducer 30, which will be described later, is formed to be different.
  • the waveform converter 240a of the ultrasonic focusing plate 240 is described as having a shape that protrudes rearward. However, this is not limited to this, and the entire ultrasonic focusing plate 240 protrudes rearward. Of course, it is also possible to have a similar shape or to have only an area smaller than the waveform conversion unit 240a protrude backward.
  • a plurality of slits 242 are formed in the waveform conversion unit 240a of the ultrasonic focusing plate 240.
  • the slits 242 are described as holes with circular cross-sections, but they are not limited to this and the cross-sectional shapes of the slits 242 can be changed in various ways.
  • the number of slits 242 can be changed and applied in various ways.
  • the sizes of the slits 242 are described as being the same, but the slits 242 are not limited to this and may of course be formed in different sizes.
  • the distance between the slits 242 may all be set to be the same, and it is also possible, of course, that the distance between at least some of the slits 242 may be set differently.
  • the size or location of the slits 242 may be set differently depending on the desired ultrasound focal point. That is, the size of the slits 242 is set differently depending on the wavelength ( ⁇ ) of the ultrasonic waves emitted from the transducer 30. Each position of the slits 242 includes the wavelength ⁇ of the ultrasonic wave, the arrangement order of the slits s n from the central slit s1 among the plurality of slits 242, and the central slit s1. It can be calculated and set according to the distance from the ultrasonic focusing point (Focal point).
  • the ultrasonic waves emitted from the transducer 30 are converted into a plurality of spherical waves while passing through the plurality of slits 242.
  • the plurality of spherical waves are focused at a preset ultrasonic focusing point.
  • the ultrasonic wave emitted from the transducer 30 is described as a single plane wave, but it is not limited to this and may have other shapes.
  • Figure 9 is a plan view of an ultrasonic focusing plate according to a third embodiment of the present invention.
  • a plurality of slits 342 are formed in the ultrasonic focusing plate 340 according to the third embodiment of the present invention, and the plurality of slits 342 are arranged to form a plurality of rows and columns.
  • the slits arranged in adjacent rows or adjacent columns are different from the first embodiment in that they are arranged in a staggered manner, and the remaining configuration and operation are similar to the first embodiment, so detailed description of similar content is omitted. do.
  • the slits 342 are described as holes with a circular cross-section, but they are not limited to this and the cross-sectional shape of the slits 342 can be changed in various ways.
  • the number of slits 342 can be changed and applied in various ways.
  • the sizes of the slits 342 are described as being the same, but the slits 342 are not limited to this and may of course be formed in different sizes.
  • the distance between the slits 342 may all be set to be the same, and it is also possible, of course, that the distance between at least some of the slits 342 may be set differently.
  • the size or location of the slits 342 may be set differently depending on the desired ultrasound focal point. That is, the size of the slits 342 is set differently depending on the wavelength ( ⁇ ) of the ultrasonic waves emitted from the transducer 30. Each position of the slits 342 includes the wavelength ⁇ of the ultrasonic wave, the arrangement order of the slit s n from the central slit s1 among the plurality of slits 342, and the central slit s1. It can be calculated and set according to the distance from the ultrasonic focusing point (Focal point).
  • the ultrasonic focusing plate 340 may have a flat plate shape on at least a portion of the surface facing the transducer 30, and may have a three-dimensional shape so that the separation distance from the transducer 30 varies depending on the location. It is also possible to form .
  • the ultrasonic focusing plate 340 When the ultrasonic focusing plate 340 is formed in a three-dimensional shape, at least a portion may be formed as a curved or inclined surface, or at least a portion may be formed as a stepped surface. Additionally, the ultrasonic focusing plate 340 may have a shape that protrudes convexly in the direction in which the ultrasonic waves travel, and may also have a shape that protrudes convexly in the direction toward the transducer 30. However, it is not limited to this, and can be changed into various shapes if the separation distance between the slits 342 of the ultrasonic focusing plate 340 and the transducer 30 is formed to vary depending on the position.
  • the ultrasonic wave emitted from the transducer 30 is described as a single plane wave, but it is not limited to this and may have other shapes.
  • Figure 10 is a plan view of an ultrasonic focusing plate according to a fourth embodiment of the present invention.
  • a plurality of slits 442 are formed in the ultrasonic focusing plate 440 according to the fourth embodiment of the present invention, and the plurality of slits 442 are of the ultrasonic focusing plate 440. It is different from the first embodiment in that it is arranged radially from the center, and the remaining configuration and operation are similar to the first embodiment, so detailed description of similar content will be omitted.
  • the slits 442 will be described as an example in which the slits arranged within the same radius from the center of the ultrasonic focusing plate 440 form a virtual circle.
  • the slits 442 are described as holes with a circular cross-section, but they are not limited to this and the cross-sectional shape of the slits 442 can be changed in various ways.
  • the number of slits 442 can be changed and applied in various ways.
  • the sizes of the slits 442 are described as being the same, but the slits 442 are not limited to this and may of course be formed in different sizes.
  • the distance between the slits 442 may all be set to be the same, and it is also possible, of course, that the distance between at least some of the slits 442 may be set differently.
  • the size or location of the slits 442 may be set differently depending on the desired ultrasound focal point. That is, the size of the slits 442 is set differently depending on the wavelength ( ⁇ ) of the ultrasonic waves emitted from the transducer 30. Each position of the slits 442 includes the wavelength ⁇ of the ultrasonic wave, the arrangement order of the corresponding slit s n from the center slit s1 among the plurality of slits 442, and the center slit s1. It can be calculated and set according to the distance from the ultrasonic focusing point (Focal point).
  • the ultrasonic focusing plate 440 may have a flat plate shape on at least a portion of the surface facing the transducer 30, and may have a three-dimensional shape so that the separation distance from the transducer 30 varies depending on the location. It is also possible to form .
  • the ultrasonic focusing plate 440 When the ultrasonic focusing plate 440 is formed in a three-dimensional shape, at least a portion may be formed as a curved or inclined surface, or at least a portion may be formed as a stepped surface. Additionally, the ultrasonic focusing plate 440 may have a shape that protrudes convexly in the direction in which the ultrasonic waves travel, and may also have a shape that protrudes convexly in the direction toward the transducer 30. However, it is not limited to this, and can be changed into various shapes if the separation distance between the slits 442 of the ultrasonic focusing plate 440 and the transducer 30 is formed to vary depending on the position.
  • the ultrasonic wave emitted from the transducer 30 is described as a single plane wave, but it is not limited to this and may have other shapes.
  • Figure 11 is a plan view of an ultrasonic focusing plate according to a fifth embodiment of the present invention.
  • the slits 542 of the ultrasonic focusing plate 540 include a central hole 542a and a plurality of surrounding holes arranged to be spaced apart from each other in the circumferential and radial directions.
  • the inclusion of the elements 542b is different from the first embodiment, and the remaining configuration and operation are similar to the first embodiment, so the description will focus on the differences and a detailed description of similar content will be omitted.
  • the central hole 542a is described as an example of a hole with a circular cross-section, but it is not limited to this and the cross-sectional shape can be changed in various ways.
  • the surrounding holes 542b will be described as an example in which a plurality of the surrounding holes 542b are arranged to be spaced apart from each other in the circumferential and radial directions and have a circular cross section. However, it is not limited to this, and the cross-sectional shape of the around holes 542b can be changed and applied in various ways.
  • surrounding holes 542 holes located within the same radius from the center hole 542a are arranged to form a virtual circle.
  • the surrounding holes 542 have an arc length (l n ) that becomes longer as it goes in the radial direction.
  • the around holes 542 are arranged to form spherical symmetry around the central hole 542a.
  • the number of surrounding holes 542b can be changed and applied in various ways.
  • radial widths (w) of the surrounding holes 542b are described as being the same, but are not limited to this and may of course be formed differently.
  • the size and position of the center hole 542a and the surrounding holes 542b are set differently depending on the desired ultrasonic focal point.
  • the ultrasonic focusing plate 540 may have a flat plate shape on at least a portion of the surface facing the transducer 30, and may have a three-dimensional shape so that the separation distance from the transducer 30 varies depending on the location. It is also possible to form .
  • the ultrasonic focusing plate 540 When the ultrasonic focusing plate 540 is formed in a three-dimensional shape, at least a portion may be formed as a curved or inclined surface, or at least a portion may be formed as a stepped surface. Additionally, the ultrasonic focusing plate 540 may have a shape that protrudes convexly in the direction in which the ultrasonic waves travel, and may also have a shape that protrudes convexly in the direction toward the transducer 30. However, it is not limited to this, and can be changed into various shapes if the separation distance between the slits 542 of the ultrasonic focusing plate 540 and the transducer 30 is formed to vary depending on the position.
  • the ultrasonic wave emitted from the transducer 30 is described as a single plane wave, but it is not limited to this and may have other shapes.
  • Figure 12 is a plan view of an ultrasonic focusing plate according to a sixth embodiment of the present invention.
  • the slits 642 of the ultrasonic focusing plate 640 include a central hole 642a and a plurality of surrounding holes arranged to be spaced apart in the circumferential and radial directions. It includes (642b), but the surrounding holes 642 are arranged in a staggered manner, which is different from the fifth embodiment, and the remaining configuration and operation are similar to the fifth embodiment, so focusing on the differences explanation, and detailed explanations of similar content are omitted.
  • the central hole 642a is described as a hole with a circular cross-section as an example, but it is not limited to this and the cross-sectional shape can be changed in various ways.
  • the surrounding holes 642b are arranged to be spaced apart from each other in the circumferential and radial directions and have a circular cross-section.
  • the cross-sectional shape of the around holes 642b can be changed and applied in various ways.
  • surrounding holes 642 holes located within the same radius from the center hole 642a are arranged to form a virtual circle.
  • the surrounding holes 642 have arc lengths (l n ) that become longer as they go in the radial direction.
  • around holes 642 are arranged to be staggered so as not to achieve spherical symmetry around the central hole 542a.
  • the number of around holes 642b can be changed and applied in various ways.
  • radial widths (w) of the around holes 642b are described as being the same, but are not limited to this and may of course be formed differently.
  • the size and location of the center hole 642a and the surrounding holes 642b are set differently depending on the desired ultrasonic focal point.
  • the ultrasonic focusing plate 640 may have a flat plate shape on at least a portion of the surface facing the transducer 30, and may have a three-dimensional shape so that the separation distance from the transducer 30 varies depending on the location. It is also possible to form .
  • the ultrasonic focusing plate 640 When the ultrasonic focusing plate 640 is formed in a three-dimensional shape, at least a portion may be formed as a curved or inclined surface, or at least a portion may be formed as a stepped surface. Additionally, the ultrasonic focusing plate 640 may have a shape that protrudes convexly in the direction in which the ultrasonic waves travel, and may also have a shape that protrudes convexly in the direction toward the transducer 30. However, it is not limited to this, and can be changed into various shapes if the separation distance between the slits 3642 of the ultrasonic focusing plate 640 and the transducer 30 is formed to vary depending on the location.
  • the ultrasonic wave emitted from the transducer 30 is described as a single plane wave, but it is not limited to this and may have other shapes.
  • Figure 13 is a plan view of an ultrasonic focusing plate according to a seventh embodiment of the present invention.
  • the slits 742 of the ultrasonic focusing plate 740 according to the seventh embodiment of the present invention are radially spaced apart from a central hole 742a with the central hole 742a as the center. It includes a plurality of arranged around holes 742b, but the around holes 742 are different from the fifth embodiment in that the cross-section is formed in a ring shape, and the remaining configuration and operation are those of the fifth embodiment. Since it is similar to , the description will focus on the differences and a detailed description of similar content will be omitted.
  • the central hole 742a is described as an example of a hole with a circular cross-section, but it is not limited to this and the cross-sectional shape can be changed in various ways.
  • the surrounding holes 742b are arranged to be spaced apart in the radial direction around the central hole 742a and have a ring-shaped cross section.
  • the cross-sectional shape of the around holes 742b can be changed and applied in various ways.
  • the number of around holes 742b can be changed and applied in various ways.
  • the radial widths w of the surrounding holes 742b are described as being the same, but are not limited thereto and may of course be formed differently.
  • the size and location of the center hole 742a and the surrounding holes 742b are set differently depending on the desired ultrasonic focal point.
  • connection portion 742c the remaining parts of the ultrasonic focusing plate 740, excluding the center hole 742a and the surrounding holes 742, are connected to each other by a connection portion 742c.
  • the ultrasonic focusing plate 740 may have a flat plate shape on at least a portion of the surface facing the transducer 30, and may have a three-dimensional shape so that the separation distance from the transducer 30 varies depending on the location. It is also possible to form .
  • the ultrasonic focusing plate 740 When the ultrasonic focusing plate 740 is formed in a three-dimensional shape, at least a portion may be formed as a curved or inclined surface, or at least a portion may be formed as a stepped surface. Additionally, the ultrasonic focusing plate 740 may have a shape that protrudes convexly in the direction in which the ultrasonic waves travel, and may also have a shape that protrudes convexly in the direction toward the transducer 30. However, it is not limited to this, and can be changed into various shapes if the separation distance between the slits 742 of the ultrasonic focusing plate 740 and the transducer 30 is formed to vary depending on the position.
  • the ultrasonic wave emitted from the transducer 30 is described as a single plane wave, but it is not limited to this and may have other shapes.
  • Figure 14 is a plan view of the ultrasonic focusing plate according to the eighth embodiment of the present invention.
  • a plurality of slits 842 formed in the ultrasonic focusing plate 840 according to the eighth embodiment of the present invention are arranged radially from the center of the ultrasonic focusing plate 840, and the slits ( 842), the size of at least part of the ultrasonic focusing plate 840 is different from the fourth embodiment in that it is formed to decrease in the radial direction from the center of the ultrasonic focusing plate 840, and the remaining configuration and operation are similar to the fourth embodiment. , detailed description of similar content is omitted.
  • the slits 842 will be described as an example in which the slits arranged within the same radius from the center of the ultrasonic focusing plate 840 form a virtual circle.
  • the slits 842 are described as holes with circular cross-sections as an example, but are not limited to this and the cross-sectional shapes of the slits 842 can be changed in various ways.
  • the number of slits 842 can be changed and applied in various ways.
  • the separation distance between the center slits 842a and the separation distance between the peripheral slits 842b are set differently, and will be described as an example. However, it is not limited to this, and of course, the separation distance between the slits 842 can all be set to be the same.
  • Figure 15 is a plan view of the ultrasonic focusing plate according to the ninth embodiment of the present invention.
  • a plurality of slits 942 formed in the ultrasonic focusing plate 940 according to the ninth embodiment of the present invention are arranged radially from the center of the ultrasonic focusing plate 940, and the slits ( 942), the size of at least part of the ultrasonic focusing plate 940 is different from the eighth embodiment in that it is formed to expand in the radial direction from the center of the ultrasonic focusing plate 940, and the remaining configuration and operation are similar to the eighth embodiment. , detailed description of similar content is omitted.
  • the slits 942 are explained as an example in which the slits arranged within the same radius from the center of the ultrasonic focusing plate 940 form a virtual circle.
  • the slits 942 are described as holes with circular cross-sections as an example, but are not limited to this and the cross-sectional shapes of the slits 942 can be changed in various ways.
  • the number of slits 942 can be changed and applied in various ways.
  • the central slits 942a disposed on the center side are formed to have the same size, and the remaining peripheral slits 942b are located from the center of the ultrasonic focusing plate 940. It is formed to shrink as it goes in the radial direction.
  • the separation distance between the central slits 942a and the separation distance between the peripheral slits 942b are set differently, and will be described as an example. However, it is not limited to this, and the separation distance between the slits 942 may of course be set to be the same.
  • Figure 16 is a plan view of the ultrasonic focusing plate according to the tenth embodiment of the present invention.
  • a plurality of slits 1042 formed in the ultrasonic focusing plate 1040 according to the tenth embodiment of the present invention are arranged in a matrix form to form a plurality of rows and columns, and the slits 1042 At least some of them are different from the first embodiment in that their size increases from the center of the ultrasonic focusing plate 1040 to the outside, and the remaining configuration and operation are similar to the first embodiment, so similar contents Detailed description is omitted.
  • the slits 1042 are described as holes with a circular cross-section, but they are not limited to this and the cross-sectional shape of the slits 1042 can be changed in various ways.
  • the number of slits 1042 can be changed and applied in various ways.
  • the size of the slits 1042 is gradually increased from the center of the ultrasonic focusing plate 1040 toward the outside.
  • the distance between the slits 1042 may all be set to be the same, and it is also possible, of course, that the distance between at least some of the slits 1042 may be set differently.
  • the slits 1042 are described as being arranged in a line with adjacent slits, but the present invention is not limited to this, and it is also possible, of course, for the slits arranged in adjacent rows or adjacent columns to be arranged in a staggered manner.
  • Figure 17 is a plan view of the ultrasonic focusing plate according to the 11th embodiment of the present invention.
  • a plurality of slits 1142 formed in the ultrasonic focusing plate 1140 according to the 11th embodiment of the present invention are arranged in a matrix form to form a plurality of rows and columns, and the slits 1142 At least some of them are different from the tenth embodiment in that they are formed to be smaller in size as they move from the center of the ultrasonic focusing plate 1140 outward, and the remaining configuration and operation are similar to the tenth embodiment, so similar contents Detailed description is omitted.
  • the slits 1142 are described as holes with circular cross-sections as an example, but are not limited to this and the cross-sectional shapes of the slits 1142 can be changed in various ways.
  • the number of slits 1142 can be changed and applied in various ways.
  • the size of the slits 1142 is gradually increased from the center of the ultrasonic focusing plate 1140 toward the outside.
  • the distance between the slits 1142 may all be set to be the same, and it is also possible, of course, that the distance between at least some of the slits 1142 may be set differently.
  • the slits 1142 are described as being arranged in a line with adjacent slits, but the present invention is not limited to this, and it is also possible, of course, for the slits arranged in adjacent rows or adjacent columns to be arranged in a staggered manner.
  • Figure 18 is a plan view of an ultrasonic focusing plate according to the twelfth embodiment of the present invention.
  • the plurality of slits 1242 formed in the ultrasonic focusing plate 1240 according to the twelfth embodiment of the present invention are different from the first embodiment in that they are formed in a rectangular shape elongated in the horizontal direction, Since the remaining configuration and operation are similar to the first embodiment, detailed description of similar content will be omitted.
  • the slits 1242 are formed long in a horizontal first direction (x) on the surface of the ultrasonic focusing plate 1240, and extend in the first direction (x) on the surface of the ultrasonic focusing plate 1240.
  • a plurality of pieces are formed to be spaced apart from each other.
  • the shape of the slits 1242 is described as having a rectangular shape as an example, but it is not limited to this and can be changed to various shapes such as a square or an oval.
  • the number of slits 1242 can be changed and applied in various ways.
  • the sizes of the slits 1242 are all set to be the same, but the present invention is not limited to this, and at least some of the slits 1242 may have different sizes.
  • the distance between the slits 1242 may all be set to be the same, and it is also possible, of course, that the distance between at least some of the slits 1242 may be set differently.
  • Figure 19 is a plan view of the ultrasonic focusing plate according to the 13th embodiment of the present invention.
  • a plurality of slits 1342 formed in the ultrasonic focusing plate 1340 according to the 13th embodiment of the present invention are arranged in a matrix form to form a plurality of rows and columns, and are formed in a rectangular shape. Since it is different from the first embodiment and the remaining configuration and operation are similar to the first embodiment, detailed description of similar content will be omitted.
  • the slits 1342 are formed to be spaced apart from each other in a first horizontal direction (x) on the surface of the ultrasonic focusing plate 1340, and are spaced apart from each other in the first direction (x) on the surface of the ultrasonic focusing plate 1340.
  • a plurality of pieces are formed to be spaced apart from each other in the second direction (y) perpendicular to (x).
  • the shape of the slits 1342 is described as being rectangular, but it is not limited to this and can be changed to various shapes such as square or oval.
  • the number of slits 1342 can be changed and applied in various ways.
  • the sizes of the slits 1342 are all set to be the same, but the present invention is not limited to this, and at least some of the slits 1342 may have different sizes.
  • the distance between the slits 1342 may all be set to be the same, and it is also possible, of course, that the distance between at least some of the slits 1342 may be set differently.
  • Figure 20 is a plan view of the ultrasonic focusing plate according to the 14th embodiment of the present invention.
  • a plurality of slits 1442 formed in the ultrasonic focusing plate 1440 according to the fourteenth embodiment of the present invention are formed long in the horizontal direction, and each slit 1442 is formed in the ultrasonic focusing plate 1440.
  • twelfth embodiment is different from the twelfth embodiment in that it is formed in a shape that gradually expands from the center outward, and the remaining configuration and operation are similar to the twelfth embodiment, so detailed description of similar content will be omitted.
  • the slits 1442 are formed long in the first horizontal direction (x) on the surface of the ultrasonic focusing plate 1440, and extend in the first direction (x) on the surface of the ultrasonic focusing plate 1440.
  • a plurality of pieces are formed to be spaced apart from each other.
  • it is not limited to this, and it is of course possible for a plurality of pieces to be formed to be spaced apart from each other in the first direction (x).
  • the shape of the slits 1442 will be described as an example of a ribbon shape that gradually expands in both directions from the center of the ultrasonic focusing plate 1440 toward the outside.
  • the number of slits 1442 can be changed and applied in various ways.
  • the sizes of the slits 1442 are all set to be the same, but the present invention is not limited to this, and at least some of the slits 1442 may have different sizes.
  • the distance between the slits 1442 may all be set to be the same, and it is also possible, of course, that the distance between at least some of the slits 1442 may be set differently.
  • Figure 21 is a plan view of an ultrasonic focusing plate according to the 15th embodiment of the present invention.
  • a plurality of slits 1542 formed in the ultrasonic focusing plate 1540 according to the fifteenth embodiment of the present invention are formed long in the horizontal direction, and each slit 1542 is formed in the ultrasonic focusing plate 1540.
  • each slit 1542 is formed in the ultrasonic focusing plate 1540.
  • the slits 1542 are formed long in a horizontal first direction (x) on the surface of the ultrasonic focusing plate 1540, and extend in the first direction (x) on the surface of the ultrasonic focusing plate 1540.
  • a plurality of pieces are formed to be spaced apart from each other.
  • it is not limited to this, and it is of course possible for a plurality of pieces to be formed to be spaced apart from each other in the first direction (x).
  • the shape of the slits 1542 will be described as an example in which the shape gradually decreases in both directions from the center of the ultrasonic focusing plate 1540 toward the outside.
  • the number of slits 1542 can be changed and applied in various ways.
  • the sizes of the slits 1542 are all set to be the same, but the present invention is not limited to this, and at least some of the slits 1542 may have different sizes.
  • the distance between the slits 1542 may all be set to be the same, and it is also possible, of course, that the distance between at least some of the slits 1542 may be set differently.
  • Figure 22 is a diagram schematically showing a high-intensity focused ultrasound generator according to the 16th embodiment of the present invention.
  • the high-intensity focused ultrasound generator according to the 16th embodiment of the present invention has one ultrasound focusing plate 1640 installed in front of a plurality of transducers 1630 to produce many-to-one (N:1) ) is different from the first embodiment, and the remaining configuration and operation are similar to the first embodiment, so the description will focus on the differences and a detailed description of similar content will be omitted.
  • the ultrasonic focusing plate 1640 is formed to be larger than the transducer 1630 so that it can simultaneously cover the front of the plurality of transducers 1630.
  • the ultrasonic focusing plate 1640 is described as a disk, but it is not limited to this and can be changed into various shapes.
  • the ultrasonic focusing plate 1640 diffracts, converts, and interferes with the waves of a plurality of ultrasonic waves emitted from each of the plurality of transducers 1630 and focuses them on a preset ultrasonic focusing point for each transducer 1630.
  • a plurality of slits 1642 are formed in the ultrasonic focusing plate 1640 at positions opposite to the plurality of transducers 1630, respectively.
  • the slits 1642 may be any one of the first to fifteenth embodiments.
  • one ultrasonic focusing plate 1640 is matched to a plurality of transducers 1630 in a many-to-one (N:1) manner to form one module, and it is also possible for a plurality of the modules to form an array. .
  • the ultrasonic waves emitted from the transducer 1630 are described as plane waves, but they are not limited to this and may have other shapes.
  • the ultrasonic focusing plate 1640 may have a flat plate shape at a portion opposite to the transducer 1630, or may be formed in a three-dimensional shape.
  • Figure 23 is a diagram schematically showing a high-intensity focused ultrasound generator according to the 17th embodiment of the present invention.
  • a plurality of ultrasound focusing plates 1740 are arranged in multiple stages in the direction of ultrasonic waves in front of the transducer 1730.
  • the corresponding arrangement of (1:N) is different from the first embodiment, and the remaining configuration and operation are similar to the first embodiment, so the description will focus on the differences and a detailed description of similar contents will be provided. Omit it.
  • two first and second ultrasound focusing plates 1741 and 1742 are matched to one transducer 1730 to form one module, and a plurality of the modules are configured to form an array.
  • the number of stacks of the ultrasonic focusing plates 1740 can be changed and applied in various ways depending on ultrasonic energy or ultrasonic focusing point.
  • the first ultrasound focusing plate 1741 is disposed in front of the transducer 1730, and a plurality of first slits 1741a are formed.
  • the shape or arrangement of the first slits 1741a may be any one of the first to fifteenth embodiments.
  • the second ultrasonic focusing plate 1742 is arranged to be spaced a predetermined distance from the front of the first ultrasonic focusing plate 1741 in the direction in which the ultrasonic waves travel, and a plurality of second slits 1742a are formed.
  • the shape or arrangement of the second slits 1742a may be any one of the first to fifteenth embodiments.
  • the first slits 1741a and the second slits 1742a may be formed to have the same size, shape, position, and arrangement, and at least some of them may be formed differently depending on ultrasonic energy or ultrasonic focusing point. It is also possible.
  • the ultrasonic waves emitted from the transducer 1730 are described as plane waves, but they are not limited to this and may have other shapes.
  • the first ultrasound focusing plate 1741 is described as an example in which the part opposite to the transducer 1730 is three-dimensional and is formed in a convex shape that protrudes convexly in the direction of travel of the ultrasonic waves. It is not limited, and it is possible for at least a portion to be formed as a curved or inclined surface, or for at least a portion to be formed to be stepped. Additionally, the first ultrasound focusing plate 1741 may have a shape that protrudes convexly in the direction toward the transducer 1730. However, it is not limited to this, and if the separation distance between the slits 1741a of the first ultrasound focusing plate 1741 and the transducer 1730 is formed to vary depending on the location, it can be changed into various shapes and applied.
  • the second ultrasound focusing plate 1742 is described as an example of a three-dimensional shape formed in a convex shape that protrudes convexly in the direction of travel of the ultrasonic waves, but is not limited to this and at least a portion of the second ultrasound focusing plate 1742 is formed as a curved or inclined surface. Or, it is possible that at least a portion of it is formed to be stepped. Additionally, the second ultrasonic focusing plate 1742 may have a shape that protrudes convexly in the direction toward the first ultrasonic focusing plate 1741.
  • the separation distance between the slits 1742a of the second ultrasonic focusing plate 1742 and the first ultrasonic focusing plate 1741 is formed to vary depending on the location, it can be changed into various shapes and applied. possible.
  • first ultrasonic focusing plate 1741 and the second ultrasonic focusing plate 1742 may be formed to have the same size or shape, and at least some of them may be formed differently depending on the ultrasonic energy or the ultrasonic focusing point. It is also possible to become
  • Figure 24 is a diagram schematically showing a high-intensity focused ultrasound generator according to an 18th embodiment of the present invention.
  • a plurality of ultrasound focusing plates 1840 are arranged in multiple stages in the direction of ultrasonic waves in front of the transducer 1830. They are arranged correspondingly (1:N), but the plurality of ultrasonic focusing plates 1840 are different from the seventeenth embodiment in that each has a flat plate shape, and the remaining configuration and operation are similar to the seventeenth embodiment. , the description will focus on the differences and omit detailed descriptions of similar content.
  • one transducer 1830 is provided with two first and second ultrasound focusing plates 1841 and 1842 in matching order to form one module, and a plurality of the modules are configured to form an array.
  • the number of stacks of the ultrasonic focusing plates 1840 can be varied depending on ultrasonic energy or ultrasonic focusing point.
  • the first ultrasound focusing plate 1841 is disposed in front of the transducer 1830, and a plurality of first slits 1841a are formed.
  • the shape or arrangement of the first slits 1841a may be any one of the first to fifteenth embodiments.
  • the second ultrasonic focusing plate 1842 is arranged to be spaced a predetermined distance from the front of the first ultrasonic focusing plate 1841 in the direction in which the ultrasonic waves travel, and a plurality of second slits 1842a are formed.
  • the shape or arrangement of the second slits 1842a may be any one of the first to fifteenth embodiments.
  • the first slits 1841a and the second slits 1842a may be formed to be the same in size, shape, location, and arrangement, or may be formed differently from each other.
  • the first slits 1841a and the second slits 1842a have the same size and shape, but are arranged in staggered positions.
  • Each position of the first slits 1841a and the second slits 1842a may be set according to ultrasonic energy or ultrasonic focusing point.
  • the ultrasonic waves emitted from the transducer 1830 are described as plane waves, but they are not limited to this and may have other shapes.
  • Figure 25 is a diagram schematically showing a high-intensity focused ultrasound generator according to the 19th embodiment of the present invention.
  • the ultrasonic focusing module is coated with a preset pattern using a sound absorbing material on the surface of the transducer 1930. It includes a coating layer 1940 for diffracting ultrasonic waves emitted from the beam, converting at least one wave into waves having different phases, inducing interference between the converted waves, and focusing the waves on a preset ultrasonic focusing point. Since it is different from the above embodiments and the remaining configurations and operations are similar, detailed descriptions of similar configurations are omitted.
  • the coating layer 1940 can be applied as long as it is coated on the surface of the transducer 1930 and is made of a sound-absorbing material that can absorb ultrasonic waves.
  • the thickness of the coating layer 1940 can be changed in various ways, and may have a shape that protrudes convexly in the direction in which the ultrasonic waves travel, or may have a shape that protrudes convexly in the direction toward the transducer 1930, It is possible to have a flat shape, and of course it is also possible to have a stepped or inclined shape.
  • the pattern may have a plurality of holes 1940a arranged in various ways.
  • the shape or arrangement of the holes 940a may be any one of the first to fifteenth embodiments.
  • Figure 26 is a diagram schematically showing a high-intensity focused ultrasound generator according to the twentieth embodiment of the present invention.
  • the high-intensity focused ultrasound generator according to the twentieth embodiment of the present invention to include one transducer 30 and one ultrasound focusing plate 40.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

A high-intensity focused ultrasonic wave generation device according to the present invention comprises an ultrasonic wave focusing module disposed in front of a transducer, the ultrasonic wave focusing module having a plurality of slits, so that ultrasonic waves emitted from the transducer can be diffracted, converted, and interfered by each other and thus focused to a predetermined ultrasonic wave focusing point. Therefore, the high-intensity focused ultrasonic wave generation device can non-invasively focus ultrasonic waves to a desired area and thus can more accurately treat a local area and be used to perform a medical procedure without a wound or scar. Moreover, various ultrasonic wave focusing points can be implemented according to the sizes or positions of the slits. In addition, the ultrasonic wave focusing plate is detachably coupled to the front side of the transducer, and the ultrasonic wave focusing plate can be replaced and applied according to a desired ultrasonic wave focusing point. Also, the ultrasonic wave focusing plate has a simple structure and can be easily installed.

Description

슬릿을 이용하여 초음파를 집속하는 고강도 집속 초음파 발생 장치High-intensity focused ultrasound generator that focuses ultrasound using a slit
본 발명은 슬릿을 이용하여 초음파를 집속하는 고강도 집속 초음파 발생 장치에 관한 것으로서, 보다 상세하게는 트랜스듀서의 전방에 슬릿이 형성된 초음파 집속 모듈을 배치하여, 상기 슬릿을 이용하여 초음파의 회절과 간섭을 유도함으로써, 1개 이상의 초음파 집속 지점을 구현할 수 있는 파동의 회절과 간섭을 통해 초음파를 집속하는 고강도 집속 초음파 발생 장치에 관한 것이다. The present invention relates to a high-intensity focused ultrasound generator that focuses ultrasonic waves using a slit. More specifically, an ultrasonic focusing module with a slit is placed in front of a transducer to prevent diffraction and interference of ultrasonic waves using the slit. It relates to a high-intensity focused ultrasound generator that focuses ultrasonic waves through diffraction and interference of waves that can implement one or more ultrasonic focusing points by guiding them.
일반적으로 고강도 집속 초음파(HIFU, high-intensity focused ultrasound) 발생 장치는, 트랜스듀서에서 발생되는 초음파를 집속하여 고강도의 초음파 에너지를 발생시키고, 이를 환자의 환부에 조사하여 환부 온도를 상승시킴으로써 외과적 수술 없이 환부를 치료할 수 있는 장치이다. In general, a high-intensity focused ultrasound (HIFU) generator generates high-intensity ultrasound energy by focusing ultrasound generated from a transducer and irradiates it to the patient's affected area to increase the temperature of the affected area, thereby performing surgical procedures. It is a device that can treat the affected area without any treatment.
종래의 고강도 집속 초음파 발생 장치는, 복수의 트랜스듀서들을 오목하게 형성된 초음파 방사 프레임의 전면에 장착하여, 트랜스듀서들에서 발생된 초음파를 미리 설정된 위치로 집속시키는 것이므로, 집속된 초음파의 방향을 변화시키는 것이 매우 까다롭고 비용이 많이 들기 때문에, 상용화가 어려운 문제점이 있다. In a conventional high-intensity focused ultrasound generator, a plurality of transducers are mounted on the front of a concavely formed ultrasonic radiation frame to focus the ultrasound generated by the transducers to a preset position, thereby changing the direction of the focused ultrasound. Because it is very difficult and expensive, commercialization is difficult.
본 발명의 목적은, 파동의 회절과 간섭을 이용하여 초음파의 집속을 용이하게 하는 고강도 집속 초음파 발생 장치를 제공하는 데 있다. The purpose of the present invention is to provide a high-intensity focused ultrasonic wave generator that facilitates focusing of ultrasonic waves using wave diffraction and interference.
본 발명에 따른 슬릿을 이용하여 초음파를 집속하는 고강도 집속 초음파 발생 장치는, 전원이 인가되면 초음파를 방출하는 트랜스듀서와; 상기 트랜스듀서의 전방에 배치되고, 상기 트랜스듀서로부터 방출된 초음파가 통과되도록 형성되고, 적어도 하나의 슬릿이 형성되어, 상기 초음파의 파동이 통과하면서 회절(Diffraction)되도록 하고, 적어도 하나 이상이 다른 위상을 갖는 파동들로 변환시키며, 변환된 파동들의 간섭(Interference)을 유도하여, 상기 파동들을 미리 설정된 초음파 집속 지점에 집속시키는 초음파 집속모듈을 포함한다.A high-intensity focused ultrasound generator that focuses ultrasonic waves using a slit according to the present invention includes a transducer that emits ultrasonic waves when power is applied; It is disposed in front of the transducer, is formed to allow ultrasonic waves emitted from the transducer to pass through, and at least one slit is formed to allow the ultrasonic waves to be diffracted while passing through, and at least one of the different phases. It converts the waves into waves having a , and includes an ultrasonic focusing module that induces interference of the converted waves and focuses the waves on a preset ultrasonic focusing point.
상기 초음파 집속 모듈은, 상기 트랜스듀서로부터 방출된 초음파를 동시에 전달받도록 상기 트랜스듀서에 대향되는 면이 평평한 평판 형상으로 형성된 것을 특징으로 한다.The ultrasonic focusing module is characterized in that the surface opposing the transducer is formed in a flat plate shape so as to simultaneously receive the ultrasonic waves emitted from the transducer.
상기 초음파 집속 모듈은, 상기 트랜스듀서와의 이격 거리가 위치에 따라 다르도록 상기 트랜스듀서에 대향되는 면 중 적어도 일부분이 입체 형상으로 형성된 것을 특징으로 한다.The ultrasonic focusing module is characterized in that at least a portion of the surface facing the transducer is formed in a three-dimensional shape so that the separation distance from the transducer varies depending on the position.
상기 초음파 집속모듈을 통과한 초음파는 구면파로 변환된다.Ultrasound waves that pass through the ultrasonic focusing module are converted into spherical waves.
상기 트랜스듀서는 복수개를 포함하고, 상기 복수의 트랜스듀서들 중 적어도 일부는 적어도 하나 이상이 다른 위상을 갖는 복수의 초음파들을 방출하고, 상기 초음파 집속모듈을 통과한 초음파는 구면파로 변환된다.The transducers include a plurality of transducers, and at least one of the plurality of transducers emits a plurality of ultrasonic waves having different phases, and the ultrasonic waves that pass through the ultrasonic focusing module are converted into spherical waves.
상기 트랜스듀서와 상기 초음파 집속모듈 사이의 이격 거리는, 상기 트랜스듀서의 직경과 상기 초음파의 파장 중 적어도 하나에 따라 설정된다.The separation distance between the transducer and the ultrasonic focusing module is set according to at least one of the diameter of the transducer and the wavelength of the ultrasonic waves.
상기 슬릿의 각 크기는, 상기 초음파의 파장에 따라 설정된다.Each size of the slit is set according to the wavelength of the ultrasonic waves.
상기 슬릿들은 복수개가 서로 이격되게 형성되고, 상기 복수의 슬릿들 중 적어도 일부는 서로 크기가 다르게 형성된다.A plurality of slits are formed to be spaced apart from each other, and at least some of the plurality of slits are formed to have different sizes.
상기 슬릿들은 복수개가 서로 이격되게 형성되고, 상기 복수의 슬릿들사이의 이격 거리는, 상기 초음파의 파장에 따라 설정된다.A plurality of slits are formed to be spaced apart from each other, and the spacing between the plurality of slits is set according to the wavelength of the ultrasonic waves.
상기 슬릿들은 복수개가 서로 이격되게 형성되고, 상기 복수의 슬릿들은, 적어도 하나의 행과 적어도 하나의 열을 이루도록 배열된다.A plurality of slits are formed to be spaced apart from each other, and the plurality of slits are arranged to form at least one row and at least one column.
상기 슬릿들은 복수개가 서로 이격되게 형성되고, 상기 복수의 슬릿들은, 상기 초음파 집속모듈의 중심으로부터 방사형으로 배열된다.A plurality of slits are formed to be spaced apart from each other, and the plurality of slits are arranged radially from the center of the ultrasonic focusing module.
상기 슬릿은, 단면이 원형, 다각형, 라운드형 중 적어도 하나의 형상으로 형성된다.The slit has a cross-sectional shape of at least one of circular, polygonal, and round shapes.
상기 슬릿은, 단면이 링 형상과 원호 형상 중 적어도 하나의 형상으로 형성된다.The slit has a cross-sectional shape of at least one of a ring shape and an arc shape.
상기 슬릿은, 형상이 상기 초음파 집속모듈의 중심으로부터 외측 방향으로 갈수록 확대 또는 축소되는 형상으로 형성된다.The slit is formed in a shape that expands or contracts in an outward direction from the center of the ultrasonic focusing module.
본 발명의 또 다른 측면에 따른 슬릿을 이용하여 초음파를 집속하는 고강도 집속 초음파 발생 장치는, 복수의 결합홀들이 형성된 초음파 방사 프레임과; 상기 초음파 방사 프레임의 전방에서 상기 결합홀들에 각각 삽입되어, 상기 초음파 방사 프레임을 관통하여 착탈가능하도록 결합된 트랜스듀서 홀더들과; 상기 트랜스듀서 홀더들에 전면이 노출되게 장착되어, 상기 초음파 방사 프레임의 전면에 복수개가 서로 이격되게 배열되고, 전원이 인가되면 초음파를 방출하는 트랜스듀서와; 상기 트랜스듀서로부터 상기 초음파의 진행방향으로 이격되게 배치되고 상기 초음파 방사 프레임에 착탈가능하도록 결합되며, 상기 트랜스듀서로부터 방출된 초음파를 동시에 전달받도록 상기 트랜스듀서에 대향되는 면이 평평한 평판 형상으로 형성되며, 상기 초음파가 통과하는 복수의 슬릿들이 형성되어, 상기 초음파의 파동이 통과하면서 회절(Diffraction)되도록 하고, 적어도 하나 이상이 다른 위상을 갖는 파동들로 변환시키며, 변환된 파동들의 간섭(Interference)을 유도하여, 상기 파동들을 미리 설정된 초음파 집속 지점에 집속시키는 초음파 집속모듈과; 상기 초음파 집속모듈을 상기 초음파 방사 프레임에 착탈가능토록 결합시키는 결합부재를 포함한다.According to another aspect of the present invention, a high-intensity focused ultrasonic wave generator that focuses ultrasonic waves using a slit includes: an ultrasonic radiation frame in which a plurality of coupling holes are formed; Transducer holders are respectively inserted into the coupling holes in front of the ultrasonic radiation frame and are detachably coupled to penetrate the ultrasonic radiation frame; A plurality of transducers are mounted on the transducer holders with their front surfaces exposed, arranged to be spaced apart from each other on the front of the ultrasonic radiation frame, and emit ultrasonic waves when power is applied; It is arranged to be spaced apart from the transducer in the direction of travel of the ultrasonic waves and is detachably coupled to the ultrasonic radiation frame, and the surface opposing the transducer is formed in a flat plate shape to simultaneously receive the ultrasonic waves emitted from the transducer. , a plurality of slits through which the ultrasonic waves pass are formed, causing the ultrasonic waves to be diffracted as they pass through, converting at least one into waves with different phases, and preventing interference of the converted waves. an ultrasonic focusing module that guides and focuses the waves to a preset ultrasonic focusing point; It includes a coupling member that detachably couples the ultrasonic focusing module to the ultrasonic radiation frame.
본 발명의 또 다른 측면에 따른 슬릿을 이용하여 초음파를 집속하는 고강도 집속 초음파 발생 장치는, 복수의 결합홀들이 형성된 초음파 방사 프레임과; 상기 초음파 방사 프레임의 전방에서 상기 결합홀들에 각각 삽입되어, 상기 초음파 방사 프레임을 관통하여 착탈가능하도록 결합된 트랜스듀서 홀더들과; 상기 트랜스듀서 홀더들에 전면이 노출되게 장착되어, 상기 초음파 방사 프레임의 전면에 복수개가 서로 이격되게 배열되고, 전원이 인가되면 초음파를 방출하는 트랜스듀서와; 상기 트랜스듀서로부터 상기 초음파의 진행방향으로 이격되게 배치되고 상기 초음파 방사 프레임에 착탈가능하도록 결합되며, 상기 트랜스듀서와의 이격 거리가 위치에 따라 다르도록 상기 트랜스듀서에 대향되는 면 중 적어도 일부분이 입체 형상으로 형성되며, 상기 초음파가 통과하는 복수의 슬릿들이 형성되어, 상기 초음파의 파동이 통과하면서 회절(Diffraction)되도록 하고, 적어도 하나 이상이 다른 위상을 갖는 파동들로 변환시키며, 변환된 파동들의 간섭(Interference)을 유도하여, 상기 파동들을 미리 설정된 초음파 집속 지점에 집속시키는 초음파 집속모듈과; 상기 초음파 집속모듈을 상기 초음파 방사 프레임에 착탈가능토록 결합시키는 결합부재를 포함한다. According to another aspect of the present invention, a high-intensity focused ultrasonic wave generator that focuses ultrasonic waves using a slit includes: an ultrasonic radiation frame in which a plurality of coupling holes are formed; Transducer holders are respectively inserted into the coupling holes in front of the ultrasonic radiation frame and are detachably coupled to penetrate the ultrasonic radiation frame; A plurality of transducers are mounted on the transducer holders with their front surfaces exposed, arranged to be spaced apart from each other on the front of the ultrasonic radiation frame, and emit ultrasonic waves when power is applied; It is arranged to be spaced apart from the transducer in the direction of travel of the ultrasonic waves and is detachably coupled to the ultrasonic radiation frame, and at least a portion of the surface facing the transducer is three-dimensional so that the separation distance from the transducer varies depending on the position. It is formed in a shape, and a plurality of slits through which the ultrasonic waves pass are formed, causing the ultrasonic waves to be diffracted as they pass through, converting at least one of them into waves with different phases, and causing interference between the converted waves. an ultrasonic focusing module that induces interference and focuses the waves on a preset ultrasonic focusing point; It includes a coupling member that detachably couples the ultrasonic focusing module to the ultrasonic radiation frame.
본 발명에 따른 고강도 집속 초음파 발생 장치는, 트랜스듀서의 전방에 슬릿이 형성된 초음파 집속모듈을 배치함으로써, 트랜스듀서에서 방출된 초음파를 회절, 변환 및 간섭시켜 미리 설정된 초음파 집속 지점에 집속시킬 수 있으므로, 비침습적으로 원하는 부위에 초음파를 집속시켜, 국소 부위를 보다 정확하게 치료 가능하며 상처나 흉터 없이 시술 가능한 이점이 있다. The high-intensity focused ultrasound generator according to the present invention is capable of diffracting, converting, and interfering with the ultrasonic waves emitted from the transducer by placing an ultrasonic focusing module with a slit in front of the transducer and focusing it on a preset ultrasonic focusing point. By focusing ultrasound on the desired area non-invasively, localized areas can be treated more accurately and the treatment can be performed without wounds or scars.
또한, 슬릿들의 크기나 위치에 따라 다양한 초음파 집속 지점을 구현할 수 있다.Additionally, various ultrasonic focusing points can be implemented depending on the size or location of the slits.
또한, 트랜스듀서의 전방에 초음파 집속판이 착탈가능하도록 결합됨으로써, 원하는 초음파 집속 지점에 따라 초음파 집속판을 교체하여 적용시킬 수 있다.In addition, since the ultrasonic focusing plate is detachably attached to the front of the transducer, the ultrasonic focusing plate can be replaced and applied depending on the desired ultrasonic focusing point.
또한, 초음파 집속판의 구조가 간단하고, 설치가 용이한 이점이 있다. In addition, the ultrasonic focusing plate has a simple structure and has the advantage of being easy to install.
도 1은 본 발명의 제1실시예에 따른 파동의 회절과 간섭을 이용하여 초음파를 집속하는 고강도 집속 초음파 발생 장치의 구성을 개략적으로 도시한 도면이다.Figure 1 is a diagram schematically showing the configuration of a high-intensity focused ultrasound generator that focuses ultrasound waves using diffraction and interference of waves according to a first embodiment of the present invention.
도 2는 도 1에 도시된 초음파 집속판과 트랜스듀서의 분해 사시도이다. Figure 2 is an exploded perspective view of the ultrasonic focusing plate and transducer shown in Figure 1.
도 3은 도 2에 도시된 초음파 집속판의 측면도이다.Figure 3 is a side view of the ultrasonic focusing plate shown in Figure 2.
도 4는 본 발명의 제1실시예에 따른 초음파 집속판의 초음파 집속 원리를 개략적으로 나타낸 도면이다.Figure 4 is a diagram schematically showing the ultrasonic focusing principle of the ultrasonic focusing plate according to the first embodiment of the present invention.
도 5는 본 발명의 실시예에 따른 슬릿 사이의 거리와 초음파 집속 지점의 관계를 개략적으로 나타낸 도면이다. Figure 5 is a diagram schematically showing the relationship between the distance between slits and the ultrasonic focusing point according to an embodiment of the present invention.
도 6은 본 발명의 실시예에 따른 고강도 집속 초음파 발생 장치에서 초점 거리가 20mm일 때 슬릿들의 크기와 위치의 예를 나타낸다.Figure 6 shows an example of the size and position of slits when the focal distance is 20 mm in the high-intensity focused ultrasound generator according to an embodiment of the present invention.
도 7은 본 발명의 실시예에 따른 고강도 집속 초음파 발생 장치에서 초점 거리가 20mm일 때 초음파의 집속을 시뮬레이션한 예를 나타낸다.Figure 7 shows an example of simulating the focusing of ultrasound when the focal distance is 20 mm in the high-intensity focused ultrasound generator according to an embodiment of the present invention.
도 8은 본 발명의 제2실시예에 따른 초음파 집속판의 초음파 집속 원리를 개략적으로 나타낸 도면이다.Figure 8 is a diagram schematically showing the ultrasonic focusing principle of the ultrasonic focusing plate according to the second embodiment of the present invention.
도 9는 본 발명의 제3실시예에 따른 초음파 집속판의 평면도이다. Figure 9 is a plan view of an ultrasonic focusing plate according to a third embodiment of the present invention.
도 10은 본 발명의 제4실시예에 따른 초음파 집속판의 평면도이다. Figure 10 is a plan view of an ultrasonic focusing plate according to a fourth embodiment of the present invention.
도 11은 본 발명의 제5실시예에 따른 초음파 집속판의 평면도이다. Figure 11 is a plan view of an ultrasonic focusing plate according to a fifth embodiment of the present invention.
도 12는 본 발명의 제6실시예에 따른 초음파 집속판의 평면도이다.Figure 12 is a plan view of an ultrasonic focusing plate according to a sixth embodiment of the present invention.
도 13은 본 발명의 제7실시예에 따른 초음파 집속판의 평면도이다.Figure 13 is a plan view of an ultrasonic focusing plate according to a seventh embodiment of the present invention.
도 14는 본 발명의 제8실시예에 따른 초음파 집속판의 평면도이다. Figure 14 is a plan view of an ultrasonic focusing plate according to an eighth embodiment of the present invention.
도 15는 본 발명의 제9실시예에 따른 초음파 집속판의 평면도이다. Figure 15 is a plan view of an ultrasonic focusing plate according to a ninth embodiment of the present invention.
도 16은 본 발명의 제10실시예에 따른 초음파 집속판의 평면도이다. Figure 16 is a plan view of the ultrasonic focusing plate according to the tenth embodiment of the present invention.
도 17은 본 발명의 제11실시예에 따른 초음파 집속판의 평면도이다. Figure 17 is a plan view of the ultrasonic focusing plate according to the 11th embodiment of the present invention.
도 18은 본 발명의 제12실시예에 따른 초음파 집속판의 평면도이다.Figure 18 is a plan view of an ultrasonic focusing plate according to the twelfth embodiment of the present invention.
도 19는 본 발명의 제13실시예에 따른 초음파 집속판의 평면도이다.Figure 19 is a plan view of the ultrasonic focusing plate according to the 13th embodiment of the present invention.
도 20은 본 발명의 제14실시예에 따른 초음파 집속판의 평면도이다.Figure 20 is a plan view of the ultrasonic focusing plate according to the fourteenth embodiment of the present invention.
도 21은 본 발명의 제15실시예에 따른 초음파 집속판의 평면도이다.Figure 21 is a plan view of an ultrasonic focusing plate according to the 15th embodiment of the present invention.
도 22은 본 발명의 제16실시예에 따른 고강도 집속 초음파 발생 장치를 개략적으로 도시한 도면이다.Figure 22 is a diagram schematically showing a high-intensity focused ultrasound generator according to the 16th embodiment of the present invention.
도 23은 본 발명의 제17실시예에 따른 고강도 집속 초음파 발생 장치를 개략적으로 도시한 도면이다.Figure 23 is a diagram schematically showing a high-intensity focused ultrasound generator according to the 17th embodiment of the present invention.
도 24는 본 발명의 제18실시예에 따른 고강도 집속 초음파 발생 장치를 개략적으로 도시한 도면이다.Figure 24 is a diagram schematically showing a high-intensity focused ultrasound generator according to an 18th embodiment of the present invention.
도 25는 본 발명의 제19실시예에 따른 고강도 집속 초음파 발생 장치를 개략적으로 도시한 도면이다.Figure 25 is a diagram schematically showing a high-intensity focused ultrasound generator according to the 19th embodiment of the present invention.
도 26은 본 발명의 제20실시예에 따른 고강도 집속 초음파 발생 장치를 개략적으로 도시한 도면이다.Figure 26 is a diagram schematically showing a high-intensity focused ultrasound generator according to the twentieth embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 실시예에 대해 설명하면, 다음과 같다. Hereinafter, embodiments of the present invention will be described with reference to the attached drawings.
도 1은 본 발명의 제1실시예에 따른 파동의 회절과 간섭을 이용하여 초음파를 집속하는 고강도 집속 초음파 발생 장치의 구성을 개략적으로 도시한 도면이다. 도 2는 도 1에 도시된 초음파 집속판과 트랜스듀서의 분해 사시도이다. 도 3은 도 2에 도시된 초음파 집속판의 측면도이다.Figure 1 is a diagram schematically showing the configuration of a high-intensity focused ultrasound generator that focuses ultrasound waves using diffraction and interference of waves according to a first embodiment of the present invention. Figure 2 is an exploded perspective view of the ultrasonic focusing plate and transducer shown in Figure 1. Figure 3 is a side view of the ultrasonic focusing plate shown in Figure 2.
도 1 내지 도 3을 참조하면, 본 발명의 제1실시예에 따르 고강도 집속 초음파 발생 장치는, 초음파 방사 프레임(10), 복수의 트랜스듀서 홀더들(20), 복수의 트랜스듀서들(30) 및 초음파 집속모듈을 포함한다. 1 to 3, the high-intensity focused ultrasound generator according to the first embodiment of the present invention includes an ultrasonic radiation frame 10, a plurality of transducer holders 20, and a plurality of transducers 30. and an ultrasonic focusing module.
상기 초음파 방사 프레임(10)은, 상기 트랜스듀서 홀더(20)가 결합되도록 복수의 결합홀들이 형성된 프레임이다. 상기 초음파 방사 프레임(10)의 전면은 평평한 평면으로 형성된 것으로 예를 들어 설명한다. 다만, 이에 한정되지 않고, 상기 초음파 방사 프레임(10)의 전면은 곡면으로 형성될 수 있다. The ultrasonic radiation frame 10 is a frame in which a plurality of coupling holes are formed to allow the transducer holder 20 to be coupled thereto. For example, the front surface of the ultrasonic radiation frame 10 will be described as being formed in a flat plane. However, the present invention is not limited to this, and the front surface of the ultrasonic radiation frame 10 may be formed as a curved surface.
상기 트랜스듀서 홀더들(20)은, 상기 복수의 결합홀들마다 각각 착탈가능하도록 결합된다. 상기 트랜스듀서 홀더(20)의 전면에는 상기 트랜스듀서(30)가 장착된다. The transducer holders 20 are detachably coupled to each of the plurality of coupling holes. The transducer 30 is mounted on the front of the transducer holder 20.
상기 트랜스듀서 홀더(20)는, 상기 트랜스듀서(30)가 삽입되어 안착되는 안착홈이 형성된 헤드부(20a)와, 상기 헤드부(20a)의 후방에 연장 형성되어 상기 결합홀들에 결합되는 바디부(20b)를 포함한다. The transducer holder 20 includes a head portion 20a formed with a seating groove into which the transducer 30 is inserted and seated, and a head portion 20a formed to extend to the rear of the head portion 20a and coupled to the coupling holes. It includes a body portion (20b).
상기 트랜스듀서(30), 상기 트랜스듀서 홀더(20) 및 상기 초음파 집속모듈은 하나의 모듈을 이루며, 상기 모듈은 복수개가 어레이를 이루도록 구성된다. The transducer 30, the transducer holder 20, and the ultrasonic focusing module form one module, and a plurality of modules are configured to form an array.
본 실시예에서는, 상기 트랜스듀서(30)와 상기 초음파 집속모듈이 일대일(1:1)로 매칭되어 하나의 모듈을 이루고, 상기 모듈이 복수개가 평면 배열된 것으로 예를 들어 설명한다. 다만, 이에 한정되지 않고, 복수의 트랜스듀서(30)에 1개의 상기 초음파 집속모듈이 매칭되게 구비되는 것도 가능하고, 1개의 트랜스듀서(30)에 복수의 초음파 집속모듈이 매칭되게 구비되는 것도 물론 가능하다. In this embodiment, the transducer 30 and the ultrasonic focusing module are matched one-to-one (1:1) to form one module, and a plurality of the modules are arranged in a planar manner. However, it is not limited to this, and it is possible for one ultrasonic focusing module to be matched to a plurality of transducers 30, and it is also possible for a plurality of ultrasonic focusing modules to be matched to one transducer 30. possible.
본 실시예에서는 상기 트랜스듀서(30)가 상기 트랜스듀서 홀더(20)를 통해 상기 초음파 방사 프레임(10)에 결합되는 것으로 예를 들어 설명하였으나, 이에 한정되지 않고 상기 트랜스듀서(30)가 상기 초음파 방사 프레임(10)에 직접 결합되는 것도 가능하며, 이 경우 상기 트랜스듀서(30)와 상기 초음파 집속모듈이 하나의 모듈을 이룰 수 있다. In this embodiment, the transducer 30 is coupled to the ultrasonic radiation frame 10 through the transducer holder 20 as an example, but this is not limited to this and the transducer 30 is connected to the ultrasonic radiation frame 10 through the transducer holder 20. It is also possible to be directly coupled to the radiation frame 10, in which case the transducer 30 and the ultrasonic focusing module can form one module.
상기 트랜스듀서들(30)은, 압전 소자를 포함할 수 있다. 본 실시예에서는, 상기 트랜스듀서들(30)은 원판 형상으로 형성된 것으로 예를 들어 설명한다. 상기 트랜스듀서들의 개수, 크기 및 형상은 방사하고자 하는 초음파 에너지에 따라 다양하게 변경 가능하다. 상기 트랜스듀서(30)의 상,하면에는 전선들(31)이 연결될 수 있다.The transducers 30 may include piezoelectric elements. In this embodiment, the transducers 30 are described as being formed in a disk shape. The number, size, and shape of the transducers can be varied depending on the ultrasonic energy to be radiated. Wires 31 may be connected to the upper and lower surfaces of the transducer 30.
상기 트랜스듀서(30)는, 전원이 인가되면 초음파를 발생시키되, 상기 초음파는 단일의 평면파인 것으로 예를 들어 설명한다. 다만, 이에 한정되지 않고, 상기 초음파는 평면파 이외의 다른 형상의 파동인 것도 물론 가능하다. 또한, 상기 복수의 트랜스듀서들(30)은 적어도 하나 이상이 다른 위상을 갖는 초음파들을 방출하는 것도 물론 가능하다. The transducer 30 generates ultrasonic waves when power is applied, and the ultrasonic waves are explained by way of example as a single plane wave. However, it is not limited to this, and the ultrasonic waves may of course be waves of other shapes other than plane waves. In addition, of course, it is possible for at least one of the plurality of transducers 30 to emit ultrasonic waves having different phases.
상기 트랜스듀서들(30)은, 상기 초음파 방사 프레임(10)의 평면에 측방향으로 서로 이격되게 배열된다. 상기 트랜스듀서들(30)은 서로 동일한 간격으로 이격되게 배열되는 것으로 예를 들어 설명한다. 다만, 이에 한정되지 않고, 상기 트랜스듀서들(30) 중 적어도 일부는 서로 다른 간격으로 이격되게 배열되는 것도 물론 가능하다. 또한, 상기 트랜스듀서들(30)은 매트릭스 형태로 행렬을 이루도록 규칙적으로 배열되는 것도 가능하고, 방사형이나 서로 엇갈리는 형태로 배열되는 것도 가능하다. 또한, 상기 트랜스듀서들(30)은 복수개씩 그룹을 이루고, 복수의 그룹들이 서로 이격되게 배열되는 것도 가능하다. The transducers 30 are arranged to be spaced apart from each other laterally on the plane of the ultrasonic radiation frame 10. The transducers 30 are explained as an example in which they are arranged to be spaced apart from each other at equal intervals. However, the present invention is not limited to this, and at least some of the transducers 30 may of course be arranged to be spaced apart from each other at different intervals. Additionally, the transducers 30 may be arranged regularly to form a matrix, or may be arranged in a radial or staggered form. Additionally, it is possible for the transducers 30 to form a plurality of groups, and for the plurality of groups to be arranged to be spaced apart from each other.
상기 초음파 집속모듈은, 상기 트랜스듀서들(30)의 각 전방에 배치되어, 상기 트랜스듀서(30)에서 방출된 초음파의 파동이 통과하면서 회절(Diffraction)되도록 하고, 적어도 하나 이상이 다른 위상을 갖는 파동들로 변환시키며, 변환된 파동들의 간섭(Interference)을 유도하여, 상기 파동들을 미리 설정된 초음파 집속 지점에 집속시킨다. The ultrasonic focusing module is disposed in front of each of the transducers 30, so that the ultrasonic wave emitted from the transducer 30 passes through and diffracts, and at least one of the ultrasonic focusing modules has a different phase. It converts them into waves, induces interference of the converted waves, and focuses the waves on a preset ultrasonic focusing point.
본 실시예에서는, 상기 초음파 집속모듈은, 상기 트랜스듀서(30)로부터 전방으로 이격되게 배치되되, 상기 트랜스듀서(30)와의 이격 거리가 위치에 따라 다르도록 적어도 일부분이 곡면, 경사면 및 단차면을 포함한 입체 형상으로 형성된 초음파 집속판(40)인 것으로 예를 들어 설명한다. In this embodiment, the ultrasonic focusing module is arranged to be spaced forward from the transducer 30, and at least a portion of the ultrasonic focusing module has a curved surface, an inclined surface, and a stepped surface so that the separation distance from the transducer 30 varies depending on the location. It will be explained as an example that it is an ultrasonic focusing plate 40 formed in a three-dimensional shape.
여기서, 상기 트랜스듀서(30)와 상기 초음파 집속판(40)의 이격 거리는, 상기 초음파의 파장(λ)과 상기 트랜스듀서(30)의 직경 중 적어도 하나에 따라 설정된다. 본 실시예에서는, 상기 트랜스듀서(30)와 상기 초음파 집속판(40)의 이격 거리는, 약 0.01mm 내지 상기 트랜스듀서(30)의 직경의 10배 범위로 설정된 것으로 예를 들어 설명한다. Here, the separation distance between the transducer 30 and the ultrasonic focusing plate 40 is set according to at least one of the wavelength (λ) of the ultrasonic wave and the diameter of the transducer 30. In this embodiment, the separation distance between the transducer 30 and the ultrasonic focusing plate 40 is set to a range of about 0.01 mm to 10 times the diameter of the transducer 30.
도 2 및 도 3을 참조하면, 상기 초음파 집속판(40)은, 상기 트랜스듀서(30)보다 직경이 큰 원판 형상으로 된 것으로 예를 들어 설명한다. Referring to FIGS. 2 and 3 , the ultrasonic focusing plate 40 is described as an example in which the ultrasonic focusing plate 40 has a disk shape with a larger diameter than the transducer 30.
상기 초음파 집속판(40)은, 상기 트랜스듀서(30)에 대향되는 파형 변환부(40a)와, 상기 파형 변환부(40a)에서 반경방향으로 연장 형성되어 상기 초음파 방사 프레임(10)에 후술하는 결합부재(45)(46)에 의해 결합되는 프레임 결합부(40b)를 포함한다.The ultrasonic focusing plate 40 includes a waveform converter 40a facing the transducer 30 and a radial extension from the waveform converter 40a to form the ultrasonic radiation frame 10 as described later. It includes a frame coupling portion (40b) coupled by coupling members (45) and (46).
상기 파형 변환부(40a)는, 상기 초음파의 진행 방향인 전방으로 돌출되게 형성된다. The waveform conversion unit 40a is formed to protrude forward, which is the direction in which the ultrasonic waves travel.
본 실시예에서는 상기 파형 변환부(40a)는, 컨벡스(Convex) 형상인 것으로 예를 들어 설명한다. 다만, 이에 한정되지 않고, 상기 파형 변환부(40a)는, 상기 초음파의 진행방향으로 돌출되되 밑면이 개구된 사각뿔 형상으로 형성되거나, 적어도 일부분이 단차지게 형성되거나, 적어도 일부분이 경사면을 가지도록 형성되는 것도 가능하다. 또한, 상기 파형 변환부(40a)는, 컨벡스 형상, 컨케이브 형상, 사각뿔 형상, 평면 형상, 경사면 형상, 단차진 형상 중 적어도 일부가 조합된 형상인 것도 물론 가능하다. 즉, 상기 파형 변환부(40a)는, 후술하는 슬릿들(42)과 상기 트랜스듀서(30)의 이격 거리가 각각 다르도록 형성된다면 다양한 형상으로 변경하여 적용 가능하다. In this embodiment, the waveform converter 40a is explained by way of example as having a convex shape. However, it is not limited to this, and the waveform converter 40a is formed in the shape of a square pyramid that protrudes in the direction of travel of the ultrasonic waves and has an open bottom, or is formed so that at least part of it is stepped, or at least part of it is formed so as to have an inclined surface. It is also possible to become In addition, the waveform converter 40a may of course have a shape that is a combination of at least some of a convex shape, a concave shape, a square pyramid shape, a flat shape, an inclined plane shape, and a stepped shape. That is, the waveform converter 40a can be changed into various shapes if the separation distance between the slits 42 and the transducer 30, which will be described later, is formed to be different.
본 실시예에서는, 상기 초음파 집속판(40) 중에서 상기 파형 변환부(40a)가 돌출된 형상인 것으로 예를 들어 설명하나, 이에 한정되지 않고 상기 초음파 집속판(40) 전체가 전방으로 돌출된 형상이거나 상기 파형 변환부(40a) 중 일부 또는 여러 영역이 전방으로 돌출된 형상인 것도 물론 가능하다.In this embodiment, it is explained as an example that the waveform converter 40a has a protruding shape among the ultrasonic focusing plate 40, but this is not limited to this and the entire ultrasonic focusing plate 40 has a shape protruding forward. Of course, it is also possible for some or several areas of the waveform conversion unit 40a to protrude forward.
상기 파형 변환부(40a)에는, 상기 트랜스듀서(30)에서 방출된 초음파를 적어도 하나 이상이 다른 위상을 갖는 파동들로 변환시키기 위한 복수의 슬릿들(42)이 형성된다. 상기 파형 변환부(40a)는 상기 트랜스듀서(30)에서 방출된 초음파를 구면파로 변환시키고, 복수의 구면파들의 간섭을 유도하여 적어도 한 개 이상의 초음파 집속 지점에 집속시킨다. In the waveform converter 40a, a plurality of slits 42 are formed to convert the ultrasonic waves emitted from the transducer 30 into waves with at least one different phase. The waveform converter 40a converts the ultrasonic waves emitted from the transducer 30 into spherical waves, induces interference between the plurality of spherical waves, and focuses them on at least one ultrasonic focus point.
상기 프레임 결합부(40b)에는 상기 결합부재(45)(46)가 체결되도록 복수의 체결홀들(41)이 형성된다. A plurality of fastening holes 41 are formed in the frame coupling portion 40b to fasten the coupling members 45 and 46 to each other.
도 2 및 도 3을 참조하면, 상기 결합부재(45)(46)는 복수의 커넥팅 너트들(46)과 복수의 커넥팅 볼트들(45)을 포함한다.Referring to Figures 2 and 3, the coupling members 45 and 46 include a plurality of connecting nuts 46 and a plurality of connecting bolts 45.
상기 커넥팅 너트들(46)은, 상기 초음파 방사 프레임(10)에 구비되고, 상기 트랜스듀서(30)의 전면보다 전방으로 돌출되게 길게 형성되어, 상기 초음파 집속판(40)의 장착 높이를 안내하도록 형성된 너트이다. 상기 커넥팅 너트(46)는, 상기 초음파 방사 프레임(10)에 형성된 모듈 결합홀에 체결 고정된 것으로 예를 들어 설명한다. 다만, 이에 한정되지 않고, 상기 커넥팅 너트(46)는 상기 초음파 방사 프레임(10)의 전면에 올려진 후 접착제 등을 통해 고정되는 것도 가능하고, 상기 초음파 방사 프레임에 일체로 형성되는 것도 물론 가능하다. The connecting nuts 46 are provided on the ultrasonic radiation frame 10 and are formed to be long and protrude forward from the front of the transducer 30 to guide the mounting height of the ultrasonic focusing plate 40. It is a formed nut. The connecting nut 46 is explained as an example of being fastened to a module coupling hole formed in the ultrasonic radiation frame 10. However, it is not limited to this, and the connecting nut 46 may be placed on the front of the ultrasonic radiation frame 10 and then fixed through an adhesive or the like, and of course, it may also be formed integrally with the ultrasonic radiation frame. .
상기 복수의 커넥팅 너트들(46)은 서로 소정간격 이격되게 배치되고, 상기 커넥팅 너트들(36)의 상면에 상기 초음파 집속판(40)이 올려지게 된다. 상기 커넥팅 너트(46)가 상기 초음파 방사 프레임(10)의 전면에서 전방으로 돌출된 높이는 상기 초음파 집속판(40)의 장착 높이나 상기 초음파 집속판(40)과 상기 트랜스듀서(30)사이의 이격 거리에 따라 설정된다. The plurality of connecting nuts 46 are arranged to be spaced apart from each other at a predetermined distance, and the ultrasonic focusing plate 40 is placed on the upper surface of the connecting nuts 36. The height at which the connecting nut 46 protrudes forward from the front of the ultrasonic radiation frame 10 is the mounting height of the ultrasonic focusing plate 40 or the separation distance between the ultrasonic focusing plate 40 and the transducer 30. It is set according to.
상기 커넥팅 볼트들(45)은, 상기 커넥팅 너트들(36) 위에 올려진 상기 초음파 집속판(40)의 상측에서 상기 커넥팅 너트들(46)에 체결된다. 상기 커넥팅 볼트들(45)은 상기 초음파 집속판(40)의 체결홀들(41)을 관통하여 상기 커넥팅 너트(46)에 체결된다. The connecting bolts 45 are fastened to the connecting nuts 46 on the upper side of the ultrasonic focusing plate 40 placed on the connecting nuts 36. The connecting bolts 45 pass through the fastening holes 41 of the ultrasonic focusing plate 40 and are fastened to the connecting nut 46.
한편, 상기 복수의 슬릿들(42)은, 상기 초음파 집속판(40)에 형성되고 상기 초음파가 통과하게 만든 홀이나 틈을 모두 포함한다. Meanwhile, the plurality of slits 42 are formed on the ultrasonic focusing plate 40 and include all holes or gaps through which the ultrasonic waves pass.
본 실시예에서는, 상기 복수의 슬릿들(42)은 적어도 하나의 행과 적어도 하나의 열을 이루도록 배열된 것으로 예를 들어 설명한다. 즉, 상기 슬릿들(42)은 수평방향으로 서로 동일한 간격으로 이격되고 매트릭스 형태로 규칙적으로 배열된 것으로 예를 들어 설명한다. 다만, 이에 한정되지 않고, 상기 복수의 슬릿들(42)은 다양한 형태로 배열될 수 있다. In this embodiment, the plurality of slits 42 are arranged to form at least one row and at least one column. That is, the slits 42 are explained as an example in which the slits 42 are spaced apart from each other at equal intervals in the horizontal direction and are regularly arranged in a matrix form. However, the present invention is not limited to this, and the plurality of slits 42 may be arranged in various shapes.
상기 슬릿들(42)은 단면이 원형인 홀인 것으로 예를 들어 설명하나, 이에 한정되지 않고 상기 슬릿들(42)의 단면 형상은 다양하게 변경하여 적용 가능하다. The slits 42 are described as holes having a circular cross-section, but are not limited to this and the cross-sectional shape of the slits 42 can be changed in various ways.
또한, 상기 슬릿들(42)의 크기는 서로 동일한 것으로 예를 들어 설명하나, 이에 한정되지 않고 서로 다른 크기로 형성되는 것도 물론 가능하다. In addition, the sizes of the slits 42 are described as being the same, but the slits 42 are not limited to this and may of course be formed in different sizes.
상기 초음파의 회절은, 상기 슬릿들(42)의 크기와 상기 초음파의 파장(λ)에 따라 영향을 받는다. Diffraction of the ultrasonic waves is influenced by the size of the slits 42 and the wavelength (λ) of the ultrasonic waves.
따라서, 상기 슬릿들(42)의 각 크기는 상기 트랜스듀서(30)에서 방출된 초음파의 파장(λ)에 따라 다르게 설정된다. 여기서, 상기 슬릿(42)의 크기는 상기 슬릿(42)의 단면의 직경을 포함한다. 본 실시예에서는, 상기 슬릿(42)의 직경은 상기 초음파의 파장(λ)의 0.01배 내지 10배 범위에서 설정되는 것으로 예를 들어 설명한다. Accordingly, the size of each of the slits 42 is set differently depending on the wavelength (λ) of the ultrasonic waves emitted from the transducer 30. Here, the size of the slit 42 includes the diameter of the cross section of the slit 42. In this embodiment, the diameter of the slit 42 is set in the range of 0.01 to 10 times the wavelength (λ) of the ultrasonic wave.
상기 슬릿들(42)의 이격 거리는, 상기 초음파의 파장(λ)에 따라 설정된다. 본 실시예에서는, 상기 슬릿들(42)의 이격 거리는 상기 초음파의 파장(λ)의 0.01배 내지 10배 범위에서 설정되는 것으로 예를 들어 설명한다. The separation distance between the slits 42 is set according to the wavelength (λ) of the ultrasonic waves. In this embodiment, the spacing between the slits 42 is set in the range of 0.01 to 10 times the wavelength λ of the ultrasonic waves.
한편, 도 5는 본 발명의 실시예에 따른 초음파 집속판이 평판일 때 슬릿 사이의 거리와 초음파 집속 지점의 관계를 개략적으로 나타낸 도면이다. 도 6은 본 발명의 실시예에 따른 고강도 집속 초음파 발생 장치에서 초점 거리가 20mm일 때 슬릿들의 크기와 위치의 예를 나타낸다.Meanwhile, Figure 5 is a diagram schematically showing the relationship between the distance between slits and the ultrasonic focusing point when the ultrasonic focusing plate according to an embodiment of the present invention is a flat plate. Figure 6 shows an example of the size and position of slits when the focal distance is 20 mm in the high-intensity focused ultrasound generator according to an embodiment of the present invention.
도 5를 참조하면, 상기 초음파 집속판(40)에 2개의 슬릿들(42)이 형성된 경우를 예를 들어 설명한다. 도 5에서 Δy는 파동의 경로차를 나타낸다.Referring to FIG. 5 , a case in which two slits 42 are formed in the ultrasonic focusing plate 40 will be described as an example. In Figure 5, Δy represents the path difference of the wave.
상기 슬릿들(42) 사이의 이격 거리(d)는 상기 초음파의 파장(λ), 상기 복수의 슬릿들 (42) 중 중심 슬릿(s0)으로부터 해당 슬릿(sn)의 배열 순서, 상기 중심 슬릿(s0)으로부터 상기 초음파 집속 지점(Focal point)까지의 거리(y0)에 따라 설정된다.The separation distance (d) between the slits 42 is the wavelength (λ) of the ultrasonic wave, the arrangement order of the slit (s n ) from the center slit (s0) among the plurality of slits 42, and the center slit. It is set according to the distance (y0) from (s0) to the ultrasonic focusing point (Focal point).
상기 슬릿들(42)이 복수개일 경우, 상기 중심 슬릿(s0)으로부터 n번째 슬릿사이의 이격 거리(dn)를 산출하는 식은 수학식 1과 같다.When there are a plurality of slits 42, the equation for calculating the separation distance d n between the nth slit from the center slit s0 is as shown in Equation 1.
수학식 1
Figure PCTKR2023014165-appb-img-000001
Equation 1
Figure PCTKR2023014165-appb-img-000001
여기서, n은 중심 슬릿으로부터 해당 슬릿의 배열 순서이고, λ는 초음파의 파장(wavelength)이고, y0는 중심 슬릿으로부터 스크린(screen)까지의 거리이다. 상기 스크린은, 집속점이 생성될 수 있는 위치이다.Here, n is the arrangement order of the corresponding slits from the central slit, λ is the wavelength of ultrasonic waves, and y0 is the distance from the central slit to the screen. The screen is a location where a focus point can be created.
상기 수학식 1에서 상기 슬릿들(42) 사이의 이격 거리(dn)가 산출되면, 상기 이격 거리(dn)에 따라 상기 슬릿들(42)의 위치가 설정될 수 있다. When the separation distance (d n ) between the slits 42 is calculated from Equation 1, the positions of the slits 42 can be set according to the separation distance (d n ).
도 6을 참조하면, 초점 거리(focal length)가 20mm일 때, 수학식 1을 통해 산출한 이격 거리(dn)에 따라 슬릿들을 배치한 예를 나타낸다. Referring to FIG. 6, when the focal length is 20 mm, an example of slits being arranged according to the separation distance (d n ) calculated through Equation 1 is shown.
도 6에서 d1은 상기 중심 슬릿(s0)으로부터 제1슬릿(s1)사이의 이격 거리, d2는 상기 중심 슬릿(s0)으로부터 제2슬릿(s2)사이의 이격 거리, d3은 상기 중심 슬릿(s0)으로부터 제3슬릿(s3)사이의 이격 거리, d4는 상기 중심 슬릿(s0)으로부터 제4슬릿(s4)사이의 이격 거리, d5는 상기 중심 슬릿(s0)으로부터 제5슬릿(s5)사이의 이격 거리를 나타낸다. In Figure 6, d1 is the separation distance between the center slit (s0) and the first slit (s1), d2 is the separation distance between the center slit (s0) and the second slit (s2), and d3 is the center slit (s0). ) is the separation distance between the third slit (s3), d4 is the separation distance between the center slit (s0) and the fourth slit (s4), and d5 is the separation distance between the center slit (s0) and the fifth slit (s5). Indicates the separation distance.
도 6을 참조하면, 상기 중심 슬릿(s0)으로부터 멀어질수록 상기 슬릿들(42)사이의 간격이 줄어든 것을 알 수 있다. Referring to FIG. 6, it can be seen that the distance between the slits 42 decreases as the distance from the central slit s0 increases.
도 7은 본 발명의 실시예에 따른 고강도 집속 초음파 발생 장치에서 초점 거리가 20mm일 때 초음파의 집속을 시뮬레이션한 예를 나타낸다.Figure 7 shows an example of simulating the focusing of ultrasound when the focal distance is 20 mm in the high-intensity focused ultrasound generator according to an embodiment of the present invention.
도 7을 참조하면, 초점 거리가 20mm일 때, 상기 수학식 1에 따라 산출한 이격 거리에 따라 슬릿들(42)의 위치를 설정하여 배치하고, 시뮬레이션을 통해 초음파 집속 지점을 확인하였다.Referring to FIG. 7, when the focal length is 20 mm, the positions of the slits 42 are set and arranged according to the separation distance calculated according to Equation 1 above, and the ultrasonic focusing point is confirmed through simulation.
또한, 상기 트랜스듀서(30)의 표면 중 적어도 일부분에는 흡음재(미도시)가 코팅되어 상기 초음파 집속판(40)에서 반사되는 초음파를 흡수하는 흡음층(미도시)이 구비될 수 있다. In addition, at least a portion of the surface of the transducer 30 may be coated with a sound-absorbing material (not shown) and provided with a sound-absorbing layer (not shown) that absorbs ultrasonic waves reflected from the ultrasonic focusing plate 40.
상기와 같이 구성된 본 발명의 제1실시예에 따른 파동의 회절과 간섭을 이용하여 초음파를 집속하는 고강도 집속 초음파 발생장치의 작동을 설명하면 다음과 같다.The operation of the high-intensity focused ultrasound generator that focuses ultrasonic waves using wave diffraction and interference according to the first embodiment of the present invention configured as described above will be described as follows.
상기 복수의 트랜스듀서들(30)에 전원이 인가되면, 상기 트랜스듀서(30)는 각각 초음파를 생성하여 방출한다. When power is applied to the plurality of transducers 30, each transducer 30 generates and emits ultrasonic waves.
여기서, 상기 트랜스듀서(30)에서 각각 생성된 초음파는 1개의 평면파인 것으로 예를 들어 설명한다. Here, it is explained as an example that each ultrasonic wave generated by the transducer 30 is one plane wave.
상기 트랜스듀서(30)에서 방출된 초음파는 상기 트랜스듀서(30)의 전방에 배치된 상기 초음파 집속판(40)을 통과한다.The ultrasonic waves emitted from the transducer 30 pass through the ultrasonic focusing plate 40 disposed in front of the transducer 30.
상기 초음파 집속판(40)을 통과하면서 상기 초음파는 회절되고 적어도 하나 이상이 다른 위상을 갖는 복수의 구면파들로 변환되며, 변환된 구면파들의 파동들은 간섭을 일으키고, 미리 설정된 초음파 집속 지점에 집속된다. While passing through the ultrasonic focusing plate 40, the ultrasonic waves are diffracted and converted into a plurality of spherical waves, at least one of which has a different phase. The waves of the converted spherical waves cause interference and are focused on a preset ultrasonic focusing point.
즉, 도 4a를 참조하면, 상기 트랜스듀서(30)에서 방출된 초음파는 상기 복수의 슬릿들(42)을 통과하면서 복수의 구면파들로 변환된다.That is, referring to FIG. 4A, the ultrasonic waves emitted from the transducer 30 are converted into a plurality of spherical waves while passing through the plurality of slits 42.
도 4b를 참조하면, 상기 복수의 구면파들은 미리 설정된 초음파 집속 지점에 집속된다. Referring to Figure 4b, the plurality of spherical waves are focused on a preset ultrasonic focusing point.
따라서, 상기 트랜스듀서(30)의 전방에 상기 초음파 집속판(40)이 배치됨으로써, 비침습적으로 원하는 부위에 초음파를 집속시켜, 국소 부위를 보다 정확하게 치료 가능하며 상처나 흉터 없이 시술 가능한 이점이 있다. Therefore, by placing the ultrasonic focusing plate 40 in front of the transducer 30, it focuses the ultrasonic waves on the desired area non-invasively, allowing more accurate treatment of the local area, and has the advantage of being able to perform the procedure without wounds or scars. .
또한, 상기 초음파 집속판(40)에 형성된 슬릿들(42)의 크기나 위치, 상기 초음파 집속파(40)과 상기 트랜스듀서(30)의 이격 거리에 따라 초음파 집속 지점을 변경시킬 수 있다.In addition, the ultrasonic focusing point can be changed depending on the size or location of the slits 42 formed in the ultrasonic focusing plate 40 and the separation distance between the ultrasonic focused wave 40 and the transducer 30.
또한, 상기 초음파 집속판(40)이 상기 트랜스듀서(30)의 전방에 착탈가능하도록 결합됨으로써, 원하는 초음파 집속 지점에 따라 상기 초음파 집속판(40)을 교체하여 다양한 초음파 집속 영역에 적용시킬 수 있다. In addition, since the ultrasonic focusing plate 40 is detachably coupled to the front of the transducer 30, the ultrasonic focusing plate 40 can be replaced depending on the desired ultrasonic focusing point and applied to various ultrasonic focusing areas. .
또한, 상기 초음파 방사 프레임(10)의 형상을 이용하여 집속시키는 경우에 비해 구조가 간단하고, 부분적으로 교체 가능한 이점이 있다. In addition, compared to the case of focusing using the shape of the ultrasonic radiation frame 10, the structure is simple and has the advantage of being partially replaceable.
한편, 도 8은 본 발명의 제2실시예에 따른 초음파 집속판의 초음파 집속 원리를 개략적으로 나타낸 도면이다.Meanwhile, Figure 8 is a diagram schematically showing the ultrasonic focusing principle of the ultrasonic focusing plate according to the second embodiment of the present invention.
도 8을 참조하면, 본 발명의 제2실시예에 따른 초음파 집속판(240)이 입체 형상으로 형성되되, 상기 트랜스듀서(30)를 향한 후방으로 볼록한 곡면 형상인 것이 상기 제1실시예와 상이하고, 그 외 나머지 구성 및 작용은 상기 제1실시예와 유사하므로, 상이한 점을 중심으로 설명하고 유사 내용에 대한 상세한 설명은 생략한다.Referring to FIG. 8, the ultrasonic focusing plate 240 according to the second embodiment of the present invention is formed in a three-dimensional shape, but differs from the first embodiment in that it has a convex curved shape backward toward the transducer 30. Since the remaining configuration and operation are similar to the first embodiment, the description will focus on the differences and a detailed description of similar content will be omitted.
상기 초음파 집속판(240)은, 상기 트랜스듀서(30)에 대향되는 파형 변환부(240a)와, 상기 파형 변환부(240a)에서 반경방향으로 연장 형성되어 상기 초음파 방사 프레임(10)에 결합되는 프레임 결합부(240b)를 포함한다.The ultrasonic focusing plate 240 is formed to extend radially from the waveform converter 240a and the waveform converter 240a facing the transducer 30, and is coupled to the ultrasonic radiation frame 10. Includes a frame coupling portion 240b.
상기 파형 변환부(240a)는, 상기 트랜스듀서(30)를 향해 돌출되도록 컨케이브(Concave) 형상으로 형성된 것으로 예를 들어 설명한다. The waveform conversion unit 240a will be described as an example in which it is formed in a concave shape to protrude toward the transducer 30.
본 실시예에서는 상기 파형 변환부(240a)는 곡면 형상인 것으로 예를 들어 설명하나, 이에 한정되지 않고, 상기 트랜스듀서(30)를 향한 방향으로 돌출되되 밑면이 개구된 사각뿔 형상으로 돌출되거나, 적어도 일부분이 단차지게 형성되거나, 적어도 일부분이 경사면을 가지도록 형성되는 것도 가능하다. 즉, 상기 파형 변환부(240a)는, 후술하는 슬릿들(242)과 상기 트랜스듀서(30)의 이격 거리가 각각 다르도록 형성된다면 다양한 형상으로 변경하여 적용 가능하다. In this embodiment, the waveform converter 240a is described as having a curved shape, but is not limited to this, and protrudes in the direction toward the transducer 30 in the shape of a square pyramid with an open bottom, or at least It is also possible that a portion is formed to be stepped, or at least a portion is formed to have an inclined surface. That is, the waveform converter 240a can be changed into various shapes if the separation distance between the slits 242 and the transducer 30, which will be described later, is formed to be different.
본 실시예에서는, 상기 초음파 집속판(240) 중에서 상기 파형 변환부(240a)가 후방으로 돌출된 형상인 것으로 예를 들어 설명하나, 이에 한정되지 않고 상기 초음파 집속판(240) 전체가 후방으로 돌출된 형상이거나 상기 파형 변환부(240a)보다 작은 영역만이 후방으로 돌출되게 형성되는 것도 물론 가능하다.In this embodiment, the waveform converter 240a of the ultrasonic focusing plate 240 is described as having a shape that protrudes rearward. However, this is not limited to this, and the entire ultrasonic focusing plate 240 protrudes rearward. Of course, it is also possible to have a similar shape or to have only an area smaller than the waveform conversion unit 240a protrude backward.
상기 초음파 집속판(240)의 파형 변환부(240a)에는 복수의 슬릿들(242)이 형성된다.A plurality of slits 242 are formed in the waveform conversion unit 240a of the ultrasonic focusing plate 240.
상기 슬릿들(242)은 단면이 원형인 홀인 것으로 예를 들어 설명하나, 이에 한정되지 않고 상기 슬릿들(242)의 단면 형상은 다양하게 변경하여 적용 가능하다. For example, the slits 242 are described as holes with circular cross-sections, but they are not limited to this and the cross-sectional shapes of the slits 242 can be changed in various ways.
또한, 상기 슬릿들(242)의 개수도 다양하게 변경하여 적용 가능하다. Additionally, the number of slits 242 can be changed and applied in various ways.
또한, 상기 슬릿들(242)의 크기는 서로 동일한 것으로 예를 들어 설명하나, 이에 한정되지 않고 서로 다른 크기로 형성되는 것도 물론 가능하다. In addition, the sizes of the slits 242 are described as being the same, but the slits 242 are not limited to this and may of course be formed in different sizes.
또한, 상기 슬릿들(242) 사이의 이격 거리는 모두 동일하게 설정되는 것도 가능하고, 적어도 일부의 슬릿들(242) 사이의 이격 거리가 서로 다르게 설정되는 것도 물론 가능하다.In addition, the distance between the slits 242 may all be set to be the same, and it is also possible, of course, that the distance between at least some of the slits 242 may be set differently.
상기 슬릿들(242)의 크기나 위치는 원하는 초음파 집속 지점(focal point)에 따라 다르게 설정될 수 있다. 즉, 상기 슬릿들(242)의 크기는 상기 트랜스듀서(30)에서 방출된 초음파의 파장(λ)에 따라 다르게 설정된다. 상기 슬릿들(242)의 각 위치는, 상기 초음파의 파장(λ), 상기 복수의 슬릿들(242) 중 중심 슬릿(s1)으로부터 해당 슬릿(sn)의 배열 순서, 상기 중심 슬릿(s1)으로부터 상기 초음파 집속 지점(Focal point)까지의 거리에 따라 산출하여 설정될 수 있다. The size or location of the slits 242 may be set differently depending on the desired ultrasound focal point. That is, the size of the slits 242 is set differently depending on the wavelength (λ) of the ultrasonic waves emitted from the transducer 30. Each position of the slits 242 includes the wavelength λ of the ultrasonic wave, the arrangement order of the slits s n from the central slit s1 among the plurality of slits 242, and the central slit s1. It can be calculated and set according to the distance from the ultrasonic focusing point (Focal point).
도 8a를 참조하면, 상기 트랜스듀서(30)에서 방출된 초음파는 상기 복수의 슬릿들(242)을 통과하면서 복수의 구면파들로 변환된다.Referring to FIG. 8A, the ultrasonic waves emitted from the transducer 30 are converted into a plurality of spherical waves while passing through the plurality of slits 242.
도 8b를 참조하면, 상기 복수의 구면파들은 미리 설정된 초음파 집속 지점에 집속된다. Referring to FIG. 8B, the plurality of spherical waves are focused at a preset ultrasonic focusing point.
본 실시예에서, 상기 트랜스듀서(30)에서 방출된 초음파는 단일의 평면파인 것으로 예를 들어 설명하나, 이에 한정되지 않고 그 외 다른 형상인 것도 가능하다. In this embodiment, the ultrasonic wave emitted from the transducer 30 is described as a single plane wave, but it is not limited to this and may have other shapes.
한편, 도 9는 본 발명의 제3실시예에 따른 초음파 집속판의 평면도이다. Meanwhile, Figure 9 is a plan view of an ultrasonic focusing plate according to a third embodiment of the present invention.
도 9를 참조하면, 본 발명의 제3실시예에 따른 초음파 집속판(340)에는 복수의 슬릿들(342)이 형성되되, 상기 복수의 슬릿들(342)은 복수의 행과 열을 이루도록 배열되되 인접하는 행 또는 인접하는 열에 배열된 슬릿들은 서로 엇갈리게 배열된 것이 상기 제1실시예와 상이하고, 그 외 나머지 구성 및 작용은 상기 제1실시예와 유사하므로, 유사 내용에 대한 상세한 설명은 생략한다.Referring to FIG. 9, a plurality of slits 342 are formed in the ultrasonic focusing plate 340 according to the third embodiment of the present invention, and the plurality of slits 342 are arranged to form a plurality of rows and columns. However, the slits arranged in adjacent rows or adjacent columns are different from the first embodiment in that they are arranged in a staggered manner, and the remaining configuration and operation are similar to the first embodiment, so detailed description of similar content is omitted. do.
상기 슬릿들(342)은 단면이 원형인 홀인 것으로 예를 들어 설명하나, 이에 한정되지 않고 상기 슬릿들(342)의 단면 형상은 다양하게 변경하여 적용 가능하다. For example, the slits 342 are described as holes with a circular cross-section, but they are not limited to this and the cross-sectional shape of the slits 342 can be changed in various ways.
또한, 상기 슬릿들(342)의 개수도 다양하게 변경하여 적용 가능하다. Additionally, the number of slits 342 can be changed and applied in various ways.
또한, 상기 슬릿들(342)의 크기는 서로 동일한 것으로 예를 들어 설명하나, 이에 한정되지 않고 서로 다른 크기로 형성되는 것도 물론 가능하다. In addition, the sizes of the slits 342 are described as being the same, but the slits 342 are not limited to this and may of course be formed in different sizes.
또한, 상기 슬릿들(342) 사이의 이격 거리는 모두 동일하게 설정되는 것도 가능하고, 적어도 일부의 슬릿들(342) 사이의 이격 거리가 서로 다르게 설정되는 것도 물론 가능하다.In addition, the distance between the slits 342 may all be set to be the same, and it is also possible, of course, that the distance between at least some of the slits 342 may be set differently.
상기 슬릿들(342)의 크기나 위치는 원하는 초음파 집속 지점(focal point)에 따라 다르게 설정될 수 있다. 즉, 상기 슬릿들(342)의 크기는 상기 트랜스듀서(30)에서 방출된 초음파의 파장(λ)에 따라 다르게 설정된다. 상기 슬릿들(342)의 각 위치는, 상기 초음파의 파장(λ), 상기 복수의 슬릿들(342) 중 중심 슬릿(s1)으로부터 해당 슬릿(sn)의 배열 순서, 상기 중심 슬릿(s1)으로부터 상기 초음파 집속 지점(Focal point)까지의 거리에 따라 산출하여 설정될 수 있다. The size or location of the slits 342 may be set differently depending on the desired ultrasound focal point. That is, the size of the slits 342 is set differently depending on the wavelength (λ) of the ultrasonic waves emitted from the transducer 30. Each position of the slits 342 includes the wavelength λ of the ultrasonic wave, the arrangement order of the slit s n from the central slit s1 among the plurality of slits 342, and the central slit s1. It can be calculated and set according to the distance from the ultrasonic focusing point (Focal point).
또한, 상기 초음파 집속판(340)은, 상기 트랜스듀서(30)와 대향되는 면 중 적어도 일부분이 평평한 평판 형상인 것도 가능하고, 상기 트랜스듀서(30)와의 이격 거리가 위치에 따라 다르도록 입체 형상으로 형성되는 것도 가능하다. In addition, the ultrasonic focusing plate 340 may have a flat plate shape on at least a portion of the surface facing the transducer 30, and may have a three-dimensional shape so that the separation distance from the transducer 30 varies depending on the location. It is also possible to form .
상기 초음파 집속판(340)이 입체 형상으로 형성될 경우, 적어도 일부분이 곡면 또는 경사면으로 형성되거나, 적어도 일부분이 단차지게 형성되는 것도 가능하다. 또한, 상기 초음파 집속판(340)은, 상기 초음파의 진행방향으로 볼록하게 돌출된 형상인 것도 가능하고, 상기 트랜스듀서(30)를 향한 방향으로 볼록하게 돌출된 형상인 것도 가능하다. 다만, 이에 한정되지 않고, 상기 초음파 집속판(340)의 슬릿들(342)과 상기 트랜스듀서(30)와의 이격 거리가 위치에 따라 다르도록 형성된다면 다양한 형상으로 변경하여 적용 가능하다. When the ultrasonic focusing plate 340 is formed in a three-dimensional shape, at least a portion may be formed as a curved or inclined surface, or at least a portion may be formed as a stepped surface. Additionally, the ultrasonic focusing plate 340 may have a shape that protrudes convexly in the direction in which the ultrasonic waves travel, and may also have a shape that protrudes convexly in the direction toward the transducer 30. However, it is not limited to this, and can be changed into various shapes if the separation distance between the slits 342 of the ultrasonic focusing plate 340 and the transducer 30 is formed to vary depending on the position.
또한, 본 실시예에서, 상기 트랜스듀서(30)에서 방출된 초음파는 단일의 평면파인 것으로 예를 들어 설명하나, 이에 한정되지 않고 그 외 다른 형상인 것도 가능하다. In addition, in this embodiment, the ultrasonic wave emitted from the transducer 30 is described as a single plane wave, but it is not limited to this and may have other shapes.
한편, 도 10은 본 발명의 제4실시예에 따른 초음파 집속판의 평면도이다. Meanwhile, Figure 10 is a plan view of an ultrasonic focusing plate according to a fourth embodiment of the present invention.
도 10을 참조하면, 본 발명의 제4실시예에 따른 초음파 집속판(440)에는 복수의 슬릿들(442)이 형성되되, 상기 복수의 슬릿들(442)은 상기 초음파 집속판(440)의 중심으로부터 방사형으로 배열된 것이 상기 제1실시예와 상이하고, 그 외 나머지 구성 및 작용은 상기 제1실시예와 유사하므로, 유사 내용에 대한 상세한 설명은 생략한다.Referring to FIG. 10, a plurality of slits 442 are formed in the ultrasonic focusing plate 440 according to the fourth embodiment of the present invention, and the plurality of slits 442 are of the ultrasonic focusing plate 440. It is different from the first embodiment in that it is arranged radially from the center, and the remaining configuration and operation are similar to the first embodiment, so detailed description of similar content will be omitted.
상기 슬릿들(442)은 상기 초음파 집속판(440)의 중심으로부터 동일한 반경 내에 배열된 슬릿들끼리 가상의 원을 이루도록 배열된 것으로 예를 들어 설명한다. The slits 442 will be described as an example in which the slits arranged within the same radius from the center of the ultrasonic focusing plate 440 form a virtual circle.
상기 슬릿들(442)은 단면이 원형인 홀인 것으로 예를 들어 설명하나, 이에 한정되지 않고 상기 슬릿들(442)의 단면 형상은 다양하게 변경하여 적용 가능하다. For example, the slits 442 are described as holes with a circular cross-section, but they are not limited to this and the cross-sectional shape of the slits 442 can be changed in various ways.
또한, 상기 슬릿들(442)의 개수도 다양하게 변경하여 적용 가능하다. Additionally, the number of slits 442 can be changed and applied in various ways.
또한, 상기 슬릿들(442)의 크기는 서로 동일한 것으로 예를 들어 설명하나, 이에 한정되지 않고 서로 다른 크기로 형성되는 것도 물론 가능하다. In addition, the sizes of the slits 442 are described as being the same, but the slits 442 are not limited to this and may of course be formed in different sizes.
또한, 상기 슬릿들(442) 사이의 이격 거리는 모두 동일하게 설정되는 것도 가능하고, 적어도 일부의 슬릿들(442) 사이의 이격 거리가 서로 다르게 설정되는 것도 물론 가능하다.In addition, the distance between the slits 442 may all be set to be the same, and it is also possible, of course, that the distance between at least some of the slits 442 may be set differently.
상기 슬릿들(442)의 크기나 위치는 원하는 초음파 집속 지점(focal point)에 따라 다르게 설정될 수 있다. 즉, 상기 슬릿들(442)의 크기는 상기 트랜스듀서(30)에서 방출된 초음파의 파장(λ)에 따라 다르게 설정된다. 상기 슬릿들(442)의 각 위치는, 상기 초음파의 파장(λ), 상기 복수의 슬릿들(442) 중 중심 슬릿(s1)으로부터 해당 슬릿(sn)의 배열 순서, 상기 중심 슬릿(s1)으로부터 상기 초음파 집속 지점(Focal point)까지의 거리에 따라 산출하여 설정될 수 있다. The size or location of the slits 442 may be set differently depending on the desired ultrasound focal point. That is, the size of the slits 442 is set differently depending on the wavelength (λ) of the ultrasonic waves emitted from the transducer 30. Each position of the slits 442 includes the wavelength λ of the ultrasonic wave, the arrangement order of the corresponding slit s n from the center slit s1 among the plurality of slits 442, and the center slit s1. It can be calculated and set according to the distance from the ultrasonic focusing point (Focal point).
또한, 상기 초음파 집속판(440)은, 상기 트랜스듀서(30)와 대향되는 면 중 적어도 일부분이 평평한 평판 형상인 것도 가능하고, 상기 트랜스듀서(30)와의 이격 거리가 위치에 따라 다르도록 입체 형상으로 형성되는 것도 가능하다. In addition, the ultrasonic focusing plate 440 may have a flat plate shape on at least a portion of the surface facing the transducer 30, and may have a three-dimensional shape so that the separation distance from the transducer 30 varies depending on the location. It is also possible to form .
상기 초음파 집속판(440)이 입체 형상으로 형성될 경우, 적어도 일부분이 곡면 또는 경사면으로 형성되거나, 적어도 일부분이 단차지게 형성되는 것도 가능하다. 또한, 상기 초음파 집속판(440)은, 상기 초음파의 진행방향으로 볼록하게 돌출된 형상인 것도 가능하고, 상기 트랜스듀서(30)를 향한 방향으로 볼록하게 돌출된 형상인 것도 가능하다. 다만, 이에 한정되지 않고, 상기 초음파 집속판(440)의 슬릿들(442)과 상기 트랜스듀서(30)와의 이격 거리가 위치에 따라 다르도록 형성된다면 다양한 형상으로 변경하여 적용 가능하다. When the ultrasonic focusing plate 440 is formed in a three-dimensional shape, at least a portion may be formed as a curved or inclined surface, or at least a portion may be formed as a stepped surface. Additionally, the ultrasonic focusing plate 440 may have a shape that protrudes convexly in the direction in which the ultrasonic waves travel, and may also have a shape that protrudes convexly in the direction toward the transducer 30. However, it is not limited to this, and can be changed into various shapes if the separation distance between the slits 442 of the ultrasonic focusing plate 440 and the transducer 30 is formed to vary depending on the position.
또한, 본 실시예에서, 상기 트랜스듀서(30)에서 방출된 초음파는 단일의 평면파인 것으로 예를 들어 설명하나, 이에 한정되지 않고 그 외 다른 형상인 것도 가능하다. In addition, in this embodiment, the ultrasonic wave emitted from the transducer 30 is described as a single plane wave, but it is not limited to this and may have other shapes.
한편, 도 11은 본 발명의 제5실시예에 따른 초음파 집속판의 평면도이다. Meanwhile, Figure 11 is a plan view of an ultrasonic focusing plate according to a fifth embodiment of the present invention.
도 11을 참조하면, 본 발명의 제5실시예에 따른 초음파 집속판(540)의 슬릿들(542)이 중심홀(542a)과, 원주 방향 및 반경방향으로 서로 이격되게 배열된 복수의 어라운드홀들(542b)을 포함하는 것이 상기 제1실시예와 상이하고, 그 외 나머지 구성 및 작용은 상기 제1실시예와 유사하므로, 상이한 점을 중심으로 설명하고 유사 내용에 대한 상세한 설명은 생략한다.Referring to FIG. 11, the slits 542 of the ultrasonic focusing plate 540 according to the fifth embodiment of the present invention include a central hole 542a and a plurality of surrounding holes arranged to be spaced apart from each other in the circumferential and radial directions. The inclusion of the elements 542b is different from the first embodiment, and the remaining configuration and operation are similar to the first embodiment, so the description will focus on the differences and a detailed description of similar content will be omitted.
상기 중심홀(542a)은 단면이 원형인 홀인 것으로 예를 들어 설명하나, 이에 한정되지 않고 단면 형상은 다양하게 변경하여 적용 가능하다.The central hole 542a is described as an example of a hole with a circular cross-section, but it is not limited to this and the cross-sectional shape can be changed in various ways.
상기 어라운드홀들(542b)은 복수개가 서로 원주 방향 및 반경 방향으로 이격되게 배열되고, 단면이 원호 형상인 홀인 것으로 예를 들어 설명한다. 다만, 이에 한정되지 않고 상기 어라운드홀들(542b)의 단면 형상은 다양하게 변경하여 적용 가능하다.The surrounding holes 542b will be described as an example in which a plurality of the surrounding holes 542b are arranged to be spaced apart from each other in the circumferential and radial directions and have a circular cross section. However, it is not limited to this, and the cross-sectional shape of the around holes 542b can be changed and applied in various ways.
상기 어라운드홀들(542) 중에서 상기 중심홀(542a)로부터 동일 반경 내에 위치한 홀들은 가상의 원을 이루도록 배열된다. 또한, 상기 어라운드홀들(542)은 반경방향으로 갈수록 원호의 길이(ln)가 길게 형성된다. 또한, 상기 어라운드홀들(542)은 상기 중심홀(542a)을 중심으로 구대칭을 이루도록 배열된다. Among the surrounding holes 542, holes located within the same radius from the center hole 542a are arranged to form a virtual circle. In addition, the surrounding holes 542 have an arc length (l n ) that becomes longer as it goes in the radial direction. Additionally, the around holes 542 are arranged to form spherical symmetry around the central hole 542a.
또한, 상기 어라운드홀들(542b)의 개수도 다양하게 변경하여 적용 가능하다. Additionally, the number of surrounding holes 542b can be changed and applied in various ways.
또한, 상기 어라운드홀들(542b)의 반경방향 폭(w)은 서로 동일한 것으로 예를 들어 설명하나, 이에 한정되지 않고 서로 다르게 형성되는 것도 물론 가능하다. In addition, the radial widths (w) of the surrounding holes 542b are described as being the same, but are not limited to this and may of course be formed differently.
상기 중심홀(542a)과 상기 어라운드홀들(542b)의 크기나 위치는 원하는 초음파 집속 지점(focal point)에 따라 다르게 설정된다. The size and position of the center hole 542a and the surrounding holes 542b are set differently depending on the desired ultrasonic focal point.
또한, 상기 초음파 집속판(540)은, 상기 트랜스듀서(30)와 대향되는 면 중 적어도 일부분이 평평한 평판 형상인 것도 가능하고, 상기 트랜스듀서(30)와의 이격 거리가 위치에 따라 다르도록 입체 형상으로 형성되는 것도 가능하다. In addition, the ultrasonic focusing plate 540 may have a flat plate shape on at least a portion of the surface facing the transducer 30, and may have a three-dimensional shape so that the separation distance from the transducer 30 varies depending on the location. It is also possible to form .
상기 초음파 집속판(540)이 입체 형상으로 형성될 경우, 적어도 일부분이 곡면 또는 경사면으로 형성되거나, 적어도 일부분이 단차지게 형성되는 것도 가능하다. 또한, 상기 초음파 집속판(540)은, 상기 초음파의 진행방향으로 볼록하게 돌출된 형상인 것도 가능하고, 상기 트랜스듀서(30)를 향한 방향으로 볼록하게 돌출된 형상인 것도 가능하다. 다만, 이에 한정되지 않고, 상기 초음파 집속판(540)의 슬릿들(542)과 상기 트랜스듀서(30)와의 이격 거리가 위치에 따라 다르도록 형성된다면 다양한 형상으로 변경하여 적용 가능하다. When the ultrasonic focusing plate 540 is formed in a three-dimensional shape, at least a portion may be formed as a curved or inclined surface, or at least a portion may be formed as a stepped surface. Additionally, the ultrasonic focusing plate 540 may have a shape that protrudes convexly in the direction in which the ultrasonic waves travel, and may also have a shape that protrudes convexly in the direction toward the transducer 30. However, it is not limited to this, and can be changed into various shapes if the separation distance between the slits 542 of the ultrasonic focusing plate 540 and the transducer 30 is formed to vary depending on the position.
또한, 본 실시예에서, 상기 트랜스듀서(30)에서 방출된 초음파는 단일의 평면파인 것으로 예를 들어 설명하나, 이에 한정되지 않고 그 외 다른 형상인 것도 가능하다. In addition, in this embodiment, the ultrasonic wave emitted from the transducer 30 is described as a single plane wave, but it is not limited to this and may have other shapes.
한편, 도 12는 본 발명의 제6실시예에 따른 초음파 집속판의 평면도이다.Meanwhile, Figure 12 is a plan view of an ultrasonic focusing plate according to a sixth embodiment of the present invention.
도 12를 참조하면, 본 발명의 제6실시예에 따른 초음파 집속판(640)의 슬릿들(642)은, 중심홀(642a)과, 원주 및 반경방향으로 이격되게 배열된 복수의 어라운드홀들(642b)을 포함하되, 상기 어라운드홀들(642)이 서로 엇갈리게 배열된 것이 상기 제5실시예와 상이하고, 그 외 나머지 구성 및 작용은 상기 제5실시예와 유사하므로, 상이한 점을 중심으로 설명하고 유사 내용에 대한 상세한 설명은 생략한다.Referring to FIG. 12, the slits 642 of the ultrasonic focusing plate 640 according to the sixth embodiment of the present invention include a central hole 642a and a plurality of surrounding holes arranged to be spaced apart in the circumferential and radial directions. It includes (642b), but the surrounding holes 642 are arranged in a staggered manner, which is different from the fifth embodiment, and the remaining configuration and operation are similar to the fifth embodiment, so focusing on the differences explanation, and detailed explanations of similar content are omitted.
상기 중심홀(642a)은 단면이 원형인 홀인 것으로 예를 들어 설명하나, 이에 한정되지 않고 단면 형상은 다양하게 변경하여 적용 가능하다.The central hole 642a is described as a hole with a circular cross-section as an example, but it is not limited to this and the cross-sectional shape can be changed in various ways.
상기 어라운드홀들(642b)은 복수개가 서로 원주 방향 및 반경 방향으로 이격되게 배열되고, 단면이 원호 형상인 홀인 것으로 예를 들어 설명한다. 다만, 이에 한정되지 않고 상기 어라운드홀들(642b)의 단면 형상은 다양하게 변경하여 적용 가능하다.For example, the surrounding holes 642b are arranged to be spaced apart from each other in the circumferential and radial directions and have a circular cross-section. However, it is not limited to this, and the cross-sectional shape of the around holes 642b can be changed and applied in various ways.
상기 어라운드홀들(642) 중에서 상기 중심홀(642a)로부터 동일 반경 내에 위치한 홀들은 가상의 원을 이루도록 배열된다. 또한, 상기 어라운드홀들(642)은 반경방향으로 갈수록 원호의 길이(ln)가 길게 형성된다. Among the surrounding holes 642, holes located within the same radius from the center hole 642a are arranged to form a virtual circle. In addition, the surrounding holes 642 have arc lengths (l n ) that become longer as they go in the radial direction.
또한, 상기 어라운드홀들(642)은 상기 중심홀(542a)을 중심으로 구대칭을 이루지 않도록 서로 엇갈리게 배열된다. Additionally, the around holes 642 are arranged to be staggered so as not to achieve spherical symmetry around the central hole 542a.
또한, 상기 어라운드홀들(642b)의 개수는 다양하게 변경하여 적용 가능하다. Additionally, the number of around holes 642b can be changed and applied in various ways.
또한, 상기 어라운드홀들(642b)의 반경방향 폭(w)은 서로 동일한 것으로 예를 들어 설명하나, 이에 한정되지 않고 서로 다르게 형성되는 것도 물론 가능하다. In addition, the radial widths (w) of the around holes 642b are described as being the same, but are not limited to this and may of course be formed differently.
상기 중심홀(642a)과 상기 어라운드홀들(642b)의 크기나 위치는 원하는 초음파 집속 지점(focal point)에 따라 다르게 설정된다. The size and location of the center hole 642a and the surrounding holes 642b are set differently depending on the desired ultrasonic focal point.
또한, 상기 초음파 집속판(640)은, 상기 트랜스듀서(30)와 대향되는 면 중 적어도 일부분이 평평한 평판 형상인 것도 가능하고, 상기 트랜스듀서(30)와의 이격 거리가 위치에 따라 다르도록 입체 형상으로 형성되는 것도 가능하다. In addition, the ultrasonic focusing plate 640 may have a flat plate shape on at least a portion of the surface facing the transducer 30, and may have a three-dimensional shape so that the separation distance from the transducer 30 varies depending on the location. It is also possible to form .
상기 초음파 집속판(640)이 입체 형상으로 형성될 경우, 적어도 일부분이 곡면 또는 경사면으로 형성되거나, 적어도 일부분이 단차지게 형성되는 것도 가능하다. 또한, 상기 초음파 집속판(640)은, 상기 초음파의 진행방향으로 볼록하게 돌출된 형상인 것도 가능하고, 상기 트랜스듀서(30)를 향한 방향으로 볼록하게 돌출된 형상인 것도 가능하다. 다만, 이에 한정되지 않고, 상기 초음파 집속판(640)의 슬릿들(3642)과 상기 트랜스듀서(30)와의 이격 거리가 위치에 따라 다르도록 형성된다면 다양한 형상으로 변경하여 적용 가능하다. When the ultrasonic focusing plate 640 is formed in a three-dimensional shape, at least a portion may be formed as a curved or inclined surface, or at least a portion may be formed as a stepped surface. Additionally, the ultrasonic focusing plate 640 may have a shape that protrudes convexly in the direction in which the ultrasonic waves travel, and may also have a shape that protrudes convexly in the direction toward the transducer 30. However, it is not limited to this, and can be changed into various shapes if the separation distance between the slits 3642 of the ultrasonic focusing plate 640 and the transducer 30 is formed to vary depending on the location.
또한, 본 실시예에서, 상기 트랜스듀서(30)에서 방출된 초음파는 단일의 평면파인 것으로 예를 들어 설명하나, 이에 한정되지 않고 그 외 다른 형상인 것도 가능하다. In addition, in this embodiment, the ultrasonic wave emitted from the transducer 30 is described as a single plane wave, but it is not limited to this and may have other shapes.
한편, 도 13은 본 발명의 제7실시예에 따른 초음파 집속판의 평면도이다.Meanwhile, Figure 13 is a plan view of an ultrasonic focusing plate according to a seventh embodiment of the present invention.
도 13를 참조하면, 본 발명의 제7실시예에 따른 초음파 집속판(740)의 슬릿들(742)은, 중심홀(742a)과, 상기 중심홀(742a)을 중심으로 반경방향으로 이격되게 배열된 복수의 어라운드홀들(742b)을 포함하되, 상기 어라운드홀들(742)은 단면이 링 형상으로 형성된 것이 상기 제5실시예와 상이하고, 그 외 나머지 구성 및 작용은 상기 제5실시예와 유사하므로, 상이한 점을 중심으로 설명하고 유사 내용에 대한 상세한 설명은 생략한다.Referring to FIG. 13, the slits 742 of the ultrasonic focusing plate 740 according to the seventh embodiment of the present invention are radially spaced apart from a central hole 742a with the central hole 742a as the center. It includes a plurality of arranged around holes 742b, but the around holes 742 are different from the fifth embodiment in that the cross-section is formed in a ring shape, and the remaining configuration and operation are those of the fifth embodiment. Since it is similar to , the description will focus on the differences and a detailed description of similar content will be omitted.
상기 중심홀(742a)은 단면이 원형인 홀인 것으로 예를 들어 설명하나, 이에 한정되지 않고 단면 형상은 다양하게 변경하여 적용 가능하다.The central hole 742a is described as an example of a hole with a circular cross-section, but it is not limited to this and the cross-sectional shape can be changed in various ways.
상기 어라운드홀들(742b)은 복수개가 상기 중심홀(742a)을 중심으로 반경 방향으로 이격되게 배열되고, 단면이 링 형상인 홀인 것으로 예를 들어 설명한다. 다만, 이에 한정되지 않고 상기 어라운드홀들(742b)의 단면 형상은 다양하게 변경하여 적용 가능하다.For example, the surrounding holes 742b are arranged to be spaced apart in the radial direction around the central hole 742a and have a ring-shaped cross section. However, it is not limited to this, and the cross-sectional shape of the around holes 742b can be changed and applied in various ways.
또한, 상기 어라운드홀들(742b)의 개수는 다양하게 변경하여 적용 가능하다. Additionally, the number of around holes 742b can be changed and applied in various ways.
또한, 상기 어라운드홀들(742b)의 반경방향 폭(w)은 서로 동일한 것으로 예를 들어 설명하나, 이에 한정되지 않고 서로 다르게 형성되는 것도 물론 가능하다. In addition, the radial widths w of the surrounding holes 742b are described as being the same, but are not limited thereto and may of course be formed differently.
상기 중심홀(742a)과 상기 어라운드홀들(742b)의 크기나 위치는 원하는 초음파 집속 지점(focal point)에 따라 다르게 설정된다. The size and location of the center hole 742a and the surrounding holes 742b are set differently depending on the desired ultrasonic focal point.
또한, 상기 초음파 집속판(740)에서 상기 중심홀(742a)과 상기 어라운드홀들(742)을 제외한 나머지 부분들은 연결부(742c)에 의해 서로 연결된 것으로 예를 들어 설명한다. In addition, the remaining parts of the ultrasonic focusing plate 740, excluding the center hole 742a and the surrounding holes 742, are connected to each other by a connection portion 742c.
또한, 상기 초음파 집속판(740)은, 상기 트랜스듀서(30)와 대향되는 면 중 적어도 일부분이 평평한 평판 형상인 것도 가능하고, 상기 트랜스듀서(30)와의 이격 거리가 위치에 따라 다르도록 입체 형상으로 형성되는 것도 가능하다. In addition, the ultrasonic focusing plate 740 may have a flat plate shape on at least a portion of the surface facing the transducer 30, and may have a three-dimensional shape so that the separation distance from the transducer 30 varies depending on the location. It is also possible to form .
상기 초음파 집속판(740)이 입체 형상으로 형성될 경우, 적어도 일부분이 곡면 또는 경사면으로 형성되거나, 적어도 일부분이 단차지게 형성되는 것도 가능하다. 또한, 상기 초음파 집속판(740)은, 상기 초음파의 진행방향으로 볼록하게 돌출된 형상인 것도 가능하고, 상기 트랜스듀서(30)를 향한 방향으로 볼록하게 돌출된 형상인 것도 가능하다. 다만, 이에 한정되지 않고, 상기 초음파 집속판(740)의 슬릿들(742)과 상기 트랜스듀서(30)와의 이격 거리가 위치에 따라 다르도록 형성된다면 다양한 형상으로 변경하여 적용 가능하다. When the ultrasonic focusing plate 740 is formed in a three-dimensional shape, at least a portion may be formed as a curved or inclined surface, or at least a portion may be formed as a stepped surface. Additionally, the ultrasonic focusing plate 740 may have a shape that protrudes convexly in the direction in which the ultrasonic waves travel, and may also have a shape that protrudes convexly in the direction toward the transducer 30. However, it is not limited to this, and can be changed into various shapes if the separation distance between the slits 742 of the ultrasonic focusing plate 740 and the transducer 30 is formed to vary depending on the position.
또한, 본 실시예에서, 상기 트랜스듀서(30)에서 방출된 초음파는 단일의 평면파인 것으로 예를 들어 설명하나, 이에 한정되지 않고 그 외 다른 형상인 것도 가능하다. In addition, in this embodiment, the ultrasonic wave emitted from the transducer 30 is described as a single plane wave, but it is not limited to this and may have other shapes.
한편, 도 14는 본 발명의 제8실시예에 따른 초음파 집속판의 평면도이다. Meanwhile, Figure 14 is a plan view of the ultrasonic focusing plate according to the eighth embodiment of the present invention.
도 14를 참조하면, 본 발명의 제8실시예에 따른 초음파 집속판(840)에 형성된 복수의 슬릿들(842)은 상기 초음파 집속판(840)의 중심으로부터 방사형으로 배열되되, 상기 슬릿들(842) 중에서 적어도 일부는 크기가 상기 초음파 집속판(840)의 중심으로부터 반경 방향으로 갈수록 축소되게 형성된 것이 상기 제4실시예와 상이하고, 그 외 나머지 구성 및 작용은 상기 제4실시예와 유사하므로, 유사 내용에 대한 상세한 설명은 생략한다.Referring to FIG. 14, a plurality of slits 842 formed in the ultrasonic focusing plate 840 according to the eighth embodiment of the present invention are arranged radially from the center of the ultrasonic focusing plate 840, and the slits ( 842), the size of at least part of the ultrasonic focusing plate 840 is different from the fourth embodiment in that it is formed to decrease in the radial direction from the center of the ultrasonic focusing plate 840, and the remaining configuration and operation are similar to the fourth embodiment. , detailed description of similar content is omitted.
상기 슬릿들(842)은 상기 초음파 집속판(840)의 중심으로부터 동일한 반경 내에 배열된 슬릿들끼리 가상의 원을 이루도록 배열된 것으로 예를 들어 설명한다. The slits 842 will be described as an example in which the slits arranged within the same radius from the center of the ultrasonic focusing plate 840 form a virtual circle.
상기 슬릿들(842)은 단면이 원형인 홀인 것으로 예를 들어 설명하나, 이에 한정되지 않고 상기 슬릿들(842)의 단면 형상은 다양하게 변경하여 적용 가능하다. The slits 842 are described as holes with circular cross-sections as an example, but are not limited to this and the cross-sectional shapes of the slits 842 can be changed in various ways.
또한, 상기 슬릿들(842)의 개수도 다양하게 변경하여 적용 가능하다. Additionally, the number of slits 842 can be changed and applied in various ways.
또한, 상기 슬릿들(842) 중에서 중심측에 배치된 적어도 일부의 중심 슬릿들(842a)은 크기가 서로 동일하게 형성되고, 나머지 주변 슬릿들(842b)은 상기 초음파 집속판(840)의 중심으로부터 반경 방향으로 갈수록 축소되게 형성된다. 또한, 중심 슬릿들(842a)사이의 이격 거리와 상기 주변 슬릿들(842b)사이의 이격 거리도 서로 다르게 설정된 것으로 예를 들어 설명한다. 다만, 이에 한정되지 않고, 상기 슬릿들(842)사이의 이격 거리는 모두 동일하게 설정되는 것도 물론 가능하다. In addition, among the slits 842, at least some of the central slits 842a disposed at the center have the same size, and the remaining peripheral slits 842b extend from the center of the ultrasonic focusing plate 840. It is formed to become smaller as it goes in the radial direction. In addition, the separation distance between the center slits 842a and the separation distance between the peripheral slits 842b are set differently, and will be described as an example. However, it is not limited to this, and of course, the separation distance between the slits 842 can all be set to be the same.
한편, 도 15는 본 발명의 제9실시예에 따른 초음파 집속판의 평면도이다. Meanwhile, Figure 15 is a plan view of the ultrasonic focusing plate according to the ninth embodiment of the present invention.
도 15를 참조하면, 본 발명의 제9실시예에 따른 초음파 집속판(940)에 형성된 복수의 슬릿들(942)은 상기 초음파 집속판(940)의 중심으로부터 방사형으로 배열되되, 상기 슬릿들(942) 중에서 적어도 일부는 크기가 상기 초음파 집속판(940)의 중심으로부터 반경 방향으로 갈수록 확대되게 형성된 것이 상기 제8실시예와 상이하고, 그 외 나머지 구성 및 작용은 상기 제8실시예와 유사하므로, 유사 내용에 대한 상세한 설명은 생략한다.Referring to FIG. 15, a plurality of slits 942 formed in the ultrasonic focusing plate 940 according to the ninth embodiment of the present invention are arranged radially from the center of the ultrasonic focusing plate 940, and the slits ( 942), the size of at least part of the ultrasonic focusing plate 940 is different from the eighth embodiment in that it is formed to expand in the radial direction from the center of the ultrasonic focusing plate 940, and the remaining configuration and operation are similar to the eighth embodiment. , detailed description of similar content is omitted.
상기 슬릿들(942)은 상기 초음파 집속판(940)의 중심으로부터 동일한 반경 내에 배열된 슬릿들끼리 가상의 원을 이루도록 배열된 것으로 예를 들어 설명한다. The slits 942 are explained as an example in which the slits arranged within the same radius from the center of the ultrasonic focusing plate 940 form a virtual circle.
상기 슬릿들(942)은 단면이 원형인 홀인 것으로 예를 들어 설명하나, 이에 한정되지 않고 상기 슬릿들(942)의 단면 형상은 다양하게 변경하여 적용 가능하다. The slits 942 are described as holes with circular cross-sections as an example, but are not limited to this and the cross-sectional shapes of the slits 942 can be changed in various ways.
또한, 상기 슬릿들(942)의 개수도 다양하게 변경하여 적용 가능하다. Additionally, the number of slits 942 can be changed and applied in various ways.
또한, 상기 슬릿들(942) 중에서 중심측에 배치된 적어도 일부의 중심 슬릿들(942a)은 크기가 서로 동일하게 형성되고, 나머지 주변 슬릿들(942b)은 상기 초음파 집속판(940)의 중심으로부터 반경 방향으로 갈수록 축소되게 형성된다. 또한, 중심 슬릿들(942a)사이의 이격 거리와 상기 주변 슬릿들(942b)사이의 이격 거리도 서로 다르게 설정된 것으로 예를 들어 설명한다. 다만, 이에 한정되지 않고, 상기 슬릿들(942)사이의 이격 거리는 모두 동일하게 설정되는 것도 물론 가능하다. In addition, among the slits 942, at least some of the central slits 942a disposed on the center side are formed to have the same size, and the remaining peripheral slits 942b are located from the center of the ultrasonic focusing plate 940. It is formed to shrink as it goes in the radial direction. In addition, the separation distance between the central slits 942a and the separation distance between the peripheral slits 942b are set differently, and will be described as an example. However, it is not limited to this, and the separation distance between the slits 942 may of course be set to be the same.
한편, 도 16은 본 발명의 제10실시예에 따른 초음파 집속판의 평면도이다. Meanwhile, Figure 16 is a plan view of the ultrasonic focusing plate according to the tenth embodiment of the present invention.
도 16을 참조하면, 본 발명의 제10실시예에 따른 초음파 집속판(1040)에 형성된 복수의 슬릿들(1042)이 복수의 행과 열을 이루도록 매트릭스 형태로 배열되되, 상기 슬릿들(1042) 중 적어도 일부는 상기 초음파 집속판(1040)의 중심으로부터 외측방향으로 갈수록 크기가 크게 형성된 것이 상기 제1실시예와 상이하고, 그 외 나머지 구성 및 작용은 상기 제1실시예와 유사하므로, 유사 내용에 대한 상세한 설명은 생략한다.Referring to FIG. 16, a plurality of slits 1042 formed in the ultrasonic focusing plate 1040 according to the tenth embodiment of the present invention are arranged in a matrix form to form a plurality of rows and columns, and the slits 1042 At least some of them are different from the first embodiment in that their size increases from the center of the ultrasonic focusing plate 1040 to the outside, and the remaining configuration and operation are similar to the first embodiment, so similar contents Detailed description is omitted.
상기 슬릿들(1042)은 단면이 원형인 홀인 것으로 예를 들어 설명하나, 이에 한정되지 않고 상기 슬릿들(1042)의 단면 형상은 다양하게 변경하여 적용 가능하다. For example, the slits 1042 are described as holes with a circular cross-section, but they are not limited to this and the cross-sectional shape of the slits 1042 can be changed in various ways.
또한, 상기 슬릿들(1042)의 개수도 다양하게 변경하여 적용 가능하다. Additionally, the number of slits 1042 can be changed and applied in various ways.
또한, 상기 슬릿들(1042)의 크기는 상기 초음파 집속판(1040)의 중심으로부터 외측방향으로 갈수록 점차 크게 형성된 것으로 예를 들어 설명한다. In addition, the size of the slits 1042 is gradually increased from the center of the ultrasonic focusing plate 1040 toward the outside.
또한, 상기 슬릿들(1042) 사이의 이격 거리는 모두 동일하게 설정되는 것도 가능하고, 적어도 일부의 슬릿들(1042) 사이의 이격 거리가 서로 다르게 설정되는 것도 물론 가능하다.In addition, the distance between the slits 1042 may all be set to be the same, and it is also possible, of course, that the distance between at least some of the slits 1042 may be set differently.
또한, 상기 슬릿들(1042)은 인접하는 슬릿과 일렬로 배열된 것으로 예를 들어 설명하나, 이에 한정되지 않고 인접하는 행 또는 인접하는 열에 배열된 슬릿들이 서로 엇갈리게 배열된 것도 물론 가능하다. In addition, the slits 1042 are described as being arranged in a line with adjacent slits, but the present invention is not limited to this, and it is also possible, of course, for the slits arranged in adjacent rows or adjacent columns to be arranged in a staggered manner.
한편, 도 17은 본 발명의 제11실시예에 따른 초음파 집속판의 평면도이다. Meanwhile, Figure 17 is a plan view of the ultrasonic focusing plate according to the 11th embodiment of the present invention.
도 17을 참조하면, 본 발명의 제11실시예에 따른 초음파 집속판(1140)에 형성된 복수의 슬릿들(1142)이 복수의 행과 열을 이루도록 매트릭스 형태로 배열되되, 상기 슬릿들(1142) 중 적어도 일부는 상기 초음파 집속판(1140)의 중심으로부터 외측방향으로 갈수록 크기가 작게 형성된 것이 상기 제10실시예와 상이하고, 그 외 나머지 구성 및 작용은 상기 제10실시예와 유사하므로, 유사 내용에 대한 상세한 설명은 생략한다.Referring to FIG. 17, a plurality of slits 1142 formed in the ultrasonic focusing plate 1140 according to the 11th embodiment of the present invention are arranged in a matrix form to form a plurality of rows and columns, and the slits 1142 At least some of them are different from the tenth embodiment in that they are formed to be smaller in size as they move from the center of the ultrasonic focusing plate 1140 outward, and the remaining configuration and operation are similar to the tenth embodiment, so similar contents Detailed description is omitted.
상기 슬릿들(1142)은 단면이 원형인 홀인 것으로 예를 들어 설명하나, 이에 한정되지 않고 상기 슬릿들(1142)의 단면 형상은 다양하게 변경하여 적용 가능하다. The slits 1142 are described as holes with circular cross-sections as an example, but are not limited to this and the cross-sectional shapes of the slits 1142 can be changed in various ways.
또한, 상기 슬릿들(1142)의 개수도 다양하게 변경하여 적용 가능하다. Additionally, the number of slits 1142 can be changed and applied in various ways.
또한, 상기 슬릿들(1142)의 크기는 상기 초음파 집속판(1140)의 중심으로부터 외측방향으로 갈수록 점차 크게 형성된 것으로 예를 들어 설명한다. In addition, the size of the slits 1142 is gradually increased from the center of the ultrasonic focusing plate 1140 toward the outside.
또한, 상기 슬릿들(1142) 사이의 이격 거리는 모두 동일하게 설정되는 것도 가능하고, 적어도 일부의 슬릿들(1142) 사이의 이격 거리가 서로 다르게 설정되는 것도 물론 가능하다.In addition, the distance between the slits 1142 may all be set to be the same, and it is also possible, of course, that the distance between at least some of the slits 1142 may be set differently.
또한, 상기 슬릿들(1142)은 인접하는 슬릿과 일렬로 배열된 것으로 예를 들어 설명하나, 이에 한정되지 않고 인접하는 행 또는 인접하는 열에 배열된 슬릿들이 서로 엇갈리게 배열된 것도 물론 가능하다. In addition, the slits 1142 are described as being arranged in a line with adjacent slits, but the present invention is not limited to this, and it is also possible, of course, for the slits arranged in adjacent rows or adjacent columns to be arranged in a staggered manner.
한편, 도 18은 본 발명의 제12실시예에 따른 초음파 집속판의 평면도이다. Meanwhile, Figure 18 is a plan view of an ultrasonic focusing plate according to the twelfth embodiment of the present invention.
도 18을 참조하면, 본 발명의 제12실시예에 따른 초음파 집속판(1240)에 형성된 복수의 슬릿들(1242)은 수평방향으로 길게 형성된 직사각형 형상으로 형성된 것이 상기 제1실시예와 상이하고, 그 외 나머지 구성 및 작용은 상기 제1실시예와 유사하므로, 유사 내용에 대한 상세한 설명은 생략한다.Referring to FIG. 18, the plurality of slits 1242 formed in the ultrasonic focusing plate 1240 according to the twelfth embodiment of the present invention are different from the first embodiment in that they are formed in a rectangular shape elongated in the horizontal direction, Since the remaining configuration and operation are similar to the first embodiment, detailed description of similar content will be omitted.
상기 슬릿들(1242)은, 상기 초음파 집속판(1240)의 표면에서 수평 방향인 제1방향(x)으로 길게 형성되고, 상기 초음파 집속판(1240)의 표면에서 상기 제1방향(x)에 수직한 제2방향(y)으로는 복수개가 서로 이격되게 형성된다. The slits 1242 are formed long in a horizontal first direction (x) on the surface of the ultrasonic focusing plate 1240, and extend in the first direction (x) on the surface of the ultrasonic focusing plate 1240. In the second vertical direction (y), a plurality of pieces are formed to be spaced apart from each other.
상기 슬릿들(1242)의 형상은 직사각형 형상인 것으로 예를 들어 설명하나, 이에 한정되지 않고, 정사각형, 타원 등 다양한 형상으로 변경 가능하다. The shape of the slits 1242 is described as having a rectangular shape as an example, but it is not limited to this and can be changed to various shapes such as a square or an oval.
또한, 상기 슬릿들(1242)의 개수는 다양하게 변경하여 적용 가능하다. Additionally, the number of slits 1242 can be changed and applied in various ways.
또한, 상기 슬릿들(1242)의 크기는 모두 동일하게 설정된 것으로 예를 들어 설명하나, 이에 한정되지 않고 적어도 일부의 슬릿들(1242)은 서로 크기가 다르게 형성되는 것도 물론 가능하다. In addition, the sizes of the slits 1242 are all set to be the same, but the present invention is not limited to this, and at least some of the slits 1242 may have different sizes.
또한, 상기 슬릿들(1242) 사이의 이격 거리는 모두 동일하게 설정되는 것도 가능하고, 적어도 일부의 슬릿들(1242) 사이의 이격 거리가 서로 다르게 설정되는 것도 물론 가능하다.In addition, the distance between the slits 1242 may all be set to be the same, and it is also possible, of course, that the distance between at least some of the slits 1242 may be set differently.
한편, 도 19는 본 발명의 제13실시예에 따른 초음파 집속판의 평면도이다. Meanwhile, Figure 19 is a plan view of the ultrasonic focusing plate according to the 13th embodiment of the present invention.
도 19를 참조하면, 본 발명의 제13실시예에 따른 초음파 집속판(1340)에 형성된 복수의 슬릿들(1342)은 복수의 행과 열을 이루도록 매트릭스 형태로 배열되되, 직사각형 형상으로 형성된 것이 상기 제1실시예와 상이하고, 그 외 나머지 구성 및 작용은 상기 제1실시예와 유사하므로, 유사 내용에 대한 상세한 설명은 생략한다.Referring to FIG. 19, a plurality of slits 1342 formed in the ultrasonic focusing plate 1340 according to the 13th embodiment of the present invention are arranged in a matrix form to form a plurality of rows and columns, and are formed in a rectangular shape. Since it is different from the first embodiment and the remaining configuration and operation are similar to the first embodiment, detailed description of similar content will be omitted.
상기 슬릿들(1342)은, 상기 초음파 집속판(1340)의 표면에서 수평 방향인 제1방향(x)으로 복수개가 서로 이격되게 형성되고, 상기 초음파 집속판(1340)의 표면에서 상기 제1방향(x)에 수직한 제2방향(y)으로도 복수개가 서로 이격되게 형성된다.The slits 1342 are formed to be spaced apart from each other in a first horizontal direction (x) on the surface of the ultrasonic focusing plate 1340, and are spaced apart from each other in the first direction (x) on the surface of the ultrasonic focusing plate 1340. A plurality of pieces are formed to be spaced apart from each other in the second direction (y) perpendicular to (x).
상기 슬릿들(1342)의 형상은 직사각형 형상인 것으로 예를 들어 설명하나, 이에 한정되지 않고, 정사각형, 타원 등 다양한 형상으로 변경 가능하다. The shape of the slits 1342 is described as being rectangular, but it is not limited to this and can be changed to various shapes such as square or oval.
또한, 상기 슬릿들(1342)의 개수는 다양하게 변경하여 적용 가능하다. Additionally, the number of slits 1342 can be changed and applied in various ways.
또한, 상기 슬릿들(1342)의 크기는 모두 동일하게 설정된 것으로 예를 들어 설명하나, 이에 한정되지 않고 적어도 일부의 슬릿들(1342)은 서로 크기가 다르게 형성되는 것도 물론 가능하다. In addition, the sizes of the slits 1342 are all set to be the same, but the present invention is not limited to this, and at least some of the slits 1342 may have different sizes.
또한, 상기 슬릿들(1342) 사이의 이격 거리는 모두 동일하게 설정되는 것도 가능하고, 적어도 일부의 슬릿들(1342) 사이의 이격 거리가 서로 다르게 설정되는 것도 물론 가능하다.In addition, the distance between the slits 1342 may all be set to be the same, and it is also possible, of course, that the distance between at least some of the slits 1342 may be set differently.
한편, 도 20은 본 발명의 제14실시예에 따른 초음파 집속판의 평면도이다. Meanwhile, Figure 20 is a plan view of the ultrasonic focusing plate according to the 14th embodiment of the present invention.
도 20을 참조하면, 본 발명의 제14실시예에 따른 초음파 집속판(1440)에 형성된 복수의 슬릿들(1442)은 수평방향으로 길게 형성되되, 각 슬릿(1442)은 상기 초음파 집속판(1440)의 중심으로부터 외측 방향으로 갈수록 점차 확장되는 형상으로 형성된 것이 상기 제12실시예와 상이하고, 그 외 나머지 구성 및 작용은 상기 제12실시예와 유사하므로, 유사 내용에 대한 상세한 설명은 생략한다.Referring to FIG. 20, a plurality of slits 1442 formed in the ultrasonic focusing plate 1440 according to the fourteenth embodiment of the present invention are formed long in the horizontal direction, and each slit 1442 is formed in the ultrasonic focusing plate 1440. ) is different from the twelfth embodiment in that it is formed in a shape that gradually expands from the center outward, and the remaining configuration and operation are similar to the twelfth embodiment, so detailed description of similar content will be omitted.
상기 슬릿들(1442)은, 상기 초음파 집속판(1440)의 표면에서 수평 방향인 제1방향(x)으로 길게 형성되고, 상기 초음파 집속판(1440)의 표면에서 상기 제1방향(x)에 수직한 제2방향(y)으로는 복수개가 서로 이격되게 형성된다. 다만, 이에 한정되지 않고, 상기 제1방향(x)으로도 복수개가 서로 이격되게 형성되는 것도 물론 가능하다.The slits 1442 are formed long in the first horizontal direction (x) on the surface of the ultrasonic focusing plate 1440, and extend in the first direction (x) on the surface of the ultrasonic focusing plate 1440. In the second vertical direction (y), a plurality of pieces are formed to be spaced apart from each other. However, it is not limited to this, and it is of course possible for a plurality of pieces to be formed to be spaced apart from each other in the first direction (x).
상기 슬릿들(1442)의 형상은 상기 초음파 집속판(1440)의 중심으로부터 외측을 향한 양방향으로 갈수록 점차 확장되는 리본 형상인 것으로 예를 들어 설명한다.The shape of the slits 1442 will be described as an example of a ribbon shape that gradually expands in both directions from the center of the ultrasonic focusing plate 1440 toward the outside.
또한, 상기 슬릿들(1442)의 개수는 다양하게 변경하여 적용 가능하다. Additionally, the number of slits 1442 can be changed and applied in various ways.
또한, 상기 슬릿들(1442)의 크기는 모두 동일하게 설정된 것으로 예를 들어 설명하나, 이에 한정되지 않고 적어도 일부의 슬릿들(1442)은 서로 크기가 다르게 형성되는 것도 물론 가능하다. In addition, the sizes of the slits 1442 are all set to be the same, but the present invention is not limited to this, and at least some of the slits 1442 may have different sizes.
또한, 상기 슬릿들(1442) 사이의 이격 거리는 모두 동일하게 설정되는 것도 가능하고, 적어도 일부의 슬릿들(1442) 사이의 이격 거리가 서로 다르게 설정되는 것도 물론 가능하다.In addition, the distance between the slits 1442 may all be set to be the same, and it is also possible, of course, that the distance between at least some of the slits 1442 may be set differently.
한편, 도 21은 본 발명의 제15실시예에 따른 초음파 집속판의 평면도이다. Meanwhile, Figure 21 is a plan view of an ultrasonic focusing plate according to the 15th embodiment of the present invention.
도 21을 참조하면, 본 발명의 제15실시예에 따른 초음파 집속판(1540)에 형성된 복수의 슬릿들(1542)은 수평방향으로 길게 형성되되, 각 슬릿(1542)은 상기 초음파 집속판(1540)의 중심으로부터 외측 방향으로 갈수록 점차 축소되는 형상으로 형성된 것이 상기 제14실시예와 상이하고, 그 외 나머지 구성 및 작용은 상기 제14실시예와 유사하므로, 유사 내용에 대한 상세한 설명은 생략한다.Referring to FIG. 21, a plurality of slits 1542 formed in the ultrasonic focusing plate 1540 according to the fifteenth embodiment of the present invention are formed long in the horizontal direction, and each slit 1542 is formed in the ultrasonic focusing plate 1540. ) is different from the 14th embodiment in that it is formed in a shape that gradually decreases from the center to the outside, and the remaining configuration and operation are similar to the 14th embodiment, so detailed description of similar content will be omitted.
상기 슬릿들(1542)은, 상기 초음파 집속판(1540)의 표면에서 수평 방향인 제1방향(x)으로 길게 형성되고, 상기 초음파 집속판(1540)의 표면에서 상기 제1방향(x)에 수직한 제2방향(y)으로는 복수개가 서로 이격되게 형성된다. 다만, 이에 한정되지 않고, 상기 제1방향(x)으로도 복수개가 서로 이격되게 형성되는 것도 물론 가능하다.The slits 1542 are formed long in a horizontal first direction (x) on the surface of the ultrasonic focusing plate 1540, and extend in the first direction (x) on the surface of the ultrasonic focusing plate 1540. In the second vertical direction (y), a plurality of pieces are formed to be spaced apart from each other. However, it is not limited to this, and it is of course possible for a plurality of pieces to be formed to be spaced apart from each other in the first direction (x).
상기 슬릿들(1542)의 형상은 상기 초음파 집속판(1540)의 중심으로부터 외측을 향한 양방향으로 갈수록 점차 축소되는 형상인 것으로 예를 들어 설명한다.The shape of the slits 1542 will be described as an example in which the shape gradually decreases in both directions from the center of the ultrasonic focusing plate 1540 toward the outside.
또한, 상기 슬릿들(1542)의 개수는 다양하게 변경하여 적용 가능하다. Additionally, the number of slits 1542 can be changed and applied in various ways.
또한, 상기 슬릿들(1542)의 크기는 모두 동일하게 설정된 것으로 예를 들어 설명하나, 이에 한정되지 않고 적어도 일부의 슬릿들(1542)은 서로 크기가 다르게 형성되는 것도 물론 가능하다. In addition, the sizes of the slits 1542 are all set to be the same, but the present invention is not limited to this, and at least some of the slits 1542 may have different sizes.
또한, 상기 슬릿들(1542) 사이의 이격 거리는 모두 동일하게 설정되는 것도 가능하고, 적어도 일부의 슬릿들(1542) 사이의 이격 거리가 서로 다르게 설정되는 것도 물론 가능하다.In addition, the distance between the slits 1542 may all be set to be the same, and it is also possible, of course, that the distance between at least some of the slits 1542 may be set differently.
한편, 도 22는 본 발명의 제16실시예에 따른 고강도 집속 초음파 발생 장치를 개략적으로 도시한 도면이다.Meanwhile, Figure 22 is a diagram schematically showing a high-intensity focused ultrasound generator according to the 16th embodiment of the present invention.
도 22를 참조하면, 본 발명의 제16실시예에 따른 고강도 집속 초음파 발생 장치는, 복수의 트랜스듀서들(1630)의 전방에 1개의 초음파 집속판(1640)이 설치되어 다대일(N:1)로 대응되게 배열된 것이 상기 제1실시예와 상이하고, 그 외 나머지 구성 및 작용은 상기 제1실시예와 유사하므로, 상이한 점을 중심으로 설명하고 유사 내용에 대한 상세한 설명은 생략한다.Referring to FIG. 22, the high-intensity focused ultrasound generator according to the 16th embodiment of the present invention has one ultrasound focusing plate 1640 installed in front of a plurality of transducers 1630 to produce many-to-one (N:1) ) is different from the first embodiment, and the remaining configuration and operation are similar to the first embodiment, so the description will focus on the differences and a detailed description of similar content will be omitted.
상기 초음파 집속판(1640)은, 복수의 상기 트랜스듀서들(1630)의 전방을 동시에 가릴 수 있도록 상기 트랜스듀서(1630)의 크기보다 크게 형성된다. 상기 초음파 집속판(1640)은 원판인 것으로 예를 들어 설명하나, 이에 한정되지 않고 다양한 형상으로 변경 가능하다.The ultrasonic focusing plate 1640 is formed to be larger than the transducer 1630 so that it can simultaneously cover the front of the plurality of transducers 1630. For example, the ultrasonic focusing plate 1640 is described as a disk, but it is not limited to this and can be changed into various shapes.
상기 초음파 집속판(1640)은, 상기 복수의 트랜스듀서들(1630)로부터 각각 방출되는 복수의 초음파들의 파동을 회절, 변환및 간섭시켜 상기 트랜스듀서(1630)마다 미리 설정된 초음파 집속 지점으로 집속시킨다. The ultrasonic focusing plate 1640 diffracts, converts, and interferes with the waves of a plurality of ultrasonic waves emitted from each of the plurality of transducers 1630 and focuses them on a preset ultrasonic focusing point for each transducer 1630.
상기 초음파 집속판(1640)에는 상기 복수의 트랜스듀서들(1630)에 각각 대향되는 위치마다 복수의 슬릿들(1642)이 형성된다.A plurality of slits 1642 are formed in the ultrasonic focusing plate 1640 at positions opposite to the plurality of transducers 1630, respectively.
상기 슬릿들(1642)은 상기 제1실시예 내지 상기 제15실시예 중 어느 하나의 것이 적용될 수 있다.The slits 1642 may be any one of the first to fifteenth embodiments.
본 실시예에서는, 복수의 트랜스듀서들(1630)에 1개의 초음파 집속판(1640)이 다대일(N:1)로 매칭되어 하나의 모듈을 이루고, 상기 모듈이 복수개가 어레이를 이루는 것도 가능하다. In this embodiment, one ultrasonic focusing plate 1640 is matched to a plurality of transducers 1630 in a many-to-one (N:1) manner to form one module, and it is also possible for a plurality of the modules to form an array. .
본 실시예에서, 상기 트랜스듀서(1630)에서 방출된 초음파는 평면파인 것으로 예를 들어 설명하나, 이에 한정되지 않고 그 외 다른 형상인 것도 가능하다. In this embodiment, the ultrasonic waves emitted from the transducer 1630 are described as plane waves, but they are not limited to this and may have other shapes.
또한, 상기 초음파 집속판(1640)은, 상기 트랜스듀서(1630)와 대향되는 부분이 평평한 평판 형상인 것도 가능하고, 입체 형상으로 형성되는 것도 가능하다. In addition, the ultrasonic focusing plate 1640 may have a flat plate shape at a portion opposite to the transducer 1630, or may be formed in a three-dimensional shape.
한편, 도 23은 본 발명의 제17실시예에 따른 고강도 집속 초음파 발생 장치를 개략적으로 도시한 도면이다.Meanwhile, Figure 23 is a diagram schematically showing a high-intensity focused ultrasound generator according to the 17th embodiment of the present invention.
도 23을 참조하면, 본 발명의 제17실시예에 따른 고강도 집속 초음파 발생 장치는, 트랜스듀서(1730)의 전방에 복수의 초음파 집속판(1740)이 초음파의 진행방향으로 다단으로 배치되어 일대다(1:N)로 대응되게 배열된 것이 상기 제1실시예와 상이하고, 그 외 나머지 구성 및 작용은 상기 제1실시예와 유사하므로, 상이한 점을 중심으로 설명하고 유사 내용에 대한 상세한 설명은 생략한다.Referring to FIG. 23, in the high-intensity focused ultrasound generator according to the 17th embodiment of the present invention, a plurality of ultrasound focusing plates 1740 are arranged in multiple stages in the direction of ultrasonic waves in front of the transducer 1730. The corresponding arrangement of (1:N) is different from the first embodiment, and the remaining configuration and operation are similar to the first embodiment, so the description will focus on the differences and a detailed description of similar contents will be provided. Omit it.
본 실시예에서는, 1개의 트랜스듀서(1730)에 2개의 제1,2초음파 집속판(1741)(1742)이 매칭되게 구비되어 하나의 모듈을 이루고, 상기 모듈이 복수개가 어레이를 이루도록 구성된 것으로 예를 들어 설명한다. 다만, 이에 한정되지 않고, 상기 초음파 집속판(1740)의 적층 개수는 초음파 에너지나 초음파 집속 지점에 따라 다양하게 변경하여 적용 가능하다.In this embodiment, two first and second ultrasound focusing plates 1741 and 1742 are matched to one transducer 1730 to form one module, and a plurality of the modules are configured to form an array. Explain with examples. However, it is not limited to this, and the number of stacks of the ultrasonic focusing plates 1740 can be changed and applied in various ways depending on ultrasonic energy or ultrasonic focusing point.
상기 제1초음파 집속판(1741)은, 상기 트랜스듀서(1730)의 전방에 배치되고, 복수의 제1슬릿들(1741a)이 형성된다. 상기 제1슬릿들(1741a)의 형상이나 배열은 상기 제1실시예 내지 상기 제15실시예 중 어느 하나의 것이 적용될 수 있다.The first ultrasound focusing plate 1741 is disposed in front of the transducer 1730, and a plurality of first slits 1741a are formed. The shape or arrangement of the first slits 1741a may be any one of the first to fifteenth embodiments.
상기 제2초음파 집속판(1742)은, 상기 초음파의 진행방향으로 상기 제1초음파 집속판(1741)의 전방으로부터 소정거리 이격되게 배치되고, 복수의 제2슬릿들(1742a)이 형성된다. 상기 제2슬릿들(1742a)의 형상이나 배열은 상기 제1실시예 내지 상기 제15실시예 중 어느 하나의 것이 적용될 수 있다.The second ultrasonic focusing plate 1742 is arranged to be spaced a predetermined distance from the front of the first ultrasonic focusing plate 1741 in the direction in which the ultrasonic waves travel, and a plurality of second slits 1742a are formed. The shape or arrangement of the second slits 1742a may be any one of the first to fifteenth embodiments.
상기 제1슬릿들(1741a)과 상기 제2슬릿들(1742a)은 서로 크기, 형상, 위치 및 배열이 동일하게 형성되는 것도 가능하고, 초음파 에너지나 초음파 집속 지점에 따라 적어도 일부가 서로 다르게 형성되는 것도 가능하다.The first slits 1741a and the second slits 1742a may be formed to have the same size, shape, position, and arrangement, and at least some of them may be formed differently depending on ultrasonic energy or ultrasonic focusing point. It is also possible.
본 실시예에서, 상기 트랜스듀서(1730)에서 방출된 초음파는 평면파인 것으로 예를 들어 설명하나, 이에 한정되지 않고 그 외 다른 형상인 것도 가능하다. In this embodiment, the ultrasonic waves emitted from the transducer 1730 are described as plane waves, but they are not limited to this and may have other shapes.
또한, 상기 제1초음파 집속판(1741)은, 상기 트랜스듀서(1730)와 대향되는 부분이 입체 형상이되 상기 초음파의 진행방향으로 볼록하게 돌출된 컨벡스 형상으로 형성된 것으로 예를 들어 설명하나, 이에 한정되지 않고 적어도 일부분이 곡면 또는 경사면으로 형성되거나, 적어도 일부분이 단차지게 형성되는 것도 가능하다. 또한, 상기 제1초음파 집속판(1741)은, 상기 트랜스듀서(1730)를 향한 방향으로 볼록하게 돌출된 형상인 것도 가능하다. 다만, 이에 한정되지 않고, 상기 제1초음파 집속판(1741)의 슬릿들(1741a)과 상기 트랜스듀서(1730)와의 이격 거리가 위치에 따라 다르도록 형성된다면 다양한 형상으로 변경하여 적용 가능하다. In addition, the first ultrasound focusing plate 1741 is described as an example in which the part opposite to the transducer 1730 is three-dimensional and is formed in a convex shape that protrudes convexly in the direction of travel of the ultrasonic waves. It is not limited, and it is possible for at least a portion to be formed as a curved or inclined surface, or for at least a portion to be formed to be stepped. Additionally, the first ultrasound focusing plate 1741 may have a shape that protrudes convexly in the direction toward the transducer 1730. However, it is not limited to this, and if the separation distance between the slits 1741a of the first ultrasound focusing plate 1741 and the transducer 1730 is formed to vary depending on the location, it can be changed into various shapes and applied.
또한, 상기 제2초음파 집속판(1742)은, 입체 형상이되 상기 초음파의 진행방향으로 볼록하게 돌출된 컨벡스 형상으로 형성된 것으로 예를 들어 설명하나, 이에 한정되지 않고 적어도 일부분이 곡면 또는 경사면으로 형성되거나, 적어도 일부분이 단차지게 형성되는 것도 가능하다. 또한, 상기 제2초음파 집속판(1742)은, 상기 제1초음파 집속판(1741)을 향한 방향으로 볼록하게 돌출된 형상인 것도 가능하다. 다만, 이에 한정되지 않고, 상기 제2초음파 집속판(1742)의 슬릿들(1742a)과 상기 제1초음파 집속판(1741)과의 이격 거리가 위치에 따라 다르도록 형성된다면 다양한 형상으로 변경하여 적용 가능하다. In addition, the second ultrasound focusing plate 1742 is described as an example of a three-dimensional shape formed in a convex shape that protrudes convexly in the direction of travel of the ultrasonic waves, but is not limited to this and at least a portion of the second ultrasound focusing plate 1742 is formed as a curved or inclined surface. Or, it is possible that at least a portion of it is formed to be stepped. Additionally, the second ultrasonic focusing plate 1742 may have a shape that protrudes convexly in the direction toward the first ultrasonic focusing plate 1741. However, it is not limited to this, and if the separation distance between the slits 1742a of the second ultrasonic focusing plate 1742 and the first ultrasonic focusing plate 1741 is formed to vary depending on the location, it can be changed into various shapes and applied. possible.
또한, 상기 제1초음파 집속판(1741)과 상기 제2초음파 집속판(1742)은, 서로 크기나 형상이 동일하게 형성되는 것도 가능하고, 초음파 에너지나 초음파 집속 지점에 따라 적어도 일부가 서로 다르게 형성되는 것도 가능하다. In addition, the first ultrasonic focusing plate 1741 and the second ultrasonic focusing plate 1742 may be formed to have the same size or shape, and at least some of them may be formed differently depending on the ultrasonic energy or the ultrasonic focusing point. It is also possible to become
한편, 도 24는 본 발명의 제18실시예에 따른 고강도 집속 초음파 발생 장치를 개략적으로 도시한 도면이다.Meanwhile, Figure 24 is a diagram schematically showing a high-intensity focused ultrasound generator according to an 18th embodiment of the present invention.
도 24를 참조하면, 본 발명의 제18실시예에 따른 고강도 집속 초음파 발생 장치는, 트랜스듀서(1830)의 전방에 복수의 초음파 집속판(1840)이 초음파의 진행방향으로 다단으로 배치되어 일대다(1:N)로 대응되게 배열되되, 상기 복수의 초음파 집속판(1840)은 각가 평판 형상인 것이 상기 제17실시예와 상이하고, 그 외 나머지 구성 및 작용은 상기 제17실시예와 유사하므로, 상이한 점을 중심으로 설명하고 유사 내용에 대한 상세한 설명은 생략한다.Referring to FIG. 24, in the high-intensity focused ultrasound generator according to the 18th embodiment of the present invention, a plurality of ultrasound focusing plates 1840 are arranged in multiple stages in the direction of ultrasonic waves in front of the transducer 1830. They are arranged correspondingly (1:N), but the plurality of ultrasonic focusing plates 1840 are different from the seventeenth embodiment in that each has a flat plate shape, and the remaining configuration and operation are similar to the seventeenth embodiment. , the description will focus on the differences and omit detailed descriptions of similar content.
본 실시예에서는, 1개의 트랜스듀서(1830)에 2개의 제1,2초음파 집속판(1841)(1842)이 매칭되게 구비되어 하나의 모듈을 이루고, 상기 모듈이 복수개가 어레이를 이루도록 구성된 것으로 예를 들어 설명한다. 다만, 이에 한정되지 않고, 상기 초음파 집속판(1840)의 적층 개수는 초음파 에너지나 초음파 집속 지점에 따라 다양하게 변경하여 적용 가능하다.In this embodiment, one transducer 1830 is provided with two first and second ultrasound focusing plates 1841 and 1842 in matching order to form one module, and a plurality of the modules are configured to form an array. Explain with examples. However, it is not limited to this, and the number of stacks of the ultrasonic focusing plates 1840 can be varied depending on ultrasonic energy or ultrasonic focusing point.
상기 제1초음파 집속판(1841)은, 상기 트랜스듀서(1830)의 전방에 배치되고, 복수의 제1슬릿들(1841a)이 형성된다. 상기 제1슬릿들(1841a)의 형상이나 배열은 상기 제1실시예 내지 상기 제15실시예 중 어느 하나의 것이 적용될 수 있다.The first ultrasound focusing plate 1841 is disposed in front of the transducer 1830, and a plurality of first slits 1841a are formed. The shape or arrangement of the first slits 1841a may be any one of the first to fifteenth embodiments.
상기 제2초음파 집속판(1842)은, 상기 초음파의 진행방향으로 상기 제1초음파 집속판(1841)의 전방으로부터 소정거리 이격되게 배치되고, 복수의 제2슬릿들(1842a)이 형성된다. 상기 제2슬릿들(1842a)의 형상이나 배열은 상기 제1실시예 내지 상기 제15실시예 중 어느 하나의 것이 적용될 수 있다.The second ultrasonic focusing plate 1842 is arranged to be spaced a predetermined distance from the front of the first ultrasonic focusing plate 1841 in the direction in which the ultrasonic waves travel, and a plurality of second slits 1842a are formed. The shape or arrangement of the second slits 1842a may be any one of the first to fifteenth embodiments.
상기 제1슬릿들(1841a)과 상기 제2슬릿들(1842a)은 서로 크기, 형상, 위치 및 배열 중 적어도 일부가 동일하게 형성되는 것도 가능하고, 서로 다르게 형성되는 것도 가능하다. 본 실시예에서는, 상기 제1슬릿들(1841a)과 상기 제2슬릿들(1842a)은 서로 크기와 형상은 동일하되 위치는 서로 엇갈리게 배열된 것으로 예를 들어 설명한다. 상기 제1슬릿들(1841a)과 상기 제2슬릿들(1842a)의 각 위치는 초음파 에너지나 초음파 집속 지점에 따라 설정될 수 있다. The first slits 1841a and the second slits 1842a may be formed to be the same in size, shape, location, and arrangement, or may be formed differently from each other. In this embodiment, the first slits 1841a and the second slits 1842a have the same size and shape, but are arranged in staggered positions. Each position of the first slits 1841a and the second slits 1842a may be set according to ultrasonic energy or ultrasonic focusing point.
본 실시예에서, 상기 트랜스듀서(1830)에서 방출된 초음파는 평면파인 것으로 예를 들어 설명하나, 이에 한정되지 않고 그 외 다른 형상인 것도 가능하다. In this embodiment, the ultrasonic waves emitted from the transducer 1830 are described as plane waves, but they are not limited to this and may have other shapes.
한편, 도 25는 본 발명의 제19실시예에 따른 고강도 집속 초음파 발생 장치를 개략적으로 도시한 도면이다.Meanwhile, Figure 25 is a diagram schematically showing a high-intensity focused ultrasound generator according to the 19th embodiment of the present invention.
도 25를 참조하면, 본 발명의 제19실시예에 따른 고강도 집속 초음파 발생 장치는, 초음파 집속 모듈은 트랜스듀서(1930)의 표면에 흡음재를 이용하여 미리 설정된 패턴으로 코팅되어 상기 트랜스듀서(1930)에서 방출된 초음파의 파동을 회절시키고 적어도 하나 이상이 다른 위상을 갖는 파동들로 변환시키며 변환된 파동들의 간섭을 유도하여 상기 파동들을 미리 설정된 초음파 집속 지점에 집속시키기 위한 코팅층(1940)를 포함하는 것이 상기 실시예들과 상이하고, 그 외 나머지 구성 및 작용은 유사하므로, 유사 구성에 대한 상세한 설명은 생략한다.Referring to FIG. 25, in the high-intensity focused ultrasound generator according to the 19th embodiment of the present invention, the ultrasonic focusing module is coated with a preset pattern using a sound absorbing material on the surface of the transducer 1930. It includes a coating layer 1940 for diffracting ultrasonic waves emitted from the beam, converting at least one wave into waves having different phases, inducing interference between the converted waves, and focusing the waves on a preset ultrasonic focusing point. Since it is different from the above embodiments and the remaining configurations and operations are similar, detailed descriptions of similar configurations are omitted.
상기 코팅층(1940)은, 상기 트랜스듀서(1930)의 표면에 코팅되고 초음파를 흡수할 수 있는 흡음 가능한 소재라면 적용 가능하다.The coating layer 1940 can be applied as long as it is coated on the surface of the transducer 1930 and is made of a sound-absorbing material that can absorb ultrasonic waves.
상기 코팅층(1940)의 두께는 다양하게 변경가능하며, 상기 초음파의 진행방향으로 볼록하게 돌출된 형상인 것도 가능하고, 상기 트랜스듀서(1930)를 향한 방향으로 볼록하게 돌출된 형상인 것도 가능하고, 평평한 형상인 것도 가능하고 단차지거나 경사지게 형성된 것도 물론 가능하다. The thickness of the coating layer 1940 can be changed in various ways, and may have a shape that protrudes convexly in the direction in which the ultrasonic waves travel, or may have a shape that protrudes convexly in the direction toward the transducer 1930, It is possible to have a flat shape, and of course it is also possible to have a stepped or inclined shape.
상기 패턴은 복수의 홀들(1940a)이 다양하게 배열된 형태가 적용될 수 있다. 상기 홀들(940a)의 형상이나 배열은 상기 제1실시예 내지 상기 제15실시예 중 어느 하나의 것이 적용될 수 있다.The pattern may have a plurality of holes 1940a arranged in various ways. The shape or arrangement of the holes 940a may be any one of the first to fifteenth embodiments.
한편, 도 26은 본 발명의 제20실시예에 따른 고강도 집속 초음파 발생 장치를 개략적으로 도시한 도면이다.Meanwhile, Figure 26 is a diagram schematically showing a high-intensity focused ultrasound generator according to the twentieth embodiment of the present invention.
도 26을 참조하면, 본 발명의 제20실시예에 따른 고강도 집속 초음파 발생 장치는 1개의 상기 트랜스듀서(30)와 1개의 초음파 집속판(40)을 포함하는 것도 물론 가능하다.Referring to FIG. 26, it is of course possible for the high-intensity focused ultrasound generator according to the twentieth embodiment of the present invention to include one transducer 30 and one ultrasound focusing plate 40.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.The present invention has been described with reference to the embodiments shown in the drawings, but these are merely exemplary, and those skilled in the art will understand that various modifications and equivalent other embodiments are possible therefrom. Therefore, the true scope of technical protection of the present invention should be determined by the technical spirit of the attached patent claims.
본 발명에 따르면 국소 부위를 보다 정확하게 치료할 수 있는 고강도 집속 초음파 발생 장치를 제조할 수 있다. According to the present invention, it is possible to manufacture a high-intensity focused ultrasound generator that can more accurately treat local areas.

Claims (16)

  1. 전원이 인가되면 초음파를 방출하는 트랜스듀서와;A transducer that emits ultrasonic waves when power is applied;
    상기 트랜스듀서의 전방에 배치되고, 상기 트랜스듀서로부터 방출된 초음파가 통과되도록 형성되고, 적어도 하나의 슬릿이 형성되어, 상기 초음파의 파동이 통과하면서 회절(Diffraction)되도록 하고, 적어도 하나 이상이 다른 위상을 갖는 파동들로 변환시키며, 변환된 파동들의 간섭(Interference)을 유도하여, 상기 파동들을 미리 설정된 초음파 집속 지점에 집속시키는 초음파 집속모듈을 포함하는,It is disposed in front of the transducer, is formed to allow ultrasonic waves emitted from the transducer to pass through, and at least one slit is formed to allow the ultrasonic waves to be diffracted while passing through, and at least one of the different phases. Contains an ultrasonic focusing module that converts the waves into waves having a , induces interference of the converted waves, and focuses the waves on a preset ultrasonic focusing point.
    슬릿을 이용하여 초음파를 집속하는 고강도 집속 초음파 발생 장치.A high-intensity focused ultrasound generator that focuses ultrasound waves using a slit.
  2. 청구항 1에 있어서,In claim 1,
    상기 초음파 집속 모듈은, The ultrasonic focusing module,
    상기 트랜스듀서로부터 방출된 초음파를 동시에 전달받도록 상기 트랜스듀서에 대향되는 면이 평평한 평판 형상으로 형성된 것을 특징으로 하는,Characterized in that the surface opposite the transducer is formed in a flat plate shape to simultaneously receive the ultrasonic waves emitted from the transducer,
    슬릿을 이용하여 초음파를 집속하는 고강도 집속 초음파 발생 장치.A high-intensity focused ultrasound generator that focuses ultrasound waves using a slit.
  3. 청구항 1에 있어서,In claim 1,
    상기 초음파 집속 모듈은, The ultrasonic focusing module,
    상기 트랜스듀서와의 이격 거리가 위치에 따라 다르도록 상기 트랜스듀서에 대향되는 면 중 적어도 일부분이 입체 형상으로 형성된 것을 특징으로 하는,Characterized in that at least a portion of the surface facing the transducer is formed in a three-dimensional shape so that the separation distance from the transducer varies depending on the position.
    슬릿을 이용하여 초음파를 집속하는 고강도 집속 초음파 발생 장치.A high-intensity focused ultrasound generator that focuses ultrasound waves using a slit.
  4. 청구항 1에 있어서,In claim 1,
    상기 초음파 집속모듈을 통과한 초음파는 구면파로 변환된 것을 특징으로 하는,Characterized in that the ultrasonic waves passing through the ultrasonic focusing module are converted into spherical waves.
    슬릿을 이용하여 초음파를 집속하는 고강도 집속 초음파 발생 장치.A high-intensity focused ultrasound generator that focuses ultrasound waves using a slit.
  5. 청구항 1에 있어서,In claim 1,
    상기 트랜스듀서는 복수개를 포함하고,The transducer includes a plurality of transducers,
    상기 복수의 트랜스듀서들 중 적어도 일부는 적어도 하나 이상이 다른 위상을 갖는 초음파들을 방출하고, At least one of the plurality of transducers emits ultrasonic waves having different phases,
    상기 초음파 집속모듈을 통과한 초음파는 구면파로 변환된 것을 특징으로 하는,Characterized in that the ultrasonic waves passing through the ultrasonic focusing module are converted into spherical waves.
    슬릿을 이용하여 초음파를 집속하는 고강도 집속 초음파 발생 장치.A high-intensity focused ultrasound generator that focuses ultrasound waves using a slit.
  6. 청구항 1에 있어서,In claim 1,
    상기 트랜스듀서와 상기 초음파 집속모듈 사이의 이격 거리는,The separation distance between the transducer and the ultrasonic focusing module is,
    상기 트랜스듀서의 직경과 상기 초음파의 파장 중 적어도 하나에 따라 설정된 것을 특징으로 하는,Characterized in that it is set according to at least one of the diameter of the transducer and the wavelength of the ultrasound,
    슬릿을 이용하여 초음파를 집속하는 고강도 집속 초음파 발생 장치.A high-intensity focused ultrasound generator that focuses ultrasound waves using a slit.
  7. 청구항 1에 있어서,In claim 1,
    상기 슬릿의 크기는, 상기 초음파의 파장에 따라 설정된 것을 특징으로 하는, The size of the slit is set according to the wavelength of the ultrasonic wave,
    슬릿을 이용하여 초음파를 집속하는 고강도 집속 초음파 발생 장치.A high-intensity focused ultrasound generator that focuses ultrasound waves using a slit.
  8. 청구항 7에 있어서,In claim 7,
    상기 슬릿들은 복수개가 서로 이격되게 형성되고,A plurality of slits are formed to be spaced apart from each other,
    상기 복수의 슬릿들 중 적어도 일부는 서로 크기가 다르게 형성된 것을 특징으로 하는,At least some of the plurality of slits are formed in different sizes,
    슬릿을 이용하여 초음파를 집속하는 고강도 집속 초음파 발생 장치.A high-intensity focused ultrasound generator that focuses ultrasound waves using a slit.
  9. 청구항 1에 있어서,In claim 1,
    상기 슬릿들은 복수개가 서로 이격되게 형성되고,A plurality of slits are formed to be spaced apart from each other,
    상기 복수의 슬릿들사이의 이격 거리는, 상기 초음파의 파장에 따라 설정된 것을 특징으로 하는,The separation distance between the plurality of slits is set according to the wavelength of the ultrasonic waves,
    슬릿을 이용하여 초음파를 집속하는 고강도 집속 초음파 발생 장치.A high-intensity focused ultrasound generator that focuses ultrasound waves using a slit.
  10. 청구항 1에 있어서,In claim 1,
    상기 슬릿들은 복수개가 서로 이격되게 형성되고,A plurality of slits are formed to be spaced apart from each other,
    상기 복수의 슬릿들은, 적어도 하나의 행과 적어도 하나의 열을 이루도록 배열된 것을 특징으로 하는,The plurality of slits are arranged to form at least one row and at least one column,
    슬릿을 이용하여 초음파를 집속하는 고강도 집속 초음파 발생 장치.A high-intensity focused ultrasound generator that focuses ultrasound waves using a slit.
  11. 청구항 1에 있어서,In claim 1,
    상기 슬릿들은 복수개가 서로 이격되게 형성되고,A plurality of slits are formed to be spaced apart from each other,
    상기 복수의 슬릿들은, 상기 초음파 집속모듈의 중심으로부터 방사형으로 배열된 것을 특징으로 하는, The plurality of slits are arranged radially from the center of the ultrasonic focusing module,
    슬릿을 이용하여 초음파를 집속하는 고강도 집속 초음파 발생 장치.A high-intensity focused ultrasound generator that focuses ultrasound waves using a slit.
  12. 청구항 1에 있어서,In claim 1,
    상기 슬릿은, 단면이 원형, 다각형, 라운드형 중 적어도 하나의 형상으로 형성된 것을 특징으로 하는,The slit is characterized in that the cross-section is formed in at least one shape among circular, polygonal, and round shapes,
    슬릿을 이용하여 초음파를 집속하는 고강도 집속 초음파 발생 장치. A high-intensity focused ultrasound generator that focuses ultrasound waves using a slit.
  13. 청구항 1에 있어서,In claim 1,
    상기 슬릿은, 단면이 링 형상과 원호 형상 중 적어도 하나의 형상으로 형성된 것을 특징으로 하는,The slit is characterized in that the cross-section is formed in at least one of a ring shape and an arc shape.
    슬릿을 이용하여 초음파를 집속하는 고강도 집속 초음파 발생 장치.A high-intensity focused ultrasound generator that focuses ultrasound waves using a slit.
  14. 청구항 1에 있어서,In claim 1,
    상기 슬릿은, 형상이 상기 초음파 집속모듈의 중심으로부터 외측 방향으로 갈수록 확대 또는 축소되는 형상으로 형성된 것을 특징으로 하는,The slit is characterized in that it is formed in a shape that expands or contracts in an outward direction from the center of the ultrasonic focusing module.
    슬릿을 이용하여 초음파를 집속하는 고강도 집속 초음파 발생 장치.A high-intensity focused ultrasound generator that focuses ultrasound waves using a slit.
  15. 복수의 결합홀들이 형성된 초음파 방사 프레임과;An ultrasonic radiation frame formed with a plurality of coupling holes;
    상기 초음파 방사 프레임의 전방에서 상기 결합홀들에 각각 삽입되어, 상기 초음파 방사 프레임을 관통하여 착탈가능하도록 결합된 트랜스듀서 홀더들과;Transducer holders are respectively inserted into the coupling holes in front of the ultrasonic radiation frame and are detachably coupled to penetrate the ultrasonic radiation frame;
    상기 트랜스듀서 홀더들에 전면이 노출되게 장착되어, 상기 초음파 방사 프레임의 전면에 복수개가 서로 이격되게 배열되고, 전원이 인가되면 초음파를 방출하는 트랜스듀서와;A plurality of transducers are mounted on the transducer holders with their front surfaces exposed, arranged to be spaced apart from each other on the front of the ultrasonic radiation frame, and emit ultrasonic waves when power is applied;
    상기 트랜스듀서로부터 상기 초음파의 진행방향으로 이격되게 배치되고 상기 초음파 방사 프레임에 착탈가능하도록 결합되며, 상기 트랜스듀서로부터 방출된 초음파를 동시에 전달받도록 상기 트랜스듀서에 대향되는 면이 평평한 평판 형상으로 형성되며, 상기 초음파가 통과하는 복수의 슬릿들이 형성되어, 상기 초음파의 파동이 통과하면서 회절(Diffraction)되도록 하고, 적어도 하나 이상이 다른 위상을 갖는 파동들로 변환시키며, 변환된 파동들의 간섭(Interference)을 유도하여, 상기 파동들을 미리 설정된 초음파 집속 지점에 집속시키는 초음파 집속모듈과;It is arranged to be spaced apart from the transducer in the direction of travel of the ultrasonic waves and is detachably coupled to the ultrasonic radiation frame, and the surface opposing the transducer is formed in a flat plate shape to simultaneously receive the ultrasonic waves emitted from the transducer. , a plurality of slits through which the ultrasonic waves pass are formed, causing the ultrasonic waves to be diffracted as they pass through, converting at least one into waves with different phases, and preventing interference of the converted waves. an ultrasonic focusing module that guides and focuses the waves to a preset ultrasonic focusing point;
    상기 초음파 집속모듈을 상기 초음파 방사 프레임에 착탈가능토록 결합시키는 결합부재를 포함하는,Comprising a coupling member that detachably couples the ultrasonic focusing module to the ultrasonic radiation frame,
    슬릿을 이용하여 초음파를 집속하는 고강도 집속 초음파 발생 장치.A high-intensity focused ultrasound generator that focuses ultrasound waves using a slit.
  16. 복수의 결합홀들이 형성된 초음파 방사 프레임과;An ultrasonic radiation frame formed with a plurality of coupling holes;
    상기 초음파 방사 프레임의 전방에서 상기 결합홀들에 각각 삽입되어, 상기 초음파 방사 프레임을 관통하여 착탈가능하도록 결합된 트랜스듀서 홀더들과;Transducer holders are respectively inserted into the coupling holes in front of the ultrasonic radiation frame and are detachably coupled to penetrate the ultrasonic radiation frame;
    상기 트랜스듀서 홀더들에 전면이 노출되게 장착되어, 상기 초음파 방사 프레임의 전면에 복수개가 서로 이격되게 배열되고, 전원이 인가되면 초음파를 방출하는 트랜스듀서와;A plurality of transducers are mounted on the transducer holders with their front surfaces exposed, arranged to be spaced apart from each other on the front of the ultrasonic radiation frame, and emit ultrasonic waves when power is applied;
    상기 트랜스듀서로부터 상기 초음파의 진행방향으로 이격되게 배치되고 상기 초음파 방사 프레임에 착탈가능하도록 결합되며, 상기 트랜스듀서와의 이격 거리가 위치에 따라 다르도록 상기 트랜스듀서에 대향되는 면 중 적어도 일부분이 입체 형상으로 형성되며, 상기 초음파가 통과하는 복수의 슬릿들이 형성되어, 상기 초음파의 파동이 통과하면서 회절(Diffraction)되도록 하고, 적어도 하나 이상이 다른 위상을 갖는 파동들로 변환시키며, 변환된 파동들의 간섭(Interference)을 유도하여, 상기 파동들을 미리 설정된 초음파 집속 지점에 집속시키는 초음파 집속모듈과;It is arranged to be spaced apart from the transducer in the direction of travel of the ultrasonic waves and is detachably coupled to the ultrasonic radiation frame, and at least a portion of the surface facing the transducer is three-dimensional so that the separation distance from the transducer varies depending on the position. It is formed in a shape, and a plurality of slits through which the ultrasonic waves pass are formed, causing the ultrasonic waves to be diffracted as they pass through, converting at least one of them into waves with different phases, and causing interference between the converted waves. An ultrasonic focusing module that induces interference and focuses the waves on a preset ultrasonic focusing point;
    상기 초음파 집속모듈을 상기 초음파 방사 프레임에 착탈가능토록 결합시키는 결합부재를 포함하는,Comprising a coupling member that detachably couples the ultrasonic focusing module to the ultrasonic radiation frame,
    슬릿을 이용하여 초음파를 집속하는 고강도 집속 초음파 발생 장치.A high-intensity focused ultrasound generator that focuses ultrasound waves using a slit.
PCT/KR2023/014165 2022-12-09 2023-09-19 High-intensity focused ultrasonic wave generation device for focusing ultrasonic wave by using slit WO2024122824A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220171539A KR20240086213A (en) 2022-12-09 2022-12-09 High-intensity focused ultrasound treatment device that focuses ultrasound using slit
KR10-2022-0171539 2022-12-09

Publications (1)

Publication Number Publication Date
WO2024122824A1 true WO2024122824A1 (en) 2024-06-13

Family

ID=91379632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/014165 WO2024122824A1 (en) 2022-12-09 2023-09-19 High-intensity focused ultrasonic wave generation device for focusing ultrasonic wave by using slit

Country Status (2)

Country Link
KR (1) KR20240086213A (en)
WO (1) WO2024122824A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110074326A (en) * 2009-12-24 2011-06-30 주식회사 알디에스코리아 High-intensity focused ultrasound treatment system
JP2011193991A (en) * 2010-03-18 2011-10-06 Olympus Corp Ultrasonic irradiation apparatus
KR20150145754A (en) * 2014-06-19 2015-12-31 주식회사 휴먼스캔 Block for dissipating ultrasonic and ultra sonic probe having the same
JP2019146980A (en) * 2012-04-30 2019-09-05 ザ リージェンツ オブ ザ ユニヴァシティ オブ ミシガン Ultrasound therapy system, methods of designing and manufacturing ultrasound system
KR102241711B1 (en) * 2019-11-11 2021-04-20 재단법인 파동에너지 극한제어 연구단 Cover unit of ultrasonic transducer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101952588B1 (en) 2018-08-24 2019-02-27 주식회사 이오브이울트라소닉스 Transducer cartridge capable of focusing high intensity ultrasound simultaneously at multiple points in the skin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110074326A (en) * 2009-12-24 2011-06-30 주식회사 알디에스코리아 High-intensity focused ultrasound treatment system
JP2011193991A (en) * 2010-03-18 2011-10-06 Olympus Corp Ultrasonic irradiation apparatus
JP2019146980A (en) * 2012-04-30 2019-09-05 ザ リージェンツ オブ ザ ユニヴァシティ オブ ミシガン Ultrasound therapy system, methods of designing and manufacturing ultrasound system
KR20150145754A (en) * 2014-06-19 2015-12-31 주식회사 휴먼스캔 Block for dissipating ultrasonic and ultra sonic probe having the same
KR102241711B1 (en) * 2019-11-11 2021-04-20 재단법인 파동에너지 극한제어 연구단 Cover unit of ultrasonic transducer

Also Published As

Publication number Publication date
KR20240086213A (en) 2024-06-18

Similar Documents

Publication Publication Date Title
WO2019088372A1 (en) Flexible frame and flexible display unit having the same
WO2019088373A1 (en) Flexible display unit and mobile terminal including same
WO2022055194A1 (en) Flying-over beam pattern scanning hologram microscope device using scan mirror and translation stage
WO2018117382A1 (en) Light emitting diode having high reliability
WO2019135493A1 (en) Lidar device
WO2013183955A1 (en) Obstacle sensing module and cleaning robot including the same
WO2014129732A1 (en) Line-focused ultrasound transducer and high-intensity line focused ultrasound generator including same
EP2237945A2 (en) Lens unit, lens assembly, camera module, method of fabricating camera module and lens assembly, method of fabricating optic member, and apparatus for fabricating optic member
WO2019164106A1 (en) Hand-wearable device and manufacturing method therefor
WO2021045529A1 (en) Lidar device
WO2024122824A1 (en) High-intensity focused ultrasonic wave generation device for focusing ultrasonic wave by using slit
WO2016111583A1 (en) Microphone
WO2018084355A1 (en) High-resolution terahertz wave concentrating module, scattered light detection module, and high-resolution inspection apparatus using terahertz bessel beam
WO2014178514A1 (en) Scanning module, detection device using bessel beam, detection probe, and probe type detection device
WO2024122823A1 (en) High-intensity focused ultrasonic generation device for focusing ultrasonic waves by using diffraction and interference of waves
WO2022005070A1 (en) Elastic member and display device comprising same
WO2024122822A1 (en) High-intensity focused ultrasound generator for focusing ultrasonic waves using wave diffraction and interference
WO2021125451A1 (en) Electro-responsive gel lens having automatic multifocal and image stabilization functions
WO2020059977A1 (en) Continuously steerable second-order differential microphone array and method for configuring same
WO2022231219A1 (en) Arc extinguishing unit and air circuit breaker comprising same
WO2023249437A1 (en) Camera device
WO2021242063A1 (en) Ultrasonic transmission device and wave control method
WO2023140536A1 (en) Mask assembly, method for manufacturing same, and method for manufacturing display panel by using mask assembly
WO2020184830A1 (en) Ultrasonic probe and method for manufacturing same
WO2022225177A1 (en) Flying-over beam pattern scanning hologram microscope device using spatial modulation scanner and translation stage