WO2024122504A1 - Brake torque estimation device - Google Patents

Brake torque estimation device Download PDF

Info

Publication number
WO2024122504A1
WO2024122504A1 PCT/JP2023/043320 JP2023043320W WO2024122504A1 WO 2024122504 A1 WO2024122504 A1 WO 2024122504A1 JP 2023043320 W JP2023043320 W JP 2023043320W WO 2024122504 A1 WO2024122504 A1 WO 2024122504A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking torque
vehicle
tire
braking
brake
Prior art date
Application number
PCT/JP2023/043320
Other languages
French (fr)
Japanese (ja)
Inventor
信治 瀬戸
大輔 後藤
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2024122504A1 publication Critical patent/WO2024122504A1/en

Links

Images

Definitions

  • the present invention relates to a braking torque estimation device that is used for vehicle motion control and estimates the braking torque of a vehicle.
  • Another method for estimating tire longitudinal forces is to determine the slip ratio based on the difference between vehicle speed and wheel speed. This method has issues with the difficulty of eliminating steady-state error when estimating vehicle speed by integrating longitudinal acceleration, and the cost of adding sensors.
  • the brake device described in Patent Document 1 includes a ground load estimation unit that estimates the ground load of the wheels, a front/rear braking force correction value calculation unit that estimates a front/rear braking force ratio from the angular velocity of the wheels during braking and the ground load and calculates a front/rear braking force correction value for controlling the braking force of the wheels based on the front/rear braking force ratio, a left/right braking force correction value calculation unit that calculates a left/right braking force correction value for reducing the left/right difference in the braking force of the wheels from the angular velocity of the wheels during braking, and a command value calculation unit that calculates a braking force command value based on a braking force target value, a front/rear braking force correction value, and a left/right braking force correction value.
  • Non-Patent Document 1 also describes a technique for estimating the slip ratio using an observer.
  • Conventional technology has the problem that it is difficult to accurately estimate braking torque, and in particular, it is difficult to accurately estimate tire longitudinal force, slip ratio, and vehicle speed, which are necessary to estimate braking torque.
  • Patent Document 1 uses the estimated wheel ground load to control the front and rear braking forces, and estimates the tire front and rear forces when the left and right braking forces of at least one of the front and rear wheels are approximately equal. With this technology, it is difficult to estimate the tire front and rear forces when there is a difference in braking forces between the left and right wheels.
  • the slip ratio is estimated by an observer from the wheel speed, its derivative, and the longitudinal acceleration.
  • the convergence of the estimation is guaranteed by using an observer, but there are issues in that the accuracy from moment to moment is not guaranteed and the derivative value of the wheel speed is required.
  • the object of the present invention is to provide a braking torque estimation device that can estimate braking torque with high accuracy at low cost.
  • the braking torque estimation device can be installed on a vehicle having multiple wheels with tires, and includes a braking torque calculation unit that calculates the braking torque of the wheels, and inputs the wheel speed of the wheels and the longitudinal acceleration, which is the acceleration in the longitudinal direction of the vehicle.
  • the braking torque calculation unit calculates the vehicle body speed, the tire longitudinal force of the wheels, and the slip ratio of the wheels based on the wheel speed, the tire load of the wheels, the longitudinal acceleration, and the tire characteristics of the wheels, and calculates the braking torque based on the calculated tire longitudinal force.
  • the present invention provides a braking torque estimation device that can estimate braking torque with high accuracy at low cost.
  • FIG. 1 is a diagram showing an example of the configuration of a vehicle equipped with a braking torque estimation device according to a first embodiment of the present invention
  • 1 is a block diagram showing a configuration of a braking torque estimation device according to a first embodiment
  • FIG. 4 is a diagram showing an example of the relationship between a slip ratio and a friction coefficient, which are tire characteristics.
  • FIG. 4 is a diagram showing an example of the relationship between the slip ratio and the friction coefficient when the sideslip angle is changed.
  • FIG. 11 is a block diagram showing the configuration of a braking torque estimation device according to a fourth embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration of a brake device.
  • FIG. 2 is a diagram showing a braking torque estimation device connected to a brake control device.
  • FIG. 13 is a block diagram showing the configuration of a brake control device according to an eighth embodiment of the present invention.
  • the braking torque estimation device can be installed on a vehicle having multiple wheels with tires, and can estimate tire characteristics (e.g., braking coefficient) and tire load using the wheel speed of the wheels and the longitudinal acceleration of the vehicle, and can estimate vehicle speed, slip ratio, tire longitudinal force, and braking torque with high accuracy and at low cost using the estimated tire characteristics and tire load.
  • Slip ratio, tire longitudinal force, braking torque, etc. vary depending on the brake device and tire, and fluctuate due to aging caused by wear of the brake device and tires.
  • the braking torque estimation device can estimate vehicle speed, slip ratio, tire longitudinal force, and braking torque with high accuracy and at low cost using only sensors that are generally equipped on a vehicle, without using a braking torque sensor or thrust sensor. Using the braking torque estimation device according to the present invention, vehicle motion can be controlled with high accuracy and at low cost.
  • This section describes a braking torque estimation device according to a first embodiment of the present invention.
  • FIG. 1 is a diagram showing an example of the configuration of a vehicle 10 equipped with a braking torque estimation device according to this embodiment.
  • the vehicle 10 includes a controller 5, wheels 7, a vehicle body 8, a wheel speed sensor 1, an acceleration sensor 2, a gyro sensor 3, a steering angle sensor 4, a brake device 9 that generates a braking force, a brake pedal 11, and a power source 14.
  • the vehicle 10 also includes an internal combustion engine or electric motor that generates a braking/driving force, a steering device, a suspension, and the like.
  • the controller 5 is equipped with a braking torque estimation device according to this embodiment, and controls the internal combustion engine, the electric motor, the brake device 9, the steering device, the suspension, etc.
  • the controller 5 may be provided separately for each function it has, or may be provided separately as a higher-level controller and a lower-level controller. In this specification, multiple controllers separated in this way are collectively referred to as the controller 5.
  • the controller 5 may be configured as a computer that has a calculation device such as a CPU, a main storage device such as a semiconductor memory, an auxiliary storage device, and hardware such as a communication device, and that performs overall control of the vehicle 10, and various functions are realized by the calculation device executing a program loaded into the main storage device.
  • the wheels 7 are arranged at four locations on the front, rear, left and right sides of the vehicle body 8, and tires are provided.
  • the vehicle 10 is a four-wheeled vehicle.
  • the wheel speed sensor 1, acceleration sensor 2, gyro sensor 3, and steering angle sensor 4 are sensors that are typically provided in a vehicle 10.
  • the wheel speed sensor 1 detects the rotational speed of the wheels 7 located at four points on the vehicle body 8.
  • the wheel speed sensor 1 can be configured, for example, as a sensor that detects the relative rotational speed (wheel angular velocity) between a rotating part installed on the axle hub or the like and a fixed part installed on the knuckle, brake carrier, or the like.
  • the acceleration sensor 2 detects the acceleration acting on the center of gravity of the vehicle body 8, i.e., the acceleration in the forward/backward direction (forward/backward acceleration) and the acceleration in the lateral direction (lateral acceleration) of the vehicle 10.
  • the gyro sensor 3 detects the yaw rate, which is the angular velocity of rotation around the center of gravity of the vehicle body 8.
  • the steering angle sensor 4 detects the steering angle, which is the rotation angle of the steering wheel or the steering angle of the wheels 7, generated by the steering of the driver who drives the vehicle 10.
  • the brake devices 9 are, for example, electric brake devices, and are provided on each of the wheels 7 at four locations on the vehicle body 8. That is, the vehicle 10 is equipped with a brake device 9FL for the left front wheel, a brake device 9FR for the right front wheel, a brake device 9RL for the left rear wheel, and a brake device 9RR for the right rear wheel. These brake devices have the same structure and are controlled by the controller 5. Hereinafter, these brake devices 9FL, 9FR, 9RL, and 9RR will be collectively referred to as brake devices 9. Note that the brake devices 9 may be hydraulic brake devices instead of electric brake devices.
  • the controller 5 transmits a control signal corresponding to the operation of the brake pedal 11 to the brake device 9 via the communication line 12 based on the operation of the brake pedal 11 by the driver of the vehicle 10, the state of the vehicle 10 and the wheels 7, and various information about the outside world of the vehicle 10.
  • the brake device 9 is driven by electricity supplied from a power source 14 via an electric wire 13.
  • the controller 5 has the function of the braking torque estimation device according to this embodiment, and brakes the vehicle 10 using the braking torque value estimated by the braking torque estimation device.
  • the braking torque estimation device according to this embodiment will be described with reference to FIG. 2.
  • FIG. 2 is a block diagram showing the configuration of the braking torque estimation device 20 according to this embodiment.
  • the braking torque estimation device 20 includes a tire load estimation unit 21, a tire characteristics reading unit 25, a braking torque estimation unit 26, a tire characteristics estimation unit 22, and a tire characteristics storage unit 24.
  • the tire load estimation unit 21 calculates and estimates the tire load Fzi.
  • the tire load Fzi is also called the tire vertical force Fzi. The method by which the tire load estimation unit 21 calculates the tire load Fzi will be described later.
  • the suffix i is an identifier that distinguishes between the four wheels 7 on the vehicle body 8, and represents one of the following: FL (front left wheel), FR (front right wheel), RL (rear left wheel), and RR (rear right wheel). This suffix i will also be used in the following explanation.
  • the tire characteristics reading unit 25 inputs the tire characteristics stored in the tire characteristics storage unit 24.
  • the tire characteristics are values that indicate the relationship between the slip ratio and friction coefficient of the tire.
  • An example of a tire characteristic is the braking coefficient Kbi, which is a proportional coefficient between the slip ratio and the friction coefficient, as described below.
  • the friction coefficient is the value obtained by dividing the longitudinal force (tire longitudinal force Fxi) that the tire receives at the tire contact surface by the vertical force (tire load Fzi or tire vertical force Fzi) that the tire receives at the tire contact surface.
  • the braking torque etc. estimation unit 26 calculates and estimates the tire longitudinal force, slip ratio, vehicle speed, and braking torque using the tire load Fzi calculated by the tire load estimation unit 21 and the tire characteristics (e.g., braking coefficient Kbi, which is a value indicating the relationship between the slip ratio and the friction coefficient) obtained by the tire characteristics reading unit 25.
  • the tire longitudinal force, slip ratio, vehicle speed, and braking torque are collectively referred to as "braking torque etc.”
  • the braking torque etc. estimation unit 26 is also referred to as a braking torque calculation unit.
  • Figure 3 is a diagram showing an example of the relationship between the slip ratio and the friction coefficient, which are tire characteristics.
  • the horizontal axis is the slip ratio and the vertical axis is the friction coefficient, and the relationship between the two is represented by curve 30. It is generally known that the slip ratio and the friction coefficient have the relationship shown in Figure 3.
  • Vb indicates the vehicle speed
  • Vwi indicates the wheel speed
  • the vehicle speed Vb is the speed of the vehicle body 8 (the speed of the center of gravity of the vehicle body 8).
  • the wheel speed Vwi is the rotational speed of the wheel 7, which is calculated by (tire radius Ri x wheel angular velocity ⁇ i), and can be detected by the wheel speed sensor 1.
  • the friction coefficient increases as the slip ratio increases, but has the characteristic of reaching a peak at a certain slip ratio and then decreasing as the slip ratio increases further.
  • the absolute value of the slip ratio is small, there is a linear relationship between the slip ratio and the friction coefficient, and this relationship is represented by the dashed straight line 31.
  • the tire longitudinal force Fxi is calculated using equation (3).
  • the total tire longitudinal force Fxi for all four wheels 7 is expressed by equation (4) based on the equation of motion of the vehicle 10, excluding the effects of gravity due to air resistance and the inclination of the vehicle 10.
  • ax is the longitudinal acceleration of the vehicle 10
  • axse is the longitudinal acceleration acting on the center of gravity of the vehicle body 8 detected by the acceleration sensor 2
  • mb is the mass of the vehicle 10 including the occupants.
  • the symbol ⁇ indicates the sum for the subscript i, that is, the total for all wheels 7 (4 wheels).
  • the longitudinal acceleration ax of the vehicle 10 may be the value axse detected by the acceleration sensor 2.
  • the longitudinal acceleration ax of the vehicle 10 can be calculated with high accuracy by removing the gravitational acceleration component associated with the pitching of the vehicle body 8 contained in the longitudinal acceleration axse. Therefore, the longitudinal acceleration ax of the vehicle 10 can also be calculated using equation (5).
  • ⁇ y indicates the pitch angle of the vehicle body 8
  • g indicates the gravitational acceleration.
  • equation (5) When the pitch angle ⁇ y is small, equation (5) can be approximated by equation (6). Therefore, when the pitch angle ⁇ y is small, equation (6), which is a linear approximation, may be used instead of equation (5).
  • the longitudinal acceleration ax of the vehicle 10 can be calculated using the longitudinal acceleration axse detected by the acceleration sensor 2, using equation (8).
  • the total tire longitudinal force Fxi for all four wheels 7 can be calculated from equations (7) and (8) using the longitudinal acceleration axse detected by the acceleration sensor 2, as shown in equation (9).
  • the pitch angle ⁇ y can be calculated using the relationship between the longitudinal acceleration and the pitch stiffness.
  • equation of motion (4) can be used to find the total tire longitudinal force Fxi for all wheels 7 (4 wheels) as shown in equation (10).
  • A is the frontal projection area of the vehicle 10
  • C is the air resistance coefficient
  • is the air density. Since the vehicle speed Vb is the value to be calculated (a value included in the braking torque, etc.), in equation (10), the most recently calculated value or the wheel speed Vwi is set to the vehicle speed Vb.
  • equation (12) which represents vehicle speed Vb.
  • equation (13) which represents the slip ratio ⁇ i of each wheel.
  • equation (14) which represents the tire longitudinal force Fxi of each wheel.
  • the vehicle speed Vb, the slip rate ⁇ i of each wheel, and the tire longitudinal force Fxi of each wheel can be calculated using the total tire longitudinal force Fxi of all wheels 7, which can be calculated using the longitudinal acceleration axse detected by the acceleration sensor 2, the tire load Fzi (tire vertical force Fzi) of each wheel 7, the braking coefficient Kbi, and the wheel speed Vwi (Equation (12)-Equation (14)).
  • the braking torque estimation unit 26 uses the value input by the tire characteristics reading unit 25 from the tire characteristics storage unit 24 as the braking coefficient Kbi, and uses the value estimated by the tire load estimation unit 21 as the tire load Fzi of all wheels 7.
  • the vehicle speed Vb, the slip ratio ⁇ i of each wheel, and the tire longitudinal force Fxi of each wheel can be calculated by using a braking coefficient Kb that has the same value for all wheels 7, instead of the braking coefficient Kbi of each wheel.
  • Ii the moment of inertia of the wheel 7
  • Tbi the braking torque
  • Ri the tire radius
  • ⁇ i the wheel angular velocity
  • the braking torque Tbi can be calculated from equation (18) as shown in equation (19).
  • equation (20) which represents the braking torque Tbi.
  • the tire longitudinal force Fxi is a negative value and the braking torque Tbi is a positive value.
  • the braking torque Tbi includes the braking torque due to the brake device 9, the torque due to the electric motor in the electric vehicle, and the torque due to the internal combustion engine.
  • the torque due to the electric motor is called regenerative braking torque
  • the torque due to the internal combustion engine is called engine braking torque.
  • the regenerative braking torque and the engine braking torque are called driving torque.
  • the braking torque etc. estimation unit 26 can estimate these driving torques according to existing technology.
  • the braking torque estimation unit 26 can obtain the braking torque applied by the brake device 9 by subtracting the driving torque (regenerative braking torque or engine braking torque) from the braking torque Tbi.
  • the braking torque estimation unit 26 can set the value of the braking torque Tbi to the value of the braking torque by the brake device 9.
  • the braking torque etc. estimation unit 26 can set the value of the braking torque Tbi to the value of the regenerative braking torque or the engine braking torque. In addition, when the braking torque by the brake device 9 is measurable, the braking torque etc. estimation unit 26 can obtain the regenerative braking torque or the engine braking torque by subtracting the measured value of the braking torque by the brake device 9 from the braking torque Tbi.
  • the tire load estimation unit 21 can calculate the tire load Fzi using a known method. As an example, the following describes a method for calculating the tire load Fzi when the vehicle 10 is traveling in a straight line.
  • the tire load Fzi can be calculated using equation (21) for the front wheels and equation (22) for the rear wheels when traveling straight ahead.
  • mb is the mass of the vehicle 10 including occupants, etc.
  • Lf is the longitudinal distance between the center of gravity of the vehicle 10 and the front wheel axle
  • Lr is the longitudinal distance between the center of gravity of the vehicle 10 and the rear wheel axle
  • hyc is the height of the center of gravity of the vehicle 10.
  • the tire load Fzi (tire vertical force Fzi) can also be calculated using the longitudinal acceleration axse detected by the acceleration sensor 2.
  • the longitudinal acceleration ax can be found using the longitudinal acceleration axse detected by the acceleration sensor 2 (see, for example, equations (4), (5), (6), and (8)).
  • the braking torque estimation unit 26 may use, as the tire load Fzi, a value obtained by actually measuring or calculating from the displacement of the suspension, etc., instead of a value calculated and estimated by the tire load estimation unit 21.
  • the tire characteristic estimation unit 22 estimates and obtains the braking coefficient Kbi as a tire characteristic.
  • the tire characteristic estimation unit 22 estimates and obtains the braking coefficient Kbi as a tire characteristic.
  • Kbi Kb
  • the tire longitudinal force FxFL of the left front wheel and the tire longitudinal force FxFR of the right front wheel are expressed by equations (26) and (27), respectively, based on equation (3).
  • the slip ratios ⁇ FL and ⁇ FR in equations (26) and (27) use the slip ratios obtained from equations (24) and (25).
  • the total tire longitudinal force Fxi on the left side of equation (28) can be calculated using the longitudinal acceleration axse detected by the acceleration sensor 2, as shown in equation (4) etc.
  • the braking coefficient Kb can be calculated using the longitudinal acceleration axse detected by the acceleration sensor 2 (or the longitudinal acceleration ax of the vehicle 10), the four wheel speeds Vwi used in equations (24) and (25), and the tire loads FzFL and FzFR of the front wheels.
  • the above explanation is for an example in which the vehicle 10 is front-wheel drive. If the vehicle 10 is rear-wheel drive, simply swap the front and rear wheels in the above explanation.
  • the tire longitudinal force FxFL of the left front wheel and the tire longitudinal force FxFR of the right front wheel can be known, and the slip rate ⁇ FL of the left front wheel and the slip rate ⁇ FR of the right front wheel can be found from equations (24) and (25), so the braking coefficient Kb can be found using equations (26) and (27).
  • the vehicle 10 is a four-wheel drive vehicle. It is assumed that in a four-wheel drive vehicle, the front/rear distribution of driving force to the wheels 7 from the engine or electric motor can be detected or estimated using equation (30).
  • FdxF is the driving force of the front wheels
  • FdxR is the driving force of the rear wheels
  • is the ratio between them.
  • the front tire longitudinal forces FxFL and FxFR are calculated from the equation of motion of the vehicle 10 using equation (31).
  • left rear wheel tire longitudinal force FxRL and the right rear wheel tire longitudinal force FxRR can be calculated using equation (32).
  • equation (35) which represents the braking coefficient Kb.
  • the braking coefficient Kb expressed by equation (35) was obtained from equation (33) for the left front wheel and equation (34) for the left rear wheel, but the braking coefficient Kb may also be obtained from the equation for the right front wheel and the equation for the right rear wheel, or from the equation for the left front wheel and the equation for the right rear wheel, or from the equation for the right front wheel and the equation for the left rear wheel.
  • equation (36) is obtained when the braking coefficient Kb is obtained from the equation for the right front wheel and the equation for the right rear wheel.
  • the damping coefficient Kb can be obtained from multiple equations as described above. Therefore, by taking the average value of the damping coefficients Kb obtained from multiple equations (for example, the two equations (35) and (36)) as the value of the damping coefficient Kb, the damping coefficient Kb can be obtained more accurately.
  • the tire characteristic estimation unit 22 calculates the damping coefficient Kb (or damping coefficient Kbi), which is a tire characteristic.
  • the tire characteristic estimation unit 22 may estimate the damping coefficient Kb at predetermined time intervals, taking into account that tire characteristics change over time.
  • the tire characteristic estimation unit 22 may also increase the accuracy of the damping coefficient Kb by averaging the damping coefficient Kb obtained by multiple estimations and setting the average value as the value of the damping coefficient Kb.
  • the tire characteristic storage unit 24 stores the tire characteristics calculated by the tire characteristic estimation unit 22.
  • the tire characteristic storage unit 24 stores the damping coefficient Kb (or damping coefficient Kbi) as a tire characteristic.
  • the braking torque estimation device 20 can estimate the tire characteristics, braking coefficient Kb (Kbi) and tire load Fzi (tire vertical force Fzi), using the wheel speed Vwi and longitudinal acceleration ax (longitudinal acceleration axse) of the wheels 7 of the vehicle 10, and can calculate the vehicle speed Vb, slip ratio ⁇ i, tire longitudinal force Fxi, and braking torque Tbi using the estimated braking coefficient Kb (Kbi) and tire load Fzi.
  • the controller 5 controls the movement of the vehicle 10 using these values calculated by the braking torque estimation device 20.
  • the braking torque can be estimated with high accuracy at low cost, and the movement of the vehicle 10 can also be controlled with high accuracy at low cost.
  • a braking torque estimation device according to a second embodiment of the present invention will be described.
  • the vehicle 10 mainly travels in a straight line
  • a case in which the vehicle 10 travels while turning will be described.
  • the method of estimating the tire load Fzi differs from the case in which the vehicle 10 travels in a straight line.
  • the tire load estimation unit 21 calculates the tire load Fzi when the vehicle 10 travels while turning will be described.
  • DF represents the tread of the front wheels of the vehicle
  • DR represents the tread of the rear wheels of the vehicle
  • ay represents the lateral acceleration of the vehicle 10.
  • the wheel speed converted from each wheel speed to the longitudinal speed of the vehicle 10 at the sprung center of gravity is calculated by adding or subtracting the speed difference of each wheel based on the actual steering angle ⁇ and yaw rate r caused by turning motion to each wheel speed. If the wheel speed measured by the wheel speed sensor 1 is Vwsi, the wheel speed Vwi converted to the longitudinal speed of the vehicle 10 at the sprung center of gravity is expressed by equations (41)-(44).
  • Figure 4 shows an example of the relationship between the slip ratio and the friction coefficient when the sideslip angle ⁇ changes.
  • the same curve 30 as in Figure 3 is shown in Figure 4.
  • the braking coefficient Kb is the proportional coefficient between the slip ratio and the friction coefficient in the range where the absolute value of the slip ratio is small.
  • the braking coefficient Kb changes depending on the sideslip angle ⁇ when the vehicle 10 turns. As the sideslip angle ⁇ increases from zero, the change in the friction coefficient relative to the change in slip ratio becomes smaller in the range where the absolute value of the slip ratio is small. For this reason, the braking coefficient Kb, which is the proportional coefficient between the slip ratio and the friction coefficient, becomes smaller as the sideslip angle ⁇ increases.
  • This braking coefficient Kb that depends on the value of the sideslip angle ⁇ is denoted as Kb( ⁇ ).
  • the tire characteristics reading unit 25 inputs the braking coefficient Kb as a function Kb( ⁇ ) of the sideslip angle ⁇ from the tire characteristics storage unit 24.
  • the sideslip angle ⁇ can be calculated by existing methods using the steering angle (actual steering angle ⁇ ) and the vehicle speed Vb.
  • the braking torque estimation unit 26 replaces the braking coefficient Kb with Kb( ⁇ ) and inputs the value of the wheel speed Vwi (equations (41)-(44)) converted into the longitudinal speed of the vehicle 10 at the sprung center of gravity as the wheel speed Vwi, and can calculate the vehicle speed Vb, slip ratio ⁇ i, tire longitudinal force Fxi, and braking torque Tbi using equations (12)-(20).
  • the tire characteristics estimation unit 22 determines the damping coefficient Kb(0) when the sideslip angle ⁇ is zero. Based on this damping coefficient Kb(0), the change in the value of the damping coefficient Kb when the sideslip angle ⁇ changes from zero (i.e., the change in the value of the damping coefficient Kb from Kb(0)) can be determined by experiment, numerical simulation, or the like. By determining the relationship between the sideslip angle ⁇ and the damping coefficient Kb in this way in advance, the tire characteristics estimation unit 22 can also store this relationship as the damping coefficient Kb( ⁇ ).
  • the side slip angle ⁇ 1 when the tire load Fzi is estimated when the vehicle 10 is turning can be calculated, and the braking coefficient Kb( ⁇ 1) corresponding to this side slip angle ⁇ 1 can be calculated.
  • the change in the value of the braking coefficient Kb when the side slip angle ⁇ changes from ⁇ 1 i.e., the change in the value of the braking coefficient Kb from Kb( ⁇ 1)
  • the tire characteristic estimation unit 22 can also store this relationship as the braking coefficient Kb( ⁇ ).
  • tire characteristics (braking coefficient Kb) and braking torque (vehicle speed Vb, slip ratio ⁇ i, tire longitudinal force Fxi, and braking torque Tbi) can be calculated not only when the vehicle 10 is traveling in a straight line but also when the vehicle 10 is turning, and braking torque Tbi can be estimated with high accuracy and low cost regardless of the traveling state of the vehicle 10.
  • This section describes a braking torque estimation device according to a third embodiment of the present invention.
  • the tire characteristic estimation unit 22 estimates the tire characteristics (braking coefficient Kb) taking into account road surface conditions, and the tire characteristic reading unit 25 inputs the braking coefficient Kb from the tire characteristic storage unit 24. As described in the first embodiment, the tire characteristic estimation unit 22 calculates and estimates the braking coefficient Kb during driving (acceleration).
  • the braking coefficient Kb estimated by the tire characteristic estimation unit 22 is referred to as the braking coefficient Kbe.
  • the tire characteristic estimation unit 22 acquires road surface conditions when estimating the braking coefficient Kbe.
  • the road surface conditions are, for example, information on whether the road surface on which the vehicle 10 is traveling is a dry road, a wet road, or a snowy road.
  • the tire characteristic estimation unit 22 acquires the road surface conditions, for example, from various sensors (for example, a front camera, etc.) equipped on the vehicle 10, or from a server connected to the vehicle 10 via the Internet.
  • the tire characteristic estimation unit 22 can also acquire various information that affects the friction coefficient of the road surface, such as information about the weather on the road on which the vehicle 10 is traveling (weather information) and information about the pavement (pavement information), as road surface conditions.
  • weather information and pavement information can be acquired together with position information using a map, etc.
  • the braking coefficient on a predetermined reference road surface is expressed in Kbs. Any road surface can be set as the reference road surface, and it is preferable to set a good road surface (such as a dry road) as the reference road surface.
  • the relationship between the damping coefficient Kbe estimated by the tire characteristic estimation unit 22 and the damping coefficient Kbs on the reference road surface is expressed by equation (45) using a conversion coefficient c.
  • Kbs c ⁇ Kbe (45)
  • the conversion coefficient c is a coefficient for removing the influence of the road surface condition, and its value varies depending on the road surface condition (environment).
  • the conversion coefficient c is determined in advance according to the road surface condition, and is stored in the tire characteristics storage unit 24.
  • the braking coefficient Kbe estimated by the tire characteristic estimation unit 22 is a value estimated under the specific road surface conditions on which the vehicle 10 is traveling.
  • the braking coefficient Kbs on the reference road surface is found excluding the influence of the road surface conditions (environment) by multiplying the estimated braking coefficient Kbe by the conversion coefficient c according to equation (45). Since the influence of the road surface conditions has been removed from this braking coefficient Kbs, it can be considered as a braking coefficient specific to the tire.
  • the tire characteristics estimation unit 22 predetermines the braking coefficient Kbs on the reference road surface from the previously estimated braking coefficient Kbe, and stores the determined braking coefficient Kbs in the tire characteristics storage unit 24.
  • the tire characteristics reading unit 25 inputs the braking coefficient Kbs on the reference road surface stored in the tire characteristics storage unit 24.
  • the braking torque etc. estimator 26 when estimating the braking torque, etc., the braking torque etc. estimator 26 inputs the braking coefficient Kb, which is a tire characteristic, from the tire characteristic reader 25.
  • the braking torque etc. estimator 26 inputs the braking coefficient Kbs on the reference road surface from the tire characteristic reader 25, and calculates the braking coefficient Kb according to equation (46).
  • Kb Kbs / c (46) That is, the braking torque etc. estimating unit 26 calculates the braking coefficient Kb (the braking coefficient when braking the vehicle 10) from the braking coefficient Kbs on the reference road surface, taking into account the influence of the road surface conditions using the conversion coefficient c.
  • the braking torque etc. estimation unit 26 estimates the braking torque etc. in the same manner as in Example 1, using the braking coefficient Kb calculated by equation (46).
  • the braking torque, etc. can be estimated with higher accuracy because it is possible to take into account the tire characteristics (braking coefficient Kb) that change depending on the road surface conditions.
  • This section describes a braking torque estimation device according to a fourth embodiment of the present invention.
  • Example 1 As shown by the straight line 31 in Figure 3, when the absolute value of the slip ratio is small, there is a linear relationship between the slip ratio and the friction coefficient, so the proportional coefficient of this relationship is used as the braking coefficient Kb (tire characteristic). In other words, in Example 1, the tire characteristic in the linear region is obtained.
  • a method for determining tire characteristics is described, including cases where the relationship between the slip ratio and the friction coefficient is nonlinear (nonlinear region). That is, a method for determining tire characteristics (relationship between the slip ratio and the friction coefficient) is described, including cases where the relationship between the slip ratio and the friction coefficient is expressed by something other than the straight line 31 in FIG. 3.
  • FIG. 5 is a block diagram showing the configuration of a braking torque estimation device 20 according to a fourth embodiment of the present invention.
  • the braking torque estimation device 20 according to this embodiment differs from the braking torque estimation device 20 according to the first embodiment (FIG. 2) in that it includes a tire characteristic map 28 and does not include a tire characteristic estimation unit 22, a tire characteristic storage unit 24, or a tire characteristic reading unit 25.
  • the tire characteristic map 28 records tire characteristics including the nonlinear region, i.e., data on the relationship between the slip ratio and the friction coefficient shown by the curve 30 in the graph of FIG. 3, taking into account the influence of the tire type, road surface conditions, etc. (for each tire type and road surface conditions).
  • the tire characteristic map 28 is created in advance and provided in the braking torque estimation device 20.
  • the braking torque etc. estimation unit 26 acquires the road surface conditions, inputs data corresponding to the road surface conditions from the data recorded in the tire characteristic map 28, and performs numerical calculations to determine the tire characteristics including the nonlinear region.
  • the braking torque etc. estimation unit 26 uses numerical analysis to determine the slip ratio ⁇ i that simultaneously satisfies both equations (3) and (4). In this way, the braking torque etc. estimation unit 26 can estimate the braking torque etc. including the tire characteristics in the nonlinear region.
  • the braking torque, etc. can be calculated taking into account tire characteristics not only in the linear region but also in the nonlinear region. Therefore, the braking torque, etc. can be estimated with high accuracy, even when the braking force is large and the relationship between the slip rate and the friction coefficient is nonlinear, and the control accuracy of the vehicle 10 can be further improved.
  • This section describes a braking torque estimation device according to a fifth embodiment of the present invention.
  • conditions are defined for the braking torque etc. estimator 26 described in the first to fourth embodiments to estimate the braking torque etc.
  • the braking torque etc. estimator 26 estimates the braking torque etc. only when any one condition, any plurality of conditions, or all of the following six conditions are satisfied: 1.
  • the acceleration (longitudinal acceleration) of the vehicle 10 is within a preset range. 2.
  • the wheel speed Vwi is within a preset range and the vehicle 10 is traveling straight. 3.
  • the road surface on which the vehicle 10 is traveling is in a preset condition (or the road surface condition is the same as when the braking coefficient Kb was estimated).
  • the regenerative braking torque (driving torque) generated by the electric motor is smaller than a preset threshold value.
  • the engine brake torque (driving force torque) which is the torque generated by the internal combustion engine, is smaller than a preset threshold value. 6.
  • the brake device 9 is in operation or in operation.
  • the braking torque estimation unit 26 estimates the braking torque etc. only when at least one of these six conditions is satisfied, and is therefore able to estimate the braking torque etc. with high accuracy for the following reasons.
  • the braking torque, etc. are estimated when the acceleration of the vehicle 10 is within a predetermined range and the driving torque is not large.
  • the predetermined range for example, the upper limit of the acceleration (including the deceleration) can be determined so that the deceleration is 4 m/s2 or less .
  • Wheel speed sensors 1 often use a method of reading pulses from a rotating shaft. For this reason, the wheel speed sensor 1 has poor measurement accuracy at low speeds, and the detection accuracy of the wheel angular speed ⁇ i is also poor at low speeds. Taking this into consideration, a condition is added that the wheel speed Vwi is within a specified range (e.g., 20 km/h or higher). In addition, since the effect of air resistance increases at high speeds, a condition can also be added that the wheel speed Vwi is within a specified range (e.g., 60 km/h or lower) in order to reduce the effect of air resistance. Note that the effect of air resistance is shown in the second term on the right side of equation (10), but the air resistance calculated by equation (10) contains an error. By adding a condition that sets an upper limit value (e.g., 60 km/h) for the wheel speed Vwi, the effect can be reduced even if the calculated air resistance contains an error.
  • a condition that sets an upper limit value (e.g., 60 km/h) for
  • the condition that the vehicle 10 is traveling straight is a condition for removing the effects of the vehicle 10 turning.
  • the actual condition of the road surface on which the vehicle 10 is traveling may differ depending on the road surface.
  • the road surface conditions are wet
  • the actual wetness of the road surface may differ depending on the road surface
  • the friction coefficient may also differ depending on the road surface.
  • by limiting the road surface conditions to a specific road surface condition e.g., dry road
  • estimating the braking torque, etc. under the same road surface conditions as when the braking coefficient Kb was estimated it is possible to prevent the estimation accuracy of the braking torque, etc. from deteriorating due to differences in road surface conditions.
  • the condition that the regenerative brake torque or engine brake torque (driving torque) is smaller than a predetermined threshold value is a condition used when estimating the braking torque by the brake device 9.
  • the torque by the electric motor (regenerative brake torque) and the torque by the internal combustion engine (engine brake torque) cannot always be estimated with high accuracy. For this reason, by estimating the braking torque etc. when these driving torques are smaller than a predetermined threshold value, it is possible to accurately estimate the braking torque by the brake device 9 even if the estimation accuracy of the driving torque is poor.
  • the effect on the estimation of the braking torque by the brake device 9 can be reduced even if the estimation accuracy of the engine brake torque is poor.
  • the condition that the brake device 9 is not in operation is a condition when calculating the regenerative brake torque or engine brake torque.
  • the estimated braking torque Tbi is set as the regenerative brake torque or engine brake torque, and these drive torques can be estimated with high accuracy.
  • the condition that the brake device 9 is in operation is a condition for calculating the braking torque by the brake device 9.
  • the above conditions 1-6 allow the braking torque estimation unit 26 to estimate the braking torque etc. with high accuracy.
  • the tire characteristic estimation unit 22 may estimate tire characteristics only when any one condition, any multiple conditions, or all of the above six conditions are satisfied. This enables the tire characteristic estimation unit 22 to estimate tire characteristics with high accuracy.
  • the controller 5 brakes the brake device 9 of the vehicle 10 using the value of the braking torque Tbi estimated by the braking torque estimation device 20, etc.
  • the brake device 9 is an electric brake device controlled by a motor.
  • the controller 5 is equipped with a brake control device described later, and controls the brake device 9 using the value of the braking torque Tbi, etc.
  • FIG. 6 is a diagram showing the configuration of the brake device 9.
  • the brake device 9 includes, as its main components, a disc rotor 42, a housing 44, brake pads 45a and 45b, a piston 46, a rotary-linear motion conversion mechanism 50, and an electric motor 48.
  • the disc rotor 42 is a rotating member that rotates together with the wheel 7, and when pressed from both sides by the brake pads 45a, 45b, frictional force stops the rotation of the wheel 7.
  • the housing 44 is a member supported on a carrier (not shown) that is fixed to a non-rotating part of the vehicle 10 located inside the vehicle 10 relative to the disc rotor 42, so that it can move in the axial direction of the disc rotor 42.
  • the brake pads 45a, 45b are pressing members arranged on both sides of the disc rotor 42, and press the disc rotor 42 to apply a braking force to the wheel 7.
  • the piston 46 is installed in the housing 44 so that it can move linearly, and can apply thrust to the brake pads 45a and 45b.
  • the rotary-to-linear motion conversion mechanism 50 converts the rotational force of the electric motor 48 into linear force, moving the piston 46 in the linear direction.
  • the electric motor 48 drives the piston 46 via the rotary-linear motion conversion mechanism 50, providing thrust to the brake pads 45a, 45b.
  • the output shaft of the electric motor 48 is connected to the reducer 49, and the output shaft of the reducer 49 is connected to the rotary-linear motion conversion mechanism 50.
  • the brake caliper 43 of the brake device 9 includes a disk rotor 42, a housing 44, brake pads 45a, 45b, a piston 46, an electric motor 48, a reducer 49, and a rotary-to-linear motion conversion mechanism 50.
  • the rotary-to-linear motion conversion mechanism 50 and the piston 46 form a linear motion section.
  • the electric motor 48 is controlled by a brake control device 51 provided in the controller 5.
  • a control signal line 61 and communication lines 62 and 63 are connected to the brake control device 51.
  • the control signal line 61 is a signal line that inputs control commands from a higher-level control device, such as a vehicle control ECU (Electronic Control Unit), to the brake control device 51.
  • the communication lines 62 and 63 are signal lines that transmit information other than this control command to the higher-level control device.
  • a control signal line 52 is connected to the brake control device 51.
  • the control signal line 52 is a signal line that inputs control commands from the brake control device 51 to the brake device 9.
  • the brake control device 51 controls the brake device 9.
  • the brake control device 51 inputs a braking torque command Tbir from a higher-level control device (e.g., a vehicle control ECU) or inputs a braking torque command Tbir corresponding to the amount of brake pedal operation, etc., and provides a current (command current) to the electric motor 48 in accordance with a preset control program, etc., based on the detection value of the motor current detection unit (current sensor) and the detection value of the motor position detection unit (motor position sensor).
  • a higher-level control device e.g., a vehicle control ECU
  • a braking torque command Tbir corresponding to the amount of brake pedal operation, etc.
  • FIG. 6 shows an example in which the upper control device and the brake control device 51 are configured separately, the upper control device and the brake control device 51 may be integrated and provided in the controller 5.
  • the brake control device 51 is connected to the braking torque estimation device 20 according to this embodiment.
  • FIG. 7 is a diagram showing the braking torque estimation device 20 connected to the brake control device 51.
  • the brake control device 51 inputs a braking torque command Tbir from a higher-level control device or according to the amount of brake pedal operation, etc., and a braking torque Tbi estimated by the braking torque estimation device 20, and generates and outputs a command to the brake device 9 using these values.
  • the brake control device 51 performs feedback control so that the estimated braking torque Tbi approaches the braking torque command Tbir, and controls the brake device 9.
  • the brake device 9 is an electric brake device controlled by a motor, but the brake device 9 may also be a hydraulic brake device equipped with a control valve that controls pressure. Even when the brake device 9 is a hydraulic brake device, it is possible to implement control similar to that of an electric brake device.
  • a thrust sensor e.g., a sensor that measures the force pressing the brake pads 45a, 45b against the disc rotor 42
  • feedback control is possible so that the estimated braking torque Tbi becomes the commanded braking torque (braking torque command Tbir), and the braking torque can be controlled with high accuracy at low cost.
  • the braking torque estimation device 20 estimates the braking torque Tbi when the tire characteristics are in a linear range (for example, the range represented by the straight line 31 in FIG. 3) and the vehicle 10 is traveling straight ahead. For this reason, depending on the tire characteristics and the traveling state of the vehicle 10, the braking torque estimation device 20 may have difficulty in accurately estimating the braking torque Tbi.
  • the brake control device 51 (Fig. 7) stores the current I of the electric motor 48 of the brake device 9 (Figs. 6 and 7) when the braking torque estimation device 20 estimates the braking torque Tbi, and controls the brake device 9 by using this current I to set the braking torque to a desired value.
  • This current I is the value when the braking torque estimation device 20 estimates the braking torque Tbi, and can be obtained, for example, by a current sensor installed in the electric motor 48.
  • braking torque Tb is approximately proportional to the current I minus the current value I0 used for friction in the brake device 9.
  • the current value I0 used for friction is the current value used for friction in mechanisms such as the rotary-to-linear conversion mechanism 50, and can be calculated, for example, from the current when the electric motor 48 is driven in a free-running state until the brake pads 45a, 45b come into contact with the disc rotor 42.
  • a desired value i.e., the value of the braking torque command Tbir
  • the brake device 9 can be controlled with higher precision regardless of the tire characteristics or how the vehicle 10 is traveling.
  • Example 7 an example was described in which the braking torque is set to a desired value using the current of the electric motor 48 to control the brake device 9 ( Figure 6).
  • the brake device 9 is controlled using the relationship between the braking torque and the rotational position of the electric motor 48.
  • the rotational position of the electric motor 48 changes, the positions of the brake pads 45a and 45b change, and the braking torque changes.
  • FIG. 8 is a block diagram showing the configuration of the brake control device 51 in this embodiment.
  • the brake control device 51 includes a braking torque position relationship creation unit 72, a braking torque position command conversion unit 67, and a position current control unit 74.
  • the brake device 9 to which the brake control device 51 is connected includes a motor position sensor 92 installed in the electric motor 48, and the current sensor 91 described in the seventh embodiment.
  • the braking torque position relationship creation unit 72 stores the rotational position of the electric motor 48 of the brake device 9 when the braking torque estimation device 20 estimates the braking torque Tbi. This rotational position is the value when the braking torque estimation device 20 estimates the braking torque Tbi, and is acquired, for example, by a motor position sensor 92 installed on the electric motor 48.
  • the braking torque position relationship creation unit 72 inputs the braking torque Tbi estimated by the braking torque estimation device 20, and can record the relationship between the braking torque Tbi and the stored rotational position of the electric motor 48 in a map. This allows the brake control device 51 to acquire the relationship between the braking torque and the rotational position of the electric motor 48.
  • the braking torque position command conversion unit 67 inputs the braking torque command Tbir, which is the commanded braking torque, and refers to the map that is recorded by the braking torque position relationship creation unit 72 and indicates the relationship between the braking torque and the rotational position of the electric motor 48.
  • Tbir the braking torque position command conversion unit 67 inputs the braking torque command Tbir, it uses this map to convert the braking torque command Tbir into the rotational position of the electric motor 48.
  • the position current control unit 74 converts the rotational position of the electric motor 48 obtained by the braking torque position command conversion unit 67 into a command current that provides this rotational position. The position current control unit 74 then provides the converted command current to the electric motor 48 of the brake device 9.
  • the braking torque is controlled based on the rotational position of the electric motor 48.
  • the command current is calculated from the rotational position of the electric motor 48, so that the braking torque can be controlled without being affected by temperature without using a torque constant whose value changes with temperature, and therefore the brake device 9 can be controlled with higher precision.
  • the rotational position of the electric motor 48 can be controlled to a desired position by the command current Ir, thereby generating a braking torque of a desired value.
  • the value of the braking torque varies depending on the friction coefficient ⁇ p of the brake pads 45a, 45b.
  • the friction coefficient ⁇ p is the friction coefficient between the brake pads 45a, 45b and the disc rotor 42, and is expressed mainly as a function of the temperature T of the brake pads 45a, 45b and the rotational speed v of the disc rotor 42.
  • the rotational speed v is the relative speed between the brake pads 45a, 45b and the disc rotor 42.
  • the change in braking torque associated with a change in temperature T and the change in braking torque associated with a change in rotational speed v are obtained in advance by experiments, numerical simulations, etc.
  • the brake control device 51 stores the previously obtained change in braking torque associated with a change in temperature T and the change in braking torque associated with a change in rotational speed v.
  • the braking torque has a value obtained by multiplying the thrust force generated by the electric motor 48 by the friction coefficient ⁇ p between the brake pads 45a, 45b and the disc rotor 42.
  • the friction coefficient changes depending on the temperature and relative speed of the two objects in contact. Therefore, the brake control device 51 estimates or measures and stores the temperature T of the brake pads 45a, 45b and the rotational speed v of the disc rotor 42.
  • the brake control device 51 stores the temperature T of the brake pads 45a, 45b and the rotational speed v of the disc rotor 42.
  • the brake control device 51 estimates the temperature T and the rotational speed v based on a record of how much the brake pads 45a, 45b and the disc rotor 42 have operated up to now, or measures the temperature T and the rotational speed v with a sensor, and stores the temperature T and the rotational speed v.
  • the brake control device 51 uses the change in braking torque associated with changes in temperature T and rotational speed v determined in advance to estimate the value of the braking torque taking into account the change in friction coefficient ⁇ p (i.e., the change in temperature T and rotational speed v) from the temperature T and rotational speed v determined when estimating the braking torque Tbi.
  • the brake device 9 can be controlled with higher precision according to the temperature T of the brake pads 45a, 45b and the rotational speed v of the disc rotor 42.
  • Examples 1-9 an example was shown in which the vehicle 10 was a four-wheeled vehicle. In this example, an example will be described in which the vehicle 10 is a two-wheeled vehicle.
  • a vehicle 10 equipped with the braking torque estimation device 20 includes a controller 5, wheel speed sensor 1, acceleration sensor 2, gyro sensor 3, steering angle sensor 4, wheels 7, a vehicle body 8, a brake device 9 that generates a braking force, an internal combustion engine or electric motor that generates a braking/driving force, a steering device, a suspension, etc., just like a four-wheeled vehicle.
  • the controller 5 includes the braking torque estimation device 20 according to this embodiment, and controls the internal combustion engine, the electric motor, the brake device 9, the steering device, the suspension, etc.
  • the wheels 7 are provided at two locations, front and rear, of the vehicle body 8, and are equipped with tires.
  • equations (47)-(49) can be expressed as equations (50)-(52), respectively.
  • the braking torque estimation unit 26 can calculate the vehicle speed Vb using equation (53) assuming that the front wheel slip ratio ⁇ F is approximately zero.
  • the braking torque estimation unit 26 can use equation (53) to calculate the rear wheel slip ratio ⁇ R as shown in equation (54).
  • the braking torque estimation unit 26 can use this slip ratio ⁇ R to calculate the rear wheel tire longitudinal force FxR according to equation (55).
  • the total tire longitudinal force Fxi for all wheels 7 can be calculated from the longitudinal acceleration axse (or the longitudinal acceleration ax of the vehicle 10) detected by the acceleration sensor 2, as in the first embodiment. If the vehicle 10 is a two-wheeled vehicle, the total tire longitudinal force Fxi coincides with the rear wheel tire longitudinal force FxR.
  • the rear wheel tire longitudinal force FxR is expressed, for example, by equation (56).
  • the braking torque estimation unit 26 can calculate the braking coefficient Kb using equation (57) based on equation (29).
  • the tire load estimation unit 21 can calculate the tire load Fzi (tire vertical force Fzi) based on equations (21) and (22) as shown in equations (58) and (59).
  • the braking torque estimation device 20 can estimate the braking torque with high accuracy at low cost, even if the vehicle 10 is a two-wheeled vehicle, and can control the movement of the vehicle 10 with high accuracy at low cost.
  • the present invention is not limited to the above-described examples, and various modifications are possible.
  • the above-described examples have been described in detail to clearly explain the present invention, and the present invention is not necessarily limited to an embodiment that includes all of the configurations described. It is also possible to replace part of the configuration of one embodiment with the configuration of another embodiment. It is also possible to add the configuration of another embodiment to the configuration of one embodiment. It is also possible to delete part of the configuration of each embodiment, or to add or replace other configurations.
  • estimation unit 28...tire characteristic map, 30...curve showing relationship between slip ratio and friction coefficient, 31...straight line showing linear relationship between slip ratio and friction coefficient, 42...disc rotor, 43...brake caliper, 44...housing, 45a, 45b...brake pads, 46...piston , 48...electric motor, 49...reduction gear, 50...rotational-linear conversion mechanism, 51...brake control device, 52...control signal line, 61...control signal line, 62, 63...communication lines, 67...braking torque position command conversion unit, 72...braking torque position relationship creation unit, 74...position current control unit, 91...current sensor, 92...motor position sensor, ax...longitudinal acceleration, axse...longitudinal acceleration detected by acceleration sensor, Fxi...tire longitudinal force, Fzi...tire load (tire vertical force), Ii...wheel moment of inertia, Kb, Kbi...braking coefficient, mb...vehicle mass, Tbi...braking torque, Tbir...braking

Landscapes

  • Engineering & Computer Science (AREA)
  • Regulating Braking Force (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Braking Systems And Boosters (AREA)

Abstract

The present invention provides a brake torque estimation device capable of accurately estimating brake torque at low cost. A brake torque estimation device (20) according to the present invention can be installed in a vehicle (10) having a plurality of wheels (7) with tires, and comprises a brake torque calculation unit (26) that calculates a brake torque (Tbi) of the wheels (7). A wheel speed (Vwi) of the wheels (7) and a longitudinal acceleration (ax), which is acceleration in the longitudinal direction of the vehicle (10), are input to the brake torque estimation device (20). The brake torque calculation unit (26) calculates a vehicle speed (Vb), a tire longitudinal force (Fxi) of the wheels (7), and a slip rate of the wheels (7) on the basis of the wheel speed (Vwi), a tire load (Fzi) of the wheels (7), the longitudinal acceleration (ax), and tire characteristics of the wheels (7), and calculates the brake torque (Tbi) on the basis of the calculated tire longitudinal force (Fxi).

Description

制動トルク推定装置Braking torque estimation device
 本発明は、車両運動制御に用いられて車両の制動トルクを推定する制動トルク推定装置に関する。 The present invention relates to a braking torque estimation device that is used for vehicle motion control and estimates the braking torque of a vehicle.
 車両運動制御では、タイヤ前後力、スリップ率、車体速、及び制動トルクを精度よく推定することで、車両に搭載されたアクチュエータをよりきめ細かく制御することが可能である。車両の運動は、例えば制動時には、推定した制動トルクに基づいて制御される。制動トルクは、車両の性能にとって重要な値であり、タイヤ前後力、スリップ率、及び車体速から求めることができる。推力センサ等を使用して制動トルクを推定すると、推定精度を上げることができるが、コストが増大するという課題がある。 In vehicle motion control, precise estimation of tire longitudinal force, slip ratio, vehicle speed, and braking torque makes it possible to control the actuators mounted on the vehicle more precisely. For example, when braking, the vehicle motion is controlled based on the estimated braking torque. Braking torque is an important value for vehicle performance, and can be calculated from tire longitudinal force, slip ratio, and vehicle speed. Estimating braking torque using a thrust sensor or the like can improve estimation accuracy, but there is an issue of increased costs.
 また、タイヤ前後力を推定する方法として、車体速と車輪速の差によるスリップ率を求める方法がある。この方法には、前後加速度を積分して車体速を推定すると定常偏差の除去が難しいという課題と、センサを付加するとコストがかかるというという課題がある。 Another method for estimating tire longitudinal forces is to determine the slip ratio based on the difference between vehicle speed and wheel speed. This method has issues with the difficulty of eliminating steady-state error when estimating vehicle speed by integrating longitudinal acceleration, and the cost of adding sensors.
 車体速や推力センサを使用せずに制動力を推定する従来の技術として、例えば特許文献1に記載された技術が提案されている。特許文献1に記載されたブレーキ装置は、車輪の接地荷重を推定する接地荷重推定部と、制動時の車輪の角速度と接地荷重から前後制動力比を推定し、前後制動力比に基づいて車輪の制動力を制御するための前後制動力補正値を演算する前後制動力補正値演算部と、制動時の車輪の角速度から車輪の制動力の左右差を小さくするための左右制動力補正値を演算する左右制動力補正値演算部と、制動力目標値と前後制動力補正値と左右制動力補正値に基づいて制動力指令値を演算する指令値演算部を備える。 As a conventional technology for estimating braking force without using a vehicle speed or thrust sensor, for example, the technology described in Patent Document 1 has been proposed. The brake device described in Patent Document 1 includes a ground load estimation unit that estimates the ground load of the wheels, a front/rear braking force correction value calculation unit that estimates a front/rear braking force ratio from the angular velocity of the wheels during braking and the ground load and calculates a front/rear braking force correction value for controlling the braking force of the wheels based on the front/rear braking force ratio, a left/right braking force correction value calculation unit that calculates a left/right braking force correction value for reducing the left/right difference in the braking force of the wheels from the angular velocity of the wheels during braking, and a command value calculation unit that calculates a braking force command value based on a braking force target value, a front/rear braking force correction value, and a left/right braking force correction value.
 また、非特許文献1には、オブザーバを用いてスリップ率を推定する技術が記載されている。 Non-Patent Document 1 also describes a technique for estimating the slip ratio using an observer.
特開2010-70022号公報JP 2010-70022 A
 従来の技術には、制動トルクを精度よく推定することが難しいという課題があり、特に、制動トルクを推定するのに必要なタイヤ前後力、スリップ率、及び車体速を精度よく推定するのが困難である。  Conventional technology has the problem that it is difficult to accurately estimate braking torque, and in particular, it is difficult to accurately estimate tire longitudinal force, slip ratio, and vehicle speed, which are necessary to estimate braking torque.
 特許文献1に記載の技術では、推定された車輪の接地荷重を用いて前後制動力を制御し、前輪と後輪の少なくとも一方で左右の制動力がほぼ等しい場合にタイヤ前後力を推定する。この技術では、左右の車輪に制動力の差がある場合には、タイヤ前後力を推定するのが困難である。 The technology described in Patent Document 1 uses the estimated wheel ground load to control the front and rear braking forces, and estimates the tire front and rear forces when the left and right braking forces of at least one of the front and rear wheels are approximately equal. With this technology, it is difficult to estimate the tire front and rear forces when there is a difference in braking forces between the left and right wheels.
 非特許文献1に記載の技術では、車輪速とその微分値と前後加速度からスリップ率をオブザーバによって推定する。この技術では、オブザーバを用いることで推定の収束性が保障されるが、時々刻々の精度が保障されない点と、車輪速の微分値が必要な点が課題であり、また、車両運動制御に必要な値のうちスリップ率以外の値を推定できるか不明である。 In the technology described in Non-Patent Document 1, the slip ratio is estimated by an observer from the wheel speed, its derivative, and the longitudinal acceleration. With this technology, the convergence of the estimation is guaranteed by using an observer, but there are issues in that the accuracy from moment to moment is not guaranteed and the derivative value of the wheel speed is required. In addition, it is unclear whether values other than the slip ratio can be estimated among those required for vehicle motion control.
 このように、従来の技術では、タイヤ前後力、スリップ率、及び車体速を精度よく推定するのが困難であり、制動トルクを精度よく推定するのが難しいという課題がある。また、制動トルクセンサや推力センサ等を使用すると制動トルクの推定精度を上げることができるが、コストの増大を防ぐために、これらのセンサを用いずに車両が一般的に備えるセンサのみを用いて制動トルクを精度よく推定したいという要望がある。 As described above, with conventional technology, it is difficult to accurately estimate tire longitudinal forces, slip ratios, and vehicle speed, and therefore difficult to accurately estimate braking torque. In addition, the accuracy of braking torque estimation can be improved by using a braking torque sensor or thrust sensor, but in order to prevent increases in costs, there is a demand for accurate estimation of braking torque using only sensors that are typically equipped on vehicles, without using these sensors.
 本発明の目的は、低コストで高精度に制動トルクを推定できる制動トルク推定装置を提供することである。 The object of the present invention is to provide a braking torque estimation device that can estimate braking torque with high accuracy at low cost.
 本発明による制動トルク推定装置は、タイヤが設けられた複数の車輪を備える車両に設置可能であり、前記車輪の制動トルクを算出する制動トルク算出部を備え、前記車輪の車輪速と、前記車両の前後方向の加速度である前後加速度とを入力する。前記制動トルク算出部は、前記車輪速と、前記車輪のタイヤ荷重と、前記前後加速度と、前記車輪のタイヤ特性とに基づいて、車体速と、前記車輪のタイヤ前後力と、前記車輪のスリップ率とを算出するとともに、算出した前記タイヤ前後力に基づいて前記制動トルクを算出する。 The braking torque estimation device according to the present invention can be installed on a vehicle having multiple wheels with tires, and includes a braking torque calculation unit that calculates the braking torque of the wheels, and inputs the wheel speed of the wheels and the longitudinal acceleration, which is the acceleration in the longitudinal direction of the vehicle. The braking torque calculation unit calculates the vehicle body speed, the tire longitudinal force of the wheels, and the slip ratio of the wheels based on the wheel speed, the tire load of the wheels, the longitudinal acceleration, and the tire characteristics of the wheels, and calculates the braking torque based on the calculated tire longitudinal force.
 本発明によると、低コストで高精度に制動トルクを推定できる制動トルク推定装置を提供することができる。 The present invention provides a braking torque estimation device that can estimate braking torque with high accuracy at low cost.
本発明の実施例1による制動トルク推定装置を備える車両の構成例を示す図。1 is a diagram showing an example of the configuration of a vehicle equipped with a braking torque estimation device according to a first embodiment of the present invention; 実施例1による制動トルク推定装置の構成を示すブロック図。1 is a block diagram showing a configuration of a braking torque estimation device according to a first embodiment; タイヤ特性である、スリップ率と摩擦係数との関係の例を示す図。FIG. 4 is a diagram showing an example of the relationship between a slip ratio and a friction coefficient, which are tire characteristics. 横滑り角が変化したときの、スリップ率と摩擦係数との関係の例を示す図。FIG. 4 is a diagram showing an example of the relationship between the slip ratio and the friction coefficient when the sideslip angle is changed. 本発明の実施例4による制動トルク推定装置の構成を示すブロック図。FIG. 11 is a block diagram showing the configuration of a braking torque estimation device according to a fourth embodiment of the present invention. ブレーキ装置の構成を示す図。FIG. 2 is a diagram showing a configuration of a brake device. ブレーキ制御装置に接続された制動トルク推定装置を示す図である。FIG. 2 is a diagram showing a braking torque estimation device connected to a brake control device. 本発明の実施例8におけるブレーキ制御装置の構成を示すブロック図。FIG. 13 is a block diagram showing the configuration of a brake control device according to an eighth embodiment of the present invention.
 本発明による制動トルク推定装置は、タイヤが設けられた複数の車輪を備える車両に設置可能であり、車輪の車輪速と車両の前後加速度を用いてタイヤ特性(例えば、制動係数)とタイヤ荷重を推定でき、推定したタイヤ特性とタイヤ荷重を用いて車体速、スリップ率、タイヤ前後力、及び制動トルクを低コストで高精度に推定できる。スリップ率、タイヤ前後力、及び制動トルク等は、ブレーキ装置とタイヤによって個体差があり、ブレーキ装置とタイヤの摩耗等による経年変化によって変動する。本発明による制動トルク推定装置では、車体速、スリップ率、タイヤ前後力、及び制動トルクを、制動トルクセンサや推力センサを用いずに、車両が一般的に備えるセンサのみを用いて、低コストで精度よく推定することができる。本発明による制動トルク推定装置を用いると、車両の運動を低コストで高精度に制御することができる。 The braking torque estimation device according to the present invention can be installed on a vehicle having multiple wheels with tires, and can estimate tire characteristics (e.g., braking coefficient) and tire load using the wheel speed of the wheels and the longitudinal acceleration of the vehicle, and can estimate vehicle speed, slip ratio, tire longitudinal force, and braking torque with high accuracy and at low cost using the estimated tire characteristics and tire load. Slip ratio, tire longitudinal force, braking torque, etc. vary depending on the brake device and tire, and fluctuate due to aging caused by wear of the brake device and tires. The braking torque estimation device according to the present invention can estimate vehicle speed, slip ratio, tire longitudinal force, and braking torque with high accuracy and at low cost using only sensors that are generally equipped on a vehicle, without using a braking torque sensor or thrust sensor. Using the braking torque estimation device according to the present invention, vehicle motion can be controlled with high accuracy and at low cost.
 以下、本発明の実施例による制動トルク推定装置を、図面を使用して説明する。なお、本明細書で用いる図面において、同一の又は対応する構成要素には同一の符号を付け、これらの構成要素については繰り返しの説明を省略する場合がある。 Below, a braking torque estimation device according to an embodiment of the present invention will be described with reference to the drawings. Note that in the drawings used in this specification, identical or corresponding components are given the same reference numerals, and repeated explanations of these components may be omitted.
 本発明の実施例1による制動トルク推定装置について説明する。 This section describes a braking torque estimation device according to a first embodiment of the present invention.
 図1は、本実施例による制動トルク推定装置を備える車両10の構成例を示す図である。車両10は、コントローラ5、車輪7、車体8、車輪速センサ1、加速度センサ2、ジャイロセンサ3、操舵角センサ4、制動力を発生するブレーキ装置9、ブレーキペダル11、及び電源14を備え、さらに、図示していないが、制駆動力を発生させる内燃機関又は電動機、操舵装置、及びサスペンション等を備える。 FIG. 1 is a diagram showing an example of the configuration of a vehicle 10 equipped with a braking torque estimation device according to this embodiment. The vehicle 10 includes a controller 5, wheels 7, a vehicle body 8, a wheel speed sensor 1, an acceleration sensor 2, a gyro sensor 3, a steering angle sensor 4, a brake device 9 that generates a braking force, a brake pedal 11, and a power source 14. Although not shown, the vehicle 10 also includes an internal combustion engine or electric motor that generates a braking/driving force, a steering device, a suspension, and the like.
 コントローラ5は、本実施例による制動トルク推定装置を備え、内燃機関、電動機、ブレーキ装置9、操舵装置、及びサスペンション等を制御する。コントローラ5は、自らが備える機能ごとに分けて設けられてもよく、上位のコントローラと下位のコントローラとに分けて設けられてもよい。本明細書では、このように分けられた複数のコントローラも、まとめてコントローラ5と呼ぶ。なお、コントローラ5は、CPU等の演算装置、半導体メモリ等の主記憶装置、補助記憶装置、及び通信装置等のハードウェアを備えて車両10を統括制御する計算機で構成することができ、主記憶装置にロードされたプログラムを演算装置が実行することで、様々な機能を実現する。 The controller 5 is equipped with a braking torque estimation device according to this embodiment, and controls the internal combustion engine, the electric motor, the brake device 9, the steering device, the suspension, etc. The controller 5 may be provided separately for each function it has, or may be provided separately as a higher-level controller and a lower-level controller. In this specification, multiple controllers separated in this way are collectively referred to as the controller 5. The controller 5 may be configured as a computer that has a calculation device such as a CPU, a main storage device such as a semiconductor memory, an auxiliary storage device, and hardware such as a communication device, and that performs overall control of the vehicle 10, and various functions are realized by the calculation device executing a program loaded into the main storage device.
 以下の説明では、コントローラ5の上記の構成のような、周知技術の説明を省略することがある。 In the following explanation, descriptions of well-known technologies such as the above-mentioned configuration of the controller 5 may be omitted.
 車輪7は、車体8の前後左右の4か所に配置され、タイヤが設けられている。本実施例では、車両10は、4輪車であるとする。 The wheels 7 are arranged at four locations on the front, rear, left and right sides of the vehicle body 8, and tires are provided. In this embodiment, the vehicle 10 is a four-wheeled vehicle.
 車輪速センサ1、加速度センサ2、ジャイロセンサ3、及び操舵角センサ4は、車両10が一般的に備えるセンサである。 The wheel speed sensor 1, acceleration sensor 2, gyro sensor 3, and steering angle sensor 4 are sensors that are typically provided in a vehicle 10.
 車輪速センサ1は、車体8の4か所にある車輪7の回転速度を検出する。車輪速センサ1は、例えば、車軸ハブ等に設置された回転部と、ナックルやブレーキキャリア等に設置された固定部との間の相対回転速度(車輪角速度)を検出するセンサで構成することができる。 The wheel speed sensor 1 detects the rotational speed of the wheels 7 located at four points on the vehicle body 8. The wheel speed sensor 1 can be configured, for example, as a sensor that detects the relative rotational speed (wheel angular velocity) between a rotating part installed on the axle hub or the like and a fixed part installed on the knuckle, brake carrier, or the like.
 加速度センサ2は、車体8の重心に作用する加速度、すなわち車両10の前後方向の加速度(前後加速度)と横方向の加速度(横加速度)を検出する。 The acceleration sensor 2 detects the acceleration acting on the center of gravity of the vehicle body 8, i.e., the acceleration in the forward/backward direction (forward/backward acceleration) and the acceleration in the lateral direction (lateral acceleration) of the vehicle 10.
 ジャイロセンサ3は、車体8の重心周りの回転の角速度であるヨーレイトを検出する。 The gyro sensor 3 detects the yaw rate, which is the angular velocity of rotation around the center of gravity of the vehicle body 8.
 操舵角センサ4は、車両10を運転する運転手の操舵によって生じるステアリングホイールの回転角又は車輪7の舵角である操舵角を検出する。 The steering angle sensor 4 detects the steering angle, which is the rotation angle of the steering wheel or the steering angle of the wheels 7, generated by the steering of the driver who drives the vehicle 10.
 ブレーキ装置9は、例えば電動ブレーキ装置であり、車体8の4か所にある車輪7のそれぞれに設けられる。すなわち、車両10は、左前輪用のブレーキ装置9FL、右前輪用のブレーキ装置9FR、左後輪用のブレーキ装置9RL、及び右後輪用のブレーキ装置9RRを備える。これらのブレーキ装置は、互いに同じ構造を備え、コントローラ5に制御される。以下では、これらのブレーキ装置9FL、9FR、9RL、9RRをまとめてブレーキ装置9と呼ぶ。なお、ブレーキ装置9は、電動ブレーキ装置ではなく、油圧ブレーキ装置でもよい。 The brake devices 9 are, for example, electric brake devices, and are provided on each of the wheels 7 at four locations on the vehicle body 8. That is, the vehicle 10 is equipped with a brake device 9FL for the left front wheel, a brake device 9FR for the right front wheel, a brake device 9RL for the left rear wheel, and a brake device 9RR for the right rear wheel. These brake devices have the same structure and are controlled by the controller 5. Hereinafter, these brake devices 9FL, 9FR, 9RL, and 9RR will be collectively referred to as brake devices 9. Note that the brake devices 9 may be hydraulic brake devices instead of electric brake devices.
 コントローラ5は、車両10の運転手によるブレーキペダル11の操作、車両10や車輪7の状態、及び車両10の外界についての各種情報等を基に、ブレーキペダル11の操作に応じた制御信号を、通信線12を介してブレーキ装置9に送信する。ブレーキ装置9は、電線13を介して電源14から供給された電力によって駆動する。 The controller 5 transmits a control signal corresponding to the operation of the brake pedal 11 to the brake device 9 via the communication line 12 based on the operation of the brake pedal 11 by the driver of the vehicle 10, the state of the vehicle 10 and the wheels 7, and various information about the outside world of the vehicle 10. The brake device 9 is driven by electricity supplied from a power source 14 via an electric wire 13.
 コントローラ5は、本実施例による制動トルク推定装置の機能を備え、制動トルク推定装置が推定した制動トルクの値等を用いて、車両10を制動する。図2を用いて、本実施例による制動トルク推定装置について説明する。 The controller 5 has the function of the braking torque estimation device according to this embodiment, and brakes the vehicle 10 using the braking torque value estimated by the braking torque estimation device. The braking torque estimation device according to this embodiment will be described with reference to FIG. 2.
 図2は、本実施例による制動トルク推定装置20の構成を示すブロック図である。制動トルク推定装置20は、タイヤ荷重推定部21、タイヤ特性読込部25、制動トルク等推定部26、タイヤ特性推定部22、及びタイヤ特性記憶部24を備える。 FIG. 2 is a block diagram showing the configuration of the braking torque estimation device 20 according to this embodiment. The braking torque estimation device 20 includes a tire load estimation unit 21, a tire characteristics reading unit 25, a braking torque estimation unit 26, a tire characteristics estimation unit 22, and a tire characteristics storage unit 24.
 タイヤ荷重推定部21は、タイヤ荷重Fziを算出して推定する。タイヤ荷重Fziは、タイヤ上下力Fziとも呼ぶ。タイヤ荷重推定部21がタイヤ荷重Fziを算出する方法については、後述する。 The tire load estimation unit 21 calculates and estimates the tire load Fzi. The tire load Fzi is also called the tire vertical force Fzi. The method by which the tire load estimation unit 21 calculates the tire load Fzi will be described later.
 なお、添え字iは、車体8の4か所にある車輪7を区別する識別子であり、FL(左前輪)、FR(右前輪)、RL(左後輪)、及びRR(右後輪)のいずれか1つを表す。以下の説明でも、この添え字iを用いる。 The suffix i is an identifier that distinguishes between the four wheels 7 on the vehicle body 8, and represents one of the following: FL (front left wheel), FR (front right wheel), RL (rear left wheel), and RR (rear right wheel). This suffix i will also be used in the following explanation.
 タイヤ特性読込部25は、タイヤ特性記憶部24が記憶しているタイヤ特性を入力する。このタイヤ特性は、タイヤのスリップ率と摩擦係数との関係を示す値である。タイヤ特性の例としては、後述するように、スリップ率と摩擦係数との間の比例係数である制動係数Kbiを挙げることができる。摩擦係数は、タイヤ接地面でタイヤが受ける前後力(タイヤ前後力Fxi)を、タイヤ接地面でタイヤが受ける上下力(タイヤ荷重Fzi又はタイヤ上下力Fzi)で割った値である。 The tire characteristics reading unit 25 inputs the tire characteristics stored in the tire characteristics storage unit 24. The tire characteristics are values that indicate the relationship between the slip ratio and friction coefficient of the tire. An example of a tire characteristic is the braking coefficient Kbi, which is a proportional coefficient between the slip ratio and the friction coefficient, as described below. The friction coefficient is the value obtained by dividing the longitudinal force (tire longitudinal force Fxi) that the tire receives at the tire contact surface by the vertical force (tire load Fzi or tire vertical force Fzi) that the tire receives at the tire contact surface.
 制動トルク等推定部26は、タイヤ荷重推定部21が算出したタイヤ荷重Fziと、タイヤ特性読込部25が得たタイヤ特性(例えば、スリップ率と摩擦係数との関係を示す値である制動係数Kbi)を用いて、タイヤ前後力、スリップ率、車体速、及び制動トルクを算出して推定する。以下では、タイヤ前後力、スリップ率、車体速、及び制動トルクをまとめて、「制動トルク等」とも呼ぶ。また、制動トルク等推定部26は、制動トルク算出部とも呼ぶ。 The braking torque etc. estimation unit 26 calculates and estimates the tire longitudinal force, slip ratio, vehicle speed, and braking torque using the tire load Fzi calculated by the tire load estimation unit 21 and the tire characteristics (e.g., braking coefficient Kbi, which is a value indicating the relationship between the slip ratio and the friction coefficient) obtained by the tire characteristics reading unit 25. Hereinafter, the tire longitudinal force, slip ratio, vehicle speed, and braking torque are collectively referred to as "braking torque etc." The braking torque etc. estimation unit 26 is also referred to as a braking torque calculation unit.
 制動トルク算出部である制動トルク等推定部26が、制動トルク等を算出する方法について説明する。 The method by which the braking torque estimation unit 26, which is the braking torque calculation unit, calculates the braking torque, etc. will be explained.
 図3は、タイヤ特性である、スリップ率と摩擦係数との関係の例を示す図である。図3では、横軸がスリップ率で、縦軸が摩擦係数であり、両者の関係が曲線30で表されている。スリップ率と摩擦係数は、一般に、図3に表すような関係にあることが知られている。 Figure 3 is a diagram showing an example of the relationship between the slip ratio and the friction coefficient, which are tire characteristics. In Figure 3, the horizontal axis is the slip ratio and the vertical axis is the friction coefficient, and the relationship between the two is represented by curve 30. It is generally known that the slip ratio and the friction coefficient have the relationship shown in Figure 3.
 スリップ率λiは、制動時は式(1)で表される。 The slip ratio λi during braking is expressed by equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
ここで、Vbは車体速を示し、Vwiは車輪速を示す。車体速Vbは、車体8の速度(車体8の重心の速度)である。車輪速Vwiは、車輪7の回転速度であり、(タイヤ半径Ri×車輪角速度ωi)で求められ、車輪速センサ1で検出することができる。 Here, Vb indicates the vehicle speed, and Vwi indicates the wheel speed. The vehicle speed Vb is the speed of the vehicle body 8 (the speed of the center of gravity of the vehicle body 8). The wheel speed Vwi is the rotational speed of the wheel 7, which is calculated by (tire radius Ri x wheel angular velocity ωi), and can be detected by the wheel speed sensor 1.
 スリップ率λiは、駆動時(加速時)は式(2)で表される。 The slip ratio λi during driving (acceleration) is expressed by equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 図3で、スリップ率が正の場合は、駆動時の摩擦係数を示し、スリップ率が負の場合は、制動時の摩擦係数を示す。すなわち、図3のグラフにおいて、右上の領域が駆動時の特性を示し、左下の領域が制動時の特性を示す。 In Figure 3, when the slip ratio is positive, it indicates the friction coefficient during driving, and when the slip ratio is negative, it indicates the friction coefficient during braking. That is, in the graph of Figure 3, the upper right area indicates the characteristics during driving, and the lower left area indicates the characteristics during braking.
 図3に示すように、摩擦係数は、スリップ率が大きくなるにつれて大きくなるが、あるスリップ率でピークに達し、さらにスリップ率が大きくなると小さくなるという特徴をもつ。スリップ率の絶対値が小さい場合には、スリップ率と摩擦係数との間に線形の関係があり、両者の関係が破線で示した直線31で表される。 As shown in Figure 3, the friction coefficient increases as the slip ratio increases, but has the characteristic of reaching a peak at a certain slip ratio and then decreasing as the slip ratio increases further. When the absolute value of the slip ratio is small, there is a linear relationship between the slip ratio and the friction coefficient, and this relationship is represented by the dashed straight line 31.
 上述したように、スリップ率の絶対値が小さい範囲では、スリップ率と摩擦係数とが比例の関係にあるので、この比例係数を制動係数Kbiとする。 As mentioned above, when the absolute value of the slip ratio is small, the slip ratio and the friction coefficient are proportional to each other, so this proportionality coefficient is taken as the braking coefficient Kbi.
 タイヤ前後力Fxiは、式(3)で求められる。 The tire longitudinal force Fxi is calculated using equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 タイヤ前後力Fxiの全ての車輪7(4輪)についての合計値は、空気抵抗や車両10の傾斜等による重力の影響を除くと、車両10の運動方程式から式(4)で表される。 The total tire longitudinal force Fxi for all four wheels 7 is expressed by equation (4) based on the equation of motion of the vehicle 10, excluding the effects of gravity due to air resistance and the inclination of the vehicle 10.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、axは車両10の前後加速度であり、axseは加速度センサ2が検出した車体8の重心に作用する前後加速度、mbは乗員等を含めた車両10の質量である。記号Σは、添え字iについての和、すなわち、全ての車輪7(4輪)についての合計を示す。 Here, ax is the longitudinal acceleration of the vehicle 10, axse is the longitudinal acceleration acting on the center of gravity of the vehicle body 8 detected by the acceleration sensor 2, and mb is the mass of the vehicle 10 including the occupants. The symbol Σ indicates the sum for the subscript i, that is, the total for all wheels 7 (4 wheels).
 式(4)に示すように、車両10の前後加速度axは、加速度センサ2が検出した値axseであるとしてもよい。但し、車両10の前後加速度axは、前後加速度axseに含まれている車体8のピッチングに伴う重力加速度成分を除去することで、高精度に求めることができる。このため、車両10の前後加速度axは、式(5)を用いて求めることもできる。ここで、θyは車体8のピッチ角を示し、gは重力加速度を示す。 As shown in equation (4), the longitudinal acceleration ax of the vehicle 10 may be the value axse detected by the acceleration sensor 2. However, the longitudinal acceleration ax of the vehicle 10 can be calculated with high accuracy by removing the gravitational acceleration component associated with the pitching of the vehicle body 8 contained in the longitudinal acceleration axse. Therefore, the longitudinal acceleration ax of the vehicle 10 can also be calculated using equation (5). Here, θy indicates the pitch angle of the vehicle body 8, and g indicates the gravitational acceleration.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ピッチ角θyが小さい場合には、式(5)は、式(6)に近似できる。このため、ピッチ角θyが小さいとして、式(5)の代わりに、線形の近似式である式(6)を用いてもよい。 When the pitch angle θy is small, equation (5) can be approximated by equation (6). Therefore, when the pitch angle θy is small, equation (6), which is a linear approximation, may be used instead of equation (5).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 なお、車両10が傾斜角αで傾斜している場合には、式(4)の運動方程式は、重力の項が追加されて式(7)で表される。 When the vehicle 10 is tilted at a tilt angle α, the equation of motion in formula (4) is expressed as formula (7) by adding a term for gravity.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 また、ピッチ角θyと傾斜角αが小さいとすれば、車両10の前後加速度axは、加速度センサ2が検出した前後加速度axseを用いて、式(8)で求められる。 Also, if the pitch angle θy and the tilt angle α are small, the longitudinal acceleration ax of the vehicle 10 can be calculated using the longitudinal acceleration axse detected by the acceleration sensor 2, using equation (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 すると、タイヤ前後力Fxiの全ての車輪7(4輪)についての合計値は、式(7)、(8)から、加速度センサ2が検出した前後加速度axseを用いて、式(9)で求めることができる。 Then, the total tire longitudinal force Fxi for all four wheels 7 can be calculated from equations (7) and (8) using the longitudinal acceleration axse detected by the acceleration sensor 2, as shown in equation (9).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 ここで、ピッチ角θyは、前後加速度とピッチ剛性の関係を用いて算出することができる。 Here, the pitch angle θy can be calculated using the relationship between the longitudinal acceleration and the pitch stiffness.
 また、タイヤ前後力Fxiを計算する際に空気抵抗の影響を考慮する場合には、例えば式(4)の運動方程式を用いて、式(10)のようにタイヤ前後力Fxiの全ての車輪7(4輪)についての合計値が求められる。 In addition, if the effect of air resistance is taken into consideration when calculating the tire longitudinal force Fxi, the equation of motion (4) can be used to find the total tire longitudinal force Fxi for all wheels 7 (4 wheels) as shown in equation (10).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
ここで、Aは車両10の前面投影面積、Cは空気抵抗係数、ρは空気の密度である。車体速Vbは、求めたい値(制動トルク等に含まれる値)であるので、式(10)では、直近の過去に求めた値や車輪速Vwiを車体速Vbとする。 Here, A is the frontal projection area of the vehicle 10, C is the air resistance coefficient, and ρ is the air density. Since the vehicle speed Vb is the value to be calculated (a value included in the braking torque, etc.), in equation (10), the most recently calculated value or the wheel speed Vwi is set to the vehicle speed Vb.
 式(9)又は式(10)を用いることで、タイヤ前後力Fxiの合計値をより精度よく求めることができる。 By using equation (9) or equation (10), the total tire longitudinal force Fxi can be calculated more accurately.
 一方、制動時には、タイヤ前後力Fxiの全ての車輪7(4輪)についての合計値は、式(3)に式(1)を代入することで、式(11)で表される。 On the other hand, during braking, the total tire longitudinal force Fxi for all four wheels 7 is expressed by equation (11) by substituting equation (1) into equation (3).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 式(11)を車体速Vbについて解くと、車体速Vbを表す式として式(12)が得られる。 If we solve equation (11) for vehicle speed Vb, we get equation (12) which represents vehicle speed Vb.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 式(12)を式(1)に代入すると、各輪のスリップ率λiを表す式として式(13)が得られる。 By substituting equation (12) into equation (1), we obtain equation (13) which represents the slip ratio λi of each wheel.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 式(13)を式(3)に代入すると、各輪のタイヤ前後力Fxiを表す式として式(14)が得られる。 By substituting equation (13) into equation (3), we obtain equation (14) which represents the tire longitudinal force Fxi of each wheel.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 以上から、車体速Vb、各輪のスリップ率λi、各輪のタイヤ前後力Fxiは、加速度センサ2が検出した前後加速度axseを用いて算出可能な全ての車輪7についてのタイヤ前後力Fxiの合計値と、それぞれの車輪7のタイヤ荷重Fzi(タイヤ上下力Fzi)と、制動係数Kbiと、車輪速Vwiを用いて求められることがわかる(式(12)-式(14))。 From the above, it can be seen that the vehicle speed Vb, the slip rate λi of each wheel, and the tire longitudinal force Fxi of each wheel can be calculated using the total tire longitudinal force Fxi of all wheels 7, which can be calculated using the longitudinal acceleration axse detected by the acceleration sensor 2, the tire load Fzi (tire vertical force Fzi) of each wheel 7, the braking coefficient Kbi, and the wheel speed Vwi (Equation (12)-Equation (14)).
 なお、制動トルク等推定部26は、制動係数Kbiとして、タイヤ特性読込部25がタイヤ特性記憶部24から入力した値を用い、全ての車輪7のタイヤ荷重Fziとして、タイヤ荷重推定部21が推定した値を用いる。 The braking torque estimation unit 26 uses the value input by the tire characteristics reading unit 25 from the tire characteristics storage unit 24 as the braking coefficient Kbi, and uses the value estimated by the tire load estimation unit 21 as the tire load Fzi of all wheels 7.
 なお、以上の説明では、車両10の全ての車輪7(4輪)の間で制動係数Kbiが異なる場合について述べた。4つの車輪7は、同じタイヤを用いて同じような状況の路面を走行していると考えられる場合には、タイヤ特性に大きな違いがなく、同一の制動係数Kbでタイヤ特性が表されると仮定することができる。全ての車輪7が同一の制動係数Kbを持つとすると、式(12)-(14)は、それぞれ式(15)-(17)のように表される。但し、ΣFziをmb×gに置き換えている。 In the above explanation, we have described a case where the braking coefficient Kbi differs between all four wheels 7 of the vehicle 10. If the four wheels 7 are considered to be using the same tires and traveling on road surfaces with similar conditions, it can be assumed that there is no significant difference in tire characteristics and that the tire characteristics are expressed by the same braking coefficient Kb. If all wheels 7 have the same braking coefficient Kb, then equations (12)-(14) can be expressed as equations (15)-(17), respectively. However, ΣFzi is replaced with mb×g.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 すなわち、車体速Vb、各輪のスリップ率λi、各輪のタイヤ前後力Fxiは、各輪の制動係数Kbiに変えて、全ての車輪7に対して同一の値を持つ制動係数Kbを用いて求めることができる。 In other words, the vehicle speed Vb, the slip ratio λi of each wheel, and the tire longitudinal force Fxi of each wheel can be calculated by using a braking coefficient Kb that has the same value for all wheels 7, instead of the braking coefficient Kbi of each wheel.
 制動時のタイヤ前後力Fxiと制動トルクの関係は、走行抵抗を無視すると、式(18)で表される。 The relationship between tire longitudinal force Fxi and braking torque during braking is expressed by equation (18), ignoring running resistance.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 ここで、Iiは車輪7の慣性モーメントを示し、Tbiは制動トルクを示し、Riはタイヤ半径を示し、ωiは車輪角速度を示す。なお、ωi×Ri=Vwiの関係がある。 Here, Ii represents the moment of inertia of the wheel 7, Tbi represents the braking torque, Ri represents the tire radius, and ωi represents the wheel angular velocity. Note that there is a relationship of ωi x Ri = Vwi.
 制動トルクTbiは、式(18)から式(19)のように算出できる。 The braking torque Tbi can be calculated from equation (18) as shown in equation (19).
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 式(19)において慣性項を値が小さいので無視すると、制動トルクTbiを表す式として式(20)が得られる。 If we ignore the inertia term in equation (19) because it is small, we obtain equation (20) which represents the braking torque Tbi.
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
ここで、減速時は、タイヤ前後力Fxiが負の値で、制動トルクTbiが正の値としている。 Here, during deceleration, the tire longitudinal force Fxi is a negative value and the braking torque Tbi is a positive value.
 制動トルクTbiには、ブレーキ装置9による制動トルクと、電動車両における電動機によるトルクと、内燃機関によるトルクが含まれる。電動機によるトルクは、回生ブレーキトルクと呼ばれ、内燃機関によるトルクは、エンジンブレーキトルクと呼ばれる。回生ブレーキトルクとエンジンブレーキトルクは、駆動トルクと呼ばれる。制動トルク等推定部26は、これらの駆動トルクを既存技術に従って推定することができる。 The braking torque Tbi includes the braking torque due to the brake device 9, the torque due to the electric motor in the electric vehicle, and the torque due to the internal combustion engine. The torque due to the electric motor is called regenerative braking torque, and the torque due to the internal combustion engine is called engine braking torque. The regenerative braking torque and the engine braking torque are called driving torque. The braking torque etc. estimation unit 26 can estimate these driving torques according to existing technology.
 制動トルク等推定部26は、ブレーキ装置9による制動トルクを、制動トルクTbiから駆動トルク(回生ブレーキトルク又はエンジンブレーキトルク)を減じることで求めることができる。 The braking torque estimation unit 26 can obtain the braking torque applied by the brake device 9 by subtracting the driving torque (regenerative braking torque or engine braking torque) from the braking torque Tbi.
 また、ブレーキ装置9による制動トルクに比べ、回生ブレーキトルクとエンジンブレーキトルクが十分に小さい場合には、制動トルク等推定部26は、制動トルクTbiの値をブレーキ装置9による制動トルクの値とすることができる。 In addition, when the regenerative braking torque and engine braking torque are sufficiently small compared to the braking torque by the brake device 9, the braking torque estimation unit 26 can set the value of the braking torque Tbi to the value of the braking torque by the brake device 9.
 また、ブレーキ装置9が非動作中であり、ブレーキ装置9による制動トルクが発生していない場合には、制動トルク等推定部26は、制動トルクTbiの値を回生ブレーキトルク又はエンジンブレーキトルクの値とすることができる。また、ブレーキ装置9による制動トルクが計測可能である場合には、制動トルク等推定部26は、計測されたブレーキ装置9による制動トルクの値を制動トルクTbiから減じることで、回生ブレーキトルク又はエンジンブレーキトルクを求めることができる。 In addition, when the brake device 9 is not in operation and no braking torque is being generated by the brake device 9, the braking torque etc. estimation unit 26 can set the value of the braking torque Tbi to the value of the regenerative braking torque or the engine braking torque. In addition, when the braking torque by the brake device 9 is measurable, the braking torque etc. estimation unit 26 can obtain the regenerative braking torque or the engine braking torque by subtracting the measured value of the braking torque by the brake device 9 from the braking torque Tbi.
 次に、タイヤ荷重推定部21がタイヤ荷重Fzi(タイヤ上下力Fzi)を算出する方法について説明する。タイヤ荷重推定部21は、公知の方法でタイヤ荷重Fziを算出することができる。以下では、一例として、車両10が直線を走行するときのタイヤ荷重Fziを算出する方法について説明する。 Next, a method for the tire load estimation unit 21 to calculate the tire load Fzi (tire vertical force Fzi) will be described. The tire load estimation unit 21 can calculate the tire load Fzi using a known method. As an example, the following describes a method for calculating the tire load Fzi when the vehicle 10 is traveling in a straight line.
 例えば、加減速がない場合の左右輪の荷重が互いに等しいと仮定すれば、直進走行している場合には、タイヤ荷重Fziは、前輪については式(21)で、後輪については式(22)で算出できる。 For example, if we assume that the loads on the left and right wheels are equal when there is no acceleration or deceleration, the tire load Fzi can be calculated using equation (21) for the front wheels and equation (22) for the rear wheels when traveling straight ahead.
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
ここで、mbは乗員等を含めた車両10の質量、Lfは車両10の重心位置と前輪軸との前後方向の距離、Lrは車両10の重心位置と後輪軸との前後方向の距離、Lbasはホイールベース(Lbas=Lf+Lr)、hycは車両10の重心高さを示す。 Here, mb is the mass of the vehicle 10 including occupants, etc., Lf is the longitudinal distance between the center of gravity of the vehicle 10 and the front wheel axle, Lr is the longitudinal distance between the center of gravity of the vehicle 10 and the rear wheel axle, Lbas is the wheelbase (Lbas = Lf + Lr), and hyc is the height of the center of gravity of the vehicle 10.
 式(21)と式(22)から、タイヤ荷重Fzi(タイヤ上下力Fzi)も、加速度センサ2が検出した前後加速度axseを用いて算出することができる。前後加速度axは、加速度センサ2が検出した前後加速度axseを用いて求められる(例えば、式(4)、(5)、(6)、(8)を参照)。 From equations (21) and (22), the tire load Fzi (tire vertical force Fzi) can also be calculated using the longitudinal acceleration axse detected by the acceleration sensor 2. The longitudinal acceleration ax can be found using the longitudinal acceleration axse detected by the acceleration sensor 2 (see, for example, equations (4), (5), (6), and (8)).
 なお、制動トルク等推定部26は、タイヤ荷重Fziとして、タイヤ荷重推定部21が算出して推定した値ではなく、実測したりサスペンションの変位等から算出したりして求めた値を用いてもよい。 The braking torque estimation unit 26 may use, as the tire load Fzi, a value obtained by actually measuring or calculating from the displacement of the suspension, etc., instead of a value calculated and estimated by the tire load estimation unit 21.
 次に、タイヤ特性推定部22について説明する。タイヤ特性推定部22は、本実施例では、タイヤ特性として制動係数Kbiを推定して求める。本実施例では、全ての車輪7が同一の制動係数Kbを持つ(すなわち、Kbi=Kb)と仮定し、この制動係数Kbを求める例を示す。 Next, the tire characteristic estimation unit 22 will be described. In this embodiment, the tire characteristic estimation unit 22 estimates and obtains the braking coefficient Kbi as a tire characteristic. In this embodiment, it is assumed that all wheels 7 have the same braking coefficient Kb (i.e., Kbi = Kb), and an example of obtaining this braking coefficient Kb will be shown.
 図3に示したタイヤ特性は、制動時と駆動時で摩擦係数の符号が異なる以外はほぼ等しいことが知られている。そこで、本実施例では、車両10の加速時である駆動時に制動係数Kbを算出する方法を示す。 The tire characteristics shown in Figure 3 are known to be almost the same during braking and driving, except that the sign of the friction coefficient is different. Therefore, in this embodiment, a method for calculating the braking coefficient Kb during driving, which is when the vehicle 10 is accelerating, is shown.
 車両10が前輪駆動で加速する場合を例に挙げて説明する。後輪の駆動力はゼロであり、制動力もゼロである。したがって、後輪のスリップ率λi(iは、RLとRR)をゼロと仮定すると、車体速Vbは、式(2)から得られた式(23)を用いて算出できる。 We will explain an example in which the vehicle 10 accelerates in front-wheel drive. The driving force of the rear wheels is zero, and the braking force is also zero. Therefore, if we assume that the slip ratio λi (i is RL and RR) of the rear wheels is zero, the vehicle speed Vb can be calculated using equation (23) obtained from equation (2).
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 式(23)を式(2)に代入すると、左前輪のスリップ率λFLは、式(24)で求まり、右前輪のスリップ率λFRは、式(25)で求まる。 By substituting equation (23) into equation (2), the slip ratio λFL of the left front wheel is calculated using equation (24), and the slip ratio λFR of the right front wheel is calculated using equation (25).
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
 左前輪のタイヤ前後力FxFLと右前輪のタイヤ前後力FxFRは、式(3)から、それぞれ式(26)と式(27)で表される。式(26)と式(27)のスリップ率λFL、λFRには、式(24)と式(25)で得られたスリップ率を用いる。 The tire longitudinal force FxFL of the left front wheel and the tire longitudinal force FxFR of the right front wheel are expressed by equations (26) and (27), respectively, based on equation (3). The slip ratios λFL and λFR in equations (26) and (27) use the slip ratios obtained from equations (24) and (25).
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
 また、後輪の駆動力と制動力がゼロであるとすると、タイヤ前後力Fxiの全ての車輪7(4輪)についての合計値は、式(28)で表される。 If the driving force and braking force of the rear wheels are zero, the total tire longitudinal force Fxi for all four wheels 7 is expressed by equation (28).
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000028
 式(28)の左辺のタイヤ前後力Fxiの合計値は、式(4)等に示すように、加速度センサ2が検出した前後加速度axseを用いて求めることができる。 The total tire longitudinal force Fxi on the left side of equation (28) can be calculated using the longitudinal acceleration axse detected by the acceleration sensor 2, as shown in equation (4) etc.
 式(28)の右辺に式(26)、(27)を代入し、式(28)を制動係数Kbについて解くと、式(29)が得られる。 By substituting equations (26) and (27) into the right-hand side of equation (28) and solving equation (28) for the damping coefficient Kb, we obtain equation (29).
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000029
 すなわち、制動係数Kbは、加速度センサ2が検出した前後加速度axse(又は、車両10の前後加速度ax)と、式(24)、(25)で用いられる4輪の車輪速Vwiと、前輪のタイヤ荷重FzFL、FzFRを用いて算出できる。 In other words, the braking coefficient Kb can be calculated using the longitudinal acceleration axse detected by the acceleration sensor 2 (or the longitudinal acceleration ax of the vehicle 10), the four wheel speeds Vwi used in equations (24) and (25), and the tire loads FzFL and FzFR of the front wheels.
 以上の説明では、車両10が前輪駆動である例を説明した。車両10が後輪駆動の場合には、上記の説明で前輪と後輪を入れ替えればよい。 The above explanation is for an example in which the vehicle 10 is front-wheel drive. If the vehicle 10 is rear-wheel drive, simply swap the front and rear wheels in the above explanation.
 なお、各輪の駆動力がわかっていれば左前輪のタイヤ前後力FxFLと右前輪のタイヤ前後力FxFRがわかり、一方で式(24)、式(25)から左前輪のスリップ率λFL及び右前輪のスリップ率λFRが求められることから、式(26)、(27)を用いて制動係数Kbを求めることができる。 If the driving force of each wheel is known, the tire longitudinal force FxFL of the left front wheel and the tire longitudinal force FxFR of the right front wheel can be known, and the slip rate λFL of the left front wheel and the slip rate λFR of the right front wheel can be found from equations (24) and (25), so the braking coefficient Kb can be found using equations (26) and (27).
 次に、車両10が4輪駆動である例を説明する。4輪駆動での、エンジンや電動機による車輪7の駆動力の前後配分が、式(30)によって検知又は推定可能であると仮定する。 Next, an example will be described in which the vehicle 10 is a four-wheel drive vehicle. It is assumed that in a four-wheel drive vehicle, the front/rear distribution of driving force to the wheels 7 from the engine or electric motor can be detected or estimated using equation (30).
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000030
 ここで、FdxFが前輪の駆動力、FdxRが後輪の駆動力を示し、γがこれらの比を示す。 Here, FdxF is the driving force of the front wheels, FdxR is the driving force of the rear wheels, and γ is the ratio between them.
 前輪のタイヤ前後力FxFL、FxFRは、車両10の運動方程式から式(31)で求められる。 The front tire longitudinal forces FxFL and FxFR are calculated from the equation of motion of the vehicle 10 using equation (31).
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000031
 同様に、左後輪のタイヤ前後力FxRLと右後輪のタイヤ前後力FxRRは、式(32)で求められる。 Similarly, the left rear wheel tire longitudinal force FxRL and the right rear wheel tire longitudinal force FxRR can be calculated using equation (32).
Figure JPOXMLDOC01-appb-M000032
Figure JPOXMLDOC01-appb-M000032
 一方、式(2)と式(3)から、左前輪(i=FL)に関して式(33)が得られ、左後輪(i=RL)に関して式(34)が得られる(Kbi=Kbと仮定した)。 On the other hand, from equations (2) and (3), equation (33) is obtained for the front left wheel (i=FL), and equation (34) is obtained for the rear left wheel (i=RL) (assuming that Kbi=Kb).
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000033
Figure JPOXMLDOC01-appb-M000034
Figure JPOXMLDOC01-appb-M000034
 式(33)と式(34)の連立方程式から車体速Vbと制動係数Kbを未知数として解くと、制動係数Kbを表す式として式(35)が得られる。 By solving the simultaneous equations (33) and (34) with the vehicle speed Vb and the braking coefficient Kb as unknowns, we obtain equation (35) which represents the braking coefficient Kb.
Figure JPOXMLDOC01-appb-M000035
Figure JPOXMLDOC01-appb-M000035
 式(35)で表される制動係数Kbは、左前輪についての式(33)と左後輪についての式(34)から求めたが、制動係数Kbは、右前輪についての式と右後輪についての式から求めてもよく、左前輪についての式と右後輪についての式や、右前輪についての式と左後輪についての式から求めてもよい。例えば、制動係数Kbを、右前輪についての式と右後輪についての式から求めると、式(36)が得られる。 The braking coefficient Kb expressed by equation (35) was obtained from equation (33) for the left front wheel and equation (34) for the left rear wheel, but the braking coefficient Kb may also be obtained from the equation for the right front wheel and the equation for the right rear wheel, or from the equation for the left front wheel and the equation for the right rear wheel, or from the equation for the right front wheel and the equation for the left rear wheel. For example, when the braking coefficient Kb is obtained from the equation for the right front wheel and the equation for the right rear wheel, equation (36) is obtained.
Figure JPOXMLDOC01-appb-M000036
Figure JPOXMLDOC01-appb-M000036
 制動係数Kbは、上述したように複数の式で得ることができる。そこで、複数の式(例えば、式(35)、式(36)の2つの式)から得られた制動係数Kbの平均値を制動係数Kbの値とすることで、制動係数Kbをより精度よく求めることもできる。 The damping coefficient Kb can be obtained from multiple equations as described above. Therefore, by taking the average value of the damping coefficients Kb obtained from multiple equations (for example, the two equations (35) and (36)) as the value of the damping coefficient Kb, the damping coefficient Kb can be obtained more accurately.
 以上のようにして、タイヤ特性推定部22は、タイヤ特性である制動係数Kb(又は制動係数Kbi)を算出する。なお、タイヤ特性推定部22は、タイヤ特性が経年で変化することを考慮し、予め定めた所定の時間ごとに制動係数Kbを推定してもよい。また、タイヤ特性推定部22は、複数回推定して得られた制動係数Kbを平均し、平均して得られた値を制動係数Kbの値とすることで、制動係数Kbの精度を高めるようにしてもよい。 In this manner, the tire characteristic estimation unit 22 calculates the damping coefficient Kb (or damping coefficient Kbi), which is a tire characteristic. Note that the tire characteristic estimation unit 22 may estimate the damping coefficient Kb at predetermined time intervals, taking into account that tire characteristics change over time. The tire characteristic estimation unit 22 may also increase the accuracy of the damping coefficient Kb by averaging the damping coefficient Kb obtained by multiple estimations and setting the average value as the value of the damping coefficient Kb.
 タイヤ特性記憶部24は、タイヤ特性推定部22が求めたタイヤ特性を記憶する。本実施例では、タイヤ特性記憶部24は、制動係数Kb(又は制動係数Kbi)をタイヤ特性として記憶する。 The tire characteristic storage unit 24 stores the tire characteristics calculated by the tire characteristic estimation unit 22. In this embodiment, the tire characteristic storage unit 24 stores the damping coefficient Kb (or damping coefficient Kbi) as a tire characteristic.
 本実施例による制動トルク推定装置20は、車両10の車輪7の車輪速Vwiと前後加速度ax(前後加速度axse)を用いて、タイヤ特性である制動係数Kb(Kbi)、及びタイヤ荷重Fzi(タイヤ上下力Fzi)を推定でき、推定した制動係数Kb(Kbi)やタイヤ荷重Fziを用いて、車体速Vb、スリップ率λi、タイヤ前後力Fxi、及び制動トルクTbiを算出できる。コントローラ5は、制動トルク推定装置20が算出したこれらの値を用いて車両10の運動を制御する。本実施例による制動トルク推定装置20を用いると、低コストで高精度に制動トルクを推定でき、車両10の運動も低コストで高精度に制御することができる。 The braking torque estimation device 20 according to this embodiment can estimate the tire characteristics, braking coefficient Kb (Kbi) and tire load Fzi (tire vertical force Fzi), using the wheel speed Vwi and longitudinal acceleration ax (longitudinal acceleration axse) of the wheels 7 of the vehicle 10, and can calculate the vehicle speed Vb, slip ratio λi, tire longitudinal force Fxi, and braking torque Tbi using the estimated braking coefficient Kb (Kbi) and tire load Fzi. The controller 5 controls the movement of the vehicle 10 using these values calculated by the braking torque estimation device 20. By using the braking torque estimation device 20 according to this embodiment, the braking torque can be estimated with high accuracy at low cost, and the movement of the vehicle 10 can also be controlled with high accuracy at low cost.
 本発明の実施例2による制動トルク推定装置について説明する。実施例1では、車両10が主に直線を走行する例について説明した。本実施例では、車両10が旋回して走行する場合について説明する。車両10が旋回して走行すると、例えばタイヤ荷重Fziの推定方法が、車両10が直線を走行する場合と異なる。以下では、車両10が旋回する場合において、タイヤ荷重推定部21がタイヤ荷重Fziを算出する方法について説明する。 A braking torque estimation device according to a second embodiment of the present invention will be described. In the first embodiment, an example in which the vehicle 10 mainly travels in a straight line will be described. In this embodiment, a case in which the vehicle 10 travels while turning will be described. When the vehicle 10 travels while turning, for example, the method of estimating the tire load Fzi differs from the case in which the vehicle 10 travels in a straight line. Below, a method in which the tire load estimation unit 21 calculates the tire load Fzi when the vehicle 10 travels while turning will be described.
 車両10の旋回時には、車両10にロール運動が発生することにより、タイヤ荷重Fziは、式(37)-(40)で表される。 When the vehicle 10 turns, a roll motion occurs in the vehicle 10, and the tire load Fzi is expressed by equations (37)-(40).
Figure JPOXMLDOC01-appb-M000037
Figure JPOXMLDOC01-appb-M000037
Figure JPOXMLDOC01-appb-M000038
Figure JPOXMLDOC01-appb-M000038
Figure JPOXMLDOC01-appb-M000039
Figure JPOXMLDOC01-appb-M000039
Figure JPOXMLDOC01-appb-M000040
Figure JPOXMLDOC01-appb-M000040
ここで、DFは車両10の前輪のトレッド、DRは車両10の後輪のトレッド、ayは車両10の横方向の加速度を表す。 Here, DF represents the tread of the front wheels of the vehicle 10, DR represents the tread of the rear wheels of the vehicle 10, and ay represents the lateral acceleration of the vehicle 10.
 また、各車輪速から、ばね上重心位置における車両10の前後方向の速度に換算した車輪速は、各車輪速に旋回運動によって生じる実舵角δやヨーレイトrに基づく各輪の速度差を加減算することで求められる。車輪速センサ1で計測される車輪速をVwsiとすると、ばね上重心位置における車両10の前後方向の速度に換算した車輪速Vwiは、式(41)-(44)で表される。 The wheel speed converted from each wheel speed to the longitudinal speed of the vehicle 10 at the sprung center of gravity is calculated by adding or subtracting the speed difference of each wheel based on the actual steering angle δ and yaw rate r caused by turning motion to each wheel speed. If the wheel speed measured by the wheel speed sensor 1 is Vwsi, the wheel speed Vwi converted to the longitudinal speed of the vehicle 10 at the sprung center of gravity is expressed by equations (41)-(44).
Figure JPOXMLDOC01-appb-M000041
Figure JPOXMLDOC01-appb-M000041
Figure JPOXMLDOC01-appb-M000042
Figure JPOXMLDOC01-appb-M000042
Figure JPOXMLDOC01-appb-M000043
Figure JPOXMLDOC01-appb-M000043
Figure JPOXMLDOC01-appb-M000044
Figure JPOXMLDOC01-appb-M000044
 図4は、横滑り角βが変化したときの、スリップ率と摩擦係数との関係の例を示す図である。図4には、図3と同じ曲線30が示されている。実施例1で説明したように、制動係数Kbは、スリップ率の絶対値が小さい範囲における、スリップ率と摩擦係数との比例係数である。 Figure 4 shows an example of the relationship between the slip ratio and the friction coefficient when the sideslip angle β changes. The same curve 30 as in Figure 3 is shown in Figure 4. As explained in Example 1, the braking coefficient Kb is the proportional coefficient between the slip ratio and the friction coefficient in the range where the absolute value of the slip ratio is small.
 制動係数Kbは、車両10の旋回時の横滑り角βによって変化する。横滑り角βがゼロから大きくなっていくと、スリップ率の絶対値が小さい範囲では、スリップ率の変化に対する摩擦係数の変化が小さくなっていく。このため、スリップ率と摩擦係数との比例係数である制動係数Kbは、横滑り角βの増加に伴って小さくなっていく。このような横滑り角βの値に依存する制動係数Kbを、Kb(β)と表記する。 The braking coefficient Kb changes depending on the sideslip angle β when the vehicle 10 turns. As the sideslip angle β increases from zero, the change in the friction coefficient relative to the change in slip ratio becomes smaller in the range where the absolute value of the slip ratio is small. For this reason, the braking coefficient Kb, which is the proportional coefficient between the slip ratio and the friction coefficient, becomes smaller as the sideslip angle β increases. This braking coefficient Kb that depends on the value of the sideslip angle β is denoted as Kb(β).
 タイヤ特性読込部25は、制動係数Kbを、横滑り角βの関数Kb(β)として、タイヤ特性記憶部24から入力する。横滑り角βは、操舵角(実舵角δ)と車体速Vbを用いて、既存の方法で算出できる。 The tire characteristics reading unit 25 inputs the braking coefficient Kb as a function Kb(β) of the sideslip angle β from the tire characteristics storage unit 24. The sideslip angle β can be calculated by existing methods using the steering angle (actual steering angle δ) and the vehicle speed Vb.
 制動トルク等推定部26は、制動係数KbをKb(β)に置き換えるとともに、車輪速Vwiとして、ばね上重心位置における車両10の前後方向の速度に換算した車輪速Vwi(式(41)-(44))の値を入力すると、式(12)-(20)を用いて、車体速Vb、スリップ率λi、タイヤ前後力Fxi、及び制動トルクTbiを算出できる。 The braking torque estimation unit 26 replaces the braking coefficient Kb with Kb(β) and inputs the value of the wheel speed Vwi (equations (41)-(44)) converted into the longitudinal speed of the vehicle 10 at the sprung center of gravity as the wheel speed Vwi, and can calculate the vehicle speed Vb, slip ratio λi, tire longitudinal force Fxi, and braking torque Tbi using equations (12)-(20).
 なお、実施例1では、タイヤ特性推定部22は、横滑り角βがゼロの場合の制動係数Kb(0)を求めている。この制動係数Kb(0)を基にして、横滑り角βがゼロから変化したときの制動係数Kbの値の変化(すなわち、制動係数Kbの値の、Kb(0)からの変化)を実験や数値シミュレーション等で求めることができる。このようにして横滑り角βと制動係数Kbとの関係を予め求めておくと、タイヤ特性推定部22は、この関係を制動係数Kb(β)として記憶することもできる。 In the first embodiment, the tire characteristics estimation unit 22 determines the damping coefficient Kb(0) when the sideslip angle β is zero. Based on this damping coefficient Kb(0), the change in the value of the damping coefficient Kb when the sideslip angle β changes from zero (i.e., the change in the value of the damping coefficient Kb from Kb(0)) can be determined by experiment, numerical simulation, or the like. By determining the relationship between the sideslip angle β and the damping coefficient Kb in this way in advance, the tire characteristics estimation unit 22 can also store this relationship as the damping coefficient Kb(β).
 また、車両10の旋回時にタイヤ荷重Fziを推定したときの横滑り角β1を求めておいて、この横滑り角β1に対応する制動係数Kb(β1)を求め、この制動係数Kb(β1)を基にして、横滑り角βがβ1から変化したときの制動係数Kbの値の変化(すなわち、制動係数Kbの値の、Kb(β1)からの変化)を実験や数値シミュレーション等で求め、横滑り角βと制動係数Kbとの関係を予め求めておくこともできる。タイヤ特性推定部22は、この関係を制動係数Kb(β)として記憶することもできる。 In addition, the side slip angle β1 when the tire load Fzi is estimated when the vehicle 10 is turning can be calculated, and the braking coefficient Kb(β1) corresponding to this side slip angle β1 can be calculated. Based on this braking coefficient Kb(β1), the change in the value of the braking coefficient Kb when the side slip angle β changes from β1 (i.e., the change in the value of the braking coefficient Kb from Kb(β1)) can be calculated by experiments, numerical simulations, etc., and the relationship between the side slip angle β and the braking coefficient Kb can be determined in advance. The tire characteristic estimation unit 22 can also store this relationship as the braking coefficient Kb(β).
 本実施例によれば、車両10の直線走行時だけでなく旋回時にもタイヤ特性(制動係数Kb)や制動トルク等(車体速Vb、スリップ率λi、タイヤ前後力Fxi、及び制動トルクTbi)を算出することができ、車両10の走行状態によらず低コストで高精度に制動トルクTbiを推定できる。 According to this embodiment, tire characteristics (braking coefficient Kb) and braking torque (vehicle speed Vb, slip ratio λi, tire longitudinal force Fxi, and braking torque Tbi) can be calculated not only when the vehicle 10 is traveling in a straight line but also when the vehicle 10 is turning, and braking torque Tbi can be estimated with high accuracy and low cost regardless of the traveling state of the vehicle 10.
 本発明の実施例3による制動トルク推定装置について説明する。 This section describes a braking torque estimation device according to a third embodiment of the present invention.
 実施例1では、タイヤ特性推定部22で推定する際の制動係数Kbと制動トルク等推定部26で推定する際の制動係数Kbが同程度とみなして問題ない場合の例を説明した。実際には、タイヤ特性は、タイヤだけでなく、車両10が走行する路面の状況(以下、単に「路面状況」と呼ぶ)によっても変化する。 In the first embodiment, an example was described in which it is acceptable to consider the braking coefficient Kb estimated by the tire characteristic estimation unit 22 and the braking coefficient Kb estimated by the braking torque estimation unit 26 to be approximately the same. In reality, tire characteristics change not only depending on the tire, but also on the condition of the road surface on which the vehicle 10 is traveling (hereinafter simply referred to as "road surface condition").
 本実施例では、路面状況を考慮して、タイヤ特性推定部22がタイヤ特性(制動係数Kb)を推定し、タイヤ特性読込部25がタイヤ特性記憶部24から制動係数Kbを入力する例について述べる。実施例1で説明したように、タイヤ特性推定部22は、駆動時(加速時)に制動係数Kbを算出して推定する。タイヤ特性推定部22が推定した制動係数Kbを、制動係数Kbeと記す。 In this embodiment, an example will be described in which the tire characteristic estimation unit 22 estimates the tire characteristics (braking coefficient Kb) taking into account road surface conditions, and the tire characteristic reading unit 25 inputs the braking coefficient Kb from the tire characteristic storage unit 24. As described in the first embodiment, the tire characteristic estimation unit 22 calculates and estimates the braking coefficient Kb during driving (acceleration). The braking coefficient Kb estimated by the tire characteristic estimation unit 22 is referred to as the braking coefficient Kbe.
 タイヤ特性推定部22は、制動係数Kbeを推定するときに、路面状況を取得する。路面状況は、例えば、車両10が走行する路面が乾燥路、湿潤路、及び雪道のどれであるか等についての情報である。タイヤ特性推定部22は、路面状況を、例えば、車両10が備える各種センサ(例えば、前方カメラ等)や、車両10にインターネットで接続されたサーバー等から取得する。また、タイヤ特性推定部22は、車両10が走行する道路での天候についての情報(天候情報)や舗装についての情報(舗装情報)など、路面の摩擦係数に影響を与える各種情報を、路面状況として取得することもできる。このような天候情報や舗装情報は、地図を用いた位置情報等とともに取得可能である。 The tire characteristic estimation unit 22 acquires road surface conditions when estimating the braking coefficient Kbe. The road surface conditions are, for example, information on whether the road surface on which the vehicle 10 is traveling is a dry road, a wet road, or a snowy road. The tire characteristic estimation unit 22 acquires the road surface conditions, for example, from various sensors (for example, a front camera, etc.) equipped on the vehicle 10, or from a server connected to the vehicle 10 via the Internet. The tire characteristic estimation unit 22 can also acquire various information that affects the friction coefficient of the road surface, such as information about the weather on the road on which the vehicle 10 is traveling (weather information) and information about the pavement (pavement information), as road surface conditions. Such weather information and pavement information can be acquired together with position information using a map, etc.
 予め定めた基準路面での制動係数をKbsで表す。基準路面には任意の路面を定めることができ、例えば良路面(乾燥した路面である乾燥路等)を基準路面として定めるのが好ましい。 The braking coefficient on a predetermined reference road surface is expressed in Kbs. Any road surface can be set as the reference road surface, and it is preferable to set a good road surface (such as a dry road) as the reference road surface.
 タイヤ特性推定部22が推定した制動係数Kbeと、基準路面での制動係数Kbsとの関係は、変換係数cを用いて、式(45)で表される。
Kbs=c×Kbe ・・・(45)
変換係数cは、路面状況の影響を除くための係数であり、路面状況(環境)によって値が異なる。変換係数cは、路面状況に応じて予め定められており、タイヤ特性記憶部24に記憶されている。
The relationship between the damping coefficient Kbe estimated by the tire characteristic estimation unit 22 and the damping coefficient Kbs on the reference road surface is expressed by equation (45) using a conversion coefficient c.
Kbs = c × Kbe (45)
The conversion coefficient c is a coefficient for removing the influence of the road surface condition, and its value varies depending on the road surface condition (environment). The conversion coefficient c is determined in advance according to the road surface condition, and is stored in the tire characteristics storage unit 24.
 タイヤ特性推定部22が推定した制動係数Kbeは、車両10が走行する特定の路面の状況の下で推定された値である。基準路面での制動係数Kbsは、式(45)に従い、推定した制動係数Kbeに変換係数cかけることで路面状況(環境)の影響を除いて求められる。この制動係数Kbsは、路面状況の影響が除かれているので、タイヤ固有の制動係数と考えることができる。 The braking coefficient Kbe estimated by the tire characteristic estimation unit 22 is a value estimated under the specific road surface conditions on which the vehicle 10 is traveling. The braking coefficient Kbs on the reference road surface is found excluding the influence of the road surface conditions (environment) by multiplying the estimated braking coefficient Kbe by the conversion coefficient c according to equation (45). Since the influence of the road surface conditions has been removed from this braking coefficient Kbs, it can be considered as a braking coefficient specific to the tire.
 タイヤ特性推定部22は、以前に推定した制動係数Kbeから基準路面での制動係数Kbsを予め求めておき、求めた制動係数Kbsをタイヤ特性記憶部24に記憶しておく。タイヤ特性読込部25は、タイヤ特性記憶部24が記憶している基準路面での制動係数Kbsを入力する。 The tire characteristics estimation unit 22 predetermines the braking coefficient Kbs on the reference road surface from the previously estimated braking coefficient Kbe, and stores the determined braking coefficient Kbs in the tire characteristics storage unit 24. The tire characteristics reading unit 25 inputs the braking coefficient Kbs on the reference road surface stored in the tire characteristics storage unit 24.
 実施例1で説明したように、制動トルク等推定部26は、制動トルク等を推定するときに、タイヤ特性読込部25からタイヤ特性である制動係数Kbを入力する。本実施例では、制動トルク等推定部26は、タイヤ特性読込部25から基準路面での制動係数Kbsを入力し、式(46)に従って制動係数Kbを求める。変換係数cには、路面状況に応じた値を用いる。
Kb=Kbs/c ・・・(46)
すなわち、制動トルク等推定部26は、変換係数cを用いて路面状況の影響を考慮して、基準路面での制動係数Kbsから制動係数Kb(車両10を制動するときの制動係数)を算出する。
As described in the first embodiment, when estimating the braking torque, etc., the braking torque etc. estimator 26 inputs the braking coefficient Kb, which is a tire characteristic, from the tire characteristic reader 25. In this embodiment, the braking torque etc. estimator 26 inputs the braking coefficient Kbs on the reference road surface from the tire characteristic reader 25, and calculates the braking coefficient Kb according to equation (46). For the conversion coefficient c, a value according to the road surface conditions is used.
Kb = Kbs / c (46)
That is, the braking torque etc. estimating unit 26 calculates the braking coefficient Kb (the braking coefficient when braking the vehicle 10) from the braking coefficient Kbs on the reference road surface, taking into account the influence of the road surface conditions using the conversion coefficient c.
 制動トルク等推定部26は、式(46)で算出した制動係数Kbを用いて、実施例1と同様にして制動トルク等を推定する。 The braking torque etc. estimation unit 26 estimates the braking torque etc. in the same manner as in Example 1, using the braking coefficient Kb calculated by equation (46).
 本実施例によれば、路面状況によっても変化するタイヤ特性(制動係数Kb)を考慮して制動トルク等を推定することができるので、より高精度に制動トルク等を推定することができる。 According to this embodiment, the braking torque, etc. can be estimated with higher accuracy because it is possible to take into account the tire characteristics (braking coefficient Kb) that change depending on the road surface conditions.
 本発明の実施例4による制動トルク推定装置について説明する。 This section describes a braking torque estimation device according to a fourth embodiment of the present invention.
 実施例1では、図3の直線31に示すように、スリップ率の絶対値が小さい場合にはスリップ率と摩擦係数との間に線形の関係があることから、この関係の比例係数を制動係数Kb(タイヤ特性)としている。すなわち、実施例1では、線形領域でのタイヤ特性を求めている。 In Example 1, as shown by the straight line 31 in Figure 3, when the absolute value of the slip ratio is small, there is a linear relationship between the slip ratio and the friction coefficient, so the proportional coefficient of this relationship is used as the braking coefficient Kb (tire characteristic). In other words, in Example 1, the tire characteristic in the linear region is obtained.
 本実施例では、スリップ率と摩擦係数との関係が非線形である場合(非線形領域)も含めてタイヤ特性を求める方法について説明する。すなわち、図3において、スリップ率と摩擦係数との関係が直線31以外で表される場合も含めて、タイヤ特性(スリップ率と摩擦係数との関係)を求める方法について説明する。 In this embodiment, a method for determining tire characteristics is described, including cases where the relationship between the slip ratio and the friction coefficient is nonlinear (nonlinear region). That is, a method for determining tire characteristics (relationship between the slip ratio and the friction coefficient) is described, including cases where the relationship between the slip ratio and the friction coefficient is expressed by something other than the straight line 31 in FIG. 3.
 図5は、本発明の実施例4による制動トルク推定装置20の構成を示すブロック図である。本実施例による制動トルク推定装置20は、タイヤ特性マップ28を備え、タイヤ特性推定部22、タイヤ特性記憶部24、及びタイヤ特性読込部25を備えない点が、実施例1による制動トルク推定装置20(図2)と異なる。 FIG. 5 is a block diagram showing the configuration of a braking torque estimation device 20 according to a fourth embodiment of the present invention. The braking torque estimation device 20 according to this embodiment differs from the braking torque estimation device 20 according to the first embodiment (FIG. 2) in that it includes a tire characteristic map 28 and does not include a tire characteristic estimation unit 22, a tire characteristic storage unit 24, or a tire characteristic reading unit 25.
 タイヤ特性マップ28には、非線形領域も含めたタイヤ特性、すなわち、図3のグラフにおいて曲線30で示されたスリップ率と摩擦係数との関係についてのデータが、タイヤの種類や路面状況等の影響を考慮して(タイヤの種類や路面状況ごとに)記録されている。タイヤ特性マップ28は、予め作成されて、制動トルク推定装置20に備えられている。 The tire characteristic map 28 records tire characteristics including the nonlinear region, i.e., data on the relationship between the slip ratio and the friction coefficient shown by the curve 30 in the graph of FIG. 3, taking into account the influence of the tire type, road surface conditions, etc. (for each tire type and road surface conditions). The tire characteristic map 28 is created in advance and provided in the braking torque estimation device 20.
 制動トルク等推定部26は、路面状況を取得し、タイヤ特性マップ28に記録されたデータの中から路面状況に応じたデータを入力し、数値計算を行って非線形領域も含めたタイヤ特性を求める。そして、制動トルク等推定部26は、式(3)と式(4)を同時に満たすスリップ率λiを数値解析で求める。このようにして、制動トルク等推定部26は、非線形領域でのタイヤ特性も含めて制動トルク等を推定することができる。 The braking torque etc. estimation unit 26 acquires the road surface conditions, inputs data corresponding to the road surface conditions from the data recorded in the tire characteristic map 28, and performs numerical calculations to determine the tire characteristics including the nonlinear region. The braking torque etc. estimation unit 26 then uses numerical analysis to determine the slip ratio λi that simultaneously satisfies both equations (3) and (4). In this way, the braking torque etc. estimation unit 26 can estimate the braking torque etc. including the tire characteristics in the nonlinear region.
 本実施例によれば、線形領域だけでなく非線形領域でのタイヤ特性も考慮して制動トルク等を算出することができる。このため、ブレーキ力が大きくてスリップ率と摩擦係数との関係が非線形となる場合も含めて高精度に制動トルク等を推定でき、車両10の制御精度をさらに向上させることができる。 According to this embodiment, the braking torque, etc. can be calculated taking into account tire characteristics not only in the linear region but also in the nonlinear region. Therefore, the braking torque, etc. can be estimated with high accuracy, even when the braking force is large and the relationship between the slip rate and the friction coefficient is nonlinear, and the control accuracy of the vehicle 10 can be further improved.
 本発明の実施例5による制動トルク推定装置について説明する。 This section describes a braking torque estimation device according to a fifth embodiment of the present invention.
 本実施例では、実施例1から4に記載した制動トルク等推定部26が制動トルク等を推定するための条件が定められている。例えば、制動トルク等推定部26は、以下の6つの条件のうち、任意の1つの条件、任意の複数の条件、又は全ての条件を満足する場合のみに、制動トルク等を推定する。
1.車両10の加速度(前後加速度)が予め設定した範囲内にあること。
2.車輪速Vwiが予め設定した範囲内にあり、車両10が直進走行中であること。
3.車両10が走行する路面が予め設定した状況であること(又は、路面状況が制動係数Kbを推定したときと同じであること)。
4.電動機によるトルクである回生ブレーキトルク(駆動トルク)が予め設定した閾値より小さいこと。
5.内燃機関によるトルクであるエンジンブレーキトルク(駆動力トルク)が予め設定した閾値より小さいこと。
6.ブレーキ装置9が動作中であること又は非動作中であること。
In this embodiment, conditions are defined for the braking torque etc. estimator 26 described in the first to fourth embodiments to estimate the braking torque etc. For example, the braking torque etc. estimator 26 estimates the braking torque etc. only when any one condition, any plurality of conditions, or all of the following six conditions are satisfied:
1. The acceleration (longitudinal acceleration) of the vehicle 10 is within a preset range.
2. The wheel speed Vwi is within a preset range and the vehicle 10 is traveling straight.
3. The road surface on which the vehicle 10 is traveling is in a preset condition (or the road surface condition is the same as when the braking coefficient Kb was estimated).
4. The regenerative braking torque (driving torque) generated by the electric motor is smaller than a preset threshold value.
5. The engine brake torque (driving force torque), which is the torque generated by the internal combustion engine, is smaller than a preset threshold value.
6. The brake device 9 is in operation or in operation.
 制動トルク等推定部26は、これら6つの条件のうち少なくとも1つの条件を満たす場合のみに制動トルク等を推定すると、以下の理由により、高い精度で制動トルク等を推定することができる。 The braking torque estimation unit 26 estimates the braking torque etc. only when at least one of these six conditions is satisfied, and is therefore able to estimate the braking torque etc. with high accuracy for the following reasons.
 条件1について説明する。タイヤ特性が線形の範囲(例えば、図3の直線31で表されるような範囲)にある場合には、すなわち駆動トルク(回生ブレーキトルク又はエンジンブレーキトルク)が大きくない範囲では、精度よく制動トルク等を推定することができる。このため、車両10の加速度が所定の範囲内にあり駆動トルクが大きくないときに制動トルク等を推定する。所定の範囲としては、例えば、減速度が4m/s以下のように、加速度(減速度も含める)の上限値を決めることができる。 Condition 1 will now be described. When the tire characteristics are in a linear range (for example, a range represented by a straight line 31 in FIG. 3), that is, in a range in which the driving torque (regenerative braking torque or engine braking torque) is not large, the braking torque, etc. can be estimated with high accuracy. For this reason, the braking torque, etc. are estimated when the acceleration of the vehicle 10 is within a predetermined range and the driving torque is not large. As the predetermined range, for example, the upper limit of the acceleration (including the deceleration) can be determined so that the deceleration is 4 m/s2 or less .
 一方で、ブレーキ装置9による制動トルクのみを算出したい場合には、実施例1で説明したように、推定した制動トルクTbiから駆動トルク(回生ブレーキトルク又はエンジンブレーキトルク)を減じる必要がある。このため、ブレーキ装置9が動作中(条件6)であって減速度が1m/s以上(条件1)という条件を加えることにより、駆動トルクの影響を小さくして、ブレーキ装置9による制動トルクを精度よく推定することができる。 On the other hand, when it is desired to calculate only the braking torque by the brake device 9, it is necessary to subtract the driving torque (regenerative braking torque or engine braking torque) from the estimated braking torque Tbi as described in the embodiment 1. For this reason, by adding the conditions that the brake device 9 is in operation (condition 6) and the deceleration is 1 m/s2 or more (condition 1), the influence of the driving torque is reduced, and the braking torque by the brake device 9 can be estimated with high accuracy.
 条件2について説明する。 Explain condition 2.
 車輪速センサ1には、回転軸のパルスを読み取る方式のものが多く採用されている。このため、車輪速センサ1は、低速での測定精度が悪く、車輪角速度ωiの検出精度も低速では悪い。このことを考慮して、車輪速Vwiが所定の範囲内(例えば20km/h以上)という条件を加える。また、速度が大きいと空気抵抗の影響が増えるので、空気抵抗の影響を減らすために、車輪速Vwiが所定の範囲内(例えば60km/h以下)という条件を加えることもできる。なお、空気抵抗の影響は、式(10)の右辺第2項に示されているが、式(10)で算出される空気抵抗には誤差が含まれる。車輪速Vwiに上限値(例えば60km/h)を定めるという条件を加えることにより、求めた空気抵抗に誤差が含まれていても、その影響を小さくすることができる。 Wheel speed sensors 1 often use a method of reading pulses from a rotating shaft. For this reason, the wheel speed sensor 1 has poor measurement accuracy at low speeds, and the detection accuracy of the wheel angular speed ωi is also poor at low speeds. Taking this into consideration, a condition is added that the wheel speed Vwi is within a specified range (e.g., 20 km/h or higher). In addition, since the effect of air resistance increases at high speeds, a condition can also be added that the wheel speed Vwi is within a specified range (e.g., 60 km/h or lower) in order to reduce the effect of air resistance. Note that the effect of air resistance is shown in the second term on the right side of equation (10), but the air resistance calculated by equation (10) contains an error. By adding a condition that sets an upper limit value (e.g., 60 km/h) for the wheel speed Vwi, the effect can be reduced even if the calculated air resistance contains an error.
 車両10が直進走行中であるという条件は、車両10が旋回したことによる影響を除くための条件である。車両10が旋回する場合では、実施例2で説明したように、操舵による影響でタイヤ荷重Fziと車輪速Vwiを変換する必要がある(式(37)-(40)、式(41)-(44))。この変換により求めた値には誤差が含まれるため、車両10が旋回していないという条件、すなわち車両10が直進走行中であるという条件を加える。 The condition that the vehicle 10 is traveling straight is a condition for removing the effects of the vehicle 10 turning. When the vehicle 10 is turning, as explained in the second embodiment, it is necessary to convert the tire load Fzi and the wheel speed Vwi due to the effects of steering (Equations (37)-(40), (41)-(44)). Since the values obtained by this conversion contain errors, a condition that the vehicle 10 is not turning, that is, the vehicle 10 is traveling straight, is added.
 条件3について説明する。 Explain condition 3.
 路面状況が同じ情報で表されても、車両10が走行する路面の実際の状況は、路面により異なることがある。例えば、路面状況が湿潤路であっても、路面が実際に濡れている様子は路面により異なり、摩擦係数も路面により異なることがある。このため、路面状況を特定の路面状況(例えば、乾燥路)に限定することで、制動トルク等の推定精度の悪化を避けることができる。また、制動係数Kbを推定したときと同じ路面状況のときに制動トルク等を推定することによっても、路面状況の違いによって制動トルク等の推定精度が悪化するのを防止できる。 Even if the road surface conditions are represented by the same information, the actual condition of the road surface on which the vehicle 10 is traveling may differ depending on the road surface. For example, even if the road surface conditions are wet, the actual wetness of the road surface may differ depending on the road surface, and the friction coefficient may also differ depending on the road surface. For this reason, by limiting the road surface conditions to a specific road surface condition (e.g., dry road), it is possible to avoid a deterioration in the estimation accuracy of the braking torque, etc. Furthermore, by estimating the braking torque, etc. under the same road surface conditions as when the braking coefficient Kb was estimated, it is possible to prevent the estimation accuracy of the braking torque, etc. from deteriorating due to differences in road surface conditions.
 条件4と5について説明する。 Explain conditions 4 and 5.
 回生ブレーキトルクやエンジンブレーキトルク(駆動トルク)が所定の閾値より小さいという条件は、ブレーキ装置9による制動トルクを推定する際に用いる条件である。電動機によるトルク(回生ブレーキトルク)と内燃機関によるトルク(エンジンブレーキトルク)は、必ずしも精度よく推定することができない。このため、これらの駆動トルクが所定の閾値より小さいときに制動トルク等を推定することで、駆動トルクの推定精度が悪くても、ブレーキ装置9による制動トルクを精度よく推定できるようにすることができる。例えば、内燃機関を持った車両10であれば、エンジンの回転数が小さくエンジンブレーキトルクが所定の閾値より小さい場合には、エンジンブレーキトルクの推定精度が悪くても、ブレーキ装置9による制動トルクの推定への影響を小さくすることができる。 The condition that the regenerative brake torque or engine brake torque (driving torque) is smaller than a predetermined threshold value is a condition used when estimating the braking torque by the brake device 9. The torque by the electric motor (regenerative brake torque) and the torque by the internal combustion engine (engine brake torque) cannot always be estimated with high accuracy. For this reason, by estimating the braking torque etc. when these driving torques are smaller than a predetermined threshold value, it is possible to accurately estimate the braking torque by the brake device 9 even if the estimation accuracy of the driving torque is poor. For example, in the case of a vehicle 10 with an internal combustion engine, if the engine speed is low and the engine brake torque is smaller than a predetermined threshold value, the effect on the estimation of the braking torque by the brake device 9 can be reduced even if the estimation accuracy of the engine brake torque is poor.
 条件6について説明する。 Explain condition 6.
 ブレーキ装置9が非動作中であるという条件は、回生ブレーキトルク又はエンジンブレーキトルクを算出するときの条件である。ブレーキ装置9が非動作中であると、ブレーキ装置9による制動トルクが発生していない。このため、推定した制動トルクTbiを回生ブレーキトルク又はエンジンブレーキトルクとし、これらの駆動トルクを高精度に推定することができる。なお、ブレーキ装置9が動作中であるという条件は、ブレーキ装置9による制動トルクを算出するための条件である。 The condition that the brake device 9 is not in operation is a condition when calculating the regenerative brake torque or engine brake torque. When the brake device 9 is not in operation, no braking torque is generated by the brake device 9. Therefore, the estimated braking torque Tbi is set as the regenerative brake torque or engine brake torque, and these drive torques can be estimated with high accuracy. The condition that the brake device 9 is in operation is a condition for calculating the braking torque by the brake device 9.
 以上の条件1-6により、制動トルク等推定部26は、制動トルク等を高精度に推定することが可能である。 The above conditions 1-6 allow the braking torque estimation unit 26 to estimate the braking torque etc. with high accuracy.
 また、タイヤ特性推定部22も、制動トルク等推定部26と同様に、以上の6つの条件のうち、任意の1つの条件、任意の複数の条件、又は全ての条件を満足する場合のみに、タイヤ特性を推定してもよい。これにより、タイヤ特性推定部22は、タイヤ特性を高精度に推定することが可能である。 Furthermore, like the braking torque etc. estimation unit 26, the tire characteristic estimation unit 22 may estimate tire characteristics only when any one condition, any multiple conditions, or all of the above six conditions are satisfied. This enables the tire characteristic estimation unit 22 to estimate tire characteristics with high accuracy.
 本実施例では、実施例1-5で算出した制動トルクTbiをブレーキ制御に用いる例を説明する。コントローラ5は、制動トルク推定装置20が推定した制動トルクTbiの値等を用いて、車両10のブレーキ装置9を制動する。以下では、一例として、ブレーキ装置9がモータで制御される電動ブレーキ装置である例を説明する。コントローラ5は、後述するブレーキ制御装置を備え、制動トルクTbiの値等を用いてブレーキ装置9を制御する。 In this embodiment, an example will be described in which the braking torque Tbi calculated in the embodiments 1-5 is used for brake control. The controller 5 brakes the brake device 9 of the vehicle 10 using the value of the braking torque Tbi estimated by the braking torque estimation device 20, etc. In the following, as an example, an example will be described in which the brake device 9 is an electric brake device controlled by a motor. The controller 5 is equipped with a brake control device described later, and controls the brake device 9 using the value of the braking torque Tbi, etc.
 図6は、ブレーキ装置9の構成を示す図である。ブレーキ装置9は、主な構成要素として、ディスクロータ42と、ハウジング44と、ブレーキパッド45a、45bと、ピストン46と、回転直動変換機構50と、電動モータ48を備える。 FIG. 6 is a diagram showing the configuration of the brake device 9. The brake device 9 includes, as its main components, a disc rotor 42, a housing 44, brake pads 45a and 45b, a piston 46, a rotary-linear motion conversion mechanism 50, and an electric motor 48.
 ディスクロータ42は、車輪7と共に回転する回転部材であり、ブレーキパッド45a、45bで両側面から押圧されると、摩擦力により車輪7の回転を止める。 The disc rotor 42 is a rotating member that rotates together with the wheel 7, and when pressed from both sides by the brake pads 45a, 45b, frictional force stops the rotation of the wheel 7.
 ハウジング44は、ディスクロータ42より車両10の内側に位置する車両10の非回転部に固定されたキャリア(図示せず)に、ディスクロータ42の軸方向へ移動可能に支持された部材である。 The housing 44 is a member supported on a carrier (not shown) that is fixed to a non-rotating part of the vehicle 10 located inside the vehicle 10 relative to the disc rotor 42, so that it can move in the axial direction of the disc rotor 42.
 ブレーキパッド45a、45bは、ディスクロータ42の両側に配置された押圧部材であり、ディスクロータ42を押圧して車輪7に制動力を与える。 The brake pads 45a, 45b are pressing members arranged on both sides of the disc rotor 42, and press the disc rotor 42 to apply a braking force to the wheel 7.
 ピストン46は、ハウジング44内に直動可能に設置されており、ブレーキパッド45a、45bに推力を与えることができる。 The piston 46 is installed in the housing 44 so that it can move linearly, and can apply thrust to the brake pads 45a and 45b.
 回転直動変換機構50は、電動モータ48の回転力を直動力に変換し、ピストン46を直動方向に移動させる。 The rotary-to-linear motion conversion mechanism 50 converts the rotational force of the electric motor 48 into linear force, moving the piston 46 in the linear direction.
 電動モータ48は、回転直動変換機構50を介してピストン46を駆動し、ブレーキパッド45a、45bに推力を与える。電動モータ48の出力軸は、減速機49に接続され、減速機49の出力軸は、回転直動変換機構50に接続されている。 The electric motor 48 drives the piston 46 via the rotary-linear motion conversion mechanism 50, providing thrust to the brake pads 45a, 45b. The output shaft of the electric motor 48 is connected to the reducer 49, and the output shaft of the reducer 49 is connected to the rotary-linear motion conversion mechanism 50.
 ブレーキパッド45a、45bは、電動モータ48により推力が与えられると、車輪7と共に回転するディスクロータ42の両側面を押圧し、この押圧力で車輪7に制動力を与えて車両10を制動する。 When the electric motor 48 applies thrust to the brake pads 45a, 45b, they press against both sides of the disk rotor 42 that rotates together with the wheel 7, and this pressure exerts a braking force on the wheel 7, braking the vehicle 10.
 本実施例では、ブレーキ装置9のブレーキキャリパ43は、ディスクロータ42、ハウジング44、ブレーキパッド45a、45b、ピストン46、電動モータ48、減速機49、及び回転直動変換機構50を備える。回転直動変換機構50とピストン46は、直動部を構成している。 In this embodiment, the brake caliper 43 of the brake device 9 includes a disk rotor 42, a housing 44, brake pads 45a, 45b, a piston 46, an electric motor 48, a reducer 49, and a rotary-to-linear motion conversion mechanism 50. The rotary-to-linear motion conversion mechanism 50 and the piston 46 form a linear motion section.
 電動モータ48は、コントローラ5が備えるブレーキ制御装置51により制御される。 The electric motor 48 is controlled by a brake control device 51 provided in the controller 5.
 ブレーキ制御装置51には、制御信号線61と通信線62、63が接続されている。制御信号線61は、車両制御用ECU(Electronic Control Unit)等の上位の制御装置からの制御指令をブレーキ制御装置51に入力する信号線である。通信線62、63は、この制御指令以外の情報を上位の制御装置と伝達するための信号線である。さらに、ブレーキ制御装置51には、制御信号線52が接続されている。制御信号線52は、ブレーキ制御装置51からの制御指令をブレーキ装置9に入力する信号線である。 A control signal line 61 and communication lines 62 and 63 are connected to the brake control device 51. The control signal line 61 is a signal line that inputs control commands from a higher-level control device, such as a vehicle control ECU (Electronic Control Unit), to the brake control device 51. The communication lines 62 and 63 are signal lines that transmit information other than this control command to the higher-level control device. Furthermore, a control signal line 52 is connected to the brake control device 51. The control signal line 52 is a signal line that inputs control commands from the brake control device 51 to the brake device 9.
 ブレーキ制御装置51は、ブレーキ装置9を制御する。ブレーキ制御装置51は、上位の制御装置(例えば、車両制御用ECU)から制動トルク指令Tbirを入力し、又はブレーキペダルの操作量等に応じた制動トルク指令Tbirを入力して、モータ電流検出部(電流センサ)の検出値やモータ位置検出部(モータ位置センサ)の検出値に基づき、予め設定された制御プログラム等に従って、電動モータ48へ電流(指令電流)を与える。 The brake control device 51 controls the brake device 9. The brake control device 51 inputs a braking torque command Tbir from a higher-level control device (e.g., a vehicle control ECU) or inputs a braking torque command Tbir corresponding to the amount of brake pedal operation, etc., and provides a current (command current) to the electric motor 48 in accordance with a preset control program, etc., based on the detection value of the motor current detection unit (current sensor) and the detection value of the motor position detection unit (motor position sensor).
 なお、図6には、上位の制御装置とブレーキ制御装置51が分離して構成された例を示しているが、上位の制御装置とブレーキ制御装置51は、一体化されてコントローラ5に設けられていてもよい。 Note that while FIG. 6 shows an example in which the upper control device and the brake control device 51 are configured separately, the upper control device and the brake control device 51 may be integrated and provided in the controller 5.
 ブレーキ制御装置51は、本実施例による制動トルク推定装置20に接続されている。 The brake control device 51 is connected to the braking torque estimation device 20 according to this embodiment.
 図7は、ブレーキ制御装置51に接続された制動トルク推定装置20を示す図である。ブレーキ制御装置51は、上位の制御装置からの又はブレーキペダルの操作量等に応じた制動トルク指令Tbirと、制動トルク推定装置20が推定した制動トルクTbiを入力し、これらの値を用いてブレーキ装置9への指令を生成して出力する。 FIG. 7 is a diagram showing the braking torque estimation device 20 connected to the brake control device 51. The brake control device 51 inputs a braking torque command Tbir from a higher-level control device or according to the amount of brake pedal operation, etc., and a braking torque Tbi estimated by the braking torque estimation device 20, and generates and outputs a command to the brake device 9 using these values.
 ブレーキ制御装置51は、推定された制動トルクTbiが制動トルク指令Tbirに近づくようにフィードバック制御を行い、ブレーキ装置9を制御する。 The brake control device 51 performs feedback control so that the estimated braking torque Tbi approaches the braking torque command Tbir, and controls the brake device 9.
 なお、本実施例では、ブレーキ装置9がモータで制御される電動ブレーキ装置である例を説明したが、ブレーキ装置9は、圧力を制御する制御バルブを備えた油圧ブレーキ装置であってもよい。ブレーキ装置9が油圧ブレーキ装置である場合にも、電動ブレーキ装置の場合と同様の制御を実施可能である。 In the present embodiment, an example has been described in which the brake device 9 is an electric brake device controlled by a motor, but the brake device 9 may also be a hydraulic brake device equipped with a control valve that controls pressure. Even when the brake device 9 is a hydraulic brake device, it is possible to implement control similar to that of an electric brake device.
 本実施例によれば、推力センサ(例えば、ブレーキパッド45a、45bをディスクロータ42に押圧する力を測るセンサ)を備えなくても、推定した制動トルクTbiが指令された制動トルク(制動トルク指令Tbir)となるようなフィードバック制御が可能であり、低コストで高精度に制動トルクを制御することができる。 According to this embodiment, even without a thrust sensor (e.g., a sensor that measures the force pressing the brake pads 45a, 45b against the disc rotor 42), feedback control is possible so that the estimated braking torque Tbi becomes the commanded braking torque (braking torque command Tbir), and the braking torque can be controlled with high accuracy at low cost.
 本実施例では、実施例6と同様に、実施例1-5で算出した制動トルクTbiをブレーキ制御に用いる例を説明する。 In this embodiment, as in embodiment 6, an example is described in which the braking torque Tbi calculated in embodiments 1-5 is used for brake control.
 制動トルク推定装置20は、例えば実施例1に示した方法では、タイヤ特性が線形の範囲(例えば、図3の直線31で表されるような範囲)にあって、車両10が直進走行中のときに、制動トルクTbiを推定する。このため、制動トルク推定装置20は、タイヤ特性や車両10の走行状態によっては、制動トルクTbiを精度よく推定するのが困難な場合もある。 In the method shown in Example 1, for example, the braking torque estimation device 20 estimates the braking torque Tbi when the tire characteristics are in a linear range (for example, the range represented by the straight line 31 in FIG. 3) and the vehicle 10 is traveling straight ahead. For this reason, depending on the tire characteristics and the traveling state of the vehicle 10, the braking torque estimation device 20 may have difficulty in accurately estimating the braking torque Tbi.
 そこで、本実施例では、ブレーキ制御装置51(図7)は、制動トルク推定装置20が制動トルクTbiを推定するときにブレーキ装置9(図6、7)の電動モータ48の電流Iを記憶し、この電流Iを用いて制動トルクを所望の値にすることで、ブレーキ装置9を制御する。この電流Iは、制動トルク推定装置20が制動トルクTbiを推定したときの値であり、例えば、電動モータ48に設置された電流センサで取得することができる。 In this embodiment, the brake control device 51 (Fig. 7) stores the current I of the electric motor 48 of the brake device 9 (Figs. 6 and 7) when the braking torque estimation device 20 estimates the braking torque Tbi, and controls the brake device 9 by using this current I to set the braking torque to a desired value. This current I is the value when the braking torque estimation device 20 estimates the braking torque Tbi, and can be obtained, for example, by a current sensor installed in the electric motor 48.
 一般に制動トルクTbは、電流Iからブレーキ装置9での摩擦に使われる電流値I0を引いた値にほぼ比例する。この比例係数Kは、K=Tb/(I-I0)と表される。摩擦に使われる電流値I0は、回転直動変換機構50等の機構での摩擦に使われる電流値であり、例えば、ブレーキパッド45a、45bがディスクロータ42に接触するまでの空走状態で電動モータ48を駆動させた際の電流から算出することができる。 In general, braking torque Tb is approximately proportional to the current I minus the current value I0 used for friction in the brake device 9. This proportionality coefficient K is expressed as K = Tb / (I - I0). The current value I0 used for friction is the current value used for friction in mechanisms such as the rotary-to-linear conversion mechanism 50, and can be calculated, for example, from the current when the electric motor 48 is driven in a free-running state until the brake pads 45a, 45b come into contact with the disc rotor 42.
 電流値I0を実験や数値シミュレーション等で予め求めておくと、ブレーキ制御装置51は、この電流値I0と記憶した電流Iと制動トルク推定装置20が推定した制動トルクTbiとから比例係数Kを求めることができる。そして、ブレーキ制御装置51は、指令された制動トルクである制動トルク指令Tbirに対して、電動モータ48を駆動するための指令電流IrをIr=1/K×Tbir+I0とすると、制動トルクを所望の値(すなわち、制動トルク指令Tbirの値)にすることができる。ブレーキ制御装置51は、指令電流Irにより、電動モータ48の回転位置を所望の位置に制御して、制動トルクを所望の値にする。 If the current value I0 is obtained in advance by an experiment, a numerical simulation, or the like, the brake control device 51 can obtain a proportionality coefficient K from this current value I0, the stored current I, and the braking torque Tbi estimated by the braking torque estimation device 20. Then, the brake control device 51 can set the braking torque to a desired value (i.e., the value of the braking torque command Tbir) by setting the command current Ir for driving the electric motor 48 to Ir = 1/K x Tbir + I0 for the braking torque command Tbir, which is the commanded braking torque. The brake control device 51 controls the rotational position of the electric motor 48 to a desired position using the command current Ir, and sets the braking torque to the desired value.
 本実施例では、タイヤ特性や車両10がどのように走行しているかによらず、より高精度にブレーキ装置9を制御することができる。 In this embodiment, the brake device 9 can be controlled with higher precision regardless of the tire characteristics or how the vehicle 10 is traveling.
 実施例7では、電動モータ48の電流を用いて制動トルクを所望の値にすることで、ブレーキ装置9(図6)を制御する例を説明した。 In Example 7, an example was described in which the braking torque is set to a desired value using the current of the electric motor 48 to control the brake device 9 (Figure 6).
 本実施例では、制動トルクと電動モータ48の回転位置との関係を用いて、ブレーキ装置9を制御する例を説明する。電動モータ48の回転位置が変わると、ブレーキパッド45a、45bの位置が変わって、制動トルクが変化する。 In this embodiment, an example is described in which the brake device 9 is controlled using the relationship between the braking torque and the rotational position of the electric motor 48. When the rotational position of the electric motor 48 changes, the positions of the brake pads 45a and 45b change, and the braking torque changes.
 図8は、本実施例におけるブレーキ制御装置51の構成を示すブロック図である。ブレーキ制御装置51は、制動トルク位置関係作成部72と、制動トルク位置指令変換部67と、位置電流制御部74を備える。なお、ブレーキ制御装置51が接続しているブレーキ装置9には、電動モータ48に設置されたモータ位置センサ92と、実施例7で述べた電流センサ91が設置されている。 FIG. 8 is a block diagram showing the configuration of the brake control device 51 in this embodiment. The brake control device 51 includes a braking torque position relationship creation unit 72, a braking torque position command conversion unit 67, and a position current control unit 74. The brake device 9 to which the brake control device 51 is connected includes a motor position sensor 92 installed in the electric motor 48, and the current sensor 91 described in the seventh embodiment.
 制動トルク位置関係作成部72は、制動トルク推定装置20が制動トルクTbiを推定するときにブレーキ装置9の電動モータ48の回転位置を記憶する。この回転位置は、制動トルク推定装置20が制動トルクTbiを推定したときの値であり、例えば、電動モータ48に設置されたモータ位置センサ92で取得する。制動トルク位置関係作成部72は、制動トルク推定装置20が推定した制動トルクTbiを入力し、制動トルクTbiと記憶した電動モータ48の回転位置との関係をマップにして記録することができる。これにより、ブレーキ制御装置51は、制動トルクと電動モータ48の回転位置との関係を取得することができる。 The braking torque position relationship creation unit 72 stores the rotational position of the electric motor 48 of the brake device 9 when the braking torque estimation device 20 estimates the braking torque Tbi. This rotational position is the value when the braking torque estimation device 20 estimates the braking torque Tbi, and is acquired, for example, by a motor position sensor 92 installed on the electric motor 48. The braking torque position relationship creation unit 72 inputs the braking torque Tbi estimated by the braking torque estimation device 20, and can record the relationship between the braking torque Tbi and the stored rotational position of the electric motor 48 in a map. This allows the brake control device 51 to acquire the relationship between the braking torque and the rotational position of the electric motor 48.
 制動トルク位置指令変換部67は、指令された制動トルクである制動トルク指令Tbirを入力し、制動トルク位置関係作成部72が記録した、制動トルクと電動モータ48の回転位置との関係を示すマップを参照する。制動トルク位置指令変換部67は、制動トルク指令Tbirを入力すると、このマップを用いて制動トルク指令Tbirを電動モータ48の回転位置に変換する。 The braking torque position command conversion unit 67 inputs the braking torque command Tbir, which is the commanded braking torque, and refers to the map that is recorded by the braking torque position relationship creation unit 72 and indicates the relationship between the braking torque and the rotational position of the electric motor 48. When the braking torque position command conversion unit 67 inputs the braking torque command Tbir, it uses this map to convert the braking torque command Tbir into the rotational position of the electric motor 48.
 位置電流制御部74は、制動トルク位置指令変換部67が変換して求めた電動モータ48の回転位置を、この回転位置を与える指令電流に変換する。そして、位置電流制御部74は、変換して求めた指令電流をブレーキ装置9の電動モータ48に与える。 The position current control unit 74 converts the rotational position of the electric motor 48 obtained by the braking torque position command conversion unit 67 into a command current that provides this rotational position. The position current control unit 74 then provides the converted command current to the electric motor 48 of the brake device 9.
 本実施例では、指令電流Irの値を制御して制動トルクを制御する実施例7と異なり、電動モータ48の回転位置に基づいて制動トルクを制御する。本実施例では、電動モータ48の回転位置から指令電流を求めるので、温度によって値が変わるトルク定数を用いず温度の影響を受けずに制動トルクを制御できるので、より高精度にブレーキ装置9を制御することができる。 In this embodiment, unlike the seventh embodiment in which the braking torque is controlled by controlling the value of the command current Ir, the braking torque is controlled based on the rotational position of the electric motor 48. In this embodiment, the command current is calculated from the rotational position of the electric motor 48, so that the braking torque can be controlled without being affected by temperature without using a torque constant whose value changes with temperature, and therefore the brake device 9 can be controlled with higher precision.
 実施例8では、制動トルクと電動モータ48の回転位置との関係が常に一定である場合に、指令電流Irにより電動モータ48の回転位置を所望の位置に制御して、所望の値の制動トルクを発生させることができる。しかし、実際には、制動トルクの値は、ブレーキパッド45a、45bの摩擦係数μpに応じて変わる。摩擦係数μpは、ブレーキパッド45a、45bとディスクロータ42との間の摩擦係数であり、主にブレーキパッド45a、45bの温度Tとディスクロータ42の回転速度vの関数で表される。回転速度vは、ブレーキパッド45a、45bとディスクロータ42との間の相対速度である。 In the eighth embodiment, when the relationship between the braking torque and the rotational position of the electric motor 48 is always constant, the rotational position of the electric motor 48 can be controlled to a desired position by the command current Ir, thereby generating a braking torque of a desired value. However, in reality, the value of the braking torque varies depending on the friction coefficient μp of the brake pads 45a, 45b. The friction coefficient μp is the friction coefficient between the brake pads 45a, 45b and the disc rotor 42, and is expressed mainly as a function of the temperature T of the brake pads 45a, 45b and the rotational speed v of the disc rotor 42. The rotational speed v is the relative speed between the brake pads 45a, 45b and the disc rotor 42.
 本実施例では、温度Tの変化に伴う制動トルクの変化と、回転速度vの変化に伴う制動トルクの変化を、実験や数値シミュレーション等で予め求めておく。ブレーキ制御装置51は、予め求めた、温度Tの変化に伴う制動トルクの変化と回転速度vの変化に伴う制動トルクの変化を記憶する。 In this embodiment, the change in braking torque associated with a change in temperature T and the change in braking torque associated with a change in rotational speed v are obtained in advance by experiments, numerical simulations, etc. The brake control device 51 stores the previously obtained change in braking torque associated with a change in temperature T and the change in braking torque associated with a change in rotational speed v.
 制動トルクは、電動モータ48で発生する推力に対して、ブレーキパッド45a、45bとディスクロータ42との間の摩擦係数μpをかけた値を持つ。一般に、摩擦係数は、接触する2つの物体の温度や相対速度等により変化する。そこで、ブレーキ制御装置51は、ブレーキパッド45a、45bの温度Tとディスクロータ42の回転速度vを推定又は計測して記憶する。 The braking torque has a value obtained by multiplying the thrust force generated by the electric motor 48 by the friction coefficient μp between the brake pads 45a, 45b and the disc rotor 42. In general, the friction coefficient changes depending on the temperature and relative speed of the two objects in contact. Therefore, the brake control device 51 estimates or measures and stores the temperature T of the brake pads 45a, 45b and the rotational speed v of the disc rotor 42.
 ブレーキ制御装置51は、制動トルク推定装置20が制動トルクTbiを推定するときに、ブレーキパッド45a、45bの温度Tとディスクロータ42の回転速度vを記憶する。ブレーキ制御装置51は、例えば、ブレーキパッド45a、45bとディスクロータ42が今までにどれだけ動作したかの記録を基に温度Tと回転速度vを推定したり、センサで温度Tと回転速度vを計測したりすることにより、温度Tと回転速度vを求めて記憶する。 When the braking torque estimation device 20 estimates the braking torque Tbi, the brake control device 51 stores the temperature T of the brake pads 45a, 45b and the rotational speed v of the disc rotor 42. The brake control device 51 estimates the temperature T and the rotational speed v based on a record of how much the brake pads 45a, 45b and the disc rotor 42 have operated up to now, or measures the temperature T and the rotational speed v with a sensor, and stores the temperature T and the rotational speed v.
 ブレーキ制御装置51は、予め求めた温度Tと回転速度vの変化に伴う制動トルクの変化を用いて、制動トルクTbiの推定時に求めた温度Tと回転速度vから、摩擦係数μpの変化(すなわち、温度Tと回転速度vの変化)を考慮した制動トルクの値を推定する。 The brake control device 51 uses the change in braking torque associated with changes in temperature T and rotational speed v determined in advance to estimate the value of the braking torque taking into account the change in friction coefficient μp (i.e., the change in temperature T and rotational speed v) from the temperature T and rotational speed v determined when estimating the braking torque Tbi.
 本実施例では、ブレーキパッド45a、45bの温度Tとディスクロータ42の回転速度vに応じて、より高精度にブレーキ装置9を制御することができる。 In this embodiment, the brake device 9 can be controlled with higher precision according to the temperature T of the brake pads 45a, 45b and the rotational speed v of the disc rotor 42.
 実施例1-9では、車両10が4輪車である例を示した。本実施例では、車両10が2輪車である例を説明する。 In Examples 1-9, an example was shown in which the vehicle 10 was a four-wheeled vehicle. In this example, an example will be described in which the vehicle 10 is a two-wheeled vehicle.
 本実施例による制動トルク推定装置20を備える車両10は、4輪車の場合と同様に、コントローラ5、車輪速センサ1、加速度センサ2、ジャイロセンサ3、操舵角センサ4、車輪7、車体8、制動力を発生するブレーキ装置9、制駆動力を発生させる内燃機関又は電動機、操舵装置、及びサスペンション等を備える。コントローラ5は、本実施例による制動トルク推定装置20を備え、内燃機関、電動機、ブレーキ装置9、操舵装置、及びサスペンション等を制御する。車輪7は、車体8の前後の2か所に設けられ、タイヤを備える。 A vehicle 10 equipped with the braking torque estimation device 20 according to this embodiment includes a controller 5, wheel speed sensor 1, acceleration sensor 2, gyro sensor 3, steering angle sensor 4, wheels 7, a vehicle body 8, a brake device 9 that generates a braking force, an internal combustion engine or electric motor that generates a braking/driving force, a steering device, a suspension, etc., just like a four-wheeled vehicle. The controller 5 includes the braking torque estimation device 20 according to this embodiment, and controls the internal combustion engine, the electric motor, the brake device 9, the steering device, the suspension, etc. The wheels 7 are provided at two locations, front and rear, of the vehicle body 8, and are equipped with tires.
 車両10が2輪車の場合でも、実施例1で説明したように、式(1)-(3)が成立する。但し、添え字iは、車体8の前後にある車輪7を区別する識別子であり、前輪を意味するFと後輪を意味するRの一方を表す。タイヤ前後力Fxiの全ての車輪7(2輪)についての合計値は、実施例1と同様に、加速度センサ2が検出した前後加速度axseを基に算出可能である。 Even if the vehicle 10 is a two-wheeled vehicle, formulas (1)-(3) hold, as explained in Example 1. However, the subscript i is an identifier that distinguishes between the wheels 7 at the front and rear of the vehicle body 8, and represents either F, which means the front wheel, or R, which means the rear wheel. The total value of the tire longitudinal force Fxi for all wheels 7 (two wheels) can be calculated based on the longitudinal acceleration axse detected by the acceleration sensor 2, as in Example 1.
 これらの式から、車体速Vb、スリップ率λi、及びタイヤ前後力Fxiは、それぞれ式(47)から式(49)のように得られる。 From these equations, the vehicle speed Vb, slip ratio λi, and tire longitudinal force Fxi can be obtained as equations (47) to (49), respectively.
Figure JPOXMLDOC01-appb-M000045
Figure JPOXMLDOC01-appb-M000045
Figure JPOXMLDOC01-appb-M000046
Figure JPOXMLDOC01-appb-M000046
Figure JPOXMLDOC01-appb-M000047
Figure JPOXMLDOC01-appb-M000047
 前後の車輪7が同一の制動係数Kbを持つ(すなわち、Kbi=Kb)とすると、式(47)-(49)は、それぞれ式(50)-(52)で表される。 If the front and rear wheels 7 have the same braking coefficient Kb (i.e., Kbi = Kb), equations (47)-(49) can be expressed as equations (50)-(52), respectively.
Figure JPOXMLDOC01-appb-M000048
Figure JPOXMLDOC01-appb-M000048
Figure JPOXMLDOC01-appb-M000049
Figure JPOXMLDOC01-appb-M000049
Figure JPOXMLDOC01-appb-M000050
Figure JPOXMLDOC01-appb-M000050
 制動トルク等推定部26は、車両10が後輪駆動の場合には、前輪のスリップ率λFがほぼゼロであるとして、車体速Vbを式(53)で求めることができる。 When the vehicle 10 is rear-wheel drive, the braking torque estimation unit 26 can calculate the vehicle speed Vb using equation (53) assuming that the front wheel slip ratio λF is approximately zero.
Figure JPOXMLDOC01-appb-M000051
Figure JPOXMLDOC01-appb-M000051
制動トルク等推定部26は、式(53)を用いると、後輪のスリップ率λRを式(54)のように求めることができる。 The braking torque estimation unit 26 can use equation (53) to calculate the rear wheel slip ratio λR as shown in equation (54).
Figure JPOXMLDOC01-appb-M000052
Figure JPOXMLDOC01-appb-M000052
 制動トルク等推定部26は、このスリップ率λRを用いると、後輪のタイヤ前後力FxRを式(55)に従って求めることができる。 The braking torque estimation unit 26 can use this slip ratio λR to calculate the rear wheel tire longitudinal force FxR according to equation (55).
Figure JPOXMLDOC01-appb-M000053
Figure JPOXMLDOC01-appb-M000053
 タイヤ前後力Fxiの全ての車輪7についての合計値は、実施例1と同様に、加速度センサ2が検出した前後加速度axse(又は車両10の前後加速度ax)から求めることができる。車両10が2輪車の場合には、タイヤ前後力Fxiの合計値は、後輪のタイヤ前後力FxRと一致する。後輪のタイヤ前後力FxRは、例えば式(56)で表される。 The total tire longitudinal force Fxi for all wheels 7 can be calculated from the longitudinal acceleration axse (or the longitudinal acceleration ax of the vehicle 10) detected by the acceleration sensor 2, as in the first embodiment. If the vehicle 10 is a two-wheeled vehicle, the total tire longitudinal force Fxi coincides with the rear wheel tire longitudinal force FxR. The rear wheel tire longitudinal force FxR is expressed, for example, by equation (56).
Figure JPOXMLDOC01-appb-M000054
Figure JPOXMLDOC01-appb-M000054
 以上のことから、制動トルク等推定部26は、制動係数Kbを、式(29)を基にして式(57)で求めることができる。 From the above, the braking torque estimation unit 26 can calculate the braking coefficient Kb using equation (57) based on equation (29).
Figure JPOXMLDOC01-appb-M000055
Figure JPOXMLDOC01-appb-M000055
 タイヤ荷重推定部21は、タイヤ荷重Fzi(タイヤ上下力Fzi)を、式(21)、(22)を基にして、式(58)、(59)のように求めることができる。 The tire load estimation unit 21 can calculate the tire load Fzi (tire vertical force Fzi) based on equations (21) and (22) as shown in equations (58) and (59).
Figure JPOXMLDOC01-appb-M000056
Figure JPOXMLDOC01-appb-M000056
Figure JPOXMLDOC01-appb-M000057
Figure JPOXMLDOC01-appb-M000057
 以上説明したように、実施例1-9による制動トルク推定装置20は、車両10が2輪車であっても、低コストで高精度に制動トルクを推定でき、車両10の運動も低コストで高精度に制御することができる。 As described above, the braking torque estimation device 20 according to Examples 1-9 can estimate the braking torque with high accuracy at low cost, even if the vehicle 10 is a two-wheeled vehicle, and can control the movement of the vehicle 10 with high accuracy at low cost.
 なお、本発明は、上記の実施例に限定されるものではなく、様々な変形が可能である。例えば、上記の実施例は、本発明を分かりやすく説明するために詳細に説明したものであり、本発明は、必ずしも説明した全ての構成を備える態様に限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能である。また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、削除したり、他の構成を追加・置換したりすることが可能である。 The present invention is not limited to the above-described examples, and various modifications are possible. For example, the above-described examples have been described in detail to clearly explain the present invention, and the present invention is not necessarily limited to an embodiment that includes all of the configurations described. It is also possible to replace part of the configuration of one embodiment with the configuration of another embodiment. It is also possible to add the configuration of another embodiment to the configuration of one embodiment. It is also possible to delete part of the configuration of each embodiment, or to add or replace other configurations.
 1…車輪速センサ、2…加速度センサ、3…ジャイロセンサ、4…操舵角センサ、5…コントローラ、7…車輪、8…車体、9、9FL、9FR、9RL、9RR…ブレーキ装置、10…車両、11…ブレーキペダル、12…通信線、13…電線、14…電源、20…制動トルク推定装置、21…タイヤ荷重推定部、22…タイヤ特性推定部、24…タイヤ特性記憶部、25…タイヤ特性読込部、26…制動トルク等推定部、28…タイヤ特性マップ、30…スリップ率と摩擦係数との関係を示す曲線、31…線形の関係にあるスリップ率と摩擦係数との関係を示す直線、42…ディスクロータ、43…ブレーキキャリパ、44…ハウジング、45a、45b…ブレーキパッド、46…ピストン、48…電動モータ、49…減速機、50…回転直動変換機構、51…ブレーキ制御装置、52…制御信号線、61…制御信号線、62、63…通信線、67…制動トルク位置指令変換部、72…制動トルク位置関係作成部、74…位置電流制御部、91…電流センサ、92…モータ位置センサ、ax…前後加速度、axse…加速度センサが検出した前後加速度、Fxi…タイヤ前後力、Fzi…タイヤ荷重(タイヤ上下力)、Ii…車輪の慣性モーメント、Kb、Kbi…制動係数、mb…車両の質量、Tbi…制動トルク、Tbir…制動トルク指令、Vb…車体速、Vwi…車輪速、Vwsi…センサで計測される車輪速、Ri…タイヤ半径、ωi…車輪角速度、λi…スリップ率。 1...wheel speed sensor, 2...acceleration sensor, 3...gyro sensor, 4...steering angle sensor, 5...controller, 7...wheel, 8...vehicle body, 9, 9FL, 9FR, 9RL, 9RR...brake device, 10...vehicle, 11...brake pedal, 12...communication line, 13...electric wire, 14...power source, 20...braking torque estimation device, 21...tire load estimation unit, 22...tire characteristic estimation unit, 24...tire characteristic memory unit, 25...tire characteristic reading unit, 26...braking torque etc. estimation unit, 28...tire characteristic map, 30...curve showing relationship between slip ratio and friction coefficient, 31...straight line showing linear relationship between slip ratio and friction coefficient, 42...disc rotor, 43...brake caliper, 44...housing, 45a, 45b...brake pads, 46...piston , 48...electric motor, 49...reduction gear, 50...rotational-linear conversion mechanism, 51...brake control device, 52...control signal line, 61...control signal line, 62, 63...communication lines, 67...braking torque position command conversion unit, 72...braking torque position relationship creation unit, 74...position current control unit, 91...current sensor, 92...motor position sensor, ax...longitudinal acceleration, axse...longitudinal acceleration detected by acceleration sensor, Fxi...tire longitudinal force, Fzi...tire load (tire vertical force), Ii...wheel moment of inertia, Kb, Kbi...braking coefficient, mb...vehicle mass, Tbi...braking torque, Tbir...braking torque command, Vb...vehicle speed, Vwi...wheel speed, Vwsi...wheel speed measured by sensor, Ri...tire radius, ωi...wheel angular velocity, λi...slip ratio.

Claims (13)

  1.  タイヤが設けられた複数の車輪を備える車両に設置可能であり、
     前記車輪の制動トルクを算出する制動トルク算出部を備え、
     前記車輪の車輪速と、前記車両の前後方向の加速度である前後加速度とを入力し、
     前記制動トルク算出部は、前記車輪速と、前記車輪のタイヤ荷重と、前記前後加速度と、前記車輪のタイヤ特性とに基づいて、車体速と、前記車輪のタイヤ前後力と、前記車輪のスリップ率とを算出するとともに、算出した前記タイヤ前後力に基づいて前記制動トルクを算出する、
    ことを特徴とする制動トルク推定装置。
    The vehicle may be mounted on a vehicle having a plurality of wheels provided with tires,
    a braking torque calculation unit that calculates a braking torque of the wheel;
    A wheel speed of the wheel and a longitudinal acceleration, which is an acceleration in a longitudinal direction of the vehicle, are inputted;
    the braking torque calculation unit calculates a vehicle body speed, a tire longitudinal force of the wheel, and a slip ratio of the wheel based on the wheel speed, the tire load of the wheel, the longitudinal acceleration, and a tire characteristic of the wheel, and calculates the braking torque based on the calculated tire longitudinal force.
    A braking torque estimation device comprising:
  2.  前記前後加速度を用いて前記タイヤ荷重を算出するタイヤ荷重推定部を備える、
    請求項1に記載の制動トルク推定装置。
    a tire load estimating unit that calculates the tire load using the longitudinal acceleration,
    The braking torque estimating device according to claim 1 .
  3.  スリップ率と摩擦係数との関係を前記タイヤ特性として求めるタイヤ特性推定部を備える、
    請求項1に記載の制動トルク推定装置。
    a tire characteristic estimating unit that obtains a relationship between a slip ratio and a friction coefficient as the tire characteristic;
    The braking torque estimating device according to claim 1 .
  4.  前記タイヤ特性推定部は、前記タイヤ特性として、前記スリップ率と前記摩擦係数との間の比例係数である制動係数を求め、前記制動係数を、前記車両の加速時での前記前後加速度と前記車輪速と前記タイヤ荷重とに基づいて求める、
    請求項3に記載の制動トルク推定装置。
    the tire characteristic estimation unit obtains, as the tire characteristic, a damping coefficient which is a proportional coefficient between the slip ratio and the friction coefficient, and obtains the damping coefficient based on the longitudinal acceleration, the wheel speed, and the tire load when the vehicle is accelerating.
    The braking torque estimating device according to claim 3 .
  5.  前記車両は、制駆動力を発生させる電動機又は内燃機関と、制動力を発生するブレーキ装置とを備え、
     前記制動トルク算出部は、
    1)前記車両の前記前後加速度が予め設定した範囲内にあること、
    2)前記車輪速が予め設定した範囲内にあり、前記車両が直進走行中であること、
    3)前記車両が走行する路面が予め設定した状況であること、
    4)前記電動機によるトルクが予め設定した閾値より小さいこと、
    5)前記内燃機関によるトルクが予め設定した閾値より小さいこと、
    6)前記ブレーキ装置が動作中であること、
    の6つの条件のうち少なくとも1つの条件を満たす場合に前記制動トルクを算出する、
    請求項1に記載の制動トルク推定装置。
    The vehicle includes an electric motor or an internal combustion engine that generates a braking/driving force, and a brake device that generates a braking force,
    The braking torque calculation unit
    1) The longitudinal acceleration of the vehicle is within a preset range;
    2) The wheel speed is within a preset range and the vehicle is traveling straight ahead;
    3) The road surface on which the vehicle is traveling is in a preset condition;
    4) the torque generated by the electric motor is less than a preset threshold;
    5) the torque from the internal combustion engine is less than a preset threshold;
    6) The brake device is in operation;
    The braking torque is calculated when at least one of the six conditions is satisfied.
    The braking torque estimating device according to claim 1 .
  6.  前記車両は、制駆動力を発生させる電動機又は内燃機関と、制動力を発生するブレーキ装置とを備え、
     前記制動トルク算出部は、算出した前記制動トルクから前記電動機によるトルク又は前記内燃機関によるトルクを減じることで、前記ブレーキ装置による制動トルクを求める、請求項1に記載の制動トルク推定装置。
    The vehicle includes an electric motor or an internal combustion engine that generates a braking/driving force, and a brake device that generates a braking force,
    The braking torque estimation device according to claim 1 , wherein the braking torque calculation unit determines the braking torque by the brake device by subtracting the torque by the electric motor or the torque by the internal combustion engine from the calculated braking torque.
  7.  前記車両は、制駆動力を発生させる電動機又は内燃機関と、制動力を発生するブレーキ装置とを備え、
     前記制動トルク算出部は、算出した前記制動トルクを前記電動機によるトルク又は前記内燃機関によるトルクとすることで、又は、算出した前記制動トルクから計測された前記ブレーキ装置による制動トルクを減じることで、前記電動機によるトルク又は前記内燃機関によるトルクを求める、
    請求項1に記載の制動トルク推定装置。
    The vehicle includes an electric motor or an internal combustion engine that generates a braking/driving force, and a brake device that generates a braking force,
    The braking torque calculation unit obtains the torque by the electric motor or the torque by the internal combustion engine by setting the calculated braking torque as the torque by the electric motor or the torque by the internal combustion engine, or by subtracting the measured braking torque by the brake device from the calculated braking torque.
    The braking torque estimating device according to claim 1 .
  8.  前記制動トルク算出部は、前記車両が旋回して走行する場合には、前記車両の横方向の加速度と、前記車輪の操舵角と、前記車両の旋回時の横滑り角に依存する前記タイヤ特性とを用いて、前記制動トルクを算出する、
    請求項1に記載の制動トルク推定装置。
    the braking torque calculation unit calculates the braking torque by using a lateral acceleration of the vehicle, a steering angle of the wheels, and the tire characteristic that depends on a sideslip angle when the vehicle is turning.
    The braking torque estimating device according to claim 1 .
  9.  ブレーキ装置を制御するブレーキ制御装置に接続されており、
     前記ブレーキ装置は、前記車両に設置されており、電動モータを備える電動ブレーキ装置であり、
     前記制動トルクを算出するときに、前記ブレーキ制御装置が前記電動モータの電流と前記電動モータの回転位置との少なくとも一方を記憶する、
    請求項1に記載の制動トルク推定装置。
    It is connected to a brake control device that controls the brake device,
    the brake device is an electric brake device installed on the vehicle and including an electric motor,
    When calculating the braking torque, the brake control device stores at least one of a current of the electric motor and a rotational position of the electric motor.
    The braking torque estimating device according to claim 1 .
  10.  前記タイヤ特性推定部は、前記タイヤ特性を求めるときに、前記車両が走行する路面の状況又は前記車両が走行する道路での天候情報を取得する、
    請求項3に記載の制動トルク推定装置。
    the tire characteristic estimation unit acquires information on a road surface condition on which the vehicle is traveling or weather information on a road on which the vehicle is traveling when calculating the tire characteristics.
    The braking torque estimating device according to claim 3 .
  11.  ブレーキ装置を制御するブレーキ制御装置に接続されており、
     前記ブレーキ装置は、前記車両に設置されており、ブレーキパッドとディスクロータとを備え、
     前記制動トルクを算出するときに、前記ブレーキ制御装置が前記ブレーキパッドの温度と前記ディスクロータの回転速度を記憶する、
    請求項1に記載の制動トルク推定装置。
    It is connected to a brake control device that controls the brake device,
    The brake device is installed on the vehicle and includes a brake pad and a disc rotor.
    When calculating the braking torque, the brake control device stores the temperature of the brake pad and the rotational speed of the disc rotor.
    The braking torque estimating device according to claim 1 .
  12.  前記車両は、前輪駆動又は後輪駆動であり、
     前記タイヤ特性推定部は、前記タイヤ特性として、前記スリップ率と前記摩擦係数との間の比例係数である制動係数を求め、前記制動係数を、前記車両の加速時での前記タイヤ前後力と前記車輪速と前記タイヤ荷重とに基づいて求める、
    請求項3に記載の制動トルク推定装置。
    the vehicle is front-wheel drive or rear-wheel drive;
    the tire characteristic estimation unit calculates, as the tire characteristic, a damping coefficient which is a proportional coefficient between the slip ratio and the friction coefficient, and calculates the damping coefficient based on the tire longitudinal force, the wheel speed, and the tire load during acceleration of the vehicle.
    The braking torque estimating device according to claim 3 .
  13.  前記車両は、4輪駆動であり、
     前記タイヤ特性推定部は、前記タイヤ特性として、前記スリップ率と前記摩擦係数との間の比例係数である制動係数を求め、前記制動係数を、前記車両の加速時での前記前後加速度と、前輪と後輪の駆動力の比と、前記車輪速と、前記タイヤ荷重とに基づいて求める、
    請求項3に記載の制動トルク推定装置。
    the vehicle is four-wheel drive;
    the tire characteristic estimation unit obtains, as the tire characteristic, a damping coefficient which is a proportional coefficient between the slip ratio and the friction coefficient, and obtains the damping coefficient based on the longitudinal acceleration during acceleration of the vehicle, a ratio of driving forces of the front wheels and the rear wheels, the wheel speed, and the tire load.
    The braking torque estimating device according to claim 3 .
PCT/JP2023/043320 2022-12-05 2023-12-04 Brake torque estimation device WO2024122504A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-194237 2022-12-05
JP2022194237A JP2024080895A (en) 2022-12-05 2022-12-05 Braking torque estimation device

Publications (1)

Publication Number Publication Date
WO2024122504A1 true WO2024122504A1 (en) 2024-06-13

Family

ID=91379322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/043320 WO2024122504A1 (en) 2022-12-05 2023-12-04 Brake torque estimation device

Country Status (2)

Country Link
JP (1) JP2024080895A (en)
WO (1) WO2024122504A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11189136A (en) * 1997-12-26 1999-07-13 Toyota Central Res & Dev Lab Inc Vehicle state quantity estimating device
JP2003237560A (en) * 2002-02-18 2003-08-27 Toyota Central Res & Dev Lab Inc Maximum road surface friction coefficient-estimating device
US20150274159A1 (en) * 2014-03-25 2015-10-01 Ford Global Technologies, Llc E-drive torque sensing vehicle state estimation methods for vehicle control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11189136A (en) * 1997-12-26 1999-07-13 Toyota Central Res & Dev Lab Inc Vehicle state quantity estimating device
JP2003237560A (en) * 2002-02-18 2003-08-27 Toyota Central Res & Dev Lab Inc Maximum road surface friction coefficient-estimating device
US20150274159A1 (en) * 2014-03-25 2015-10-01 Ford Global Technologies, Llc E-drive torque sensing vehicle state estimation methods for vehicle control

Also Published As

Publication number Publication date
JP2024080895A (en) 2024-06-17

Similar Documents

Publication Publication Date Title
CN110382326B (en) Method and device for estimating road surface friction coefficient of tire under high-speed normal driving condition
JP6042706B2 (en) Vehicle control device
JP5339121B2 (en) Slip rate estimation device and method, and slip rate control device and method
KR20120046638A (en) Vehicle with multiple axis driven independently
JP7235426B2 (en) Method and control unit for determining the friction coefficient potential of a road surface
JP2007530341A (en) Determination method of tire lateral force in electric steering system
JP2019172078A (en) Control device of vehicle and control method of vehicle
JP2009055703A (en) Friction coefficient estimation device for road surface
EP3983277A1 (en) A method for estimating a longitudinal force difference acting on steered wheels
JP4193706B2 (en) Road surface friction coefficient detector
EP0881114A2 (en) Vehicle steering control
KR20220022514A (en) Apparatus and method for estimating the friction coefficient of road surface
KR20230045647A (en) Method for controlling driving force of vehicle
WO2024122504A1 (en) Brake torque estimation device
JP6152705B2 (en) Vehicle control device
JP7224897B2 (en) Vehicle motion state estimation device, vehicle motion state estimation method, and vehicle
KR20110125280A (en) Adaptive cruise control method on the inclined road
JP3271956B2 (en) Road surface friction coefficient estimation device for vehicles
US20220410853A1 (en) Method for controlling propulsion of a heavy-duty vehicle
KR101410451B1 (en) Apparatus, method and computer readable recording medium for controlling wheels in an independant traction type electric vehicle
JP2002104158A (en) Road surface frictional state calculating device, tire type determining device, tire abrasion determining device, road surface gradient estimating device, and offset correcting device of acceleration sensor
FR2888810A1 (en) METHOD FOR CONTROLLING THE DIRECTIONAL ORIENTATION OF A VEHICLE
CN114148411B (en) Drift control method of wheeled unmanned platform
JP2013075632A (en) Traveling state estimating device
JP6058398B2 (en) Vehicle path tracking system and method