WO2024117115A1 - Fullerene derivative, thin film, photoelectric conversion element, solid-state imaging device and method for producing fullerene derivative - Google Patents

Fullerene derivative, thin film, photoelectric conversion element, solid-state imaging device and method for producing fullerene derivative Download PDF

Info

Publication number
WO2024117115A1
WO2024117115A1 PCT/JP2023/042503 JP2023042503W WO2024117115A1 WO 2024117115 A1 WO2024117115 A1 WO 2024117115A1 JP 2023042503 W JP2023042503 W JP 2023042503W WO 2024117115 A1 WO2024117115 A1 WO 2024117115A1
Authority
WO
WIPO (PCT)
Prior art keywords
fullerene
fullerene derivative
compound
thin film
derivative according
Prior art date
Application number
PCT/JP2023/042503
Other languages
French (fr)
Japanese (ja)
Inventor
威史 五十嵐
直行 今井
Original Assignee
三菱商事株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱商事株式会社 filed Critical 三菱商事株式会社
Publication of WO2024117115A1 publication Critical patent/WO2024117115A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/263Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions
    • C07C17/266Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions of hydrocarbons and halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C23/00Compounds containing at least one halogen atom bound to a ring other than a six-membered aromatic ring
    • C07C23/18Polycyclic halogenated hydrocarbons
    • C07C23/20Polycyclic halogenated hydrocarbons with condensed rings none of which is aromatic
    • C07C23/46Polycyclic halogenated hydrocarbons with condensed rings none of which is aromatic with more than three condensed rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/60Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation in which radiation controls flow of current through the devices, e.g. photoresistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • H10K30/85Layers having high electron mobility, e.g. electron-transporting layers or hole-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to fullerene derivatives, thin films, photoelectric conversion elements, solid-state imaging devices, and methods for producing fullerene derivatives.
  • Photoelectric conversion elements are elements that convert light into an electrical signal using the photoelectric effect, and include photodiodes and phototransistors, etc., and can be applied to electronic devices such as solid-state imaging devices.
  • various fullerene derivatives have also been developed in which substituents are bonded to fullerenes that give them good light absorption or electrical properties.
  • Patent Documents 1 to 3 disclose fullerene derivatives that exhibit sublimation properties, such as fullerene derivatives with multiple branched alkyl chains and fullerene derivatives with perfluoroalkyl groups.
  • Non-Patent Document 1 describes fullerene derivatives having multiple difluoromethano structures and fullerene derivatives having multiple trifluoromethyl groups (C 60 (CF 3 ) 2 , etc.).
  • fullerene derivatives can reduce aggregation during deposition, improving film formation characteristics, and can effectively reduce changes in the absorption wavelength range that occur due to aggregation.
  • fullerene derivatives have the problem that they decompose when heated for deposition. Furthermore, even fullerene derivatives that are sublimable have problems such as the sublimation temperature being too high or being difficult to synthesize.
  • the fullerene derivatives given in the synthesis examples of Patent Document 1 have a relatively high sublimation temperature of 400°C or higher, which is close to the decomposition temperature of the fullerene derivatives, making it difficult to stably deposit them.
  • the fullerene derivative described in Patent Document 2 has a relatively low sublimation temperature of 400°C or less, but because it has a structurally unstable three-membered ring structure, when heated for a long period of time for deposition, the compound decomposes and the amount of compound available for deposition decreases.
  • the fullerene derivative with a difluoromethano structure described in Non-Patent Document 1 has a high sublimation temperature and is not practical.
  • the fullerene derivative with a trifluoromethyl group described in Non-Patent Document 1 has a low sublimation temperature of less than 400°C, but is not suitable for mass production because a special reaction device is required for synthesis.
  • the present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide a fullerene derivative that can be produced without the need for special synthesis equipment and that can be vapor-deposited at a low temperature with suppressed thermal decomposition. Another object of the present invention is to provide a thin film, a photoelectric conversion element, and a solid-state imaging device that include the fullerene derivative. Still another object of the present invention is to provide a method for producing the fullerene derivative.
  • the present invention provides the following means to solve the above problems.
  • [4] The fullerene derivative according to any one of the above items [1] to [3], wherein the fullerene skeleton is C 60 , C 70 , C 74 , C 76 , or C 78.
  • [5] A thin film comprising the fullerene derivative according to any one of the preceding items [1] to [4].
  • [6] The thin film according to the above [5], wherein the thin film is a vapor-deposited film.
  • a first electrode and a second electrode facing each other; an organic layer disposed between the first electrode and the second electrode; having The organic layer of the photoelectric conversion element includes the fullerene derivative according to any one of items [1] to [4] above.
  • the method for producing a fullerene derivative comprises reacting a radical obtained by eliminating X from a compound represented by the following formula with a fullerene.
  • the fullerene derivative according to the present invention can be synthesized without requiring a special reaction apparatus, and can be sublimated at a low temperature at which thermal decomposition is suppressed, and can be formed into a film by a deposition method. Furthermore, the thin film, photoelectric conversion element, and solid-state imaging device according to the present invention can contain the above-mentioned fullerene derivative. Furthermore, the manufacturing method of the fullerene derivative according to the present invention can manufacture the above-mentioned fullerene derivative.
  • the fullerene derivative according to this embodiment is a fullerene derivative having a partial structure represented by the following general formula (1).
  • C * are adjacent carbon atoms forming a fullerene skeleton, and Rf represents a perfluoroalkylene group having 3 to 5 carbon atoms.
  • fullerene derivative refers to a compound having a structure in which a specific group is added to a fullerene skeleton
  • fulllerene skeleton refers to a carbon skeleton that constitutes a closed shell structure derived from fullerene
  • the fullerene derivative according to this embodiment has a ring structure with 5 to 7 carbon atoms formed by adjacent carbon atoms on the fullerene skeleton and a perfluoroalkylene group. This structure allows the sublimation temperature to be low, making it suitable for use in film formation by vapor deposition, etc.
  • Rf is a perfluoroalkylene group.
  • the carbon number of Rf is 3 to 5, and from the viewpoint of stability, 4 is preferable. If the carbon number is less than 3 or more than 5, the structure of the resulting compound becomes unstable, it becomes prone to thermal decomposition, and synthesis becomes difficult.
  • the fullerene skeleton in the fullerene derivative according to this embodiment can be selected from one or more having a carbon number of 60 to 200, and specific examples include C 60 , C 70 , C 76 , C 78 , C 82 , C 84 , C 90 , C 94 , C 96 , C 120 , and C 200. If a specific fullerene skeleton is desired from the viewpoint of the characteristics of the photoelectric conversion element described later, it may be selected.
  • At least one selected from C 60 , C 70 , C 74 , C 76 and C 78 is more preferable, C 60 or C 70 is more preferable, and C 60 is particularly preferable.
  • the fullerene derivative according to this embodiment has the above-mentioned structure, and thus the sublimation temperature can be lowered while maintaining stability. Therefore, decomposition of the fullerene derivative is suppressed, and deposition by sublimation becomes possible. From the viewpoint of lowering the sublimation temperature, it is more preferable that there are multiple partial structures represented by the general formula (1) for one fullerene skeleton, and from the viewpoint of avoiding the complication of synthesis or purification, it is preferable that there is only one partial structure.
  • deposition is usually possible if the temperature at which a 10% weight loss occurs based on the initial weight ratio is 400° C. or less, and deposition is more reliable if the temperature at which a 50% weight loss occurs based on the initial weight ratio is 400° C. or less.
  • Method of producing fullerene derivative The method for producing the fullerene derivative according to this embodiment can be performed without using a special reaction apparatus, and examples thereof include the following method.
  • each X independently represents a bromine atom or an iodine atom, and Rf is the same as in formula (1).
  • the fullerene used in the reaction preferably has a carbon number of 60 to 200, and specific examples include C60, C70, C76, C78, C82, C84, C90, C94, C96, C120, C200, etc., and among them, at least one selected from C60 , C70 , C74 , C76 , and C78 is preferable , C60 or C70 is more preferable, and C60 is particularly preferable.
  • the fullerene used as the raw material has a smaller carbon number, and it is easier to obtain a fullerene with a higher purity, and in particular, C60 is easier to obtain a fullerene with a higher purity than other fullerenes.
  • a solvent may also be used in the reaction.
  • the solvent is not particularly limited, but a liquid that dissolves fullerene and the compound of formula (2) is preferred.
  • solvents include benzene, toluene, xylene, trimethylbenzene, chlorobenzene, and 1,2-dichlorobenzene. Among these, 1,2-dichlorobenzene is preferred because of its high solubility in fullerene and the compound of formula (2).
  • the reaction proceeds by the elimination of a bromine atom or iodine atom represented by X from the compound represented by formula (2) to generate a radical, which then reacts with the fullerene.
  • Methods such as heating, light irradiation, and addition of a radical initiator can be used to generate the radical.
  • the heating temperature is preferably high from the viewpoint of shortening the reaction time, and is preferably low from the viewpoint of increasing the reaction selectivity and improving the yield of the target product. From both of these viewpoints, the heating temperature may be selected according to the purpose, but it is usually preferable to select a temperature between 100°C and 250°C, and more preferably between 150°C and 200°C. When radicals are generated by heating, copper powder may be added to promote the reaction.
  • the reaction time may be selected according to the purpose, but it is usually preferable to select a time between 1 minute and 120 hours, more preferably between 10 minutes and 48 hours, and even more preferably between 30 minutes and 24 hours.
  • the pressure during the reaction is not particularly limited, but the reaction can be carried out under pressure, for example, when it is desired to carry out the reaction at a temperature near or above the boiling point of the solvent.
  • pressurizing it is preferable to select, for example, a pressure between normal pressure and a gauge pressure of 1 MPa, and it is even more preferable to select a pressure between normal pressure and a gauge pressure of 0.2 MPa. Within this range, there is no need to use a large-scale pressurized reaction device.
  • the thin film according to the present embodiment includes the fullerene derivative.
  • the thin film may be formed by any method, such as a wet film formation method such as spin coating or slit coating, or a dry film formation method such as vapor deposition, but is preferably a vapor deposition film formed by vapor deposition.
  • the thin film may be composed of only the fullerene derivative according to this embodiment, or may be composed of a mixture with other compounds.
  • the other compounds may be, for example, compounds that are generally used in the organic layers of photoelectric conversion elements, which will be described later.
  • the thin film is likely to maintain the inherent properties of the fullerene derivative, which can improve the optical properties and further improve the properties of the photoelectric conversion element and solid-state imaging device described later, compared to a thin film of unsubstituted fullerene (e.g., C60 ) that is prone to aggregation during film formation.
  • a thin film of unsubstituted fullerene e.g., C60
  • the absorption in the visible light region of about 400 nm to 500 nm is particularly reduced.
  • the absorption coefficient of the thin film at a wavelength of 450 nm is smaller than the absorption coefficient of the thin film containing unsubstituted fullerene at a wavelength of 450 nm, and for example, the absorption coefficient of the thin film at a wavelength of 450 nm is about 1/2 or less of the absorption coefficient of the thin film containing unsubstituted fullerene at a wavelength of 450 nm.
  • Compound 1b was a mixture of isomers with different positions at which the substituents were added. These compounds were identified by analysis using 13 C-NMR and 19 F-NMR (Advance Neo 400, manufactured by Bruker Japan) and a liquid chromatograph mass spectrometer (Agilent 6120 single quadrupole LC/MS, manufactured by Agilent Technologies).
  • Synthesis Example 3 Synthesis of Compound 3 Synthesis and analysis were performed in the same manner as in Synthesis Example 1 above, except that decafluoro-1,5-diiodopropane was used instead of octafluoro-1,4-diiodobutane, to obtain 9 mg of compound 3a and 3 mg of compound 3b as brown solids.
  • the chemical formula of compound 3a is shown below as (C3a)
  • the chemical formula of compound 3b is shown below as (C3b).
  • Compound 3b was a mixture of isomers with different positions at which the substituents were added.
  • Synthesis Example 4 Synthesis of Compound 4 Synthesis and analysis were performed in the same manner as in Synthesis Example 1, except that the same molar amount of C70 was used instead of C60 in Synthesis Example 1, to obtain 15 mg of compound 4 as a brown solid.
  • the chemical formula of compound 4 is shown below as (C4).
  • Synthesis Example 5 Synthesis of Compound 5 Synthesis and analysis were performed in the same manner as in Synthesis Example 2, except that the same molar amount of C70 was used instead of C60 in Synthesis Example 1, to obtain 16 mg of compound 5 as a brown solid.
  • the chemical formula of compound 5 is shown below as (C5).
  • Example 1 Thermogravimetric analysis was carried out in a vacuum to confirm whether deposition by sublimation of compound 1a was possible and the sublimation temperature.
  • a sample (about 5 mg) was placed in a vacuum thermogravimetric analyzer (VPE-9000, manufactured by Advance Riko Co., Ltd.). In a vacuum of 1 Pa or less, the temperature was raised from room temperature to 1000°C at a rate of 10°C/min. The temperature at which the weight of the sample decreased by 10% relative to the initial weight of the sample was defined as Ts (°C) (-10%), and the temperature at which the weight of the sample decreased by 50% relative to the initial weight of the sample was defined as Ts (°C) (-50%). The results are shown in Table 1.
  • Example 1 Comparative Examples 1 to 5
  • Thermogravimetric analysis and thermal stability test were carried out in the same manner as in Example 1, except that the compounds shown in Table 1 were used instead of compound 1a.
  • the measurement results are shown in Table 1.
  • Example 7 Comparative Examples 6 to 7
  • Thermogravimetric analysis and thermal stability test were carried out in the same manner as in Example 1, except that the compounds shown in Table 2 were used instead of compound 1a.
  • the measurement results are shown in Table 2.
  • Example 1 to 6 when Examples 1 to 6 are compared with Comparative Examples 2 to 5, it is found that the fullerene derivative according to this embodiment can be sublimated at a lower temperature or at the same temperature as fullerene derivatives that have been known to sublime.
  • Ts (°C) (-10%) when Example 3 is compared with Comparative Example 4 as an example of the same temperature, Ts (°C) (-10%) was 350°C for both, and Ts (°C) (-50%) was 390°C for both, but the residual rate was higher for compound 2a of Example 3.
  • Example 8 when Example 8 is compared with Comparative Example 7, it is found that the results were similar even though the fullerene skeleton was different. From these, it was confirmed that the fullerene derivative according to this embodiment has higher thermal stability.
  • the fullerene derivative according to this embodiment can be preferably used in photoelectric elements, solid-state imaging devices, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention uses a fullerene derivative which has a partial structure that is represented by general formula (1). (In general formula (1), each C* represents a carbon atom that forms a fullerene skeleton, while being adjacent to each other; and Rf represents a perfluoroalkylene group having 3 to 5 carbon atoms.)

Description

フラーレン誘導体、薄膜、光電変換素子、固体撮像装置及びフラーレン誘導体の製造方法Fullerene derivative, thin film, photoelectric conversion element, solid-state imaging device, and method for producing fullerene derivative
 本発明は、フラーレン誘導体、薄膜、光電変換素子、固体撮像装置及びフラーレン誘導体の製造方法に関する。 The present invention relates to fullerene derivatives, thin films, photoelectric conversion elements, solid-state imaging devices, and methods for producing fullerene derivatives.
 光電変換素子は、光電効果を利用して光を電気信号に変換させる素子で、光ダイオード及び光トランジスタ等を含み、固体撮像装置等の電子装置に適用され得る。光電変換素子の開発において、良好な吸光特性又は電気的特性を与えるフラーレンに置換基が結合した様々なフラーレン誘導体も開発されている。 Photoelectric conversion elements are elements that convert light into an electrical signal using the photoelectric effect, and include photodiodes and phototransistors, etc., and can be applied to electronic devices such as solid-state imaging devices. In the development of photoelectric conversion elements, various fullerene derivatives have also been developed in which substituents are bonded to fullerenes that give them good light absorption or electrical properties.
 例えば、特許文献1~3には、昇華性を示す、複数の分岐型アルキル鎖を有するフラーレン誘導体やパーフルオロアルキル基を有するフラーレン誘導体等のフラーレン誘導体が開示されている。 For example, Patent Documents 1 to 3 disclose fullerene derivatives that exhibit sublimation properties, such as fullerene derivatives with multiple branched alkyl chains and fullerene derivatives with perfluoroalkyl groups.
 非特許文献1には、複数のジフルオロメタノ構造を有するフラーレン誘導体及び複数のトリフルオロメチル基を有するフラーレン誘導体(C60(CF等)が記載されている。 Non-Patent Document 1 describes fullerene derivatives having multiple difluoromethano structures and fullerene derivatives having multiple trifluoromethyl groups (C 60 (CF 3 ) 2 , etc.).
日本国特開2019-99570号公報Japanese Patent Publication No. 2019-99570 国際公開WO2022/124273号International Publication No. WO2022/124273 国際公開WO2016/194630号International Publication No. WO2016/194630
 フラーレン誘導体は、非置換のフラーレンを用いた場合と比較して、蒸着時に凝集を減らして成膜特性を改善することができると共に、凝集によって発生する吸収波長領域の変化を効果的に減らすことができる。 Compared to the use of unsubstituted fullerenes, fullerene derivatives can reduce aggregation during deposition, improving film formation characteristics, and can effectively reduce changes in the absorption wavelength range that occur due to aggregation.
 しかしながら、従来の多くのフラーレン誘導体は、蒸着するために加熱すると熱分解してしまう、という問題があった。また、昇華性を示すフラーレン誘導体であっても昇華温度が高過ぎる又は合成が困難である、という問題がある。 However, many conventional fullerene derivatives have the problem that they decompose when heated for deposition. Furthermore, even fullerene derivatives that are sublimable have problems such as the sublimation temperature being too high or being difficult to synthesize.
 例えば、特許文献1の合成例に挙げられているフラーレン誘導体は昇華温度が400℃以上と比較的高く、フラーレン誘導体の分解温度に近いため、安定的に蒸着させることが困難である。 For example, the fullerene derivatives given in the synthesis examples of Patent Document 1 have a relatively high sublimation temperature of 400°C or higher, which is close to the decomposition temperature of the fullerene derivatives, making it difficult to stably deposit them.
 特許文献2に記載されているフラーレン誘導体は、昇華温度が400℃以下と比較的低く抑えられているが、構造的に不安定な三員環構造を有するため、蒸着するために長時間加熱すると、化合物の分解が進み、蒸着に利用できる化合物が減少する。 The fullerene derivative described in Patent Document 2 has a relatively low sublimation temperature of 400°C or less, but because it has a structurally unstable three-membered ring structure, when heated for a long period of time for deposition, the compound decomposes and the amount of compound available for deposition decreases.
 非特許文献1のジフルオロメタノ構造を有するフラーレン誘導体は昇華温度が高く実用的ではない。なお、非特許文献1のトリフルオロメチル基を有するフラーレン誘導体は昇華温度が400℃未満と低いが、合成のために特殊な反応装置を用いるため、大量生産には向いていない。 The fullerene derivative with a difluoromethano structure described in Non-Patent Document 1 has a high sublimation temperature and is not practical. The fullerene derivative with a trifluoromethyl group described in Non-Patent Document 1 has a low sublimation temperature of less than 400°C, but is not suitable for mass production because a special reaction device is required for synthesis.
 本発明は、上記事情を鑑みてなされたものであり、本発明の目的は、特殊な合成装置を必須とせずに製造でき、熱分解が抑えられた低い温度で蒸着が可能なフラーレン誘導体を提供することにある。また、本発明の他の目的は、前記フラーレン誘導体を含む、薄膜、光電変換素子及び固体撮像装置を提供することにある。さらに、本発明の他の目的は、前記フラーレン誘導体を製造するフラーレン誘導体の製造方法を提供することにある。 The present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide a fullerene derivative that can be produced without the need for special synthesis equipment and that can be vapor-deposited at a low temperature with suppressed thermal decomposition. Another object of the present invention is to provide a thin film, a photoelectric conversion element, and a solid-state imaging device that include the fullerene derivative. Still another object of the present invention is to provide a method for producing the fullerene derivative.
 本発明は、上記課題を解決するため、以下の手段を提供する。 The present invention provides the following means to solve the above problems.
[1] 一般式(1):
Figure JPOXMLDOC01-appb-C000003
(一般式(1)中、Cはそれぞれフラーレン骨格を形成する互いに隣り合った炭素原子であり、Rfは炭素数3~5のパーフルオロアルキレン基を表す。)
で示される部分構造を有するフラーレン誘導体。
[2] 前記一般式(1)で示される部分構造が1つのフラーレン骨格に対して1つである前項[1]に記載のフラーレン誘導体。
[3] 前記Rfの炭素数が4である前項[1]又は[2]に記載のフラーレン誘導体。
[4] 前記フラーレン骨格が、C60、C70、C74、C76、又はC78である前項[1]~[3]のいずれかに記載のフラーレン誘導体。
[5] 前項[1]~[4]のいずれかに記載のフラーレン誘導体を含む薄膜。
[6] 前記薄膜が、蒸着膜である前項[5]に記載の薄膜。
[7] 互いに対向する第1電極と第2電極と、
 前記第1電極と前記第2電極の間に配置される有機層と、
を有し、
 前記有機層は、前項[1]~[4]のいずれかに記載のフラーレン誘導体を含む光電変換素子。
[8] 前項[7]に記載の光電変換素子を有する固体撮像装置。
[9] 前項[1]~[4]のいずれかに記載のフラーレン誘導体の製造方法であって、
 式(2):
Figure JPOXMLDOC01-appb-C000004
(式(2)中、2つのXはそれぞれ独立に臭素原子又はヨウ素原子を表し、Rfは一般式(1)と同じである。)
で表される化合物からXを脱離させたラジカルをフラーレンと反応させるフラーレン誘導体の製造方法。
[10] 前記ラジカルを加熱により発生させる前項[9]に記載のフラーレン誘導体の製造方法。
[1] General formula (1):
Figure JPOXMLDOC01-appb-C000003
(In general formula (1), C * are adjacent carbon atoms forming a fullerene skeleton, and Rf represents a perfluoroalkylene group having 3 to 5 carbon atoms.)
A fullerene derivative having a partial structure represented by the following formula:
[2] The fullerene derivative according to the above item [1], wherein the partial structure represented by the general formula (1) is one per fullerene skeleton.
[3] The fullerene derivative according to the above [1] or [2], wherein Rf has 4 carbon atoms.
[4] The fullerene derivative according to any one of the above items [1] to [3], wherein the fullerene skeleton is C 60 , C 70 , C 74 , C 76 , or C 78.
[5] A thin film comprising the fullerene derivative according to any one of the preceding items [1] to [4].
[6] The thin film according to the above [5], wherein the thin film is a vapor-deposited film.
[7] A first electrode and a second electrode facing each other;
an organic layer disposed between the first electrode and the second electrode;
having
The organic layer of the photoelectric conversion element includes the fullerene derivative according to any one of items [1] to [4] above.
[8] A solid-state imaging device having the photoelectric conversion element according to the above item [7].
[9] A method for producing a fullerene derivative according to any one of the preceding items [1] to [4],
Formula (2):
Figure JPOXMLDOC01-appb-C000004
(In formula (2), two Xs each independently represent a bromine atom or an iodine atom, and Rf is the same as in general formula (1).)
The method for producing a fullerene derivative comprises reacting a radical obtained by eliminating X from a compound represented by the following formula with a fullerene.
[10] The method for producing a fullerene derivative according to the above item [9], wherein the radicals are generated by heating.
 本発明に係るフラーレン誘導体は、特殊な反応装置を必須とすることなく合成でき、さらに熱分解が抑えられる低い温度で昇華し、蒸着方式による成膜ができる。また、本発明に係る薄膜、光電変換素子及び固体撮像装置は、上記のフラーレン誘導体を含むことができる。さらに、本発明に係るフラーレン誘導体の製造方法は、上記のフラーレン誘導体を製造できる。 The fullerene derivative according to the present invention can be synthesized without requiring a special reaction apparatus, and can be sublimated at a low temperature at which thermal decomposition is suppressed, and can be formed into a film by a deposition method. Furthermore, the thin film, photoelectric conversion element, and solid-state imaging device according to the present invention can contain the above-mentioned fullerene derivative. Furthermore, the manufacturing method of the fullerene derivative according to the present invention can manufacture the above-mentioned fullerene derivative.
 以下に、本発明の実施形態についてその構成を説明する。本発明は、その要旨を変更しない範囲で適宜変更して実施することが可能である。本明細書において数値範囲を示す「~」は、別段の断わりがない限り、その前後に記載された数値を下限値及び上限値として含むことを意味する。 The following describes the configuration of an embodiment of the present invention. The present invention can be modified as appropriate without departing from the spirit of the invention. In this specification, unless otherwise specified, "to" indicating a numerical range means that the numerical range includes the numerical range before and after it as the lower and upper limits.
[フラーレン誘導体]
 本実施形態に係るフラーレン誘導体は、下記一般式(1)で示される部分構造を有するフラーレン誘導体である。
[Fullerene derivatives]
The fullerene derivative according to this embodiment is a fullerene derivative having a partial structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000005
(一般式(1)中、Cはそれぞれフラーレン骨格を形成する互いに隣り合った炭素原子であり、Rfは炭素数3~5のパーフルオロアルキレン基を表す。)
Figure JPOXMLDOC01-appb-C000005
(In general formula (1), C * are adjacent carbon atoms forming a fullerene skeleton, and Rf represents a perfluoroalkylene group having 3 to 5 carbon atoms.)
 なお、本実施形態において、「フラーレン誘導体」とは、これらのフラーレン骨格に対して特定の基が付加した構造を有する化合物を意味し、「フラーレン骨格」とはフラーレン由来の閉殻構造を構成する炭素骨格をいう。 In this embodiment, "fullerene derivative" refers to a compound having a structure in which a specific group is added to a fullerene skeleton, and "fullerene skeleton" refers to a carbon skeleton that constitutes a closed shell structure derived from fullerene.
 本実施形態に係るフラーレン誘導体は、フラーレン骨格上の隣り合った炭素原子とパーフルオロアルキレン基により、炭素数5~7の環状構造を形成している。この構造により、昇華温度を低くでき、蒸着による成膜等に好適に用いられるようになる。 The fullerene derivative according to this embodiment has a ring structure with 5 to 7 carbon atoms formed by adjacent carbon atoms on the fullerene skeleton and a perfluoroalkylene group. This structure allows the sublimation temperature to be low, making it suitable for use in film formation by vapor deposition, etc.
 Rfは、パーフルオロアルキレン基である。Rfの炭素数は、3~5であり、安定性の観点から、4が好ましい。炭素数が3より小さい場合又は5より大きい場合には、得られる化合物の構造が不安定となり、熱分解しやすくなると共に、合成が難しくなる。 Rf is a perfluoroalkylene group. The carbon number of Rf is 3 to 5, and from the viewpoint of stability, 4 is preferable. If the carbon number is less than 3 or more than 5, the structure of the resulting compound becomes unstable, it becomes prone to thermal decomposition, and synthesis becomes difficult.
 本実施形態に係るフラーレン誘導体中のフラーレン骨格は、好ましくは炭素数が60~200から1つ以上を選択することができ、具体例としては、C60、C70、C76、C78、C82、C84、C90、C94、C96、C120、C200等が挙げられる。なお、後述する光電変換素子の特性等から、特定のフラーレン骨格を所望するのであれば、それを選択すればよい。ただし、特定のフラーレン骨格を所望しない場合は、蒸着温度を低くでき、扱いやすさの観点から、C60、C70、C74、C76及びC78より選択される少なくとも1つ以上がより好ましく、C60又はC70であることがさらに好ましく、C60であることが特に好ましい。 The fullerene skeleton in the fullerene derivative according to this embodiment can be selected from one or more having a carbon number of 60 to 200, and specific examples include C 60 , C 70 , C 76 , C 78 , C 82 , C 84 , C 90 , C 94 , C 96 , C 120 , and C 200. If a specific fullerene skeleton is desired from the viewpoint of the characteristics of the photoelectric conversion element described later, it may be selected. However, if a specific fullerene skeleton is not desired, from the viewpoint of lowering the deposition temperature and ease of handling, at least one selected from C 60 , C 70 , C 74 , C 76 and C 78 is more preferable, C 60 or C 70 is more preferable, and C 60 is particularly preferable.
 本実施形態に係るフラーレン誘導体は、上記のような構造を有することにより、安定性を保ちつつ昇華温度を低くすることができる。そのため、フラーレン誘導体の分解が抑えられ、昇華による蒸着が可能となる。前記一般式(1)で示される部分構造は、昇華温度を低くできる観点から、1つのフラーレン骨格に対して、複数ある方がより好ましく、合成又は精製の煩雑さを避ける観点から、1つであることが好ましい。 The fullerene derivative according to this embodiment has the above-mentioned structure, and thus the sublimation temperature can be lowered while maintaining stability. Therefore, decomposition of the fullerene derivative is suppressed, and deposition by sublimation becomes possible. From the viewpoint of lowering the sublimation temperature, it is more preferable that there are multiple partial structures represented by the general formula (1) for one fullerene skeleton, and from the viewpoint of avoiding the complication of synthesis or purification, it is preferable that there is only one partial structure.
 昇華による蒸着が可能か否は、簡易的には、真空中の熱重量分析によって確認することができる。フラーレン誘導体の熱重量分析結果は、このフラーレン誘導体のフラーレン骨格に相当するフラーレンの熱重量分析結果と比較して、熱重量分析による加熱前におけるフラーレン誘導体の初期重量比で10%の重量減少が起こる温度が50℃以上低ければ、通常、蒸着可能である。フラーレン誘導体の初期重量比で50%の重量減少が起こる温度が100℃以上低ければ、よりほぼ確実に蒸着可能である。 Whether deposition by sublimation is possible can be confirmed simply by thermogravimetric analysis in a vacuum. When the results of the thermogravimetric analysis of a fullerene derivative are compared with the results of the thermogravimetric analysis of a fullerene corresponding to the fullerene skeleton of the fullerene derivative, if the temperature at which a 10% weight loss occurs relative to the initial weight of the fullerene derivative before heating in the thermogravimetric analysis is 50°C or more lower, deposition is generally possible. If the temperature at which a 50% weight loss occurs relative to the initial weight of the fullerene derivative is 100°C or more lower, deposition is more likely to be possible.
 例えば、フラーレン骨格がC60である場合、初期重量比で10%の重量減少が起こる温度が400℃以下であれば、通常、蒸着可能であり、初期重量比で50%の重量減少が起こる温度が400℃以下であれば、より確実に蒸着可能である。 For example, when the fullerene skeleton is C60 , deposition is usually possible if the temperature at which a 10% weight loss occurs based on the initial weight ratio is 400° C. or less, and deposition is more reliable if the temperature at which a 50% weight loss occurs based on the initial weight ratio is 400° C. or less.
[フラーレン誘導体の製造方法]
 本実施形態に係るフラーレン誘導体の製造方法は、特殊な反応装置を用いなくても合成でき、例えば、以下の方法が挙げられる。
[Method of producing fullerene derivative]
The method for producing the fullerene derivative according to this embodiment can be performed without using a special reaction apparatus, and examples thereof include the following method.
 すなわち、下記式(2)で示される化合物からXを脱離させたラジカルをフラーレンと反応させ、前記式(1)で示されるフラーレン誘導体を得る。 That is, the radical obtained by removing X from the compound represented by the following formula (2) is reacted with fullerene to obtain the fullerene derivative represented by the formula (1).
Figure JPOXMLDOC01-appb-C000006
(式(2)中、Xはそれぞれ独立に臭素原子又はヨウ素原子を表し、Rfは前記式(1)と同じである。)
Figure JPOXMLDOC01-appb-C000006
(In formula (2), each X independently represents a bromine atom or an iodine atom, and Rf is the same as in formula (1).)
 上記式(2)中のXは、反応性の観点からヨウ素原子であることが好ましい。上記式(2)中のRfとしては、-(CF-、-(CF-又は(CF-で表される基が挙げられるが、上記式(2)の化合物の入手のしやすさの観点から、-(CF-で表される基とすることが好ましい。 From the viewpoint of reactivity, X in the above formula (2) is preferably an iodine atom. Examples of Rf in the above formula (2) include groups represented by -(CF 2 ) 3 -, -(CF 2 ) 4 -, and (CF 2 ) 5 -, but from the viewpoint of ease of availability of the compound of the above formula (2), it is preferably a group represented by -(CF 2 ) 4 -.
 ここで、前記反応に用いるフラーレンとしては、炭素数が60~200が好ましく、具体例としては、C60、C70、C76、C78、C82、C84、C90、C94、C96、C120、C200等が挙げられ、また中でも、C60、C70、C74、C76及びC78から選択される少なくとも1つ以上が好ましく、C60又はC70であることがさらに好ましく、C60であることが特に好ましい。これは、原料となるフラーレンが、少ない炭素数の方が純度の高いものを得やすく、特にC60は他のフラーレンよりも純度の高いものを得やすいためである。 Here, the fullerene used in the reaction preferably has a carbon number of 60 to 200, and specific examples include C60, C70, C76, C78, C82, C84, C90, C94, C96, C120, C200, etc., and among them, at least one selected from C60 , C70 , C74 , C76 , and C78 is preferable , C60 or C70 is more preferable, and C60 is particularly preferable. This is because the fullerene used as the raw material has a smaller carbon number, and it is easier to obtain a fullerene with a higher purity, and in particular, C60 is easier to obtain a fullerene with a higher purity than other fullerenes.
 また、前記反応には溶媒を用いてもよい。溶媒は、特に限定されないが、フラーレンと前記式(2)の化合物とを溶解させる液体が好ましい。溶媒としては、例えば、ベンゼン、トルエン、キシレン、トリメチルベンゼン、クロロベンゼン、1,2-ジクロロベンゼン等が挙げられる。これらの中でも、フラーレンと前記式(2)の化合物の溶解度が高いことから、1,2-ジクロロベンゼンが好ましい。 A solvent may also be used in the reaction. The solvent is not particularly limited, but a liquid that dissolves fullerene and the compound of formula (2) is preferred. Examples of solvents include benzene, toluene, xylene, trimethylbenzene, chlorobenzene, and 1,2-dichlorobenzene. Among these, 1,2-dichlorobenzene is preferred because of its high solubility in fullerene and the compound of formula (2).
 前記反応は、式(2)で示される化合物からXで表される臭素原子又はヨウ素原子が脱離してラジカルが発生し、そのラジカルがフラーレンと反応することにより進行する。前記ラジカルを発生させるために、加熱、光照射、ラジカル開始剤の添加等の方法を用いることができる。これらの方法の中でも、反応後の後処理の煩雑さの観点から、加熱によりラジカルを発生させる方法を用いることが好ましい。 The reaction proceeds by the elimination of a bromine atom or iodine atom represented by X from the compound represented by formula (2) to generate a radical, which then reacts with the fullerene. Methods such as heating, light irradiation, and addition of a radical initiator can be used to generate the radical. Among these methods, it is preferable to use a method in which radicals are generated by heating, from the viewpoint of the complexity of post-treatment after the reaction.
 前記加熱温度は、反応時間を短縮する観点から、高い方が好ましく、反応選択性を高くし、目的物の収率を向上させる観点から、低い方が好ましい。これら両観点から、加熱温度を目的に応じて選択すればよいが、通常、100℃~250℃の間で選択することが好ましく、150℃~200℃の間で選択することがより好ましい。なお、加熱によりラジカルを発生させる場合、反応を促進させる目的で、銅粉を加えてもよい。 The heating temperature is preferably high from the viewpoint of shortening the reaction time, and is preferably low from the viewpoint of increasing the reaction selectivity and improving the yield of the target product. From both of these viewpoints, the heating temperature may be selected according to the purpose, but it is usually preferable to select a temperature between 100°C and 250°C, and more preferably between 150°C and 200°C. When radicals are generated by heating, copper powder may be added to promote the reaction.
 本反応の反応時間については、高い収率を得るには十分反応が進行するまで長時間行う方がよい。一方、生産量を上げるには、反応速度が遅くならないうちに短時間で1バッチの反応を終了し、このバッチ処理を複数回繰り返した方がよい。これらの観点から、反応時間は、目的に応じて選択すればよいが、通常、1分から120時間の間で選択されるのが好ましく、10分~48時間の間で選択されることがより好ましく、30分~24時間の間で選択されることがさらに好ましい。 In order to obtain a high yield, it is better to carry out the reaction for a long time until the reaction has progressed sufficiently. On the other hand, in order to increase production volume, it is better to complete one batch of reaction in a short time before the reaction rate slows down, and to repeat this batch process multiple times. From these perspectives, the reaction time may be selected according to the purpose, but it is usually preferable to select a time between 1 minute and 120 hours, more preferably between 10 minutes and 48 hours, and even more preferably between 30 minutes and 24 hours.
 反応時の圧力については、特に限定されないが、例えば、溶媒の沸点付近又はそれ以上の温度で反応させたい場合等、加圧した状態でも反応させることもできる。加圧する場合には、例えば、常圧~ゲージ圧1MPaの間で選択することが好ましく、常圧~ゲージ圧0.2MPaの間で選択することがさらに好ましい。この範囲であれば、大掛かりな加圧反応装置を使わなくて済む。 The pressure during the reaction is not particularly limited, but the reaction can be carried out under pressure, for example, when it is desired to carry out the reaction at a temperature near or above the boiling point of the solvent. When pressurizing, it is preferable to select, for example, a pressure between normal pressure and a gauge pressure of 1 MPa, and it is even more preferable to select a pressure between normal pressure and a gauge pressure of 0.2 MPa. Within this range, there is no need to use a large-scale pressurized reaction device.
[薄膜]
 本実施形態に係る薄膜は、前記フラーレン誘導体を含む。前記薄膜は、スピンコートやスリットコート等の湿式による成膜方法や、蒸着等の乾式による成膜方法等、どのような方法で形成されても構わないが、蒸着によって形成される蒸着膜であることが好ましい。
[Thin film]
The thin film according to the present embodiment includes the fullerene derivative. The thin film may be formed by any method, such as a wet film formation method such as spin coating or slit coating, or a dry film formation method such as vapor deposition, but is preferably a vapor deposition film formed by vapor deposition.
 前記薄膜は、本実施形態に係るフラーレン誘導体のみで構成されていてもよいし、他の化合物と混合された状態で構成されていてもよい。前記他の化合物としては、例えば、後述する光電変換素子の有機層に一般に用いられる化合物であってもよい。 The thin film may be composed of only the fullerene derivative according to this embodiment, or may be composed of a mixture with other compounds. The other compounds may be, for example, compounds that are generally used in the organic layers of photoelectric conversion elements, which will be described later.
 前記薄膜は、その成膜時にフラーレン誘導体の分解が抑えられているので、フラーレン誘導体の固有特性をそのまま維持しやすい。これによって、成膜時に凝集が発生しやすい非置換のフラーレン(例えば、C60)の薄膜に比べて、光学特性を改善することができ、さらには後述する光電変換素子や固体撮像装置の特性をも改善することができる。 Since the decomposition of the fullerene derivative is suppressed during the film formation, the thin film is likely to maintain the inherent properties of the fullerene derivative, which can improve the optical properties and further improve the properties of the photoelectric conversion element and solid-state imaging device described later, compared to a thin film of unsubstituted fullerene (e.g., C60 ) that is prone to aggregation during film formation.
 前記薄膜の吸光特性は、非置換のフラーレンを含む薄膜の光吸収特性と比べ、約400nm~500nmの可視光領域での吸光が特に減少する。例えば、前記薄膜の波長450nmでの吸光係数は、非置換のフラーレンを含む薄膜の波長450nmでの吸光係数より小さく、例えば、前記薄膜の波長450nmでの吸光係数は、非置換のフラーレンを含む薄膜の波長450nmでの吸光係数の約1/2以下である。 Compared to the light absorption characteristics of a thin film containing unsubstituted fullerene, the absorption in the visible light region of about 400 nm to 500 nm is particularly reduced. For example, the absorption coefficient of the thin film at a wavelength of 450 nm is smaller than the absorption coefficient of the thin film containing unsubstituted fullerene at a wavelength of 450 nm, and for example, the absorption coefficient of the thin film at a wavelength of 450 nm is about 1/2 or less of the absorption coefficient of the thin film containing unsubstituted fullerene at a wavelength of 450 nm.
[光電変換素子]
 本実施形態に係る光電変換素子は、互いに対向する第1電極と第2電極と、前記2つの電極の間に配置される有機層とを有する。前記有機層は、前記式(1)で表されるフラーレン誘導体を含む。また、前記有機層は、前記フラーレン誘導体の他に、他の化合物を含んでもよい。前記第1電極及び前記第2電極は、特に限定されず、既知の材料等が使用できる。また、前記本実施形態に係る光電変換素子は、上記のような特徴を有していれば、その構造は特に限定されない。光電変換素子の構造としては、例えば、特許文献2等に記載の素子構造が挙げられる。
[Photoelectric conversion element]
The photoelectric conversion element according to this embodiment has a first electrode and a second electrode facing each other, and an organic layer disposed between the two electrodes. The organic layer contains a fullerene derivative represented by the formula (1). The organic layer may contain other compounds in addition to the fullerene derivative. The first electrode and the second electrode are not particularly limited, and known materials and the like can be used. The photoelectric conversion element according to this embodiment is not particularly limited in structure as long as it has the above-mentioned characteristics. Examples of the structure of the photoelectric conversion element include the element structure described in Patent Document 2 and the like.
[固体撮像装置]
 本実施形態に係る固体撮像装置(イメージセンサ)は、前記光電変換素子を一つ以上有する。固体撮像装置は、多様な電子装置に適用され、例えば、モバイルホン、デジタルカメラ等に好ましく適用され得るが、これらに限定されるものではない。
[Solid-state imaging device]
The solid-state imaging device (image sensor) according to the present embodiment includes one or more photoelectric conversion elements. The solid-state imaging device is applicable to various electronic devices, and is preferably applicable to, for example, mobile phones, digital cameras, etc., but is not limited thereto.
 以上、本発明に係る実施形態について詳述したが、本発明は特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形あるいは変更が可能である。  Although the embodiment of the present invention has been described in detail above, the present invention is not limited to a specific embodiment, and various modifications and alterations are possible within the scope of the gist of the present invention as described in the claims.
 以下、本実施形態を実施例に基づいて具体的に説明する。なお、本実施形態はこれらの実施例に限定されるものではない。 The present embodiment will be specifically described below based on examples. Note that the present embodiment is not limited to these examples.
(合成例1)化合物1の合成
 密栓可能なガラス容器に、C60(145mg,0.2mmol)、1,2-ジクロロベンゼン(14mL)、)を添加して室温にて撹拌し、C60を溶解させた。その後、アルゴン置換して銅(粉末)(750mg,11.8mmol)、オクタフルオロ―1,4-ジヨードブタン(88μL,0.48mmol))を加えた後、密栓し容器全体を190℃に加熱した。16時間後、加熱を停止し室温まで放冷した。反応液を濾過し、沈殿物を除去した。その後、得られた濾液から溶媒を溜去し、残渣にトルエンを添加して全溶解させた。この反応混合物を分取HPLC(カラム:ナカライテスク社製COSMOSIL PBB(内径20mm,長さ250mm)、溶離液:トルエン)で精製し、化合物1aを含むフラクションと、化合物1bを含むフラクションを得た。それぞれ溶媒を留去し、得られた固体をメタノールで洗浄し、乾燥することにより、11mgの化合物1a、及び5mgの化合物1bを茶褐色の固体として得た。以下に、化合物1aの化学式を(C1a)、化合物1bの化学式を(C1b)として示す。なお、化合物1bは、置換基が付加している位置が異なる異性体の混合物であった。また、これら化合物の同定は、13C-NMR及び19F-NMR(ブルカージャパン社製、Advance Neo 400)並びに液体クロマトグラフ質量分析計(アジレントテクノロジー社製、Agilent 6120 single quadrupole LC/MS)を用いて分析することで行った。
(Synthesis Example 1) Synthesis of Compound 1 In a sealable glass container, C 60 (145 mg, 0.2 mmol) and 1,2-dichlorobenzene (14 mL) were added and stirred at room temperature to dissolve C 60. After that, the atmosphere was replaced with argon, copper (powder) (750 mg, 11.8 mmol) and octafluoro-1,4-diiodobutane (88 μL, 0.48 mmol) were added, and the container was sealed and heated to 190° C. as a whole. After 16 hours, the heating was stopped and the container was allowed to cool to room temperature. The reaction solution was filtered to remove the precipitate. Then, the solvent was distilled off from the obtained filtrate, and toluene was added to the residue to dissolve it completely. This reaction mixture was purified by preparative HPLC (column: COSMOSIL PBB (inner diameter 20 mm, length 250 mm) manufactured by Nacalai Tesque, Inc.), eluent: toluene) to obtain a fraction containing compound 1a and a fraction containing compound 1b. The solvent was distilled off, and the resulting solid was washed with methanol and dried to obtain 11 mg of compound 1a and 5 mg of compound 1b as brown solids. The chemical formula of compound 1a is shown below as (C1a), and the chemical formula of compound 1b is shown below as (C1b). Compound 1b was a mixture of isomers with different positions at which the substituents were added. These compounds were identified by analysis using 13 C-NMR and 19 F-NMR (Advance Neo 400, manufactured by Bruker Japan) and a liquid chromatograph mass spectrometer (Agilent 6120 single quadrupole LC/MS, manufactured by Agilent Technologies).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(合成例2)化合物2の合成
 上記の合成例1において、オクタフルオロ-1,4-ジヨードブタンに代えて、ヘキサフルオロ-1,3-ジヨードプロパンを用いたこと以外は合成例1と同様に合成及び分析を行い、12mgの化合物2a、及び8mgの化合物2bを茶褐色の固体として得た。以下に、化合物2aの化学式を(C2a)、化合物2bの化学式を(C2b)として示す。なお、化合物2bは、置換基が付加している位置が異なる異性体の混合物であった。
Synthesis Example 2: Synthesis of Compound 2 Synthesis and analysis were performed in the same manner as in Synthesis Example 1 above, except that hexafluoro-1,3-diiodopropane was used instead of octafluoro-1,4-diiodobutane, to obtain 12 mg of compound 2a and 8 mg of compound 2b as brown solids. The chemical formula of compound 2a is shown below as (C2a), and the chemical formula of compound 2b is shown below as (C2b). Compound 2b was a mixture of isomers with different positions at which the substituents were added.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(合成例3)化合物3の合成
 上記の合成例1において、オクタフルオロ-1,4-ジヨードブタンに代えて、デカフルオロ-1,5-ジヨードプロパンを用いたこと以外は合成例1と同様に合成及び分析を行い、9mgの化合物3a、及び3mgの化合物3bを茶褐色の固体として得た。以下に、化合物3aの化学式を(C3a)、化合物3bの化学式を(C3b)として示す。なお、化合物3bは、置換基が付加している位置が異なる異性体の混合物であった。
Synthesis Example 3: Synthesis of Compound 3 Synthesis and analysis were performed in the same manner as in Synthesis Example 1 above, except that decafluoro-1,5-diiodopropane was used instead of octafluoro-1,4-diiodobutane, to obtain 9 mg of compound 3a and 3 mg of compound 3b as brown solids. The chemical formula of compound 3a is shown below as (C3a), and the chemical formula of compound 3b is shown below as (C3b). Compound 3b was a mixture of isomers with different positions at which the substituents were added.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(合成例4)化合物4の合成
 上記の合成例1において、C60に代えて、C70を同一モル量用いたこと以外は合成例1と同様に合成及び分析を行い、化合物4を茶褐色の固体として15mg得た。以下に、化合物4の化学式を(C4)として示す。
Synthesis Example 4 Synthesis of Compound 4 Synthesis and analysis were performed in the same manner as in Synthesis Example 1, except that the same molar amount of C70 was used instead of C60 in Synthesis Example 1, to obtain 15 mg of compound 4 as a brown solid. The chemical formula of compound 4 is shown below as (C4).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(合成例5)化合物5の合成
 上記の合成例1において、C60に代えて、C70を同一モル量用いたこと以外は合成例2と同様に合成及び分析を行い、化合物5を茶褐色の固体として16mg得た。以下に、化合物5の化学式を(C5)として示す。
Synthesis Example 5 Synthesis of Compound 5 Synthesis and analysis were performed in the same manner as in Synthesis Example 2, except that the same molar amount of C70 was used instead of C60 in Synthesis Example 1, to obtain 16 mg of compound 5 as a brown solid. The chemical formula of compound 5 is shown below as (C5).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(合成例6)化合物6の合成
 上記の合成例1において、C60に代えて、C70を同一モル量用いたこと以外は合成例3と同様に合成及び分析を行い、化合物6を茶褐色の固体として12mg得た。以下に、化合物6の化学式を(C6)として示す。
Synthesis Example 6 Synthesis of Compound 6 Synthesis and analysis were performed in the same manner as in Synthesis Example 3, except that the same molar amount of C70 was used instead of C60 in Synthesis Example 1, to obtain 12 mg of compound 6 as a brown solid. The chemical formula of compound 6 is shown below as (C6).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(合成例7)化合物7の合成
 非特許文献1に記載されている方法で化合物7(C7)を得た。以下に、化合物7の化学式を(C7)として示す。
(Synthesis Example 7) Synthesis of Compound 7 Compound 7 (C7) was obtained by the method described in Non-Patent Document 1. The chemical formula of compound 7 is shown below as (C7).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(合成例8)化合物5の合成
 特許文献1の合成例1の方法で化合物8(C8)を得た。以下に、化合物8の化学式を(C8)として示す。
(Synthesis Example 8) Synthesis of Compound 5 Compound 8 (C8) was obtained by the method of Synthesis Example 1 of Patent Document 1. The chemical formula of Compound 8 is shown below as (C8).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(合成例9)化合物9の合成
 特許文献2の合成例1の方法で化合物9a(C9a)及び化合物9b(C9b)を得た。以下に、化合物9aの化学式を(C9a)、化合物9bの化学式を(C9b)として示す。
(Synthesis Example 9) Synthesis of Compound 9 Compound 9a (C9a) and compound 9b (C9b) were obtained by the method of Synthesis Example 1 of Patent Document 2. The chemical formula of compound 9a is shown below as (C9a), and the chemical formula of compound 9b is shown below as (C9b).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(合成例10)化合物10の合成
 特許文献2の合成例5の方法で化合物10(C10)を得た。以下に、化合物10の化学式を(C10)として示す。
(Synthesis Example 10) Synthesis of Compound 10 Compound 10 (C10) was obtained by the method of Synthesis Example 5 of Patent Document 2. The chemical formula of compound 10 is shown below as (C10).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(実施例1)
 化合物1aの昇華による蒸着の可否及び昇華温度を確認するために、真空中における熱重量分析を実施した。試料(約5mg)を真空熱重量分析装置(アドバンス理工社製、VPE-9000)にセットした。1Pa以下の真空中において、室温から1000℃まで10℃/分の速度で昇温させた。試料の重量が試料の当初の重量に対して10%低下したときの温度をTs(℃)(-10%)、試料の重量が試料の当初の重量に対して50%低下したときの温度をTs(℃)(-50%)とした。結果を表1に示す。
Example 1
Thermogravimetric analysis was carried out in a vacuum to confirm whether deposition by sublimation of compound 1a was possible and the sublimation temperature. A sample (about 5 mg) was placed in a vacuum thermogravimetric analyzer (VPE-9000, manufactured by Advance Riko Co., Ltd.). In a vacuum of 1 Pa or less, the temperature was raised from room temperature to 1000°C at a rate of 10°C/min. The temperature at which the weight of the sample decreased by 10% relative to the initial weight of the sample was defined as Ts (°C) (-10%), and the temperature at which the weight of the sample decreased by 50% relative to the initial weight of the sample was defined as Ts (°C) (-50%). The results are shown in Table 1.
 また、化合物1aを長時間加熱した時の安定性を確認するために、次のように熱安定性試験を実施した。試料(約100mg)を、大気圧の窒素ガス雰囲気下、350℃で12時間加熱した。加熱前後の各試料中の化合物1aを速液体クロマトグラフィーで定量し、加熱前に対する加熱後の質量比を残存率とした。結果を表1に示す。なお、この熱安定性試験の条件では、表1及び表2に記載のいずれの化合物も昇華しないことは予め確認した。 Furthermore, to confirm the stability of compound 1a when heated for a long period of time, a thermal stability test was carried out as follows. A sample (approximately 100 mg) was heated at 350°C for 12 hours in a nitrogen gas atmosphere at atmospheric pressure. Compound 1a in each sample before and after heating was quantified by high-speed liquid chromatography, and the mass ratio after heating to before heating was taken as the residual rate. The results are shown in Table 1. It was previously confirmed that under the conditions of this thermal stability test, none of the compounds listed in Tables 1 and 2 sublimated.
(実施例2~6、比較例1~5)
 化合物1aに代えて、表1に記載の化合物を用いたこと以外は実施例1と同様に熱重量分析及び熱安定性試験を実施した。測定結果を表1に示す。
(Examples 2 to 6, Comparative Examples 1 to 5)
Thermogravimetric analysis and thermal stability test were carried out in the same manner as in Example 1, except that the compounds shown in Table 1 were used instead of compound 1a. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
(実施例7~9、比較例6~7)
 化合物1aに代えて、表2に記載の化合物を用いたこと以外は実施例1と同様に熱重量分析及び熱安定性試験を実施した。測定結果を表2に示す。
(Examples 7 to 9, Comparative Examples 6 to 7)
Thermogravimetric analysis and thermal stability test were carried out in the same manner as in Example 1, except that the compounds shown in Table 2 were used instead of compound 1a. The measurement results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 表1より、実施例1~6と比較例1とを比べると、フラーレンC60骨格を持つ本実施形態に係るフラーレン誘導体は、未置換のフラーレンC60より低い温度で昇華可能であることがわかった。また、表2より、実施例7~9と比較例6を比べると、フラーレンC70骨格を持つ本実施形態に係るフラーレン誘導体は、未置換のフラーレンC70より低い温度で昇華可能であることがわかった。これらより、フラーレン骨格が異なっても同様の結果となることもわかった。 From Table 1, comparing Examples 1 to 6 with Comparative Example 1, it was found that the fullerene derivative according to the present embodiment having a fullerene C 60 skeleton can be sublimated at a lower temperature than unsubstituted fullerene C 60. Also, from Table 2, comparing Examples 7 to 9 with Comparative Example 6, it was found that the fullerene derivative according to the present embodiment having a fullerene C 70 skeleton can be sublimated at a lower temperature than unsubstituted fullerene C 70. From these, it was also found that similar results were obtained even when the fullerene skeleton was different.
 さらに、実施例1~6と比較例2~5とを比べると、本実施形態に係るフラーレン誘導体は従来から昇華することが知られているフラーレン誘導体と比較して、より低い温度か同等の温度で昇華可能であることがわかった。ここで、同等の温度の例として、実施例3と比較例4を比べた場合、Ts(℃)(-10%)はどちらも350℃であり、Ts(℃)(-50%)はどちらも390℃であったが、残存率は実施例3の化合物2aの方が高かった。また、実施例8と比較例7を比べると、フラーレン骨格が異なっても同様の結果であることがわかった。これらより、本実施形態に係るフラーレン誘導体の方が熱安定性が高いことが確認できた。 Furthermore, when Examples 1 to 6 are compared with Comparative Examples 2 to 5, it is found that the fullerene derivative according to this embodiment can be sublimated at a lower temperature or at the same temperature as fullerene derivatives that have been known to sublime. Here, when Example 3 is compared with Comparative Example 4 as an example of the same temperature, Ts (°C) (-10%) was 350°C for both, and Ts (°C) (-50%) was 390°C for both, but the residual rate was higher for compound 2a of Example 3. Furthermore, when Example 8 is compared with Comparative Example 7, it is found that the results were similar even though the fullerene skeleton was different. From these, it was confirmed that the fullerene derivative according to this embodiment has higher thermal stability.
 本実施形態に係るフラーレン誘導体は、光電素子や固体撮像装置等に好ましく用いることができる。 The fullerene derivative according to this embodiment can be preferably used in photoelectric elements, solid-state imaging devices, etc.
 本出願は、2022年12月1日に日本国特許庁に出願した特願2022-192534号に基づいて優先権を主張し、前記出願に記載された全ての内容を援用する。 This application claims priority based on Patent Application No. 2022-192534, filed with the Japan Patent Office on December 1, 2022, and incorporates all of the contents of said application by reference.

Claims (10)

  1.  一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、Cはそれぞれフラーレン骨格を形成する互いに隣り合った炭素原子であり、Rfは炭素数3~5のパーフルオロアルキレン基を表す。)
    で示される部分構造を有するフラーレン誘導体。
    General formula (1):
    Figure JPOXMLDOC01-appb-C000001
    (In general formula (1), C * are adjacent carbon atoms forming a fullerene skeleton, and Rf represents a perfluoroalkylene group having 3 to 5 carbon atoms.)
    A fullerene derivative having a partial structure represented by the following formula:
  2.  前記一般式(1)で示される部分構造が1つのフラーレン骨格に対して1つである請求項1に記載のフラーレン誘導体。 The fullerene derivative according to claim 1, in which the partial structure represented by the general formula (1) is present in one fullerene skeleton.
  3.  前記Rfの炭素数が4である請求項1又は2に記載のフラーレン誘導体。 The fullerene derivative according to claim 1 or 2, wherein the carbon number of Rf is 4.
  4.  前記フラーレン骨格が、C60、C70、C74、C76、又はC78である請求項1~3のいずれか一項に記載のフラーレン誘導体。 The fullerene derivative according to any one of claims 1 to 3, wherein the fullerene skeleton is C 60 , C 70 , C 74 , C 76 , or C 78 .
  5.  請求項1~4のいずれか一項に記載のフラーレン誘導体を含む薄膜。 A thin film comprising the fullerene derivative according to any one of claims 1 to 4.
  6.  前記薄膜が、蒸着膜である請求項5に記載の薄膜。 The thin film according to claim 5, wherein the thin film is a vapor deposition film.
  7.  互いに対向する第1電極と第2電極と、
     前記第1電極と前記第2電極の間に配置される有機層と、
    を有し、
     前記有機層は、請求項1~4のいずれか一項に記載のフラーレン誘導体を含む光電変換素子。
    a first electrode and a second electrode facing each other;
    an organic layer disposed between the first electrode and the second electrode;
    having
    The photoelectric conversion element, wherein the organic layer comprises the fullerene derivative according to any one of claims 1 to 4.
  8.  請求項7に記載の光電変換素子を有する固体撮像装置。 A solid-state imaging device having the photoelectric conversion element according to claim 7.
  9.  請求項1~4のいずれか一項に記載のフラーレン誘導体の製造方法であって、
     式(2):
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、2つのXはそれぞれ独立に臭素原子又はヨウ素原子を表し、Rfは一般式(1)と同じである。)
    で表される化合物からXを脱離させたラジカルをフラーレンと反応させるフラーレン誘導体の製造方法。
    A method for producing the fullerene derivative according to any one of claims 1 to 4, comprising the steps of:
    Formula (2):
    Figure JPOXMLDOC01-appb-C000002
    (In formula (2), two Xs each independently represent a bromine atom or an iodine atom, and Rf is the same as in general formula (1).)
    The method for producing a fullerene derivative comprises reacting a radical obtained by eliminating X from a compound represented by the following formula with a fullerene.
  10.  前記ラジカルを加熱により発生させる請求項9に記載のフラーレン誘導体の製造方法。 The method for producing a fullerene derivative according to claim 9, in which the radicals are generated by heating.
PCT/JP2023/042503 2022-12-01 2023-11-28 Fullerene derivative, thin film, photoelectric conversion element, solid-state imaging device and method for producing fullerene derivative WO2024117115A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-192534 2022-12-01
JP2022192534 2022-12-01

Publications (1)

Publication Number Publication Date
WO2024117115A1 true WO2024117115A1 (en) 2024-06-06

Family

ID=91323839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/042503 WO2024117115A1 (en) 2022-12-01 2023-11-28 Fullerene derivative, thin film, photoelectric conversion element, solid-state imaging device and method for producing fullerene derivative

Country Status (1)

Country Link
WO (1) WO2024117115A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382718A (en) * 1993-09-16 1995-01-17 E. I. Du Pont De Nemours And Company Cyclofluoroalkylated fullerene compounds
US20060073370A1 (en) * 2004-08-20 2006-04-06 Krusic Paul J Compositions containing modified fullerenes
JP2008510733A (en) * 2004-08-20 2008-04-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Functional carbon material
JP2014017374A (en) * 2012-07-09 2014-01-30 Fujifilm Corp Solid state imaging element and method for manufacturing solid state imaging element
JP2019214584A (en) * 2014-09-08 2019-12-19 昭和電工株式会社 Halogenated compound and production method of fullerene derivative
WO2022124273A1 (en) * 2020-12-09 2022-06-16 昭和電工株式会社 Fullerene derivative and production method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382718A (en) * 1993-09-16 1995-01-17 E. I. Du Pont De Nemours And Company Cyclofluoroalkylated fullerene compounds
US20060073370A1 (en) * 2004-08-20 2006-04-06 Krusic Paul J Compositions containing modified fullerenes
JP2008510733A (en) * 2004-08-20 2008-04-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Functional carbon material
JP2014017374A (en) * 2012-07-09 2014-01-30 Fujifilm Corp Solid state imaging element and method for manufacturing solid state imaging element
JP2019214584A (en) * 2014-09-08 2019-12-19 昭和電工株式会社 Halogenated compound and production method of fullerene derivative
WO2022124273A1 (en) * 2020-12-09 2022-06-16 昭和電工株式会社 Fullerene derivative and production method therefor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GRUZINSKAYA N. I., PIMENOVA A. S., KHAVREL' P. A., SIDOROV L. N., KEMNITZ E., TROYANOV S. I.: "Octafluorocyclohexa Derivatives of [60]Fullerene: C60(C4F8)n (n = 2, 3, 4, and 6)", RUSSIAN CHEMICAL BULLETIN, vol. 58, no. 11, 1 November 2009 (2009-11-01), pages 2276 - 2282, XP093177470, ISSN: 0931-7597, DOI: 10.1002/chin.201102104 *
GRUZINSKAYA NATALIA I., SILIN ANDREY I., PIMENOVA ANNA S., KHAVREL PAVEL A., MARKOV VITALIY YU., SIDOROV LEV N., KEMNITZ ERHARD, T: "Synthesis and structure of cycloperfluoroalkylated derivatives of C70, C70(C2F4) and C70(C4F8)n, n = 1–6", NEW JOURNAL OF CHEMISTRY, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 34, no. 2, 1 January 2010 (2010-01-01), GB , pages 243, XP093177471, ISSN: 1144-0546, DOI: 10.1039/b9nj00444k *
MUTIG TATYANA, KEMNITZ ERHARD, TROYANOV SERGEY I.: "Synthesis and molecular structures of heptafluoropropylated fullerenes: C70(n-C3F7)8, C70(n-C3F7)6O, and C70(C3F7)4", JOURNAL OF FLUORINE CHEMISTRY, ELSEVIER, NL, vol. 131, no. 8, 1 August 2010 (2010-08-01), NL , pages 861 - 866, XP093177473, ISSN: 0022-1139, DOI: 10.1016/j.jfluchem.2010.05.002 *

Similar Documents

Publication Publication Date Title
US20140148596A1 (en) Covalent Organic Frameworks and Methods of Making Same
JP5715743B2 (en) Fullerene polymer film and method for producing fullerene polymer
KR102666349B1 (en) Method for preparing deuterated aromatic compounds and reactant composition of deuteration
JP6765482B2 (en) 5,5-Dibromo-5-Phenyl pentanoate methyl ester
JP4099526B2 (en) Separation and purification of porphyrin dimer derivatives and carbon nanotubes using them
JP2023057076A (en) fullerene derivative
WO2024117115A1 (en) Fullerene derivative, thin film, photoelectric conversion element, solid-state imaging device and method for producing fullerene derivative
JP6945841B2 (en) Near-infrared absorption squarylium derivatives and organic electronic devices containing them
CN116326249A (en) Method for preparing deuterated aromatic compounds and deuterated reaction compositions
JP5670068B2 (en) Method for producing fullerene film
JP7429006B2 (en) Method for producing charge transporting polymer
JP5155051B2 (en) Fullerene derivative precipitation prevention method, fullerene derivative solution preparation method, and fullerene derivative solution
Shibuya et al. Synthesis of n‐type [60] Fullerene Derivatives with Sterically Bulky tert‐Butyl Groups for Vacuum Deposition Processes
CN114133385A (en) Hole transport material with carbazole as core and phenothiazine or phenoxazine as end group, and synthesis method and application thereof
KR101554170B1 (en) Producing method of reduced graphene oxide using solid hydrazine derivatives
JP5849745B2 (en) Method for producing organic carbon film and method for producing laminate
KR102680848B1 (en) Method for preparing deuterated aromatic compounds and reactant composition of deuteration
CN113272288B (en) Novel compound and organic light emitting device comprising the same
Han et al. Synthesis of a Tetraepoxy Nanobelt and Its Reductive Aromatization Attempts
WO2024106437A1 (en) Fullerene derivative composition and photoelectric conversion element
KR20210081965A (en) Method for preparing deuterated aromatic compounds
JP2015105233A (en) Fullerene derivative
JP2024095706A (en) Fullerene derivatives, films, electron acceptors, electron transport materials, and electronic devices
WO2004078692A1 (en) New bicyclo compound, method for producing fused aromatic compound using the same and method for forming film of the same
CN107652158A (en) The synthetic method of the fluorenyl benzene of methyl six