WO2024119444A1 - Earbud with force input capability - Google Patents

Earbud with force input capability Download PDF

Info

Publication number
WO2024119444A1
WO2024119444A1 PCT/CN2022/137607 CN2022137607W WO2024119444A1 WO 2024119444 A1 WO2024119444 A1 WO 2024119444A1 CN 2022137607 W CN2022137607 W CN 2022137607W WO 2024119444 A1 WO2024119444 A1 WO 2024119444A1
Authority
WO
WIPO (PCT)
Prior art keywords
force
earbud
circuit board
printed circuit
input
Prior art date
Application number
PCT/CN2022/137607
Other languages
French (fr)
Inventor
Ye LIN
Zehai CHEN
Chaoming CHEN
Guanqing ZHANG
Hong Soo CHOON
Original Assignee
Gn Audio A/S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gn Audio A/S filed Critical Gn Audio A/S
Priority to PCT/CN2022/137607 priority Critical patent/WO2024119444A1/en
Publication of WO2024119444A1 publication Critical patent/WO2024119444A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1041Mechanical or electronic switches, or control elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/43Electronic input selection or mixing based on input signal analysis, e.g. mixing or selection between microphone and telecoil or between microphones with different directivity characteristics

Definitions

  • the present disclosure pertains to the field of earbuds, and in particular to earbuds with force input capability.
  • Earbuds with user interface such as buttons e.g. for controlling the operation of the earbud or an accessory device are well-known in the art.
  • challenges still remain in providing a user interface with increased user satisfaction.
  • earbuds which may mitigate, alleviate, or address the shortcomings of existing earbuds and may provide improved user interfaces for earbud users.
  • the earbud comprises a first cover having an outer surface forming a force-touch region; a force sensor configured to detect a finger input, such as a single-finger input on the force-touch region for provision of sensor data indicative of a force; a controller; and a printed circuit board, wherein the controller optionally is configured to classify the finger input, such as the single-finger input, based on the sensor data for provision of an input type of the finger input, such as the single-finger input.
  • a method of operating an earbud is disclosed, such as an earbud as disclosed herein.
  • the method comprises obtaining sensor data indicative of a finger input from a force sensor of the earphone; classifying the finger input based on the sensor data for provision of an input type of the finger input; and providing an output indicative of the input type.
  • an earbud with increased input modality is provided.
  • user input noise such as click and/or tap noise in the ear is reduced or removed while the user may be allowed to customize the interface, such as single or multi-level force activation.
  • Fig. 1 schematically illustrates an example earbud according to the present disclosure
  • Fig. 2 is a block diagram of an example earbud according to the present disclosure
  • Fig. 3 shows a schematic cross-section of an example earbud according to the present disclosure
  • Fig. 4 shows a schematic cross-section of an example earbud according to the present disclosure
  • Fig. 5 shows a schematic cross-section of an example earbud according to the present disclosure
  • Fig. 6 shows a schematic cross-section of an example earbud according to the present disclosure
  • Fig. 7 shows a schematic cross-section of an example earbud according to the present disclosure
  • Fig. 8 shows a schematic cross-section of an example earbud according to the present disclosure
  • Fig. 9 shows a schematic cross-section of an example earbud according to the present disclosure.
  • Fig. 10 is a flow chart of an example method according to the present disclosure.
  • a system is disclosed.
  • the system may be seen as an audio system or a communication system.
  • the system may comprise one or more earbuds, such as a first earbud and/or a second earbud, e.g. as disclosed herein, and optionally one or more accessory devices.
  • the accessory device may for example be or comprise a mobile phone, such as a smartphone, a smart-watch, a conference hub, a smart-tv, smart-speakers, a tablet, a computer, such as a laptop computer or PC, or a tablet computer.
  • the accessory device may for example be a user device, such as a mobile phone or a computer, configured to communicate with the earbud (s) .
  • the accessory device (s) may comprise one or more transceivers for wireless communication with the earbud (s) .
  • the accessory device may facilitate wired communication with the earbud (s) , such as by using a cable, such as an electrical cable.
  • the earbud as disclosed herein may comprise an interface, and optionally one or more of a speaker, and one or more microphones including a first microphone and/or a second microphone.
  • the earbud may comprise one or more processors and optionally a memory, the one or more processors implementing the controller.
  • the earbud may comprise a third microphone and/or a fourth microphone.
  • the earbud may comprise one or more speakers also referred to as loudspeaker (s) .
  • the earbud may be seen as an audio device configured to obtain audio signals, output audio signals, and optionally process audio signals.
  • the earbud may be configured to obtain one or more audio signals (also referred to as audio input signals) , e.g. wirelessly, by wire, and/or via one or more microphones, and output one or more audio signals (also referred to as audio output signals) , such as wirelessly, by wire, and/or via one or more speakers.
  • the earbud may be configured to process the one or more audio input signals for provision of the audio output signals, e.g. in accordance with a user input via the interface.
  • the earbud may be configured to obtain, such as to receive via the interface and/or the microphone (s) , the audio signals.
  • the interface comprises a wireless transceiver, also denoted as a radio transceiver, and an antenna for wireless transmission and reception of an audio signal and/or control signals for the earbud, such as for wireless transmission of an output indicative of input type. and/or wireless reception of a wireless audio input signal and/or force setting.
  • the earbud may be configured for wireless communication with one or more electronic devices, such as a speakerphone, a smartphone, a tablet, a computer and/or a smart watch.
  • the earbud may be configured for wireless communications via a wireless communication system, such as short-range wireless communications systems, such as Wi-Fi, Bluetooth, Zigbee, IEEE 802.11, IEEE 802.15, infrared and/or the like.
  • the earbud may be configured for wireless communications via a wireless communication system, such as a 3GPP system, such as a 3GPP system supporting one or more of: New Radio, NR, Narrow-band IoT, NB-IoT, and Long Term Evolution -enhanced Machine Type Communication, LTE-M, millimeter-wave communications, such as millimeter-wave communications in licensed bands, such as device-to-device millimeter-wave communications in licensed bands.
  • a wireless communication system such as a 3GPP system, such as a 3GPP system supporting one or more of: New Radio, NR, Narrow-band IoT, NB-IoT, and Long Term Evolution -enhanced Machine Type Communication, LTE-M
  • millimeter-wave communications such as millimeter-wave communications in licensed bands, such as device-to-device millimeter-wave communications in licensed bands.
  • the interface of the earbud comprises one or more of: a Bluetooth interface, Bluetooth low energy interface, and a magnetic induction interface.
  • the interface of the earbud may comprise a Bluetooth antenna and/or a magnetic interference antenna.
  • the interface may comprise a connector for wired communication, via a connector, such as by using an electrical cable.
  • the connector may connect the earbud to an accessory device, e.g., for wired connection between the earbud and the accessory device.
  • the earbud comprises a first cover having an outer surface forming a force-touch region.
  • the force-touch region may be configured to, during use, face the surroundings of the user.
  • the earbud comprises a force sensor.
  • the force sensor may form a part of the interface.
  • the force sensor is configured to detect an input, such as a single-finger input on the force-touch region for provision of sensor data indicative of a force.
  • a single-finger input refers to the ability of a user to provide input with a single finger when the earbud is positioned in its intended use position.
  • the force-touch region may be planar. In one or more examples, the force-touch region may be convex or concave.
  • the earbud comprises a controller.
  • the controller is connected to the force sensor and configured to receive the sensor data.
  • the controller is configured to classify the finger input, such as the single-finger input, based on the sensor data for provision of an input type of the finger input, such as the single-finger input, e.g. by selecting the input type from an input set.
  • the input type may be selected from an input set of one or more input types including a first input type indicative of an input with a first force and optionally a second input type indicative of an input with a second force.
  • the input type is selected from an input set of a plurality of input types including a first input type indicative of an input with a first force and a second input type indicative of an input with a second force.
  • the earbud comprises a first cover having an outer surface forming a force-touch region; a force sensor configured to detect a single-finger input on the force-touch region for provision of sensor data indicative of a force; a controller; and a printed circuit board, wherein the controller is configured to classify the single-finger input based on the sensor data for provision of an input type of the single-finger input.
  • the input type such as the single-finger input type, may be selected from one or more input types comprising a first input type and/or a second input type.
  • the earbud comprises a printed circuit board.
  • the earbud comprises a force translating member arranged on a distal side/surface of the printed circuit board.
  • the force translating member may be configured to translate a force between the first cover and the force sensor, e.g. via the force translating member and the printed circuit board.
  • proximal side or surface of a layer an element, a device or part of a device
  • the referral is to the skin-facing or head-facing side or surface when a user wears the earbud.
  • a proximal side or surface may be referred to a side or surface facing the ear canal during use of the earbud.
  • the referral is to the side or surface facing away from the skin or head when a user wears the earbud.
  • the proximal side or surface is the side or surface closest to the eardrum when the earbud is worn by a user and the distal side is the opposite side or surface –the side or surface furthest away from the eardrum in use.
  • the force translating member is made of silicone.
  • the force translating member may be made of a material comprising one or more of thermoplastic polyurethane (TPU) , silicone, and thermoplastic elastomer (TPE) .
  • TPU thermoplastic polyurethane
  • TPE thermoplastic elastomer
  • the TPU may be or include polyester-based TPU and/or polyether-based TPU.
  • the force translating member may be made of a material having a hardness in the range from Shore A 50 to Shore A 90.
  • the force translating member may be glued to and/or press-fitted between different parts of the earbud.
  • the force translating member may have a thickness in the range from 0.5 mm to 3 mm, such as 1.0 mm, 1.5 mm or 2.0 mm.
  • the thickness of the force translating member may be measured between opposite proximal and distal surfaces of the force translating member along the plunger axis.
  • the force translating member may have an area (extension of force translating member perpendicular to the plunger axis) larger than 1.5 times the plunger area (extension of plunger member perpendicular to the plunger axis) , such as about twice the plunger area.
  • the force translating member may contact the first cover, such as a plunger of the first cover.
  • the force translating member may be glued to the first cover and/or the printed circuit board.
  • the force translating member may be press-fitted between the first cover and the printed circuit board.
  • the force sensor is arranged on a proximal side and/or surface of the printed circuit board.
  • the force sensor may be configured to detect a convex bend of the printed circuit board.
  • the force translating member may be configured to translate a force between the first cover and the force sensor via the printed circuit board.
  • a force applied on the first cover may be translated to the force translating member, e.g. via a plunger of the first cover, wherein the force translating member is to translate the force to the printed circuit board, and wherein force applied by the force translating member is translated to the force sensor by the printed circuit board.
  • the force sensor is arranged on a distal side/surface of the printed circuit board.
  • the force sensor may be configured to detect a concave bend of the printed circuit board.
  • the first cover comprising a plunger arranged between the force-touch region and the printed circuit board and configured to translate a force between the first cover and the printed circuit board.
  • the plunger such as an end of the plunger, may contact and/or support the force translating member.
  • the force translating member may be arranged between the plunger and the printed circuit board.
  • the force sensor is aligned with a plunger axis of the plunger.
  • the force sensor or a center thereof may be arranged at a distance from the plunger axis, such as at a distance less than 3 mm from the plunger axis.
  • the earbud comprises a front frame e.g. configured to accommodate the printed circuit board, the front frame comprising a lumen.
  • the plunger may be at least partially arranged within the lumen.
  • the first cover may comprise one or more coupling members, such as protrusions, e.g. on an inner surface, for coupling with corresponding coupling members, e.g. arranged on the front frame.
  • the lumen may be formed by an outer/distal surface of the front frame. This may allow for a water tight earbud and/or replacement of the first cover.
  • the front cover is a single-piece front cover. This may facilitate a water tight earbud and/or replacement of the first cover.
  • the force sensor is a MEMS sensor.
  • the force sensor may be a In one or more examples, the force sensor is arranged on a proximal side/surface of the front cover and electrically connected to the printed circuit board via conductor. Thereby, force sensing with improved accuracy may be provided.
  • the conductor may be a flexprint conductor. In other words, the conductor may be embedded in a flexprint.
  • the earbud may comprise a flexprint/conductor.
  • the force sensor may be mounted on the flexprint.
  • the flexprint may be arranged between the front cover and the force sensor.
  • the flexprint/conductor may be electrically connected to the printed circuit board/controller.
  • the earbud comprises a back cover and the force sensor is arranged on a distal side/surface of the back cover and electrically connected to the printed circuit board via conductor.
  • the conductor may be a flexprint conductor.
  • the conductor may be embedded in a flexprint.
  • the earbud may comprise a flexprint/conductor.
  • the force sensor may be mounted on the flexprint.
  • the flexprint may be arranged between the back cover and the force sensor.
  • the flexprint/conductor may be electrically connected to the printed circuit board/controller.
  • the earbud comprises a sensor frame, e.g. arranged on the printed circuit board, and the force sensor is arranged on the sensor frame and electrically connected to the printed circuit board via conductor.
  • the conductor may be a flexprint conductor.
  • the conductor may be embedded in a flexprint.
  • the earbud may comprise a flexprint/conductor.
  • the force sensor may be mounted on the flexprint.
  • the flexprint may be arranged between the sensor frame and the force sensor.
  • the flexprint/conductor may be electrically connected to the printed circuit board/controller.
  • the force translating member may be configured to translate a force between the first cover and the force sensor via the sensor frame.
  • a force applied on the first cover may be translated to the force translating member, e.g. via a plunger of the first cover, wherein the force translating member is to translate the force to the sensor frame, and wherein force applied by the force translating member is translated to the force sensor by the sensor frame.
  • the earbud is configured to receive, from an accessory device, a force setting; and store the force setting in a memory of the earbud.
  • a user and/or an accessory device may adjust and/or configure how user input using different force is detected and/or used in the earbud.
  • to classify the finger input, such as the single-finger input, based on the sensor data comprises to classify the finger input, such as the single-finger input, based on the sensor data and the force setting.
  • the force setting may comprise a first force setting, such as a first force range, for classifying an input as a first input type.
  • the force setting may comprise a second force setting, such as a second force range, for classifying an input as a second input type.
  • the sensor data may be indicative of a force falling within a first force range of the first force setting, the controller therefore optionally classifying the input/single-finger input as a first input type, e.g.
  • the controller therefore classifying the input/single-finger input as a second input type, e.g. by setting an input identifier to a second value indicative of a second input with a second force.
  • to classify the finger input, such as the single-finger input, based on the sensor data comprises to determine an input force based on the sensor data and classify the finger input, such as the single-finger input, based on the input force.
  • to classify the finger input, such as the single-finger input, based on the sensor data comprises to determine an input duration based on the sensor data and classify the finger input, such as the single-finger input, based on the input duration.
  • to classify the finger input, such as the single-finger input, based on the sensor data comprises to determine an input speed based on the sensor data and classify the finger input, such as the single-finger input, based on the input speed.
  • the input speed may be based on samples of the force value, e.g. as a or based on a derivative of the force value.
  • a finger-input may be classified as a first input type in accordance with the input speed being a first input speed, meeting a first speed threshold and/or being in a first speed range.
  • a finger-input may be classified as a second input type in accordance with the input speed being a second input speed, meeting a second speed threshold and/or being in a second speed range.
  • to classify the finger input may comprise to classify the finger input based on a force and input speed. For example, an input with a first force and a first speed may be mapped or classified as one input type (first primary input type) and an input with the first force and a second speed may be classified as another input type (first secondary input type) . Alternatively, or in addition, an input with a first force and a first speed may be mapped or classified as one input type (first primary input type) and an input with a second force and the first speed may be classified as another input type (second primary input type) .
  • to classify the finger input such as the single-finger input, based on the sensor data may comprise to classify the finger input based on one or more of an input force, an input duration, and an input speed.
  • the controller is configured to provide an output indicative of the input type of the input/single-finger input.
  • the controller may be configured to transmit, e.g. wirelessly and/or by wire, an input identifier indicative of the input type as output to an accessory device.
  • to provide an output indicative of the input type of the input/single-finger input may comprise outputting an audio signal via a speaker of the earbud.
  • Fig. 1 schematically illustrates an exploded view of an earbud according to the present disclosure.
  • the earbud 2 comprises a first cover 4 having an outer surface 6 forming a force-touch region 8.
  • the earbud 2 comprises a force sensor not shown in Fig. 1 but otherwise referred to with reference number 10; a controller not shown in Fig. 1 but otherwise referred to with reference number 12; and a printed circuit board (PCB) 14.
  • PCB printed circuit board
  • the force sensor is optionally a MEMS sensor and is arranged on a proximal side or surface of the printed circuit board 14 and configured to detect a single-finger input on the force-touch region 8 for provision of sensor data indicative of a force, and the controller 12 is configured to classify the single-finger input based on the sensor data for provision of an input type of the single-finger input.
  • the controller is arranged on a proximal surface opposite a distal side 14A of the printed circuit board 14.
  • the earbud 2 optionally comprises a force translating member 16 arranged on a distal surface 14A of the printed circuit board 14 and configured to translate a force between the first cover and the force sensor.
  • the force translating member 16 is made of silicone and is press-fitted between the PCB and a plunger of the first cover 4, the plunger not shown in Fig. 1 but otherwise referred to with reference number 20.
  • the plunger is arranged between the force-touch region 8 and the printed circuit board 14 and configured to translate a force between the first cover 4/force-touch region 8 and the printed circuit board 14.
  • the earbud 2 comprises a back cover 22 also denoted housing part, and a front frame 24.
  • the front frame 24 is configured to at least partly accommodate the printed circuit board 14, e.g. in a first or inner lumen 26 of the front frame 24.
  • the front frame 24 comprises a lumen, such as a second or outer lumen 28, and wherein the plunger optionally is at least partially arranged within the lumen.
  • the first cover 4 is a single-piece front cover and optionally comprises one or more coupling members, such as protrusions (not shown) on the inner surface of the first cover, for coupling/engaging with corresponding coupling members, such as recesses 30, arranged on the front frame 24.
  • coupling members such as protrusions (not shown) on the inner surface of the first cover, for coupling/engaging with corresponding coupling members, such as recesses 30, arranged on the front frame 24.
  • Fig. 2 shows a block diagram of an example earbud, such as earbud 2, 2A, 2B, 2C, 2D, 2E, 2F, 2G.
  • the earbud 2, 2A, 2B, 2C, 2D, 2E, 2F, 2G optionally comprises an interface, a processor 40 including controller 12 for provision of an electrical output signal 40A and a memory 42.
  • the memory 42 stores input setting 43 including force setting 43A used by controller for classifying input via force sensor 10 connected to the controller 12.
  • the earbud 2, 2A, 2B, 2C, 2D, 2E, 2F, 2G optionally comprises one or more microphones including a first microphone 44 for provision of a first microphone input signal 44A, and optionally a second microphone 46 for provision of a second microphone input signal 46A.
  • the microphones 44, 46 may be omitted.
  • the interface of the earbud 2, 2A, 2B, 2C, 2D, 2E, 2F, 2G comprises a wireless communication unit 48 including a transceiver 49 and an antenna 50.
  • the wireless communication unit 48 is coupled to the processor 40 and configured for wireless communication with one or more accessory devices including smart phone 51.
  • the earbud 2, 2A, 2B, 2C, 2D, 2E, 2F, 2G comprises a force sensor 10 coupled to the processor 40 for provision of sensor data SD to the controller 12.
  • the force sensor 10 is configured to allow a user to exert a force on it, e.g. by pressing and/or merely touching force-touch region of first cover, see Fig. 1. In other words, a user may provide user input via the force sensor 10.
  • the earbud 2, 2A, 2B, 2C, 2D, 2E, 2F, 2G/controller 12 may be configured to, upon or in response to an input including application of a force on the force sensor 10, classify the finger input and transmit via the wireless communication unit 48 a first control signal 52 or first control signaling to accessory device 51, the first control signal 52 comprising or being indicative of an input identifier 52A indicative of the input or input type provided by the user via force sensor 10.
  • the controller 12 is configured to provide an output (52, 52A) indicative of the single-finger input type.
  • the transceiver 49 of the earbud 2 is configured to convert wireless input signal (s) , such as control signals and/or audio input signals, including wireless input signal 54 from the smart phone 51, into one or more transceiver input signals 56.
  • the processor 40 is configured to process one or more input signals 44A, 46A, 56 and provide an electrical output signal 40A based on one or more of input signals 44A, 46A, 56.
  • the earbud 2 comprises an optional speaker 58 for converting the electrical output signal 40A to an audio output or audio output signal.
  • the earbud 2, 2A, 2B, 2C, 2D, 2E, 2F, 2G may be configured to receive a second control signal 60 or second control signaling comprising an input setting, such as a force setting and/or other input setting, such as a duration setting and/or an input speed setting from the accessory device 51; and store the input setting of the second control signal 60 in the memory 42.
  • a second control signal 60 or second control signaling comprising an input setting, such as a force setting and/or other input setting, such as a duration setting and/or an input speed setting from the accessory device 51.
  • Fig. 3 shows a schematic cross-section of an example earbud according to the present disclosure.
  • the earbud 2, 2A comprises a first cover 4 having an outer surface 6 forming a force-touch region 8.
  • the earbud 2A comprises a force sensor 10; a controller 12; and a printed circuit board (PCB) 14.
  • the force sensor 10 is optionally a MEMS sensor and is arranged on a proximal surface 14B of the printed circuit board 14 and configured to detect a single-finger input on the force-touch region 8 for provision of sensor data indicative of a force.
  • the force sensor 10 is configured to detect a convex bend of the printed circuit board 14.
  • the controller 12 is optionally arranged on the proximal surface 14B of the PCB 14 but may in an alternative example be arranged on the distal surface 14A.
  • the earbud 2, 2A comprises a force translating member 16 arranged on the distal surface 14A and configured to translate a force between the first cover 4/force-touch region 8 and the force sensor 10 via the PCB.
  • the force translating member 16 is made of silicone and is press-fitted between the PCB 14 and a plunger 20 of the first cover 4.
  • the plunger 20 is arranged between the force-touch region 8 and the printed circuit board 14 and configured to translate a force between the first cover 4/force-touch region 8 and the printed circuit board 14.
  • the force sensor 10 is aligned with a plunger axis X of the plunger 20.
  • Fig. 4 shows a schematic cross-section of an example earbud according to the present disclosure.
  • the earbud 2B comprises a first cover 4 having an outer surface 6 forming a force-touch region 8.
  • the earbud 2A comprises a force sensor 10; a controller 12; and a printed circuit board (PCB) 14.
  • the force sensor 10 is optionally a MEMS sensor and is arranged on a distal surface 14A of the printed circuit board 14 and configured to detect a single-finger input on the force-touch region 8 for provision of sensor data indicative of a force.
  • the force sensor 10 is configured to detect a concave bend of the printed circuit board 14.
  • the controller 12 is optionally arranged on the distal surface 14A of the PCB 14 but may in an alternative example be arranged on the proximal surface 14B.
  • the earbud 2B comprises a force translating member 16 arranged on the distal surface 14A and configured to translate a force between the first cover 4/force-touch region 8 and the force sensor 10 via the PCB 14.
  • the force translating member 16 is made of silicone or other suitable material and is press-fitted between the PCB 14 and a plunger 20 of the first cover 4.
  • the plunger 20 is arranged between the force-touch region 8 and the printed circuit board 14 and configured to translate a force between the first cover 4/force-touch region 8 and the printed circuit board 14.
  • Fig. 5 shows a schematic cross-section of an example earbud according to the present disclosure.
  • the earbud 2C comprises a first cover 4 having an outer surface 6 forming a force-touch region 8.
  • the earbud 2C comprises a force sensor 10; a controller 12; and a printed circuit board (PCB) 14.
  • the force sensor 10 is optionally a MEMS sensor and is arranged on a distal surface 14A of the printed circuit board 14 and configured to detect a single-finger input on the force-touch region 8 for provision of sensor data indicative of a force.
  • the force sensor 10 is configured to detect a concave bend of the printed circuit board 14.
  • the controller 12 is optionally arranged on the distal surface 14A of the PCB 14 but may in an alternative example be arranged on the proximal surface 14B.
  • the earbud 2C comprises a force translating member 16 arranged between the force sensor 10 and the first cover 4 and configured to translate a force between the first cover 4/force-touch region 8 and the force sensor 10.
  • the force translating member 16 is made of silicone or other suitable material and is press-fitted between the force sensor 10 and a plunger 20 of the first cover 4.
  • the plunger 20 is arranged between the force-touch region 8 and the printed circuit board 14 and configured to translate a force between the first cover 4/force-touch region 8 and the printed circuit board 14.
  • the force sensor 10 is aligned with a plunger axis X of the plunger 20 and the force translating member 16.
  • Fig. 6 shows a schematic cross-section of an example earbud according to the present disclosure.
  • the earbud 2D comprises a back cover 22 and a first cover 4 having an outer surface 6 forming a force-touch region 8.
  • the earbud 2D comprises a force sensor 10; a controller 12; and a printed circuit board (PCB) 14.
  • the force sensor 10 is optionally a MEMS sensor and is arranged on a proximal side 4B of the first cover 4 and configured to detect a single-finger input on the force-touch region 8 for provision of sensor data indicative of a force.
  • the force sensor 10 is electrically connected to the printed circuit board 14/controller 12 via flexprint 62 including conductor 62A.
  • Fig. 7 shows a schematic cross-section of an example earbud according to the present disclosure.
  • the earbud 2E comprises a first cover 4 having an outer surface 6 forming a force-touch region 8.
  • the earbud 2E comprises a force sensor 10; a controller 12; a printed circuit board (PCB) 14, and a sensor frame 64.
  • the sensor frame 64 is arranged on the printed circuit board 14 and the force sensor 10 is arranged on a distal surface 64A of the sensor frame 64 and electrically connected to the printed circuit board 14 via flexprint 62 including conductor 62A.
  • the earbud 2E comprises a force translating member 16 arranged between the sensor frame 64 and the first cover 4 and configured to translate a force between the first cover 4/force-touch region 8 and the force sensor 10 via the sensor frame 64.
  • the force translating member 16 is made of silicone or other suitable material and is press-fitted between the sensor frame and a plunger 20 of the first cover 4.
  • the plunger 20 is arranged between the force-touch region 8 and the sensor frame 64 and configured to translate a force between the first cover 4/force-touch region 8 and the sensor frame 64.
  • Fig. 8 shows a schematic cross-section of an example earbud according to the present disclosure.
  • the earbud 2F comprises a first cover 4 having an outer surface 6 forming a force-touch region 8.
  • the earbud 2F comprises a force sensor 10; a controller 12; a printed circuit board (PCB) 14, and a sensor frame 64.
  • the sensor frame 64 is arranged on the printed circuit board 14 and the force sensor 10 is arranged on a proximal surface 64B of the sensor frame 64 and electrically connected to the printed circuit board 14 via flexprint 62 including conductor 62A.
  • the earbud 2F comprises a force translating member 16 arranged between the sensor frame 64 and the first cover 4 and configured to translate a force between the first cover 4/force-touch region 8 and the force sensor 10 via the sensor frame 64.
  • the force translating member 16 is made of silicone or other suitable material and is press-fitted between the sensor frame 64 and a plunger 20 of the first cover 4.
  • the plunger 20 is arranged between the force-touch region 8 and the sensor frame 64 and configured to translate a force between the first cover 4/force-touch region 8 and the sensor frame 64.
  • the force sensor 10 is aligned with a plunger axis X of the plunger 20 and the force translating member 16.
  • Fig. 9 shows a schematic cross-section of an example earbud according to the present disclosure.
  • the earbud 2G comprises a back cover 22 and a first cover 4 having an outer surface 6 forming a force-touch region 8.
  • the earbud 2G comprises a force sensor 10; a controller 12; and a printed circuit board (PCB) 14.
  • the force sensor 10 is optionally a MEMS sensor and is arranged on a distal surface 22A of the back cover 22 and electrically connected to the controller 12/printed circuit board 14 via flexprint 62 including conductor 62A.
  • Fig. 10 shows a flow-chart of a method of operating an earbud, such as an earbud as disclosed herein.
  • the method 100 comprises obtaining S102 sensor data indicative of a finger input from a force sensor of the earphone; classifying S104 the finger input based on the sensor data for provision of an input type of the finger input; and providing S106 an output indicative of the input type.
  • first “first” , “second” , “third” and “fourth” , “primary” , “secondary” , “tertiary” etc. are used here and elsewhere for labelling purposes only and are not intended to denote any specific spatial or temporal ordering. Furthermore, the labelling of a first element does not imply the presence of a second element and vice versa.
  • circuitries or operations which are illustrated with a solid line are circuitries, components, features or operations which are comprised in the broadest example.
  • Circuitries, components, features, or operations which are comprised in a dashed line are examples which may be comprised in, or a part of, or are further circuitries, components, features, or operations which may be taken in addition to circuitries, components, features, or operations of the solid line examples. It should be appreciated that these operations need not be performed in order presented. Furthermore, it should be appreciated that not all of the operations need to be performed. The example operations may be performed in any order and in any combination. It should be appreciated that these operations need not be performed in order presented. Circuitries, components, features, or operations which are comprised in a dashed line may be considered optional.
  • the above recited ranges can be specific ranges, and not within a particular %of the value. For example, within less than or equal to 10 wt. /vol. %of, within less than or equal to 5 wt. /vol. %of, within less than or equal to 1 wt. /vol. %of, within less than or equal to 0.1 wt. /vol. %of, and within less than or equal to 0.01 wt. /vol. %of the stated amount.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Otolaryngology (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

An earbud is disclosed, the earbud comprising a first cover having an outer surface forming a force-touch region; a force sensor configured to detect a single-finger input on the force-touch region for provision of sensor data indicative of a force; a controller; and a printed circuit board, wherein the controller is configured to classify the single-finger input based on the sensor data for provision of an input type of the single-finger input.

Description

EARBUD WITH FORCE INPUT CAPABILITY FIELD OF THE INVENTION
The present disclosure pertains to the field of earbuds, and in particular to earbuds with force input capability.
BACKGROUND
Earbuds with user interface such as buttons e.g. for controlling the operation of the earbud or an accessory device are well-known in the art. However, challenges still remain in providing a user interface with increased user satisfaction.
SUMMARY
Accordingly, there is a need for accurate and convenient interfaces for allowing and receiving user input.
Further, there is a need for earbuds, which may mitigate, alleviate, or address the shortcomings of existing earbuds and may provide improved user interfaces for earbud users.
An earbud is disclosed. The earbud comprises a first cover having an outer surface forming a force-touch region; a force sensor configured to detect a finger input, such as a single-finger input on the force-touch region for provision of sensor data indicative of a force; a controller; and a printed circuit board, wherein the controller optionally is configured to classify the finger input, such as the single-finger input, based on the sensor data for provision of an input type of the finger input, such as the single-finger input.
A method of operating an earbud is disclosed, such as an earbud as disclosed herein. The method comprises obtaining sensor data indicative of a finger input from a force sensor of the earphone; classifying the finger input based on the sensor data for provision of an input type of the finger input; and providing an output indicative of the input type.
It is an advantage of the present disclosure, that an earbud with increased input modality is provided. In addition, user input noise, such as click and/or tap noise in the ear is reduced or removed while the user may be allowed to customize the interface, such as single or multi-level force activation.
Further, a more simple and stable user input is facilitated.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other features and advantages of the present disclosure will become readily apparent to those skilled in the art by the following detailed description of examples thereof with reference to the attached drawings, in which:
Fig. 1 schematically illustrates an example earbud according to the present disclosure,
Fig. 2 is a block diagram of an example earbud according to the present disclosure,
Fig. 3 shows a schematic cross-section of an example earbud according to the present disclosure,
Fig. 4 shows a schematic cross-section of an example earbud according to the present disclosure,
Fig. 5 shows a schematic cross-section of an example earbud according to the present disclosure,
Fig. 6 shows a schematic cross-section of an example earbud according to the present disclosure,
Fig. 7 shows a schematic cross-section of an example earbud according to the present disclosure,
Fig. 8 shows a schematic cross-section of an example earbud according to the present disclosure,
Fig. 9 shows a schematic cross-section of an example earbud according to the present disclosure, and
Fig. 10 is a flow chart of an example method according to the present disclosure.
DETAILED DESCRIPTION
Various examples and details are described hereinafter, with reference to the figures when relevant. It should be noted that the figures may or may not be drawn to scale and that elements of similar structures or functions are represented by like reference numerals  throughout the figures. It should also be noted that the figures are only intended to facilitate the description of the examples. They are not intended as an exhaustive description of the disclosure or as a limitation on the scope of the disclosure. In addition, an illustrated example needs not have all the aspects or advantages shown. An aspect or an advantage described in conjunction with a particular example is not necessarily limited to that example and can be practiced in any other examples even if not so illustrated, or if not so explicitly described.
The figures are schematic and simplified for clarity, and they merely show details which aid understanding the disclosure, while other details have been left out. Throughout, the same reference numerals are used for identical or corresponding parts.
A system is disclosed. The system may be seen as an audio system or a communication system. The system may comprise one or more earbuds, such as a first earbud and/or a second earbud, e.g. as disclosed herein, and optionally one or more accessory devices.
The accessory device may for example be or comprise a mobile phone, such as a smartphone, a smart-watch, a conference hub, a smart-tv, smart-speakers, a tablet, a computer, such as a laptop computer or PC, or a tablet computer. In other words, the accessory device may for example be a user device, such as a mobile phone or a computer, configured to communicate with the earbud (s) . The accessory device (s) may comprise one or more transceivers for wireless communication with the earbud (s) . In one or more example systems, the accessory device may facilitate wired communication with the earbud (s) , such as by using a cable, such as an electrical cable.
An earbud is disclosed. The earbud as disclosed herein may comprise an interface, and optionally one or more of a speaker, and one or more microphones including a first microphone and/or a second microphone. The earbud may comprise one or more processors and optionally a memory, the one or more processors implementing the controller.
The earbud may comprise a third microphone and/or a fourth microphone. The earbud may comprise one or more speakers also referred to as loudspeaker (s) .
The earbud may be seen as an audio device configured to obtain audio signals, output audio signals, and optionally process audio signals. In other words, the earbud may be configured to obtain one or more audio signals (also referred to as audio input signals) ,  e.g. wirelessly, by wire, and/or via one or more microphones, and output one or more audio signals (also referred to as audio output signals) , such as wirelessly, by wire, and/or via one or more speakers. The earbud may be configured to process the one or more audio input signals for provision of the audio output signals, e.g. in accordance with a user input via the interface.
The earbud may be configured to obtain, such as to receive via the interface and/or the microphone (s) , the audio signals.
In one or more example earbuds, the interface comprises a wireless transceiver, also denoted as a radio transceiver, and an antenna for wireless transmission and reception of an audio signal and/or control signals for the earbud, such as for wireless transmission of an output indicative of input type. and/or wireless reception of a wireless audio input signal and/or force setting. The earbud may be configured for wireless communication with one or more electronic devices, such as a speakerphone, a smartphone, a tablet, a computer and/or a smart watch. The earbud may be configured for wireless communications via a wireless communication system, such as short-range wireless communications systems, such as Wi-Fi, Bluetooth, Zigbee, IEEE 802.11, IEEE 802.15, infrared and/or the like.
The earbud may be configured for wireless communications via a wireless communication system, such as a 3GPP system, such as a 3GPP system supporting one or more of: New Radio, NR, Narrow-band IoT, NB-IoT, and Long Term Evolution -enhanced Machine Type Communication, LTE-M, millimeter-wave communications, such as millimeter-wave communications in licensed bands, such as device-to-device millimeter-wave communications in licensed bands.
In one or more example earbuds, the interface of the earbud comprises one or more of: a Bluetooth interface, Bluetooth low energy interface, and a magnetic induction interface. For example, the interface of the earbud may comprise a Bluetooth antenna and/or a magnetic interference antenna.
In one or more example earbuds, the interface may comprise a connector for wired communication, via a connector, such as by using an electrical cable. The connector may connect the earbud to an accessory device, e.g., for wired connection between the earbud and the accessory device.
The earbud comprises a first cover having an outer surface forming a force-touch region. The force-touch region may be configured to, during use, face the surroundings of the user.
The earbud comprises a force sensor. The force sensor may form a part of the interface. The force sensor is configured to detect an input, such as a single-finger input on the force-touch region for provision of sensor data indicative of a force. A single-finger input refers to the ability of a user to provide input with a single finger when the earbud is positioned in its intended use position. The force-touch region may be planar. In one or more examples, the force-touch region may be convex or concave.
The earbud comprises a controller. The controller is connected to the force sensor and configured to receive the sensor data. The controller is configured to classify the finger input, such as the single-finger input, based on the sensor data for provision of an input type of the finger input, such as the single-finger input, e.g. by selecting the input type from an input set. The input type may be selected from an input set of one or more input types including a first input type indicative of an input with a first force and optionally a second input type indicative of an input with a second force. In one or more examples, the input type is selected from an input set of a plurality of input types including a first input type indicative of an input with a first force and a second input type indicative of an input with a second force.
In one or more examples, the earbud comprises a first cover having an outer surface forming a force-touch region; a force sensor configured to detect a single-finger input on the force-touch region for provision of sensor data indicative of a force; a controller; and a printed circuit board, wherein the controller is configured to classify the single-finger input based on the sensor data for provision of an input type of the single-finger input.
The input type, such as the single-finger input type, may be selected from one or more input types comprising a first input type and/or a second input type.
The earbud comprises a printed circuit board. In one or more examples, the earbud comprises a force translating member arranged on a distal side/surface of the printed circuit board. The force translating member may be configured to translate a force between the first cover and the force sensor, e.g. via the force translating member and the printed circuit board.
In the following, whenever referring to proximal side or surface of a layer, an element, a device or part of a device, the referral is to the skin-facing or head-facing side or surface when a user wears the earbud. In other words, a proximal side or surface may be referred to a side or surface facing the ear canal during use of the earbud. Likewise, whenever referring to the distal side or surface of a layer, an element, a device or part of a device, the referral is to the side or surface facing away from the skin or head when a user wears the earbud. In other words, the proximal side or surface is the side or surface closest to the eardrum when the earbud is worn by a user and the distal side is the opposite side or surface –the side or surface furthest away from the eardrum in use.
In one or more examples, the force translating member is made of silicone. The force translating member may be made of a material comprising one or more of thermoplastic polyurethane (TPU) , silicone, and thermoplastic elastomer (TPE) . The TPU may be or include polyester-based TPU and/or polyether-based TPU. The force translating member may be made of a material having a hardness in the range from Shore A 50 to Shore A 90.
The force translating member may be glued to and/or press-fitted between different parts of the earbud.
The force translating member may have a thickness in the range from 0.5 mm to 3 mm, such as 1.0 mm, 1.5 mm or 2.0 mm. The thickness of the force translating member may be measured between opposite proximal and distal surfaces of the force translating member along the plunger axis. The force translating member may have an area (extension of force translating member perpendicular to the plunger axis) larger than 1.5 times the plunger area (extension of plunger member perpendicular to the plunger axis) , such as about twice the plunger area. Thereby, the required flexibility or elasticity is provided together with the required ability to translate force from the force-touch region/plunger to the force sensor/PCB.
The force translating member may contact the first cover, such as a plunger of the first cover. The force translating member may be glued to the first cover and/or the printed circuit board. The force translating member may be press-fitted between the first cover and the printed circuit board.
In one or more examples, the force sensor is arranged on a proximal side and/or surface of the printed circuit board. The force sensor may be configured to detect a convex bend of the printed circuit board. The force translating member may be configured to translate a  force between the first cover and the force sensor via the printed circuit board. In other words, a force applied on the first cover may be translated to the force translating member, e.g. via a plunger of the first cover, wherein the force translating member is to translate the force to the printed circuit board, and wherein force applied by the force translating member is translated to the force sensor by the printed circuit board.
In one or more examples, the force sensor is arranged on a distal side/surface of the printed circuit board. The force sensor may be configured to detect a concave bend of the printed circuit board.
In one or more examples, the first cover comprising a plunger arranged between the force-touch region and the printed circuit board and configured to translate a force between the first cover and the printed circuit board. The plunger, such as an end of the plunger, may contact and/or support the force translating member. In other words, the force translating member may be arranged between the plunger and the printed circuit board.
In one or more examples, the force sensor is aligned with a plunger axis of the plunger. The force sensor or a center thereof may be arranged at a distance from the plunger axis, such as at a distance less than 3 mm from the plunger axis.
In one or more examples, the earbud comprises a front frame e.g. configured to accommodate the printed circuit board, the front frame comprising a lumen. The plunger may be at least partially arranged within the lumen. The first cover may comprise one or more coupling members, such as protrusions, e.g. on an inner surface, for coupling with corresponding coupling members, e.g. arranged on the front frame. The lumen may be formed by an outer/distal surface of the front frame. This may allow for a water tight earbud and/or replacement of the first cover.
In one or more examples, the front cover is a single-piece front cover. This may facilitate a water tight earbud and/or replacement of the first cover.
In one or more examples, the force sensor is a MEMS sensor. The force sensor may be a In one or more examples, the force sensor is arranged on a proximal side/surface of the front cover and electrically connected to the printed circuit board via conductor. Thereby, force sensing with improved accuracy may be provided. The conductor may be a flexprint  conductor. In other words, the conductor may be embedded in a flexprint. Thus, the earbud may comprise a flexprint/conductor. The force sensor may be mounted on the flexprint. The flexprint may be arranged between the front cover and the force sensor. The flexprint/conductor may be electrically connected to the printed circuit board/controller.
In one or more examples, the earbud comprises a back cover and the force sensor is arranged on a distal side/surface of the back cover and electrically connected to the printed circuit board via conductor. The conductor may be a flexprint conductor. In other words, the conductor may be embedded in a flexprint. Thus, the earbud may comprise a flexprint/conductor. The force sensor may be mounted on the flexprint. The flexprint may be arranged between the back cover and the force sensor. The flexprint/conductor may be electrically connected to the printed circuit board/controller.
In one or more examples, the earbud comprises a sensor frame, e.g. arranged on the printed circuit board, and the force sensor is arranged on the sensor frame and electrically connected to the printed circuit board via conductor. The conductor may be a flexprint conductor. In other words, the conductor may be embedded in a flexprint. Thus, the earbud may comprise a flexprint/conductor. The force sensor may be mounted on the flexprint. The flexprint may be arranged between the sensor frame and the force sensor. The flexprint/conductor may be electrically connected to the printed circuit board/controller. In one or more examples where the earbud comprises a sensor frame, the force translating member may be configured to translate a force between the first cover and the force sensor via the sensor frame. In other words, a force applied on the first cover may be translated to the force translating member, e.g. via a plunger of the first cover, wherein the force translating member is to translate the force to the sensor frame, and wherein force applied by the force translating member is translated to the force sensor by the sensor frame.
In one or more examples, the earbud is configured to receive, from an accessory device, a force setting; and store the force setting in a memory of the earbud. In other words, a user and/or an accessory device may adjust and/or configure how user input using different force is detected and/or used in the earbud.
In one or more examples, to classify the finger input, such as the single-finger input, based on the sensor data comprises to classify the finger input, such as the single-finger input, based on the sensor data and the force setting. The force setting may comprise a  first force setting, such as a first force range, for classifying an input as a first input type. The force setting may comprise a second force setting, such as a second force range, for classifying an input as a second input type. For example, the sensor data may be indicative of a force falling within a first force range of the first force setting, the controller therefore optionally classifying the input/single-finger input as a first input type, e.g. by setting an input identifier to a first value indicative of a first input with a first force. For example, the sensor data may be indicative of a force falling within a second force range of the second force setting, the controller therefore classifying the input/single-finger input as a second input type, e.g. by setting an input identifier to a second value indicative of a second input with a second force.
In one or more examples, to classify the finger input, such as the single-finger input, based on the sensor data comprises to determine an input force based on the sensor data and classify the finger input, such as the single-finger input, based on the input force.
In one or more examples, to classify the finger input, such as the single-finger input, based on the sensor data comprises to determine an input duration based on the sensor data and classify the finger input, such as the single-finger input, based on the input duration.
In one or more examples, to classify the finger input, such as the single-finger input, based on the sensor data comprises to determine an input speed based on the sensor data and classify the finger input, such as the single-finger input, based on the input speed. The input speed may be based on samples of the force value, e.g. as a or based on a derivative of the force value. For example, a finger-input may be classified as a first input type in accordance with the input speed being a first input speed, meeting a first speed threshold and/or being in a first speed range. For example, a finger-input may be classified as a second input type in accordance with the input speed being a second input speed, meeting a second speed threshold and/or being in a second speed range.
In one or more examples, to classify the finger input may comprise to classify the finger input based on a force and input speed. For example, an input with a first force and a first speed may be mapped or classified as one input type (first primary input type) and an input with the first force and a second speed may be classified as another input type (first secondary input type) . Alternatively, or in addition, an input with a first force and a first speed may be mapped or classified as one input type (first primary input type) and an  input with a second force and the first speed may be classified as another input type (second primary input type) .
Accordingly, to classify the finger input, such as the single-finger input, based on the sensor data may comprise to classify the finger input based on one or more of an input force, an input duration, and an input speed.
In one or more examples, the controller is configured to provide an output indicative of the input type of the input/single-finger input. For example, the controller may be configured to transmit, e.g. wirelessly and/or by wire, an input identifier indicative of the input type as output to an accessory device. In one or more examples, to provide an output indicative of the input type of the input/single-finger input may comprise outputting an audio signal via a speaker of the earbud.
It is to be understood that a description of a feature in relation to the earbud is also applicable to the corresponding feature in the system (s) , and/or method (s) of operating an earbud as disclosed herein.
Fig. 1 schematically illustrates an exploded view of an earbud according to the present disclosure. The earbud 2 comprises a first cover 4 having an outer surface 6 forming a force-touch region 8. The earbud 2 comprises a force sensor not shown in Fig. 1 but otherwise referred to with reference number 10; a controller not shown in Fig. 1 but otherwise referred to with reference number 12; and a printed circuit board (PCB) 14. The force sensor is optionally a MEMS sensor and is arranged on a proximal side or surface of the printed circuit board 14 and configured to detect a single-finger input on the force-touch region 8 for provision of sensor data indicative of a force, and the controller 12 is configured to classify the single-finger input based on the sensor data for provision of an input type of the single-finger input. The controller is arranged on a proximal surface opposite a distal side 14A of the printed circuit board 14.
The earbud 2 optionally comprises a force translating member 16 arranged on a distal surface 14A of the printed circuit board 14 and configured to translate a force between the first cover and the force sensor. The force translating member 16 is made of silicone and is press-fitted between the PCB and a plunger of the first cover 4, the plunger not shown in Fig. 1 but otherwise referred to with reference number 20. The plunger is arranged between the force-touch region 8 and the printed circuit board 14 and configured to  translate a force between the first cover 4/force-touch region 8 and the printed circuit board 14.
The earbud 2 comprises a back cover 22 also denoted housing part, and a front frame 24. The front frame 24 is configured to at least partly accommodate the printed circuit board 14, e.g. in a first or inner lumen 26 of the front frame 24. The front frame 24 comprises a lumen, such as a second or outer lumen 28, and wherein the plunger optionally is at least partially arranged within the lumen.
In earbud 2, the first cover 4 is a single-piece front cover and optionally comprises one or more coupling members, such as protrusions (not shown) on the inner surface of the first cover, for coupling/engaging with corresponding coupling members, such as recesses 30, arranged on the front frame 24.
Fig. 2 shows a block diagram of an example earbud, such as  earbud  2, 2A, 2B, 2C, 2D, 2E, 2F, 2G. The  earbud  2, 2A, 2B, 2C, 2D, 2E, 2F, 2G optionally comprises an interface, a processor 40 including controller 12 for provision of an electrical output signal 40A and a memory 42. The memory 42 stores input setting 43 including force setting 43A used by controller for classifying input via force sensor 10 connected to the controller 12.
The  earbud  2, 2A, 2B, 2C, 2D, 2E, 2F, 2G optionally comprises one or more microphones including a first microphone 44 for provision of a first microphone input signal 44A, and optionally a second microphone 46 for provision of a second microphone input signal 46A. The  microphones  44, 46 may be omitted.
The interface of the  earbud  2, 2A, 2B, 2C, 2D, 2E, 2F, 2G comprises a wireless communication unit 48 including a transceiver 49 and an antenna 50. The wireless communication unit 48 is coupled to the processor 40 and configured for wireless communication with one or more accessory devices including smart phone 51. The  earbud  2, 2A, 2B, 2C, 2D, 2E, 2F, 2G comprises a force sensor 10 coupled to the processor 40 for provision of sensor data SD to the controller 12. The force sensor 10 is configured to allow a user to exert a force on it, e.g. by pressing and/or merely touching force-touch region of first cover, see Fig. 1. In other words, a user may provide user input via the force sensor 10. The  earbud  2, 2A, 2B, 2C, 2D, 2E, 2F, 2G/controller 12 may be configured to, upon or in response to an input including application of a force on the force sensor 10, classify the finger input and transmit via the wireless communication unit 48 a first control signal 52 or first control signaling to accessory device 51, the first control  signal 52 comprising or being indicative of an input identifier 52A indicative of the input or input type provided by the user via force sensor 10. In other words, the controller 12 is configured to provide an output (52, 52A) indicative of the single-finger input type.
The transceiver 49 of the earbud 2 is configured to convert wireless input signal (s) , such as control signals and/or audio input signals, including wireless input signal 54 from the smart phone 51, into one or more transceiver input signals 56. The processor 40 is configured to process one or more input signals 44A, 46A, 56 and provide an electrical output signal 40A based on one or more of input signals 44A, 46A, 56. The earbud 2 comprises an optional speaker 58 for converting the electrical output signal 40A to an audio output or audio output signal.
The  earbud  2, 2A, 2B, 2C, 2D, 2E, 2F, 2G may be configured to receive a second control signal 60 or second control signaling comprising an input setting, such as a force setting and/or other input setting, such as a duration setting and/or an input speed setting from the accessory device 51; and store the input setting of the second control signal 60 in the memory 42.
Fig. 3 shows a schematic cross-section of an example earbud according to the present disclosure. The earbud 2, 2A comprises a first cover 4 having an outer surface 6 forming a force-touch region 8. The earbud 2A comprises a force sensor 10; a controller 12; and a printed circuit board (PCB) 14. The force sensor 10 is optionally a MEMS sensor and is arranged on a proximal surface 14B of the printed circuit board 14 and configured to detect a single-finger input on the force-touch region 8 for provision of sensor data indicative of a force. In other words, the force sensor 10 is configured to detect a convex bend of the printed circuit board 14.
The controller 12 is optionally arranged on the proximal surface 14B of the PCB 14 but may in an alternative example be arranged on the distal surface 14A.
The earbud 2, 2A comprises a force translating member 16 arranged on the distal surface 14A and configured to translate a force between the first cover 4/force-touch region 8 and the force sensor 10 via the PCB. The force translating member 16 is made of silicone and is press-fitted between the PCB 14 and a plunger 20 of the first cover 4. The plunger 20 is arranged between the force-touch region 8 and the printed circuit board 14 and configured to translate a force between the first cover 4/force-touch region 8 and the printed circuit board 14. The force sensor 10 is aligned with a plunger axis X of the plunger 20.
Fig. 4 shows a schematic cross-section of an example earbud according to the present disclosure. The earbud 2B comprises a first cover 4 having an outer surface 6 forming a force-touch region 8. The earbud 2A comprises a force sensor 10; a controller 12; and a printed circuit board (PCB) 14. The force sensor 10 is optionally a MEMS sensor and is arranged on a distal surface 14A of the printed circuit board 14 and configured to detect a single-finger input on the force-touch region 8 for provision of sensor data indicative of a force. In other words, the force sensor 10 is configured to detect a concave bend of the printed circuit board 14.
The controller 12 is optionally arranged on the distal surface 14A of the PCB 14 but may in an alternative example be arranged on the proximal surface 14B.
The earbud 2B comprises a force translating member 16 arranged on the distal surface 14A and configured to translate a force between the first cover 4/force-touch region 8 and the force sensor 10 via the PCB 14. The force translating member 16 is made of silicone or other suitable material and is press-fitted between the PCB 14 and a plunger 20 of the first cover 4. The plunger 20 is arranged between the force-touch region 8 and the printed circuit board 14 and configured to translate a force between the first cover 4/force-touch region 8 and the printed circuit board 14.
Fig. 5 shows a schematic cross-section of an example earbud according to the present disclosure. The earbud 2C comprises a first cover 4 having an outer surface 6 forming a force-touch region 8. The earbud 2C comprises a force sensor 10; a controller 12; and a printed circuit board (PCB) 14. The force sensor 10 is optionally a MEMS sensor and is arranged on a distal surface 14A of the printed circuit board 14 and configured to detect a single-finger input on the force-touch region 8 for provision of sensor data indicative of a force. In other words, the force sensor 10 is configured to detect a concave bend of the printed circuit board 14. The controller 12 is optionally arranged on the distal surface 14A of the PCB 14 but may in an alternative example be arranged on the proximal surface 14B.
The earbud 2C comprises a force translating member 16 arranged between the force sensor 10 and the first cover 4 and configured to translate a force between the first cover 4/force-touch region 8 and the force sensor 10. The force translating member 16 is made of silicone or other suitable material and is press-fitted between the force sensor 10 and a plunger 20 of the first cover 4. The plunger 20 is arranged between the force-touch region 8 and the printed circuit board 14 and configured to translate a force between the first  cover 4/force-touch region 8 and the printed circuit board 14. The force sensor 10 is aligned with a plunger axis X of the plunger 20 and the force translating member 16.
Fig. 6 shows a schematic cross-section of an example earbud according to the present disclosure. The earbud 2D comprises a back cover 22 and a first cover 4 having an outer surface 6 forming a force-touch region 8. The earbud 2D comprises a force sensor 10; a controller 12; and a printed circuit board (PCB) 14. The force sensor 10 is optionally a MEMS sensor and is arranged on a proximal side 4B of the first cover 4 and configured to detect a single-finger input on the force-touch region 8 for provision of sensor data indicative of a force. The force sensor 10 is electrically connected to the printed circuit board 14/controller 12 via flexprint 62 including conductor 62A.
Fig. 7 shows a schematic cross-section of an example earbud according to the present disclosure. The earbud 2E comprises a first cover 4 having an outer surface 6 forming a force-touch region 8. The earbud 2E comprises a force sensor 10; a controller 12; a printed circuit board (PCB) 14, and a sensor frame 64. The sensor frame 64 is arranged on the printed circuit board 14 and the force sensor 10 is arranged on a distal surface 64A of the sensor frame 64 and electrically connected to the printed circuit board 14 via flexprint 62 including conductor 62A. The earbud 2E comprises a force translating member 16 arranged between the sensor frame 64 and the first cover 4 and configured to translate a force between the first cover 4/force-touch region 8 and the force sensor 10 via the sensor frame 64. The force translating member 16 is made of silicone or other suitable material and is press-fitted between the sensor frame and a plunger 20 of the first cover 4. The plunger 20 is arranged between the force-touch region 8 and the sensor frame 64 and configured to translate a force between the first cover 4/force-touch region 8 and the sensor frame 64.
Fig. 8 shows a schematic cross-section of an example earbud according to the present disclosure. The earbud 2F comprises a first cover 4 having an outer surface 6 forming a force-touch region 8. The earbud 2F comprises a force sensor 10; a controller 12; a printed circuit board (PCB) 14, and a sensor frame 64. The sensor frame 64 is arranged on the printed circuit board 14 and the force sensor 10 is arranged on a proximal surface 64B of the sensor frame 64 and electrically connected to the printed circuit board 14 via flexprint 62 including conductor 62A. The earbud 2F comprises a force translating member 16 arranged between the sensor frame 64 and the first cover 4 and configured to translate a force between the first cover 4/force-touch region 8 and the force sensor 10 via  the sensor frame 64. The force translating member 16 is made of silicone or other suitable material and is press-fitted between the sensor frame 64 and a plunger 20 of the first cover 4. The plunger 20 is arranged between the force-touch region 8 and the sensor frame 64 and configured to translate a force between the first cover 4/force-touch region 8 and the sensor frame 64. The force sensor 10 is aligned with a plunger axis X of the plunger 20 and the force translating member 16.
Fig. 9 shows a schematic cross-section of an example earbud according to the present disclosure. The earbud 2G comprises a back cover 22 and a first cover 4 having an outer surface 6 forming a force-touch region 8. The earbud 2G comprises a force sensor 10; a controller 12; and a printed circuit board (PCB) 14. The force sensor 10 is optionally a MEMS sensor and is arranged on a distal surface 22A of the back cover 22 and electrically connected to the controller 12/printed circuit board 14 via flexprint 62 including conductor 62A.
Fig. 10 shows a flow-chart of a method of operating an earbud, such as an earbud as disclosed herein. The method 100 comprises obtaining S102 sensor data indicative of a finger input from a force sensor of the earphone; classifying S104 the finger input based on the sensor data for provision of an input type of the finger input; and providing S106 an output indicative of the input type.
The use of the terms “first” , “second” , “third” and “fourth” , “primary” , “secondary” , “tertiary” etc. does not imply any particular order, but are included to identify individual elements. Moreover, the use of the terms “first” , “second” , “third” and “fourth” , “primary” , “secondary” , “tertiary” etc. does not denote any order or importance, but rather the terms “first” , “second” , “third” and “fourth” , “primary” , “secondary” , “tertiary” etc. are used to distinguish one element from another. Note that the words “first” , “second” , “third” and “fourth” , “primary” , “secondary” , “tertiary” etc. are used here and elsewhere for labelling purposes only and are not intended to denote any specific spatial or temporal ordering. Furthermore, the labelling of a first element does not imply the presence of a second element and vice versa.
It may be appreciated that the figures comprise some circuitries or operations which are illustrated with a solid line and some circuitries, components, features, or operations which are illustrated with a dashed line. Circuitries or operations which are comprised in a solid line are circuitries, components, features or operations which are comprised in the  broadest example. Circuitries, components, features, or operations which are comprised in a dashed line are examples which may be comprised in, or a part of, or are further circuitries, components, features, or operations which may be taken in addition to circuitries, components, features, or operations of the solid line examples. It should be appreciated that these operations need not be performed in order presented. Furthermore, it should be appreciated that not all of the operations need to be performed. The example operations may be performed in any order and in any combination. It should be appreciated that these operations need not be performed in order presented. Circuitries, components, features, or operations which are comprised in a dashed line may be considered optional.
Other operations that are not described herein can be incorporated in the example operations. For example, one or more additional operations can be performed before, after, simultaneously, or between any of the described operations.
Certain features discussed above as separate implementations can also be implemented in combination as a single implementation. Conversely, features described as a single implementation can also be implemented in multiple implementations separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations, one or more features from a claimed combination can, in some cases, be excised from the combination, and the combination may be claimed as any sub-combination or variation of any sub-combination.
It is to be noted that the word “comprising” does not necessarily exclude the presence of other elements or steps than those listed.
It is to be noted that the words “a” or “an” preceding an element do not exclude the presence of a plurality of such elements.
It should further be noted that any reference signs do not limit the scope of the claims, that the examples may be implemented at least in part by means of both hardware and software, and that several “means” , “units” or “devices” may be represented by the same item of hardware.
Language of degree used herein, such as the terms “approximately, ” “about, ” “generally, ” and “substantially” as used herein represent a value, amount, or characteristic close to the stated value, amount, or characteristic that still performs a desired function or achieves a  desired result. For example, the terms “approximately” , “about” , “generally, ” and “substantially” may refer to an amount that is within less than or equal to 10%of, within less than or equal to 5%of, within less than or equal to 1%of, within less than or equal to 0.1%of, and within less than or equal to 0.01%of the stated amount. If the stated amount is 0 (e.g., none, having no) , the above recited ranges can be specific ranges, and not within a particular %of the value. For example, within less than or equal to 10 wt. /vol. %of, within less than or equal to 5 wt. /vol. %of, within less than or equal to 1 wt. /vol. %of, within less than or equal to 0.1 wt. /vol. %of, and within less than or equal to 0.01 wt. /vol. %of the stated amount.
Although features have been shown and described, it will be understood that they are not intended to limit the claimed disclosure, and it will be made obvious to those skilled in the art that various changes and modifications may be made without departing from the scope of the claimed disclosure. The specification and drawings are, accordingly, to be regarded in an illustrative rather than restrictive sense. The claimed disclosure is intended to cover all alternatives, modifications, and equivalents.
LIST OF REFERENCES
2, 2A, 2B, 2C, 2D, 2E, 2F, 2G earbud
4    first cover
6    outer surface
8    force-touch region
10   force sensor
12   controller
14   printed circuit board, PCB
14A  distal surface of the printed circuit board
14B  proximal surface of the printed circuit board
16   force translating member
20   plunger
22   back cover
24   front frame
26   first lumen
28   second lumen
30   recess in front frame
40   processor
40A  electrical output signal
42   memory
43   input setting
43A  force setting
43B  duration setting
43C  input speed setting
44   first microphone
44A  first microphone input signal, audio input signal
46   second microphone
46A  second microphone input signal, audio input signal
48   wireless communication unit
49   transceiver
50   antenna
51   accessory device, smart phone
52   first control signal
52A  input identifier
54   wireless input signal
56   transceiver input signal
58   speaker
60   second control signal
62   flexprint
62A  conductor
64   sensor frame
64A  distal surface of sensor frame
64B  proximal surface of sensor frame
X    plunger axis

Claims (15)

  1. An earbud comprising:
    a first cover having an outer surface forming a force-touch region;
    a force sensor configured to detect a single-finger input on the force-touch region for provision of sensor data indicative of a force;
    a controller; and
    a printed circuit board,
    wherein the controller is configured to classify the single-finger input based on the sensor data for provision of an input type of the single-finger input.
  2. Earbud according to claim 1, the earbud comprising a force translating member arranged on a distal side/surface of the printed circuit board and configured to translate a force between the first cover and the force sensor.
  3. Earbud according to claim 2, wherein the force translating member is made of silicone.
  4. Earbud according to any of claims 1-3, wherein the force sensor is arranged on a proximal side/surface of the printed circuit board and configured to detect a convex bend of the printed circuit board.
  5. Earbud according to any of claims 1-3, wherein the force sensor is arranged on a distal side/surface of the printed circuit board and configured to detect a concave bend of the printed circuit board.
  6. Earbud according to any of claims 1-5, the first cover comprising a plunger arranged between the force-touch region and the printed circuit board and configured to translate a force between the first cover and the printed circuit board.
  7. Earbud according to claim 6, wherein the force sensor is aligned with a plunger axis of the plunger.
  8. Earbud according to any of claims 6-7, wherein the earbud comprises a front frame configured to accommodate the printed circuit board, the front frame comprising a lumen, the plunger at least partially arranged within the lumen.
  9. Earbud according to any of claims 1-8, wherein the front cover is a single-piece front cover.
  10. Earbud according to any of claims 1-9, wherein the force sensor is a MEMS sensor.
  11. Earbud according to claim 1, wherein the force sensor is arranged on a proximal side/surface of the front cover and electrically connected to the printed circuit board via conductor.
  12. Earbud according to claim 1, wherein the earbud comprises a back cover and the force sensor is arranged on a distal side/surface of the back cover and electrically connected to the printed circuit board via conductor.
  13. Earbud according to any of claims 1-3, wherein the earbud comprises a sensor frame arranged on the printed circuit board, and the force sensor is arranged on the sensor frame and electrically connected to the printed circuit board via conductor.
  14. Earbud according to any of claims 1-13, wherein the earbud is configured to:
    receive, from an accessory device, a force setting; and
    store the force setting in a memory,
    wherein to classify the single-finger input based on the sensor data comprises to classify the single-finger input based on the sensor data and the force setting.
  15. Earbud according to any of claims 1-14, wherein the controller is configured to provide an output indicative of the input type.
PCT/CN2022/137607 2022-12-08 2022-12-08 Earbud with force input capability WO2024119444A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/137607 WO2024119444A1 (en) 2022-12-08 2022-12-08 Earbud with force input capability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/137607 WO2024119444A1 (en) 2022-12-08 2022-12-08 Earbud with force input capability

Publications (1)

Publication Number Publication Date
WO2024119444A1 true WO2024119444A1 (en) 2024-06-13

Family

ID=84943149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137607 WO2024119444A1 (en) 2022-12-08 2022-12-08 Earbud with force input capability

Country Status (1)

Country Link
WO (1) WO2024119444A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190098390A1 (en) * 2017-09-25 2019-03-28 Apple Inc. Earbuds With Capacitive Sensors
US20210219042A1 (en) * 2018-09-21 2021-07-15 Apple Inc. Force-Activated Earphone
US20220174391A1 (en) * 2020-12-02 2022-06-02 Google Llc Knob-Like Input for a Hearable Device
US20220217463A1 (en) * 2021-01-07 2022-07-07 Apple Inc. Wireless listening device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190098390A1 (en) * 2017-09-25 2019-03-28 Apple Inc. Earbuds With Capacitive Sensors
US20210219042A1 (en) * 2018-09-21 2021-07-15 Apple Inc. Force-Activated Earphone
US20220174391A1 (en) * 2020-12-02 2022-06-02 Google Llc Knob-Like Input for a Hearable Device
US20220217463A1 (en) * 2021-01-07 2022-07-07 Apple Inc. Wireless listening device

Similar Documents

Publication Publication Date Title
US10659894B2 (en) Personal communication device having application software for controlling the operation of at least one hearing aid
US9894446B2 (en) Customization of adaptive directionality for hearing aids using a portable device
US10595122B2 (en) Audio processing device, audio processing method, and computer program product
KR102292043B1 (en) Auditory device
CN107071608B (en) Noise reduction earphone and electronic equipment
EP3627854B1 (en) Method for operating a hearing system and hearing system comprising two hearing devices
US20110238419A1 (en) Binaural method and binaural configuration for voice control of hearing devices
EP3324644B1 (en) A wireless hearing device with stabilizing guide unit between tragus and antitragus
US11044564B2 (en) Hearing systems and methods for operating a hearing system
JP2019004455A5 (en)
US20070183609A1 (en) Hearing aid system without mechanical and acoustic feedback
CN106658265B (en) Noise reduction earphone and electronic equipment
WO2024119444A1 (en) Earbud with force input capability
US20200288254A1 (en) Hearing device with vent
US11856370B2 (en) System for audio rendering comprising a binaural hearing device and an external device
CN113115151A (en) Control method and device of wireless earphone, equipment and storage medium
CN113099358A (en) Method and device for adjusting audio parameters of earphone, earphone and storage medium
KR101719779B1 (en) Hearing aid system using a telecoil
WO2023193161A1 (en) Hearing device wearing status detection
EP4203517A2 (en) Accessory device for a hearing device
US20240089649A1 (en) An earphone and a method of performing a command by an earphone
Yanz Phones and hearing aids: Issues, resolutions, and a new approach
EP4380185A1 (en) Headset
US20220225011A1 (en) Antenna designs for hearing instruments
US20230396942A1 (en) Own voice detection on a hearing device and a binaural hearing device system and methods thereof