WO2024120272A1 - 光谱传感器、光谱传感器模组和电子设备 - Google Patents

光谱传感器、光谱传感器模组和电子设备 Download PDF

Info

Publication number
WO2024120272A1
WO2024120272A1 PCT/CN2023/134969 CN2023134969W WO2024120272A1 WO 2024120272 A1 WO2024120272 A1 WO 2024120272A1 CN 2023134969 W CN2023134969 W CN 2023134969W WO 2024120272 A1 WO2024120272 A1 WO 2024120272A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
spectral
spectral sensor
component
sensor module
Prior art date
Application number
PCT/CN2023/134969
Other languages
English (en)
French (fr)
Inventor
熊健
李丽
黄志雷
王莉
姚壮
Original Assignee
北京与光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202223266968.8U external-priority patent/CN219551691U/zh
Priority claimed from CN202211558210.3A external-priority patent/CN118149970A/zh
Priority claimed from CN202211557890.7A external-priority patent/CN118149969A/zh
Priority claimed from CN202223266805.XU external-priority patent/CN219553634U/zh
Application filed by 北京与光科技有限公司 filed Critical 北京与光科技有限公司
Publication of WO2024120272A1 publication Critical patent/WO2024120272A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum

Definitions

  • the present application relates to the field of spectral technology, and in particular to a spectral sensor, a spectral sensor module and an electronic device.
  • the current micro/miniaturized spectral sensing/spectral imaging technology usually adopts the following working mode: using sensors to acquire optical signals, and then performing different degrees of data processing to finally obtain spectral information.
  • the sensors used in this process can obtain information in the frequency domain of the light to be measured, and the implementation methods include: a light detector array with a light modulation structure, or a combination of a filter (or modulation structure) array and a light detector array; wherein the filter (or modulation structure) can be a narrowband, broadband, periodic or other filtering method in the frequency domain or wavelength domain.
  • the present application proposes a spectral sensor, a spectral sensor module and an electronic device including such a spectral sensor module, which can not only improve the optoelectronic performance of current spectral sensors and spectral sensor modules, such as significantly improving the accuracy and stability of spectrum restoration by the spectral sensor module, but also can achieve many advantages in manufacturing and assembly processes with optimized optoelectronic and mechanical structures, such as easy assembly and maintenance and stable and reliable operation.
  • a spectral sensor According to a first design scheme of the present application, a spectral sensor, a spectral sensor module and an electronic device are proposed.
  • a spectral sensor comprising:
  • a spectral chip comprising a light modulation layer and a photoelectric detection layer, wherein the light modulation layer is arranged on a light incident surface side of the photoelectric detection layer on a sensing path of the photoelectric detection layer and comprises at least one modulation unit for modulating incident light, wherein the photoelectric detection layer is configured to obtain a light signal modulated by the at least one modulation unit, and
  • An optical component is arranged on the sensing path of the spectral chip and is used to receive the The optical signal of the incident light of the target and guides the optical signal to the optical modulation layer of the spectral chip,
  • the optical component includes at least one aperture, and the aperture is configured to form a light spot that is irradiated to the light modulation layer of the spectral chip through the aperture, so that the light spot covers at least one modulation unit of the light modulation layer.
  • the aperture is configured to cover modulation units at different positions on the spectral chip through a light spot formed by the aperture that irradiates the light modulation layer of the spectral chip.
  • the aperture is configured so that the light spot formed by the aperture and irradiated to the light modulation layer of the spectral chip covers all modulation units on the spectral chip.
  • the spectral chip also includes an image sensor, which is configured to obtain a response signal to the incident light modulated by the light modulation layer, and obtain spectral image information from the response signal.
  • the aperture is further configured to obtain a spectral response corresponding to the incident light through one or more modulation units corresponding to the light spot behind the aperture, and through the image sensor.
  • the optical component of the spectral sensor further includes a light attenuation plate and/or a light enhancement plate disposed at the aperture position.
  • the optical component of the spectral sensor also includes a light homogenization component, which is arranged on the optical path of the incident light irradiating the spectral chip, and the light homogenization component is configured to make the light incident into the light homogenization component uniformly reflected in all directions.
  • the light homogenizing component is configured so that the luminous intensity through the light homogenizing component is D ⁇ cos ⁇ , that is, its brightness B is independent of direction, where D is the luminous intensity of each face element S on the light emitting surface along any direction r, and ⁇ is the angle between r and the normal n.
  • the light homogenizing component is any one of a light homogenizing sheet, a light homogenizing film or a light homogenizing coating.
  • the optical component further includes a filter component, and the filter component is arranged on the optical path of the incident light irradiating the spectral chip.
  • the aperture is configured as a through hole formed by injection molding of a plastic part.
  • the aperture is constructed as a light-transmitting aperture hole in an opaque coating formed on the upper surface and/or lower surface of the light homogenizing component.
  • the aperture is constructed as a light-transmitting aperture hole in an opaque coating formed on the upper surface and/or lower surface of the filter assembly.
  • the aperture hole is configured as a circular hole, and the center of the aperture circular hole is located on the optical axis of the imaging light path of the spectral chip.
  • the opaque coating is a coating
  • the coating includes one or more coating layers.
  • the opaque coating is a metal coating.
  • a longitudinal cross-section of the through hole is cylindrical or trapezoidal.
  • the uniform component is configured so that the light spot reaching the spectral chip through the optical component is uniform and angle-insensitive.
  • a spectral sensor module comprising:
  • a circuit board is provided on which the spectrum chip of the spectrum sensor is arranged and electrically connected.
  • the housing of the spectral sensor module includes a first support member, and the aperture of the optical component is constructed in the first support member.
  • the light homogenization component of the optical component is arranged on a surface of the first support member facing the incident light.
  • the filter component of the optical component is arranged on a surface of the first support member opposite to the light homogenizing component.
  • a groove for accommodating the filter assembly is provided in the first support member, and the groove corresponds to a position where the aperture is provided in the first support member.
  • the filter assembly is embedded in the groove of the first support member, and the outer surface of the filter assembly is flush with the edge of the groove.
  • the filter component of the optical component is arranged between the light homogenization component of the optical component and the first support member.
  • the housing of the spectral sensor module further includes a second support member for supporting the first support member, wherein the first support member and the second support member are configured to protect and support the formation of an optical path.
  • the first support member and the second support member are constructed as one piece, thereby forming an integrated base, and the aperture is constructed in a region of the base opposite to the light homogenizing component.
  • the housing of the spectral sensor module also includes a base plate, and the circuit board is arranged on the base plate, wherein the second support member is supported between the first support member and the base plate, so that the first support, the second support member and the base plate group together form the housing of the spectral sensor module.
  • the thickness of the first support member is determined according to the aperture of the diaphragm and the thickness of the second support member.
  • a light spot irradiated onto the spectral chip is formed by the aperture, wherein an effective area of the light spot complies with the following empirical formula:
  • d represents the aperture or the aperture diameter
  • h1 represents the distance from the light entrance/light exit surface of the light homogenizing component to the spectral chip in the direction of the light path of the incident light irradiating the spectral chip
  • h2 represents the distance from the light entrance/light exit surface of the aperture to the spectral chip in the direction of the light path of the incident light irradiating the spectral chip.
  • the spectral sensor module further includes a cover plate, which is supported and fixed on a surface of the first support member facing the incident light.
  • a wedge-shaped groove is provided in the cover plate, and the wedge-shaped groove is used to embed and fix the light homogenization component of the optical component.
  • the wedge-shaped groove is arranged to completely surround the outer edge of the light homogenizing component.
  • a wedge-shaped groove is respectively arranged at a plurality of relative positions around the light homogenizing component.
  • the wedge-shaped groove is configured as a tapered hole in the cover plate.
  • the narrow end of the tapered hole of the wedge-shaped groove is located on the outer surface of the cover plate, and the wide end of the tapered hole is located on the inner surface of the cover plate.
  • the inner surface and the outer surface of the light homogenizing component arranged in the wedge-shaped groove of the cover plate are flush with the corresponding surfaces of the cover plate.
  • a step hole is provided in the cover plate, the step of the step hole matches the shape of the light homogenizing component, wherein the circumferential edge of the outer surface of the light homogenizing component embedded in the step hole of the cover plate is covered by the edge of the step hole of the cover plate, thereby the cover plate forms a edging structure for the light homogenizing component embedded therein.
  • a protective cover is provided on the cover plate.
  • the first support member, the second support member and the cover plate of the spectral sensor module are integrally injection molded.
  • the housing of the spectral sensor module is an integrated cylindrical structure, and has a housing portion for housing and fixing the optical component at the end facing the incident light.
  • the accommodating portion for accommodating and fixing the optical component is configured as a stepped hole in the housing of the spectral sensor module, and the stepped hole of the housing includes an opening for passing incident light and a step for positioning and fixing the optical component.
  • the light homogenization component, the aperture and the filter component of the optical component are stacked in sequence along the imaging optical path of the incident light to form a sandwich-type overall structural unit, wherein the overall structural unit is embedded in the stepped hole of the shell by shape locking, material locking or force locking.
  • a glue overflow groove is configured in the housing along the periphery of the accommodating portion for accommodating and fixing the optical component.
  • the glue overflow groove is constructed in the housing as a chamfer on a peripheral edge of the receiving portion for receiving and fixing the optical component.
  • an exhaust hole is further provided in the housing of the spectral sensor module for connecting the internal space of the housing with the external environment.
  • a light-transmitting protective layer is further provided on the light modulation layer of the spectral chip, and a medium component is provided on the light-transmitting protective layer for supporting the light-homogenizing component of the optical component, wherein the medium component is a medium material with high light transmittance.
  • the medium component is disposed between the light modulation layer of the spectral chip and the optical component, and supports the optical component.
  • a filter layer is provided on the light incident surface of the dielectric material, and the aperture of the optical component is constructed in the filter layer.
  • the filter layer is bonded to the light incident surface of the medium component, and the bonding material is light transmissive.
  • the spectral sensor module also includes a data processing unit.
  • a spectral chip of the spectral sensor is placed on and electrically connected to the circuit board, and the optical component is fixed to the upper surface of the spectral chip;
  • the shell of the spectral sensor module is constructed as a molded body, which is wrapped around the spectral chip, the optical component and the circuit board, or the molded body is wrapped around the spectral chip and the optical component and fixed to the circuit board, so that the molded body, the spectral chip, the optical component and the circuit board form a whole.
  • an electronic device comprising the spectral sensor module.
  • a spectral sensor According to a second design scheme of the present application, a spectral sensor, a spectral sensor module and an electronic device are proposed.
  • a spectral sensor comprising:
  • a spectral chip comprising a light modulation layer and a photoelectric detection layer, wherein the light modulation layer is arranged on a light incident surface side of the photoelectric detection layer on a sensing path of the photoelectric detection layer and comprises at least one modulation unit for modulating incident light, wherein the photoelectric detection layer is configured to obtain a light signal modulated by the at least one modulation unit, and
  • An optical component which is arranged on the sensing path of the spectral chip and is used to receive an incident light signal from a photographed object and guide the light signal to the light modulation layer of the spectral chip,
  • the optical component includes a plurality of apertures, and the plurality of apertures are configured to form light spots that are irradiated onto the light modulation layer of the spectral chip through the plurality of apertures, and the light spots cover at least one modulation unit of the light modulation layer, wherein the modulation unit is the smallest unit for obtaining and restoring the spectral information of the optical signal of the incident light of the photographed target.
  • the aperture is configured to form a plurality of light spots that illuminate the light modulation layer of the spectral chip through the plurality of apertures, and the plurality of light spots respectively cover modulation units at different positions on the spectral chip.
  • the modulation units at the set positions corresponding to each period are covered by light spots formed by the light signals of the photographed target through which the aperture is configured to pass.
  • the aperture is also configured to cover all modulation units on the spectral chip through the overall combination of light spots formed by the multiple apertures that irradiate the light modulation layer of the spectral chip.
  • the aperture is configured so that the light spot formed by the aperture covers different positions of the same modulation unit.
  • the modulation unit includes a plurality of identical or different The aperture is configured so that the multiple light spots formed by the aperture respectively cover different modulation subunits of the same modulation unit.
  • the modulation unit includes multiple identical or different modulation sub-units
  • the aperture is configured to irradiate the modulation sub-units at multiple identical positions within different periods of the modulation unit through the light spot formed by the aperture.
  • the modulation unit includes multiple identical or different modulation sub-units, and the aperture is configured so that the multiple light spots formed by the aperture respectively cover the modulation sub-units at the same position in different modulation units.
  • the light modulation layer of the spectral chip is composed of a plurality of groups of different modulation units as spectral units, and the spectral units are periodically arranged on the spectral chip, and the aperture is further configured to form a light spot formed by the plurality of apertures and irradiated onto the light modulation layer of the spectral chip to cover different modulation units of the spectral units.
  • the light modulation layer of the spectral chip is composed of a plurality of groups of different modulation units as spectral units, and the spectral units are periodically arranged on the spectral chip.
  • the aperture is also configured to form a light spot formed by the multiple apertures to illuminate the light modulation layer of the spectral chip and cover the modulation units at the same position of different spectral units.
  • the aperture is also configured to form a light spot formed by the multiple apertures that irradiates the light modulation layer of the spectral chip to cover the modulation units at different positions corresponding to different spectral units, and the multiple modulation units at different positions constitute a spectral unit within a period.
  • the spectral chip also includes an image sensor, which is configured to obtain a response signal to the incident light modulated by the light modulation layer, and obtain spectral image information from the response signal; wherein a plurality of modulation units are arranged on the light modulation layer.
  • the spectral response of the incident light of the object is acquired through one or more modulation units corresponding to each light spot and through the modulation units covered by the light spot.
  • the modulation unit corresponds to one or more physical pixels of the photodetection layer, wherein at least two modulation units form a spectral pixel.
  • the plurality of apertures are configured to be many-to-many or many-to-one with respect to the plurality of light spots formed on the spectral chip by the light signal of the photographed object through the plurality of apertures.
  • the optical component of the spectral sensor further includes a light attenuation plate and/or a light enhancement plate disposed at one or more aperture positions.
  • the light attenuation plate set at the aperture position is used to weaken the incident light signal of the photographed object, and/or the light enhancement plate is used to enhance the incident light signal of the photographed object.
  • the modulation unit includes multiple identical or different modulation sub-units, the light attenuation plate and/or light enhancement plate are arranged at multiple aperture positions, and the multiple apertures are configured to cover different modulation sub-unit positions of the modulation unit within the same period through the light spots formed by the corresponding apertures.
  • the modulation unit includes multiple identical or different modulation sub-units, the light attenuation plate and/or light enhancement plate are arranged at multiple aperture positions, and the multiple apertures are configured to cover the same modulation sub-unit position of the modulation unit in different periods through the light spots formed by the corresponding apertures.
  • the optical component of the spectral sensor also includes a light homogenization component, which is arranged on the optical path of the incident light irradiating the spectral chip, and the light homogenization component is used to make the optical signal irradiating the spectral chip uniform and angle-insensitive.
  • the light homogenization component is configured so that the incident light passing through the light homogenization component forms a cosine luminous body.
  • the light homogenization component is a light homogenization sheet.
  • the optical component also includes a filter component, which is arranged on the optical path of the incident light irradiating the spectral chip.
  • filter components with different filtering bands are arranged corresponding to different aperture positions.
  • the aperture is configured as a through hole formed by injection molding of a plastic part.
  • the aperture is constructed as an aperture hole in an opaque coating formed on the upper surface and/or lower surface of the light homogenizing component.
  • the aperture is constructed as an aperture hole in an opaque coating formed on the upper surface and/or lower surface of the filter assembly.
  • the opaque coating is a coating
  • the coating includes one or more coatings.
  • a longitudinal cross-section of the through hole is square or trapezoidal.
  • a spectral sensor module comprising:
  • a circuit board is provided on which the spectrum chip of the spectrum sensor is arranged and electrically connected.
  • the housing of the spectral sensor module includes a first support member, and the at least one aperture of the optical component is constructed in the first support member.
  • the light homogenization component of the optical component is arranged on the surface of the first support member facing the incident light.
  • the filter component of the optical component is arranged on a surface of the first support member opposite to the light homogenizing component.
  • a groove for accommodating the filter assembly is provided in the first support member, and the groove corresponds to a position where the aperture is provided in the first support member.
  • the filter assembly is embedded in the groove of the first support member, and the outer surface of the filter assembly is flush with the edge of the groove.
  • the filter component of the optical component is arranged between the light homogenization component of the optical component and the first support member.
  • the housing of the spectral sensor module further includes a second support member for supporting the first support member, wherein the first support member and the second support member are configured to protect and support the formation of an optical path.
  • the first support member and the second support member are constructed as one piece, thereby forming an integrated base, and the aperture is constructed in a region of the base opposite to the light homogenizing component.
  • the housing of the spectral sensor module also includes a base plate, and the circuit board is arranged on the base plate, wherein the second support member is supported between the first support member and the base plate, so that the first support, the second support member and the base plate group together form the housing of the spectral sensor module.
  • the thickness of the first support member is determined according to the aperture of the diaphragm, the distance between the center points of the diaphragms, the number of the diaphragms and the thickness of the second support member.
  • a light spot irradiated onto the spectral chip is formed by the aperture, wherein an effective area of the light spot complies with the following empirical formula:
  • d represents the aperture or the aperture diameter
  • h1 represents the distance from the light entrance/light exit surface of the light homogenizing component to the spectral chip in the direction of the light path of the incident light irradiating the spectral chip
  • h2 represents the distance from the light entrance/light exit surface of the aperture to the spectral chip in the direction of the light path of the incident light irradiating the spectral chip.
  • the spectral sensor module further includes a cover plate, which is supported and fixed on a surface of the first support member facing the incident light.
  • a wedge-shaped groove is provided in the cover plate, and the wedge-shaped groove is used to embed and fix the light homogenization component of the optical component.
  • the wedge-shaped groove is arranged to completely surround the outer edge of the light homogenizing component.
  • a wedge-shaped groove is respectively arranged at a plurality of relative positions around the light homogenizing component.
  • the wedge-shaped groove is configured as a tapered hole in the cover plate.
  • the narrow end of the tapered hole of the wedge-shaped groove is on the outer surface of the cover plate, and the wide end of the tapered hole is on the inner surface of the cover plate.
  • the inner surface and the outer surface of the light homogenizing component arranged in the wedge-shaped groove of the cover plate are flush with the corresponding surfaces of the cover plate.
  • a step hole is provided in the cover plate, the step of the step hole matches the shape of the light homogenizing component, wherein the circumferential edge of the outer surface of the light homogenizing component embedded in the step hole of the cover plate is covered by the edge of the step hole of the cover plate, thereby the cover plate forms a edging structure for the light homogenizing component embedded therein.
  • a protective cover is provided on the cover plate.
  • the first support member, the second support member and the cover plate of the spectral sensor module are integrally injection molded.
  • the housing of the spectral sensor module is an integrated cylindrical structure, and has a housing portion for housing and fixing the optical component at the end facing the incident light.
  • the accommodating portion for accommodating and fixing the optical component is configured as a stepped hole in the housing of the spectral sensor module, and the stepped hole of the housing includes an opening for passing incident light and a step for positioning and fixing the optical component.
  • the light homogenization component, the aperture and the filter component of the optical component are stacked in sequence along the imaging optical path of the incident light to form a sandwich-type overall structural unit, wherein the overall structural unit is embedded in the stepped hole of the shell by shape locking, material locking or force locking.
  • a glue overflow groove is constructed in the housing along the periphery of the accommodating portion for accommodating and fixing the optical component.
  • the glue overflow groove is constructed in the housing as a chamfer on a peripheral edge of the accommodating portion for accommodating and fixing the optical component.
  • an exhaust hole is further provided in the shell of the spectral sensor module for connecting the internal space of the shell with the external environment.
  • a light-transmitting protective layer is also provided on the light modulation layer of the spectral chip, and a medium component is provided on the light-transmitting protective layer for supporting the light-homogenizing component of the optical component, wherein the medium component is a medium material with high light transmittance.
  • the medium component is arranged between the light modulation layer and the optical component of the spectral chip, and supports the optical component.
  • a filter layer is provided on the light incident surface of the dielectric material, and the at least one aperture of the optical component is constructed in the filter layer.
  • the filter layer is bonded to the light incident surface of the medium component, and the bonding material is light transmissive.
  • the spectral sensor module also includes a data processing unit.
  • a spectral chip of the spectral sensor is placed on and electrically connected to the circuit board, and the optical component is fixed to the upper surface of the spectral chip;
  • the shell of the spectral sensor module is constructed as a molded body, which is wrapped around the spectral chip, the optical component and the circuit board, or the molded body is wrapped around the spectral chip and the optical component and fixed to the circuit board, so that the molded body, the spectral chip, the optical component and the circuit board form a whole.
  • an electronic device comprising the spectral sensor module.
  • FIG1 shows a schematic structural diagram of a spectral chip according to some embodiments of the present application.
  • FIG2 is a schematic diagram showing the structure of a light modulation layer according to some embodiments of the present application.
  • FIG3 shows a schematic structural diagram of a spectral sensor module according to some embodiments of the present application.
  • FIG4 is a schematic diagram showing the positional relationship of an optical component relative to a spectral chip according to some embodiments of the present application.
  • FIG5 shows a light path diagram of the embodiment shown in FIG4 ;
  • FIG6 exemplarily shows different light homogenization effects of ambient light in different regions on the light homogenization component
  • FIG. 7 and 8 are schematic diagrams showing light spots formed by the aperture of an optical component according to some embodiments of the present application being irradiated onto a light modulation layer, where five light spots are taken as examples respectively;
  • FIG9 is a schematic diagram showing a light spot formed by a stop of an optical component according to some other embodiments of the present application irradiating a light modulation layer, where four light spots are taken as an example;
  • FIG10 is a schematic diagram showing a light spot formed by an aperture of an optical component irradiating a light modulation layer according to some other embodiments of the present application;
  • 11 and 12 are schematic diagrams showing a light spot formed by an aperture of an optical component irradiating a light modulation layer according to other embodiments of the present application;
  • FIG13 is a schematic diagram showing the intensity and size of a light spot formed by an aperture of an optical component on a light modulation layer according to some embodiments of the present application;
  • FIG14 is a schematic diagram showing a light attenuation sheet and/or a light enhancement sheet provided in an aperture of an optical component according to some embodiments of the present application;
  • FIG15 shows a distribution pattern of a stop according to some embodiments of the present application.
  • FIG16 shows a schematic structural diagram of a spectral sensor module according to some embodiments of the present application.
  • FIG17 shows a light path diagram of the spectral sensor module of FIG16 ;
  • FIG18 is a schematic structural diagram of a spectral sensor module according to some other embodiments of the present application, wherein a plurality of apertures are provided;
  • FIG19 shows a light path diagram of the spectral sensor module of FIG18 ;
  • FIG20 shows a three-dimensional cross-sectional view of the spectral sensor module of FIG18
  • FIG21 is a schematic structural diagram of a spectral sensor module according to other embodiments of the present application.
  • FIG22 is a schematic structural diagram of a spectral sensor module according to other embodiments of the present application.
  • FIG23 is a schematic structural diagram of a spectral sensor module according to other embodiments of the present application.
  • FIG24 shows a schematic structural diagram of a spectral sensor module according to some other embodiments of the present application, wherein a plurality of apertures are provided;
  • FIG25 is a schematic structural diagram of a spectral sensor module according to some other embodiments of the present application, wherein the housing is provided with a receiving portion in the form of a boss;
  • FIG26 shows a schematic structural diagram of a spectral sensor module according to some other embodiments of the present application, wherein a medium component is provided;
  • FIG27 shows a schematic structural diagram of a spectral sensor module according to some other embodiments of the present application, wherein the housing is integrally formed as a molded body;
  • FIG. 28 shows a schematic diagram of thickness marking in a specific scenario according to other embodiments of the present application.
  • the term "one” in the claims and the specification should be understood as “one or more”, that is, in one embodiment, the number of an element can be one, while in another embodiment, the number of the element can be multiple. Unless it is clearly indicated in the disclosure of the present application that the number of the element is only one, the term “one” or “an” cannot be understood as unique or single, and the term “one” or “an” cannot be understood as a limitation on the quantity.
  • the present application provides a spectral sensor, in particular, a miniaturized spectral sensor, including a spectral chip 20 and an optical component 10 disposed on a sensing path of the spectral chip 20 .
  • the spectral chip 20 includes a photodetection layer 230 and a light modulation layer 220 arranged on the sensing path of the photodetection layer 230 on the light incident surface side of the photodetection layer 230.
  • the light modulation layer 220 includes at least one modulation unit 221 for modulating the incident light.
  • the photodetection layer 230 is configured to obtain a light signal modulated by the at least one modulation unit 221.
  • the incident light is also referred to as the photographed light hereinafter.
  • the optical component 10 is configured to receive an optical signal of incident light from a photographed object or an optical signal of photographed light, and guide the optical signal to the spectrum chip 20.
  • the optical component 10 is configured to make the incident light guided to the spectrum chip 20 have uniform light intensity.
  • the function of the light homogenization component 110 is to achieve a fixed value of the light cone angle when the incident light reaches the light modulation unit 221 on the surface of the modulation layer after homogenization, and to have better consistency and stability. The spectral information can be better restored.
  • the optical component 10 may also be provided with one or more apertures 120, so that the spectral restoration can be performed using the areas with better angular distribution in the center of the light spot 140.
  • the central areas of multiple light spots 140 may be combined and used together to restore the spectrum.
  • different modulation units 221 may be selected at different positions of the light modulation layer 220 to select light response data that is conducive to spectral restoration.
  • FIG1 shows a schematic diagram of the structure of a spectral chip 20 according to some embodiments of the present application.
  • the spectral chip 20 includes a modulation structure 210 and an image sensor 240.
  • the modulation structure 210 is located on the photosensitive path of the image sensor 240.
  • the modulation structure 210 is a broadband modulation structure 210 in the frequency domain or wavelength domain. The pass spectra of different wavelengths of each modulation structure 210 are not exactly the same.
  • the modulation structure 210 can be a structure or material with filtering properties such as a metasurface, a photonic crystal, a nanocolumn, a multilayer film, a dye, a quantum dot, a MEMS (micro-electromechanical system), an FP etalon, a cavity layer, a waveguide layer, a diffraction element, etc.
  • filtering properties such as a metasurface, a photonic crystal, a nanocolumn, a multilayer film, a dye, a quantum dot, a MEMS (micro-electromechanical system), an FP etalon, a cavity layer, a waveguide layer, a diffraction element, etc.
  • the modulation structure 210 may include a photodetection layer 230 and an optical modulation layer 220 located on the sensing path of the photodetection layer 230.
  • the modulation structures arranged on the optical modulation layer of the modulation structure may be the same or of different shapes.
  • the modulation units formed by the modulation structure may be periodically arranged, or may be different, i.e., non-periodically arranged.
  • the photodetection layer 230 includes a plurality of sensing units. Each modulation unit 221 of the optical modulation layer 220 corresponds to at least one of the sensing units of the photodetection layer 230 along the optical path direction of the incident light.
  • the spectral chip 20 modulates the optical signal of the incident light from the target to be measured by the modulation unit 221 of the optical modulation layer 220 to obtain a modulated optical frequency signal, and receives the modulated optical frequency signal by the photodetection layer 230 and provides a differential response to it, and then reconstructs the differential response by the signal circuit processing layer of the spectral chip 20 to obtain the original spectral information of the target to be measured.
  • silicon-based materials are selected as the materials of both the light modulating layer 220 and the photodetection layer 230, so as to have good compatibility in the processing of the manufacturing process.
  • the light modulating layer 220 can be directly generated on the photodetection layer 230, or the prepared light modulating layer 220 can be transferred to the photodetection layer 230 first.
  • the light modulation layer 220, the photodetection layer 230 and the image sensor 240 are connected vertically from top to bottom and are parallel to each other.
  • the light modulation layer 220 is used to modulate the incident light to obtain a modulated spectrum.
  • the photodetection layer 230 is used to receive the modulated spectrum and provide a differential response to the modulated spectrum.
  • the image sensor 240 is used to process the differential response based on an algorithm to reconstruct the original spectrum.
  • FIG2 shows a schematic diagram of the structure of the optical modulation layer 220 according to some embodiments of the present application.
  • the optical modulation layer 220 includes at least one modulation unit 221.
  • Each modulation unit 221 may be a micro-nano structure unit for modulating incident light.
  • a single modulation unit 221 may include a plurality of modulation structures 222, such as nanoholes or nanopillars, of the same or different sizes and shapes and arranged in the same or different array forms.
  • the modulation units 221 may be regularly arranged on the optical modulation layer 220 in a periodic manner, or may be irregularly arranged on the optical modulation layer 220 in a non-periodic manner.
  • Different modulation units 221 have different modulation effects on the incident light, that is, different modulation units 221 may correspond to basically different transmission spectra, and the transmission spectrum described in the present application may be understood as a wide-spectrum transmission spectrum.
  • the modulation unit 221 may be arranged in a periodic manner, and may be arranged in a non-periodic manner.
  • the parameter characteristics of the modulation structure 222 in the unit 221 can determine the modulation function and effect of the modulation unit 221 on incident light of different wavelengths.
  • the modulation effects or modulation modes of light of different wavelengths described in the present application may include but are not limited to scattering, absorption, transmission, reflection, interference, surface plasmon, resonance, etc.
  • the difference in spectral response between different modulation units 221 can be increased, and by increasing the number of modulation units 221, the sensitivity to the difference between different spectra can be increased.
  • Different modulation units 221 may have the same or different modulation effects on different wavelengths of light, which can be set as needed and is not specifically limited in the embodiments of this aspect. According to the spectrum information of the pixel points corresponding to each modulation unit 221 after the target light beam is irradiated, the spectrum information of the object to be imaged can be determined.
  • the modulation structures 222 provided in the modulation unit 221 may have their own specific cross-sectional shapes, for example, each modulation structure 222 may be freely combined and arranged according to the specific cross-sectional shapes.
  • the specific cross-sectional shapes of some modulation structures 222 may be the same, and each modulation structure 222 having the same specific cross-sectional shape constitutes a plurality of modulation structure groups, the specific cross-sectional shapes of each modulation structure group are different from each other, and all the modulation structures 222 are freely combined.
  • the modulation unit 221 as a whole can be regarded as modulating a spectrum of a specific wavelength, or it can be freely divided into modulation units 221 of one or more modulation structures 222, so that it can modulate spectra of multiple different wavelengths to increase the flexibility and diversity of light modulation.
  • the optical component 10 is located on the photosensitive path of the image sensor 240. After the light is adjusted by the optical component 10 and modulated by the modulation structure 210, it is received by the image sensor 240 to obtain a spectral response.
  • the optical component 10 may include but is not limited to optical components such as a light homogenization component 110 and a filter component 130.
  • the incident light passes through the optical component 10, vertically incident from the top of the light modulation layer 220 through the light modulation micro-nano structure, and then is modulated by the modulation unit 221 of the light modulation layer 220, and different response spectra are obtained in different modulation units 221.
  • the modulated response spectra are respectively irradiated onto the corresponding sensing units of the photodetection layer 230, and the response spectra received by the corresponding sensing units are different, thereby obtaining a differential response, which refers to the difference between the signals of the response spectra obtained after each modulation unit 221 is modulated.
  • the image sensor 240 processes the differential response using an algorithm processing system, thereby obtaining the original spectrum through reconstruction.
  • the image sensor 240 of the spectral chip 20 may be a CMOS image sensor (CIS), a CCD, an array photodetector, or the like.
  • the spectral chip 20 is sensitive to the main light angle of the light signal incident on the modulation layer. Therefore, if it is too sensitive, it will affect the accuracy and stability of spectral recovery.
  • the main light angle of any specific position of the spectral chip 20 represents the angle between the main light ray and the normal line of the light signal guided to the spectral chip 20, where the main light ray represents the line between the point where the light signal from the object is emitted and the point on the surface of the modulation layer that reaches the spectral chip 20, and the normal line represents the straight line perpendicular to the plane where the modulation layer of the spectral chip 20 is located.
  • the optical component 10 is located on the light sensing path of the spectral chip 20, wherein the light is guided to the surface of the spectral chip 20 at a set incident angle and uniform light intensity through the optical component 10, so as to ensure It is understandable that the light cone angle of the incident light signal on the spectral chip 20 for each position on the upper surface of the light modulation layer 220 on the spectral chip 20 also needs to be kept stable and cannot change significantly.
  • the light spot 140 obtained at the corresponding position of the modulation layer needs to be uniform, so that the light intensity on the corresponding photosensitive unit is uniform and the angular sensitivity is small.
  • the optical component 10 includes at least one aperture 120, and the captured light passes through the at least one aperture 120 to form a light spot 140 that is irradiated to the light modulation layer 220 of the spectrum chip 20, and the light spot 140 covers at least one modulation unit 221 of the spectrum chip 20.
  • the modulation unit 221 is, for example, a minimum unit for restoring the spectrum corresponding to the incident light.
  • the at least one aperture 120 is located on the optical path and is used to control the size, angle and light flux of the light spot 140.
  • the optical component 10 further includes a light homogenizing component 110 , wherein the light homogenizing component 110 is disposed on the optical path of the captured light guided to the spectral chip 20 .
  • the light homogenizing component 110 is disposed on the light incident side of the aperture 120, that is, relative to the propagation direction of the incident light, the light homogenizing component 110 is disposed in front of the aperture 120.
  • the light homogenizing component 110 may also be disposed on the light exit side of the aperture 120, that is, relative to the propagation direction of the incident light, the light homogenizing component 110 is disposed behind the aperture 120.
  • the captured light passes through the light homogenizing component 110 and the aperture 120 in sequence, and then reaches the spectrum chip 20.
  • the light homogenizing component 110 may also be arranged on the light exit side of the aperture 120, that is, the captured light may first pass through the aperture 120, and then pass through the light homogenizing component 110, and finally reach and reach the spectrum chip 20.
  • the light homogenizing component 110 can be a light homogenizing sheet, a light homogenizing film, etc., so that the incident light can obtain light with uniform intensity and the light intensity of incident light of different bands in the spectral recovery space area is basically consistent.
  • the light homogenizing component 110 is configured so that the light spot 140 reaching the spectral chip 20 through the optical component 10 is uniform and angle-insensitive.
  • a beam of light coming from different incident angles can be irradiated on each modulation unit 221 of the spectral chip 20 with the same distribution intensity through the light homogenization component 110.
  • the light homogenization component 110 needs to meet a certain light transmittance.
  • Table 1 shows the corresponding relationship between the thickness, the specified transmittance and the formula-fitted transmittance of the light homogenizing component 110.
  • the transmittance and light homogenizing effects are also different.
  • the light homogenizing component 110 is a light homogenizing sheet, and its thickness can be selected as the value in the third column of Table 1, and its unit is ⁇ m.
  • the light homogenizing component 110 can also be a coating, for example, it can be a composite coating with 2-20 layers. The coating is generally 30 ⁇ m.
  • the light homogenizing sheet can be, for example, about 5 ⁇ m to 1000 ⁇ m, or from 5 ⁇ m to 500 ⁇ m, especially 300 ⁇ m.
  • FIG6 exemplarily shows different light-homogenizing effects of ambient light in different regions on the light-homogenizing component. Since different materials have different light-homogenizing effects, different light-homogenizing components can be selected according to the size of the obtained light spot and the position of the modulation structure. Different thicknesses of light-homogenizing components can obtain different regional light-homogenizing effects. Since the thinner the light-homogenizing component, the lower the light-homogenizing ability, different light-homogenizing effects of ambient light in different regions on the light-homogenizing component can be obtained, as shown in FIG6 .
  • the thickness of the light homogenizing component is less than the set value, for example, the thickness is less than or equal to 400, 300, 250, 200 or 100 ⁇ m as shown in Table 1, and a certain space is set to include red (R), green (G), and blue (B) light sources at different positions as shown in Figure 6, then when light sources of different colors at different positions irradiate the light homogenizing component, light homogenization of different regions will be formed at different positions corresponding to the light homogenizing component. Therefore, when it is necessary to obtain spectral information of ambient light in different regions, a thinner light homogenizing component is required.
  • the optical component 10 may also include a filter component 130.
  • the filter component 130 may be a filter or a filter film, and the filter component 130 is arranged in the incident light path, for example, it may be arranged above the light homogenizing component 110 or below the light homogenizing component 110, that is, it is located at the light entrance surface or the light exit surface of the light homogenizing component 110.
  • the following optical component 10 connection modes can be designed according to the formation of the light path: the photographed light is irradiated onto the upper surface of the light homogenizing component 110, and after homogenization, it passes through the aperture 120 arranged on the lower surface of the light homogenizing component 110, and after passing through the aperture 120, it reaches the filter component 130, and after filtering, light corresponding to the set wavelength band is obtained, and finally irradiated onto the modulation unit 221 of the light modulation layer 220 of the spectral chip 20.
  • the optical filter assembly 130 of the optical assembly 10 can obtain spectral information of incident light corresponding to different wavelengths, and can also reduce the adverse effects of other unnecessary wavelengths on conventional needs.
  • the optical filter assembly 130 can selectively filter visible light, infrared light, etc.
  • the aperture 120 of the optical component 10 can be configured as a through hole formed by injection molding of a plastic part, and can also be configured as an aperture hole with a set size of an opaque coating formed on the upper surface and/or lower surface of the light homogenizing component 110.
  • the opaque coating here can be a coating, such as a metal coating. For details, please refer to the description of the coating later.
  • the aperture 120 of the optical component 10 is configured as a light-transmitting aperture hole in the opaque coating formed on the upper surface and/or the lower surface of the light homogenizing component 110
  • a filter component 130 it is also possible to provide a filter component 130.
  • the aperture 120 is constructed as a light-transmitting coating formed on the upper surface and/or the lower surface of the filter, and an aperture hole of a set size is formed to pass light.
  • the aperture 120 is constructed as a light-transmitting aperture hole in the light-transmitting coating formed on the upper surface and/or the lower surface of the filter.
  • the aperture 120 of the optical component 10 can be formed into a specific shape and aperture, for example, the cross section of the aperture hole can be circular or polygonal, and the longitudinal section can be cylindrical, square or trapezoidal.
  • the longitudinal section refers to the section along the optical path direction of the incident light
  • the cross section refers to the section perpendicular to the optical path direction of the incident light.
  • the geometric characteristic parameters such as the aperture, cross section and longitudinal section shape of the aperture hole can be set according to the size of the light spot 140 to be formed.
  • the optical component 10 may be provided with only one aperture 120.
  • a corresponding light spot 140 is formed on the spectral chip 20.
  • the aperture 120 is configured as a circular hole, the center of which is located on the optical axis of the imaging optical path of the spectral chip 20.
  • a light spot 140 is formed by the aperture 120 to illuminate the light modulation layer 220 of the spectral chip 20, and in particular, this light spot 140 covers all modulation units 221 on the light modulation layer 220 of the spectral chip 20. Therefore, the above measures can realize optical imaging and/or spectral imaging of single-point or even multi-angle environments or incident light, and obtain relevant imaging information and spectral information.
  • the optical component 10 can even achieve the collection of a solid angle within a radiation angle of 180°, thereby realizing the collection of incident light with a large field of view FOV, which also helps to solve the angle stability and consistency problems of the spectral sensor module when acquiring incident light.
  • the spectral information of the incident light can be more accurately obtained through homogenizing with a large field of view FOV, so as to more accurately calculate the chromaticity value.
  • the optical component 10 may also be provided with a plurality of apertures 120.
  • the plurality of apertures 120 are configured to form a plurality of light spots 140 through the plurality of apertures 120.
  • the optical component 10 includes a plurality of apertures 120, the plurality of apertures 120 are configured to form a light spot 140 irradiated to the light modulation layer 220 of the spectral chip 20 through the plurality of apertures 120, respectively.
  • FIG7 and FIG8 are schematic diagrams showing that the light spot 140 formed by the aperture 120 of the optical component 10 according to some embodiments of the present application is irradiated on the light modulation layer, and five light spots 140 are taken as examples.
  • the optical component includes five apertures as an example for description, each of which forms a light spot 140 and irradiates the corresponding modulation unit 221 on the light modulation layer 220.
  • the number, position and arrangement of the apertures can be changed as needed, and are not limited to the parameters used for illustration here.
  • the photographed light passes through the aperture 120 of the optical component 10 to form a light spot 140 respectively, and is irradiated onto the corresponding modulation unit 221 of the light modulation layer 220 of the spectral chip 20.
  • the light modulation layer 220 can be formed by one or more modulation units 221, and the modulation unit 221 can be a single layer or a multilayer to modulate the photographed light.
  • the modulation unit 221 is, for example, a minimum unit for obtaining and restoring the spectral information of the optical signal of the incident light of the photographed target.
  • a plurality of different modulation structures 222 can be set in the modulation unit 221, and the modulation structure 222 can be periodically arranged to form different modulation units 221, and the modulation unit 221 can be set as the minimum unit for restoring the spectral information of the incident light.
  • each aperture 120 is configured to form a corresponding light spot 140, and each of the formed light spots 140 does not affect each other.
  • the light spot 140 formed by each aperture 120 can be irradiated on a different position on the spectral chip 20, and each light spot 140 covers a modulation unit 221 at a different position on the light modulation layer 220 of the spectral chip 20.
  • each light spot 140 covers one modulation unit 221 on the light modulation layer 220 of the spectrum chip 20 one by one.
  • the plurality of apertures 120 are configured so that the overall combination of the light spots 140 formed by the plurality of apertures 120 and irradiated to the light modulation layer 220 of the spectral chip 20 covers all the modulation units 221 on the spectral chip 20. In other words, all the modulation units 221 on the spectral chip 20 are covered by at least one light spot 140 or a part of at least one light spot 140.
  • the diameters of the five apertures 120 can be different (FIG. 7), or of course the same (FIG. 8).
  • the diameter of the aperture 120 can be set according to the number of structures of the light modulation layer 220 of the spectrum chip 20.
  • the diameter of the aperture 120 is about 10 mm ⁇ aperture diameter - design target ⁇ 0.001 mm.
  • the light modulation layer 220 of the spectral chip 20 may further include at least one non-modulation unit 221, which may be arranged on the light modulation layer 220 at intervals from the at least one modulation unit 221.
  • Each modulation unit 221 and non-modulation unit 221 of the light modulation layer 220 may respectively correspond to at least one sensing unit of the photodetection layer 230 along the photosensitive path.
  • the modulation unit 221 of the light modulation layer 220 may be configured to modulate the imaging light entering the corresponding sensing unit, and the corresponding sensing unit is suitable for obtaining the spectrum information of the imaging light, while the non-modulation unit 221 of the light modulation layer 220 may be configured not to modulate the imaging light entering the corresponding sensing unit, and the corresponding sensing unit is suitable for obtaining the light intensity information of the imaging light.
  • an aperture 120 can also be set in the optical component 10, and the light spot 140 formed by it is irradiated on the corresponding non-modulation unit 221 on the light modulation layer 220, and the accurate light intensity information of the imaging light is obtained through the corresponding sensing unit on the photodetection layer 230, thereby obtaining higher quality image information.
  • other light sensing functions such as flick
  • FIG9 shows a schematic diagram of a light spot 140 formed by an aperture 120 of an optical component 10 according to other embodiments of the present application being irradiated on a light modulation layer 220, where four light spots 140 are taken as an example.
  • the optical component 10 of the spectral sensor is provided with four apertures 120, which can of course also be set to other numbers such as 1, 2, 3, 5, etc.
  • the light modulation layer 220 of the spectral chip 20 may include a plurality of modulation units 221 arranged periodically, and each modulation unit 221 includes a plurality of spectral modulation structures 222, such as modulation holes or modulation rods.
  • the photodetection layer 230 is located below the light modulation layer 220, and is used to receive the modulated spectrum and provide a differential response to the modulated spectrum.
  • the image sensor 240 of the spectral chip 20 is located below the photodetection layer 230, and is used to reconstruct the differential response to obtain the original spectrum.
  • the sensing unit of the photodetection layer can be a part of the image sensor. physical pixel or multiple physical pixels. Different from physical pixels, in the spectral sensor according to the present application, one or more physical pixels corresponding to one or more modulation units may be referred to as "spectral pixels".
  • the pixel unit for spectral recovery refers to a "spectral pixel”
  • the modulation unit is a group of structural units corresponding to the spectral pixel.
  • “spectral pixel” is a pixel definition made from the perspective of spectral imaging, and such a spectral pixel can also be understood as the smallest unit that can be used to recover the spectral information of the photographed light.
  • Different photoelectric effects can be obtained through aperture structures of different structural forms and arrangements, especially in combination with the correspondingly arranged modulation units of the light modulation layer of the spectral chip.
  • different forms of aperture structures can be matched and used according to different application scenarios to achieve optical imaging and/or spectral imaging of single-point, multi-point, or even multi-angle environments or incident light, and obtain relevant imaging information and spectral information.
  • the specific algorithm principle for restoring the spectrum includes:
  • the intensity signal of ambient light at different wavelengths ⁇ is recorded as f( ⁇ )
  • the transmission spectrum curve of the modulation structure is recorded as T( ⁇ )
  • there are m groups of modulation structures on the filter, and the transmission spectrum of each group is different, that is, the "structural unit" as described above, which can be recorded as Ti ( ⁇ ) (i 1, 2, 3, ..., m) as a whole.
  • one physical pixel corresponds to a group of structural units for explanation, but it is not limited to this. In other embodiments, multiple physical pixels can also correspond to a group of structural units.
  • S is the system's response to light of different wavelengths, which is determined by two factors: the transmittance of the modulation structure and the quantum efficiency of the photodetector response.
  • S is a matrix, and each row vector corresponds to the response of a broadband filter unit (i.e., the photodetector unit and its corresponding modulation structure) to ambient light of different wavelengths.
  • the ambient light is discretely and uniformly sampled, with a total of n sampling points.
  • the number of columns of S is the same as the number of sampling points of the ambient light.
  • f( ⁇ ) is the spectrum of ambient light at different wavelengths ⁇ , that is, the spectrum of ambient light to be measured.
  • the response parameter S of the system is known.
  • the spectrum f of the input light can be obtained by inverting the light intensity reading I of the detector using an algorithm.
  • the process can use different data processing methods depending on the specific situation, including but not limited to: least squares, pseudo-inverse, equalization, least squares norm, artificial neural network, etc.
  • a spectral pixel a group of structural units
  • multiple physical pixels may correspond to a group of structural units.
  • a group of structural units and the corresponding at least one physical pixel constitute a unit pixel.
  • at least one unit pixel constitutes a spectral pixel, which can generate a color temperature channel, and multiple spectral pixels can generate multiple color temperature channels.
  • each modulation unit 221 can be set to be composed of n*n spectral modulation structures 222 (n is an arbitrary integer), and of course, other spectral modulation structures 222 in other display forms can also be considered to constitute the modulation unit 221, for example, composed of m*n spectral modulation structures 222 (m and n are arbitrary integers).
  • each aperture 120 corresponds to one modulation unit 221.
  • 3*3 spectrum modulation structures 222 are arranged in each modulation unit 221.
  • a spectrum chip 20 composed of four spectrum pixels 224 that is, one spectrum pixel 224 can be covered by four light spots 140, and the corresponding four light spots 140 are formed by four apertures 120, respectively.
  • the modulation unit 221 corresponds to one or more physical pixels of the photodetection layer 230 , wherein at least two modulation units 221 form a spectral pixel.
  • the plurality of apertures 120 are configured to be many-to-many or many-to-one with the plurality of light spots 140 formed on the spectral chip 20 by the light signal of the photographed object through the plurality of apertures 120.
  • a plurality of apertures 120 correspond to one light spot 140, or a plurality of apertures 120 correspond to a plurality of light spots 140, especially one-to-one correspondence.
  • FIG10 is a schematic diagram showing a light spot 140 formed by the aperture 120 of the optical component 10 according to some other embodiments of the present application being irradiated on the light modulation layer 220.
  • FIG10 if each light spot 140 is close to each other, problems such as unevenness or angle sensitivity that affect spectral recovery will occur. Therefore, for the case where the modulation units 221 at different positions on the same spectral chip 20 are periodically arranged, a corresponding light spot 140 can be irradiated at the set position corresponding to each period, and a corresponding aperture 120 is set in the optical component 10 to form the light spot 140 at the position.
  • the aperture 120 is also configured to obtain the spectral response corresponding to the incident light through one or more modulation units 221 corresponding to the light spot 140 behind the aperture 120 and through the image sensor 240.
  • the spectral response of the incident light is obtained through one or more modulation units 221 corresponding to each light spot 140.
  • the modulation unit 221 at the set position corresponding to each period is covered by a light spot 140 formed by the light signal of the target through which the aperture 120 is configured to pass.
  • the aperture 120 may alternatively be configured so that the multiple light spots 140 formed by the aperture 120 cover different positions of the same modulation unit 221.
  • the aperture 120 is configured so that the multiple light spots 140 formed by the aperture 120 can respectively cover different modulation subunits of the same modulation unit 221.
  • the aperture 120 is configured so that the light spot 140 formed by the aperture 120 can also irradiate multiple modulation subunits at the same position in different periods of the modulation unit 221.
  • the multiple light spots 140 formed by the aperture 120 can cover the modulation subunits at the same position in different modulation units 221, respectively.
  • the restoration algorithm can be performed through the spectral response matrix of different spectral modulation structures 222 of incident light reaching different spectral pixels 224. Since the parameters of the modulation response that can be obtained are increased or the modulation intensity is increased, the accuracy and stability of the spectral restoration are increased. In addition, through the different pairing and combination relationships between the aperture and the modulation unit and the modulation sub-unit, the personalized photoelectric characteristics can be customized in a targeted manner to meet the requirements of different application scenarios and sensing performance.
  • the light modulation layer 220 of the spectral chip 20 is composed of a plurality of groups of different modulation units 221 as spectral units, and the spectral units are periodically arranged on the spectral chip 20.
  • the aperture 120 is also configured to form a light spot 140 formed by the plurality of apertures 120 that irradiates the light modulation layer 220 of the spectral chip 20 and covers the different modulation units 221 of the spectral units.
  • the light modulation layer 220 of the spectral chip 20 is composed of a plurality of groups of different modulation units 221 as spectral units, and the spectral units are periodically arranged on the spectral chip 20 .
  • a spectrum unit can be composed of multiple different spectrum modulation structures 222, or multiple layers of the same modulation unit 221.
  • the spectrum unit can be composed of multiple different modulation units 221 arranged periodically.
  • a group of incident light responses can be obtained in each spectrum unit.
  • Smoothing can be performed based on the responses of multiple groups of incident light to obtain a more accurate response of the incident light, that is, T( ⁇ ).
  • T( ⁇ ) a more accurate response of the incident light
  • the aperture 120 is further configured to form a light spot 140 formed by the multiple apertures 120 and irradiated onto the light modulation layer 220 of the spectral chip 20 to cover the modulation units 221 at the same position of different spectral units.
  • the aperture 120 is further configured to form a light spot 140 formed by the multiple apertures 120 and irradiated to the light modulation layer 220 of the spectral chip 20 to cover the modulation units 221 at different positions corresponding to different spectral units, and multiple modulation units at different positions constitute a spectral unit within a cycle.
  • the light spot is irradiated on the modulation unit 221 at different positions, and if the different positions in these different cycles are combined with each other, they can actually constitute a spectral unit within a cycle.
  • a modulation unit in the form of a nine-square grid is set, and then nine light spots are respectively irradiated at various positions of the nine-square grid in different cycles, that is, the first position of the first cycle, then the second position of the second cycle, and so on, until the ninth position of the ninth cycle, these positions are combined with each other to form nine positions of a cycle.
  • FIG. 13 shows a diagram of a stop 120 of an optical component 10 on a light modulation layer 220 according to some embodiments of the present application. Schematic diagram of the intensity and size of the formed light spot 140. As shown in FIG13, it is a schematic diagram of the light spot 140 formed by different apertures 120 irradiating the spectral chip 20, so that the uniformity and stability of the light spot 140 obtained under the same or different apertures 120 can obtain the same or different intensities of the light spot 140, and the sizes of the light spot 140 can also be the same or different.
  • FIG14 is a schematic diagram showing that the aperture 120 of the optical component 10 according to some embodiments of the present application is provided with a light attenuation sheet 225 and/or a light enhancement sheet 223.
  • the optical component 10 of the spectral sensor further includes a light attenuation sheet 225 and/or a light enhancement sheet 223 provided at one or more apertures 120.
  • the light attenuation sheet 225 provided at the aperture 120 is used to attenuate the incident light signal of the photographed object, and/or the light enhancement sheet 223 is used to enhance the incident light signal of the photographed object.
  • the light attenuation sheet 225 and/or the light enhancement sheet 223 are arranged at multiple aperture positions, and the multiple apertures 120 are configured to cover different modulation sub-unit positions of the modulation unit 221 within the same period through the light spots formed by the corresponding apertures 120.
  • the light attenuation sheet 225 and/or the light enhancement sheet 223 are arranged at multiple aperture positions, and the multiple apertures 120 are configured to cover the same modulation sub-unit position of the modulation unit 221 in different periods through the light spots formed by the corresponding apertures 120.
  • a light attenuation sheet 225 may be provided at one or more aperture 120 positions, or a light enhancement sheet may be provided at a certain aperture 120 position, or both a light attenuation sheet 225 and a light enhancement sheet 223 may be provided at a set aperture 120 position.
  • the incident light intensity exceeds a set threshold, the spectral information of the position corresponding to the light attenuation sheet 225 may be obtained; when the incident light intensity is lower than the set threshold, the spectral information of the position corresponding to the light enhancement sheet is obtained.
  • There are many ways to provide the light attenuation sheet 225 which may be achieved by coating the filter below the aperture 120 (coating a layer of translucent material), or by reducing the aperture of the aperture 120. On the contrary, a large aperture aperture 120 may be provided to achieve light enhancement.
  • FIG. 15 shows a distribution pattern of the aperture 120 according to some embodiments of the present application.
  • multiple apertures 120 may be provided on the light exit surface of the light homogenizing component 110.
  • multiple apertures 120 are formed by integral plating.
  • the number, distance, and arrangement orientation of the apertures 120 may be set as required.
  • each circular light spot 140 as an example is generated by a corresponding aperture 120.
  • filter components 130 with different filter bands may be provided corresponding to different positions of the aperture 120 , so as to meet the spectral response and restoration of different ambient lights in different bands.
  • the present application also proposes a spectral sensor module, comprising the spectral sensor and a circuit board 5 (PCB), wherein a spectral chip 20 of the spectral sensor is placed on and electrically connected to the circuit board 5.
  • the spectral information obtained by the spectral sensor module can be used to restore ambient light parameters such as color temperature, illumination, and brightness.
  • the spectrum chip 20 of the spectrum sensor is placed and electrically connected to the circuit board 5.
  • a substrate 6 is provided on the circuit board 5, and the spectrum chip 20 of the spectrum sensor can be placed on the substrate 6.
  • the chip 20 is configured to receive incident light, modulate the incident light to obtain a response signal, and obtain spectral information of the incident light from the response signal and a calculated spectrum recovery algorithm.
  • a light homogenization component 110 is also provided on the optical path of the incident light irradiated to the spectral chip 20.
  • the light homogenization component 110 is configured to make the light incident into the light homogenization component 110 uniformly reflected in all directions.
  • the light homogenization component 110 is configured such that the incident light passing through the light homogenization component 110 forms a cosine illuminator.
  • the light homogenizing component 110 is configured such that the luminous intensity through the light homogenizing component 110 is D ⁇ cos ⁇ , that is, its brightness B is independent of direction, where D is the luminous intensity of each face element S on the light emitting surface along a certain direction or any direction r, and ⁇ is the angle between r and the normal n.
  • the light homogenizing component 110 is any one of a light homogenizing film, a light homogenizing sheet, or a light homogenizing coating.
  • an opaque layer is provided on the light emitting surface of the light homogenizing sheet, and the opaque layer can be formed by plating an opaque metal material, and retains the aperture 120 with a set aperture.
  • the thickness of the opaque layer is determined by the aperture of the aperture, the number of apertures, and the distance between the apertures.
  • the spectral sensor module may further include a data processing unit 3, which may be a processing unit such as MCU, CPU, GPU, FPGA, NPU, ASIC, etc., which may further calculate and process the data generated by the image sensor 240, and in particular, may export the generated data to an external device for processing.
  • the image sensor 240 is configured to obtain a response signal to the incident light modulated by the light modulation layer 220, and obtain spectral image information from the response signal, wherein a plurality of modulation units 221 are provided on the light modulation layer.
  • a plurality of modulation units 221 may be provided on the light modulation layer 220.
  • the optical component 10 of the spectral sensor includes a light homogenization component 110 , an aperture 120 and a possible light filtering component 130 in sequence along the optical path of the incident light.
  • the optical component 10 of the spectral sensor module shown here has an aperture 120.
  • multiple different apertures 120 can also be provided.
  • only the aperture 120 is used as an example for description here, and the relevant features can also be applied to a spectral sensor module with multiple different apertures 120.
  • the description made in conjunction with the aperture 120 in the specification is also applicable to the case of multiple apertures 120, and vice versa, which will not be repeated later.
  • the spectral sensor module also includes a housing 4, which serves as a frame structure of the entire module and is used to form a housing space for accommodating optoelectronic components of the spectral sensor module and provide mechanical support and electrical bearing for related optoelectronic components so that the spectral sensor module can achieve corresponding optoelectronic functions.
  • a housing 4 which serves as a frame structure of the entire module and is used to form a housing space for accommodating optoelectronic components of the spectral sensor module and provide mechanical support and electrical bearing for related optoelectronic components so that the spectral sensor module can achieve corresponding optoelectronic functions.
  • the housing 4 of the spectral sensor module includes a first support member 411, and the at least one aperture 120 of the optical component 10 is configured in the first support member 411.
  • one or more apertures 120 of the optical component 10 are provided in the first support member 411, for example, in the form of through holes.
  • one aperture 120 is provided in the first support member 411.
  • multiple apertures 120 in the form of multiple through holes may also be provided.
  • the first support member 411 is constructed as a plate-shaped or disk-shaped element, and the plate plane or disk plane thereof is arranged substantially perpendicular to the optical path of the incident light irradiating the spectral chip 20 .
  • the thickness of the first support member 411 is also the structural dimension or structural height of the first support member 411 in the direction of the light path of the incident light irradiating the spectral chip 20.
  • an aperture 120 is provided in the first support member 411.
  • the light homogenization component 110 of the optical component 10 of the spectral sensor is arranged on the optical path along which the incident light irradiates the spectral chip 20.
  • the light homogenization component 110 is arranged on the upper surface of the first support member 411, that is, on the surface of the first support member 411 facing the incident light, and is opposite to the aperture 120.
  • the incident light passes through the light homogenization component 110 and the aperture 120, and the main light angle irradiated to the spectral chip 20 is in the range of 0-20°.
  • the incident light is irradiated to the modulation layer of the spectral chip 20 through the light homogenization component 110 and the aperture 120 for light modulation.
  • the spectral chip 20 obtains the response information of the incident light, and obtains the spectral information corresponding to the incident light through the algorithm.
  • the housing 4 of the spectral sensor module further includes a second support member 412, which is configured to support the first support member 411, for example, it can be supported between the first support member 411 and the circuit board or the bottom plate 42 of the housing 4 of the spectral sensor module.
  • the first support, the second support member 412 and the bottom plate 42 group together form the housing 4 of the spectral sensor module.
  • the thickness of the second support member 412 is also the structural dimension or structural height of the second support member 412 in the direction of the optical path of the incident light irradiating the spectral chip 20.
  • the light emitted by the light source 8, or the reflected light from the object, or the ambient light is homogenized by the light homogenizing component 110, and then passes through the aperture 120 and the filter component 130, and is guided to the surface of the spectral chip 20 with a fixed incident angle and uniform light intensity.
  • the spectral sensor module further includes a cover plate 43, which is supported and fixed on the first support member 411, especially on the surface of the first support member 411 facing the incident light.
  • the cover plate 43 can be processed separately or separately arranged, and connected to the first support member 411 and the second support member 412 by, for example, bonding.
  • the cover plate 43, the first support member 411 and the second support member 412 can also be integrally injection molded.
  • the spectral sensor module further includes a bottom plate 42, which is located on the other side of the second support member 412, for example, opposite to the cover plate 43 or the first support member 411 located on one side of the second support member 412.
  • the second support member 412 supports and connects the first support member 411 at one end and connects the bottom plate 42 at the other end, so the second support member 412 acts as a support.
  • the circuit board 5 can be fixed on the bottom plate 42.
  • the first support member 411 , the second support member 412 and the bottom plate 42 of the spectral sensor module form a housing 4 of the spectral sensor module, which is used to protect and fix related optical and electronic components, especially to support the formation of an optical path for incident light to irradiate the spectral chip 20 .
  • the thickness of the first support member 411 is determined according to parameters such as the aperture (diameter) of the aperture, the distance between the center points of the apertures, the number of the apertures, and the thickness of the second support member 412.
  • the incident light passes through the light homogenizing component 110, and the angle of the incident light obtained after homogenization is insensitive, and the incident light passing through the light homogenizing plate forms a Lambertian body, or a quasi-Lambertian body, and then the light after homogenization passes through the aperture 120 to irradiate the spectral chip 20 to form a light spot 140.
  • the effective area of the light spot 140 follows the following empirical formula:
  • d represents the aperture or the aperture diameter
  • h1 represents the distance from the light exit surface of the homogenizing component 110 to the spectral chip 20 in the direction of the light path of the incident light irradiating the spectral chip 20
  • h2 represents the distance from the light exit surface of the aperture 120 to the spectral chip 20 in the direction of the light path of the incident light irradiating the spectral chip 20.
  • h1 can also be defined as the distance from the light incident surface of the light homogenizing component 110 to the spectral chip 20 in the direction of the light path of the incident light irradiating the spectral chip 20
  • h2 can be defined as the distance from the light incident surface of the aperture 120 to the spectral chip 20 in the direction of the light path of the incident light irradiating the spectral chip 20.
  • the filter assembly 130 may be disposed on a surface of the first support member 411 opposite to the light homogenizing assembly 110.
  • the filter assembly 130 such as a filter, is disposed on the lower surface of the aperture 120.
  • the filter component 130 may also be arranged on the incident surface of the incident light, that is, the filter component 130 is arranged on the upper surface of the aperture 120, that is, the surface facing the incident light.
  • the filter component 130 of the optical component 10 is arranged between the light homogenizing component 110 of the optical component 10 and the first support member 411.
  • the filter component 130 may be a filter material coating or a filter. Therefore, the incident light is first irradiated onto the filter component 130, and the incident light of the set wavelength band is obtained through the filter component 130, and then the light is homogenized.
  • the light homogenizing component 110 is arranged below the filter component 130, and the filter component 130, the light homogenizing component 110 and the aperture 120 are sequentially arranged on the optical path of the incident light irradiating the spectral chip 20.
  • a light homogenizing component 110 an aperture 120 and a filter component 130 are sequentially arranged on the optical path of the incident light irradiating the spectral chip 20.
  • the light homogenizing component 110 can be a light homogenizing sheet, a light homogenizing film, etc., and the specific material can be polytetrafluoroethylene PET, PTFE, glass, etc.
  • the light homogenization component is configured as a Lambertian body.
  • a Lambertian body refers to a phenomenon in which the incident energy is uniformly reflected in all directions, that is, the incident energy is isotropically reflected in all directions in the entire hemispherical space with the incident point as the center. This phenomenon is called diffuse reflection, also known as isotropic reflection.
  • a complete diffuser is called a Lambertian body. In the embodiments of the present application, it is not limited to a Lambertian body and can also be a quasi-Lambertian body. Compared with a Lambertian body, it is sufficient to be within a certain error range.
  • the spectrum chip 20 is connected to the circuit board 5 through electrical connection, and the optical device is packaged in a protective shell, wherein the first support member 411 and the second support member 412 are used to protect and support the formation of the optical path.
  • a wedge-shaped groove 431 is provided in the cover plate 43 , and the wedge-shaped groove 431 matches the shape of the light homogenizing component 110 , and the light homogenizing component 110 can be disposed in the wedge-shaped groove 431 , thereby embedding and fixing the light homogenizing component 110 .
  • the wedge-shaped groove 431 can be arranged around the light homogenizing component 110, for example, the outer edge of the light homogenizing sheet, that is, the wedge-shaped groove 431 is configured to be circular.
  • the wedge-shaped groove 431 can be configured as a through hole in the cover plate 43, and the through hole can be a tapered hole, which is particularly conducive to the installation, positioning and fixing of the light homogenizing component 110.
  • the narrow end of the tapered hole as the wedge-shaped groove 431 is located on the outer surface of the cover plate 43, that is, the surface facing the incident light, while the wide end of the tapered hole is located on the inner surface of the cover plate 43, that is, the surface facing the first support.
  • the light homogenizing component 110 is limited at all free ends by the first support member 411 and the wedge-shaped groove 431, can be accurately fixed and positioned, and can be closely fitted with the surface of the first support member 411 and the inner circumference of the wedge-shaped groove 431, which is conducive to waterproof and dustproof and undisturbed light propagation.
  • the inner and outer surfaces of the light diffuser disposed in the conical hole of the cover plate 43 are flush with the corresponding surfaces of the cover plate 43. Further, the surface of the light diffuser is in contact with the corresponding surface of the first support member 411.
  • the wedge-shaped groove 431 may be arranged around the light homogenizer on a part of the circumference, so as to be used for the light homogenizer assembly 110 to be fixed on the cover plate 43.
  • a wedge-shaped groove 431 may be arranged around the light homogenizer assembly 110, such as the light homogenizer, at multiple relative positions, such as the three corners of an equilateral triangle, the four corners of a square, etc., respectively, so as to be used for fixing the light homogenizer assembly 110.
  • the light homogenizing sheet may also be connected to the cover plate 43 by other fixing methods, such as bonding.
  • the thickness of the cover plate 43 is not less than the thickness of the light homogenizing assembly 110. In this embodiment, the thickness of the cover plate 43 is the same as the thickness of the light homogenizing assembly 110.
  • a substrate 6 is disposed on the circuit board 5 , and the spectral chip 20 may be disposed on the substrate 6 .
  • a protective cover may be provided on the cover plate 43 to protect the cover plate 43 and the light homogenizing assembly 110 provided in the cover plate 43.
  • the protective cover may be a shell covering the cover plate 43, or may be configured as a flat protective plate, which is, for example, attached to the cover plate 43.
  • the protective cover may be a Fresnel lens or a cover plate 43 glass, etc.
  • the embodiment shown in FIG18 is provided with nine apertures 120, for example in the form of a 3 ⁇ 3 array, in the first support member 411. Therefore, as shown in the optical path diagram of FIG19 , after being homogenized by the light homogenizer, the incident light directly enters the nine apertures 120, and is then continuously introduced into the subsequent filters through the corresponding apertures 120 in nine separate light paths, and finally irradiates the light modulation layer 220 of the spectral chip 20.
  • the spectral sensor module guides the incident light homogenized by the light homogenizing component 110 through multiple apertures 120, and each aperture 120 forms its own separate light path to obtain the best light angle and light flux before the incident light reaches the corresponding sensing unit.
  • These apertures 120 are arranged in the first support member 411, and are especially configured as through holes that penetrate the first support member 411 along the light path direction of the incident light.
  • the filter component 130 is arranged on the light exit side of these apertures 120, and especially the surface of the filter component 130 is in contact with the surface of the first support member 411 on the light exit side of the aperture 120.
  • FIG20 is a cross-sectional view of the spectral sensor module cut along the center line of the middle row of aperture holes.
  • the first support member 411 and the second support member 412 are constructed as one body, thereby forming an integrated base.
  • the aperture 120 can be constructed in the area of the base opposite to the light homogenizing component 110, for example, as a light-transmitting aperture hole. See FIG20.
  • the first support member 411 and the second support member 412 are made of the same material and can be integrally processed, for example, in the same process. Therefore, the first support member 411 and the second support member 412 are integrally formed.
  • the support as a whole forms a shell body 41, which supports the cover plate 43 and the light diffuser embedded in the cover plate 43 at one end, and is connected to the circuit board 5 or the bottom plate at the other end, on which the circuit board 5 for arranging the spectral chip 20 can be arranged.
  • the first support member 411, the second support member 412 and the bottom plate can also be made in one piece, thereby forming the shell 4 of the spectral sensor module.
  • the manufacturing and assembly process of the spectral sensor module can be simplified, and on the other hand, it is conducive to ensuring the precise shell size and shape of the spectral sensor module, facilitating the precise positioning of optoelectronic components, and avoiding adverse effects on the quality of spectral imaging and image imaging.
  • the bottom plate 42 may also be made integrally with the housing 41 formed by the first support member 411 and the second support member 412.
  • the first support member 411, the second support member 412 and the bottom plate 42 thus form a can-shaped housing 4 of the spectral sensor module, or form a component of the housing 4.
  • the aperture 120 and the filter assembly 130 are arranged in the first support member 411.
  • a groove for accommodating the filter assembly 130, especially the filter is arranged in the first support member 411.
  • the filter can be embedded in the groove of the first support member 411, especially the outer surface of the filter is flush with the edge of the groove, so that the filter and the first support member 411 form a neat appearance, which is conducive to installing other optoelectronic components in the housing 4 and avoiding adverse effects on the optical path and imaging process.
  • the light homogenizing assembly 110 is also embedded in the cover plate 43.
  • the narrow end of the tapered hole as the wedge-shaped groove 431 is located on the inner surface of the cover plate 43, that is, the surface facing away from the incident light, or the surface facing the first support member 411; while the wide end of the tapered hole is located on the outer surface of the cover plate 43, that is, the surface facing the incident light.
  • the two side surfaces of the light homogenizer embedded in the conical hole of the cover plate 43 are flush with the surface of the cover plate 43. Furthermore, the surface of the light homogenizer is bonded to the corresponding surface of the first support member 411.
  • the light homogenizing component 110 are limited by the first support member 411 and the wedge-shaped groove 431, and can be accurately fixed and positioned; on the other hand, it can be closely fitted with the surface of the first support member 411 and the inner circumference of the wedge-shaped groove 431, which is conducive to waterproof and dustproof and undisturbed light propagation; on the other hand, this structural form can embed the light homogenizing component 110 into the wedge-shaped groove 431 of the first support member 411 from the outside of the shell, which is conducive to simplifying the installation and maintenance process.
  • the aperture 120 and the filter assembly 130 are arranged in the first support member 411.
  • an aperture 120 is arranged in the first support member 411, for example, it is configured as a through hole in the first support member 411.
  • a groove for accommodating the filter assembly 130, especially the filter is arranged in the first support member 411, and the groove corresponds to the position where the aperture 120 is arranged in the first support member 411.
  • the filter can be embedded in the groove of the first support member 411, especially the outer surface of the filter is flush with the edge of the groove, so that the filter and the first support member 411 form a neat appearance, which is conducive to installing other optoelectronic components in the housing and avoiding adverse effects on the optical path and imaging process.
  • the first support member 411 and the second support member 412 may be constructed as one piece and made of the same material, and may be integrally processed in the same process, for example. Therefore, the first support member 411 and the second support member 412 integrally form a shell body 41, which supports the cover plate 43 and the light diffuser embedded in the cover plate 43 at one end, and is connected to the circuit board 5 or the bottom plate 42 at the other end.
  • a circuit board 5 for mounting the spectral chip 20 may be provided thereon.
  • the light homogenizing component 110 is also embedded in the cover plate 43.
  • a step hole 433 is provided in the cover plate 43, and the step of the step hole 433 matches the shape of the light homogenizing component 110, so that the light homogenizing component 110 can be embedded in the step hole 433, thereby positioning and fixing the light homogenizing component 110, while allowing the photographed light to pass through the light homogenizing component 110, such as a light homogenizing sheet.
  • the inner surface of the light homogenizing sheet embedded in the step hole 433 of the cover plate 43 is flush with the inner surface of the cover plate 43.
  • the circumferential edge of the outer surface of the light homogenizing sheet embedded in the step hole 433 of the cover plate 43 is covered by the edge of the step hole 433 of the cover plate 43, thereby the cover plate 43 forms a edging structure 432 for the light homogenizing sheet embedded therein.
  • the advantage of this structural form is that the edge structure 432 can better seal the connection between the light homogenizing component 110 and the cover plate 43 to prevent fog, water vapor, rainwater and the like from invading the interior of the spectral sensor module.
  • a diaphragm 120 is also provided in the first support member 411, for example, configured as a through hole in the first support member 411.
  • the central axis of the through hole coincides with the optical axis of the imaging optical path of the spectral chip 20, which is conducive to optimizing the incident angle and uniform light intensity.
  • the surface of the light homogenizer can be attached to the corresponding surface of the first support member 411.
  • the aperture 120 and the filter assembly 130 are arranged in the first support member 411.
  • a groove for accommodating the filter assembly 130, especially the filter is arranged in the first support member 411.
  • the filter can be embedded in the groove of the first support member 411, especially the outer surface of the filter is flush with the edge of the groove, so that the filter and the first support member 411 form a neat appearance, which is conducive to installing other optoelectronic components in the housing and avoiding adverse effects on the optical path and imaging process.
  • the present application further proposes a spectral sensor module, comprising the spectral sensor and a housing 4 , wherein the spectral chip 20 and the optical component 10 of the spectral sensor are disposed in the housing 4 .
  • the optical component 10 is directly fixed in the housing 4 of the spectral sensor module and is arranged on the optical imaging path of the spectral chip 20.
  • the housing 4 of the spectral sensor module is an integral structure, which is, for example, processed in the same process using the same material.
  • the housing 4 of the spectral sensor module is an integrated columnar or tubular structure, and its geometric axis of symmetry is coaxial with the incident light imaging optical path.
  • an aperture 120 is also provided in the first support member 411, which can also achieve the beneficial effects described in combination with the aperture.
  • the aperture can be a light-transmitting hole in a light-shielding coating (such as a metal coating), and the light-shielding coating is, for example, attached to the surface of the light-homogenizing component 110 and/or the light-filtering component 130, and in particular is clamped in the middle by the light-homogenizing component 110 and the light-filtering component 130.
  • a light-shielding coating such as a metal coating
  • the housing 4 of the spectral sensor module has a housing portion for accommodating and fixing the optical component 10 at one end facing the incident light.
  • the housing portion for accommodating and fixing the optical component 10 can be configured as a stepped hole 441 in the housing 4 of the spectral sensor module.
  • the stepped hole 441 of the housing 4 has an opening 442 for passing the incident light on the one hand, and a step 443 for positioning and fixing the optical component 10 on the other hand, wherein the step 443 is configured around the opening 442.
  • the optical component 10 can be embedded in the stepped hole 441 as a whole, and its edge rests on the step 443 of the housing portion of the housing 4.
  • the outer surface of the optical component 10 embedded in the stepped hole 441 is flush with the inner surface of the housing 4, that is, the combination of the two forms a flat and smooth surface.
  • the optical component 10 is embedded in the housing 4 of the spectral sensor module, and the circumferential edge of the outer surface of the optical component 10, that is, the circumferential edge of the surface facing the incident light, can be covered by the side wall of the opening 442 of the housing, so that the housing 4 forms a edging structure for the optical component 10 embedded therein.
  • This edging structure can be realized, for example, by a chamfering structure or a hole expansion structure on the side wall of the opening 442 of the housing of the housing 4.
  • the advantage of this structural form is that the connection between the light homogenizing component 110 and the cover plate 43 can be more highly sealed by this edging structure, thereby preventing fog, water vapor, rainwater, etc. from invading the interior of the spectral sensor module.
  • the optical assembly 10 includes a light homogenizing assembly 110, an aperture 120 and an optional filter assembly 130, which are stacked in sequence along the imaging optical path of the incident light to form a sandwich-type integral structural unit.
  • the aperture 120 may be a light-transmitting aperture hole in a separately provided light-shielding layer 150.
  • This integral structural unit may be embedded in the receiving portion (e.g., stepped hole 441) of the housing 4 by means of shape locking, material locking, or force locking.
  • the inner surface of the light homogenizing assembly 110 i.e., the surface facing the interior of the housing 4, is flush with the inner surface of the housing 4 itself.
  • the receiving portion of the housing 4 is configured as a boss 444 on the housing 4. That is, the receiving portion of the housing 4 protrudes from the overall profile of the housing 4 on the imaging optical path, for example, referring to the stereoscopic view of the housing 4 shown in FIG. 25.
  • Such a structure is conducive to increasing the internal space of the housing and facilitating the arrangement and installation of other optoelectronic components.
  • the optical component 10 may also be provided with a plurality of apertures 120.
  • the apertures 120 may be light-transmitting aperture holes in a separately provided light-shielding layer 150.
  • the apertures 120 of the optical component 10 may also be configured as aperture holes in a light-impermeable coating (e.g., a coating, especially a metal coating), and the light-impermeable coating may be applied to the upper surface and/or lower surface of the light-homogenizing component 110, or the upper surface and/or lower surface of the optional filter component 130.
  • a light-impermeable coating e.g., a coating, especially a metal coating
  • the shell 4 is further provided with a glue overflow groove 446, see FIG. 24.
  • the glue overflow groove 446 is used to guide and contain process glue.
  • the glue overflow groove 446 can be constructed in the shell 4, especially near the receiving portion for receiving and fixing the optical component 10, for guiding and containing, for example, the adhesive or glue that may flow out when bonding the optical component 10.
  • the glue overflow groove 446 is constructed in the shell 4 along the periphery of the receiving portion for receiving and fixing the optical component 10, especially as an annular groove structure.
  • the glue overflow groove 446 in the shell 4 can also be constructed as a chamfer of the peripheral edge of the receiving portion for receiving and fixing the optical component 10, and the gap or notch formed by this chamfering structure contains the glue overflow.
  • an exhaust hole 445 can be provided, which can make the internal space of the housing communicate with the external environment, thereby achieving a balance of pressure inside and outside the housing, ensuring the public welfare of the spectral sensor module during the manufacturing process and the stability during the working process.
  • the exhaust hole 445 can also be provided with a plug, which can close and seal the exhaust hole 445 when necessary to prevent the interior of the housing from unnecessary pollution and influence.
  • a light-transmitting protective layer is further provided on the light modulation layer 220 of the spectrum chip 20, and a dielectric component 7 is provided on the light-transmitting protective layer.
  • the dielectric component 7 is a dielectric material with high light transmittance.
  • the dielectric component 7 can provide both mechanical and optical functions. Structurally, the dielectric component 7 is disposed between the light modulation layer 220 of the spectral chip 20 and the optical component 10, and supports the optical component 10, especially It supports the light homogenizing component 110.
  • the refractive index of the high light-transmittance dielectric material is related to the thickness of the dielectric material.
  • a filter layer may be further provided on the light incident surface of the dielectric material, and the filter layer may be bonded to the light incident surface of the dielectric component 7 .
  • the adhesive material used to bond the filter layer and the dielectric component 7 is transparent.
  • the incident light passes through the light homogenizing component 110 and the aperture 120 disposed after the light homogenizing component 110, continues to pass through the dielectric component 7, and reaches the light modulation layer 220 of the spectral chip 20.
  • the incident light can also pass through the light homogenizing component 110 and the aperture 120 arranged below the light homogenizing component 110, continue to pass through the filter component 130 on the medium component 7 to enter the medium component 7 after filtering, and then reach the light modulation layer 220 of the spectral chip 20.
  • the aperture 120 can be constructed as an aperture in a coating, and the coating can be coated on the light-entering side surface and/or the light-exiting side surface of the light-homogenizing component 110.
  • the coating is made of a light-shielding material, such as a metal coating, especially a chrome plating layer, thereby forming an opaque coating.
  • Light can pass through the light-transmitting aperture in the coating, and this light-transmitting aperture is also called a light-transmitting aperture hole, and its shape, number and arrangement are described in detail later.
  • the coating can also be coated on the light-entering side surface and/or the light-exiting side surface of the filter component 130.
  • a metal coating is taken as an example for explanation.
  • the coating may be a composite structure, for example, including one or more coatings.
  • the one or more coatings are stacked on top of each other and are processed with light-transmitting apertures, thereby forming an overall coating with an aperture.
  • Different coatings of the coating may be made of different materials, so that different physical and optical properties of the coating and the aperture may be achieved through the combination of coatings and materials.
  • the description of the characteristics of the coating here is particularly applicable to all the exemplary embodiments described above in combination with the spectral sensor module.
  • the housing 4 of the spectral sensor module is constructed as a molded body integrally formed by injection molding or molding.
  • the spectrum chip 20 of the spectrum sensor module is placed and electrically connected to the circuit board 5, and the optical component is fixed to the upper surface of the spectrum chip 20.
  • the spectrum sensor module further includes a molded body 45, which is formed in one piece by injection molding, molding, and the like, and the molded body 45 is wrapped around the spectrum chip 20, the optical component, and the circuit board 5, or the molded body 45 is wrapped around the spectrum chip 20 and the optical component and fixedly supported on the circuit board 5, so that the molded body 45 is fixed with the spectrum chip 20, the optical component, and the circuit board 5 to form a whole, thereby obtaining the spectrum sensor module.
  • the optical component, the spectral chip 20 and the circuit board 5 are first assembled, that is, the spectral chip 20 is attached to the upper surface of the circuit board 5, and the optical component is fixed to the upper surface of the spectral chip 20 to obtain a semi-finished product; then the semi-finished product is placed in a mold, and the molding material is punched into the mold. After solidification, the mold is opened to obtain the molded body 45 formed integrally on the semi-finished product, thereby obtaining the spectral sensor module.
  • the process of forming the molded body it is preferred to adopt a plate-making process, that is, multiple semi-finished products are placed in the mold, so that multiple semi-finished products can be uniformly formed into a molded body, and then cut or divided to obtain multiple single spectral sensor modules.
  • the optical component and the spectral chip 20 can be any one of the aforementioned embodiments, and the circuit board 5 is the same as the aforementioned embodiments.
  • the circuit board 5, the spectral chip 20 and the optical component are fixed by the molded body 45, which can reduce the overall size of the spectral sensor module to a certain extent, that is, it is conducive to miniaturization, and the presence of the molded body 45 can increase the overall strength of the spectral sensor module.
  • the size requirements for the spectral sensor module are relatively strict.
  • the height of the spectral sensor module for example, less than 1.5mm, or even worse, the height is less than 1mm, and can also be between 1-1.5mm.
  • the optical component includes a light homogenizing component 110, an aperture 120 and a filter component 130, and the corresponding light homogenizing component 110, the aperture 120 and the filter component 130 have certain thickness requirements, if they are too thin, the effect and reliability may not be up to standard.
  • the thickness of the light homogenizing component 110 is 0.07 mm
  • the diameter of the aperture 120 is 0.18 mm
  • the thickness of the filter component 130 is 0.47 mm
  • the thickness of the spectral chip 20 is 0.15 mm
  • the thickness of the circuit board 5 is 0.3 mm.
  • the filter, spectral chip 20 and circuit board 5 of the optical component 10 are fixed by adhesive, and the thickness of the adhesive above and below the spectral chip 20 is 0.01 mm, then the overall height is 1.01 mm; and when the thickness of the adhesive is controlled at about 0.005 mm, it is expected that the height of the spectral sensor module can be controlled within 1 mm, that is, the height of the spectral sensor module can be controlled without changing the thickness of the spectral chip, circuit board, optical component and other devices. It should be noted that the thickness of the adhesive at different positions may be different. For example, the thickness between the spectrum chip 20 and the circuit board 5 is 0.01 mm, and the thickness between the spectrum chip 20 and the green light component 130 of the optical component is 0.005 mm.
  • the optical component can be implemented as a light homogenizing component 110, an aperture 120, and a filter component 130.
  • the aperture 120 can be constructed as an aperture in a coating, and the coating can be coated on the light incident side surface and/or the light exit side surface of the light homogenizing component 110.
  • the light homogenizing component 110, the aperture 120, and the filter component 130 can be first connected to form a whole and then fixed to the upper surface of the spectrum chip 20, or they can be fixed to the upper surface of the spectrum chip 20 in sequence according to the illustrated order.
  • the light homogenizing component 110 can use a light homogenizing film
  • the filter component 130 can use a filter.
  • Some embodiments of the present application further provide an electronic device, including a spectral sensor module.
  • Spectral information acquired by the spectral sensor module of the electronic device can be used to restore ambient light parameters such as color temperature, illumination, and brightness.
  • the electronic device may include one or more processors and a memory.
  • the processor may be a central processing unit (CPU) or other forms of processing units having data processing capabilities and/or instruction execution capabilities, and may control other components in the electronic device to perform the functions of the spectral sensor or the spectral sensor module.
  • the memory may include one or more computer program products, which may include various forms of computer-readable storage media, such as volatile memory and/or non-volatile memory.
  • the memory may store relevant control instructions or programs for implementing spectral imaging and/or image imaging.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

一种光谱传感器、光谱传感器模组和电子设备。光谱传感器包括光谱芯片(20)和光学组件(10)。光谱芯片(20)包括光调制层(220)和光电探测层(230),光调制层(220)在光电探测层(230)的感测路径上设置于光电探测层(230)的入光面一侧并包括用于对入射光进行调制的至少一个调制单元(221)。光电探测层(230)被配置为获得经过至少一个调制单元(221)所调制的光信号。光学组件(10)设置于光谱芯片(20)的感测路径上,接收来自被摄目标的光信号并将光信号导引至光谱芯片(20)的光调制层(220)。通过光阑(120)形成照射到光调制层(220)的光斑,其覆盖光调制层(220)的至少一个调制单元(221)。由此改善光谱传感器的光电性能,例如显著提高光谱传感器模组恢复光谱的准确性和稳定性,而且能够实现以优化的光电和机械结构带来制造和组装工艺上的诸多优点。

Description

光谱传感器、光谱传感器模组和电子设备
相关申请的交叉引用
本申请要求于2022年12月06日向中国国家知识产权局提交的第202211558210.3、202223266805.X、202211557890.7、202223266968.8号中国专利申请的优先权和权益,上述申请的全部内容通过引用并入本文。
技术领域
本申请涉及光谱技术领域,尤其涉及一种光谱传感器、光谱传感器模组和电子设备。
背景技术
目前的微型/小型化光谱传感/光谱成像技术,通常采用以下的工作方式:采用传感器进行光信号的获取,之后进行不同程度的数据处理,最终获得光谱信息。此过程中所使用的传感器能够获得待测光频域上的信息,实现方式包括:具有光调制结构的光探测器阵列,或是滤光片(或调制结构)阵列与光探测器阵列的组合;其中滤光片(或调制结构)可以是在频域或者波长域上窄带、宽带、周期等滤波方式。利用这种计算重构技术,能够避免传统光谱技术中的分光空间光路,实现体积较小的光谱仪或光谱相机。
由于光谱仪或光谱相机在微型化过程中需要解决各种光学问题,因此设计一款新型的微型光谱传感器模组是亟需解决的问题。
发明内容
为实现上述目标,本申请提出一种光谱传感器、光谱传感器模组以及包括这种光谱传感器模组的电子设备,其不但能够改善目前光谱传感器、光谱传感器模组的光电性能,例如显著提高所述光谱传感器模组恢复光谱的准确性和稳定性,而且能够实现以优化的光电和机械结构带来制造和组装工艺上的诸多优点,例如易于组装和维护和工作稳定可靠等。
按照本申请的第一种设计方案,提出一种光谱传感器、光谱传感器模组和电子设备。
根据本申请的第一方面,提出一种光谱传感器,包括:
光谱芯片,所述光谱芯片包括光调制层和光电探测层,其中所述光调制层在所述光电探测层的感测路径上设置于所述光电探测层的入光面一侧并包括用于对入射光进行调制的至少一个调制单元,其中所述光电探测层被配置为获得经过所述至少一个调制单元所调制的光信号,以及
光学组件,所述光学组件设置于所述光谱芯片的感测路径上,用于接收来自被摄 目标的入射光的光信号并将所述光信号导引至所述光谱芯片的光调制层,
其中所述光学组件包括至少一个光阑,所述光阑被配置为通过所述光阑形成照射到所述光谱芯片的光调制层的光斑,使得所述光斑覆盖所述光调制层的至少一个所述调制单元。
根据本申请的第一方面的一些实施例,所述光阑被配置为通过所述光阑形成的照射到所述光谱芯片的光调制层的光斑覆盖所述光谱芯片上不同位置的调制单元。
根据本申请的第一方面的一些实施例,所述光阑被配置为通过所述光阑形成的照射到所述光谱芯片的光调制层的光斑覆盖所述光谱芯片上的所有调制单元。
根据本申请的第一方面的一些实施例,所述光谱芯片还包括图像传感器,所述图像传感器配置成用于获取对所述光调制层调制的入射光的响应信号,并由上述响应信号获得光谱图像信息。
根据本申请的第一方面的一些实施例,所述光阑还被配置为通过所述光阑后的光斑对应的一个或者多个调制单元,及通过所述图像传感器获取所述入射光对应的光谱响应。
根据本申请的第一方面的一些实施例,所述光谱传感器的光学组件还包括设置在所述光阑位置处的光衰减片和/或光增强片。
根据本申请的第一方面的一些实施例,所述光谱传感器的光学组件还包括匀光组件,所述匀光组件设置在所述入射光照射到所述光谱芯片的光路上,所述匀光组件被配置为使得入射到所述匀光组件中的光线在所有方向均匀反射。
根据本申请的第一方面的一些实施例,所述匀光组件被配置通过所述匀光组件的发光强度为D∝cosθ,即其亮度B与方向无关,式中D为出光表面的每块面元S沿任一方向r的发光强度,θ为r与法线n的夹角。
根据本申请的第一方面的一些实施例,所述匀光组件是匀光片、匀光膜或匀光涂层中的任一种。
根据本申请的第一方面的一些实施例,所述光学组件还包括滤光组件,所述滤光组件设置在所述入射光照射到所述光谱芯片的光路上。
根据本申请的第一方面的一些实施例,所述光阑构造为通过塑胶件注塑形成的通孔。
根据本申请的第一方面的一些实施例,所述光阑构造为在所述匀光组件的上表面和/或下表面形成的不透光涂层中的透光的光阑孔。
根据本申请的第一方面的一些实施例,所述光阑构造为在所述滤光组件的上表面和/或下表面形成的不透光涂层中的透光的光阑孔。
根据本申请的第一方面的一些实施例,所述光阑孔构造成一个圆形孔,所述光阑圆形孔的圆心处在所述光谱芯片的成像光路的光轴上。
根据本申请的第一方面的一些实施例,所述不透光涂层是镀膜,所述镀膜包括一个或者多个涂层。
根据本申请的第一方面的一些实施例,所述不透光涂层是金属镀膜。
根据本申请的第一方面的一些实施例,所述通孔的纵截面是柱形或者梯形。
根据本申请的第一方面的一些实施例,所述匀组件被配置为通过所述光学组件到达所述光谱芯片上的光斑均匀且角度不敏感。
根据本申请的第二方面,提出一种光谱传感器模组,包括:
前述的光谱传感器,以及
电路板,所述光谱传感器的光谱芯片安置并电连接到所述电路板上。
根据本申请的第二方面的一些实施例,所述光谱传感器模组的壳体包括第一支撑件,所述光学组件的所述光阑构造在所述第一支撑件中。
根据本申请的第二方面的一些实施例,所述光学组件的匀光组件设置在第一支撑件的面对入射光的表面上。
根据本申请的第二方面的一些实施例,所述光学组件的滤光组件设置在第一支撑件的与所述匀光组件相对的表面上。
根据本申请的第二方面的一些实施例,在第一支撑件中设置用于容纳所述滤光组件的凹槽,该凹槽与第一支撑件中设置所述光阑的位置相对应。
根据本申请的第二方面的一些实施例,所述滤光组件嵌入到第一支撑件的所述凹槽中,并且所述滤光组件的外表面与凹槽边缘齐平。
根据本申请的第二方面的一些实施例,所述光学组件的滤光组件设置在所述光学组件的匀光组件与第一支撑件之间。
根据本申请的第二方面的一些实施例,所述光谱传感器模组的壳体还包括用于支撑第一支撑件的第二支撑件,其中第一支撑件和第二支撑件设置用于保护并支撑光路的形成。
根据本申请的第二方面的一些实施例,所述第一支撑件和第二支撑件构造成一体的,并由此形成一个一体的底座,在该底座的与所述匀光组件相对的区域中构造所述光阑。
根据本申请的第二方面的一些实施例,所述光谱传感器模组的壳体还包括底板,所述电路板设置在所述底板上,其中所述第二支撑件支撑在第一支撑件和所述底板之间,从而第一支撑、第二支撑件以及所述底板组共同成形成光谱传感器模组的壳体。
根据本申请的第二方面的一些实施例,所述第一支撑件的厚度根据所述光阑的孔径和第二支撑件的厚度来确定。
根据本申请的第二方面的一些实施例,通过所述光阑形成照射到所述光谱芯片上的光斑,其中所述光斑的有效面积遵循以下经验公式:
其中,d代表光阑孔径或者说光阑直径,h1代表在入射光照射到光谱芯片的光路方向上所述匀光组件的入光面/出光面到光谱芯片的距离,h2代表在入射光照射到光谱芯片的光路方向上所述光阑的入光面/出光面到光谱芯片的距离。
根据本申请的第二方面的一些实施例,所述光谱传感器模组还包括盖板,其支撑并固定在所述第一支撑件的面对入射光的表面上。
根据本申请的第二方面的一些实施例,在所述盖板中设置有楔形槽,所述楔形槽用于嵌入和固定所述光学组件的匀光组件。
根据本申请的第二方面的一些实施例,所述楔形槽环绕所述匀光组件的外沿设置完整一周。
根据本申请的第二方面的一些实施例,围绕所述匀光组件在多个相对的位置上分别设置一个楔形槽。
根据本申请的第二方面的一些实施例,所述楔形槽构造为在所述盖板中的锥形孔。
根据本申请的第二方面的一些实施例,所述楔形槽的锥形孔的窄端处于所述盖板的外表面,而锥形孔的宽端处于所述盖板的内表面。
根据本申请的第二方面的一些实施例,设置在所述盖板的楔形槽中的匀光组件的内表面和外表面与所述盖板的相应表面齐平。
根据本申请的第二方面的一些实施例,在所述盖板中设置有台阶孔,所述台阶孔的阶梯与匀光组件形状匹配,其中所述嵌入在盖板的台阶孔中的匀光组件的外表面的周向边缘被所述盖板的台阶孔的边缘所覆盖,由此所述盖板对嵌入其中的所述匀光组件形成一种包边结构。
根据本申请的第二方面的一些实施例,在所述盖板上设置保护罩。
根据本申请的第二方面的一些实施例,所述光谱传感器模组的第一支撑件、第二支撑件和盖板一体注塑成型。
根据本申请的第二方面的一些实施例,所示光谱传感器模组的壳体是一体的筒状结构,并且在面向入射光的一端具有用于容纳和固定所述光学组件的容纳部。
根据本申请的第二方面的一些实施例,所述用于容纳和固定光学组件的容纳部构造成在光谱传感器模组的壳体中的阶梯孔,所述壳体的阶梯孔包括用于通过入射光的开口和用于定位和固定所述光学组件的台阶。
根据本申请的第二方面的一些实施例,所述光学组件的匀光组件、光阑和滤光组件沿着入射光的成像光路依次叠置,形成一种三明治式的整体结构单元,其中所述整体结构单元通过形状锁合、材料锁合或者力锁合的方式嵌入到所述壳体的阶梯孔中。
根据本申请的第二方面的一些实施例,在所述壳体中沿着所述用于容纳和固定光学组件的容纳部的周边构造有溢胶槽。
根据本申请的第二方面的一些实施例,所述溢胶槽在所述壳体中构造为在所述用于容纳和固定光学组件的容纳部的周边棱边上的倒角。
根据本申请的第二方面的一些实施例,在所示光谱传感器模组的壳体中还设置有使壳体内部空间与外部环境彼此连通的排气孔。
根据本申请的第二方面的一些实施例,所述光谱芯片的光调制层上还设置有透光保护层,并在所述透光保护层上设置有介质组件,用于支撑所述光学组件的匀光组件,其中所述介质组件为高透光率的介质材料。
根据本申请的第二方面的一些实施例,所述介质组件设置在光谱芯片的光调制层和光学组件之间,并支撑所述光学组件。
根据本申请的第二方面的一些实施例,在所述介质材料的入光面上设置有滤光层,所述光学组件的所述光阑构造在所述滤光层中。
根据本申请的第二方面的一些实施例,所述滤光层粘合在所述介质组件的入光面上,所述粘合材料为透光的。
根据本申请的第二方面的一些实施例,所述光谱传感器模组还包括数据处理单元。
根据本申请的第二方面的一些实施例,所述光谱传感器的光谱芯片安置并电连接于所述电路板上,所述光学组件被固定于所述光谱芯片上表面;
所述光谱传感器模组的壳体构造为一模塑体,所述模塑体包裹于所述光谱芯片、所述光学组件和所述电路板周围,或者所述模塑体包裹于所述光谱芯片和所述光学组件周围并固定于所述电路板,使得所述模塑体与所述光谱芯片、所述光学组件和所述电路板构成一整体。
根据本申请的第三方面,提出一种电子设备,包括所述光谱传感器模组。
按照本申请的第二种设计方案,提出一种光谱传感器、光谱传感器模组和电子设备。
根据本申请的第四方面,提出一种光谱传感器,包括:
光谱芯片,所述光谱芯片包括光调制层和光电探测层,其中所述光调制层在所述光电探测层的感测路径上设置于所述光电探测层的入光面一侧并包括用于对入射光进行调制的至少一个调制单元,其中所述光电探测层被配置为获得经过所述至少一个调制单元所调制的光信号,以及
光学组件,所述光学组件设置于所述光谱芯片的感测路径上,用于接收来自被摄目标的入射光信号并将所述光信号导引至所述光谱芯片的光调制层,
其中所述光学组件包括多个光阑,所述多个光阑被配置为通过所述多个光阑形成照射到所述光谱芯片的光调制层的光斑,所述光斑覆盖所述光调制层的至少一个所述调制单元,其中所述调制单元是用于获取恢复所述被摄目标的入射光的光信号的光谱信息的最小单元。
根据本申请的第四方面的一些实施例,所述光阑被配置为通过所述多个光阑分别形成的照射到所述光谱芯片的光调制层的多个光斑,所述多个光斑分别覆盖所述光谱芯片上不同位置的调制单元。
根据本申请的第四方面的一些实施例,对于同一个光谱芯片的光调制层上由周期性排布的调制单元构成的情况,对应每个周期内的设定位置上的所述调制单元由所述光阑被配置通过的所述被摄目标的光信号形成的光斑所覆盖。
根据本申请的第四方面的一些实施例,所述光阑还被配置为通过所述多个光阑形成的照射到所述光谱芯片的光调制层的光斑的整体组合覆盖所述光谱芯片上的所有调制单元。
根据本申请的第四方面的一些实施例,所述光阑被配置为通过所述光阑形成的光斑覆盖同一个调制单元的不同位置。
根据本申请的第四方面的一些实施例,所述调制单元分别包括多个相同或者不同 的调制子单元,所述光阑被配置为通过所述光阑形成的多个光斑分别覆盖同一个调制单元的不同调制子单元。
根据本申请的第四方面的一些实施例,所述调制单元分别包括多个相同或者不同的调制子单元,所述光阑被配置为通过所述光阑形成的光斑照射在所述调制单元的不同周期内的多个相同位置的所述调制子单元上。
根据本申请的第四方面的一些实施例,所述调制单元分别包括多个相同或者不同的调制子单元,所述光阑被配置为通过所述光阑形成的多个光斑分别覆盖不同的所述调制单元内处于相同位置的调制子单元。
根据本申请的第四方面的一些实施例,所述光谱芯片的光调制层由多组不同的调制单元为光谱单元而构成,所述光谱单元按照周期性设置在所述光谱芯片上,所述光阑还被配置为通过所述多个光阑形成的照射到所述光谱芯片的光调制层的光斑覆盖所述光谱单元的不同调制单元上。
根据本申请的第四方面的一些实施例,所述光谱芯片的光调制层由多组不同的调制单元为光谱单元而构成,所述光谱单元按照周期性设置在所述光谱芯片上。
根据本申请的第四方面的一些实施例,所述光阑还被配置为通过所述多个光阑形成的照射到所述光谱芯片的光调制层的光斑覆盖不同的所述光谱单元的同一位置的调制单元上。
根据本申请的第四方面的一些实施例,所述光阑还被配置为通过所述多个光阑形成的照射到所述光谱芯片的光调制层的光斑覆盖不同的所述光谱单元的对应的不同位置的调制单元上,并且多个所述不同位置的调制单元构成一个周期内的光谱单元。
根据本申请的第四方面的一些实施例,所述光谱芯片还包括图像传感器,所述图像传感器配置成用于获取对所述光调制层调制的入射光的响应信号,并由所述响应信号获得光谱图像信息;其中所述光调制层上设置多个调制单元。
根据本申请的第四方面的一些实施例,通过每个光斑处对应的一个或者多个所述调制单元,并通过所述光斑覆盖的所述调制单元获取所述被摄目标的入射光的光谱响应。
根据本申请的第四方面的一些实施例,所述调制单元对应所述光电探测层的一个或多个物理像素,其中至少两个调制单元形成一个光谱像素。
根据本申请的第四方面的一些实施例,多个所述光阑被配置为与所述被摄目标的光信号通过所述多个光阑形成在所述光谱芯片上的多个光斑是多对多或多对一的。
根据本申请的第四方面的一些实施例,所述光谱传感器的光学组件还包括设置在一个或多个光阑位置处的光衰减片和/或光增强片。
根据本申请的第四方面的一些实施例,所述光阑位置设置的光衰减片用于减弱所述被摄目标的入射光信号,和/或所述光增强片用于增强所述被摄目标的入摄光信号。
根据本申请的第四方面的一些实施例,所述调制单元分别包括多个相同或者不同的调制子单元,所述光衰减片和/或光增强片被设置于多个所述光阑位置处,所述多个光阑被配置为通过对应所述光阑形成的光斑覆盖到同一周期内所述调制单元的不同调制子单元位置。
根据本申请的第四方面的一些实施例,所述调制单元分别包括多个相同或者不同的调制子单元,所述光衰减片和/或光增强片被设置于多个所述光阑位置处,所述多个光阑被配置为通过对应所述光阑形成的光斑覆盖到不同周期内所述调制单元相同的调制子单元位置。
根据本申请的第四方面的一些实施例,所述光谱传感器的光学组件还包括匀光组件,其设置在入射光照射到光谱芯片的光路上,所述匀光组件用于使得照射到所述光谱芯片的光信号均匀且角度不敏感。
根据本申请的第四方面的一些实施例,所述匀光组件被配置为使得通过所述匀光组件的入射光形成余弦发光体。
根据本申请的第四方面的一些实施例,所述匀光组件是匀光片。
根据本申请的第四方面的一些实施例,所述光学组件还包括滤光组件,其设置在入射光照射到光谱芯片的光路上。
根据本申请的第四方面的一些实施例,对应不同的光阑位置设置具有不同滤光波段的滤光组件。
根据本申请的第四方面的一些实施例,所述光阑构造为通过塑胶件注塑形成的通孔。
根据本申请的第四方面的一些实施例,所述光阑构造为在所述匀光组件的上表面和/或下表面形成的不透光涂层中的光阑孔。
根据本申请的第四方面的一些实施例,所述光阑构造为在所述滤光组件的上表面和/或下表面形成的不透光涂层中的光阑孔。
根据本申请的第四方面的一些实施例,所述不透光涂层是镀膜,所述镀膜包括一个或者多个涂层。
根据本申请的第四方面的一些实施例,所述通孔的纵截面是方形或者梯形。
根据本申请的第五方面,提出一种光谱传感器模组,包括:
前述的光谱传感器,以及
电路板,所述光谱传感器的光谱芯片安置并电连接到所述电路板上。
根据本申请的第五方面的一些实施例,所述光谱传感器模组的壳体包括第一支撑件,所述光学组件的所述至少一个光阑构造在所述第一支撑件中。
根据本申请的第五方面的一些实施例,所述光学组件的匀光组件设置在第一支撑件的面对入射光的表面上。
根据本申请的第五方面的一些实施例,所述光学组件的滤光组件设置在第一支撑件的与所述匀光组件相对的表面上。
根据本申请的第五方面的一些实施例,在第一支撑件中设置用于容纳所述滤光组件的凹槽,该凹槽与第一支撑件中设置所述光阑的位置相对应。
根据本申请的第五方面的一些实施例,所述滤光组件嵌入到第一支撑件的所述凹槽中,并且所述滤光组件的外表面与凹槽边缘齐平。
根据本申请的第五方面的一些实施例,所述光学组件的滤光组件设置在所述光学组件的匀光组件与第一支撑件之间。
根据本申请的第五方面的一些实施例,所述光谱传感器模组的壳体还包括用于支撑第一支撑件的第二支撑件,其中第一支撑件和第二支撑件设置用于保护并支撑光路的形成。
根据本申请的第五方面的一些实施例,所述第一支撑件和第二支撑件构造成一体的,并由此形成一个一体的底座,在该底座的与所述匀光组件相对的区域中构造所述光阑。
根据本申请的第五方面的一些实施例,所述光谱传感器模组的壳体还包括底板,所述电路板设置在所述底板上,其中所述第二支撑件支撑在第一支撑件和所述底板之间,从而第一支撑、第二支撑件以及所述底板组共同成形成光谱传感器模组的壳体。
根据本申请的第五方面的一些实施例,所述第一支撑件的厚度根据光阑的孔径、光阑之间的中心点的距离、光阑的个数和第二支撑件的厚度来确定。
根据本申请的第五方面的一些实施例,通过所述光阑形成照射到所述光谱芯片上的光斑,其中所述光斑的有效面积遵循以下经验公式:
其中,d代表光阑孔径或者说光阑直径,h1代表在入射光照射到光谱芯片的光路方向上所述匀光组件的入光面/出光面到光谱芯片的距离,h2代表在入射光照射到光谱芯片的光路方向上所述光阑的入光面/出光面到光谱芯片的距离。
根据本申请的第五方面的一些实施例,所述光谱传感器模组还包括盖板,其支撑并固定在所述第一支撑件的面对入射光的表面上。
根据本申请的第五方面的一些实施例,在所述盖板中设置有楔形槽,所述楔形槽用于嵌入和固定所述光学组件的匀光组件。
根据本申请的第五方面的一些实施例,所述楔形槽环绕所述匀光组件的外沿设置完整一周。
根据本申请的第五方面的一些实施例,围绕所述匀光组件在多个相对的位置上分别设置一个楔形槽。
根据本申请的第五方面的一些实施例,所述楔形槽构造为在所述盖板中的锥形孔。
根据本申请的第五方面的一些实施例,所述楔形槽的锥形孔的窄端处于所述盖板的外表面,而锥形孔的宽端处于所述盖板的内表面。
根据本申请的第五方面的一些实施例,设置在所述盖板的楔形槽中的匀光组件的内表面和外表面与所述盖板的相应表面齐平。
根据本申请的第五方面的一些实施例,在所述盖板中设置有台阶孔,所述台阶孔的阶梯与匀光组件形状匹配,其中所述嵌入在盖板的台阶孔中的匀光组件的外表面的周向边缘被所述盖板的台阶孔的边缘所覆盖,由此所述盖板对嵌入其中的所述匀光组件形成一种包边结构。
根据本申请的第五方面的一些实施例,在所述盖板上设置保护罩。
根据本申请的第五方面的一些实施例,所述光谱传感器模组的第一支撑件、第二支撑件和盖板一体注塑成型。
根据本申请的第五方面的一些实施例,所示光谱传感器模组的壳体是一体的筒状结构,并且在面向入射光的一端具有用于容纳和固定所述光学组件的容纳部。
根据本申请的第五方面的一些实施例,所述用于容纳和固定光学组件的容纳部构造成在光谱传感器模组的壳体中的阶梯孔,所述壳体的阶梯孔包括用于通过入射光的开口和用于定位和固定所述光学组件的台阶。
根据本申请的第五方面的一些实施例,所述光学组件的匀光组件、光阑和滤光组件沿着入射光的成像光路依次叠置,形成一种三明治式的整体结构单元,其中所述整体结构单元通过形状锁合、材料锁合或者力锁合的方式嵌入到所述壳体的阶梯孔中。
根据本申请的第五方面的一些实施例,在所述壳体中沿着所述用于容纳和固定光学组件的容纳部的周边构造有溢胶槽。
根据本申请的第五方面的一些实施例,所述溢胶槽在所述壳体中构造为在所述用于容纳和固定光学组件的容纳部的周边棱边上的倒角。
根据本申请的第五方面的一些实施例,在所示光谱传感器模组的壳体中还设置有使壳体内部空间与外部环境彼此连通的排气孔。
根据本申请的第五方面的一些实施例,所述光谱芯片的光调制层上还设置有透光保护层,并在所述透光保护层上设置有介质组件,用于支撑所述光学组件的匀光组件,其中所述介质组件为高透光率的介质材料。
根据本申请的第五方面的一些实施例,所述介质组件设置在光谱芯片的光调制层和光学组件之间,并支撑所述光学组件。
根据本申请的第五方面的一些实施例,在所述介质材料的入光面上设置有滤光层,所述光学组件的所述至少一个光阑构造在所述滤光层中。
根据本申请的第五方面的一些实施例,所述滤光层粘合在所述介质组件的入光面上,所述粘合材料为透光的。
根据本申请的第五方面的一些实施例,所述光谱传感器模组还包括数据处理单元。
根据本申请的第五方面的一些实施例,所述光谱传感器的光谱芯片安置并电连接于所述电路板上,所述光学组件被固定于所述光谱芯片上表面;
所述光谱传感器模组的壳体构造为一模塑体,所述模塑体包裹于所述光谱芯片、所述光学组件和所述电路板周围,或者所述模塑体包裹于所述光谱芯片和所述光学组件周围并固定于所述电路板,使得所述模塑体与所述光谱芯片、所述光学组件和所述电路板构成一整体。
根据本申请的第六方面,提出一种电子设备,包括所述光谱传感器模组。
附图说明
以下将结合附图和实施例来对本申请的技术方案作进一步的详细描述。在附图中,除非另有说明,相同的附图标记用于表示相同的部件。其中:
图1示出了根据本申请的一些实施例的光谱芯片的结构示意图;
图2示出了根据本申请的一些实施例的光调制层的结构示意图;
图3示出了根据本申请的一些实施例的光谱传感器模组的结构示意图;
图4示出了根据本申请的一些实施例的光学组件相对于光谱芯片的位置关系示意图;
图5示出了图4所示实施例的光路图;
图6示例性地示出了不同区域的环境光在所述匀光组件上不同的匀光效果;
图7和图8示出了根据本申请的一些实施例的光学组件的光阑所形成的光斑照射在光调制层上的示意图,在此分别以五个光斑为例;
图9示出了根据本申请的另一些实施例的光学组件的光阑所形成的光斑照射在光调制层上的示意图,在此以四个光斑为例;
图10示出了根据本申请的另一些实施例的光学组件的光阑所形成的光斑照射在光调制层上的示意图;
图11和12示出了根据本申请的另一些实施例的光学组件的光阑所形成的光斑照射在光调制层上的示意图;
图13示出了根据本申请的一些实施例的光学组件的光阑在光调制层上所形成的光斑的强度和尺寸示意图;
图14示出了根据本申请的一些实施例的光学组件的光阑设置光衰减片和/或光增强片的示意图;
图15示出了根据本申请的一些实施例的光阑的分布图案;
图16示出了根据本申请的一些实施例的光谱传感器模组的结构示意图;
图17示出了图16的光谱传感器模组的光路图;
图18示出了根据本申请的另一些实施例的光谱传感器模组的结构示意图,其中设有多个光阑;
图19示出了图18的光谱传感器模组的光路图;
图20示出了图18的光谱传感器模组的立体剖视图;
图21示出了根据本申请的另一些实施例的光谱传感器模组的结构示意图;
图22示出了根据本申请的另一些实施例的光谱传感器模组的结构示意图;
图23示出了根据本申请的另一些实施例的光谱传感器模组的结构示意图;
图24示出了根据本申请的另一些实施例的光谱传感器模组的结构示意图,其中设有多个光阑;
图25示出了根据本申请的另一些实施例的光谱传感器模组的结构示意图,其中壳体设有凸台形式的容纳部;
图26示出了根据本申请的另一些实施例的光谱传感器模组的结构示意图,其中设有介质组件;
图27示出了根据本申请的另一些实施例的光谱传感器模组的结构示意图,其中壳体一体形成为模塑体;
图28示出了根据本申请的另一些实施例在一个别场景下的厚度标示示意图。
具体实施方式
以下描述用于揭露本申请以使本领域技术人员能够实现本申请。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本申请的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本申请的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本申请的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系或者入射光成像的光轴方向,其仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本申请的限制。
在本申请中,权利要求和说明书中术语“一”应理解为“一个或多个”,即在一个实施例,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个。除非在本申请的揭露中明确示意该元件的数量只有一个,否则术语“一”或“一个”并不能理解为唯一或单一,术语“一”或“一个”不能理解为对数量的限制。
在本申请的描述中,需要理解的是,属于“第一”、“第二”等仅用于描述目的,而不能理解为指示或者暗示相对重要性。本申请的描述中,需要说明的是,除非另有明确的规定和限定,属于“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接或者一体地连接;可以是机械连接,也可以是电连接;可以是直接连接,也可以是通过媒介间接连结。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
本申请提供一种光谱传感器,尤其是一种微型化光谱传感器,包括光谱芯片20和设置于所述光谱芯片20的感测路径上的光学组件10。
所述光谱芯片20包括光电探测层230和在所述光电探测层230的感测路径上设置于所述光电探测层230的入光面一侧的光调制层220。所述光调制层220包括用于对入射光进行调制的至少一个调制单元221。所述光电探测层230被配置为,获得经过所述至少一个调制单元221所调制的光信号。为方便描述,入射光在后文中也被称为被摄光。
所述光学组件10被配置为接收来自被摄目标的入射光的光信号或者说被摄光的光信号,并将所述光信号导引至所述光谱芯片20。所述光学组件10被配置为使得被导引至所述光谱芯片20上的入射光实现光强均匀。
具体地,所述匀光组件110的作用是可以在入射光经过匀光后到达调制层表面的光调制单元221上时实现光锥角的固定值,以及可以有更好的一致性和稳定性,这样 可以更好地恢复光谱信息。
所述光学组件10还可以设置一个或者多个光阑120,由此可以利用光斑140中心的那些角度分布比较好的区域进行光谱恢复。尤其是,也可以多个光斑140的中心区域结合起来,一起用于恢复光谱。可以地,在光调制层220的不同位置选择不同的调制单元221,挑选有利于光谱恢复的光响应数据。
下面结合附图对本申请的一些实施例进行具体说明。
图1示出了根据本申请的一些实施例的光谱芯片20的结构示意图。所述光谱芯片20包括调制结构210和图像传感器240。所述调制结构210位于所述图像传感器240的感光路径上。所述调制结构210为频域或者波长域上的宽带调制结构210。各个调制结构210不同波长的通光谱不完全相同。调制结构210可以是超表面、光子晶体、纳米柱、多层膜、染料、量子点、MEMS(微机电系统)、FP etalon(FP标准具)、cavity layer(谐振腔层)、waveguide layer(波导层)、衍射元件等具有滤光特性的结构或者材料。
所述调制结构210可以包括光电探测层230和位于光电探测层230的感测路径上的光调制层220。为此例如参见中国专利申请号CN201921223201.2。在所述调制结构的光调制层上设置的调制结构,可以是相同的,也可以是不同形状的。所述调制结构形成的调制单元可以是周期性布置的,或者也可以是不同的,即非周期性布置的。
根据本申请,所述光电探测层230包括多个感应单元。所述光调制层220的每个调制单元221沿着入射光的光路方向分别对应所述光电探测层230的至少一个所述感应单元。其中所述光谱芯片20利用所述光调制层220的所述调制单元221对来自被测目标的入射光的光信号进行调制,以得到调制后的光频信号,并利用光电探测层230接收被调制后的光频信号并对其提供差分响应,接着利用所述光谱芯片20的信号电路处理层将所述差分响应进行重构以得到被测目标的原光谱信息。
根据本申请,光调制微纳结构在制造时,选用硅基材料同时作为光调制层220和光电探测层230的材料,以便在制备工艺的加工上具有很好的兼容性。在制备光调制层220时,可直接在光电探测层230上生成光调制层220,也可以先将已制备好的光调制层220转移至光电探测层230上。
光调制层220、光电探测层230和图像传感器240由上至下竖向连接并且彼此相互平行。其中,光调制层220用于对入射光进行光调制,以得到调制后的光谱。光电探测层230用于接收调制后的光谱,并对调制后的光谱提供差分响应。图像传感器240用于将差分响应基于算法进行处理,以重构得到原光谱。
图2示出了根据本申请的一些实施例的光调制层220的结构示意图。如图2所示,光调制层220包括至少一个调制单元221。每个调制单元221可以是微纳结构单元,用于对入射光进行调制。单个调制单元221可以包括尺寸和形状相同或不同的、以相同或者不同阵列形式布置的多个调制结构222,例如纳米孔或纳米柱。调制单元221可以周期性方式规则地布置在在光调制层220上,也可以非周期性方式不规则地布置在光调制层220上。不同的调制单元221对入射光的调制效果不同,即不同的调制单元221可以对应基本不同的透射谱,本申请中所述透射谱可以理解为宽谱透射谱。根据每个调制 单元221内的调制结构222的参数特性,可以确定该调制单元221对不同波长的入射光的调制作用和效果。
需要指出,本申请所述的对不同波长的光的调制作用或调制方式,可包括但不限于散射、吸收、透射、反射、干涉、表面等离子激元、谐振等作用。通过不同调制单元221内的调制结构222的改变,可以提高不同调制单元221间光谱响应的差异,通过增加调制单元221数量就可以提高对不同谱之间差异的灵敏度。
不同的调制单元221对不同波长光调制作用可能相同也可能不同,这可以根据需要进行设定,本方面实施例中对此不作具体限定。根据目标光束照射后每个调制单元221对应的像素点的频谱信息,可以确定出待成像对象的光谱信息。
所述调制单元221中设有的调制结构222可以分别具有各自的特定截面形状,例如各个调制结构222可以按照特定截面形状进行自由组合排列。具体地,部分调制结构222的特定截面形状可以相同,具有相同特定截面形状的各个调制结构222构成了多个调制结构组,各个调制结构组的特定截面形状互不相同,且所有的调制结构222均自由组合。
可理解的是,该调制单元221整体可视为针对一种特定波长的光谱进行调制,也可以将其自由分割成一个或者多个调制结构222的调制单元221,从而能针对多种不同波长的光谱进行调制,以增加光调制的灵活性和多样性。
如图3所示,所述光学组件10位于所述图像传感器240的感光路径上,光通过所述光学组件10调整再经由调制结构210进行调制后,被所述图像传感器240接收,获取光谱响应。其中所述光学组件10可以包括但不限于匀光组件110、滤光组件130等光学元器件。
具体地,入射光经过光学组件10,从光调制层220上方垂直入射通过光调制微纳结构,然后经过光调制层220的调制单元221的调制,在不同的调制单元221内获得不同的响应光谱。经过调制的各个响应光谱分别照射到光电探测层230的对应设置的感应单元上,则对应设置的感应单元接收到的响应光谱各不相同,从而得到差分响应,该差分响应是指对各个调制单元221各自调制后得到的响应光谱的信号之间求差值。最后,图像传感器240利用算法处理系统对差分响应进行处理,从而通过重构得到原光谱。
作为示例,在本申请的一些实施例中,所述光谱芯片20的所述图像传感器240可以是CMOS图像传感器(CIS)、CCD、阵列光探测器等。
在实际应用中,所述光谱芯片20对于入射到调制层的光信号的主光角比较敏感,因此如果过于敏感,则会影响光谱恢复的准确性以及稳定性。需要说明的是,所述光谱芯片20的任意一个特定位置的主光角表示被导引至所述光谱芯片20上的光信号的主光线和法线之间的夹角,其中主光线表示来自被摄目标的发出光信号的点与抵达所述光谱芯片20的调制层表面上点之间的连线,法线表示与所述光谱芯片20的调制层所在平面垂直的直线。
因此,所述光学组件10位于所述光谱芯片20的感光路径上,其中光线经所述光学组件10被以设定的入射角度和均匀光强的方式引导至所述光谱芯片20的表面,以便保 持入射到同一感应单元的光学的夹角大小固定。可以理解的是,所述光谱芯片20对于入射的光信号抵达所述光谱芯片20上光调制层220上表面的各个位置的收光光锥角也需要保持稳定,不能有较大的变动。
因此需要在调制层对应位置得到的光斑140要具有均匀性,以便在对应的感光单元上的光强均匀,且角敏感性较小。
所述光学组件10包括至少一个光阑120,被摄光通过所述至少一个光阑120形成照射到所述光谱芯片20的光调制层220的光斑140,所述光斑140覆盖所述光谱芯片20的至少一个调制单元221。所述调制单元221例如是用于恢复对应所述入射光的光谱的最小单元。所述至少一个光阑120位于所述光路上,用于控制光斑140的大小、角度及通光量。
所述光学组件10还还包括匀光组件110,其中所述匀光组件110设置于被导引到所述光谱芯片20的被摄光的光路上。
如图4所示,在一些实施例中,匀光组件110设置在光阑120的入光侧,即相对于入射光传播方向而言,匀光组件110设置在光阑120的前面。备选地,匀光组件110也可以设置在光阑120的出光侧,即相对于入射光传播方向而言,匀光组件110设置在光阑120的后面。
如图5所示的光路图,在被摄光通往光谱芯片20的光路上,被摄光依次通过匀光组件110和光阑120,然后达到光谱芯片20。备选地,匀光组件110也可以设置在光阑120的出光侧,即被摄光也可以先通过光阑120,然后再通过匀光组件110,最终到达并达到光谱芯片20。
所述匀光组件110可以是匀光片、匀光膜等使入射光可以得到强度均匀的光以及不同波段的入射光在光谱恢复空间区域的光强基本一致。在一些实施例中,所述匀光组件110被配置为通过所述光学组件10到达所述光谱芯片20上的光斑140均匀且角度不敏感。
不同入射角度过来的一束光,通过匀光组件110能够以一个相同的分布强度照射在所述光谱芯片20的每个调制单元221上。同时为了得到的光强相对稳定且满足不同波段的入射光都可以得到其对应的光谱信息,所述匀光组件110需要满足一定的透光率。
下述表格1示出了所述匀光组件110的厚度、规定透过率和公式拟合透过率之间的对应关系。对于不同厚度的匀光组件110,其透光率及匀光的效果也不同。

PTFE(ROCH)匀光片厚度vs透过率
表格1
在此,所述匀光组件110是匀光片,其厚度可以选择为表格1中第三列的数值,其单位是μm。所述匀光组件110也可以是镀膜,例如可以是一种2-20层的复合镀膜。镀膜一般是30μm。匀光片可以是例如大约从5μm到1000μm,或者从5μm到500μm,尤其是300μm。
图6示例性地示出了不同区域的环境光在所述匀光组件上不同的匀光效果。由于不同的材质的匀光效果也有不同,因此根据所得到的光斑的尺寸及调制结构的位置,可以选定不同的匀光组件。不同的匀光组件厚度可以得到不同的区域匀光效果。由于匀光组件越薄,匀光能力越低,但可以得到不同区域的环境光在所述匀光组件上不同的匀光效果,如图6所示。
例如当匀光组件的厚度小于设定值时,例如参考表格1厚度小于或者小于等于400、300、250、200或100μm,设定某个空间中包括如图6所示的不同位置的红(R)、绿(G)、蓝(B)光源,那么由于不同位置的不同颜色的光源照射到匀光组件时,会在所述匀光组件对应的不同位置形成不同区域的匀光。因此当需要获取不同区域的环境光的光谱信息时,需要采用较薄的匀光组件。
如图6所示,假设红绿两种不同的光源照射到匀光组件时,当采用的匀光组件的厚度达到设定值时,可以获取到对应红(R)、绿(G)两种光源的混光,对应到图像传感器获取入射光的位置及光谱信息,可以对不同环境光进行分区域光谱恢复。
在本申请的一些实施例中,所述光学组件10包括还可以包括滤光组件130。所述滤光组件130可以是滤光片或者滤光膜,所述滤光组件130设置在入射光光路中,例如可以设置于所述匀光组件110的上面或者匀光组件110的下面,即位于所述匀光组件110的入光面或者出光面。为此,可以根据光路的形成设计成如下几种光学组件10连接方式:所述被摄光照射到所述匀光组件110上表面,并经过匀光后通过设置于所述匀光组件110下表面的光阑120,经过所述光阑120后到达所述滤光组件130,经过滤光后得到对应设定波段的光,最终在照射到所述光谱芯片20的光调制层220的调制单元221上。
通过所述光学组件10的滤光组件130,能够获得对应不同波段的入射光的光谱信息,同时还能够降低其他不需要的波段的光对常规需求的不利影响。例如,滤光组件130可以对可见光、红外光等进行选择性滤光。
所述光学组件10的光阑120可以构造为通过塑胶件注塑形成的通孔,还可以构造成在所述匀光组件110的上表面和/或下表面形成的不透光涂层的具有设定大小尺寸的光阑孔。对于这些方案,只保留通孔或者光阑孔处进行通光,其他区域遮蔽光传播路径。这里所述不透光涂层可以是一种镀膜,例如金属镀膜,具体请参见后面关于镀膜的描述。
除了上述情况,即所述光学组件10的光阑120构造为在所述匀光组件110的上表面和/或下表面形成的不透光涂层中的透光的光阑孔,还可以在设有滤光组件130的情 况下,如滤光片,将所述光阑120构造于滤光片的上表面和/或下表面形成的不透光的涂层,并形成设定大小尺寸的光阑孔,进行通光。在此情况下,所述光阑120构造为在所述滤光片的上表面和/或下表面形成的不透光涂层中的透光的光阑孔。
根据本申请,所述光学组件10的光阑120可以形成特定的形状和孔径,例如光阑孔的横截面可以是圆形或者多边形,而纵截面可以是柱形,也可以是方形或梯形。纵截面是指沿着入射光的光路方向的截面,横截面是指垂直于入射光的光路方向的截面。尤其是,可以根据所需形成的光斑140的大小设定光阑孔的孔径、横截面和纵截面形状等几何特征参数。
在本申请的一些实施例中,所述光学组件10可以设置仅一个光阑120,当设定仅一个光阑120时,在所述光谱芯片20上形成一个对应的光斑140。进一步,所述光阑120构造成一个圆形孔,该圆形孔的圆心处在所述光谱芯片20的成像光路的光轴上。此外,通过所述光阑120形成一个照射到所述光谱芯片20的光调制层220的光斑140,尤其是这个光斑140覆盖光谱芯片20的光调制层220上的所有调制单元221。由此,通过上述措施可以实现对单点、甚至多角度的环境或者入射光进行光学成像和/或光谱成像,并获得相关的成像信息和光谱信息。
通过上述结合单个的光阑120描述的特征,尤其是结合匀光组件110,所述光学组件10甚至可以实现辐射角满足180°以内的立体角的收集,从而实现了对大视场角FOV的入射光采集,这也有助于解决光谱传感器模组在获取入射光时的角度稳定性及一致性问题。通过大视场角FOV的匀光可以更准确的获取到入射光的光谱信息,以便更加准确的计算得到色度值。
备选地,所述光学组件10也可以设置多个光阑120,当设定有多个光阑120时,所述多个光阑120被配置为通过所述多个光阑120可以形成多个光斑140。尤其是,在所述光学组件10包括多个光阑120的情况下,所述多个光阑120被配置为通过所述多个光阑120分别形成一个照射到所述光谱芯片20的光调制层220的光斑140。
图7和图8示出了根据本申请的一些实施例的光学组件10的光阑120所形成的光斑140照射在光调制层上的示意图,在此分别以五个光斑140为例。参照图7和图8,以所述光学组件包括五个光阑为例进行说明,其分别形成一个光斑140,照射到所述光调制层220上的对应调制单元221上。但是,显然光阑的数量、位置和布置方式可以根据需要改变设置,而不限于这里为举例说明而采用的参数。
根据本申请,被摄光通过所述光学组件10的光阑120分别形成一个光斑140,并照射到所述光谱芯片20的光调制层220的对应调制单元221上。所述光调制层220可以由一个或者多个调制单元221形成,所述调制单元221可以是单层或者多层,对被摄光进行调制。调制单元221例如是用于获取恢复所述被摄目标的入射光的光信号的光谱信息的最小单元。需要说明的是,在调制单元221中可以设置多个不同的调制结构222,所述调制结构222可以周期性排列形成不同的调制单元221,所述调制单元221可以设置成用于恢复入射光的光谱信息的最小单元。由于本申请中的调制单元221可以由多个不同的调制结构222构成,每个调制单元221可以设置用于获取不同的响应,根据Y=TX的计算恢复光谱的算法(下面有详细的介绍)一个调制结构222不能计算出准确 的入射光的光谱信息,因此需要至少两个不同的调制结构222构成一个调制单元221,用于计算获取入射光的光谱信息。
进一步,当所述光学组件10包括多个光阑120时,每个光阑120都被配置为对应形成一个光斑140,所述形成的每个光斑140不相互影响。通过每个光阑120形成的光斑140可以照射在所述光谱芯片20上的不同位置上,并且每个光斑140覆盖所述光谱芯片20的光调制层220上不同位置的调制单元221。
可选地,每个光斑140分别一对一地覆盖所述光谱芯片20的光调制层220上的一个调制单元221
更进一步,所述多个光阑120被配置为通过所述多个光阑120形成的照射到所述光谱芯片20的光调制层220的光斑140的整体组合覆盖所述光谱芯片20上的所有调制单元221。也就是说,所述光谱芯片20上的所有调制单元221均被至少一个光斑140或者至少一个光斑140的一部分所覆盖。
如图所示,所述光谱传感器的光谱芯片20上设置有五个光阑120,所述五个光阑120的直径可以不同(图7),当然也可以相同(图8)。具体而言,所述光阑120的直径可以根据所述光谱芯片20的光调制层220的结构数进行设定。例如,所述光阑120的直径大概在10mm<光阑孔径-设计目标<0.001mm。
根据本申请,所述光谱芯片20的光调制层220,所述光调制层220还可以包括至少一非调制单元221,其可以与所述至少一个调制单元221相间隔地布置在光调制层220上。所述光调制层220的每个调制单元221和非调制单元221沿着所述感光路径可以分别对应于所述光电探测层230的至少一个传感单元。由此,所述光调制层220的调制单元221可以配置为对进入其所对应的所述传感单元的成像光线进行调制,其所对应的所述传感单元适于获取该成像光线的频谱信息,而所述光调制层220的非调制单元221可以配置为不对进入其所对应的所述传感单元的成像光线进行调制,其所对应的所述传感单元适于获取该成像光线的光强信息。对于这种情况,根据本申请,也可以在光学组件10中设置光阑120,通过其形成的光斑140照射在光调制层220上对应的非调制单元221上,并通过所述光电探测层230上的对应传感单元获取成像光线的准确光强信息,由此能够获得更高质量的图像信息。
此外,在光调制层220的没有光斑140照射的位置上,例如没有光斑140照射的调制单元221或者非调制单元221,还可以设置其他光感功能,例如flick。
图9示出了根据本申请的另一些实施例的光学组件10的光阑120所形成的光斑140照射在光调制层220上的示意图,在此以四个光斑140为例。如图9所示,所示光谱传感器的光学组件10设置有四个光阑120,当然也可以设置为1、2、3、5…等等其他数量。所述光谱芯片20的光调制层220可以包括以周期性布置的多个调制单元221,且每个调制单元221包括多个光谱调制结构222,例如调制孔或者调制柱。
在本申请中,光电探测层230,位于所述光调制层220的下面,用于接收所述调制后的光谱,并对所述调制后的光谱提供差分响应,所述光谱芯片20的图像传感器240位于所述光电探测层230的下面,用于将所述差分响应重构,以得到原光谱。
在此需要指出,根据本申请,所述光电探测层的感应单元可以是图像传感器的一 个物理像素或多个物理像素。不同于物理像素,在根据本申请的光谱传感器中,可以将对应于一个或多个调制单元的一个或多个物理像素称为“光谱像素”。在本申请中,光谱恢复的像素单元指的是“光谱像素”,并且调制单元是与光谱像素对应的一组结构单元。就此而言,“光谱像素”是从光谱成像的角度做出的像素定义,这种光谱像素也可以理解为能够用于恢复被摄光的光谱信息的最小单元。
通过不同结构形式和布置方式的光阑结构,尤其是结合所述光谱芯片的光调制层的对应布置的调制单元,可以获取不同的光电效果,例如可以根据不同的应用场景匹配使用不同形式的光阑结构,来实现对单点、多点、甚至多角度的环境或者入射光进行光学成像和/或光谱成像,并获得相关的成像信息和光谱信息。
在本申请中,恢复光谱的具体算法原理包括:
将环境光在不同波长λ下的强度信号记为f(λ),调制结构的透射谱曲线记为T(λ),滤光片上具有m组的调制结构,每一组透射谱互不相同,即如上所述的“结构单元”,整体可记为Ti(λ)(i=1,2,3,…,m)。每一组滤光结构下方都有相应的物理像素,探测经过调制结构调制的光强Ii。在本申请的特定实施例中,以一个物理像素对应一组结构单元为例进行说明,但是不限定于此,在其它实施例中,也可以是多个物理像素为一组对应于一组结构单元。
环境光的频谱分布和光探测器阵列的测量值之间的关系可以由下式表示:
Ii=Σ(f(λ)·Ti(λ)·R(λ))
其中,R(λ)为探测器的响应,记为:
Si(λ)=Ti(λ)·R(λ)
则上式可以扩展为矩阵形式:
这里,Ii(i=1,2,3,…,m)是待测光透过调制结构后光探测器的响应,分别对应m个光探测器单元的光强测量值,又称m个“物理像素”,其是一个长度为m的向量。S是系统对于不同波长的光响应,其由调制结构透射率和光探测器响应的量子效率两个因素决定。S是矩阵,每一个行向量对应一个宽带滤波器单元(即,光探测器单元及其对应的调制结构)对不同波长环境光的响应,这里,对环境光进行离散、均匀的采样,共有n个采样点。S的列数与环境光的采样点数相同。这里,f(λ)即是环境光在不同波长λ的光谱,也就是待测量的环境光光谱。
在实际应用中,系统的响应参数S已知,通过探测器的光强读数I,利用算法反推可以得到输入光的光谱f,其过程可以视具体情况采用不同的数据处理方式,包括但不限于:最小二乘、伪逆、均衡、最小二范数、人工神经网络等。
以上以一个物理像素对应一组结构单元为例,说明了如何利用m组物理像素(也就是图像传感器上的像素点),以及其对应的m组结构单元(调制层上相同结构界定为结构单元或者调制单元221)恢复出一个光谱信息,又称为“光谱像素”。值得注意的是,在本申请的一些实施例中,也可以是多个物理像素对应一组结构单元。可以进一步定义,一组结构单元和对应的至少一物理像素构成一单元像素。原则上,至少一单元像素构成一所述光谱像素,可以生成一个色温通道,多个光谱像素可以生成多个色温通道。
在本申请中,基于与每个调制单元221对应的光谱像素恢复所述入射光的光谱信息。所述每个调制单元221可以设定为由n*n个光谱调制结构222构成(n为任意整数),当然也可以考虑其他陈列形式的光谱调制结构222构成调制单元221,例如由m*n个光谱调制结构222(m和n为任意整数)构成。
以四个光阑120为例,在光谱传感器中光谱芯片20的光调制层220上设置有四个调制单元221,每个光阑120分别对应一个调制单元221。在此,以构成2*2个光谱像素224为例,每个调制单元221中设置有3*3个光谱调制结构222。如图9所示,由4个光谱像素224构成的一个光谱芯片20,那么也就是说,可以通过四个光斑140分别覆盖一个光谱像素224,这里对应的四个光斑140分别由四个光阑120形成。
在一些实施例中,所述调制单元221对应所述光电探测层230的一个或多个物理像素,其中至少两个调制单元221形成一个光谱像素。
在另一些实施例中,所述多个光阑120被配置为与所述被摄目标的光信号通过所述多个光阑120形成在所述光谱芯片20上的多个光斑140是多对多或多对一的。例如,多个光阑120对应一个光斑140,或者多个光阑120对应多个光斑140,尤其是一一对应。
图10示出了根据本申请的另一些实施例的光学组件10的光阑120所形成的光斑140照射在光调制层220上的示意图。如图10所示,因为如果每个光斑140距离较近时,会产生不均匀或者角度敏感等影响光谱恢复的问题,因此对于同一个光谱芯片20上不同位置的调制单元221周期性排布的情况,对应每个周期的设定位置上都可以照射一个对应的光斑140,并且相应地为在该位置形成光斑140而在所述光学组件10中设置对应的光阑120。当入射光照射通过每个光阑120,并形成在所述光谱芯片20的光调制层220上对应位置的光斑140。所述光阑120还被配置为通过所述光阑120后的光斑140对应的一个或者多个调制单元221及通过所述图像传感器240获取所述入射光对应的光谱响应。通过每个光斑140处对应的一个或者多个调制单元221获取入射光的光谱响应。通过上述措施,有助于确保入射光在所述光谱传感器的光谱芯片上只有强度上的变化,均匀性仍能保持一致,尤其是芯片表面的角度分布未改变,从而提高所述光学组件性能,并有助于消除了角度敏感性。
在一些实施例中,对于同一个光谱芯片20的光调制层220上由周期性排布的调制单元221构成的情况,对应每个周期内的设定位置上的调制单元221由所述光阑120被配置通过的所述被摄目标的光信号形成的光斑140所覆盖。
如图11和12所示,除了所述被摄光通过所述多个光阑120形成的照射到所述光 谱芯片20的光调制层220的光斑140分别覆盖所述光谱芯片20上不同位置的调制单元221,也可以备选地将所述光阑120配置为通过光阑120形成的多个光斑140覆盖同一个调制单元221的不同位置。例如,在调制单元221包括多个相同或者不同的调制子单元的情况下,所述光阑120被配置为通过光阑120形成的多个光斑140可以分别覆盖同一个调制单元221的不同调制子单元。
可选地,所述光阑120被配置为通过光阑120形成的光斑140还可以照射在调制单元221的不同周期内的多个相同位置的调制子单元上。例如,在调制单元221分别包括多个相同或者不同的调制子单元的情况下,通过光阑120形成的多个光斑140可以分别覆盖不同调制单元221内处于相同位置的调制子单元。
由此,可以通过入射光到达不同光谱像素224的不同光谱调制结构222的光谱响应矩阵进行恢复算法,由于可以获取到的调制响应的参数增加或者调制强度增加,从而使得光谱恢复的准确性及稳定性增加。此外,通过光阑与调制单元和调制子单元的不同配对组合关系,实现有针对性地定制个性化的光电特性,以满足不同应用场合和传感性能的需求。
在一些实施例中,所述光谱芯片20的光调制层220由多组不同的调制单元221为光谱单元而构成,所述光谱单元按照周期性设置在所述光谱芯片20上,所述光阑120还被配置为通过所述多个光阑120形成的照射到所述光谱芯片20的光调制层220的光斑140覆盖所述光谱单元的不同调制单元221上。
在另一些实施例中,所述光谱芯片20的光调制层220由多组不同的调制单元221为光谱单元而构成,所述光谱单元按照周期性设置在所述光谱芯片20上。
为了得到更加准确稳定的光谱恢复,可以由多个不同的光谱调制结构222构成光谱单元,也可以由多层相同的调制单元221构成光谱单元。所述光谱单元可以由多个不同的调制单元221周期性排列构成,此时在每个光谱单元中都可以获得一组入射光的响应,根据多组入射光的响应可以进行平滑处理,获取更加准确的入射光的响应,也就是T(λ),这样可以更加准确的获取光谱芯片上不同位置的入射光的响应,通过光谱恢复算法可以获得入射光的更加稳定的且准确的光谱信息。
在另一些实施例中,所述光阑120还被配置为通过所述多个光阑120形成的照射到所述光谱芯片20的光调制层220的光斑140覆盖不同的所述光谱单元的同一位置的调制单元221上。
在另一些实施例中,所述光阑120还被配置为通过所述多个光阑120形成的照射到所述光谱芯片20的光调制层220的光斑140覆盖不同的所述光谱单元的对应的不同位置的调制单元221上,及多个所述不同位置的调制单元构成一个周期内的光谱单元。也就是说,光斑照在不同位置的调制单元221上,然后如果这些不同的周期内的不同位置彼此组合,事实上可以构成一个周期内的一个光谱单元。例如设置九宫格形式的调制单元,然后九个光斑分别在不同周期内照射九宫格的各个位置,即第一个周期的第一个位置,然后第二个周期第二个位置等等,直到第九个周期的第九个位置,这些位置彼此组合就可以形成一个周期的九个位置。
图13示出了根据本申请的一些实施例的光学组件10的光阑120在光调制层220上 所形成的光斑140的强度和尺寸示意图。如图13所示,为不同光阑120形成的光斑140照射到光谱芯片20上的示意图,为此所得到的光斑140的均匀性及稳定性在相同或者不同的光阑120下,可以得到光斑140的强度相同或不同,光斑140的大小也可以相同或不同。
此外,通过上述结合光阑描述的特征尤其是特征组合,能够确保由所述光学组件对入射的光信号抵达所述光谱芯片上光调制层上表面的各个位置的收光光锥角保持稳定,有利于提高光谱恢复的稳定。
图14示出了根据本申请的一些实施例的光学组件10的光阑120设置光衰减片225和/或光增强片223的示意图。在本申请的一些实施例中,所述光谱传感器的光学组件10还包括设置在一个或多个光阑120位置处的光衰减片225和/或光增强片223。所述光阑120位置设置的光衰减片225用于减弱所述被摄目标的入射光信号,和/或所述光增强片223用于增强所述被摄目标的入摄光信号。
在一些实施例中,所述光衰减片225和/或光增强片223被设置于多个所述光阑位置处,所述多个光阑120被配置为通过对应所述光阑120形成的光斑覆盖到同一周期内所述调制单元221的不同调制子单元位置。
在另一些实施例中,所述光衰减片225和/或光增强片223被设置于多个所述光阑位置处,所述多个光阑120被配置为通过对应所述光阑120形成的光斑覆盖到不同周期内所述调制单元221相同的调制子单元位置。
如图14所示,可以在一个或多个光阑120位置处设置光衰减片225,或在某一光阑120位置设置光增强片,也可以在设定光阑120位置上同时设置有光衰减片225和光增强片223。当入射光强度超过设定阈值时,可以获取对应设置有光衰减片225的位置的光谱信息;当入射光低于设定阈值时,获取对应设置有光增强片位置的光谱信息。设置光衰减片225的方式有很多,可以在光阑120下方的滤光片上进行镀膜(镀一层半透明材料),也可以减少光阑120的孔径实现。相反地,可以设置大孔径的光阑120实现光增强。
图15示出了根据本申请的一些实施例的光阑120的分布图案。在本申请的一些实施例中,还可以在所述匀光组件110的出光面设置多个光阑120。例如在镀金属层时,通过设定不同的版图,如图15所示,通过一体镀层形成多个光阑120。光阑120的个数、距离和布置方位可以根据需求进行设定。在此,作为示例的每个圆形光斑140都由对应的光阑120产生。
同样的方案适用于本申请的其他实施例,在此不在赘述。
此外,在本申请的一些实施例中,对应不同的光阑120位置可以设置具有不同的滤光波段的滤光组件130,从而满足不同的环境光在不同波段的光谱响应和恢复。
本申请还提出一种光谱传感器模组,包括所述的光谱传感器以及电路板5(PCB),所述光谱传感器的光谱芯片20安置并电连接到所述电路板5上。通过所述光谱传感器模组获取到的光谱信息,可以用于恢复色温、照度、亮度等环境光参数。
所述光谱传感器的光谱芯片20安置并电连接于电路板5。尤其是,在电路板5上设有基板6,所述光谱传感器的光谱芯片20可以安置在该基板6上。其中,所述光谱 芯片20被配置为接收入射光,并对入射光进行调制获得响应信号,并由所述响应信号及计算光谱恢复算法获得所述入射光的光谱信息。
由于对于照射到所述光谱芯片20的光调制层220上表面的光需要主光角要固定且不敏感,因此在所述入射光照射到所述光谱芯片20的光路上还设置有匀光组件110,所述匀光组件110被配置为使得入射到所述匀光组件110中的光线在所有方向均匀反射。
在一些实施例中,所述匀光组件110被配置为使得通过所述匀光组件110的入射光形成余弦发光体。
例如,所述匀光组件110被配置通过所述匀光组件110的发光强度为D∝cosθ,即其亮度B与方向无关,式中D为出光表面的每块面元S沿某个方向或者说任一方向r的发光强度,θ为r与法线n的夹角。
所述匀光组件110为匀光膜、匀光片或者匀光涂层中的任一种。本实施例中,以匀光片为例,所述匀光片的出光面上设置有不透光层,所述不透光层可以通过镀不透光的金属材料形成,并保留设定孔径的光阑120。所述不透光层的厚度通过光阑孔径、光阑个数以及光阑间的距离决定其厚度。
所述光谱传感器模组还可以进一步包括数据处理单元3,所述数据处理单元3可以是MCU、CPU、GPU、FPGA、NPU、ASIC等处理单元,其可以将图像传感器240生成的数据进一步进行运算和处理,尤其是可以将生成的数据导出到外部进行处理。所述图像传感器240配置成用于获取对所述光调制层220调制的入射光的响应信号,并由所述响应信号获得光谱图像信息,其中所述光调制层上设置多个调制单元221。所述光调制层220上可以设置多个调制单元221。
所述光谱传感器的光学组件10的沿着入射光的光路方向依次包括匀光组件110、光阑120和可能的滤光组件130。
在此示出的光谱传感器模组的光学组件10具有光阑120。但是,由于对应不同的调制单元221可以被不同的光斑140覆盖,因此也可以设置多个不同的光阑120。当然,在此仅以光阑120为例进行说明,相关特征同样可以适用于具有多个不同光阑120的光谱传感器模组。说明书中结合光阑120做出的描述,同样适用于多个光阑120的情况,反之亦然,在之后不再赘述。
所述光谱传感器模组还包括壳体4,其作为整个模组的框架结构,用于形成容纳光谱传感器模组的光电元器件的容纳空间,并为相关的光电元器件提供机械支撑和电气承载作用,以使光谱传感器模组能够实现相应的光电功能。
所述光谱传感器模组的壳体4包括第一支撑件411,所述光学组件10的所述至少一个光阑120构造在所述第一支撑件411中。具体地,在所述第一支撑件411中设置有所述光学组件10的一个或多个光阑120,例如以通孔形式。如图16所示,在所述第一支撑件411中设置一个光阑120。备选地,也可以设置多个通孔形式的多个光阑120。
在本申请的一些实施例中,例如参见图16,第一支撑件411构造为板状或者圆盘状的元件,其板平面或者圆盘平面基本垂直于入射光照射到光谱芯片20的光路布置。 在此情况下,第一支撑件411的厚度也是第一支撑件411在入射光照射到光谱芯片20的光路方向上的结构尺寸或者说结构高度。在此实施例中,在第一支撑件411中设有一个光阑120。
光谱传感器的光学组件10的匀光组件110设置在沿着入射光照射到光谱芯片20的光路上,所述匀光组件110设置于第一支撑件411的上表面上,即第一支撑件411的面对入射光的表面上,并与光阑120位置相对。所述入射光经过匀光组件110及光阑120后照射到所述光谱芯片20的主光角在0-20°范围内。所述入射光通过匀光组件110及光阑120照射到所述光谱芯片20的调制层进行光调制,所述光谱芯片20获取到入射光的响应信息,并经过算法获取到对应入射光的光谱信息。
所述光谱传感器模组的壳体4还包括第二支撑件412,第二支撑件412设置用于支撑第一支撑件411,例如可以支撑在第一支撑件411和电路板或者光谱传感器模组的壳体4的底板42之间。从而,第一支撑、第二支撑件412以及所述底板42组共同成形成光谱传感器模组的壳体4。在此情况下,第二支撑件412的厚度也是第二支撑件412在入射光照射到光谱芯片20的光路方向上的结构尺寸或者说结构高度。通过所述光谱传感器模组上述结构形式,有利于提高所述光谱传感器模组恢复光谱的光电稳定性和机械可靠性。
如图17所示的光路图,光源8发出的光线,或者物体的反射光线,或者环境光,通过匀光组件110匀化,然后经过光阑120和滤光组件130,以固定的入射角度和均匀光强的方式引导至所述光谱芯片20的表面。
在此实施例中,所述光谱传感器模组还包括盖板43,其例如支撑并固定在所述第一支撑件411上,尤其是第一支撑件411的面对入射光的表面上。所述盖板43可以是单独加工或者说分离设置的,并通过例如粘合等方式与第一支撑件411和第二支撑件412连接到一起。替代地,也可以将盖板43、第一支撑件411和第二支撑件412一体注塑成型。
所述光谱传感器模组还包括底板42,该底板42例如与处于第二支撑件412一侧的所述盖板43或者第一支撑件411相对,处于第二支撑件412的另一侧。就此而言,在结构上,第二支撑件412在一端支撑并连接第一支撑件411,在另一端连接底板42,因此第二支撑件412起到一种支座的作用。例如,所述电路板5可以固定在所述底板42上。
由此,所述光谱传感器模组的第一支撑件411、第二支撑件412以及底板42组成形成光谱传感器模组的壳体4,用于保护和固定相关的光学和电子元器件,尤其是支持形成入射光照射到光谱芯片20的光路。
所述第一支撑件411的厚度根据光阑孔径(直径)、光阑之间的中心点的距离、光阑的个数和第二支撑件412的厚度等参数来确定。
入射光通过所示匀光组件110,所得到的经过匀光之后的入射光的角度不敏感,且使得通过所述匀光片的入射光形成一个朗伯体,或类朗伯体,然后经过匀光之后的光再通过光阑120照射到所述光谱芯片20上形成光斑140,光斑140的有效面积遵循以下经验公式:
其中,d代表光阑孔径或者说光阑直径,h1代表在入射光照射到光谱芯片20的光路方向上所述匀光组件110的出光面到光谱芯片20的距离,h2代表在入射光照射到光谱芯片20的光路方向上所述光阑120的出光面到光谱芯片20的距离。
类似地,h1也可以定义为在入射光照射到光谱芯片20的光路方向上所述匀光组件110的入光面到光谱芯片20的距离,h2可以定义为在入射光照射到光谱芯片20的光路方向上所述光阑120的入光面到光谱芯片20的距离。所述参数h1和h2的两种定义没有本质区别,只是分别基于匀光组件110的入光面或出光面以及光阑120的出光面或入光面进行定义。在图16中,示出的h1和h2基于出光面作为示例。
如果所述光学组件10还包括滤光组件130,那么所述滤光组件130可以设置在第一支撑件411的与所述匀光组件110相对的表面上。或者,所述光阑120的下表面上设置有滤光组件130,例如滤光片。
替代地,所述滤光组件130也可以设置于入射光的入射面,也就是所述滤光组件130设置于所述光阑120的上表面,也就是面对入射光的表面。或者说,所述光学组件10的滤光组件130设置在所述光学组件10的匀光组件110与第一支撑件411之间。滤光组件130可以是一种滤光材料涂层或者滤光片。于是,入射光首先照射到所述滤光组件130上,经过滤光组件130获取到设定波段的入射光,再进行匀光。为此在所述滤光组件130的下面设置匀光组件110,在入射光照射到光谱芯片20的光路上依次设置有滤光组件130、匀光组件110和光阑120。
替代地,如图16所示,在入射光照射到光谱芯片20的光路上依次设置有匀光组件110、光阑120和滤光组件130。所述匀光组件110可以是匀光片、匀光膜等,具体材料可以是聚四氟乙烯PET、PTFE、玻璃等。
根据一些实施方式,匀光组件构造成朗伯体。朗伯体是指当入射能量在所有方向均匀反射,即入射能量以入射点为中心,在整个半球空间内向四周各向同性地反射能量的现象,称为漫反射,也称各向同性反射。完全的漫射体称为朗伯体。本申请实施例中可以不局限朗伯体还可以是类朗伯体。和朗伯体比起来在一定的误差范围内就可以。
所述光谱芯片20通过电连接与电路板5相连,所述光学器件被封装在保护壳内,其中所述第一支撑件411和第二支撑件412用于保护并支撑光路的形成。
在本申请的一些实施例中,在所述盖板43中设置有楔形槽431,所述楔形槽431与匀光组件110形状匹配,可以将上述匀光组件110设置于上述楔形槽431内,由此嵌入和固定将匀光组件110。
所述楔形槽431可以环绕匀光组件110、例如匀光片外沿设置完整一周,即楔形槽431构造成圆形。例如,所述楔形槽431可以构造为在所述盖板43中的通孔,该通孔尤其可以是锥形孔,这尤其有利于匀光组件110的安装、定位和固定。
在图16示出的实施例中,作为所述楔形槽431的锥形孔的窄端处于盖板43的外表面,即面向入射光的表面,而锥形孔的宽端处于盖板43的内表面,即面向第一支撑 件411的表面。通过这样的结构形式,匀光组件110被第一支撑件411和楔形槽431限定所有自由端,能够精确固定和定位,同时能够实现与第一支撑件411的表面和楔形槽431的内周面紧密贴合,有利于防水防尘和光线不受干扰地传播。
有利的是,设置在盖板43的锥形孔中的匀光片的内表面和外表面与所述盖板43的相应表面齐平。进一步,所述匀光片的表面与第一支撑件411的对应表面贴合在一起。
替代地,所述楔形槽431可以环绕匀光片设置在部分周长上,用于匀光组件110卡合固定在盖板43上。或者,也可以围绕匀光组件110、例如匀光片在多个相对的位置上,例如等边三角形的三个角上、正方形的四个角等,分别设置一个楔形槽431,用于卡合固定匀光组件110。
除了卡接固定方式,所述匀光片也可以通过其他固定方式与盖板43连接,例如粘接等。
所述盖板43的厚度不小于所述匀光组件110的厚度。本实施例中所述盖板43的厚度和匀光组件110的厚度相同。
在本申请的一些实施例中,在所述电路板5上设置有基板6,所述光谱芯片20可以设置于所述基板6上。
在本申请的一些实施例中,在所述盖板43上还可以设置保护罩,用于保护盖板43以及设置在盖板43中的匀光组件110。所述保护罩可以是罩在盖板43上的壳罩,也可以构造成一种扁平的保护板,这个保护板例如与盖板43贴合。所述保护罩可以是菲涅尔透镜或盖板43玻璃等。
与图16示出的实施例相比,图18示出的实施例在第一支撑件411中设有例如呈3ⅹ3阵列形式的九个光阑120,因此如图19的光路图所示,入射光在通过匀光片进行匀光后,直接进入九个光阑120中,从而以九个分光路经过响应的光阑120继续引入后续的滤光片,并最终照射到光谱芯片20的光调制层220上。
与设置光阑120的情况不同,这里光谱传感器模组通过多个光阑120对经过匀光组件110匀化的入射光进行引导,每个光阑120形成自身单独的分光路,以在入射光分别到达对应的感应单元之前,获得最佳的光角度和通光量。这些光阑120设置在第一支撑件411中,尤其是构造成沿着入射光的光路方向贯穿第一支撑件411的通孔。所述滤光组件130设置在这些光阑120的出光侧,尤其是滤光组件130表面在所述光阑120的出光侧与第一支撑件411的表面相贴合。通过设置不同数量和布置形式的多个光阑120,可以针对不同的光谱传感器应用场合、待测光环境特性和传感器光电特性需求等因素,个性化地定制入射光路、频率、波长、角度等,从而获得期望的、准确且稳定的图像成像和/或光谱成像信息。
在此为表达清楚,图20是沿着中间一排光阑孔的中心连线将光谱传感器模组剖开的剖视图。在此实施例中,第一支撑件411和第二支撑件412构造成一体的,并由此形成一个一体的底座。所述光阑120可以构造在该底座的与所述匀光组件110相对的区域中,例如构造成透光的光阑孔。参见图20。第一支撑件411和第二支撑件412由同一种材料制成,并可以例如在同一工序中整体加工出来。因此,第一支撑件411和第二支 撑整体形成一种壳身41,其在一端支撑所示盖板43和嵌入所述盖板43的匀光片,在另一端连接电路板5或者底板,在该底板上可以设置用于安置光谱芯片20的电路板5。或者,第一支撑件411、第二支撑件412和所述底板也可以一体制成,并由此构成光谱传感器模组的壳体4。
通过采用整体式的壳身41,一方面可以简化光谱传感器模组的制造和组装工艺,另一方面有利于确保光谱传感器模组的精确的壳体尺寸和形状,有利于光电元器件之间精准定位,避免不利地影响光谱成像和图像成像的质量。
进一步,所述底板42也可以与由第一支撑件411和第二支撑件412构成的壳身41制成为一体的。第一支撑件411、第二支撑件412和底板42由此形成光谱传感器模组的罐状的壳体4,或者形成壳体4的组成部分。
在此实施例中,在第一支撑件411中设置所述光阑120和滤光组件130。例如,在在第一支撑件411中设置用于容纳滤光组件130、尤其是滤光片的凹槽。滤光片可以嵌入到第一支撑件411的这个凹槽中,尤其是滤光片的外表面与凹槽边缘齐平,由此滤光片与第一支撑件411形成整齐的外观,有利于在壳体4中安装其他光电元器件,并避免对于光路和成像过程造成不利影响。
在图21所示的实施例中,所述匀光组件110同样嵌入在盖板43中。但是与前述实施例不同的是,作为所述楔形槽431的锥形孔的窄端处于盖板43的内表面,即背向入射光的表面,或者说面向第一支撑件411的表面;而锥形孔的宽端处于盖板43的外表面,即面向入射光的表面。
同样,沿着入射光的光路方向,所述嵌入在盖板43的锥形孔中的匀光片的两侧表面分别与盖板43表面齐平。进一步,所述匀光片的表面与第一支撑件411的对应表面贴合在一起。
通过这样的结构形式,一方面匀光组件110被第一支撑件411和楔形槽431限定所有自由端,能够精确固定和定位,另一方面能够实现与第一支撑件411的表面和楔形槽431的内周面紧密贴合,有利于防水防尘和光线不受干扰地传播;再一方面,这种结构形式可以从壳体外部将匀光组件110嵌入第一支撑件411的楔形槽431中,有利于简化安装和维护过程。
此外,在第一支撑件411中设置所述光阑120和滤光组件130。在此实施例中,在第一支撑件411中设有一个光阑120,例如构造成在第一支撑件411中的通孔。例如,在第一支撑件411中设置用于容纳滤光组件130、尤其是滤光片的凹槽,该凹槽与第一支撑件411中设置所述光阑120的位置相对应。滤光片可以嵌入到第一支撑件411的这个凹槽中,尤其是滤光片的外表面与凹槽边缘齐平,由此滤光片与第一支撑件411形成整齐的外观,有利于在壳体中安装其他光电元器件,并避免对于光路和成像过程造成不利影响。
在图21所示的实施例中,第一支撑件411和第二支撑件412可以是构造成一体的第一支撑件411和第二支撑件412由同一种材料制成,并可以例如在同一工序中整体加工出来。因此,第一支撑件411和第二支撑整体形成一种壳身41,其在一端支撑所示盖板43和嵌入所述盖板43的匀光片,在另一端连接电路板5或者底板42,在该底板42 上可以设置用于安置光谱芯片20的电路板5。
在图22所示的实施例中,所述匀光组件110同样嵌入在盖板43中。但是与前述实施例不同的是,在所述盖板43中设置有台阶孔433,所述台阶孔433的阶梯与匀光组件110形状匹配,可以将上述匀光组件110嵌入上述台阶孔433内,由此定位和固定匀光组件110,同时允许被摄光通过所述匀光组件110,例如匀光片。可选地,所述嵌入在盖板43的台阶孔433中的匀光片的内表面与盖板43的内表面齐平。进一步,所述嵌入在盖板43的台阶孔433中的匀光片的外表面的周向边缘,即面对入射光的表面的周向边缘,被所述盖板43的台阶孔433的边缘所覆盖,由此所述盖板43对嵌入其中的匀光片形成一种包边结构432。这种结构形式的优点是,通过这种包边结构432可以更高地密封匀光组件110与盖板43之间的连接部位,避免雾气、水蒸气和雨水等侵入光谱传感器模组内部。
在此实施例中,在第一支撑件411中同样设有一个光阑120,例如构造成在第一支撑件411中的通孔。可选地,这个通孔的中轴线与所述光谱芯片20的成像光路的光轴重合,这有利于优化入射角度和均匀光强。
有利的是,所述匀光片的表面可以与第一支撑件411的对应表面贴合在一起。此外,在此实施例中,在第一支撑件411中设置所述光阑120和滤光组件130。例如,在第一支撑件411中设置用于容纳滤光组件130、尤其是滤光片的凹槽。滤光片可以嵌入到第一支撑件411的这个凹槽中,尤其是滤光片的外表面与凹槽边缘齐平,由此滤光片与第一支撑件411形成整齐的外观,有利于在壳体中安装其他光电元器件,并避免对于光路和成像过程造成不利影响。
本申请还提出一种光谱传感器模组,包括所述的光谱传感器以及壳体4,所述光谱传感器的光谱芯片20和光学组件10安置在所述壳体4中。
如图23所示,所示光学组件10直接固定在光谱传感器模组的壳体4中,并设置在光谱芯片20的光学成像路径上。具体地,光谱传感器模组的壳体4是一个整体结构,其例如使用同一种材料在同一个工序中加工出来。整体而言,光谱传感器模组的壳体4是一种一体的柱状或者说筒状结构,其几何对称轴与入射光成像光路是同轴的。在此实施例中,在第一支撑件411中同样设有一个光阑120,其同样可以实现上述结合光阑描述的有益效果。在此,这个光阑可以是遮光镀膜(例如金属镀膜)中的一个透光孔,该遮光镀膜例如贴合在匀光组件110和/或滤光组件130的表面上,特别是被匀光组件110和滤光组件130夹持在中间。
所述光谱传感器模组的壳体4在面向入射光的一端具有用于容纳和固定光学组件10的容纳部。在一些实施例中,所述用于容纳和固定光学组件10的容纳部可以构造成在光谱传感器模组的壳体4中的阶梯孔441。所述壳体4的阶梯孔441一方面具有用于通过入射光的开口442,另一方面具有用于定位和固定所述光学组件10的台阶443,其中所述台阶443围绕所述开口442构造。所述光学组件10整体可以嵌入在所述阶梯孔441中,并以其边缘抵靠在所述壳体4的容纳部的台阶443上。有利地,所述嵌入在所述阶梯孔441中的所述光学组件10的外表面与所述壳体4的内表面齐平,即两者组合形成平整光滑的表面。
进一步,所述光学组件10嵌入在所述光谱传感器模组的壳体4的容纳部中,并且所述光学组件10的外表面的周向边缘,即面对入射光的表面的周向边缘,可以被所述容纳部的开口442的侧壁所覆盖,由此所述壳体4的容纳部对嵌入其中的光学组件10形成一种包边结构。这种包边结构例如可以通过所述壳体4的容纳部的开口442的侧壁上的倒角结构或者扩孔结构来实现。这种结构形式的优点是,通过这种包边结构可以更高地密封匀光组件110与盖板43之间的连接部位,避免雾气、水蒸气和雨水等侵入光谱传感器模组内部。
所述光学组件10包括匀光组件110、光阑120和可选的滤光组件130,其沿着入射光的成像光路依次叠置,形成一种三明治式的整体结构单元。所述光阑120可以在单独设置的遮光层150中的透光的光阑孔。这种整体结构单元可以通过形状锁合、材料锁合或者力锁合的方式嵌入到所述壳体4的容纳部(例如阶梯孔441)中。有利的是,匀光组件110的内表面,即朝向壳体4内部的表面,与壳体4本身的内表面齐平。
可选地,所述壳体4的容纳部构造成在所述壳体4上的凸台444。也就是说,所述壳体4的容纳部在成像光路上突出于所述壳体4的整体轮廓,例如参照图25所示的壳体4的立体图。这样的结构有利于增大壳体内部空间,方便布置和安装其他光电元器件。
同样,如图24所示,所述光学组件10还可以设置多个光阑120。所述光阑120可以在单独设置的遮光层150中的透光的光阑孔。备选地,所述光学组件10的光阑120也可以构造为在不透光涂层(例如镀膜,尤其是金属镀膜)中的光阑孔,所述不透光涂层可以涂敷在所述匀光组件110的上表面和/或下表面,或者可选的滤光组件130的上表面和/或下表面。
在一些实施例中,所述壳体4还设置有溢胶槽446,参见图24。所述溢胶槽446用于引导和容纳工艺胶水。所述溢胶槽446可以构造在所述壳体4中,尤其在所述用于容纳和固定光学组件10的容纳部附近,用于引导和容纳例如在粘接光学组件10时可能流淌出来的粘结剂或者说胶水。在一些实施例中,所述溢胶槽446在所述壳体4中沿着所述用于容纳和固定光学组件10的容纳部的周边构造,尤其是构造成环形槽结构。可选地,所述溢胶槽446在所述壳体4中也可以构造为所述用于容纳和固定光学组件10的容纳部的周边棱边的倒角,通过这种倒角结构所形成的缝隙或者槽口容纳溢胶。
此外,如图25所示,在所述壳体4中,例如在壳体4的上端面中,还可以设置排气孔445,其能够使壳体内部空间与外部环境彼此连通,由此实现壳体内外压力的平衡,确保在光谱传感器模组在制造过程中的公益性以及工作过程中的稳定性。可选地,所述排气孔445还可以设有堵头,其在需要时可以封闭和密封所述排气孔445,避免壳体内部遭受不必要的污染和影响。
参见图26,在本申请的光谱传感器模组的另一些实施例中,在所述光谱芯片20的光调制层220上还设置有透光保护层,并在所述透光保护层上设置有介质组件7。所述介质组件7为高透光率的介质材料。
在此,所述介质组件7可以提供机械和光学双重功能。在结构上,所述介质组件7设置在光谱芯片20的光调制层220和光学组件10之间,并支撑所述光学组件10,尤 其是支撑所述匀光组件110。所述高透光的介质材料的折射率与所述介质材料的厚度相关。
作为所述滤光组件130,在所述介质材料的入光面上还可以设置有滤光层,所述滤光层可以粘合在所述介质组件7的入光面上。
结合前述实施例描述的所述光学组件10的匀光组件110、光阑120、滤光组件130以及壳体4等具体结构措施同样适用于本实施例,在此不再赘述。
用于粘合所述滤光层和介质组件7的粘合材料为透光的。在此实施例中,所述入射光经过匀光组件110及设置在所述匀光组件110之后的光阑120,继续通过介质组件7,到达光谱芯片20的光调制层220。
进一步的,所述入射光还可以经过匀光组件110及设置在所述匀光组件110下面的光阑120,继续通过介质组件7上的滤光组件130经过滤光后进入介质组件7,然后到达光谱芯片20的光调制层220。
在一些实施例中,所述光阑120可以构造为在一种镀膜中的孔口,所述镀膜可以敷镀在匀光组件110的入光侧表面和/或出光侧表面上。所述镀膜由遮光材料制成,例如金属镀膜,尤其是镀铬层,由此形成一种不透光涂层。光线可以从镀膜中的透光的孔口穿过,这种透光的孔口也成为透光的光阑孔,其形状、数量和布置方式在后面详细描述。此外,所述镀膜也可以敷镀在滤光组件130的入光侧表面和/或出光侧表面上。在此实施例中,以金属镀膜为例进行说明。
所述镀膜可以是一种复合结构,例如包括一个或者多个涂层。所述一个或者多个涂层彼此叠置,并对应加工有透光的光阑孔,由此形成带有光阑的整体镀膜。所述镀膜的不同涂层可以采用不同材料,由此通过涂层和材料组合,可以实现所述镀膜以及光阑的不同物理特性和光学特性。这里关于镀膜的特征描述,尤其适用于以上所有结合光谱传感器模组描述的示例性实施例。
在图27所示的,在本申请的光谱传感器模组的另一些实施例中,所述光谱传感器模组的壳体4构造为采取注塑、模塑工艺一体形成的模塑体。
具体的,所述光谱传感器模组的光谱芯片20安置并电连接于所述电路板5,所述光学组件被固定于所述光谱芯片20上表面。在此实施例中,所述光谱传感器模组还包括一模塑体45,所述模塑体45通过注塑、模塑等工艺一体形成,所述模塑体45包裹于所述光谱芯片20、所述光学组件和所述电路板5周围,或者所述模塑体45包裹于所述光谱芯片20和所述光学组件周围并固定支撑于所述电路板5上,使得所述模塑体45与所述光谱芯片20、所述光学组件和所述电路板5固定形成一整体,从而获得所述光谱传感器模组。可以理解的是,在本实施例的加工过程中,先将所述光学组件、所述光谱芯片20和所述电路板5进行组装,即所述光谱芯片20贴附于电路板5的上表面,所述光学组件被固定于所述光谱芯片20的上表面,得到半成品;再将所述半成品放置于模具中,将模塑材料冲入所述模具中,凝固后开模即可获取到在上述半成品上一体形成的所述模塑体45,从而获得所述光谱传感器模组。在形成模塑体的过程中优选地采取拼版工艺,即将多个半成品放置于模具,从而多个半成品可以统一形成模塑体,再进行切割或分割得到多个单个光谱传感器模组。
在图27所示的实施例中,所述光学组件、所述光谱芯片20可以是前述实施例中任意一种,所述电路板5与前述几个实施例相同。本实施例相对前述实施例来说,通过模塑体45固定所述电路板5、所述光谱芯片20和所述光学组件,一定程度上能够使得光谱传感器模组的整体尺寸变小,即有利于小型化,同时模塑体45的存在能够增加光谱传感器模组的整体强度。
具体到个别场景,例如消费电子领域,对光谱传感器模组的尺寸要求较为严格,为了使得光谱传感器模组可以被组装于消费电子设备,对光谱传感器模组的高度有所要求,例如小于1.5mm,或者更甚者所述高度小于1mm,亦可以在1-1.5mm之间。具体的,参考图28,由于所述光学组件包括匀光组件110、光阑120和滤光组件130,且对应的匀光组件110、光阑120和滤光组件130都有一定的厚度要求,若过薄会导致效果、可靠性不过关,例如所述匀光组件110厚度为0.07mm,所述光阑120直径为0.18mm,所述滤光组件130厚度为0.47mm,所述光谱芯片20厚度为0.15mm,所述电路板5厚度为0.3mm,进一步,光学组件10的滤光片、光谱芯片20、电路板5之间通过粘合剂进行固定,光谱芯片20上方和下方的粘合剂厚度均为0.01mm,则整体高度为1.01mm;而当粘合剂厚度控制在0.005mm左右,则有望将所述光谱传感器模组高度控制在1mm之内,即可以在不改变光谱芯片、电路板、光学组件等器件的厚度情况下,使得光谱传感器模组高度得以控制。需要说明的是,不同位置的粘合剂厚度可以不同,例如光谱芯片20和电路板5之间厚度为0.01mm,光谱芯片20和光学组件的绿光组件130之间厚度为0.005mm。
需要说明的是,所述光学组件可以实施为匀光组件110、光阑120、滤光组件130,所述光阑120可以构造为在一种镀膜中的孔口,所述镀膜可以敷镀在匀光组件110的入光侧表面和/或出光侧表面上。所述匀光组件110、光阑120、滤光组件130可以先连接形成一体再固定于光谱芯片20的上表面,亦可以按图示顺序依次固定于光谱芯片20的上表面。在一些实施例中,所述匀光组件110可以采用匀光膜,所述滤光组件130可以采用滤光片。
本申请的一些实施例还提供一种电子设备,包括光谱传感器模组。通过所述电子设备的光谱传感器模组获取到的光谱信息,可以用于恢复色温、照度、亮度等环境光参数。
所述电子设备可以包括一个或多个处理器和存储器。处理器可以是中央处理单元(CPU)或者具有数据处理能力和/或指令执行能力的其他形式的处理单元,并且可以控制电子设备中的其他组件以执行所述光谱传感器或所述光谱传感器模组的功能。所述存储器可以包括一个或多个计算机程序产品,所述计算机程序产品可以包括各种形式的计算机可读存储介质,例如易失性存储器和/或非易失性存储器。在所述存储器可以存储用于实现光谱成像和/或图像成像的相关控制指令或者程序。
最后需要指出,上述描述及附图中所示的本申请的实施例只作为举例而并不限制本申请。本申请的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本申请的技术特征和实施方式可以任意组合或者替换,由此形成的变形方案或修改方案也在本申请的记载和公开范围内。

Claims (118)

  1. 光谱传感器,其特征在于,包括
    光谱芯片(20),所述光谱芯片(20)包括光调制层(220)和光电探测层(230),其中所述光调制层(220)在所述光电探测层(230)的感测路径上设置于所述光电探测层(230)的入光面一侧并包括用于对入射光进行调制的至少一个调制单元(221),其中所述光电探测层(230)被配置为获得经过所述至少一个调制单元(221)所调制的光信号,以及
    光学组件(10),所述光学组件(10)设置于所述光谱芯片(20)的感测路径上,用于接收来自被摄目标的入射光的光信号并将所述光信号导引至所述光谱芯片(20)的光调制层(220),
    其中所述光学组件(10)包括至少一个光阑(120),所述光阑被配置为通过所述光阑(120)形成照射到所述光谱芯片(20)的光调制层(220)的光斑(140),使得所述光斑(140)覆盖所述光调制层(220)的至少一个所述调制单元(221)。
  2. 如权利要求1所述的光谱传感器,其中所述光阑被配置为通过所述光阑(120)形成的照射到所述光谱芯片(20)的光调制层(220)的光斑(140)覆盖所述光谱芯片(20)上不同位置的调制单元(221)。
  3. 如权利要求2所述的光谱传感器,其中所述光阑被配置为通过所述光阑(120)形成的照射到所述光谱芯片(20)的光调制层(220)的光斑(140)覆盖所述光谱芯片(20)上的所有调制单元(221)。
  4. 如权利要求1所述的光谱传感器,其中所述光谱芯片(20)还包括图像传感器(240),所述图像传感器(240)配置成用于获取对所述光调制层(220)调制的入射光的响应信号,并由上述响应信号获得光谱图像信息。
  5. 如权利要求1所述的光谱传感器,其中所述光阑还被配置为通过所述光阑后的光斑(140)对应的一个或者多个调制单元(221),及通过所述图像传感器获取所述入射光对应的光谱响应。
  6. 如权利要求1所述的光谱传感器,其中所述光谱传感器的光学组件(10)还包括设置在所述光阑位置处的光衰减片(225)和/或光增强片(223)。
  7. 如权利要求1到6中任一项所述的光谱传感器,其中所述光谱传感器的光学组件(10)还包括匀光组件(110),所述匀光组件(110)设置在所述入射光照射到所述光谱芯片(20)的光路上,所述匀光组件(110)被配置为使得入射到所述匀光组件(110)中的光线在所有方向均匀反射。
  8. 如权利要求7所述的光谱传感器,其中所述匀光组件(110)被配置通过所述匀光组件(110)的发光强度为D∝cosθ,即其亮度B与方向无关,式中D为出光表面的每块面元S沿任一方向r的发光强度,θ为r与法线n的夹角。
  9. 如权利要求7所述的光谱传感器,其中所述匀光组件(110)是匀光片、匀光膜或 匀光涂层中的任一种。
  10. 如权利要求7所述的光谱传感器,其中所述光学组件(10)还包括滤光组件(130),所述滤光组件(130)设置在所述入射光照射到所述光谱芯片(20)的光路上。
  11. 如权利要求7所述的光谱传感器,其中所述光阑(120)构造为通过塑胶件注塑形成的通孔。
  12. 如权利要求7所述的光谱传感器,其中所述光阑(120)构造为在所述匀光组件(110)的上表面和/或下表面形成的不透光涂层中的透光的光阑孔。
  13. 如权利要求10所述的光谱传感器,其中所述光阑(120)构造为在所述滤光组件(130)的上表面和/或下表面形成的不透光涂层中的透光的光阑孔。
  14. 如权利要求12或13所述的光谱传感器,其中所述光阑孔构造成一个圆形孔,所述光阑圆形孔的圆心处在所述光谱芯片(20)的成像光路的光轴上。
  15. 如权利要求12或13所述的光谱传感器,其中所述不透光涂层是镀膜,所述镀膜包括一个或者多个涂层。
  16. 如权利要求12或13所述的光谱传感器,其中所述不透光涂层是金属镀膜。
  17. 如权利要求11所述的光谱传感器,其中所述通孔的纵截面是柱形或者梯形。
  18. 如权利要求12至13中任一项所述的光谱传感器,其中所述匀组件(110)被配置为通过所述光学组件(10)到达所述光谱芯片(20)上的光斑(140)均匀且角度不敏感。
  19. 光谱传感器模组,包括
    如权利要求1至18中任一项所述的光谱传感器,以及
    电路板(5),所述光谱传感器的光谱芯片(20)安置并电连接到所述电路板(5)上。
  20. 如权利要求19所述的光谱传感器模组,其中所述光谱传感器模组的壳体(4)包括第一支撑件(411),所述光学组件(10)的所述光阑(120)构造在所述第一支撑件(411)中。
  21. 如权利要求20所述的光谱传感器模组,其中所述光学组件(10)的匀光组件(110)设置在第一支撑件(411)的面对入射光的表面上。
  22. 如权利要求21所述的光谱传感器模组,其中所述光学组件(10)的滤光组件(130)设置在第一支撑件(411)的与所述匀光组件(110)相对的表面上。
  23. 如权利要求22所述的光谱传感器模组,其中在第一支撑件(411)中设置用于容纳所述滤光组件(130)的凹槽,该凹槽与第一支撑件(411)中设置所述光阑(120)的位置相对应。
  24. 如权利要求23所述的光谱传感器模组,其中所述滤光组件(130)嵌入到第一支撑件(411)的所述凹槽中,并且所述滤光组件(130)的外表面与凹槽边缘齐平。
  25. 如权利要求21所述的光谱传感器模组,其中所述光学组件(10)的滤光组件(130)设置在所述光学组件(10)的匀光组件(110)与第一支撑件(411)之间。
  26. 如权利要求20所述的光谱传感器模组,其中所述光谱传感器模组的壳体(4)还包括用于支撑第一支撑件(411)的第二支撑件(412),其中第一支撑件(411)和第二支撑件(412)设置用于保护并支撑光路的形成。
  27. 如权利要求26所述的光谱传感器模组,其中所述第一支撑件(411)和第二支撑件(412)构造成一体的,并由此形成一个一体的底座,在该底座的与所述匀光组件(110)相对的区域中构造所述光阑(120)。
  28. 如权利要求26所述的光谱传感器模组,其中所述光谱传感器模组的壳体(4)还包括底板(42),所述电路板(5)设置在所述底板(42)上,其中所述第二支撑件(412)支撑在第一支撑件(411)和所述底板(42)之间,从而第一支撑、第二支撑件(412)以及所述底板(42)组共同成形成光谱传感器模组的壳体(4)。
  29. 如权利要求26所述的光谱传感器模组,其中所述第一支撑件(411)的厚度根据所述光阑(120)的孔径和第二支撑件(412)的厚度来确定。
  30. 如权利要求29所述的光谱传感器模组,其中通过所述光阑(120)形成照射到所述光谱芯片(20)上的光斑(140),其中所述光斑(140)的有效面积遵循以下经验公式:
    其中,d代表光阑孔径或者说光阑直径,h1代表在入射光照射到光谱芯片(20)的光路方向上所述匀光组件(110)的入光面/出光面到光谱芯片(20)的距离,h2代表在入射光照射到光谱芯片(20)的光路方向上所述光阑(120)的入光面/出光面到光谱芯片(20)的距离。
  31. 如权利要求26到30中任一项所述的光谱传感器模组,其中所述光谱传感器模组还包括盖板(43),其支撑并固定在所述第一支撑件(411)的面对入射光的表面上。
  32. 如权利要求31所述的光谱传感器模组,其中在所述盖板(43)中设置有楔形槽(431),所述楔形槽(431)用于嵌入和固定所述光学组件(10)的匀光组件(110)。
  33. 如权利要求32所述的光谱传感器模组,其中所述楔形槽(431)环绕所述匀光组件(110)的外沿设置完整一周。
  34. 如权利要求32所述的光谱传感器模组,其中围绕所述匀光组件(110)在多个相对的位置上分别设置一个楔形槽(431)。
  35. 如权利要求33所述的光谱传感器模组,其中所述楔形槽(431)构造为在所述盖板(43)中的锥形孔。
  36. 如权利要求35所述的光谱传感器模组,其中所述楔形槽(431)的锥形孔的窄端处于所述盖板(43)的外表面,而锥形孔的宽端处于所述盖板(43)的内表面。
  37. 如权利要求32所述的光谱传感器模组,其中设置在所述盖板(43)的楔形槽(431)中的匀光组件(110)的内表面和外表面与所述盖板(43)的相应表面齐平。
  38. 如权利要求31所述的光谱传感器模组,其中在所述盖板(43)中设置有台阶孔(433),所述台阶孔(433)的阶梯与匀光组件(110)形状匹配,其中所述嵌入在盖板(43)的台阶孔(433)中的匀光组件(110)的外表面的周向边缘被所述盖板(43)的台阶孔(433)的边缘所覆盖,由此所述盖板(43)对嵌入其中的所述匀光组件(110)形成一种包边结构(432)。
  39. 如权利要求31所述的光谱传感器模组,其中在所述盖板(43)上设置保护罩。
  40. 如权利要求31所述的光谱传感器模组,其中所述光谱传感器模组的第一支撑件(411)、第二支撑件(412)和盖板(43)一体注塑成型。
  41. 如权利要求19所述的光谱传感器模组,其中所示光谱传感器模组的壳体(4)是一体的筒状结构,并且在面向入射光的一端具有用于容纳和固定所述光学组件(10)的容纳部。
  42. 如权利要求41所述的光谱传感器模组,其中所述用于容纳和固定光学组件(10)的容纳部构造成在光谱传感器模组的壳体(4)中的阶梯孔(441),所述壳体(4)的阶梯孔(441)包括用于通过入射光的开口(442)和用于定位和固定所述光学组件(10)的台阶(443)。
  43. 如权利要求42所述的光谱传感器模组,其中所述光学组件(10)的匀光组件(110)、光阑(120)和滤光组件(130)沿着入射光的成像光路依次叠置,形成一种三明治式的整体结构单元,其中所述整体结构单元通过形状锁合、材料锁合或者力锁合的方式嵌入到所述壳体(4)的阶梯孔(441)中。
  44. 如权利要求42或43所述的光谱传感器模组,其中在所述壳体(4)中沿着所述用于容纳和固定光学组件(10)的容纳部的周边构造有溢胶槽(446)。
  45. 如权利要求44所述的光谱传感器模组,其中所述溢胶槽(446)在所述壳体(4)中构造为在所述用于容纳和固定光学组件(10)的容纳部的周边棱边上的倒角。
  46. 如权利要求19到30中任一项所述的光谱传感器模组,其中在所示光谱传感器模组的壳体(4)中还设置有使壳体内部空间与外部环境彼此连通的排气孔(445)。
  47. 如权利要求19所述的光谱传感器模组,其中所述光谱芯片(20)的光调制层(220)上还设置有透光保护层,并在所述透光保护层上设置有介质组件(7),用于支撑所述光学组件(10)的匀光组件(110),其中所述介质组件(7)为高透光率的 介质材料。
  48. 如权利要求47所述的光谱传感器模组,其中所述介质组件(7)设置在光谱芯片(20)的光调制层(220)和光学组件(10)之间,并支撑所述光学组件(10)。
  49. 如权利要求47或48所述的光谱传感器模组,其中在所述介质材料的入光面上设置有滤光层,所述光学组件(10)的所述光阑(120)构造在所述滤光层中。
  50. 如权利要求49所述的光谱传感器模组,其中所述滤光层粘合在所述介质组件(7)的入光面上,所述粘合材料为透光的。
  51. 如权利要求19到30中任一项所述的光谱传感器模组,其中所述光谱传感器模组还包括数据处理单元(3)。
  52. 如权利要求19所述的光谱传感器模组,其中所述光谱传感器的光谱芯片(20)安置并电连接于所述电路板(5)上,所述光学组件被固定于所述光谱芯片(20)上表面;
    所述光谱传感器模组的壳体(4)构造为一模塑体(45),所述模塑体(45)包裹于所述光谱芯片(20)、所述光学组件(10)和所述电路板(5)周围,或者所述模塑体(45)包裹于所述光谱芯片(20)和所述光学组件(10)周围并固定于所述电路板(5),使得所述模塑体(45)与所述光谱芯片(20)、所述光学组件和所述电路板(5)构成一整体。
  53. 电子设备,包括根据权利要求19至52中任一项所述的光谱传感器模组。
  54. 光谱传感器,其特征在于,包括
    光谱芯片(20),所述光谱芯片(20)包括光调制层(220)和光电探测层(230),其中所述光调制层(220)在所述光电探测层(230)的感测路径上设置于所述光电探测层(230)的入光面一侧并包括用于对入射光进行调制的至少一个调制单元(221),其中所述光电探测层(230)被配置为获得经过所述至少一个调制单元(221)所调制的光信号,以及
    光学组件(10),所述光学组件(10)设置于所述光谱芯片(20)的感测路径上,用于接收来自被摄目标的入射光信号并将所述光信号导引至所述光谱芯片(20)的光调制层(220),
    其中所述光学组件(10)包括多个光阑(120),所述多个光阑(120)被配置为通过所述多个光阑形成照射到所述光谱芯片(20)的光调制层(220)的光斑(140),所述光斑(140)覆盖所述光调制层(220)的至少一个所述调制单元(221),其中所述调制单元(221)是用于获取恢复所述被摄目标的入射光的光信号的光谱信息的最小单元。
  55. 如权利要求54所述的光谱传感器,其中所述光阑被配置为通过所述多个光阑(120)分别形成的照射到所述光谱芯片(20)的光调制层(220)的多个光斑 (140),所述多个光斑(140)分别覆盖所述光谱芯片(20)上不同位置的调制单元(221)。
  56. 如权利要求55所述的光谱传感器,其中对于同一个光谱芯片(20)的光调制层(220)上由周期性排布的调制单元(221)构成的情况,对应每个周期内的设定位置上的所述调制单元(221)由所述光阑(120)被配置通过的所述被摄目标的光信号形成的光斑(140)所覆盖。
  57. 如权利要求54或55所述的光谱传感器,其中所述光阑(120)还被配置为通过所述多个光阑(120)形成的照射到所述光谱芯片(20)的光调制层(220)的光斑(140)的整体组合覆盖所述光谱芯片(20)上的所有调制单元(221)。
  58. 如权利要求55所述的光谱传感器,其中所述光阑(120)被配置为通过所述光阑(120)形成的光斑(140)覆盖同一个调制单元(221)的不同位置。
  59. 如权利要求58所述的光谱传感器,其中所述调制单元(221)分别包括多个相同或者不同的调制子单元,所述光阑(120)被配置为通过所述光阑(120)形成的多个光斑(140)分别覆盖同一个调制单元(221)的不同调制子单元。
  60. 如权利要求55所述的光谱传感器,其中所述调制单元(221)分别包括多个相同或者不同的调制子单元,所述光阑(120)被配置为通过所述光阑(120)形成的光斑(140)照射在所述调制单元(221)的不同周期内的多个相同位置的所述调制子单元上。
  61. 如权利要求55所述的光谱传感器,其中所述调制单元(221)分别包括多个相同或者不同的调制子单元,所述光阑(120)被配置为通过所述光阑(120)形成的多个光斑(140)分别覆盖不同的所述调制单元(221)内处于相同位置的调制子单元。
  62. 如权利要求54或55所述的光谱传感器,其中所述光谱芯片(20)的光调制层(220)由多组不同的调制单元(221)为光谱单元而构成,所述光谱单元按照周期性设置在所述光谱芯片(20)上,所述光阑(120)还被配置为通过所述多个光阑(120)形成的照射到所述光谱芯片(20)的光调制层(220)的光斑(140)覆盖所述光谱单元的不同调制单元(221)上。
  63. 如权利要求57所述的光谱传感器,其中所述光谱芯片(20)的光调制层(220)由多组不同的调制单元(221)为光谱单元而构成,所述光谱单元按照周期性设置在所述光谱芯片(20)上。
  64. 如权利要求62所述的光谱传感器,其中所述光阑(120)还被配置为通过所述多个光阑(120)形成的照射到所述光谱芯片(20)的光调制层(220)的光斑(140)覆盖不同的所述光谱单元的同一位置的调制单元(221)上。
  65. 如权利要求62所述的光谱传感器,其中所述光阑(120)还被配置为通过所述多个光阑(120)形成的照射到所述光谱芯片(20)的光调制层(220)的光斑(140)覆盖不同的所述光谱单元的对应的不同位置的调制单元(221)上,并且多个所述不同位置 的调制单元构成一个周期内的光谱单元。
  66. 如权利要求54所述的光谱传感器,其中所述光谱芯片(20)还包括图像传感器(240),所述图像传感器(240)配置成用于获取对所述光调制层(220)调制的入射光的响应信号,并由所述响应信号获得光谱图像信息;其中所述光调制层上设置多个调制单元(221)。
  67. 如权利要求54所述的光谱传感器,其中通过每个光斑(140)处对应的一个或者多个所述调制单元(221),并通过所述光斑覆盖的所述调制单元(221)获取所述被摄目标的入射光的光谱响应。
  68. 如权利要求54所述的光谱传感器,其中所述调制单元(221)对应所述光电探测层(230)的一个或多个物理像素,其中至少两个调制单元(221)形成一个光谱像素。
  69. 如权利要求55所述的光谱传感器,其中多个所述光阑(120)被配置为与所述被摄目标的光信号通过所述多个光阑(120)形成在所述光谱芯片(20)上的多个光斑是多对多或多对一的。
  70. 如权利要求54所述的光谱传感器,其中所述光谱传感器的光学组件(10)还包括设置在一个或多个光阑(120)位置处的光衰减片(225)和/或光增强片(223)。
  71. 如权利要求69所述的光谱传感器,其中所述光阑(120)位置设置的光衰减片(225)用于减弱所述被摄目标的入射光信号,和/或所述光增强片(223)用于增强所述被摄目标的入摄光信号。
  72. 如权利要求70所述的光谱传感器,其中所述调制单元(221)分别包括多个相同或者不同的调制子单元,所述光衰减片(225)和/或光增强片(223)被设置于多个所述光阑位置处,所述多个光阑(120)被配置为通过对应所述光阑(120)形成的光斑覆盖到同一周期内所述调制单元(221)的不同调制子单元位置。
  73. 如权利要求70所述的光谱传感器,其中所述调制单元(221)分别包括多个相同或者不同的调制子单元,所述光衰减片(225)和/或光增强片(223)被设置于多个所述光阑位置处,所述多个光阑(120)被配置为通过对应所述光阑(120)形成的光斑覆盖到不同周期内所述调制单元(221)相同的调制子单元位置。
  74. 如权利要求54到56中任一项所述的光谱传感器,其中所述光谱传感器的光学组件(10)还包括匀光组件(110),其设置在入射光照射到光谱芯片(20)的光路上,所述匀光组件(110)用于使得照射到所述光谱芯片(20)的光信号均匀且角度不敏感。
  75. 如权利要求74所述的光谱传感器,其中所述匀光组件(110)被配置为使得通过所述匀光组件(110)的入射光形成余弦发光体。
  76. 如权利要求74所述的光谱传感器,其中所述匀光组件(110)是匀光片。
  77. 如权利要求74所述的光谱传感器,其中所述光学组件(10)还包括滤光组件(130),其设置在入射光照射到光谱芯片(20)的光路上。
  78. 如权利要求77所述的光谱传感器,其中对应不同的光阑位置设置具有不同滤光波段的滤光组件(130)。
  79. 如权利要求74所述的光谱传感器,其中所述光阑(120)构造为通过塑胶件注塑形成的通孔。
  80. 如权利要求74所述的光谱传感器,其中所述光阑(120)构造为在所述匀光组件(110)的上表面和/或下表面形成的不透光涂层中的光阑孔。
  81. 如权利要求77所述的光谱传感器,其中所述光阑(120)构造为在所述滤光组件(130)的上表面和/或下表面形成的不透光涂层中的光阑孔。
  82. 如权利要求80或81所述的光谱传感器,其中所述不透光涂层是镀膜,所述镀膜包括一个或者多个涂层。
  83. 如权利要求79所述的光谱传感器,其中所述通孔的纵截面是方形或者梯形。
  84. 光谱传感器模组,包括
    根据权利要求54至83中任一项所述的光谱传感器,以及
    电路板(5),所述光谱传感器的光谱芯片(20)安置并电连接到所述电路板(5)上。
  85. 如权利要求84所述的光谱传感器模组,其中所述光谱传感器模组的壳体(4)包括第一支撑件(411),所述光学组件(10)的所述至少一个光阑(120)构造在所述第一支撑件(411)中。
  86. 如权利要求85所述的光谱传感器模组,其中所述光学组件(10)的匀光组件(110)设置在第一支撑件(411)的面对入射光的表面上。
  87. 如权利要求86所述的光谱传感器模组,其中所述光学组件(10)的滤光组件(130)设置在第一支撑件(411)的与所述匀光组件(110)相对的表面上。
  88. 如权利要求87所述的光谱传感器模组,其中在第一支撑件(411)中设置用于容纳所述滤光组件(130)的凹槽,该凹槽与第一支撑件(411)中设置所述光阑(120)的位置相对应。
  89. 如权利要求88所述的光谱传感器模组,其中所述滤光组件(130)嵌入到第一支撑件(411)的所述凹槽中,并且所述滤光组件(130)的外表面与凹槽边缘齐平。
  90. 如权利要求86所述的光谱传感器模组,其中所述光学组件(10)的滤光组件(130)设置在所述光学组件(10)的匀光组件(110)与第一支撑件(411)之间。
  91. 如权利要求85所述的光谱传感器模组,其中所述光谱传感器模组的壳体(4)还包括用于支撑第一支撑件(411)的第二支撑件(412),其中第一支撑件(411)和第二支撑件(412)设置用于保护并支撑光路的形成。
  92. 如权利要求91所述的光谱传感器模组,其中所述第一支撑件(411)和第二支撑件 (412)构造成一体的,并由此形成一个一体的底座,在该底座的与所述匀光组件(110)相对的区域中构造所述光阑(120)。
  93. 如权利要求91所述的光谱传感器模组,其中所述光谱传感器模组的壳体(4)还包括底板(42),所述电路板(5)设置在所述底板(42)上,其中所述第二支撑件(412)支撑在第一支撑件(411)和所述底板(42)之间,从而第一支撑、第二支撑件(412)以及所述底板(42)组共同成形成光谱传感器模组的壳体(4)。
  94. 如权利要求91所述的光谱传感器模组,其中所述第一支撑件(411)的厚度根据光阑(120)的孔径、光阑(120)之间的中心点的距离、光阑(120)的个数和第二支撑件(412)的厚度来确定。
  95. 如权利要求94所述的光谱传感器模组,其中通过所述光阑(120)形成照射到所述光谱芯片(20)上的光斑(140),其中所述光斑(140)的有效面积遵循以下经验公式:
    其中,d代表光阑孔径或者说光阑直径,h1代表在入射光照射到光谱芯片(20)的光路方向上所述匀光组件(110)的入光面/出光面到光谱芯片(20)的距离,h2代表在入射光照射到光谱芯片(20)的光路方向上所述光阑(120)的入光面/出光面到光谱芯片(20)的距离。
  96. 如权利要求91到95中任一项所述的光谱传感器模组,其中所述光谱传感器模组还包括盖板(43),其支撑并固定在所述第一支撑件(411)的面对入射光的表面上。
  97. 如权利要求96所述的光谱传感器模组,其中在所述盖板(43)中设置有楔形槽(431),所述楔形槽(431)用于嵌入和固定所述光学组件(10)的匀光组件(110)。
  98. 如权利要求97所述的光谱传感器模组,其中所述楔形槽(431)环绕所述匀光组件(110)的外沿设置完整一周。
  99. 如权利要求97所述的光谱传感器模组,其中围绕所述匀光组件(110)在多个相对的位置上分别设置一个楔形槽(431)。
  100. 如权利要求98所述的光谱传感器模组,其中所述楔形槽(431)构造为在所述盖板(43)中的锥形孔。
  101. 如权利要求100所述的光谱传感器模组,其中所述楔形槽(431)的锥形孔的窄端处于所述盖板(43)的外表面,而锥形孔的宽端处于所述盖板(43)的内表面。
  102. 如权利要求97所述的光谱传感器模组,其中设置在所述盖板(43)的楔形槽(431)中的匀光组件(110)的内表面和外表面与所述盖板(43)的相应表面齐平。
  103. 如权利要求96所述的光谱传感器模组,其中在所述盖板(43)中设置有台阶 孔(433),所述台阶孔(433)的阶梯与匀光组件(110)形状匹配,其中所述嵌入在盖板(43)的台阶孔(433)中的匀光组件(110)的外表面的周向边缘被所述盖板(43)的台阶孔(433)的边缘所覆盖,由此所述盖板(43)对嵌入其中的所述匀光组件(110)形成一种包边结构(432)。
  104. 如权利要求96所述的光谱传感器模组,其中在所述盖板(43)上设置保护罩。
  105. 如权利要求96所述的光谱传感器模组,其中所述光谱传感器模组的第一支撑件(411)、第二支撑件(412)和盖板(43)一体注塑成型。
  106. 如权利要求84所述的光谱传感器模组,其中所示光谱传感器模组的壳体(4)是一体的筒状结构,并且在面向入射光的一端具有用于容纳和固定所述光学组件(10)的容纳部。
  107. 如权利要求106所述的光谱传感器模组,其中所述用于容纳和固定光学组件(10)的容纳部构造成在光谱传感器模组的壳体(4)中的阶梯孔(441),所述壳体(4)的阶梯孔(441)包括用于通过入射光的开口(442)和用于定位和固定所述光学组件(10)的台阶(443)。
  108. 如权利要求107所述的光谱传感器模组,其中所述光学组件(10)的匀光组件(110)、光阑(120)和滤光组件(130)沿着入射光的成像光路依次叠置,形成一种三明治式的整体结构单元,其中所述整体结构单元通过形状锁合、材料锁合或者力锁合的方式嵌入到所述壳体(4)的阶梯孔(441)中。
  109. 如权利要求107或108所述的光谱传感器模组,其中在所述壳体(4)中沿着所述用于容纳和固定光学组件(10)的容纳部的周边构造有溢胶槽(446)。
  110. 如权利要求109所述的光谱传感器模组,其中所述溢胶槽(446)在所述壳体(4)中构造为在所述用于容纳和固定光学组件(10)的容纳部的周边棱边上的倒角。
  111. 如权利要求84到95中任一项所述的光谱传感器模组,其中在所示光谱传感器模组的壳体(4)中还设置有使壳体内部空间与外部环境彼此连通的排气孔(445)。
  112. 如权利要求84所述的光谱传感器模组,其中所述光谱芯片(20)的光调制层(220)上还设置有透光保护层,并在所述透光保护层上设置有介质组件(7),用于支撑所述光学组件(10)的匀光组件(110),其中所述介质组件(7)为高透光率的介质材料。
  113. 如权利要求112所述的光谱传感器模组,其中所述介质组件(7)设置在光谱芯片(20)的光调制层(220)和光学组件(10)之间,并支撑所述光学组件(10)。
  114. 如权利要求112或113所述的光谱传感器模组,其中在所述介质材料的入光面上设置有滤光层,所述光学组件(10)的所述至少一个光阑(120)构造在所述滤光层中。
  115. 如权利要求114所述的光谱传感器模组,其中所述滤光层粘合在所述介质组件(7)的入光面上,所述粘合材料为透光的。
  116. 如权利要求84到95中任一项所述的光谱传感器模组,其中所述光谱传感器模组还包括数据处理单元(3)。
  117. 如权利要求84所述的光谱传感器模组,其中所述光谱传感器的光谱芯片(20)安置并电连接于所述电路板(5)上,所述光学组件被固定于所述光谱芯片(20)上表面;
    所述光谱传感器模组的壳体(4)构造为一模塑体(45),所述模塑体(45)包裹于所述光谱芯片(20)、所述光学组件(10)和所述电路板(5)周围,或者所述模塑体(45)包裹于所述光谱芯片(20)和所述光学组件(10)周围并固定于所述电路板(5),使得所述模塑体(45)与所述光谱芯片(20)、所述光学组件和所述电路板(5)构成一整体。
  118. 电子设备,包括根据权利要求84至117中任一项所述的光谱传感器模组。
PCT/CN2023/134969 2022-12-06 2023-11-29 光谱传感器、光谱传感器模组和电子设备 WO2024120272A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202223266968.8 2022-12-06
CN202223266968.8U CN219551691U (zh) 2022-12-06 2022-12-06 光谱传感器、光谱传感器模组和电子设备
CN202211557890.7 2022-12-06
CN202211558210.3 2022-12-06
CN202211558210.3A CN118149970A (zh) 2022-12-06 2022-12-06 光谱传感器、光谱传感器模组和电子设备
CN202211557890.7A CN118149969A (zh) 2022-12-06 2022-12-06 光谱传感器、光谱传感器模组和电子设备
CN202223266805.X 2022-12-06
CN202223266805.XU CN219553634U (zh) 2022-12-06 2022-12-06 光谱传感器、光谱传感器模组和电子设备

Publications (1)

Publication Number Publication Date
WO2024120272A1 true WO2024120272A1 (zh) 2024-06-13

Family

ID=91378535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/134969 WO2024120272A1 (zh) 2022-12-06 2023-11-29 光谱传感器、光谱传感器模组和电子设备

Country Status (1)

Country Link
WO (1) WO2024120272A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060274308A1 (en) * 2005-06-06 2006-12-07 Brady David J Optical Spectroscopy with Overlapping Images
CN112229515A (zh) * 2020-09-03 2021-01-15 厦门脉驰科技有限公司 基于滤光器的光谱分析模组及分析方法
CN112484853A (zh) * 2020-09-21 2021-03-12 厦门脉驰科技有限公司 基于滤光器阵列的光谱分析模组中消除信号光串扰的方法
CN113588085A (zh) * 2021-09-03 2021-11-02 杭州纳境科技有限公司 微型快照式光谱仪
WO2022027257A1 (zh) * 2020-08-04 2022-02-10 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
WO2022161428A1 (zh) * 2021-02-01 2022-08-04 北京与光科技有限公司 光谱芯片及其制备方法、光谱分析装置
CN217504984U (zh) * 2022-05-16 2022-09-27 北京与光科技有限公司 光谱传感器模组和传感器装置
CN219064680U (zh) * 2022-12-06 2023-05-23 北京与光科技有限公司 光谱传感器模组和带有光谱传感器模组的电子设备
CN219553634U (zh) * 2022-12-06 2023-08-18 北京与光科技有限公司 光谱传感器、光谱传感器模组和电子设备
CN219551691U (zh) * 2022-12-06 2023-08-18 北京与光科技有限公司 光谱传感器、光谱传感器模组和电子设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060274308A1 (en) * 2005-06-06 2006-12-07 Brady David J Optical Spectroscopy with Overlapping Images
WO2022027257A1 (zh) * 2020-08-04 2022-02-10 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN112229515A (zh) * 2020-09-03 2021-01-15 厦门脉驰科技有限公司 基于滤光器的光谱分析模组及分析方法
CN112484853A (zh) * 2020-09-21 2021-03-12 厦门脉驰科技有限公司 基于滤光器阵列的光谱分析模组中消除信号光串扰的方法
WO2022161428A1 (zh) * 2021-02-01 2022-08-04 北京与光科技有限公司 光谱芯片及其制备方法、光谱分析装置
CN113588085A (zh) * 2021-09-03 2021-11-02 杭州纳境科技有限公司 微型快照式光谱仪
CN217504984U (zh) * 2022-05-16 2022-09-27 北京与光科技有限公司 光谱传感器模组和传感器装置
CN219064680U (zh) * 2022-12-06 2023-05-23 北京与光科技有限公司 光谱传感器模组和带有光谱传感器模组的电子设备
CN219553634U (zh) * 2022-12-06 2023-08-18 北京与光科技有限公司 光谱传感器、光谱传感器模组和电子设备
CN219551691U (zh) * 2022-12-06 2023-08-18 北京与光科技有限公司 光谱传感器、光谱传感器模组和电子设备

Similar Documents

Publication Publication Date Title
US10331932B2 (en) Optical sensor device and a fingerprint sensor apparatus
JP5808910B2 (ja) 適応性がある色を有する照明装置
WO2017202323A1 (zh) 感光像元、图像采集器、指纹采集设备及显示设备
CN109239818A (zh) 环形光学元件、成像镜头模块与电子装置
US20200363323A1 (en) Spectrometer
CN1922510A (zh) 光学设备和光束分离器
US9869868B2 (en) Light splitting module for obtaining spectrums and dual-mode multiplexing optical device
US20090034080A1 (en) Optical system
CN219064680U (zh) 光谱传感器模组和带有光谱传感器模组的电子设备
Tominaga et al. Spectral imaging by synchronizing capture and illumination
WO2023221663A1 (zh) 光谱传感器、光谱传感器模组、传感器装置和电子设备
CN218885141U (zh) 光谱传感器模组
CN219553634U (zh) 光谱传感器、光谱传感器模组和电子设备
CN219551691U (zh) 光谱传感器、光谱传感器模组和电子设备
WO2024120272A1 (zh) 光谱传感器、光谱传感器模组和电子设备
CN114222045A (zh) 摄像头模组及电子设备
CN218916536U (zh) 光谱模组
CN209525658U (zh) 生物特征成像装置
CN110989185A (zh) 一种基于微透镜的准直器、光电传感系统及指纹识别装置
CN114018417B (zh) 多区域色温检测方法及装置
CN103685833B (zh) 照明设备、图像传感器单元及纸张类识别设备
Scheeline Smartphone technology–instrumentation and applications
CN118149970A (zh) 光谱传感器、光谱传感器模组和电子设备
CN118149969A (zh) 光谱传感器、光谱传感器模组和电子设备
CN211263968U (zh) 一种基于微透镜的准直器、光电传感系统及指纹识别装置