WO2024122299A1 - Rotor unit and operation device equipped with rotor unit - Google Patents
Rotor unit and operation device equipped with rotor unit Download PDFInfo
- Publication number
- WO2024122299A1 WO2024122299A1 PCT/JP2023/041233 JP2023041233W WO2024122299A1 WO 2024122299 A1 WO2024122299 A1 WO 2024122299A1 JP 2023041233 W JP2023041233 W JP 2023041233W WO 2024122299 A1 WO2024122299 A1 WO 2024122299A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotating body
- fluid
- magnetorheological fluid
- body unit
- main body
- Prior art date
Links
- 239000012530 fluid Substances 0.000 claims abstract description 138
- 230000005291 magnetic effect Effects 0.000 claims abstract description 51
- 238000007789 sealing Methods 0.000 claims description 29
- 230000004044 response Effects 0.000 claims description 18
- 238000001514 detection method Methods 0.000 description 12
- 230000002093 peripheral effect Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000005294 ferromagnetic effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D63/00—Brakes not otherwise provided for; Brakes combining more than one of the types of groups F16D49/00 - F16D61/00
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05G—CONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
- G05G1/00—Controlling members, e.g. knobs or handles; Assemblies or arrangements thereof; Indicating position of controlling members
- G05G1/08—Controlling members for hand actuation by rotary movement, e.g. hand wheels
- G05G1/10—Details, e.g. of discs, knobs, wheels or handles
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05G—CONTROL DEVICES OR SYSTEMS INSOFAR AS CHARACTERISED BY MECHANICAL FEATURES ONLY
- G05G5/00—Means for preventing, limiting or returning the movements of parts of a control mechanism, e.g. locking controlling member
- G05G5/03—Means for enhancing the operator's awareness of arrival of the controlling member at a command or datum position; Providing feel, e.g. means for creating a counterforce
Definitions
- the present invention relates to a rotating body unit that is loaded into various operating devices and an operating device equipped with the same.
- Patent Document 1 discloses a computer peripheral device that includes an electro-permanent magnet (EPM) assembly including a permanent magnet configured to generate a magnetic field and a magnetization assembly configured to set the strength of the magnetic field generated by the permanent magnet, and a magnetorheological (MR) material coupled to an input element and whose viscosity changes in response to the magnetic field.
- EPM electro-permanent magnet
- MR magnetorheological
- a coil that generates a magnetic field for changing the viscosity of the magnetorheological fluid is disposed at a position away from an actuator (rotating body) that is rotated.
- An object of the present invention is to provide a rotating body unit capable of improving response performance (magnetic field efficiency) according to the magnitude of the magnetic field applied from a coil, and an operating device including the same.
- the rotating body unit according to the first invention is a rotating body unit that is loaded into an operating device and rotated, and includes a main body, a rotating body, and a brake mechanism.
- the rotating body is attached in a rotatable state relative to the main body.
- the brake mechanism includes a coil that is provided inside the main body and wound in an annular shape to generate a magnetic field when a current flows through it, a magnetorheological fluid whose viscosity changes depending on the magnetic field applied from the coil, and a magnetorheological fluid holding part that is provided inside the main body and is positioned on the inner side of the coil to hold the magnetorheological fluid, and changes the magnitude of the rotational resistance to the rotation operation of the rotating body according to the change in viscosity of the magnetorheological fluid.
- a magnetorheological fluid holding section that holds the magnetorheological fluid is provided on the inner side of a ring-shaped coil.
- the operating device on which the rotating body unit is mounted includes, for example, a game controller, various control panels, a mouse, a keyboard, and the like.
- the rotating unit is a device that performs operational input by a rotational operation by a user, and may be configured to perform operational input by pressing in addition to a rotational operation, for example.
- the brake mechanism adjusts the rotational resistance of the rotating body to the rotational operation by utilizing the properties of a magnetorheological fluid (MR fluid), the viscosity of which changes when an external magnetic field is applied.
- MR fluid magnetorheological fluid
- the magnetorheological fluid holding portion that holds the magnetorheological fluid is positioned close to the inner circumference of the annularly wound coil, which is highly susceptible to the influence of the magnetic field applied from the coil, so that the viscosity of the magnetorheological fluid can be freely changed in response to changes in the magnitude of the magnetic field.
- it is possible to improve the response performance (magnetic field efficiency) according to the magnitude of the magnetic field applied from the coil.
- the rotating body unit of the second invention is a rotating body unit of the first invention, wherein the rotating body has a rotating shaft and a disk portion that protrudes radially around the rotating shaft and rotates while in contact with the magnetorheological fluid inside the magnetorheological fluid holding portion.
- the disk portion provided inside the magnetorheological fluid holding portion increases the contact area of the configuration that rotates integrally with the rotor with respect to the magnetorheological fluid, and thus the rotational resistance applied to the disk portion that rotates integrally with the rotor shaft can be efficiently changed in response to the change in viscosity of the magnetorheological fluid as the disk portion rotates within the magnetorheological fluid.
- a rotating body unit according to a third aspect of the present invention is the rotating body unit according to the second aspect of the present invention, wherein the disk portion is provided on the inner peripheral side of the coil.
- the disk portion is disposed adjacent to the inner periphery of the coil where the viscosity of the magnetorheological fluid is most susceptible to change, so that the rotational resistance to the rotation operation can be changed with high responsiveness.
- the rotating body unit of the fourth invention is a rotating body unit of the first or second invention, further comprising a first sealing member provided in the main body portion and sealing the magnetorheological fluid within the magnetorheological fluid holding portion. This makes it possible to seal the magnetorheological fluid inside the magnetorheological fluid holding portion using a first sealing member such as an O-ring.
- a rotating body unit according to a fifth aspect of the present invention is the rotating body unit according to the fourth aspect of the present invention, wherein two first sealing members are provided so as to sandwich the coil in the axial direction of the rotating shaft.
- the rotating body unit of the sixth invention is a rotating body unit of the second or third invention, further comprising a second sealing member provided in the main body portion and sealing the magnetorheological fluid within the magnetorheological fluid holding portion at the sliding portion with the rotating shaft.
- a second sealing member provided in the main body portion and sealing the magnetorheological fluid within the magnetorheological fluid holding portion at the sliding portion with the rotating shaft.
- a rotating body unit according to a seventh aspect of the present invention is the rotating body unit according to the sixth aspect of the present invention, wherein the second sealing member abuts against the rotating shaft at two points in a cross-sectional view.
- a rotating body unit according to an eighth aspect of the present invention is the rotating body unit according to the seventh aspect of the present invention, wherein the second sealing member has a substantially X-shape in cross section.
- a rotating body unit according to a ninth aspect of the present invention is the rotating body unit according to the second aspect of the present invention, further comprising a bearing portion provided in the main body portion and supporting the rotating shaft. This allows the rotating body to receive a rotation operation input by a user with the rotating shaft supported by the bearing portion.
- An operating device according to a tenth aspect of the present invention includes a rotating body unit according to the first or second aspect of the present invention, and an operating main body in which the rotating body unit is loaded so as to be rotated. This makes it possible to provide an operating device capable of improving response performance (magnetic field efficiency) according to the strength of the magnetic field applied from the coil.
- FIG. 1 is an overall perspective view showing the configuration of a wheel unit including an MR fluid unit according to an embodiment of the present invention
- 2A is a side view of the wheel unit of FIG 1
- FIG 2B is a cross-sectional view taken along line AA of FIG 2A
- 3A and 3B are a perspective view and a front view showing the configuration of an MR fluid unit included in the wheel unit shown in FIG. 2A and the like.
- FIG. 4 is an exploded perspective view showing the configuration of the MR fluid unit shown in FIG. 2 is a graph showing the relationship between the strength of a magnetic field and the viscosity of an MR fluid used in the MR fluid unit of FIG. 1 .
- FIG. 2 is an overall perspective view showing the configuration of a mouse equipped with the MR fluid unit shown in FIG.
- FIG. 2 is an overall perspective view showing the configuration of a dial-type operation device in which the MR fluid unit shown in FIG. 1 etc. is installed.
- FIG. 2 is an overall perspective view showing the configuration of a keypad type operation device in which the MR fluid unit shown in FIG. 1 etc. is installed.
- FIG. 2 is an overall perspective view showing the configuration of a controller in which the MR fluid unit shown in FIG. 1 etc. is installed.
- MR magneto-rheological
- the MR (Magneto-Rheological) fluid unit 12 is included in the wheel unit 11 to which the operator inputs a rotation operation and a press operation. That is, the wheel unit 11 has an outer wheel 11a, an inner wheel 11b, a rotation detection magnet 11d, and an MR (Magneto-Rheological) fluid unit (rotating body unit) 12, as shown in Figures 1, 2(a) and 2(b).
- the outer wheel 11a is a substantially cylindrical member that is integrated with the inner wheel 11b and the shaft (rotating body, rotating shaft) 12b on the MR fluid unit 12 side, and rotates when rotated by the operator.
- the inner wheel 11b is a bottomed, approximately cylindrical member that is provided on the inner diameter side of the outer wheel 11a and rotates integrally with the shaft 12b when the outer wheel 11a is rotated.
- the outer wheel 11a and the inner wheel 11b, together with the shaft 12b included in the MR fluid unit 12, are the rotating members that are the targets of rotational operation by the user.
- the rotation detection magnet 11d is a rotating member fixed to the inner wheel 11b using, for example, an adhesive, etc.
- a Hall IC (not shown) arranged adjacent to the rotation detection magnet 11d as a fixed member detects the rotation of the rotation detection magnet 11d, thereby detecting the rotation of the shaft 12b.
- the MR fluid unit 12 is a rotating unit that constitutes the central portion of the wheel unit 11, and is provided on the inner periphery of the outer wheel 11a and the inner wheel 11b.
- the MR fluid unit 12 is a substantially cylindrical member with a shaft 12b inserted into its central portion, and the outer wheel 11a and the inner wheel 11b, which are arranged on the outer periphery of the MR fluid unit 12, rotate together with the shaft 12b, centered on the shaft 12b.
- the MR fluid unit 12 has a main body 12a, a shaft (rotating shaft) 12b, an MR fluid holding portion (magnetic rheological fluid holding portion, brake mechanism) 12c, a coil (brake mechanism) 12d, an MR (Magneto-Rheological) fluid (magnetic rheological fluid, brake mechanism) 12e (see FIG. 2(b)), a seal member (first sealing member) 12f, a seal member (second sealing member) 12g, a bearing portion 12h, a cover 12i, and screws 12j, 12k, and 12l.
- the main body 12a is provided as a fixed member in comparison with the rotating members (outer wheel 11a, inner wheel 11b, shaft 12b) that rotate when rotated by the user. As shown in Figures 3(a) and 3(b), the main body 12a has a substantially cylindrical outer case 12aa, a substantially disk-shaped yoke 12ab, and a push-down detection lever 12ac.
- the outer case 12aa is molded using a magnetic material, has a generally cylindrical shape with a bottom, and is molded integrally with a push detection lever 12ac that protrudes from one side in the axial direction of the shaft 12b.
- the coil 12d, the seal members 12f, 12g, etc. are arranged in this generally cylindrical internal space.
- the yoke 12ab is made of a magnetic material and has a generally circular disk shape. As shown in FIG. 4, the yoke 12ab is attached to the end face of the outer case 12aa by six screws 12l so as to cover the end face on the open side of the outer case 12aa. As shown in Figures 2(b) and 3(b), the push-down detection lever 12ac is provided so as to protrude from one side surface of the MR fluid unit 12. When the outer wheel 11a is pushed down by a user, the push-down detection lever 12ac pushes down a button (not shown), and detects the push-down operation. The push-down detection lever 12ac is provided as a fixed member with respect to the rotating body including the outer wheel 11a, the inner wheel 11b, and the shaft 12b.
- the shaft (rotation axis) 12b is provided so as to protrude from the side surface opposite the push-down detection lever 12ac of the MR fluid unit 12.
- the shaft 12b rotates together with the outer wheel 11a and the inner wheel 11b as the center of rotation when the wheel unit 11 is rotated by the user.
- the shaft 12b has a substantially disk-shaped disk portion 12ba that protrudes radially outward from the axial direction.
- the disk portion 12ba is disposed on the inner periphery of the coil 12d that applies the magnetic field, inside the MR fluid holding portion 12c in which the MR fluid 12e is held. Therefore, when the user rotates the outer wheel 11a, the disk portion 12ba rotates in contact with the MR fluid 12e together with the shaft 12b, which rotates integrally with the outer wheel 11a and the inner wheel 11b.
- the viscosity of the MR fluid 12e with which the disk portion 12ba is in contact changes due to the influence of an externally applied magnetic field, as described below, and therefore the magnitude of the rotational resistance applied to the disk portion 12ba can be changed. Furthermore, since the disk portion 12ba is integrally formed with the shaft 12b, the contact area between the MR fluid 12e and the member on the rotating body side is increased compared to a configuration in which the disk portion 12ba is not provided, so that a braking force can be efficiently applied to the member on the rotating side.
- the MR fluid holding unit (magnetic rheological fluid holding unit, brake mechanism) 12c is located on the inner periphery of the coil 12d that applies the magnetic field, in the space where the rotating members (outer wheel 11a and inner wheel 11b, shaft 12b) and the fixed members (main body 12a, coil 12d, etc.) slide against each other.
- the MR fluid holding unit 12c is filled with MR fluid 12e.
- the viscosity of the MR fluid 12e changes due to a magnetic field applied from the outside (coil 12d), and this can change the rotational resistance against the rotating member at the contact portion (sliding portion) between the MR fluid holding portion 12c and the rotating member of the wheel unit 11 (shaft 12b (disc portion 12ba), etc.).
- the coil (brake mechanism) 12d is disposed near the radial outside of the MR fluid holding portion (brake mechanism) 12c (see FIG. 2(b)) in which the MR fluid 12e is held, and when a current flows through it, a magnetic field is applied to the MR fluid 12e.
- the MR (Magneto-Rheological) fluid (magnetic viscous fluid, brake mechanism) 12e is mainly filled in the space of the MR fluid holding portion 12c (see FIG. 2(b)) provided in the sliding portion of the rotating body (shaft 12b, etc. (see FIG. 2(b))) of the wheel unit 11.
- the MR fluid 12e changes its form under the influence of the magnetic field applied from the coil 12d. This makes it possible to change the rotational resistance to the rotation operation of the outer wheel 11a.
- FIG. 5 shows a graph illustrating the relationship between the magnitude of a magnetic field generated and the viscosity of the MR fluid 12e that changes according to the magnitude of the magnetic field.
- the MR fluid 12e is a functional fluid in which ferromagnetic particles with diameters of 1 to 10 ⁇ m are dispersed in a liquid such as water or oil, and when not subjected to a magnetic field, the particles are uniformly dispersed in the liquid.
- the ferromagnetic particles are magnetized and attract each other to form clusters, and as shown in Figure 5, the viscosity increases as the magnetic field becomes stronger.
- the degree of cluster formation in the MR fluid 12e can be adjusted by controlling the current flowing through the coil 12d.
- the viscosity of the MR fluid 12e can be controlled by controlling the current flowing through the coil 12d of the wheel unit 11 to control the magnitude of the magnetic field generated by the coil 12d.
- the magnitude of the rotational resistance of the wheel unit 11 can be controlled in accordance with the change in viscosity of the MR fluid 12e.
- the sealing member (first sealing member) 12f is, for example, a rubber annular member (O-ring) having a substantially circular cross-section, and as shown in FIG. 2(b), two sealing members 12f are provided in a pair to seal the MR fluid 12e sealed in the MR fluid holding portion 12c so as to prevent it from leaking out to the outside. As shown in FIG. 2B, the pair of seal members 12f are disposed to sandwich the coil 12d in the axial direction of the shaft 12b.
- the seal member (second sealing member) 12g is a substantially cylindrical member provided on the main body portion 12a, and is used with the shaft 12b inserted, sealing the MR fluid 12e within the MR fluid holding portion 12c at the sliding portion with the shaft 12b.
- the seal member 12g abuts against the shaft 12b at two points in a cross-sectional view. More specifically, the seal member 12g has a substantially X-shaped cross-sectional view.
- the sealing member 12g can withstand the pressure generated in the sliding parts and is also resistant to twisting, and the MR fluid 12e can be stably sealed by contacting the outer peripheral surface of the shaft 12b at two points.
- the bearing portion 12h is a substantially cylindrical member, and rotatably supports the shaft 12b, which is a rotating member, in the vicinity of the seal member 12g.
- the cover 12i is a substantially disk-shaped member, and is disposed opposite the surface of the disk portion 12ba on the side where the shaft 12b is provided, with a predetermined gap (e.g., 0.2 mm) between it and the surface of the disk portion 12ba on the side where the shaft 12b is provided, and the cover 12i forms a gap that becomes part of the MR fluid holding portion 12c, as shown in FIG. 2(b).
- a predetermined gap e.g., 0.2 mm
- the screws 12j, 12k, and 12l are fastening members that connect the various components included in the MR fluid unit 12 together.
- the screw 12j is fixed to the outer case 12aa so as to close two holes (an injection hole for the MR fluid 12e and an air vent hole) provided in the outer case 12aa of the main body 12a.
- the screws 12k fix the cover 12i to the yoke 12ab, so that the cover 12i is disposed as a fixed member together with the yoke 12ab.
- the screw 12l is screwed into a screw hole provided in the end surface of the main body portion 12a, thereby fixing the yoke 12ab to the end surface of the main body portion 12a.
- FIG. 6 shows an example in which the MR fluid unit 12 of this embodiment is included in a wheel unit 11 and is applied to a mouse (operation device) 10.
- the mouse 10 includes a mouse body 10 a , a switch 10 b , and a wheel unit 11 .
- the mouse body 10a is the housing portion of the mouse 10, and as shown in FIG. 6, supports the wheel unit 11 in a rotatable manner with a part of the wheel unit 11 protruding from the upper surface thereof.
- the switch 10b is disposed on the top surface of the mouse body 10a near the wheel unit 11.
- the switch 10b is operated, for example, when switching between a normal mode and a game mode, or when switching the power of the mouse 10 on and off.
- the wheel unit 11 including the MR fluid unit 12 of this embodiment to the mouse 10
- it is possible to improve the response performance to user operations for example, when the mouse 10 is used as a controller for e-Sports or the like.
- FIG. 7 shows an example in which the MR fluid unit 12 of this embodiment is applied to a dial-type operating device (operating device) 100 .
- the dial type operation device (operation device) 100 includes a main body 101 and a rotating body unit 102.
- the main body 101 is a substantially cylindrical base portion, and a rotating body unit 102 is rotatably attached to the main body 101 .
- the rotating body unit 102 is attached to the top surface of the main body 101 in a state in which it can rotate in a substantially horizontal direction, and includes the above-mentioned MR fluid unit therein.
- the rotating body unit 102 mainly receives operational inputs such as pushing, turning, and tilting. This makes it possible to improve the response performance of the dial-type operating device for performing various adjustments.
- FIG. 8 shows an example in which the MR fluid unit 12 of this embodiment is applied to a keypad type operating device (operating device) 110.
- the keypad type operation device (operation device) 110 includes a main body 111, a rotating unit 112, a keypad 113, and a pad 114.
- the main body 111 is a base portion, and a rotating body unit 112 is attached in a rotatable state.
- the rotating body unit 112 is attached to the upper surface of the main body 111 in a rotatable state in a horizontal direction, and includes the above-mentioned MR fluid unit therein.
- the keypad 113 is an operation device including a plurality of input keys, and is integrated with the rotating unit 112 and the like.
- the pad 114 is provided in front of the rotating unit 112 and the keypad 113 so that the user can operate the rotating unit 112 and the keypad 113 with the user's left hand placed thereon, for example.
- FIG. 9 shows an example in which the MR fluid unit 12 of this embodiment is applied to a controller (operation device) 120.
- the controller (operation device) 120 includes a main body 121 , a rotating unit 122 , and a display unit 123 .
- the main body 121 is a base portion, and is provided on the upper surface with various input buttons and a display unit 123 for performing various displays, and a rotating body unit 122 is attached in a rotatable state.
- the rotating body unit 122 is provided near the center of the top surface of the main body 121, and accepts horizontal operation such as forward/backward and left/right, tilting operation such as forward/backward and left/right, pushing up and down, and rotation operation input. This makes it possible to improve the response performance to rotation operations in an operating device in which various adjustments can be made by rotation operations and also input to various input buttons.
- the MR fluid unit 12 of this embodiment includes a main body 12a, a shaft 12b, and a brake mechanism.
- the shaft 12b is rotatably attached to the main body 12a.
- the brake mechanism includes a coil 12d that is provided inside the main body 12a and wound in an annular shape to generate a magnetic field when a current flows therethrough, an MR fluid 12e whose viscosity changes depending on the magnetic field applied by the coil 12d, and an MR fluid holding portion 12c that is provided inside the main body 12a and is disposed on the inner periphery of the coil 12d to hold the MR fluid 12e.
- the brake mechanism changes the magnitude of the rotational resistance against the rotational operation of the shaft 12b (disk portion 12ba) in response to the change in viscosity of the MR fluid 12e.
- the MR fluid holding portion 12c that holds the MR fluid 12e is positioned close to the inner circumference of the annularly wound coil 12d, which is highly susceptible to the influence of the magnetic field applied from the coil 12d, and therefore the viscosity of the MR fluid 12e can be freely changed in response to changes in the magnitude of the magnetic field. As a result, it is possible to improve the response performance (magnetic field efficiency) according to the magnitude of the magnetic field applied from the coil 12d.
- the present invention is not limited to the above embodiment, and various modifications are possible without departing from the gist of the invention.
- the disk portion 12ba is provided integrally with the shaft 12b as a member on the rotating body side in order to increase the contact area with the MR fluid 12e sealed in the MR fluid holding portion 12c, but the present invention is not limited to this.
- the member on the rotating body side that comes into contact with the magnetorheological fluid may be a configuration other than a disk portion, or a configuration that makes it easy to transmit rotational resistance may be adopted by processing the surface of the shaft, etc.
- seal members 12g and 12f having different cross-sectional shapes are used to suppress leakage of the MR fluid 12e held in the MR fluid holding portion 12c to the outside, but the present invention is not limited to this.
- the seal members for preventing leakage of the magnetorheological fluid may be of the same type and have the same cross-sectional shape, or may have a cross-sectional shape other than a circular or X-shaped cross-section.
- the MR fluid unit (rotating body unit) 12 of the present invention is applied to a mouse 10, a dial-type operation device 100, a keypad-type operation device 110, a controller 120, etc.
- the present invention is not limited to this.
- the rotating body unit of the present invention may be applied to operation devices other than a mouse, a dial type operation device, a keypad type operation device, and a controller.
- the rotating body unit of the present invention may be applied to a controller for adjusting color, sound, etc., used by creators such as illustrators and cartoonists. Even in this case, by using a controller with high response performance, it is possible to accommodate delicate adjustments by users such as creators.
- the rotating body unit of the present invention has the effect of improving response performance (magnetic field efficiency) according to the strength of the magnetic field applied by the coil, and is therefore widely applicable to various operating devices.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Mechanical Control Devices (AREA)
- Braking Arrangements (AREA)
Abstract
An MR fluid unit (12) is provided with a body (12a), a shaft (12b), and a brake mechanism. The shaft (12b) is fitted to the body (12a) so as to be rotatable. The brake mechanism has: a coil (12d) provided inside the body (12a) and annularly wound to generate a magnetic field when current flows therethrough; an MR fluid (12e) that changes in viscosity due to the magnetic field applied from the coil (12d); and an MR fluid holding part (12c) provided inside the body (12a) and disposed on the inner circumferential side of the coil (12d) to hold the MR fluid (12e). The brake mechanism changes the magnitude of rotation resistance to a rotation operation of the shaft (12b) (disk part (12ba)) in accordance with the change in viscosity of the MR fluid (12e).
Description
本発明は、各種操作装置に装填される回転体ユニットおよびこれを備えた操作装置に関する。
The present invention relates to a rotating body unit that is loaded into various operating devices and an operating device equipped with the same.
近年、回転操作によって入力を行う回転体ユニットが装填された各種操作装置が採用されている。
また、近年、回転体ユニットが装填された操作装置は、職場や家庭に設置されたPC等を操作する操作装置としての用途だけでなく、クリエータによって操作される操作装置、あるいは、e-Sports等のゲームを操作する操作装置としても使用されており、より繊細な操作感が求められている。 2. Description of the Related Art In recent years, various operating devices equipped with a rotating body unit that performs input by a rotating operation have been adopted.
Furthermore, in recent years, operating devices equipped with rotating units have been used not only as operating devices for operating PCs and the like installed in the workplace or at home, but also as operating devices operated by creators or as operating devices for operating games such as e-Sports, and a more delicate operating feel is required.
また、近年、回転体ユニットが装填された操作装置は、職場や家庭に設置されたPC等を操作する操作装置としての用途だけでなく、クリエータによって操作される操作装置、あるいは、e-Sports等のゲームを操作する操作装置としても使用されており、より繊細な操作感が求められている。 2. Description of the Related Art In recent years, various operating devices equipped with a rotating body unit that performs input by a rotating operation have been adopted.
Furthermore, in recent years, operating devices equipped with rotating units have been used not only as operating devices for operating PCs and the like installed in the workplace or at home, but also as operating devices operated by creators or as operating devices for operating games such as e-Sports, and a more delicate operating feel is required.
例えば、特許文献1には、磁場を生成するように構成された永久磁石と、永久磁石によって生成された磁場の強度を設定するように構成された磁化アセンブリとを含む電気永久磁石(EPM)アセンブリと、入力要素に結合され磁場に応じて粘度が変化する磁気粘性(MR)材料と、を備えたコンピュータ周辺機器について開示されている。
For example, Patent Document 1 discloses a computer peripheral device that includes an electro-permanent magnet (EPM) assembly including a permanent magnet configured to generate a magnetic field and a magnetization assembly configured to set the strength of the magnetic field generated by the permanent magnet, and a magnetorheological (MR) material coupled to an input element and whose viscosity changes in response to the magnetic field.
しかしながら、上記従来のコンピュータ周辺機器では、以下に示すような問題点を有している。
すなわち、上記公報に開示されたコンピュータ周辺機器では、回転操作されるアクチュエータ(回転体)に対して、磁気粘性流体の粘度を変化させるための磁場を発生させるコイルが離れた位置に配置されている。 However, the above-mentioned conventional computer peripheral devices have the following problems.
That is, in the computer peripheral device disclosed in the above publication, a coil that generates a magnetic field for changing the viscosity of the magnetorheological fluid is disposed at a position away from an actuator (rotating body) that is rotated.
すなわち、上記公報に開示されたコンピュータ周辺機器では、回転操作されるアクチュエータ(回転体)に対して、磁気粘性流体の粘度を変化させるための磁場を発生させるコイルが離れた位置に配置されている。 However, the above-mentioned conventional computer peripheral devices have the following problems.
That is, in the computer peripheral device disclosed in the above publication, a coil that generates a magnetic field for changing the viscosity of the magnetorheological fluid is disposed at a position away from an actuator (rotating body) that is rotated.
このため、電気永久磁石アセンブリ(コイル)から付与される磁場の大きさを変化させた場合の応答性能(磁場効率)が十分でないおそれがある。
本発明の課題は、コイルから付与される磁場の大きさに応じた応答性能(磁場効率)を向上させることが可能な回転体ユニットおよびこれを備えた操作装置を提供することにある。 For this reason, there is a risk that the response performance (magnetic field efficiency) will be insufficient when the magnitude of the magnetic field applied from the electric permanent magnet assembly (coil) is changed.
An object of the present invention is to provide a rotating body unit capable of improving response performance (magnetic field efficiency) according to the magnitude of the magnetic field applied from a coil, and an operating device including the same.
本発明の課題は、コイルから付与される磁場の大きさに応じた応答性能(磁場効率)を向上させることが可能な回転体ユニットおよびこれを備えた操作装置を提供することにある。 For this reason, there is a risk that the response performance (magnetic field efficiency) will be insufficient when the magnitude of the magnetic field applied from the electric permanent magnet assembly (coil) is changed.
An object of the present invention is to provide a rotating body unit capable of improving response performance (magnetic field efficiency) according to the magnitude of the magnetic field applied from a coil, and an operating device including the same.
第1の発明に係る回転体ユニットは、操作装置に装填され、回転操作される回転体ユニットであって、本体部と、回転体と、ブレーキ機構と、を備えている。回転体は、本体部に対して回転可能な状態で取り付けられる。ブレーキ機構は、本体部の内部に設けられ環状に巻回されており電流が流れると磁場を発生させるコイルと、コイルから付与される磁場によって粘性が変化する磁気粘性流体と、本体部の内部に設けられコイルの内周側に配置され磁気粘性流体を保持する磁気粘性流体保持部と、を有し、磁気粘性流体の粘性の変化に応じて、回転体への回転操作に対する回転抵抗の大きさを変化させる。
The rotating body unit according to the first invention is a rotating body unit that is loaded into an operating device and rotated, and includes a main body, a rotating body, and a brake mechanism. The rotating body is attached in a rotatable state relative to the main body. The brake mechanism includes a coil that is provided inside the main body and wound in an annular shape to generate a magnetic field when a current flows through it, a magnetorheological fluid whose viscosity changes depending on the magnetic field applied from the coil, and a magnetorheological fluid holding part that is provided inside the main body and is positioned on the inner side of the coil to hold the magnetorheological fluid, and changes the magnitude of the rotational resistance to the rotation operation of the rotating body according to the change in viscosity of the magnetorheological fluid.
ここでは、磁気粘性流体(MR(Magneto-Rheological)流体)およびコイルを含むブレーキ機構によって、回転体の回転操作に対する回転抵抗を制御する回転体ユニットにおいて、環状のコイルの内周側に磁気粘性流体を保持する磁気粘性流体保持部が設けられている。
ここで、回転体ユニットが装填される操作装置は、例えば、ゲーム用コントローラ、各種コントロールパネル、マウス、キーボード等を含む。 Here, in a rotating body unit that controls the rotational resistance to the rotational operation of a rotating body by a brake mechanism including a magnetorheological fluid (MR (Magneto-Rheological) fluid) and a coil, a magnetorheological fluid holding section that holds the magnetorheological fluid is provided on the inner side of a ring-shaped coil.
Here, the operating device on which the rotating body unit is mounted includes, for example, a game controller, various control panels, a mouse, a keyboard, and the like.
ここで、回転体ユニットが装填される操作装置は、例えば、ゲーム用コントローラ、各種コントロールパネル、マウス、キーボード等を含む。 Here, in a rotating body unit that controls the rotational resistance to the rotational operation of a rotating body by a brake mechanism including a magnetorheological fluid (MR (Magneto-Rheological) fluid) and a coil, a magnetorheological fluid holding section that holds the magnetorheological fluid is provided on the inner side of a ring-shaped coil.
Here, the operating device on which the rotating body unit is mounted includes, for example, a game controller, various control panels, a mouse, a keyboard, and the like.
回転体ユニットは、使用者による回転操作によって操作入力を行う装置であって、例えば、回転操作に加えて、押圧によって操作入力が行われる構成であってもよい。
ブレーキ機構は、外部から磁場が付与されると粘性が変化する磁気粘性流体(MR流体)の性質を利用して、回転体の回転操作に対する回転抵抗を調整する。
これにより、磁気粘性流体を保持する磁気粘性流体保持部が、コイルから付与される磁場の影響を強く受けやすい、環状に巻回されたコイルの内周側に近接配置されているため、磁場の大きさの変化に対して磁気粘性流体の粘度を自在に変化させることができる。
この結果、コイルから付与される磁場の大きさに応じた応答性能(磁場効率)を向上させることができる。 The rotating unit is a device that performs operational input by a rotational operation by a user, and may be configured to perform operational input by pressing in addition to a rotational operation, for example.
The brake mechanism adjusts the rotational resistance of the rotating body to the rotational operation by utilizing the properties of a magnetorheological fluid (MR fluid), the viscosity of which changes when an external magnetic field is applied.
As a result, the magnetorheological fluid holding portion that holds the magnetorheological fluid is positioned close to the inner circumference of the annularly wound coil, which is highly susceptible to the influence of the magnetic field applied from the coil, so that the viscosity of the magnetorheological fluid can be freely changed in response to changes in the magnitude of the magnetic field.
As a result, it is possible to improve the response performance (magnetic field efficiency) according to the magnitude of the magnetic field applied from the coil.
ブレーキ機構は、外部から磁場が付与されると粘性が変化する磁気粘性流体(MR流体)の性質を利用して、回転体の回転操作に対する回転抵抗を調整する。
これにより、磁気粘性流体を保持する磁気粘性流体保持部が、コイルから付与される磁場の影響を強く受けやすい、環状に巻回されたコイルの内周側に近接配置されているため、磁場の大きさの変化に対して磁気粘性流体の粘度を自在に変化させることができる。
この結果、コイルから付与される磁場の大きさに応じた応答性能(磁場効率)を向上させることができる。 The rotating unit is a device that performs operational input by a rotational operation by a user, and may be configured to perform operational input by pressing in addition to a rotational operation, for example.
The brake mechanism adjusts the rotational resistance of the rotating body to the rotational operation by utilizing the properties of a magnetorheological fluid (MR fluid), the viscosity of which changes when an external magnetic field is applied.
As a result, the magnetorheological fluid holding portion that holds the magnetorheological fluid is positioned close to the inner circumference of the annularly wound coil, which is highly susceptible to the influence of the magnetic field applied from the coil, so that the viscosity of the magnetorheological fluid can be freely changed in response to changes in the magnitude of the magnetic field.
As a result, it is possible to improve the response performance (magnetic field efficiency) according to the magnitude of the magnetic field applied from the coil.
第2の発明に係る回転体ユニットは、第1の発明に係る回転体ユニットであって、回転体は、回転軸と、回転軸を中心とする径方向に沿って突出し磁気粘性流体保持部の内部において磁気粘性流体と接触しながら回転する円盤部と、を有している。
これにより、磁気粘性流体保持部の内部に設けられた円盤部によって、磁気粘性流体に対する回転体と一体化して回転する構成の接触面積が大きくなる。よって、磁気粘性流体の中で円盤部が回転することで、磁気粘性流体の粘度変化に応じて、回転軸と一体的に回転する円盤部に付与される回転抵抗を効率よく変化させることができる。 The rotating body unit of the second invention is a rotating body unit of the first invention, wherein the rotating body has a rotating shaft and a disk portion that protrudes radially around the rotating shaft and rotates while in contact with the magnetorheological fluid inside the magnetorheological fluid holding portion.
As a result, the disk portion provided inside the magnetorheological fluid holding portion increases the contact area of the configuration that rotates integrally with the rotor with respect to the magnetorheological fluid, and thus the rotational resistance applied to the disk portion that rotates integrally with the rotor shaft can be efficiently changed in response to the change in viscosity of the magnetorheological fluid as the disk portion rotates within the magnetorheological fluid.
これにより、磁気粘性流体保持部の内部に設けられた円盤部によって、磁気粘性流体に対する回転体と一体化して回転する構成の接触面積が大きくなる。よって、磁気粘性流体の中で円盤部が回転することで、磁気粘性流体の粘度変化に応じて、回転軸と一体的に回転する円盤部に付与される回転抵抗を効率よく変化させることができる。 The rotating body unit of the second invention is a rotating body unit of the first invention, wherein the rotating body has a rotating shaft and a disk portion that protrudes radially around the rotating shaft and rotates while in contact with the magnetorheological fluid inside the magnetorheological fluid holding portion.
As a result, the disk portion provided inside the magnetorheological fluid holding portion increases the contact area of the configuration that rotates integrally with the rotor with respect to the magnetorheological fluid, and thus the rotational resistance applied to the disk portion that rotates integrally with the rotor shaft can be efficiently changed in response to the change in viscosity of the magnetorheological fluid as the disk portion rotates within the magnetorheological fluid.
第3の発明に係る回転体ユニットは、第2の発明に係る回転体ユニットであって、円盤部は、コイルの内周側に設けられている。
これにより、円盤部が、磁気粘性流体の粘度が最も変化しやすいコイルの内周側に近接配置されているため、回転操作に対する回転抵抗を高い応答性を持って変化させることができる。 A rotating body unit according to a third aspect of the present invention is the rotating body unit according to the second aspect of the present invention, wherein the disk portion is provided on the inner peripheral side of the coil.
As a result, the disk portion is disposed adjacent to the inner periphery of the coil where the viscosity of the magnetorheological fluid is most susceptible to change, so that the rotational resistance to the rotation operation can be changed with high responsiveness.
これにより、円盤部が、磁気粘性流体の粘度が最も変化しやすいコイルの内周側に近接配置されているため、回転操作に対する回転抵抗を高い応答性を持って変化させることができる。 A rotating body unit according to a third aspect of the present invention is the rotating body unit according to the second aspect of the present invention, wherein the disk portion is provided on the inner peripheral side of the coil.
As a result, the disk portion is disposed adjacent to the inner periphery of the coil where the viscosity of the magnetorheological fluid is most susceptible to change, so that the rotational resistance to the rotation operation can be changed with high responsiveness.
第4の発明に係る回転体ユニットは、第1または第2の発明に係る回転体ユニットであって、本体部に設けられており、磁気粘性流体を磁気粘性流体保持部内に封止する第1封止部材を、さらに備えている。
これにより、例えば、Oリング等の第1封止部材を用いて、磁気粘性流体保持部の内部に磁気粘性流体を封止することができる。 The rotating body unit of the fourth invention is a rotating body unit of the first or second invention, further comprising a first sealing member provided in the main body portion and sealing the magnetorheological fluid within the magnetorheological fluid holding portion.
This makes it possible to seal the magnetorheological fluid inside the magnetorheological fluid holding portion using a first sealing member such as an O-ring.
これにより、例えば、Oリング等の第1封止部材を用いて、磁気粘性流体保持部の内部に磁気粘性流体を封止することができる。 The rotating body unit of the fourth invention is a rotating body unit of the first or second invention, further comprising a first sealing member provided in the main body portion and sealing the magnetorheological fluid within the magnetorheological fluid holding portion.
This makes it possible to seal the magnetorheological fluid inside the magnetorheological fluid holding portion using a first sealing member such as an O-ring.
第5の発明に係る回転体ユニットは、第4の発明に係る回転体ユニットであって、第1封止部材は、回転軸の軸方向においてコイルを挟み込むように2つ設けられている。
これにより、例えば、回転軸の軸方向においてコイルを挟み込むように一対のコイルが設けられているため、回転軸の軸方向における磁気粘性流体の漏れ出しを効果的に抑制することができる。 A rotating body unit according to a fifth aspect of the present invention is the rotating body unit according to the fourth aspect of the present invention, wherein two first sealing members are provided so as to sandwich the coil in the axial direction of the rotating shaft.
As a result, for example, since a pair of coils are provided so as to sandwich the coil in the axial direction of the rotating shaft, leakage of the magnetorheological fluid in the axial direction of the rotating shaft can be effectively suppressed.
これにより、例えば、回転軸の軸方向においてコイルを挟み込むように一対のコイルが設けられているため、回転軸の軸方向における磁気粘性流体の漏れ出しを効果的に抑制することができる。 A rotating body unit according to a fifth aspect of the present invention is the rotating body unit according to the fourth aspect of the present invention, wherein two first sealing members are provided so as to sandwich the coil in the axial direction of the rotating shaft.
As a result, for example, since a pair of coils are provided so as to sandwich the coil in the axial direction of the rotating shaft, leakage of the magnetorheological fluid in the axial direction of the rotating shaft can be effectively suppressed.
第6の発明に係る回転体ユニットは、第2または第3の発明に係る回転体ユニットであって、本体部に設けられており、回転軸との摺動部分において磁気粘性流体を磁気粘性流体保持部内に封止する第2封止部材を、さらに備えている。
これにより、磁気粘性流体保持部の内部において回転する回転軸が摺動する部分において、例えば、第1封止部材とは断面形状が異なる第2封止部材を用いて、磁気粘性流体の漏れ出しを抑制することができる。 The rotating body unit of the sixth invention is a rotating body unit of the second or third invention, further comprising a second sealing member provided in the main body portion and sealing the magnetorheological fluid within the magnetorheological fluid holding portion at the sliding portion with the rotating shaft.
This makes it possible to prevent leakage of the magnetorheological fluid in the portion where the rotating shaft rotates inside the magnetorheological fluid holding portion slides, for example, by using a second sealing member having a cross-sectional shape different from that of the first sealing member.
これにより、磁気粘性流体保持部の内部において回転する回転軸が摺動する部分において、例えば、第1封止部材とは断面形状が異なる第2封止部材を用いて、磁気粘性流体の漏れ出しを抑制することができる。 The rotating body unit of the sixth invention is a rotating body unit of the second or third invention, further comprising a second sealing member provided in the main body portion and sealing the magnetorheological fluid within the magnetorheological fluid holding portion at the sliding portion with the rotating shaft.
This makes it possible to prevent leakage of the magnetorheological fluid in the portion where the rotating shaft rotates inside the magnetorheological fluid holding portion slides, for example, by using a second sealing member having a cross-sectional shape different from that of the first sealing member.
第7の発明に係る回転体ユニットは、第6の発明に係る回転体ユニットであって、第2封止部材は、断面視において、回転軸に対して2点で当接している。
これにより、回転軸との摺動部分において、回転軸に対して2点で当接する第2封止部材を用いることで、1点で接触する構成と比較して、より効果的に摺動部分付近における磁気粘性流体の漏れ出しを効果的に抑制することができる。 A rotating body unit according to a seventh aspect of the present invention is the rotating body unit according to the sixth aspect of the present invention, wherein the second sealing member abuts against the rotating shaft at two points in a cross-sectional view.
As a result, by using a second sealing member that abuts against the rotating shaft at two points at the sliding portion with the rotating shaft, leakage of magnetorheological fluid near the sliding portion can be more effectively suppressed compared to a configuration in which contact is made at one point.
これにより、回転軸との摺動部分において、回転軸に対して2点で当接する第2封止部材を用いることで、1点で接触する構成と比較して、より効果的に摺動部分付近における磁気粘性流体の漏れ出しを効果的に抑制することができる。 A rotating body unit according to a seventh aspect of the present invention is the rotating body unit according to the sixth aspect of the present invention, wherein the second sealing member abuts against the rotating shaft at two points in a cross-sectional view.
As a result, by using a second sealing member that abuts against the rotating shaft at two points at the sliding portion with the rotating shaft, leakage of magnetorheological fluid near the sliding portion can be more effectively suppressed compared to a configuration in which contact is made at one point.
第8の発明に係る回転体ユニットは、第7の発明に係る回転体ユニットであって、第2封止部材は、断面視において、略X字状の形状を有している。
これにより、断面視において略X字状の第2封止部材を用いることで、回転軸との摺動部分において2点で接触した状態を形成して、磁気粘性流体が磁気粘性流体保持部の外へ漏れ出すことを回避することができる。 A rotating body unit according to an eighth aspect of the present invention is the rotating body unit according to the seventh aspect of the present invention, wherein the second sealing member has a substantially X-shape in cross section.
As a result, by using a second sealing member that is approximately X-shaped in cross-section, a state of contact at two points is formed at the sliding portion with the rotating shaft, thereby preventing the magnetorheological fluid from leaking outside the magnetorheological fluid holding portion.
これにより、断面視において略X字状の第2封止部材を用いることで、回転軸との摺動部分において2点で接触した状態を形成して、磁気粘性流体が磁気粘性流体保持部の外へ漏れ出すことを回避することができる。 A rotating body unit according to an eighth aspect of the present invention is the rotating body unit according to the seventh aspect of the present invention, wherein the second sealing member has a substantially X-shape in cross section.
As a result, by using a second sealing member that is approximately X-shaped in cross-section, a state of contact at two points is formed at the sliding portion with the rotating shaft, thereby preventing the magnetorheological fluid from leaking outside the magnetorheological fluid holding portion.
第9の発明に係る回転体ユニットは、第2の発明に係る回転体ユニットであって、本体部に設けられており、回転軸を軸支する軸受部を、さらに備えている。
これにより、回転体は、軸受部によって回転軸が軸支された状態で、使用者によって入力される回転操作を受け付けることができる。
第10の発明に係る操作装置は、第1または第2の発明に係る回転体ユニットと、回転体ユニットが回転操作される状態で装填される操作本体部と、を備えている。
これにより、コイルから付与される磁場の大きさに応じた応答性能(磁場効率)を向上させることが可能な操作装置を提供することができる。 A rotating body unit according to a ninth aspect of the present invention is the rotating body unit according to the second aspect of the present invention, further comprising a bearing portion provided in the main body portion and supporting the rotating shaft.
This allows the rotating body to receive a rotation operation input by a user with the rotating shaft supported by the bearing portion.
An operating device according to a tenth aspect of the present invention includes a rotating body unit according to the first or second aspect of the present invention, and an operating main body in which the rotating body unit is loaded so as to be rotated.
This makes it possible to provide an operating device capable of improving response performance (magnetic field efficiency) according to the strength of the magnetic field applied from the coil.
これにより、回転体は、軸受部によって回転軸が軸支された状態で、使用者によって入力される回転操作を受け付けることができる。
第10の発明に係る操作装置は、第1または第2の発明に係る回転体ユニットと、回転体ユニットが回転操作される状態で装填される操作本体部と、を備えている。
これにより、コイルから付与される磁場の大きさに応じた応答性能(磁場効率)を向上させることが可能な操作装置を提供することができる。 A rotating body unit according to a ninth aspect of the present invention is the rotating body unit according to the second aspect of the present invention, further comprising a bearing portion provided in the main body portion and supporting the rotating shaft.
This allows the rotating body to receive a rotation operation input by a user with the rotating shaft supported by the bearing portion.
An operating device according to a tenth aspect of the present invention includes a rotating body unit according to the first or second aspect of the present invention, and an operating main body in which the rotating body unit is loaded so as to be rotated.
This makes it possible to provide an operating device capable of improving response performance (magnetic field efficiency) according to the strength of the magnetic field applied from the coil.
(発明の効果)
本発明に係る回転体ユニットによれば、コイルから付与される磁場の大きさに応じた応答性能(磁場効率)を向上させることができる。 (Effect of the invention)
According to the rotating body unit of the present invention, it is possible to improve the response performance (magnetic field efficiency) according to the magnitude of the magnetic field applied from the coil.
本発明に係る回転体ユニットによれば、コイルから付与される磁場の大きさに応じた応答性能(磁場効率)を向上させることができる。 (Effect of the invention)
According to the rotating body unit of the present invention, it is possible to improve the response performance (magnetic field efficiency) according to the magnitude of the magnetic field applied from the coil.
本発明の一実施形態に係るMR(Magneto-Rheological)流体ユニット(回転体ユニット)12について、図1~図9を用いて説明すれば以下の通りである。
なお、本実施形態では、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 The following will explain a magneto-rheological (MR) fluid unit (rotating body unit) 12 according to one embodiment of the present invention with reference to FIGS. 1 to 9. FIG.
In this embodiment, more detailed explanation than necessary may be omitted. For example, detailed explanation of already well-known matters or duplicate explanation of substantially the same configuration may be omitted. This is to avoid the following explanation from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art.
なお、本実施形態では、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 The following will explain a magneto-rheological (MR) fluid unit (rotating body unit) 12 according to one embodiment of the present invention with reference to FIGS. 1 to 9. FIG.
In this embodiment, more detailed explanation than necessary may be omitted. For example, detailed explanation of already well-known matters or duplicate explanation of substantially the same configuration may be omitted. This is to avoid the following explanation from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art.
また、出願人は、当業者が本発明を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。
本実施形態に係るMR(Magneto-Rheological)流体ユニット12は、操作者によって回転操作および押下操作が入力されるホイールユニット11に含まれている。すなわち、ホイールユニット11は、図1、図2(a)および図2(b)に示すように、アウターホイール11a、インナーホイール11b、回転検出用マグネット11d、MR(Magneto-Rheological)流体ユニット(回転体ユニット)12を有している。 Furthermore, the applicant provides the accompanying drawings and the following description so that those skilled in the art can fully understand the present invention, and they are not intended to limit the subject matter described in the claims.
The MR (Magneto-Rheological)fluid unit 12 according to this embodiment is included in the wheel unit 11 to which the operator inputs a rotation operation and a press operation. That is, the wheel unit 11 has an outer wheel 11a, an inner wheel 11b, a rotation detection magnet 11d, and an MR (Magneto-Rheological) fluid unit (rotating body unit) 12, as shown in Figures 1, 2(a) and 2(b).
本実施形態に係るMR(Magneto-Rheological)流体ユニット12は、操作者によって回転操作および押下操作が入力されるホイールユニット11に含まれている。すなわち、ホイールユニット11は、図1、図2(a)および図2(b)に示すように、アウターホイール11a、インナーホイール11b、回転検出用マグネット11d、MR(Magneto-Rheological)流体ユニット(回転体ユニット)12を有している。 Furthermore, the applicant provides the accompanying drawings and the following description so that those skilled in the art can fully understand the present invention, and they are not intended to limit the subject matter described in the claims.
The MR (Magneto-Rheological)
アウターホイール11aは、図1、図2(a)および図2(b)に示すように、略円筒状の部材であって、インナーホイール11bとともにMR流体ユニット12側のシャフト(回転体、回転軸)12bと一体化されており、操作者の回転操作によって回転する。
インナーホイール11bは、図1、図2(a)および図2(b)に示すように、有底の略円筒状の部材であって、アウターホイール11aの内径側に設けられており、アウターホイール11aが回転操作されるとシャフト12bとともに一体化して回転する。 As shown in Figures 1, 2(a) and 2(b), theouter wheel 11a is a substantially cylindrical member that is integrated with the inner wheel 11b and the shaft (rotating body, rotating shaft) 12b on the MR fluid unit 12 side, and rotates when rotated by the operator.
As shown in Figures 1, 2(a) and 2(b), theinner wheel 11b is a bottomed, approximately cylindrical member that is provided on the inner diameter side of the outer wheel 11a and rotates integrally with the shaft 12b when the outer wheel 11a is rotated.
インナーホイール11bは、図1、図2(a)および図2(b)に示すように、有底の略円筒状の部材であって、アウターホイール11aの内径側に設けられており、アウターホイール11aが回転操作されるとシャフト12bとともに一体化して回転する。 As shown in Figures 1, 2(a) and 2(b), the
As shown in Figures 1, 2(a) and 2(b), the
すなわち、本実施形態のホイールユニット11では、アウターホイール11aおよびインナーホイール11bが、MR流体ユニット12に含まれるシャフト12bとともに、回転側の部材として、使用者による回転操作の対象となる。
回転検出用マグネット11dは、図1に示すように、例えば、接着剤等を用いてインナーホイール11bに固定された回転側の部材である。固定側の部材として隣接配置されたホールIC(図示せず)が回転検出用マグネット11dの回転を検出することで、シャフト12bの回転が検出される。 That is, in thewheel unit 11 of this embodiment, the outer wheel 11a and the inner wheel 11b, together with the shaft 12b included in the MR fluid unit 12, are the rotating members that are the targets of rotational operation by the user.
1, therotation detection magnet 11d is a rotating member fixed to the inner wheel 11b using, for example, an adhesive, etc. A Hall IC (not shown) arranged adjacent to the rotation detection magnet 11d as a fixed member detects the rotation of the rotation detection magnet 11d, thereby detecting the rotation of the shaft 12b.
回転検出用マグネット11dは、図1に示すように、例えば、接着剤等を用いてインナーホイール11bに固定された回転側の部材である。固定側の部材として隣接配置されたホールIC(図示せず)が回転検出用マグネット11dの回転を検出することで、シャフト12bの回転が検出される。 That is, in the
1, the
MR流体ユニット12は、図1、図2(a)および図2(b)に示すように、ホイールユニット11の中心部分を構成する回転体ユニットであって、アウターホイール11aおよびインナーホイール11bの内周側に設けられている。そして、MR流体ユニット12は、図3(a)および図3(b)に示すように、中心部分にシャフト12bが挿入された略円筒状の部材であって、シャフト12bを中心にして、MR流体ユニット12の外周面側に配置されたアウターホイール11aおよびインナーホイール11bが、シャフト12bとともに回転する。
As shown in Figures 1, 2(a) and 2(b), the MR fluid unit 12 is a rotating unit that constitutes the central portion of the wheel unit 11, and is provided on the inner periphery of the outer wheel 11a and the inner wheel 11b. As shown in Figures 3(a) and 3(b), the MR fluid unit 12 is a substantially cylindrical member with a shaft 12b inserted into its central portion, and the outer wheel 11a and the inner wheel 11b, which are arranged on the outer periphery of the MR fluid unit 12, rotate together with the shaft 12b, centered on the shaft 12b.
MR流体ユニット12は、図4に示すように、本体部12a、シャフト(回転軸)12b、MR流体保持部(磁気粘性流体保持部、ブレーキ機構)12c、コイル(ブレーキ機構)12d、MR(Magneto-Rheological)流体(磁気粘性流体、ブレーキ機構)12e(図2(b)参照)、シール部材(第1封止部材)12f、シール部材(第2封止部材)12g、軸受部12h、カバー12i、およびネジ12j,12k,12lを有している。
As shown in FIG. 4, the MR fluid unit 12 has a main body 12a, a shaft (rotating shaft) 12b, an MR fluid holding portion (magnetic rheological fluid holding portion, brake mechanism) 12c, a coil (brake mechanism) 12d, an MR (Magneto-Rheological) fluid (magnetic rheological fluid, brake mechanism) 12e (see FIG. 2(b)), a seal member (first sealing member) 12f, a seal member (second sealing member) 12g, a bearing portion 12h, a cover 12i, and screws 12j, 12k, and 12l.
本体部12aは、使用者による回転操作によって回転する回転側の部材(アウターホイール11aおよびインナーホイール11b、シャフト12b)に対して、固定側の部材として設けられている。本体部12aは、図3(a)および図3(b)に示すように、略円筒状のアウターケース12aaと、略円板状のヨーク12abと、押下検出レバー12acとを有している。
The main body 12a is provided as a fixed member in comparison with the rotating members (outer wheel 11a, inner wheel 11b, shaft 12b) that rotate when rotated by the user. As shown in Figures 3(a) and 3(b), the main body 12a has a substantially cylindrical outer case 12aa, a substantially disk-shaped yoke 12ab, and a push-down detection lever 12ac.
アウターケース12aaは、磁性材料を用いて成形され、有底状の略円筒形状を有しており、シャフト12bの軸方向における一方の側面から突出する押下検出レバー12acと一体成形されている。また、アウターケース12aaは、ヨーク12abとともに、略円柱状の内部空間を形成する。この略円柱状の内部空間には、コイル12d、シール部材12f、12g等が配置される。
The outer case 12aa is molded using a magnetic material, has a generally cylindrical shape with a bottom, and is molded integrally with a push detection lever 12ac that protrudes from one side in the axial direction of the shaft 12b. The outer case 12aa, together with the yoke 12ab, forms a generally cylindrical internal space. The coil 12d, the seal members 12f, 12g, etc. are arranged in this generally cylindrical internal space.
ヨーク12abは、磁性材料を用いて成形され、略円板形状を有している。ヨーク12abは、図4に示すように、アウターケース12aaの開放側の端面を覆うように、6本のネジ12lを用いてアウターケース12aaの端面に取り付けられる。
押下検出レバー12acは、図2(b)および図3(b)に示すように、MR流体ユニット12の一方の側面から突出するように設けられている。押下検出レバー12acは、使用者によってアウターホイール11aが押し下げられることで、図示しないボタンを押し下げて、押下げ操作が検出される。また、押下検出レバー12acは、アウターホイール11a、インナーホイール11bおよびシャフト12bを含む回転体に対して、固定側の部材として設けられている。 The yoke 12ab is made of a magnetic material and has a generally circular disk shape. As shown in FIG. 4, the yoke 12ab is attached to the end face of the outer case 12aa by six screws 12l so as to cover the end face on the open side of the outer case 12aa.
As shown in Figures 2(b) and 3(b), the push-down detection lever 12ac is provided so as to protrude from one side surface of theMR fluid unit 12. When the outer wheel 11a is pushed down by a user, the push-down detection lever 12ac pushes down a button (not shown), and detects the push-down operation. The push-down detection lever 12ac is provided as a fixed member with respect to the rotating body including the outer wheel 11a, the inner wheel 11b, and the shaft 12b.
押下検出レバー12acは、図2(b)および図3(b)に示すように、MR流体ユニット12の一方の側面から突出するように設けられている。押下検出レバー12acは、使用者によってアウターホイール11aが押し下げられることで、図示しないボタンを押し下げて、押下げ操作が検出される。また、押下検出レバー12acは、アウターホイール11a、インナーホイール11bおよびシャフト12bを含む回転体に対して、固定側の部材として設けられている。 The yoke 12ab is made of a magnetic material and has a generally circular disk shape. As shown in FIG. 4, the yoke 12ab is attached to the end face of the outer case 12aa by six screws 12l so as to cover the end face on the open side of the outer case 12aa.
As shown in Figures 2(b) and 3(b), the push-down detection lever 12ac is provided so as to protrude from one side surface of the
シャフト(回転軸)12bは、図3(a)および図3(b)に示すように、MR流体ユニット12の押下検出レバー12acとは反対側の側面から突出するように設けられている。シャフト12bは、使用者によるホイールユニット11の回転操作時の回転中心として、アウターホイール11aおよびインナーホイール11bとともに回転する。
また、シャフト12bは、図2(b)および図4に示すように、軸方向を中心とする径方向外側に向かって突出する略円盤状の円盤部12baを有している。 3(a) and 3(b), the shaft (rotation axis) 12b is provided so as to protrude from the side surface opposite the push-down detection lever 12ac of theMR fluid unit 12. The shaft 12b rotates together with the outer wheel 11a and the inner wheel 11b as the center of rotation when the wheel unit 11 is rotated by the user.
As shown in Figs. 2(b) and 4, theshaft 12b has a substantially disk-shaped disk portion 12ba that protrudes radially outward from the axial direction.
また、シャフト12bは、図2(b)および図4に示すように、軸方向を中心とする径方向外側に向かって突出する略円盤状の円盤部12baを有している。 3(a) and 3(b), the shaft (rotation axis) 12b is provided so as to protrude from the side surface opposite the push-down detection lever 12ac of the
As shown in Figs. 2(b) and 4, the
円盤部12baは、図2(b)に示すように、磁場を付与するコイル12dの内周側であって、MR流体12eが保持されているMR流体保持部12cの内部に配置されている。このため、使用者によってアウターホイール11aが回転操作されると、アウターホイール11aおよびインナーホイール11bと一体化して回転するシャフト12bとともに、円盤部12baが、MR流体12eと接触しながら回転する。
As shown in FIG. 2(b), the disk portion 12ba is disposed on the inner periphery of the coil 12d that applies the magnetic field, inside the MR fluid holding portion 12c in which the MR fluid 12e is held. Therefore, when the user rotates the outer wheel 11a, the disk portion 12ba rotates in contact with the MR fluid 12e together with the shaft 12b, which rotates integrally with the outer wheel 11a and the inner wheel 11b.
このとき、円盤部12baが接触しているMR流体12eは、後述するように、外部から付与される磁場の影響を受けて粘度が変化するため、円盤部12baに付与される回転抵抗の大きさを変化させることができる。
また、円盤部12baがシャフト12bと一体的に設けられていることで、円盤部12baが設けられていない構成と比較して、MR流体12eと回転体側の部材との接触面積が増大するため、効率的に回転側の部材へ制動力を付与することができる。 At this time, the viscosity of the MR fluid 12e with which the disk portion 12ba is in contact changes due to the influence of an externally applied magnetic field, as described below, and therefore the magnitude of the rotational resistance applied to the disk portion 12ba can be changed.
Furthermore, since the disk portion 12ba is integrally formed with theshaft 12b, the contact area between the MR fluid 12e and the member on the rotating body side is increased compared to a configuration in which the disk portion 12ba is not provided, so that a braking force can be efficiently applied to the member on the rotating side.
また、円盤部12baがシャフト12bと一体的に設けられていることで、円盤部12baが設けられていない構成と比較して、MR流体12eと回転体側の部材との接触面積が増大するため、効率的に回転側の部材へ制動力を付与することができる。 At this time, the viscosity of the MR fluid 12e with which the disk portion 12ba is in contact changes due to the influence of an externally applied magnetic field, as described below, and therefore the magnitude of the rotational resistance applied to the disk portion 12ba can be changed.
Furthermore, since the disk portion 12ba is integrally formed with the
MR流体保持部(磁気粘性流体保持部、ブレーキ機構)12cは、図2(b)に示すように、磁場を付与するコイル12dの内周側であって、回転側の部材(アウターホイール11aおよびインナーホイール11b、シャフト12b)と固定側の部材(本体部12a、コイル12d等)とが摺動する空間に設けられている。そして、MR流体保持部12cには、MR流体12eが封入されている。
As shown in FIG. 2(b), the MR fluid holding unit (magnetic rheological fluid holding unit, brake mechanism) 12c is located on the inner periphery of the coil 12d that applies the magnetic field, in the space where the rotating members (outer wheel 11a and inner wheel 11b, shaft 12b) and the fixed members (main body 12a, coil 12d, etc.) slide against each other.
The MR fluid holding unit 12c is filled with MR fluid 12e.
これにより、MR流体12eは、外部(コイル12d)から付与された磁場によって粘度が変化することで、MR流体保持部12cとホイールユニット11の回転側の部材(シャフト12b(円盤部12ba)等)との接触部分(摺動部)において、回転側の部材に対する回転抵抗を変化させることができる。
コイル(ブレーキ機構)12dは、MR流体12eが保持されたMR流体保持部(ブレーキ機構)12c(図2(b)参照)の径方向における外側近傍に配置されており、電流が流れることにより、MR流体12eに対して磁場を付与する。 As a result, the viscosity of the MR fluid 12e changes due to a magnetic field applied from the outside (coil 12d), and this can change the rotational resistance against the rotating member at the contact portion (sliding portion) between the MR fluid holding portion 12c and the rotating member of the wheel unit 11 (shaft 12b (disc portion 12ba), etc.).
The coil (brake mechanism) 12d is disposed near the radial outside of the MR fluid holding portion (brake mechanism) 12c (see FIG. 2(b)) in which the MR fluid 12e is held, and when a current flows through it, a magnetic field is applied to the MR fluid 12e.
コイル(ブレーキ機構)12dは、MR流体12eが保持されたMR流体保持部(ブレーキ機構)12c(図2(b)参照)の径方向における外側近傍に配置されており、電流が流れることにより、MR流体12eに対して磁場を付与する。 As a result, the viscosity of the MR fluid 12e changes due to a magnetic field applied from the outside (
The coil (brake mechanism) 12d is disposed near the radial outside of the MR fluid holding portion (brake mechanism) 12c (see FIG. 2(b)) in which the MR fluid 12e is held, and when a current flows through it, a magnetic field is applied to the MR fluid 12e.
MR(Magneto-Rheological)流体(磁気粘性流体、ブレーキ機構)12eは、主に、ホイールユニット11の回転体(シャフト12b等(図2(b)参照))の摺動部に設けられたMR流体保持部12c(図2(b)参照)の空間内に充填されている。そして、MR流体12eは、コイル12dから付与される磁場の影響を受けて、その形態を変化させる。これにより、アウターホイール11aへの回転操作に対する回転抵抗を変化させることができる。
The MR (Magneto-Rheological) fluid (magnetic viscous fluid, brake mechanism) 12e is mainly filled in the space of the MR fluid holding portion 12c (see FIG. 2(b)) provided in the sliding portion of the rotating body (shaft 12b, etc. (see FIG. 2(b))) of the wheel unit 11. The MR fluid 12e changes its form under the influence of the magnetic field applied from the coil 12d. This makes it possible to change the rotational resistance to the rotation operation of the outer wheel 11a.
ここで、MR流体12eに対して付与された磁場の強さとMR流体12eの粘度の変化について説明する。
図5は、磁場を発生させた際に、磁場の大きさと、磁場の大きさに応じて変化するMR流体12eの粘度との関係を示すグラフを示している。
MR流体12eは、水、油等の液体に、直径1~10μmの強磁性体の微粒子を分散させた機能性流体であって、磁場の影響を受けていない状態では、微粒子が液体中に均一に分散している。そして、MR流体12eは、磁場の影響を受けると強磁性体の微粒子が磁化して引きつけ合うことでクラスターを形成し、図5に示すように、磁場が強くなると粘度が高くなる。 Here, the change in the viscosity of the MR fluid 12e depending on the strength of the magnetic field applied to the MR fluid 12e will be described.
FIG. 5 shows a graph illustrating the relationship between the magnitude of a magnetic field generated and the viscosity of the MR fluid 12e that changes according to the magnitude of the magnetic field.
The MR fluid 12e is a functional fluid in which ferromagnetic particles with diameters of 1 to 10 μm are dispersed in a liquid such as water or oil, and when not subjected to a magnetic field, the particles are uniformly dispersed in the liquid. When the MR fluid 12e is subjected to a magnetic field, the ferromagnetic particles are magnetized and attract each other to form clusters, and as shown in Figure 5, the viscosity increases as the magnetic field becomes stronger.
図5は、磁場を発生させた際に、磁場の大きさと、磁場の大きさに応じて変化するMR流体12eの粘度との関係を示すグラフを示している。
MR流体12eは、水、油等の液体に、直径1~10μmの強磁性体の微粒子を分散させた機能性流体であって、磁場の影響を受けていない状態では、微粒子が液体中に均一に分散している。そして、MR流体12eは、磁場の影響を受けると強磁性体の微粒子が磁化して引きつけ合うことでクラスターを形成し、図5に示すように、磁場が強くなると粘度が高くなる。 Here, the change in the viscosity of the MR fluid 12e depending on the strength of the magnetic field applied to the MR fluid 12e will be described.
FIG. 5 shows a graph illustrating the relationship between the magnitude of a magnetic field generated and the viscosity of the MR fluid 12e that changes according to the magnitude of the magnetic field.
The MR fluid 12e is a functional fluid in which ferromagnetic particles with diameters of 1 to 10 μm are dispersed in a liquid such as water or oil, and when not subjected to a magnetic field, the particles are uniformly dispersed in the liquid. When the MR fluid 12e is subjected to a magnetic field, the ferromagnetic particles are magnetized and attract each other to form clusters, and as shown in Figure 5, the viscosity increases as the magnetic field becomes stronger.
なお、MR流体12eにおけるクラスターの形成の程度は、コイル12dに流れる電流を制御することにより調整することができる。
これにより、本実施形態のマウス10では、ホイールユニット11のコイル12dに流れる電流を制御してコイル12dから発生する磁場の大きさを制御することで、MR流体12eの粘度を制御することができる。よって、MR流体12eの粘度変化に応じて、ホイールユニット11の回転抵抗の大きさを制御することができる。 The degree of cluster formation in the MR fluid 12e can be adjusted by controlling the current flowing through thecoil 12d.
As a result, in themouse 10 of this embodiment, the viscosity of the MR fluid 12e can be controlled by controlling the current flowing through the coil 12d of the wheel unit 11 to control the magnitude of the magnetic field generated by the coil 12d. Thus, the magnitude of the rotational resistance of the wheel unit 11 can be controlled in accordance with the change in viscosity of the MR fluid 12e.
これにより、本実施形態のマウス10では、ホイールユニット11のコイル12dに流れる電流を制御してコイル12dから発生する磁場の大きさを制御することで、MR流体12eの粘度を制御することができる。よって、MR流体12eの粘度変化に応じて、ホイールユニット11の回転抵抗の大きさを制御することができる。 The degree of cluster formation in the MR fluid 12e can be adjusted by controlling the current flowing through the
As a result, in the
シール部材(第1封止部材)12fは、例えば、略円形の断面を有するゴム製の円環状の部材(Oリング)であって、図2(b)に示すように、MR流体保持部12cに封入されたMR流体12eが外部へ漏れ出さないように封止するために、2つのシール部材12fが一対で設けられている。
また、一対のシール部材12fは、図2(b)に示すように、シャフト12bの軸方向においてコイル12dを挟み込むように配置されている。 The sealing member (first sealing member) 12f is, for example, a rubber annular member (O-ring) having a substantially circular cross-section, and as shown in FIG. 2(b), two sealingmembers 12f are provided in a pair to seal the MR fluid 12e sealed in the MR fluid holding portion 12c so as to prevent it from leaking out to the outside.
As shown in FIG. 2B, the pair ofseal members 12f are disposed to sandwich the coil 12d in the axial direction of the shaft 12b.
また、一対のシール部材12fは、図2(b)に示すように、シャフト12bの軸方向においてコイル12dを挟み込むように配置されている。 The sealing member (first sealing member) 12f is, for example, a rubber annular member (O-ring) having a substantially circular cross-section, and as shown in FIG. 2(b), two sealing
As shown in FIG. 2B, the pair of
シール部材(第2封止部材)12gは、本体部12aに設けられた略円筒状の部材であって、シャフト12bが挿入された状態で使用され、シャフト12bとの摺動部分においてMR流体12eをMR流体保持部12c内に封止する。また、シール部材12gは、断面視において、シャフト12bに対して2点で当接している。より詳細には、シール部材12gは、断面視において、略X字状の形状を有している。
The seal member (second sealing member) 12g is a substantially cylindrical member provided on the main body portion 12a, and is used with the shaft 12b inserted, sealing the MR fluid 12e within the MR fluid holding portion 12c at the sliding portion with the shaft 12b. In addition, the seal member 12g abuts against the shaft 12b at two points in a cross-sectional view. More specifically, the seal member 12g has a substantially X-shaped cross-sectional view.
これにより、断面が円形のOリングと比較して、摺動部分に生じる圧力に耐えることができ、ねじれにも強いシール部材12gを用いて、シャフト12bの外周面に対して2点で接触した状態でMR流体12eを安定的に封止することができる。
軸受部12hは、図2(b)および図4に示すように、略円筒状の部材であって、シール部材12gの近傍において、回転側の部材であるシャフト12bを回転可能な状態で軸支する。 As a result, compared to an O-ring with a circular cross-section, the sealingmember 12g can withstand the pressure generated in the sliding parts and is also resistant to twisting, and the MR fluid 12e can be stably sealed by contacting the outer peripheral surface of the shaft 12b at two points.
As shown in FIG. 2B and FIG. 4, the bearingportion 12h is a substantially cylindrical member, and rotatably supports the shaft 12b, which is a rotating member, in the vicinity of the seal member 12g.
軸受部12hは、図2(b)および図4に示すように、略円筒状の部材であって、シール部材12gの近傍において、回転側の部材であるシャフト12bを回転可能な状態で軸支する。 As a result, compared to an O-ring with a circular cross-section, the sealing
As shown in FIG. 2B and FIG. 4, the bearing
カバー12iは、図4に示すように、略円板状の部材であって、円盤部12baのシャフト12bが設けられている側の面に、所定の隙間(例えば、0.2mm)を介して対向配置される。そして、カバー12iは、図2(b)に示すように、円盤部12baのシャフト12bが設けられている側の面との間に、MR流体保持部12cの一部となる隙間を形成する。
As shown in FIG. 4, the cover 12i is a substantially disk-shaped member, and is disposed opposite the surface of the disk portion 12ba on the side where the shaft 12b is provided, with a predetermined gap (e.g., 0.2 mm) between it and the surface of the disk portion 12ba on the side where the shaft 12b is provided, and the cover 12i forms a gap that becomes part of the MR fluid holding portion 12c, as shown in FIG. 2(b).
ネジ12j,12k,12lは、MR流体ユニット12に含まれる各構成を結合させる締結部材である。
ネジ12jは、本体部12aのアウターケース12aaに設けられた2つの穴(MR流体12eの注入穴および空気抜き穴)を塞ぐように、アウターケース12aaに固定される。 The screws 12j, 12k, and 12l are fastening members that connect the various components included in the MR fluid unit 12 together.
Thescrew 12j is fixed to the outer case 12aa so as to close two holes (an injection hole for the MR fluid 12e and an air vent hole) provided in the outer case 12aa of the main body 12a.
ネジ12jは、本体部12aのアウターケース12aaに設けられた2つの穴(MR流体12eの注入穴および空気抜き穴)を塞ぐように、アウターケース12aaに固定される。 The
The
ネジ12kは、カバー12iをヨーク12abに対して固定する。これにより、カバー12iは、ヨーク12abとともに固定側の部材として配置される。
ネジ12lは、本体部12aの端面に設けられたネジ穴に螺合することで、ヨーク12abを本体部12aの端面に対して固定する。 Thescrews 12k fix the cover 12i to the yoke 12ab, so that the cover 12i is disposed as a fixed member together with the yoke 12ab.
The screw 12l is screwed into a screw hole provided in the end surface of themain body portion 12a, thereby fixing the yoke 12ab to the end surface of the main body portion 12a.
ネジ12lは、本体部12aの端面に設けられたネジ穴に螺合することで、ヨーク12abを本体部12aの端面に対して固定する。 The
The screw 12l is screwed into a screw hole provided in the end surface of the
<MR流体ユニット12の適用例>
ここで、本実施形態のMR流体ユニット12が適用される操作装置について、いくつかの例を挙げて説明すれば以下の通りである。
図6は、本実施形態のMR流体ユニット12が、ホイールユニット11に含まれた状態で、マウス(操作装置)10に対して適用された例を示す。
マウス10は、図6に示すように、マウス本体10aと、スイッチ10bと、ホイールユニット11とを有している。
マウス本体10aは、マウス10の筐体部分であって、図6に示すように、その上面から、ホイールユニット11の一部が突出した状態で、ホイールユニット11を回転可能な状態で支持している。 <Application examples of theMR fluid unit 12>
Here, several examples of operating devices to which theMR fluid unit 12 of this embodiment is applied will be described below.
FIG. 6 shows an example in which theMR fluid unit 12 of this embodiment is included in a wheel unit 11 and is applied to a mouse (operation device) 10.
As shown in FIG. 6, themouse 10 includes a mouse body 10 a , a switch 10 b , and a wheel unit 11 .
Themouse body 10a is the housing portion of the mouse 10, and as shown in FIG. 6, supports the wheel unit 11 in a rotatable manner with a part of the wheel unit 11 protruding from the upper surface thereof.
ここで、本実施形態のMR流体ユニット12が適用される操作装置について、いくつかの例を挙げて説明すれば以下の通りである。
図6は、本実施形態のMR流体ユニット12が、ホイールユニット11に含まれた状態で、マウス(操作装置)10に対して適用された例を示す。
マウス10は、図6に示すように、マウス本体10aと、スイッチ10bと、ホイールユニット11とを有している。
マウス本体10aは、マウス10の筐体部分であって、図6に示すように、その上面から、ホイールユニット11の一部が突出した状態で、ホイールユニット11を回転可能な状態で支持している。 <Application examples of the
Here, several examples of operating devices to which the
FIG. 6 shows an example in which the
As shown in FIG. 6, the
The
スイッチ10bは、図6に示すように、マウス本体10aの上面におけるホイールユニット11の近傍に配置されている。スイッチ10bは、例えば、通常モードとゲームモードとを切り替える際、あるいは、マウス10の電源のON/OFFを切り替える際に、操作される。
図6に示すように、本実施形態のMR流体ユニット12を含むホイールユニット11をマウス10に対して適用したことで、例えば、e-Sports等のコントローラとしてマウス10を使用する場合に、使用者による操作に対する応答性能を向上させることができる。 6, theswitch 10b is disposed on the top surface of the mouse body 10a near the wheel unit 11. The switch 10b is operated, for example, when switching between a normal mode and a game mode, or when switching the power of the mouse 10 on and off.
As shown in Figure 6, by applying thewheel unit 11 including the MR fluid unit 12 of this embodiment to the mouse 10, it is possible to improve the response performance to user operations, for example, when the mouse 10 is used as a controller for e-Sports or the like.
図6に示すように、本実施形態のMR流体ユニット12を含むホイールユニット11をマウス10に対して適用したことで、例えば、e-Sports等のコントローラとしてマウス10を使用する場合に、使用者による操作に対する応答性能を向上させることができる。 6, the
As shown in Figure 6, by applying the
図7は、本実施形態のMR流体ユニット12が、ダイヤル式操作装置(操作装置)100に対して適用された例を示す。
ダイヤル式操作装置(操作装置)100は、図7に示すように、本体部101と、回転体ユニット102とを備えている。
本体部101は、略円柱状の土台部分であって、回転体ユニット102が回転可能な状態で取り付けられている。 FIG. 7 shows an example in which theMR fluid unit 12 of this embodiment is applied to a dial-type operating device (operating device) 100 .
As shown in FIG. 7, the dial type operation device (operation device) 100 includes amain body 101 and a rotating body unit 102.
Themain body 101 is a substantially cylindrical base portion, and a rotating body unit 102 is rotatably attached to the main body 101 .
ダイヤル式操作装置(操作装置)100は、図7に示すように、本体部101と、回転体ユニット102とを備えている。
本体部101は、略円柱状の土台部分であって、回転体ユニット102が回転可能な状態で取り付けられている。 FIG. 7 shows an example in which the
As shown in FIG. 7, the dial type operation device (operation device) 100 includes a
The
回転体ユニット102は、本体部101の上面において略水平方向において回転可能な状態で取り付けられており、内部に、上述したMR流体ユニットを備えている。回転体ユニット102は、主に、押す・回す・倒す等の操作入力を受け付ける。
これにより、ダイヤル式で各種調整を行う操作装置として、応答性能を向上させることができる。 Therotating body unit 102 is attached to the top surface of the main body 101 in a state in which it can rotate in a substantially horizontal direction, and includes the above-mentioned MR fluid unit therein. The rotating body unit 102 mainly receives operational inputs such as pushing, turning, and tilting.
This makes it possible to improve the response performance of the dial-type operating device for performing various adjustments.
これにより、ダイヤル式で各種調整を行う操作装置として、応答性能を向上させることができる。 The
This makes it possible to improve the response performance of the dial-type operating device for performing various adjustments.
図8は、本実施形態のMR流体ユニット12が、キーパッド型操作装置(操作装置)110に対して適用された例を示す。
キーパッド型操作装置(操作装置)110は、図8に示すように、本体部111と、回転体ユニット112と、キーパッド113と、パッド114と、を備えている。
本体部111は、土台部分であって、回転体ユニット112が回転可能な状態で取り付けられている。 FIG. 8 shows an example in which theMR fluid unit 12 of this embodiment is applied to a keypad type operating device (operating device) 110.
As shown in FIG. 8, the keypad type operation device (operation device) 110 includes amain body 111, a rotating unit 112, a keypad 113, and a pad 114.
Themain body 111 is a base portion, and a rotating body unit 112 is attached in a rotatable state.
キーパッド型操作装置(操作装置)110は、図8に示すように、本体部111と、回転体ユニット112と、キーパッド113と、パッド114と、を備えている。
本体部111は、土台部分であって、回転体ユニット112が回転可能な状態で取り付けられている。 FIG. 8 shows an example in which the
As shown in FIG. 8, the keypad type operation device (operation device) 110 includes a
The
回転体ユニット112は、本体部111の上面において横向きに回転可能な状態で取り付けられており、内部に、上述したMR流体ユニットを備えている。
キーパッド113は、複数の入力キーを含む操作装置であって、回転体ユニット112等と一体化されている。
パッド114は、例えば、使用者の左手を置いた状態で、回転体ユニット112とキーパッド113とを操作することができるように、回転体ユニット112とキーパッド113の手前側に設けられている。 Therotating body unit 112 is attached to the upper surface of the main body 111 in a rotatable state in a horizontal direction, and includes the above-mentioned MR fluid unit therein.
Thekeypad 113 is an operation device including a plurality of input keys, and is integrated with the rotating unit 112 and the like.
Thepad 114 is provided in front of the rotating unit 112 and the keypad 113 so that the user can operate the rotating unit 112 and the keypad 113 with the user's left hand placed thereon, for example.
キーパッド113は、複数の入力キーを含む操作装置であって、回転体ユニット112等と一体化されている。
パッド114は、例えば、使用者の左手を置いた状態で、回転体ユニット112とキーパッド113とを操作することができるように、回転体ユニット112とキーパッド113の手前側に設けられている。 The
The
The
これにより、回転操作によって各種調整を行うとともにキー入力も可能な操作装置において、回転操作に対する応答性能を向上させることができる。
図9は、本実施形態のMR流体ユニット12が、コントローラ(操作装置)120に対して適用された例を示す。
コントローラ(操作装置)120は、図9に示すように、本体部121と、回転体ユニット122と、表示部123と、を備えている。 This makes it possible to improve the response performance to rotation operations in an operating device that allows various adjustments to be made by rotation operations and also allows key input.
FIG. 9 shows an example in which theMR fluid unit 12 of this embodiment is applied to a controller (operation device) 120.
As shown in FIG. 9 , the controller (operation device) 120 includes amain body 121 , a rotating unit 122 , and a display unit 123 .
図9は、本実施形態のMR流体ユニット12が、コントローラ(操作装置)120に対して適用された例を示す。
コントローラ(操作装置)120は、図9に示すように、本体部121と、回転体ユニット122と、表示部123と、を備えている。 This makes it possible to improve the response performance to rotation operations in an operating device that allows various adjustments to be made by rotation operations and also allows key input.
FIG. 9 shows an example in which the
As shown in FIG. 9 , the controller (operation device) 120 includes a
本体部121は、土台部分であって、上面に、各種入力ボタン、各種表示を行う表示部123が設けられており、回転体ユニット122が回転可能な状態で取り付けられている。
回転体ユニット122は、本体部121の上面における略中央付近に設けられており、前後・左右等の水平操作、前後・左右等への傾倒操作、上下の押上げ・押下げ操作、回転操作入力を受け付ける。
これにより、回転操作によって各種調整を行うとともに、各種入力ボタンへの入力も可能な操作装置において、回転操作に対する応答性能を向上させることができる。 Themain body 121 is a base portion, and is provided on the upper surface with various input buttons and a display unit 123 for performing various displays, and a rotating body unit 122 is attached in a rotatable state.
Therotating body unit 122 is provided near the center of the top surface of the main body 121, and accepts horizontal operation such as forward/backward and left/right, tilting operation such as forward/backward and left/right, pushing up and down, and rotation operation input.
This makes it possible to improve the response performance to rotation operations in an operating device in which various adjustments can be made by rotation operations and also input to various input buttons.
回転体ユニット122は、本体部121の上面における略中央付近に設けられており、前後・左右等の水平操作、前後・左右等への傾倒操作、上下の押上げ・押下げ操作、回転操作入力を受け付ける。
これにより、回転操作によって各種調整を行うとともに、各種入力ボタンへの入力も可能な操作装置において、回転操作に対する応答性能を向上させることができる。 The
The
This makes it possible to improve the response performance to rotation operations in an operating device in which various adjustments can be made by rotation operations and also input to various input buttons.
<主な特徴>
本実施形態のMR流体ユニット12は、図2(b)等に示すように、本体部12a、シャフト12b、ブレーキ機構を備えている。シャフト12bは、本体部12aに対して回転可能な状態で取り付けられる。ブレーキ機構は、本体部12aの内部に設けられ環状に巻回されており電流が流れると磁場を発生させるコイル12dと、コイル12dから付与される磁場によって粘性が変化するMR流体12eと、本体部12aの内部に設けられコイル12dの内周側に配置されMR流体12eを保持するMR流体保持部12cとを有している。そして、ブレーキ機構は、MR流体12eの粘性の変化に応じて、シャフト12b(円盤部12ba)への回転操作に対する回転抵抗の大きさを変化させる。 <Main features>
As shown in Fig. 2B etc., theMR fluid unit 12 of this embodiment includes a main body 12a, a shaft 12b, and a brake mechanism. The shaft 12b is rotatably attached to the main body 12a. The brake mechanism includes a coil 12d that is provided inside the main body 12a and wound in an annular shape to generate a magnetic field when a current flows therethrough, an MR fluid 12e whose viscosity changes depending on the magnetic field applied by the coil 12d, and an MR fluid holding portion 12c that is provided inside the main body 12a and is disposed on the inner periphery of the coil 12d to hold the MR fluid 12e. The brake mechanism changes the magnitude of the rotational resistance against the rotational operation of the shaft 12b (disk portion 12ba) in response to the change in viscosity of the MR fluid 12e.
本実施形態のMR流体ユニット12は、図2(b)等に示すように、本体部12a、シャフト12b、ブレーキ機構を備えている。シャフト12bは、本体部12aに対して回転可能な状態で取り付けられる。ブレーキ機構は、本体部12aの内部に設けられ環状に巻回されており電流が流れると磁場を発生させるコイル12dと、コイル12dから付与される磁場によって粘性が変化するMR流体12eと、本体部12aの内部に設けられコイル12dの内周側に配置されMR流体12eを保持するMR流体保持部12cとを有している。そして、ブレーキ機構は、MR流体12eの粘性の変化に応じて、シャフト12b(円盤部12ba)への回転操作に対する回転抵抗の大きさを変化させる。 <Main features>
As shown in Fig. 2B etc., the
これにより、MR流体12eを保持するMR流体保持部12cが、コイル12dから付与される磁場の影響を強く受けやすい、環状に巻回されたコイル12dの内周側に近接配置されているため、磁場の大きさの変化に対してMR流体12eの粘度を自在に変化させることができる。
この結果、コイル12dから付与される磁場の大きさに応じた応答性能(磁場効率)を向上させることができる。 As a result, the MRfluid holding portion 12c that holds the MR fluid 12e is positioned close to the inner circumference of the annularly wound coil 12d, which is highly susceptible to the influence of the magnetic field applied from the coil 12d, and therefore the viscosity of the MR fluid 12e can be freely changed in response to changes in the magnitude of the magnetic field.
As a result, it is possible to improve the response performance (magnetic field efficiency) according to the magnitude of the magnetic field applied from thecoil 12d.
この結果、コイル12dから付与される磁場の大きさに応じた応答性能(磁場効率)を向上させることができる。 As a result, the MR
As a result, it is possible to improve the response performance (magnetic field efficiency) according to the magnitude of the magnetic field applied from the
[他の実施形態]
以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
(A)
上記実施形態では、MR流体保持部12cに封入されたMR流体12eとの接触面積を増大させるために、回転体側の部材として、シャフト12bと一体化して設けられた円盤部12baが設けられている例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
例えば、磁気粘性流体に接触する回転体側の部材としては、円盤部以外の構成であってもよいし、シャフトの表面を加工する等して回転抵抗を伝達しやすい構成を採用してもよい。 [Other embodiments]
Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and various modifications are possible without departing from the gist of the invention.
(A)
In the above embodiment, an example was described in which the disk portion 12ba is provided integrally with theshaft 12b as a member on the rotating body side in order to increase the contact area with the MR fluid 12e sealed in the MR fluid holding portion 12c, but the present invention is not limited to this.
For example, the member on the rotating body side that comes into contact with the magnetorheological fluid may be a configuration other than a disk portion, or a configuration that makes it easy to transmit rotational resistance may be adopted by processing the surface of the shaft, etc.
以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
(A)
上記実施形態では、MR流体保持部12cに封入されたMR流体12eとの接触面積を増大させるために、回転体側の部材として、シャフト12bと一体化して設けられた円盤部12baが設けられている例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
例えば、磁気粘性流体に接触する回転体側の部材としては、円盤部以外の構成であってもよいし、シャフトの表面を加工する等して回転抵抗を伝達しやすい構成を採用してもよい。 [Other embodiments]
Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and various modifications are possible without departing from the gist of the invention.
(A)
In the above embodiment, an example was described in which the disk portion 12ba is provided integrally with the
For example, the member on the rotating body side that comes into contact with the magnetorheological fluid may be a configuration other than a disk portion, or a configuration that makes it easy to transmit rotational resistance may be adopted by processing the surface of the shaft, etc.
(B)
上記実施形態では、断面形状(円形またはX字)が異なる2種類のシール部材12g,12fを用いて、MR流体保持部12c内に保持されたMR流体12eの外部への漏れ出しを抑制する例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
例えば、磁気粘性流体の漏れ出しを抑制するシール部材として、断面形状が同じ種類のシール部材を用いてもよい。あるいは、断面が円形、X字以外の形状を有するシール部材が用いられていてもよい。 (B)
In the above embodiment, an example has been described in which the two types of seal members 12g and 12f having different cross-sectional shapes (circular or X-shaped) are used to suppress leakage of the MR fluid 12e held in the MR fluid holding portion 12c to the outside, but the present invention is not limited to this.
For example, the seal members for preventing leakage of the magnetorheological fluid may be of the same type and have the same cross-sectional shape, or may have a cross-sectional shape other than a circular or X-shaped cross-section.
上記実施形態では、断面形状(円形またはX字)が異なる2種類のシール部材12g,12fを用いて、MR流体保持部12c内に保持されたMR流体12eの外部への漏れ出しを抑制する例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
例えば、磁気粘性流体の漏れ出しを抑制するシール部材として、断面形状が同じ種類のシール部材を用いてもよい。あるいは、断面が円形、X字以外の形状を有するシール部材が用いられていてもよい。 (B)
In the above embodiment, an example has been described in which the two types of
For example, the seal members for preventing leakage of the magnetorheological fluid may be of the same type and have the same cross-sectional shape, or may have a cross-sectional shape other than a circular or X-shaped cross-section.
(C)
上記実施形態では、本発明のMR流体ユニット(回転体ユニット)12が、マウス10、ダイヤル式操作装置100、キーパッド型操作装置110、コントローラ120等に適用された例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
例えば、マウス、ダイヤル式操作装置、キーパッド型操作装置、コントローラ以外の操作装置に対して、本発明の回転体ユニットが適用されていてもよい。 (C)
In the above embodiment, the MR fluid unit (rotating body unit) 12 of the present invention is applied to amouse 10, a dial-type operation device 100, a keypad-type operation device 110, a controller 120, etc. However, the present invention is not limited to this.
For example, the rotating body unit of the present invention may be applied to operation devices other than a mouse, a dial type operation device, a keypad type operation device, and a controller.
上記実施形態では、本発明のMR流体ユニット(回転体ユニット)12が、マウス10、ダイヤル式操作装置100、キーパッド型操作装置110、コントローラ120等に適用された例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
例えば、マウス、ダイヤル式操作装置、キーパッド型操作装置、コントローラ以外の操作装置に対して、本発明の回転体ユニットが適用されていてもよい。 (C)
In the above embodiment, the MR fluid unit (rotating body unit) 12 of the present invention is applied to a
For example, the rotating body unit of the present invention may be applied to operation devices other than a mouse, a dial type operation device, a keypad type operation device, and a controller.
具体的には、イラストレータ、漫画家等のクリエータが使用する色、音等の調整用コントローラに対して、本発明の回転体ユニットが適用されてもよい。
この場合でも、応答性能が高いコントローラを用いることで、クリエータ等の使用者による繊細な調整に対応することができる。 Specifically, the rotating body unit of the present invention may be applied to a controller for adjusting color, sound, etc., used by creators such as illustrators and cartoonists.
Even in this case, by using a controller with high response performance, it is possible to accommodate delicate adjustments by users such as creators.
この場合でも、応答性能が高いコントローラを用いることで、クリエータ等の使用者による繊細な調整に対応することができる。 Specifically, the rotating body unit of the present invention may be applied to a controller for adjusting color, sound, etc., used by creators such as illustrators and cartoonists.
Even in this case, by using a controller with high response performance, it is possible to accommodate delicate adjustments by users such as creators.
本発明の回転体ユニットは、コイルから付与される磁場の大きさに応じた応答性能(磁場効率)を向上させることができるという効果を奏することから、各種操作装置に対して広く適用可能である。
The rotating body unit of the present invention has the effect of improving response performance (magnetic field efficiency) according to the strength of the magnetic field applied by the coil, and is therefore widely applicable to various operating devices.
10 マウス
10a マウス本体(操作本体部)
10b スイッチ
11 ホイールユニット
11a アウターホイール
11b インナーホイール
11d 回転検出用マグネット
12 MR流体ユニット(回転体ユニット)
12a 本体部
12aa アウターケース
12ab ヨーク
12ac 押下検出レバー
12b シャフト(回転体、回転軸)
12ba 円盤部
12c MR流体保持部(磁気粘性流体保持部、ブレーキ機構)
12d コイル(ブレーキ機構)
12e MR流体(磁気粘性流体、ブレーキ機構)
12f シール部材(第1封止部材)
12g シール部材(第2封止部材)
12h 軸受部
12i カバー
12j,12k,12l ネジ
100 ダイヤル式操作装置(操作装置)
101 本体部
102 回転体ユニット
110 キーパッド型操作装置(操作装置)
111 本体部
112 回転体ユニット
113 キーパッド
114 パッド
120 コントローラ(操作装置)
121 本体部
122 回転体ユニット
123 表示部 10Mouse 10a Mouse body (operation body part)
10b switch 11 wheel unit 11a outer wheel 11b inner wheel 11d rotation detection magnet 12 MR fluid unit (rotating body unit)
12a Main body 12aa Outer case 12ab Yoke 12acPress detection lever 12b Shaft (rotating body, rotating shaft)
12ba:Disk portion 12c: MR fluid holding portion (magnetic rheological fluid holding portion, brake mechanism)
12d Coil (brake mechanism)
12e MR fluid (magnetic rheological fluid, brake mechanism)
12f sealing member (first sealing member)
12g: sealing member (second sealing member)
12h Bearing portion 12i Cover 12j, 12k, 12l Screw 100 Dial type operating device (operating device)
101Main body 102 Rotating unit 110 Keypad type operation device (operation device)
111Main body 112 Rotating unit 113 Keypad 114 Pad 120 Controller (operation device)
121Main body section 122 Rotating body unit 123 Display section
10a マウス本体(操作本体部)
10b スイッチ
11 ホイールユニット
11a アウターホイール
11b インナーホイール
11d 回転検出用マグネット
12 MR流体ユニット(回転体ユニット)
12a 本体部
12aa アウターケース
12ab ヨーク
12ac 押下検出レバー
12b シャフト(回転体、回転軸)
12ba 円盤部
12c MR流体保持部(磁気粘性流体保持部、ブレーキ機構)
12d コイル(ブレーキ機構)
12e MR流体(磁気粘性流体、ブレーキ機構)
12f シール部材(第1封止部材)
12g シール部材(第2封止部材)
12h 軸受部
12i カバー
12j,12k,12l ネジ
100 ダイヤル式操作装置(操作装置)
101 本体部
102 回転体ユニット
110 キーパッド型操作装置(操作装置)
111 本体部
112 回転体ユニット
113 キーパッド
114 パッド
120 コントローラ(操作装置)
121 本体部
122 回転体ユニット
123 表示部 10
12a Main body 12aa Outer case 12ab Yoke 12ac
12ba:
12d Coil (brake mechanism)
12e MR fluid (magnetic rheological fluid, brake mechanism)
12f sealing member (first sealing member)
12g: sealing member (second sealing member)
101
111
121
Claims (10)
- 操作装置に装填され、回転操作される回転体ユニットであって、
本体部と、
前記本体部に対して相対回転可能な状態で取り付けられる回転体と、
前記本体部の内部に設けられ環状に巻回されており電流が流れると磁場を発生させるコイルと、前記コイルから付与される磁場によって粘性が変化する磁気粘性流体と、前記本体部の内部に設けられ前記コイルの内周側に配置され前記磁気粘性流体を保持する磁気粘性流体保持部と、を有し、前記磁気粘性流体の粘性の変化に応じて、前記回転体への回転操作に対する回転抵抗の大きさを変化させるブレーキ機構と、
を備えている回転体ユニット。 A rotating body unit that is loaded into an operating device and rotated,
A main body portion,
A rotating body attached to the main body in a state in which the rotating body can rotate relatively to the main body;
a coil wound in an annular shape within the main body that generates a magnetic field when a current flows through it; a magnetorheological fluid whose viscosity changes depending on the magnetic field applied from the coil; and a magnetorheological fluid holding section disposed inside the main body on the inner periphery of the coil and holding the magnetorheological fluid; and a brake mechanism that changes the magnitude of the rotational resistance against the rotational operation of the rotating body in response to the change in viscosity of the magnetorheological fluid;
A rotating body unit comprising: - 前記回転体は、回転軸と、前記回転軸を中心とする径方向に沿って突出し前記磁気粘性流体保持部の内部において前記磁気粘性流体と接触しながら回転する円盤部と、を有している、
請求項1に記載の回転体ユニット。 The rotating body has a rotating shaft and a disk portion that protrudes in a radial direction centered on the rotating shaft and rotates while contacting the magnetorheological fluid inside the magnetorheological fluid holding portion.
The rotating body unit according to claim 1 . - 前記円盤部は、前記コイルの内周側に設けられている、
請求項2に記載の回転体ユニット。 The disk portion is provided on the inner circumferential side of the coil.
The rotating body unit according to claim 2 . - 前記本体部に設けられており、前記磁気粘性流体を前記磁気粘性流体保持部内に封止する第1封止部材を、さらに備えている、
請求項1または2に記載の回転体ユニット。 The magnetorheological fluid storage device further includes a first sealing member provided in the main body portion and configured to seal the magnetorheological fluid in the magnetorheological fluid holding portion.
The rotating body unit according to claim 1 or 2. - 前記第1封止部材は、前記回転体に含まれる回転軸の軸方向において前記コイルを挟み込むように2つ設けられている、
請求項4に記載の回転体ユニット。 The first sealing member is provided in two pieces so as to sandwich the coil in the axial direction of a rotation shaft included in the rotor.
The rotating body unit according to claim 4. - 前記本体部に設けられており、前記回転軸との摺動部分において前記磁気粘性流体を前記磁気粘性流体保持部内に封止する第2封止部材を、さらに備えている、
請求項2または3に記載の回転体ユニット。 The magnetorheological fluid may be further provided with a second sealing member provided in the main body portion and configured to seal the magnetorheological fluid in the magnetorheological fluid holding portion at a sliding portion with respect to the rotating shaft.
The rotating body unit according to claim 2 or 3. - 前記第2封止部材は、断面視において、前記回転軸に対して2点で当接している、
請求項6に記載の回転体ユニット。 The second sealing member abuts against the rotation shaft at two points in a cross-sectional view.
The rotating body unit according to claim 6. - 前記第2封止部材は、断面視において、略X字状の形状を有している、
請求項7に記載の回転体ユニット。 The second sealing member has a substantially X-shaped cross-sectional view.
The rotating body unit according to claim 7. - 前記本体部に設けられており、前記回転軸を軸支する軸受部を、さらに備えている、
請求項2に記載の回転体ユニット。 The rotating shaft is further supported by a bearing provided in the main body.
The rotating body unit according to claim 2 . - 請求項1または2に記載の回転体ユニットと、
前記回転体ユニットが回転操作される状態で装填される操作本体部と、
を備えている操作装置。 A rotating body unit according to claim 1 or 2,
an operation main body portion in which the rotating body unit is loaded in a state in which the rotating body unit is rotated;
An operating device comprising:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-194945 | 2022-12-06 | ||
JP2022194945A JP2024081369A (en) | 2022-12-06 | 2022-12-06 | Rotor unit and operation device equipped with the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024122299A1 true WO2024122299A1 (en) | 2024-06-13 |
Family
ID=91379294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/041233 WO2024122299A1 (en) | 2022-12-06 | 2023-11-16 | Rotor unit and operation device equipped with rotor unit |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2024081369A (en) |
TW (1) | TW202425009A (en) |
WO (1) | WO2024122299A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012112437A (en) * | 2010-11-24 | 2012-06-14 | Neriki:Kk | Seal material for instrument |
JP2021099896A (en) * | 2018-03-30 | 2021-07-01 | パナソニックIpマネジメント株式会社 | Input device and input system |
WO2022097883A1 (en) * | 2020-11-09 | 2022-05-12 | 주식회사 씨케이머티리얼즈랩 | Magnetorheological fluid rotation load device and control method therefor |
-
2022
- 2022-12-06 JP JP2022194945A patent/JP2024081369A/en active Pending
-
2023
- 2023-11-16 WO PCT/JP2023/041233 patent/WO2024122299A1/en unknown
- 2023-11-20 TW TW112144733A patent/TW202425009A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012112437A (en) * | 2010-11-24 | 2012-06-14 | Neriki:Kk | Seal material for instrument |
JP2021099896A (en) * | 2018-03-30 | 2021-07-01 | パナソニックIpマネジメント株式会社 | Input device and input system |
WO2022097883A1 (en) * | 2020-11-09 | 2022-05-12 | 주식회사 씨케이머티리얼즈랩 | Magnetorheological fluid rotation load device and control method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP2024081369A (en) | 2024-06-18 |
TW202425009A (en) | 2024-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8154537B2 (en) | Resistive actuator with dynamic variations of frictional forces | |
JP2009536308A5 (en) | ||
TWI330438B (en) | Fan and motor thereof | |
JP6634166B2 (en) | Operation device | |
WO2024122299A1 (en) | Rotor unit and operation device equipped with rotor unit | |
WO2024185459A1 (en) | Rotating body unit and operation device comprising same | |
WO2024122298A1 (en) | Wheel unit and mouse comprising same | |
WO2024185457A1 (en) | Wheel unit and mouse equipped with same | |
TW202437281A (en) | Rotating unit and operating device including the same | |
TW202437074A (en) | Scroll wheel unit and mouse including the same | |
JP4952955B2 (en) | Non-excitation actuated electromagnetic brake and motor equipped with the same | |
JPH064988A (en) | Spindle motor | |
CN215439589U (en) | Torque control device based on magnet | |
JP2024157294A (en) | Operating device | |
JPH02168835A (en) | Spindle motor | |
JPH0293119A (en) | Magnetic bearing device | |
JP3623432B2 (en) | Non-contact rotation angle sensor and its sensor core | |
US20210148370A1 (en) | Long life fan | |
JP2024010554A (en) | Operation device and wheel mouse | |
JP2002257231A (en) | Shift operating device | |
JP2018128055A (en) | Rotary damper | |
JP2562031Y2 (en) | Non-excitation operated electromagnetic brake | |
JP2018013040A (en) | Bearing assembly and pump device | |
JPH0740216Y2 (en) | Rotation detector | |
JPH08186954A (en) | Magnet damper of motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23900420 Country of ref document: EP Kind code of ref document: A1 |