WO2024120377A1 - Capacitor support and inverter assembly - Google Patents

Capacitor support and inverter assembly Download PDF

Info

Publication number
WO2024120377A1
WO2024120377A1 PCT/CN2023/136392 CN2023136392W WO2024120377A1 WO 2024120377 A1 WO2024120377 A1 WO 2024120377A1 CN 2023136392 W CN2023136392 W CN 2023136392W WO 2024120377 A1 WO2024120377 A1 WO 2024120377A1
Authority
WO
WIPO (PCT)
Prior art keywords
pin
busbar
positive electrode
capacitor support
capacitor
Prior art date
Application number
PCT/CN2023/136392
Other languages
French (fr)
Inventor
Xu Huang
Ying Jin
Jianping Li
Original Assignee
Shanghai Valeo Automotive Electrical Systems Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Valeo Automotive Electrical Systems Co., Ltd. filed Critical Shanghai Valeo Automotive Electrical Systems Co., Ltd.
Publication of WO2024120377A1 publication Critical patent/WO2024120377A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • H01G2/04Mountings specially adapted for mounting on a chassis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/10Housing; Encapsulation
    • H01G2/106Fixing the capacitor in a housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/38Multiple capacitors, i.e. structural combinations of fixed capacitors

Definitions

  • the present disclosure relates to the technical field of capacitor supports, in particular to a capacitor support and an inverter assembly.
  • Idle start-stop systems which are a type of mild hybrid system, are characterized by having a low price, requiring only small alterations to the overall vehicle structure, and being convenient for widespread application.
  • Major advances have already been made in mild hybrid Belt-driven Starter Generator (BSG) technology.
  • BSG Belt-driven Starter Generator
  • Existing integrated BSG systems comprise a BSG electric machine and an electric machine controller.
  • the electric machine controller is integrated on a rear end face of the BSG, and comprises a controller case, a capacitor module, a power module and a control board.
  • BSG systems can achieve fast starting/stopping of a motor vehicle as well as energy recovery, thereby achieving a fuel saving of 8 -10%, and are already applied in some passenger vehicles at the present time.
  • This type of system is characterized by compact structure, small volume, low weight and good cooling performance.
  • the purpose of the present disclosure is to provide a capacitor support and an inverter assembly, in order to simplify the assembly process, lower material management costs, reduce the risk of an insulating frame being melted, reduce glue leakage from the insulating frame, and improve the sealing ability of the capacitor support.
  • a capacitor support comprising a positive busbar component, a negative busbar component and an insulating frame;
  • the positive busbar component is provided with a positive electrode connecting pin and at least one busbar positive electrode pin;
  • the negative busbar component is provided with a negative electrode connecting pin and at least one busbar negative electrode pin;
  • a top end of the insulating frame is provided with at least one accommodating zone for accommodating and fixing a capacitor body, with at least one said busbar positive electrode pin and at least one said busbar negative electrode pin being provided at an edge of each said accommodating zone;
  • the top end of the insulating frame is provided with an accommodating slot, the accommodating slot and the busbar positive electrode pin being present in equal numbers and in one-to-one correspondence;
  • a slot base of the accommodating slot is in communication with a through-connection hole, the busbar positive electrode pin is through-connected to the through-connection hole and extends out of the accommodating slot, the busbar positive electrode pin is provided with a blocking side and a back side opposite each other, and the blocking side is provided with
  • a guide protrusion is further provided on the slot base of the accommodating slot, the guide protrusion being able to match and fit a portion of the protruding part and a portion of the busbar positive electrode pin.
  • the guide protrusion is provided at the blocking side.
  • the busbar positive electrode pin is of uniform thickness.
  • the protruding part comprises a pin protrusion; the pin protrusion extends away from the blocking side, and the pin protrusion encloses a pin recess at the back side.
  • the protruding part comprises a pin bend part, the pin bend part being a U-shaped member, the bottom of the pin bend part being close to the blocking side, and the pin bend part enclosing a pin bend groove at the back side, two sides of the pin bend groove running through the busbar positive electrode pin.
  • the protruding part comprises a pin boss, the pin boss being provided at the blocking side.
  • the protruding part comprises a sleeve member which is detachably fitted round the busbar positive electrode pin.
  • At least two insert rings are through-connected to the insulating frame, and positioning posts can be through-connected to the insert rings.
  • An inverter assembly comprising a capacitor body and the capacitor support described above, the capacitor body being disposed in the accommodating zone; a laser emitting unit on a welding device can emit a laser beam towards the capacitor support from above the capacitor support, and the protruding part can prevent the laser beam from shining on the accommodating slot.
  • the present disclosure has the following beneficial effects:
  • the protruding part provided on the blocking side of the busbar positive electrode pin can be utilized to block a portion of the accommodating slot from above.
  • the abovementioned structural improvement reduces the probability of melting of the insulating frame at the periphery of the busbar positive electrode pin during laser welding, lowers the risk of damage to the accommodating slot, and improves protection of the accommodating slot.
  • the abovementioned improvement ensures that liquid consisting of molten insulating frame will not arise at the periphery of the busbar positive electrode pin, so there is no need to further provide a capacitor support hole, and the risk of glue leaking from the capacitor support in the process of potting with sealing glue is thus considerably reduced.
  • the sealing ability of the accommodating slot can be increased, and there is thus no need to provide a metal cover to increase the sealing ability of the capacitor support.
  • the abovementioned improvement not only reduces the material cost of the capacitor support, but also avoids a situation in which a salt bridge forms between the positive busbar component/negative busbar component and a metal cover, thus ensuring stable operation of the capacitor support.
  • the capacitor support which has undergone the abovementioned structural improvement is assembled in a simple and convenient way, helping to speed up the rhythm of production.
  • Fig. 1 is a first structural schematic drawing of a capacitor support provided in embodiment 1 of the present disclosure.
  • Fig. 2 is a partial enlarged drawing of A in Fig. 1.
  • Fig. 3 is an exploded drawing of a capacitor support provided in embodiment 1 of the present disclosure.
  • Fig. 4 is a second structural schematic drawing of the capacitor support provided in embodiment 1 of the present disclosure.
  • Fig. 5 is a partial sectional drawing of the capacitor support provided in embodiment 1 of the present disclosure.
  • Fig. 6 is a partial sectional drawing of a capacitor support provided in embodiment 2 of the present disclosure.
  • Fig. 7 is a partial sectional drawing of a capacitor support provided in embodiment 3 of the present disclosure.
  • Fig. 8 is a partial sectional drawing of a capacitor support provided in embodiment 4 of the present disclosure.
  • orientations or positional relationships indicated by terms such as “central” , “upper” , “lower” , “left” , “right” , “vertical” , “horizontal” , “inside” , and “outside” are usually based on the orientations or positional relationships shown in the drawings, are only intended for convenience of describing the present disclosure and brevity of description, rather than indicating or implying that the device or element referred to must have a specific orientation or be constructed and operated in a specific orientation, and therefore should not be understood as a limitation of the protection scope of the present disclosure.
  • first is only descriptive and should not be considered as indicating or implying relative importance.
  • first position refers to two different positions, and a first feature being “on” , “over” , and “above” a second feature includes the first feature being directly above and obliquely above the second feature, or only indicates that the first feature has a horizontal height greater than that of the second feature.
  • the first feature being “below” , “under” and “beneath” the second feature includes the conditions that the first feature is directly below and obliquely below the second feature, or merely indicates that the first feature is lower than the second feature in height.
  • this embodiment provides a capacitor support, comprising a positive busbar component, a negative busbar component and an insulating frame 500; the positive busbar component is provided with a positive electrode connecting pin and at least one busbar positive electrode pin 110; the negative busbar component is provided with a negative electrode connecting pin and at least one busbar negative electrode pin; a top end of the insulating frame 500 is provided with at least one accommodating zone for accommodating and fixing a capacitor body, with at least one busbar positive electrode pin 110 and at least one busbar negative electrode pin being provided at an edge of each accommodating zone; the top end of the insulating frame 500 is provided with an accommodating slot 501, the accommodating slot 501 and the busbar positive electrode pin 110 being present in equal numbers and in one-to-one correspondence; a slot base of the accommodating slot 501 is in communication with a through-connection hole 503, the busbar positive electrode pin 110 is through-connected to the through-connection hole 503 and extends out of the accommodating slot 501, the busbar positive electrode pin 110 is provided
  • the positive busbar component and negative busbar component both serve the function of transmitting current and supporting the capacitor body.
  • the positive busbar component comprises a first busbar positive electrode plate 100, a second busbar positive electrode plate 200 and a third busbar positive electrode plate 300;
  • the negative busbar component comprises a busbar negative electrode plate 400; and at least one busbar positive electrode pin 110 is provided on the first busbar positive electrode plate 100.
  • the protruding part provided on the blocking side of the busbar positive electrode pin 110 can be utilized to block a portion of the accommodating slot 501 from above.
  • the abovementioned structural improvement reduces the probability of melting of the insulating frame 500 at the periphery of the busbar positive electrode pin 110 during laser welding, lowers the risk of damage to the accommodating slot 501, and improves protection of the accommodating slot 501.
  • the abovementioned improvement ensures that liquid consisting of molten insulating frame 500 will not arise at the periphery of the busbar positive electrode pin 110, so there is no need to further provide a capacitor support hole, and the risk of glue leaking from the capacitor support in the process of potting with sealing glue is thus considerably reduced.
  • the sealing ability of the accommodating slot 501 can be increased, and there is thus no need to provide a metal cover to increase the sealing ability of the capacitor support.
  • the abovementioned improvement not only reduces the material cost of the capacitor support, but also avoids a situation in which a salt bridge forms between the positive busbar component/negative busbar component and a metal cover, thus ensuring stable operation of the capacitor support.
  • the capacitor support which has undergone the abovementioned structural improvement is assembled in a simple and convenient way, helping to speed up the rhythm of production.
  • the grain direction of the positive busbar component and the negative busbar component are defined, so as to ensure that the positive busbar component and the negative busbar component and the led-out phases thereon will not fracture in their entirety in the process of being bent due to having the same grain direction as a main body part.
  • the specific way in which the grain direction is defined is a conventional technical approach in the art, which is known well to those skilled in the art, so is not repeated here.
  • a guide protrusion 502 is further provided on the slot base of the accommodating slot 501, the guide protrusion 502 being able to match and fit a portion of the protruding part and a portion of the busbar positive electrode pin 110.
  • the guide protrusion 502 can not only guide the flow of liquid flowing towards the accommodating slot 501, but also achieve the goal of positioning the busbar positive electrode pin 110 by means of the matching/fitting structure between the guide protrusion 502 and the busbar positive electrode pin 110.
  • the guide protrusion 502 has a simple and reliable structure, takes up little space, and can be processed without much difficulty. The abovementioned design facilitates the collection of glue in the accommodating slot 501, helping to accurately position the busbar positive electrode pin 110, thus ensuring smooth operation of the capacitor support.
  • the guide protrusion 502 is provided on the blocking side.
  • the abovementioned design reduces the difficulty of mating between the guide protrusion 502 and the busbar positive electrode pin 110, so that the objective of fitting with the guide protrusion 502 can be achieved while ensuring its structural strength.
  • the abovementioned improvement reduces the risk of accidental damage to the guide protrusion 502, thus ensuring that the busbar positive electrode pin 110 is positioned effectively, and extending the service life of the insulating frame 500.
  • At least two insert rings 600 are through-connected to the insulating frame 500, and positioning posts can be through-connected to the insert rings 600.
  • the material of the insert rings 600 is metal.
  • the positioning posts are fixedly connected in an external environment; utilizing the insertion-connection mating of the positioning posts with the insert rings 600, the objective of connecting the capacitor support to the external environment can be achieved, further increasing the operating stability of the capacitor support.
  • a harder material can be chosen for the insert rings 600, thus helping to reduce situations in which the positioning posts crush the insert rings 600 during assembly.
  • the insulating frame 500 is injection-moulded. Specifically, when processing the insulating frame 500, it is necessary to first of all fix the positive busbar component, the negative busbar component and the insert rings 600 to a frame processing mould; an injection-moulding machine then injects plastic into a mould cavity of the processing mould, such that the insulating frame 500 is integrally formed, finally forming the capacitor support as a whole.
  • the forming method described above is simple and reliable, with high production efficiency and low processing costs, helping to increase the structural stability and production efficiency of the capacitor support.
  • the busbar positive electrode pin 110 is of uniform thickness.
  • the abovementioned design enables processing personnel to process the protruding part by subjecting the busbar positive electrode pin 110 to bending deformation in the manufacturing process.
  • the processing method described above is simple and reliable, with fast processing speed and a high processing success rate, and can also ensure the structural strength of the busbar positive electrode pin 110, and lower the production cost of the capacitor support.
  • the protruding part comprises a pin protrusion 111; the pin protrusion 111 extends away from the blocking side, and the pin protrusion 111 encloses a pin recess 112 at the back side.
  • the structure of the pin protrusion 111 is easy to form by stamping, with low processing difficulty and high forming efficiency, and effectively reduces the space occupied by the busbar positive electrode pin 110 while achieving the objective of at least partly blocking the accommodating slot 501 from above.
  • the pin recess 112 is a cuboid.
  • This embodiment further provides an inverter assembly, comprising a capacitor body and the capacitor support described above, the capacitor body being disposed in the accommodating zone; a laser emitting unit on a welding device can emit a laser beam towards the capacitor support from above the capacitor support, and the protruding part can prevent the laser beam from shining on the accommodating slot 501.
  • this inverter assembly by defining the relative positions of the laser emitting unit and the protruding part, blocking of a dissipated laser beam by the protruding part can be achieved, avoiding a situation in which the laser beam shines onto the accommodating slot 501 during laser welding, and thus reducing the risk of damage to the insulating frame 500, extending the service life of the capacitor support, and ensuring that the inverter assembly can operate stably for a long period of time.
  • the capacitor support in embodiment 2 is essentially the same as that in embodiment 1 above, except that the protruding part comprises a pin bend part 114, the pin bend part 114 being a U-shaped member, the bottom of the pin bend part 114 being close to the blocking side, and the pin bend part 114 enclosing a pin bend groove 115 at the back side, two sides of the pin bend groove 115 running through the busbar positive electrode pin 110.
  • a plane in which the bottom of the pin bend part 114 lies is parallel to a plane in which the busbar positive electrode pin 110 lies.
  • the design of the pin bend part 114 above is easy to form by bending; the pin bend part 114 can be successfully formed by subjecting the busbar positive electrode pin 110 to a bending operation, with a low processing cost and a high success rate, greatly increasing the efficiency of processing the protruding part. Furthermore, the pin bend part 114 can at least partly block the accommodating slot 501 from above, thus protecting the insulating frame 500.
  • This embodiment further provides an inverter assembly, comprising a capacitor body and the capacitor support described above, the capacitor body being disposed in the accommodating zone; a laser emitting unit on a welding device can emit a laser beam towards the capacitor support from above the capacitor support, and the protruding part can prevent the laser beam from shining on the accommodating slot 501.
  • this inverter assembly by defining the relative positions of the laser emitting unit and the protruding part, blocking of a dissipated laser beam by the protruding part can be achieved, avoiding a situation in which the laser beam shines onto the accommodating slot 501 during laser welding, and thus reducing the risk of damage to the insulating frame 500, extending the service life of the capacitor support, and ensuring that the inverter assembly can operate stably for a long period of time.
  • the capacitor support in embodiment 3 is essentially the same as that in embodiment 1 above, except that the thickness of the busbar positive electrode pin 110 is not uniform, and the protruding part comprises a pin boss 113, the pin boss 113 being provided at the blocking side.
  • the structure of the pin boss 113 enables processing personnel to configure the protruding part by welding or direct forming, greatly reducing the impact which the configuration of the protruding part has on the overall structural strength of the busbar positive electrode pin 110. The risk of the busbar positive electrode pin 110 suffering deformation or damage is reduced while protecting the insulating frame 500.
  • This embodiment further provides an inverter assembly, comprising a capacitor body and the capacitor support described above, the capacitor body being disposed in the accommodating zone; a laser emitting unit on a welding device can emit a laser beam towards the capacitor support from above the capacitor support, and the protruding part can prevent the laser beam from shining on the accommodating slot 501.
  • this inverter assembly by defining the relative positions of the laser emitting unit and the protruding part, blocking of a dissipated laser beam by the protruding part can be achieved, avoiding a situation in which the laser beam shines onto the accommodating slot 501 during laser welding, and thus reducing the risk of damage to the insulating frame 500, extending the service life of the capacitor support, and ensuring that the inverter assembly can operate stably for a long period of time.
  • the capacitor support in embodiment 4 is essentially the same as that in embodiment 1 above, except that the protruding part comprises a sleeve member 700 which is detachably fitted round the busbar positive electrode pin 110.
  • the protruding part comprises a sleeve member 700 which is detachably fitted round the busbar positive electrode pin 110.
  • Detachably fitting the sleeve member 700 round the busbar positive electrode pin 100 reduces the difficulty of configuring the protruding part, enabling operating personnel to perform the installation by fitting the sleeve member round the busbar positive electrode pin after the insulating frame 500 has been formed.
  • the production cost of the capacitor support is reduced while protecting the insulating frame 500, thus providing a maintenance method of direct replacement after damage to the protruding part, and increasing the possibility of repeated use of the corresponding members.
  • an inside face of the sleeve member 700 is matched and fitted to a side wall of the busbar positive electrode pin 110, and an outside face of the sleeve member 700 has a rectangular or elliptical projection in a plane perpendicular to a length direction.
  • This embodiment further provides an inverter assembly, comprising a capacitor body and the capacitor support described above, the capacitor body being disposed in the accommodating zone; a laser emitting unit on a welding device can emit a laser beam towards the capacitor support from above the capacitor support, and the protruding part can prevent the laser beam from shining on the accommodating slot 501.
  • this inverter assembly by defining the relative positions of the laser emitting unit and the protruding part, blocking of a dissipated laser beam by the protruding part can be achieved, avoiding a situation in which the laser beam shines onto the accommodating slot 501 during laser welding, and thus reducing the risk of damage to the insulating frame 500, extending the service life of the capacitor support, and ensuring that the inverter assembly can operate stably for a long period of time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

The present disclosure relates to the technical field of capacitor supports, specifically disclosing a capacitor support and an inverter assembly. The support comprises a positive busbar component, a negative busbar component and an insulating frame; the positive busbar component is provided with a positive electrode connecting pin and a busbar positive electrode pin; the negative busbar component is provided with a negative electrode connecting pin and a busbar negative electrode pin; a top end of the insulating frame is provided with an accommodating zone for accommodating and fixing a capacitor body, with a busbar positive electrode pin and a busbar negative electrode pin being provided at an edge of each accommodating zone. In the support, the pin is structurally improved to achieve blocking of the accommodating slot, reducing the risk of damage to the insulating frame, and enabling the accommodating slot to be sealed.

Description

CAPACITOR SUPPORT AND INVERTER ASSEMBLY TECHNICAL FIELD
The present disclosure relates to the technical field of capacitor supports, in particular to a capacitor support and an inverter assembly.
BACKGROUND
Against the backdrop of energy conservation and emissions reduction, the urgent needs of environmental protection have established more stringent requirements for reducing the energy consumption of conventional fuel motor vehicles. Idle start-stop systems, which are a type of mild hybrid system, are characterized by having a low price, requiring only small alterations to the overall vehicle structure, and being convenient for widespread application. Major advances have already been made in mild hybrid Belt-driven Starter Generator (BSG) technology. Existing integrated BSG systems comprise a BSG electric machine and an electric machine controller. The electric machine controller is integrated on a rear end face of the BSG, and comprises a controller case, a capacitor module, a power module and a control board. BSG systems can achieve fast starting/stopping of a motor vehicle as well as energy recovery, thereby achieving a fuel saving of 8 -10%, and are already applied in some passenger vehicles at the present time. This type of system is characterized by compact structure, small volume, low weight and good cooling performance.
In the prior art, when assembling a capacitor support, it is necessary to perform laser welding of capacitor busbar pins and counterparts thereof, and there are cases  where the laser beam near the busbar pins shines directly onto the insulating frame of the capacitor support. This will result in melting of plastic near the busbar pins during laser welding. To avoid a situation where product sealing is affected by molten plastic, a capacitor support hole is often provided in the prior art to prevent laser light from shining directly onto plastic. However, the provision of a capacitor support hole will result in glue leakage, and will also necessitate the additional installation of a metal cover at the bottom of the capacitor support, to seal the capacitor support hole and protect the capacitor support and capacitor pins. However, the production cost of the metal cover is high, and there is a risk that a salt bridge will form between the metal cover and the composite busbar, causing a short circuit. Furthermore, existing capacitor support assembly processes are quite complex, and this has an impact on production rhythm.
SUMMARY
The purpose of the present disclosure is to provide a capacitor support and an inverter assembly, in order to simplify the assembly process, lower material management costs, reduce the risk of an insulating frame being melted, reduce glue leakage from the insulating frame, and improve the sealing ability of the capacitor support.
To achieve this purpose, the present disclosure uses the following technical solution:
A capacitor support, comprising a positive busbar component, a negative busbar component and an insulating frame; the positive busbar component is provided with a  positive electrode connecting pin and at least one busbar positive electrode pin; the negative busbar component is provided with a negative electrode connecting pin and at least one busbar negative electrode pin; a top end of the insulating frame is provided with at least one accommodating zone for accommodating and fixing a capacitor body, with at least one said busbar positive electrode pin and at least one said busbar negative electrode pin being provided at an edge of each said accommodating zone; the top end of the insulating frame is provided with an accommodating slot, the accommodating slot and the busbar positive electrode pin being present in equal numbers and in one-to-one correspondence; a slot base of the accommodating slot is in communication with a through-connection hole, the busbar positive electrode pin is through-connected to the through-connection hole and extends out of the accommodating slot, the busbar positive electrode pin is provided with a blocking side and a back side opposite each other, and the blocking side is provided with a protruding part, the protruding part extending in a direction perpendicular to a plane in which the busbar positive electrode pin lies, and the protruding part at least partly blocking the accommodating slot from above.
According to an embodiment of the disclosure, a guide protrusion is further provided on the slot base of the accommodating slot, the guide protrusion being able to match and fit a portion of the protruding part and a portion of the busbar positive electrode pin.
According to an embodiment of the disclosure, the guide protrusion is provided at the blocking side.
According to an embodiment of the disclosure, the busbar positive electrode pin  is of uniform thickness.
According to an embodiment of the disclosure, the protruding part comprises a pin protrusion; the pin protrusion extends away from the blocking side, and the pin protrusion encloses a pin recess at the back side.
According to an embodiment of the disclosure, the protruding part comprises a pin bend part, the pin bend part being a U-shaped member, the bottom of the pin bend part being close to the blocking side, and the pin bend part enclosing a pin bend groove at the back side, two sides of the pin bend groove running through the busbar positive electrode pin.
According to an embodiment of the disclosure, the protruding part comprises a pin boss, the pin boss being provided at the blocking side.
According to an embodiment of the disclosure, the protruding part comprises a sleeve member which is detachably fitted round the busbar positive electrode pin.
According to an embodiment of the disclosure, at least two insert rings are through-connected to the insulating frame, and positioning posts can be through-connected to the insert rings.
An inverter assembly, comprising a capacitor body and the capacitor support described above, the capacitor body being disposed in the accommodating zone; a laser emitting unit on a welding device can emit a laser beam towards the capacitor support from above the capacitor support, and the protruding part can prevent the laser beam from shining on the accommodating slot.
The present disclosure has the following beneficial effects:
As a result of performing structural improvement of the positive busbar  component in the capacitor support, the protruding part provided on the blocking side of the busbar positive electrode pin can be utilized to block a portion of the accommodating slot from above. The abovementioned structural improvement reduces the probability of melting of the insulating frame at the periphery of the busbar positive electrode pin during laser welding, lowers the risk of damage to the accommodating slot, and improves protection of the accommodating slot. Compared to a conventional design, the abovementioned improvement ensures that liquid consisting of molten insulating frame will not arise at the periphery of the busbar positive electrode pin, so there is no need to further provide a capacitor support hole, and the risk of glue leaking from the capacitor support in the process of potting with sealing glue is thus considerably reduced. By utilizing the design whereby the busbar positive electrode pin is through-connected to the through-connection hole, the sealing ability of the accommodating slot can be increased, and there is thus no need to provide a metal cover to increase the sealing ability of the capacitor support. The abovementioned improvement not only reduces the material cost of the capacitor support, but also avoids a situation in which a salt bridge forms between the positive busbar component/negative busbar component and a metal cover, thus ensuring stable operation of the capacitor support. The capacitor support which has undergone the abovementioned structural improvement is assembled in a simple and convenient way, helping to speed up the rhythm of production.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a first structural schematic drawing of a capacitor support provided in  embodiment 1 of the present disclosure.
Fig. 2 is a partial enlarged drawing of A in Fig. 1.
Fig. 3 is an exploded drawing of a capacitor support provided in embodiment 1 of the present disclosure.
Fig. 4 is a second structural schematic drawing of the capacitor support provided in embodiment 1 of the present disclosure.
Fig. 5 is a partial sectional drawing of the capacitor support provided in embodiment 1 of the present disclosure.
Fig. 6 is a partial sectional drawing of a capacitor support provided in embodiment 2 of the present disclosure.
Fig. 7 is a partial sectional drawing of a capacitor support provided in embodiment 3 of the present disclosure.
Fig. 8 is a partial sectional drawing of a capacitor support provided in embodiment 4 of the present disclosure.
DETAILED DESCRIPTION
Technical solutions of the present disclosure will be clearly and completely described below in conjunction with the drawings, and, obviously, the described embodiments are only some, but not all, embodiments of the present disclosure. Any embodiments obtained by those of ordinary skill in the art on the basis of the described embodiments of the present disclosure without making inventive efforts fall within the protection scope of the present disclosure.
It should be noted that in the description of the present disclosure, orientations or  positional relationships indicated by terms such as “central" , "upper" , "lower" , "left" , "right" , "vertical" , "horizontal" , "inside" , and "outside" are usually based on the orientations or positional relationships shown in the drawings, are only intended for convenience of describing the present disclosure and brevity of description, rather than indicating or implying that the device or element referred to must have a specific orientation or be constructed and operated in a specific orientation, and therefore should not be understood as a limitation of the protection scope of the present disclosure. In addition, use of terms "first" , "second" , etc., is only descriptive and should not be considered as indicating or implying relative importance. The terms "first position" and "second position" refer to two different positions, and a first feature being "on" , "over" , and "above" a second feature includes the first feature being directly above and obliquely above the second feature, or only indicates that the first feature has a horizontal height greater than that of the second feature. The first feature being "below" , "under" and "beneath" the second feature includes the conditions that the first feature is directly below and obliquely below the second feature, or merely indicates that the first feature is lower than the second feature in height.
Note that in the description of the present disclosure, unless otherwise expressly specified or limited, terms "mounting" , "connected" , and "connection" should be understood in a broad sense, which, for example, may be a fixed connection, a detachable connection, or an integrated connection; a mechanical connection or an electrical connection; a direct connection, an indirect connection through an intermediate medium, or a connection inside two elements. Those of ordinary skill in the art may understand the specific meanings of the above-mentioned terms in the  present disclosure as the case may be.
Embodiments of the present disclosure will be described in detail below, and examples of the described embodiments are illustrated by the drawings, in which the same or similar reference signs denote the same or similar components or components having the same or similar functions throughout. The embodiments described below with reference to the drawings are exemplary and only intended to explain the present disclosure and should not be construed as limiting the present disclosure.
Embodiment 1
As shown in Figs. 1 -5, this embodiment provides a capacitor support, comprising a positive busbar component, a negative busbar component and an insulating frame 500; the positive busbar component is provided with a positive electrode connecting pin and at least one busbar positive electrode pin 110; the negative busbar component is provided with a negative electrode connecting pin and at least one busbar negative electrode pin; a top end of the insulating frame 500 is provided with at least one accommodating zone for accommodating and fixing a capacitor body, with at least one busbar positive electrode pin 110 and at least one busbar negative electrode pin being provided at an edge of each accommodating zone; the top end of the insulating frame 500 is provided with an accommodating slot 501, the accommodating slot 501 and the busbar positive electrode pin 110 being present in equal numbers and in one-to-one correspondence; a slot base of the accommodating slot 501 is in communication with a through-connection hole 503, the busbar positive electrode pin 110 is through-connected to the through-connection hole 503 and extends out of the accommodating slot 501, the busbar positive electrode pin 110 is provided  with a blocking side and a back side opposite each other, the blocking side is provided with a protruding part, the protruding part extending in a direction perpendicular to a plane in which the busbar positive electrode pin 110 lies, and the protruding part at least partly blocking the accommodating slot 501 from above.
In this embodiment, the positive busbar component and negative busbar component both serve the function of transmitting current and supporting the capacitor body. The positive busbar component comprises a first busbar positive electrode plate 100, a second busbar positive electrode plate 200 and a third busbar positive electrode plate 300; the negative busbar component comprises a busbar negative electrode plate 400; and at least one busbar positive electrode pin 110 is provided on the first busbar positive electrode plate 100.
As a result of performing structural improvement of the positive busbar component in the capacitor support, the protruding part provided on the blocking side of the busbar positive electrode pin 110 can be utilized to block a portion of the accommodating slot 501 from above. The abovementioned structural improvement reduces the probability of melting of the insulating frame 500 at the periphery of the busbar positive electrode pin 110 during laser welding, lowers the risk of damage to the accommodating slot 501, and improves protection of the accommodating slot 501. Compared to a conventional design, the abovementioned improvement ensures that liquid consisting of molten insulating frame 500 will not arise at the periphery of the busbar positive electrode pin 110, so there is no need to further provide a capacitor support hole, and the risk of glue leaking from the capacitor support in the process of potting with sealing glue is thus considerably reduced. By utilizing the design whereby  the busbar positive electrode pin 110 is through-connected to the through-connection hole 503, the sealing ability of the accommodating slot 501 can be increased, and there is thus no need to provide a metal cover to increase the sealing ability of the capacitor support. The abovementioned improvement not only reduces the material cost of the capacitor support, but also avoids a situation in which a salt bridge forms between the positive busbar component/negative busbar component and a metal cover, thus ensuring stable operation of the capacitor support. The capacitor support which has undergone the abovementioned structural improvement is assembled in a simple and convenient way, helping to speed up the rhythm of production.
In this embodiment, the grain direction of the positive busbar component and the negative busbar component are defined, so as to ensure that the positive busbar component and the negative busbar component and the led-out phases thereon will not fracture in their entirety in the process of being bent due to having the same grain direction as a main body part. The specific way in which the grain direction is defined is a conventional technical approach in the art, which is known well to those skilled in the art, so is not repeated here.
In this embodiment, a guide protrusion 502 is further provided on the slot base of the accommodating slot 501, the guide protrusion 502 being able to match and fit a portion of the protruding part and a portion of the busbar positive electrode pin 110. The guide protrusion 502 can not only guide the flow of liquid flowing towards the accommodating slot 501, but also achieve the goal of positioning the busbar positive electrode pin 110 by means of the matching/fitting structure between the guide protrusion 502 and the busbar positive electrode pin 110. The guide protrusion 502 has  a simple and reliable structure, takes up little space, and can be processed without much difficulty. The abovementioned design facilitates the collection of glue in the accommodating slot 501, helping to accurately position the busbar positive electrode pin 110, thus ensuring smooth operation of the capacitor support.
Further, the guide protrusion 502 is provided on the blocking side. The abovementioned design reduces the difficulty of mating between the guide protrusion 502 and the busbar positive electrode pin 110, so that the objective of fitting with the guide protrusion 502 can be achieved while ensuring its structural strength. The abovementioned improvement reduces the risk of accidental damage to the guide protrusion 502, thus ensuring that the busbar positive electrode pin 110 is positioned effectively, and extending the service life of the insulating frame 500.
In this embodiment, at least two insert rings 600 are through-connected to the insulating frame 500, and positioning posts can be through-connected to the insert rings 600. Specifically, the material of the insert rings 600 is metal. The positioning posts are fixedly connected in an external environment; utilizing the insertion-connection mating of the positioning posts with the insert rings 600, the objective of connecting the capacitor support to the external environment can be achieved, further increasing the operating stability of the capacitor support. As the insert rings 600 are provided separately from the insulating frame 500, a harder material can be chosen for the insert rings 600, thus helping to reduce situations in which the positioning posts crush the insert rings 600 during assembly.
As an example, the insulating frame 500 is injection-moulded. Specifically, when processing the insulating frame 500, it is necessary to first of all fix the positive busbar  component, the negative busbar component and the insert rings 600 to a frame processing mould; an injection-moulding machine then injects plastic into a mould cavity of the processing mould, such that the insulating frame 500 is integrally formed, finally forming the capacitor support as a whole. The forming method described above is simple and reliable, with high production efficiency and low processing costs, helping to increase the structural stability and production efficiency of the capacitor support.
In this embodiment, the busbar positive electrode pin 110 is of uniform thickness. The abovementioned design enables processing personnel to process the protruding part by subjecting the busbar positive electrode pin 110 to bending deformation in the manufacturing process. The processing method described above is simple and reliable, with fast processing speed and a high processing success rate, and can also ensure the structural strength of the busbar positive electrode pin 110, and lower the production cost of the capacitor support.
As an example, the protruding part comprises a pin protrusion 111; the pin protrusion 111 extends away from the blocking side, and the pin protrusion 111 encloses a pin recess 112 at the back side. The structure of the pin protrusion 111 is easy to form by stamping, with low processing difficulty and high forming efficiency, and effectively reduces the space occupied by the busbar positive electrode pin 110 while achieving the objective of at least partly blocking the accommodating slot 501 from above. Specifically, the pin recess 112 is a cuboid.
This embodiment further provides an inverter assembly, comprising a capacitor body and the capacitor support described above, the capacitor body being disposed in  the accommodating zone; a laser emitting unit on a welding device can emit a laser beam towards the capacitor support from above the capacitor support, and the protruding part can prevent the laser beam from shining on the accommodating slot 501. With this inverter assembly, by defining the relative positions of the laser emitting unit and the protruding part, blocking of a dissipated laser beam by the protruding part can be achieved, avoiding a situation in which the laser beam shines onto the accommodating slot 501 during laser welding, and thus reducing the risk of damage to the insulating frame 500, extending the service life of the capacitor support, and ensuring that the inverter assembly can operate stably for a long period of time.
Embodiment 2
As shown in Fig. 6, the capacitor support in embodiment 2 is essentially the same as that in embodiment 1 above, except that the protruding part comprises a pin bend part 114, the pin bend part 114 being a U-shaped member, the bottom of the pin bend part 114 being close to the blocking side, and the pin bend part 114 enclosing a pin bend groove 115 at the back side, two sides of the pin bend groove 115 running through the busbar positive electrode pin 110. Specifically, a plane in which the bottom of the pin bend part 114 lies is parallel to a plane in which the busbar positive electrode pin 110 lies. The design of the pin bend part 114 above is easy to form by bending; the pin bend part 114 can be successfully formed by subjecting the busbar positive electrode pin 110 to a bending operation, with a low processing cost and a high success rate, greatly increasing the efficiency of processing the protruding part. Furthermore, the pin bend part 114 can at least partly block the accommodating slot 501 from above, thus protecting the insulating frame 500.
This embodiment further provides an inverter assembly, comprising a capacitor body and the capacitor support described above, the capacitor body being disposed in the accommodating zone; a laser emitting unit on a welding device can emit a laser beam towards the capacitor support from above the capacitor support, and the protruding part can prevent the laser beam from shining on the accommodating slot 501. With this inverter assembly, by defining the relative positions of the laser emitting unit and the protruding part, blocking of a dissipated laser beam by the protruding part can be achieved, avoiding a situation in which the laser beam shines onto the accommodating slot 501 during laser welding, and thus reducing the risk of damage to the insulating frame 500, extending the service life of the capacitor support, and ensuring that the inverter assembly can operate stably for a long period of time.
Embodiment 3
As shown in Fig. 7, the capacitor support in embodiment 3 is essentially the same as that in embodiment 1 above, except that the thickness of the busbar positive electrode pin 110 is not uniform, and the protruding part comprises a pin boss 113, the pin boss 113 being provided at the blocking side. The structure of the pin boss 113 enables processing personnel to configure the protruding part by welding or direct forming, greatly reducing the impact which the configuration of the protruding part has on the overall structural strength of the busbar positive electrode pin 110. The risk of the busbar positive electrode pin 110 suffering deformation or damage is reduced while protecting the insulating frame 500.
This embodiment further provides an inverter assembly, comprising a capacitor body and the capacitor support described above, the capacitor body being disposed in  the accommodating zone; a laser emitting unit on a welding device can emit a laser beam towards the capacitor support from above the capacitor support, and the protruding part can prevent the laser beam from shining on the accommodating slot 501. With this inverter assembly, by defining the relative positions of the laser emitting unit and the protruding part, blocking of a dissipated laser beam by the protruding part can be achieved, avoiding a situation in which the laser beam shines onto the accommodating slot 501 during laser welding, and thus reducing the risk of damage to the insulating frame 500, extending the service life of the capacitor support, and ensuring that the inverter assembly can operate stably for a long period of time.
Embodiment 4
A shown in Fig. 8, the capacitor support in embodiment 4 is essentially the same as that in embodiment 1 above, except that the protruding part comprises a sleeve member 700 which is detachably fitted round the busbar positive electrode pin 110. Detachably fitting the sleeve member 700 round the busbar positive electrode pin 100 reduces the difficulty of configuring the protruding part, enabling operating personnel to perform the installation by fitting the sleeve member round the busbar positive electrode pin after the insulating frame 500 has been formed. The production cost of the capacitor support is reduced while protecting the insulating frame 500, thus providing a maintenance method of direct replacement after damage to the protruding part, and increasing the possibility of repeated use of the corresponding members.
Specifically, an inside face of the sleeve member 700 is matched and fitted to a side wall of the busbar positive electrode pin 110, and an outside face of the sleeve member 700 has a rectangular or elliptical projection in a plane perpendicular to a  length direction.
This embodiment further provides an inverter assembly, comprising a capacitor body and the capacitor support described above, the capacitor body being disposed in the accommodating zone; a laser emitting unit on a welding device can emit a laser beam towards the capacitor support from above the capacitor support, and the protruding part can prevent the laser beam from shining on the accommodating slot 501. With this inverter assembly, by defining the relative positions of the laser emitting unit and the protruding part, blocking of a dissipated laser beam by the protruding part can be achieved, avoiding a situation in which the laser beam shines onto the accommodating slot 501 during laser welding, and thus reducing the risk of damage to the insulating frame 500, extending the service life of the capacitor support, and ensuring that the inverter assembly can operate stably for a long period of time.
Clearly, the above-mentioned examples of the present disclosure are merely examples cited for the purpose of clearly explaining the present disclosure and do not limit the embodiments of the present disclosure. Those skilled in the art could make other changes or alterations in various forms on the basis of the explanation above. It is not possible to list all embodiments here exhaustively. Any modifications, substitutions, improvements, etc., made within the spirit and principle of the present disclosure shall be included in the protection scope of the claims of the present disclosure.

Claims (10)

  1. A capacitor support, comprising:
    a positive busbar component, provided with a positive electrode connecting pin and at least one busbar positive electrode pin (110) ;
    a negative busbar component, provided with a negative electrode connecting pin and at least one busbar negative electrode pin;
    an insulating frame (500) , a top end thereof being provided with at least one accommodating zone for accommodating and fixing a capacitor body, with at least one said busbar positive electrode pin (110) and at least one said busbar negative electrode pin being provided at an edge of each said accommodating zone; the top end of the insulating frame (500) is provided with an accommodating slot (501) , the accommodating slot (501) and the busbar positive electrode pin (110) being present in equal numbers and in one-to-one correspondence; a slot base of the accommodating slot (501) is in communication with a through-connection hole (503) , the busbar positive electrode pin (110) is through-connected to the through-connection hole (503) and extends out of the accommodating slot (501) , the busbar positive electrode pin (110) is provided with a blocking side and a back side opposite each other, and the blocking side is provided with a protruding part, the protruding part extending in a direction perpendicular to a plane in which the busbar positive electrode pin (110) lies, and the protruding part at least partly blocking the accommodating slot (501) from above.
  2. The capacitor support according to claim 1, characterized in that a guide protrusion (502) is further provided on the slot base of the accommodating slot (501) ,  the guide protrusion (502) being able to match and fit a portion of the protruding part and a portion of the busbar positive electrode pin (110) .
  3. The capacitor support according to claim 2, characterized in that the guide protrusion (502) is provided at the blocking side.
  4. The capacitor support according to claim 1, characterized in that the busbar positive electrode pin (110) is of uniform thickness.
  5. The capacitor support according to claim 4, characterized in that the protruding part comprises a pin protrusion (111) ; the pin protrusion (111) extends away from the blocking side, and the pin protrusion (111) encloses a pin recess (112) at the back side.
  6. The capacitor support according to claim 4, characterized in that the protruding part comprises a pin bend part (114) , the pin bend part (114) being a U-shaped member, the bottom of the pin bend part (114) being close to the blocking side, and the pin bend part (114) enclosing a pin bend groove (115) at the back side, two sides of the pin bend groove (115) running through the busbar positive electrode pin (110) .
  7. The capacitor support according to claim 1, characterized in that the protruding part comprises a pin boss (113) , the pin boss (113) being provided at the blocking side.
  8. The capacitor support according to claim 1, characterized in that the protruding part comprises a sleeve member (700) which is detachably fitted round the busbar positive electrode pin (110) .
  9. The capacitor support according to any one of claims 1 -8, characterized in that at least two insert rings (600) are through-connected to the insulating frame (500) , and positioning posts can be through-connected to the insert rings (600) .
  10. An inverter assembly, characterized by comprising a capacitor body and the  capacitor support according to any one of claims 1 -9, the capacitor body being disposed in the accommodating zone; a laser emitting unit on a welding device can emit a laser beam towards the capacitor support from above the capacitor support, and the protruding part can prevent the laser beam from shining on the accommodating slot (501) .
PCT/CN2023/136392 2022-12-06 2023-12-05 Capacitor support and inverter assembly WO2024120377A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211559310.8 2022-12-06
CN202211559310.8A CN115910599A (en) 2022-12-06 2022-12-06 Capacitor support and inverter assembly

Publications (1)

Publication Number Publication Date
WO2024120377A1 true WO2024120377A1 (en) 2024-06-13

Family

ID=86486650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/136392 WO2024120377A1 (en) 2022-12-06 2023-12-05 Capacitor support and inverter assembly

Country Status (2)

Country Link
CN (1) CN115910599A (en)
WO (1) WO2024120377A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090059470A1 (en) * 2006-03-16 2009-03-05 Matushita Electric Industrial Co., Ltd. Capacitor unit, and its manufacturing method
US20110102966A1 (en) * 2008-07-10 2011-05-05 Hiroki Takeoka Molded capacitor and method for manufacturing the same
US8369100B2 (en) * 2005-11-17 2013-02-05 Hitachi, Ltd. Power converter
ES2535152B1 (en) * 2013-10-03 2015-11-24 Caf Power & Automation, S.L.U. POWER ACCUMULATION BASKET
US20210099072A1 (en) * 2017-04-20 2021-04-01 Mitsubishi Electric Corporation Filter module for power conversion device
WO2021233711A1 (en) * 2020-05-20 2021-11-25 Vitesco Technologies Germany Gmbh Capacitor assembly, vehicle drive power-electronics device having a capacitor assembly

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4124756B2 (en) * 2003-10-03 2008-07-23 日立マクセル株式会社 Sealed battery
JP4684338B2 (en) * 2009-03-30 2011-05-18 三菱電機株式会社 Electronic control unit
CN102104169B (en) * 2011-01-28 2012-12-05 福建南平南孚电池有限公司 Lithium-ferrous disulfide cell and manufacturing method thereof
US9188956B2 (en) * 2012-12-28 2015-11-17 Seiko Instruments Inc. Balance, timepiece movement, timepiece and manufacturing method of balance
CN113410060B (en) * 2021-06-02 2022-04-19 江苏云意电气股份有限公司 Integrated capacitor module of 48V BSG motor inverter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8369100B2 (en) * 2005-11-17 2013-02-05 Hitachi, Ltd. Power converter
US20090059470A1 (en) * 2006-03-16 2009-03-05 Matushita Electric Industrial Co., Ltd. Capacitor unit, and its manufacturing method
US20110102966A1 (en) * 2008-07-10 2011-05-05 Hiroki Takeoka Molded capacitor and method for manufacturing the same
ES2535152B1 (en) * 2013-10-03 2015-11-24 Caf Power & Automation, S.L.U. POWER ACCUMULATION BASKET
US20210099072A1 (en) * 2017-04-20 2021-04-01 Mitsubishi Electric Corporation Filter module for power conversion device
WO2021233711A1 (en) * 2020-05-20 2021-11-25 Vitesco Technologies Germany Gmbh Capacitor assembly, vehicle drive power-electronics device having a capacitor assembly

Also Published As

Publication number Publication date
CN115910599A (en) 2023-04-04

Similar Documents

Publication Publication Date Title
US20110194247A1 (en) Power conversion apparatus
US20230006290A1 (en) Battery top cover structure and assembly method thereof
JP2015133169A (en) Power supply device, and vehicle and power storage device provided with the same
EP3770434A1 (en) Electronic oil pump
WO2014024451A1 (en) Power source device, electric vehicle provided with same, and electricity storage device
CN216672012U (en) Battery end electric connector with stable output, battery pack and electric automobile
JP2012252811A (en) Power supply device, vehicle with power supply device, and bus bar
WO2024120377A1 (en) Capacitor support and inverter assembly
CN216290836U (en) Photovoltaic junction box
US12021271B1 (en) Energy-storage apparatus and electricity-consumption device
EP3930083A1 (en) Battery module, device, and failure treatment method for failed battery cell
CN112510312A (en) Power battery box of electric vehicle
CN216751494U (en) Water-cooled linear motor rotor
CN114696024A (en) Battery with long battery core and vehicle comprising battery
CN209418805U (en) A kind of embedded connector structure for electronic oil pump
CN113889708A (en) Vehicle and battery pack thereof
CN219639076U (en) Electronic water pump and vehicle
CN218042004U (en) Plastic power supply box with grounding device
CN218783166U (en) Quick-change battery pack and quick-change battery pack
CN220189826U (en) Battery cell
CN219203411U (en) Battery upper cover and battery system
CN218896703U (en) Water-cooling plate and battery pack with same
CN218920374U (en) Photovoltaic junction box
CN221327552U (en) Assembled capacitor
CN216929646U (en) Robot system