WO2024117061A1 - Acoustic wave device and communication device - Google Patents

Acoustic wave device and communication device Download PDF

Info

Publication number
WO2024117061A1
WO2024117061A1 PCT/JP2023/042298 JP2023042298W WO2024117061A1 WO 2024117061 A1 WO2024117061 A1 WO 2024117061A1 JP 2023042298 W JP2023042298 W JP 2023042298W WO 2024117061 A1 WO2024117061 A1 WO 2024117061A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
wave device
elastic wave
piezoelectric substrate
idt electrode
Prior art date
Application number
PCT/JP2023/042298
Other languages
French (fr)
Japanese (ja)
Inventor
俊哉 木村
優 平井
達也 堂本
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2024117061A1 publication Critical patent/WO2024117061A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves

Definitions

  • This disclosure relates to an elastic wave device and a communication device.
  • An acoustic wave device has been used in communication devices such as mobile terminals as duplexers that filter signals transmitted and received from antennas.
  • An acoustic wave device is composed of a piezoelectric substrate and an IDT (Interdigital Transducer) electrode formed on the piezoelectric substrate.
  • An acoustic wave device utilizes the property that allows conversion between electrical signals and surface acoustic waves in the relationship between the IDT electrode and the piezoelectric substrate.
  • Patent Document 1 discloses an acoustic wave device in which an electrode is formed on a piezoelectric substrate, the electrode having a first layer containing Al and Cu, and a second layer having Al crystals and at least a part of CuAl2 crystal grains.
  • An elastic wave device includes a piezoelectric substrate and an IDT electrode located on the piezoelectric substrate, the IDT electrode having a first layer including a conductive material and a second layer including a CuAl alloy located between the first layer and the piezoelectric substrate, the second layer having a first surface located on the first layer side, and when the atomic ratio of Cu:Al in the second layer is defined as 1:x, the average value of x is greater than 2.1 at least on the first surface side of the second layer.
  • FIG. 1 is a plan view illustrating a configuration of an elastic wave device according to an embodiment of the present invention.
  • 2 is an enlarged cross-sectional view of a main portion of the elastic wave device of FIG. 1 taken along line II-II.
  • 3A to 3C are cross-sectional views each showing a cross section of an IDT electrode in a lamination direction during a manufacturing process of the acoustic wave device of FIG. 1 .
  • 2A to 2C are plan views each showing a schematic state of an IDT electrode before and after heating in the acoustic wave device of FIG. 1 .
  • 10 is a graph showing the correlation between the minimum insertion loss and the number of heating cycles for a Tx filter and an Rx filter formed using the acoustic wave device of FIG. 1 .
  • FIG. 1 is a block diagram showing a main part of a communication device according to an embodiment
  • 11A to 11C are diagrams illustrating results of a power resistance test for an elastic wave device according to an example or a comparative example.
  • 13 is a diagram illustrating the relationship between the area ratio of spots and the Al ratio in a second layer in an elastic wave device according to an example or a comparative example.
  • FIG. 1 is a cross-sectional view illustrating a cross section of an elastic wave device according to an embodiment of the present invention taken in a lamination direction using a TEM.
  • 10A to 10C are diagrams showing the results of EDX analysis at the measurement points shown in FIG. 9 of an elastic wave device according to an example.
  • FIG. 1 is a cross-sectional view illustrating a cross section of an elastic wave device according to an embodiment of the present invention taken in a lamination direction using a TEM.
  • 12A and 12B are diagrams showing the results of EDX analysis at measurement points P3 and P4 shown in FIG. 11 of an elastic wave device according to an example.
  • 12A and 12B are diagrams showing the results of EDX analysis at measurement points P5 and P6 shown in FIG. 11 of an elastic wave device according to an example.
  • either direction may be considered to be up or down.
  • a Cartesian coordinate system xyz is defined, with the x direction being the left-right direction, the y direction being the front-back direction, and the z direction being the up-down direction.
  • the front side as viewed from the page is considered to be up
  • the left side is considered to be leftward
  • the bottom side is considered to be forward, but this is not limited to the above.
  • Fig. 1 is a plan view showing a configuration of an acoustic wave (SAW: Surface Acoustic Wave) device 1 according to an embodiment of the present disclosure.
  • Fig. 2 is an enlarged cross-sectional view of a main portion taken along line II-II in Fig. 1.
  • the acoustic wave device 1 has a piezoelectric substrate 2 and an IDT (Interdigital Transducer) electrode 3.
  • the acoustic wave device 1 may also have a reflector 4, a protective layer 5, and a resin layer 6.
  • the piezoelectric substrate 2 is composed of a single crystal substrate having piezoelectric properties.
  • the single crystal substrate having piezoelectric properties may be, for example, a substrate made of lithium niobate crystal or lithium tantalate crystal.
  • the planar shape and various dimensions of the piezoelectric substrate 2 may be set appropriately.
  • the length in the z direction indicating the thickness of the piezoelectric substrate 2 may be 0.2 mm or more and 0.5 mm or less.
  • the piezoelectric substrate 2 may have an upper surface 2a, which is the upper surface.
  • the IDT electrode 3 is located on the piezoelectric substrate 2.
  • the top surface 2a of the piezoelectric substrate 2 may be the surface on which the IDT electrode 3 is located.
  • the IDT electrode 3 may have two comb-tooth electrodes 30.
  • the comb-tooth electrode 30 may have two bus bars 31 facing each other and a number of electrode fingers 32 extending from one bus bar 31 toward the opposing bus bar 31.
  • the pair of comb-tooth electrodes 30 are positioned so that the electrode fingers 32 connected to one bus bar 31 and the electrode fingers 32 connected to the opposing bus bar 31 interdigitate with each other in the propagation direction of the elastic wave, in other words, so that the electrode fingers 32 cross each other.
  • the comb-tooth electrode 30 may also have dummy electrode fingers 33 facing each of the electrode fingers 32.
  • the busbar 31 may have a long, linear shape.
  • the electrode fingers 32 may have a long, linear shape in a direction intersecting the busbar 31, and may be aligned at approximately regular intervals in the direction of propagation of the elastic wave.
  • the multiple electrode fingers 32 may be positioned side by side so that the pitch Pt, which is the distance between the centers of adjacent electrode fingers 32 in the left-right direction, is roughly uniform.
  • the pitch Pt indicates the distance from the center of one electrode finger 32 to the center of the electrode finger 32 adjacent to that electrode finger 32 in the propagation direction of the elastic wave.
  • the pitch Pt may be, for example, a length equivalent to half the wavelength ⁇ of the elastic wave at the frequency at which resonance is desired.
  • the wavelength ⁇ may be, for example, 1.5 to 6 ⁇ m. Since the IDT electrode 3 is positioned side by side so that the pitch Pt between most of the electrode fingers 32 is uniform, the multiple electrode fingers 32 are arranged at a constant period, and elastic waves can be generated efficiently.
  • the IDT electrode 3 By positioning the electrode fingers 32 in this manner, the IDT electrode 3 generates an elastic wave that propagates in a direction perpendicular to the multiple electrode fingers 32. Therefore, taking into consideration the crystal orientation of the piezoelectric substrate 2, the two bus bars 31 may be positioned to face each other in a direction intersecting the direction in which the elastic wave is desired to propagate.
  • the multiple electrode fingers 32 may be positioned to extend in a direction perpendicular to the direction in which the elastic wave is desired to propagate.
  • the propagation direction of the elastic wave is determined by the orientation of the multiple electrode fingers 32, but in this embodiment, for convenience, the orientation of the multiple electrode fingers 32 may be described based on the propagation direction of the elastic wave.
  • the number of electrode fingers 32 on each side may be 50 to 350.
  • the lengths of the electrode fingers 32 in the extension direction may be set to be, for example, approximately the same.
  • the interdigitation width, which is the interdigitation length between opposing electrode fingers 32, may be, for example, 0 to 300 ⁇ m.
  • the IDT electrode 3 When a voltage is applied, the IDT electrode 3 excites an elastic wave that propagates in the x-direction near the top surface 2a of the piezoelectric substrate 2. The excited elastic wave is reflected at the boundary between the elongated region between adjacent electrode fingers 32, which is an area where no electrode fingers 32 are arranged. A standing wave is then formed with the pitch Pt of the electrode fingers 32 being half the wavelength. The standing wave is converted into an electrical signal of the same frequency as the standing wave and is extracted by the electrode fingers 32. In this way, the elastic wave device 1 may function as a one-port resonator.
  • the reflectors 4 may be positioned so as to sandwich the IDT electrode 3 in the propagation direction of the elastic wave.
  • the reflectors 4 may be formed in a roughly slit shape.
  • the protective layer 5 may be located on the piezoelectric substrate 2 so as to cover the IDT electrode 3 and the reflector 4 from above. Specifically, the protective layer 5 may cover the surfaces of the IDT electrode 3 and the reflector 4, and may also cover the exposed portion of the upper surface 2a of the piezoelectric substrate 2 other than the IDT electrode 3 and the reflector 4.
  • the thickness of the protective layer 5 may be, for example, 1 nm or more, and may be 20% or less of the thickness of the IDT electrode 3.
  • Protective layer 5 may be made of an insulating material and may be a layer that contributes to protection against corrosion, etc.
  • Protective layer 5 may be a layer containing a material such as SiO2 , which increases the propagation speed of elastic waves as the temperature increases. In this case, changes in electrical characteristics of elastic wave device 1 due to changes in temperature can be kept small.
  • Protective layer 5 may also contain a material such as SiNx to improve the moisture resistance of elastic wave device 1.
  • the resin layer 6 is located on the piezoelectric substrate 2 and may be a layer that covers at least a portion of the surface of the piezoelectric substrate 2. Specifically, the resin layer 6 may cover the surfaces of the IDT electrode 3 and the reflector 4, or may cover the exposed portion of the upper surface 2a of the piezoelectric substrate 2 other than the IDT electrode 3 and the reflector 4. From the viewpoint of the efficiency of generating an elastic wave by the IDT electrode 3, the resin layer 6 may cover only the exposed portion of the upper surface 2a of the piezoelectric substrate 2.
  • the resin layer 6 may be a layer containing a thermosetting resin.
  • the thermosetting resin that is the material of the resin layer 6 may be a thermosetting resin that hardens at 300°C or higher.
  • An example of such a thermosetting resin is polyimide.
  • the thermosetting resin that is the material of the resin layer 6 may be acrylic.
  • the resin layer 6 may contain at least one of polyimide and acrylic. The presence of the resin layer 6 allows the wiring to cross over in a multi-level manner.
  • the elastic wave device 1 having such a resin layer 6 is subjected to a heat treatment in the manufacturing process to harden the resin layer 6.
  • a heat treatment may cause the solid solution state of Cu contained in the IDT electrode 3 to change, and may also affect the power resistance of the IDT electrode 3.
  • the elastic wave device 1 according to this embodiment exhibits stable power resistance even when subjected to a heat treatment of, for example, 300°C or higher to harden the resin layer 6. The specifics are described below.
  • Cu was selected as a material that could improve power resistance and potentially exhibit characteristics equivalent to those of current Al electrodes.
  • a configuration was found in which the IDT electrode 3 containing Al and Cu can stably maintain its power resistance even when subjected to heat treatment at, for example, 300°C or higher.
  • the IDT electrode 3 has a first layer 34 and a second layer 35.
  • FIG. 2 illustrates an example of the layered structure of the electrode fingers 32, but the busbar 31, electrode fingers 32, and dummy electrode fingers 33 of the IDT electrode 3 may each have such a layered structure.
  • the first layer 34 is a layer containing a conductive material.
  • the first layer 34 may contain Al as a conductive material.
  • the first layer 34 may contain the component other than Al such that the content of the component other than Al is 10% or less in terms of the atomic ratio to the atomic number of Al.
  • Al is a material having high electrical conductivity. When the first layer 34 contains such an amount of Al, the IDT electrode 3 can exhibit good electrical characteristics.
  • Examples of components other than Al contained in the first layer 34 include Cu and Mg. If the first layer 34 contains such components other than Al, it is possible to reduce the diffusion of components such as Cu from the second layer 34 due to heating of the IDT electrode 3 during the manufacturing process, etc.
  • the second layer 35 is located between the first layer 34 and the piezoelectric substrate 2.
  • the second layer 35 contains a CuAl alloy.
  • the CuAl alloy may be, for example, CuAl2 .
  • the acoustic wave device 1 has good power durability because it includes the second layer 35 containing a CuAl alloy having high strength.
  • the second layer 35 may also contain impurities to the extent that they segregate to grain boundaries or are solid-soluble in CuAl2 crystals. The concentration of such impurities in the second layer 35 may be less than 5% or less than 2% in terms of atomic ratio.
  • the second layer 35 has a first surface 35a located on the first layer side.
  • the first surface 35a may be a surface that contacts the intermediate layer 36. Also, if the IDT electrode 3 does not have an intermediate layer 36, the first surface 35a may be a surface that contacts the first layer 34.
  • FIG. 3 is a schematic diagram showing a cross section of the IDT electrode 3 during a part of the manufacturing process of the elastic wave device 1, with the left diagram showing the state during film formation and the right diagram showing the state after annealing of the second layer 35.
  • the second layer 35 may be a layer made of a CuAl alloy by laminating a layer made of Cu and a layer made of Al, and performing an annealing treatment, for example, by heating at 260° C. for 70 minutes.
  • the x may be adjusted, for example, by changing the thicknesses of the layer made of Cu and the layer made of Al during film formation.
  • the second layer 35 may also be formed by directly depositing a film of the CuAl alloy.
  • the atomic ratio of Cu:Al in the second layer 35 is defined as 1:x, then by depositing the second layer 35 in a range where x is greater than 2.1, it is possible to form a second layer 35 having an atomic ratio of Cu:Al that satisfies the various numerical ranges shown below.
  • FIG 4 is a plan view that shows a schematic state of the IDT electrode 3 after it has been heated at 300°C for 70 minutes after annealing. As shown in Figure 4, the diffusion of Cu from the second layer 35 to the first layer 34 may cause spots to appear on the IDT electrode 3. At the spots, precipitation of Cu is observed in the first layer 34.
  • Figure 5 shows a graph examining the correlation between the minimum insertion loss and the number of heating cycles for the Tx filter and Rx filter composed of the IDT electrode 3. Heating was performed using a hot plate at 330°C for 60 minutes. As shown in Figure 5, it was shown that the filter loss characteristics of the IDT electrode 3 deteriorate more as the number of heating cycles increases.
  • This deterioration in the filter loss characteristics of the IDT electrode 3 is believed to be due in part to an increase in the electrical resistance of the first layer 34 caused by the diffusion of Cu into the first layer 34. Such diffusion of Cu also leads to a reduction in the power resistance of the IDT electrode 3. The deterioration in the filter loss characteristics is also believed to be a factor in the reduction in power resistance. In this disclosure, it has been discovered that the diffusion of Cu into the first layer 34 can be reduced by adjusting the range of x in the second layer 35.
  • the second layer 35 has an average value of x greater than 2.1, at least on the first surface 35a side. If the second layer 35 has such a configuration, it is possible to reduce the diffusion of Cu from the second layer 35 to the first layer 34 due to heating. This is thought to be because the portion of the second layer 35 where the average value of x is greater than 2.1 has a relatively low Cu concentration, making it difficult for Cu to diffuse, and therefore serves the function of reducing the diffusion of Cu to the first layer 34.
  • the "first surface 35a side" of the second layer 35 may be a portion including the first surface 35a and closer to the first surface 35 than the piezoelectric substrate 2.
  • the value of x on the first surface 35a side of the second layer 35 may be, for example, a value obtained by measuring the first surface 35a from above the second layer 35.
  • the value obtained by measuring the first surface 35a or its vicinity in the cross section may be the value of x on the first surface 35a side of the second layer 35.
  • the vicinity of the first surface 35a of the second layer 35 may be, for example, a portion 10 nm from the first surface 35a in the lamination direction of the IDT electrode 3, but is not limited to this.
  • Such a vicinity of the first surface 35a of the second layer 35 is an example of a portion on the first surface 35a side of the second layer 35.
  • the average value of x may be the average value of measurements taken at two or more randomly selected locations in the measurement target portion of the second layer 35. Two or more measurement locations are sufficient, but the average value of measurements taken at more measurement locations may be evaluated as a more reliable value. This is not limited to the average value of x on the first surface 35a side of the second layer 35, but can also be applied to the average value of x in the entire second layer 35, etc.
  • the average value of x may be 2.7 or more, or may be 8 or more. Also, at least on the first surface 35a side of the second layer 35, the average value of x may be 20 or less, or may be 15 or less.
  • the second layer 35 may have x greater than 2.1 in 90% or more of the first surface 35a side. Also, the second layer 35 may have x less than 20, or less than 15, in 90% or more of the first surface 35a side. Also, the second layer 35 may have x greater than 2.1 over the entire first surface 35a side. Also, the second layer 35 may have x less than 20, or less than 15, over the entire first surface 35a side.
  • the second layer 35 may have an average value of x greater than 2.1. This indicates that it is sufficient that the average value of x in the entire second layer 35 is greater than 2.1. Furthermore, the second layer 35 may have an average value of x greater than or equal to 2.7. Furthermore, the second layer 35 may have an average value of x less than or equal to 5.6, less than or equal to 4.7, or less than or equal to 4.0.
  • the second layer 35 may have x greater than 2.1 in 90% or more by volume.
  • the second layer 35 may have x less than 5.6 in 90% or more by volume.
  • the second layer 35 may have x greater than 2.1 throughout.
  • the second layer 35 may have x less than 5.6 throughout.
  • the inclusion of Cu maintains the power resistance of the second layer 35, while effectively reducing the diffusion of Cu from the second layer 35 to the first layer 34 due to heating. This results in an IDT electrode 3 that is stably equipped with excellent power resistance and reduces the generation of loss due to electrical resistance.
  • the second layer 35 may include a third layer 35b located on the first layer 34 side.
  • the third layer 35b may be located on the side of the second layer 35 closer to the first layer 34 than the piezoelectric substrate 2.
  • the third layer 35b may include a portion of the first surface 35a.
  • the third layer 35b is an example of a portion of the second layer 35 on the first surface 35a side.
  • the second layer 35 may also include a fifth layer 35d located on the piezoelectric substrate 2 side.
  • the fifth layer 35d may be located on the side of the second layer 35 closer to the piezoelectric substrate 2 than the first layer 34.
  • the portion of the second layer 35 between the third layer 35b and the fifth layer 35d can be defined as the fourth layer 35c.
  • the second layer 35 may have a layered structure in which, from the first layer 34 side, the third layer 35b, the fourth layer 35c, and the fifth layer 35d are located in this order.
  • the third layer 35b may have a smaller atomic ratio of Cu to Al than the first portion 35e of the second layer 35 located between the center of the second layer 35 and the third layer 35b.
  • the first portion 35e may be at least a part of the fourth layer 35c, and may be a portion of the second layer 35 closer to the first layer 34 than the center of the second layer 35.
  • the third layer 35b and the fifth layer 35d may be portions of the second layer 35 that have a relatively low Cu concentration.
  • the third layer 35b and the fifth layer 35d may be layers that have a lower Cu concentration and a higher Al concentration than the fourth layer 35c. If the second layer 35 includes such a third layer 35b, the diffusion of Cu from the second layer 35 to the first layer 34 can be effectively reduced.
  • the third layer 35b may have an average value of x of 8 or more.
  • the third layer 35b may have an average value of x of 20 or less, or may have an average value of 15 or less. If the third layer 35b has such a configuration, the diffusion of Cu from the second layer 35 to the first layer 34 can be more effectively reduced.
  • the crystallinity of the second layer 35 is not particularly limited.
  • the second layer 35 may be amorphous or polycrystalline. This may be applied to any of the third layer 35b, fourth layer 35c, and fifth layer 35d contained in the second layer 35.
  • the third layer 35b, the fourth layer 35c, and the fifth layer 35d can be formed, for example, by stacking layers made of Al and layers made of Cu and performing an annealing treatment so that the average value of x in the second layer 35 is greater than 2.1 when the second layer 35 is formed.
  • the third layer 35b and the fifth layer 35d may be formed by oxidizing aluminum in the surface layer of the second layer 35 to become an aluminum oxide layer such as Al2O3 , which remains in the surface layer of the second layer 35 when Cu and Al are alloyed by annealing.
  • the thickness of the second layer 35 is not particularly limited.
  • the thickness T2 of the second layer 35 may be 30% or less of the total thickness T1+T2 of the thickness T1 of the first layer 34 and the thickness T2 of the second layer 35.
  • the thickness T2 of the second layer 35 may be a thickness that satisfies the relationship "T2 ⁇ 0.3(T1+T2)".
  • the thickness T2 of the second layer 35 may be 5% or more of the total thickness T1+T2.
  • the thickness T2 of the second layer 35 is within the above-mentioned range, an IDT electrode 3 with excellent power resistance and reduced loss due to electrical resistance can be obtained.
  • the second layer 35 may be located closer to the piezoelectric substrate 2 than the first layer 34. If the second layer 35 is located on the piezoelectric substrate 2 side, the second layer 35, which has higher strength, can be provided on the side closer to the piezoelectric substrate 2, which has stronger vibrations. This makes it possible to provide an elastic wave device 1 with excellent power durability. In addition, the center of gravity of the IDT electrode 3 can be moved downward, making it possible to reduce the electromechanical coupling coefficient and thus the propagation loss.
  • the first layer 34 may be located closer to the piezoelectric substrate 2 than the second layer 35.
  • the IDT electrode 3 may have an intermediate layer 36.
  • the intermediate layer 36 is a layer located between the first layer 34 and the second layer 35.
  • the intermediate layer 36 may be a layer containing a material that has low reactivity with Cu and Al, is stronger and more chemically stable than Al, and has electrical conductivity.
  • the intermediate layer 36 may be a layer containing one selected from the group consisting of Ti, Cr, Mo, a NiCr alloy, and an AlTi alloy as a main component.
  • the intermediate layer 36 may be a layer containing any one of these components, or may be a layer containing two or more of them.
  • the intermediate layer 36 may be a layer having a thickness of 5% or less than the thickness of the IDT electrode 3.
  • the intermediate layer 36 may also be a layer having a thickness of 20 to 100 ⁇ , or may be a layer having a thickness of 60 ⁇ . If the intermediate layer 36 has such a thickness, it can exhibit a function of reducing the diffusion of components such as Cu between adjacent layers. Furthermore, an intermediate layer 36 of such a thickness is unlikely to adversely affect the excitation of acoustic waves and the electrical characteristics as an electrode. By having such an intermediate layer 36, the IDT electrode 3 can reduce the diffusion of Cu and the like between the first layer 34 and the second layer 35, ensuring stable characteristics such as power resistance.
  • the IDT electrode 3 may have a plurality of first layers 34 and second layers 35.
  • the first layers 34 and the second layers 35 may be alternately stacked, with the intermediate layer 36 positioned entirely between them, or at least partially between them.
  • the IDT electrode 3 may have an underlayer 37.
  • the underlayer 37 is a layer located between the second layer 35 and the piezoelectric substrate 2.
  • the underlayer 37 may be a layer made of a material different from that of the piezoelectric substrate 2.
  • the underlayer 37 may be a layer made of, for example, Ti, Cr, or an alloy thereof.
  • the thickness of the underlayer 37 may be such that it does not affect the electrical characteristics of the IDT electrode 3, and may be, for example, 5% or less of the thickness of the IDT electrode 3.
  • the area of the underlayer 37 in contact with the piezoelectric substrate 2 may be larger than the area of the underlayer in contact with the electrode fingers 32 of the IDT electrode 3. In this case, the underlayer 37 can also increase the power resistance of the IDT electrode 3.
  • the IDT electrode 3 may be located in contact with the upper surface 2a of the piezoelectric substrate 2, or may be located on the upper surface 2a of the piezoelectric substrate 2 via the base layer 37.
  • the cross-sectional shape of the first layer 34 and the second layer 35 in the stacking direction may be rectangular, but is not limited to this and may be, for example, trapezoidal.
  • the second layer 35 may have a thin portion at a position away from the outer edge in the width direction of the electrode finger 32.
  • a sufficiently thick piezoelectric substrate 2 is used, but a so-called laminated substrate may be used in which a thin piezoelectric substrate 2 is used and a support substrate is bonded to the underside of the thin piezoelectric substrate 2.
  • the thickness of the piezoelectric substrate 2 may be, for example, about 0.5 ⁇ m to 20 ⁇ m, and the support substrate may be thick enough to support the piezoelectric substrate 2.
  • the support substrate may be thick enough to support the piezoelectric substrate 2.
  • the thickness of the piezoelectric substrate 2 may be 0.2 ⁇ or more and 10 ⁇ or less in wavelength ratio.
  • a bonding layer or the like may be located between the piezoelectric substrate 2 and the support substrate.
  • the IDT electrode 3 has been described as having a uniform layer structure and thickness, but this is not limited to the above.
  • the bus bar 31 may be thicker than the electrode fingers 32, or may have a layer structure different from that of the electrode fingers 32.
  • ⁇ Communication Device> 6 is a block diagram showing a main part of a communication device 101 according to an embodiment of the present disclosure.
  • the communication device 101 includes an elastic wave device 1.
  • the communication device 101 may be a device that performs wireless communication using radio waves.
  • a branching filter 7 included in the communication device 101 may have a function of branching a signal of a transmission frequency and a signal of a reception frequency in the communication device 101.
  • the branching filter 7 includes an elastic wave device 1, and the elastic wave device 1 may be used to branch the signal by the branching filter 7. It is sufficient that the communication device 101 includes the elastic wave device 1 according to an embodiment of the present disclosure, and other configurations may be general configurations.
  • a transmission information signal TIS containing information to be transmitted is modulated and frequency-raised by RF-IC 103, converted into a high-frequency signal of a carrier frequency, and becomes a transmission signal TS.
  • Unwanted components outside the transmission passband are removed from the transmission signal TS by bandpass filter 105, amplified by amplifier 107, and input to splitter 7.
  • Splitter 7 uses elastic wave device 1 to remove unwanted components outside the transmission passband from the input transmission signal TS, and outputs the signal to antenna 109.
  • Antenna 109 converts the input electrical signal (transmission signal TS) into a radio signal and transmits it.
  • a radio signal received by antenna 109 is converted by antenna 109 into a received signal RS, which is an electrical signal, and input to splitter 7.
  • Splitter 7 uses elastic wave device 1 to remove unnecessary components outside the receiving passband from the received signal RS, and outputs the signal to amplifier 111.
  • the output received signal RS is amplified by amplifier 111, and unnecessary components outside the receiving passband are removed by bandpass filter 113.
  • the received signal RS is then frequency-downshifted and demodulated by RF-IC 103 to produce received information signal RIS.
  • An elastic wave device comprises a piezoelectric substrate and an IDT electrode located on the piezoelectric substrate, the IDT electrode having a first layer including a conductive material and a second layer located between the first layer and the piezoelectric substrate and including a CuAl alloy, the second layer having a first surface located on the first layer side, and where an atomic ratio of Cu:Al in the second layer is defined as 1:x, the average value of x is greater than 2.1 at least on the first surface side of the second layer.
  • the elastic wave device according to aspect 2 of the present disclosure may be the same as in aspect 1, in which x is greater than 2.1 in 90% or more of the second layer on the first surface side.
  • the elastic wave device according to aspect 3 of the present disclosure is the elastic wave device according to claim 1, in which in aspect 1 or 2, the average value of x in the second layer is greater than 2.1.
  • x may be greater than 2.1 in at least 90 volume % of the second layer.
  • the elastic wave device according to aspect 5 of the present disclosure may be such that in any one of aspects 1 to 4, the average value of x in the second layer is 5.6 or less.
  • the elastic wave device according to aspect 6 of the present disclosure may be any one of aspects 1 to 5, in which x is 5.6 or less in 90 volume % or more of the second layer.
  • the elastic wave device according to aspect 7 of the present disclosure may be such that in any one of aspects 1 to 6, the average value of x in the second layer is 4.0 or less.
  • the elastic wave device according to aspect 8 of the present disclosure may be such that in any one of aspects 1 to 6, the average value of x in the second layer is 2.7 or more and 4.7 or less.
  • the elastic wave device is any one of aspects 1 to 8, in which the second layer includes a third layer located on the first layer side, and the third layer may have a smaller atomic ratio of Cu to Al than a first portion of the second layer that is located between the center of the second layer and the third layer.
  • the elastic wave device according to aspect 10 of the present disclosure may be the same as aspect 9, in which the average value of x in the third layer is 8 or greater.
  • the IDT electrode may further include an intermediate layer located between the first layer and the second layer.
  • the elastic wave device according to aspect 12 of the present disclosure is the same as in aspect 11, except that the intermediate layer may be mainly composed of one selected from the group consisting of Ti, Cr, Mo, NiCr alloy, and AlTi alloy, and may have a thickness of 20 to 100 ⁇ .
  • the elastic wave device according to aspect 13 of the present disclosure is any one of aspects 1 to 12, in which the first layer contains Al and the content of components other than Al is 10% or less in atomic ratio.
  • the elastic wave device according to aspect 14 of the present disclosure may be any of aspects 1 to 13, further comprising a resin layer located on the piezoelectric substrate, the resin layer including a thermosetting resin.
  • the elastic wave device according to aspect 15 of the present disclosure may be the same as in aspect 14, in which the resin layer contains a thermosetting resin that hardens at 300°C or higher.
  • the elastic wave device according to aspect 16 of the present disclosure may be the same as that according to aspect 14, except that the resin layer contains at least one of polyimide and acrylic.
  • the elastic wave device according to aspect 17 of the present disclosure may be any one of aspects 1 to 16, in which the thickness of the second layer is 30% or less of the total thickness of the first layer and the second layer.
  • the communication device according to aspect 18 of the present disclosure includes an elastic wave device according to any one of aspects 1 to 17.
  • Each acoustic wave device 1 was designated as sample S1 to S6.
  • Each sample has a layered structure in which resin layer 6, protective layer 5, first layer 34, intermediate layer 36, second layer 35, underlayer 37, and piezoelectric substrate 2 are located in this order in the portion of electrode fingers 32 of IDT electrode 3.
  • the first layer 34 was a layer mainly composed of Al and containing 1% (atomic ratio) Cu.
  • the second layer 35 was a layer made of a CuAl alloy.
  • the intermediate layer 36 and the underlayer 37 were layers made of Ti.
  • the total thickness of each sample was 1500 ⁇
  • the thickness of the first layer 34 was 1104 ⁇
  • the thickness of the second layer 35 was 276 ⁇
  • the thickness of the intermediate layer 36 and the underlayer 37 was 60 ⁇ .
  • the second layer 35 was formed by changing the thicknesses of the Al layer and the Cu layer during film formation, and heating and annealing at 260°C for 70 minutes to form a layer made of a CuAl alloy.
  • Table 1 below shows the atomic ratio of Cu:Al in the second layer 35 and the thickness ( ⁇ ) of each layer during film formation.
  • the average electrode pitch of each sample was 1.13 ⁇ m.
  • each of the obtained samples was further heated on a hot plate at 330°C for 60 minutes. After heating, each sample was evaluated for the occurrence of spots.
  • the evaluation of spots was carried out by calculating the area ratio of spots that occurred on the busbar 31 in a plan view.
  • the range of each spot was determined by area calculation processing using the CAD software "AutoCAD (registered trademark)".
  • the ratio of the total area of all spots to the entire area of the busbar 31 was calculated as the spot area ratio.
  • a power resistance test was also conducted on each sample.
  • the power resistance test was conducted at an environmental temperature of 50°C, with a reference power of 31 dBm for a CW signal, and an accelerated test with input power was performed to obtain an estimate of the relationship between the input power (dBm) and lifespan (h) for each sample.
  • the "power resistance strength" of each sample was defined as the magnitude of the input power corresponding to a lifespan of 5000 hours, and used as an evaluation index for power resistance.
  • Figure 7 shows the results of the power resistance test for each sample.
  • Figure 8 is a graph showing the relationship between the area ratio of spots and the Al ratio in the second layer for each sample.
  • the area ratio of spots in the busbar 31 decreased as the value of x increased.
  • the power resistance strength increased rapidly as the number of spots decreased until the value of x reached approximately 4. This is a novel finding presented in this disclosure that spots caused by Cu diffused into the first layer 34 significantly affect the power resistance of the IDT electrode 3.
  • Fig. 9 is a schematic diagram of a cross section in the lamination direction of sample S5 shown in Table 1, observed by a transmission electron microscope (TEM).
  • Fig. 10 is a diagram of the results of energy dispersive X-ray fluorescence analysis (EDX analysis) at measurement points P1 and P2 shown in Fig. 9.
  • Fig. 9 and Fig. 11 described later show a schematic representation of the Cu concentration distribution in the second layer 35, and the hatching of the cross section of each layer is omitted.
  • the second layer 35 contained the third layer 35b, the fourth layer 35c, and the fifth layer 35d.
  • the fourth layer 35c also showed variations in shade, suggesting that the distribution of Cu and Al was not uniform. Therefore, the ratio of elements at each measurement point was measured by EDX analysis for the dark area P1 and the light area P2 in the fourth layer 35c in the TEM image. The results of the EDX analysis are shown in FIG. 10 and Table 2 below.
  • Table 2 below shows the measured atomic ratio values (%) of each element, as well as the Cu:Al atomic ratio at each measurement point calculated based on the measured values.
  • Table 2 below also shows the results of EDX analysis of sample S2, which was manufactured so that x was 2. Sample S2 had almost no shading in the second layer 35, so EDX analysis was performed on only one point.
  • FIG 11 shows a schematic view of a cross section in the stacking direction of sample S3 shown in Table 1, observed by TEM.
  • Figure 12 shows the results of EDX analysis at measurement points P3 and P4 shown in Figure 11.
  • Figure 13 shows the results of EDX analysis at measurement points P5 and P6 shown in Figure 11.
  • the light-colored area in the fourth layer 35c is measurement point P3
  • the dark-colored area is measurement point P4.
  • Measurement point P5 was selected from the third layer 35b
  • measurement point P6 was selected from the fifth layer 35d.
  • the value of x in the third layer 35b and the fifth layer 35d was significantly larger than the value of x in the fourth layer 35c.
  • a large atomic ratio of Al may mean, for example, that the value of x is greater than 2.1.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

This acoustic wave device comprises a piezoelectric substrate and an IDT electrode disposed on the piezoelectric substrate, the IDT electrode having a first layer including a conductive material and a second layer including a CuAl alloy and disposed between the first layer and the piezoelectric substrate, wherein, when the atomic ratio of Cu : Al in the second layer is defined as 1 : x, the average value of x is greater than 2.1 at least on a first surface side, which is on the first layer side of the second layer.

Description

弾性波装置および通信装置Acoustic wave devices and communication devices
 本開示は、弾性波装置および通信装置に関する。 This disclosure relates to an elastic wave device and a communication device.
 近年、移動体端末等の通信装置において、アンテナから送信・受信される信号をフィルタリングする分波器に弾性波装置が用いられている。弾性波装置は、圧電基板と、圧電基板に形成されたIDT(Interdigital Transducer)電極によって構成されている。弾性波装置は、IDT電極と圧電基板との関係で電気信号と弾性表面波とを相互に変換可能な特性を利用するものである。 In recent years, acoustic wave devices have been used in communication devices such as mobile terminals as duplexers that filter signals transmitted and received from antennas. An acoustic wave device is composed of a piezoelectric substrate and an IDT (Interdigital Transducer) electrode formed on the piezoelectric substrate. An acoustic wave device utilizes the property that allows conversion between electrical signals and surface acoustic waves in the relationship between the IDT electrode and the piezoelectric substrate.
 このような分波器において、耐電力性を高めることが求められている。分波器の耐電力性を高めるには、それを構成する弾性波装置の耐電力性を高めることが有効である。例えば、特許文献1には、圧電性基板上に、AlとCuとを含む第1層と、Al結晶とCuAl結晶粒の少なくとも一部とを有する第2層と、を有する電極が形成された弾性波装置が開示されている。 In such a duplexer, it is required to improve the power durability. In order to improve the power durability of the duplexer, it is effective to improve the power durability of the acoustic wave device constituting the duplexer. For example, Patent Document 1 discloses an acoustic wave device in which an electrode is formed on a piezoelectric substrate, the electrode having a first layer containing Al and Cu, and a second layer having Al crystals and at least a part of CuAl2 crystal grains.
国際公開第2021/85465号パンフレットInternational Publication No. 2021/85465 Brochure
 本開示の一態様に係る弾性波装置は、圧電基板と、前記圧電基板上に位置するIDT電極と、を備え、前記IDT電極は、導電性材料を含む第1層と、前記第1層と前記圧電基板との間に位置し、CuAl合金を含む第2層と、を有し、前記第2層は、前記第1層側に位置する第1面を有し、前記第2層におけるCu:Alの原子数比を1:xと定義すると、前記第2層の少なくとも前記第1面側において、前記xの平均値が2.1より大きい。 An elastic wave device according to one aspect of the present disclosure includes a piezoelectric substrate and an IDT electrode located on the piezoelectric substrate, the IDT electrode having a first layer including a conductive material and a second layer including a CuAl alloy located between the first layer and the piezoelectric substrate, the second layer having a first surface located on the first layer side, and when the atomic ratio of Cu:Al in the second layer is defined as 1:x, the average value of x is greater than 2.1 at least on the first surface side of the second layer.
一実施形態に係る弾性波装置の構成を示す平面図である。1 is a plan view illustrating a configuration of an elastic wave device according to an embodiment of the present invention. 図1の弾性波装置におけるII-II線矢視断面の要部拡大図である。2 is an enlarged cross-sectional view of a main portion of the elastic wave device of FIG. 1 taken along line II-II. 図1の弾性波装置の製造工程における、IDT電極の積層方向の断面を模式的に示す断面図である。3A to 3C are cross-sectional views each showing a cross section of an IDT electrode in a lamination direction during a manufacturing process of the acoustic wave device of FIG. 1 . 図1の弾性波装置について、加熱前後のIDT電極の状態を模式的に示す平面図である。2A to 2C are plan views each showing a schematic state of an IDT electrode before and after heating in the acoustic wave device of FIG. 1 . 図1の弾性波装置により構成されるTxフィルタおよびRxフィルタの、最小挿入損失と加熱回数との相関を示す図である。10 is a graph showing the correlation between the minimum insertion loss and the number of heating cycles for a Tx filter and an Rx filter formed using the acoustic wave device of FIG. 1 . 一実施形態に係る通信装置の要部を示すブロック図である。1 is a block diagram showing a main part of a communication device according to an embodiment; 実施例または比較例に係る弾性波装置における、耐電力試験の結果を示す図である。11A to 11C are diagrams illustrating results of a power resistance test for an elastic wave device according to an example or a comparative example. 実施例または比較例に係る弾性波装置における、斑点の面積比率と第2層におけるAl比率との関係を示す図である。13 is a diagram illustrating the relationship between the area ratio of spots and the Al ratio in a second layer in an elastic wave device according to an example or a comparative example. FIG. 一実施例に係る弾性波装置の、積層方向の断面をTEMにより観察した状態を模式的に示す断面図である。1 is a cross-sectional view illustrating a cross section of an elastic wave device according to an embodiment of the present invention taken in a lamination direction using a TEM. 一実施例に係る弾性波装置の、図9に示す各測定箇所におけるEDX分析の結果を示す図である。10A to 10C are diagrams showing the results of EDX analysis at the measurement points shown in FIG. 9 of an elastic wave device according to an example. 一実施例に係る弾性波装置の、積層方向の断面をTEMにより観察した状態を模式的に示す断面図である。1 is a cross-sectional view illustrating a cross section of an elastic wave device according to an embodiment of the present invention taken in a lamination direction using a TEM. 一実施例に係る弾性波装置の、図11に示す測定箇所P3、P4におけるEDX分析の結果を示す図である。12A and 12B are diagrams showing the results of EDX analysis at measurement points P3 and P4 shown in FIG. 11 of an elastic wave device according to an example. 一実施例に係る弾性波装置の、図11に示す各測定箇所P5、P6におけるEDX分析の結果を示す図である。12A and 12B are diagrams showing the results of EDX analysis at measurement points P5 and P6 shown in FIG. 11 of an elastic wave device according to an example.
 本開示の一実施形態に係る弾性波装置について、図面を参照して説明する。以下の説明で用いられる図は模式的なものであり、図面上の寸法比率等は現実のものとは必ずしも一致していなくてよい。また、本明細書において「A~B」は、A以上B以下であることを示している。 An elastic wave device according to one embodiment of the present disclosure will be described with reference to the drawings. The figures used in the following description are schematic, and the dimensional ratios and the like in the drawings do not necessarily correspond to the actual ones. In addition, in this specification, "A to B" indicates greater than or equal to A and less than or equal to B.
 弾性波装置は、いずれの方向が上方または下方とされてもよい。以下の説明では、便宜的に、直交座標系xyzを定義するとともに、x方向を左右方向、y方向を前後方向、z方向を上下方向とする。図1に示す弾性波装置1では、紙面に向かって手前側を上方とし、左側を左方とし、下側を前方とするが、これに限られない。 In an elastic wave device, either direction may be considered to be up or down. In the following description, for convenience, a Cartesian coordinate system xyz is defined, with the x direction being the left-right direction, the y direction being the front-back direction, and the z direction being the up-down direction. In the elastic wave device 1 shown in FIG. 1, the front side as viewed from the page is considered to be up, the left side is considered to be leftward, and the bottom side is considered to be forward, but this is not limited to the above.
 <弾性波装置の構成>
 図1は、本開示の一実施形態に係る弾性波(SAW:Surface Acoustic Wave)装置1の構成を示す平面図である。図2は、図1のII-II線矢視断面における要部拡大断面図である。図1に示すように、弾性波装置1は、圧電基板2およびIDT(Interdigital Transducer)電極3を有している。また、弾性波装置1は、反射器4、保護層5および樹脂層6を有していてもよい。
<Configuration of the Acoustic Wave Device>
Fig. 1 is a plan view showing a configuration of an acoustic wave (SAW: Surface Acoustic Wave) device 1 according to an embodiment of the present disclosure. Fig. 2 is an enlarged cross-sectional view of a main portion taken along line II-II in Fig. 1. As shown in Fig. 1, the acoustic wave device 1 has a piezoelectric substrate 2 and an IDT (Interdigital Transducer) electrode 3. The acoustic wave device 1 may also have a reflector 4, a protective layer 5, and a resin layer 6.
 圧電基板2は、圧電性を有する単結晶の基板によって構成されている。圧電性を有する単結晶の基板とは、例えば、ニオブ酸リチウム結晶またはタンタル酸リチウム結晶からなる基板であってよい。圧電基板2の平面形状および各種寸法は適宜に設定されてよい。例えば、圧電基板2の厚みを示すz方向の長さは、0.2mm以上0.5mm以下であってよい。圧電基板2は、上側の面である上面2aを有していてよい。 The piezoelectric substrate 2 is composed of a single crystal substrate having piezoelectric properties. The single crystal substrate having piezoelectric properties may be, for example, a substrate made of lithium niobate crystal or lithium tantalate crystal. The planar shape and various dimensions of the piezoelectric substrate 2 may be set appropriately. For example, the length in the z direction indicating the thickness of the piezoelectric substrate 2 may be 0.2 mm or more and 0.5 mm or less. The piezoelectric substrate 2 may have an upper surface 2a, which is the upper surface.
 IDT電極3は、圧電基板2上に位置している。圧電基板2における上面2aは、IDT電極3が位置している面であってよい。IDT電極3は、2つの櫛歯電極30を有していてよい。櫛歯電極30は、互いに対向する2本のバスバー31と、一方のバスバー31から対向するバスバー31側へ延びる複数の電極指32とを有していてよい。一対の櫛歯電極30は、一方のバスバー31に接続された電極指32と、対向するバスバー31に接続された電極指32とが、弾性波の伝搬方向に互いに噛み合うように、言い換えれば電極指32同士が交差するように位置している。また、櫛歯電極30は、それぞれの電極指32と対向するダミー電極指33を有していてもよい。 The IDT electrode 3 is located on the piezoelectric substrate 2. The top surface 2a of the piezoelectric substrate 2 may be the surface on which the IDT electrode 3 is located. The IDT electrode 3 may have two comb-tooth electrodes 30. The comb-tooth electrode 30 may have two bus bars 31 facing each other and a number of electrode fingers 32 extending from one bus bar 31 toward the opposing bus bar 31. The pair of comb-tooth electrodes 30 are positioned so that the electrode fingers 32 connected to one bus bar 31 and the electrode fingers 32 connected to the opposing bus bar 31 interdigitate with each other in the propagation direction of the elastic wave, in other words, so that the electrode fingers 32 cross each other. The comb-tooth electrode 30 may also have dummy electrode fingers 33 facing each of the electrode fingers 32.
 バスバー31の形状は、例えば、直線状に延びる長尺状であってよい。各電極指32の形状は、例えば、バスバー31と交差する方向に直線状に延びる長尺状であり、弾性波の伝搬方向に概ね一定の間隔で並んで位置していてよい。 The busbar 31 may have a long, linear shape. The electrode fingers 32 may have a long, linear shape in a direction intersecting the busbar 31, and may be aligned at approximately regular intervals in the direction of propagation of the elastic wave.
 複数の電極指32は、隣接する電極指32の、左右方向における中心間の距離であるピッチPtが概ね揃うように、並んで位置していてよい。言い換えれば、ピッチPtは、弾性波の伝搬方向において、1つの電極指32の中心から、当該電極指32に隣接する電極指32の中心までの間隔を示すものである。ピッチPtは、例えば、共振させたい周波数での弾性波における波長λの半波長と同等となる長さであってよい。波長λは、例えば、1.5~6μmであってよい。IDT電極3は、ほとんどの電極指32間におけるピッチPtが揃うように並んで位置していることにより、複数の電極指32が一定の周期となる配置となるため、弾性波を効率よく発生させることができる。 The multiple electrode fingers 32 may be positioned side by side so that the pitch Pt, which is the distance between the centers of adjacent electrode fingers 32 in the left-right direction, is roughly uniform. In other words, the pitch Pt indicates the distance from the center of one electrode finger 32 to the center of the electrode finger 32 adjacent to that electrode finger 32 in the propagation direction of the elastic wave. The pitch Pt may be, for example, a length equivalent to half the wavelength λ of the elastic wave at the frequency at which resonance is desired. The wavelength λ may be, for example, 1.5 to 6 μm. Since the IDT electrode 3 is positioned side by side so that the pitch Pt between most of the electrode fingers 32 is uniform, the multiple electrode fingers 32 are arranged at a constant period, and elastic waves can be generated efficiently.
 IDT電極3は、このように電極指32が位置することで、複数の電極指32に直交する方向に伝搬する弾性波を発生する。したがって、圧電基板2の結晶方位を考慮したうえで、2本のバスバー31は、弾性波を伝搬させたい方向に交差する方向において互いに対向するように位置してよい。複数の電極指32は、弾性波を伝搬させたい方向に対して直交する方向に延びるように位置してよい。弾性波の伝搬方向は、複数の電極指32の向き等によって規定されるが、本実施形態では、便宜的に、弾性波の伝搬方向を基準として、複数の電極指32の向き等を説明することがある。 By positioning the electrode fingers 32 in this manner, the IDT electrode 3 generates an elastic wave that propagates in a direction perpendicular to the multiple electrode fingers 32. Therefore, taking into consideration the crystal orientation of the piezoelectric substrate 2, the two bus bars 31 may be positioned to face each other in a direction intersecting the direction in which the elastic wave is desired to propagate. The multiple electrode fingers 32 may be positioned to extend in a direction perpendicular to the direction in which the elastic wave is desired to propagate. The propagation direction of the elastic wave is determined by the orientation of the multiple electrode fingers 32, but in this embodiment, for convenience, the orientation of the multiple electrode fingers 32 may be described based on the propagation direction of the elastic wave.
 各電極指32の本数は、片側あたり50~350本であってよい。複数の電極指32における延伸方向の長さは、例えば、概ね同じに設定されてよい。対向する電極指32同士の噛み合う長さである交差幅は、例えば0~300μmであってよい。 The number of electrode fingers 32 on each side may be 50 to 350. The lengths of the electrode fingers 32 in the extension direction may be set to be, for example, approximately the same. The interdigitation width, which is the interdigitation length between opposing electrode fingers 32, may be, for example, 0 to 300 μm.
 IDT電極3は、電圧が印加されると、圧電基板2の上面2a付近においてx方向に伝搬する弾性波を励起する。励起された弾性波は、電極指32の非配置領域であって、隣接する電極指32間の長尺状の領域との境界において反射する。そして、電極指32のピッチPtを半波長とする定在波が形成される。定在波は、当該定在波と同一周波数の電気信号に変換され、電極指32によって取り出される。このようにして、弾性波装置1は、1ポート共振子として機能してよい。 When a voltage is applied, the IDT electrode 3 excites an elastic wave that propagates in the x-direction near the top surface 2a of the piezoelectric substrate 2. The excited elastic wave is reflected at the boundary between the elongated region between adjacent electrode fingers 32, which is an area where no electrode fingers 32 are arranged. A standing wave is then formed with the pitch Pt of the electrode fingers 32 being half the wavelength. The standing wave is converted into an electrical signal of the same frequency as the standing wave and is extracted by the electrode fingers 32. In this way, the elastic wave device 1 may function as a one-port resonator.
 反射器4は、弾性波の伝搬方向においてIDT電極3を挟むように位置していてよい。反射器4は、概ねスリット状に形成されていてよい。 The reflectors 4 may be positioned so as to sandwich the IDT electrode 3 in the propagation direction of the elastic wave. The reflectors 4 may be formed in a roughly slit shape.
 図2に示すように、保護層5は、IDT電極3および反射器4を上側から覆うように、圧電基板2上に位置していてよい。具体的には、保護層5は、IDT電極3および反射器4の表面を覆うとともに、圧電基板2の上面2aにおいてIDT電極3および反射器4以外の、上面2aが露出する部分を覆っていてもよい。保護層5の厚みは、例えば、1nm以上であってよく、IDT電極3の厚みの20%以下であってよい。 As shown in FIG. 2, the protective layer 5 may be located on the piezoelectric substrate 2 so as to cover the IDT electrode 3 and the reflector 4 from above. Specifically, the protective layer 5 may cover the surfaces of the IDT electrode 3 and the reflector 4, and may also cover the exposed portion of the upper surface 2a of the piezoelectric substrate 2 other than the IDT electrode 3 and the reflector 4. The thickness of the protective layer 5 may be, for example, 1 nm or more, and may be 20% or less of the thickness of the IDT electrode 3.
 保護層5は、絶縁性を有する材料からなり、腐食等から保護することに寄与する層であってよい。保護層5は、温度が上昇すると弾性波の伝搬速度が速くなるSiO等の材料を含む層であってよい。この場合、弾性波装置1の温度の変化による電気特性の変化を小さく抑えることができる。また、弾性波装置1の耐湿性向上のために、保護層5は、SiNx等の材料を含んでいてもよい。 Protective layer 5 may be made of an insulating material and may be a layer that contributes to protection against corrosion, etc. Protective layer 5 may be a layer containing a material such as SiO2 , which increases the propagation speed of elastic waves as the temperature increases. In this case, changes in electrical characteristics of elastic wave device 1 due to changes in temperature can be kept small. Protective layer 5 may also contain a material such as SiNx to improve the moisture resistance of elastic wave device 1.
 樹脂層6は、圧電基板2上に位置しており、圧電基板2上の少なくとも一部を覆う層であってよい。具体的には、樹脂層6は、IDT電極3および反射器4の表面を覆っていてもよく、圧電基板2の上面2aにおいてIDT電極3および反射器4以外の、上面2aが露出する部分を覆っていてもよい。IDT電極3による弾性波の発生効率の観点から、樹脂層6は、圧電基板2において、上面2aが露出する部分のみを覆っていてもよい。 The resin layer 6 is located on the piezoelectric substrate 2 and may be a layer that covers at least a portion of the surface of the piezoelectric substrate 2. Specifically, the resin layer 6 may cover the surfaces of the IDT electrode 3 and the reflector 4, or may cover the exposed portion of the upper surface 2a of the piezoelectric substrate 2 other than the IDT electrode 3 and the reflector 4. From the viewpoint of the efficiency of generating an elastic wave by the IDT electrode 3, the resin layer 6 may cover only the exposed portion of the upper surface 2a of the piezoelectric substrate 2.
 樹脂層6は、熱硬化性樹脂を含む層であってよい。樹脂層6の材料である熱硬化性樹脂は、300℃以上で硬化する熱硬化性樹脂であってよい。このような熱硬化性樹脂としては、例えば、ポリイミドが挙げられる。また、樹脂層6の材料である熱硬化性樹脂は、アクリルであってもよい。樹脂層6は、ポリイミドまたはアクリルの少なくともいずれかを含んでいてもよい。樹脂層6があることで、配線の立体交差ができる。 The resin layer 6 may be a layer containing a thermosetting resin. The thermosetting resin that is the material of the resin layer 6 may be a thermosetting resin that hardens at 300°C or higher. An example of such a thermosetting resin is polyimide. The thermosetting resin that is the material of the resin layer 6 may be acrylic. The resin layer 6 may contain at least one of polyimide and acrylic. The presence of the resin layer 6 allows the wiring to cross over in a multi-level manner.
 このような樹脂層6を有する弾性波装置1は、製造工程において樹脂層6を硬化するための熱処理が施される。このような熱処理は、IDT電極3に含まれるCuの固溶状態が変化する原因となる場合があり、IDT電極3の耐電力性にも影響し得る。本実施形態に係る弾性波装置1は、樹脂層6を硬化するために、例えば300℃以上の熱処理を施された場合でも、安定した耐電力性を発揮するものである。具体的には、以下に説明する。 The elastic wave device 1 having such a resin layer 6 is subjected to a heat treatment in the manufacturing process to harden the resin layer 6. Such a heat treatment may cause the solid solution state of Cu contained in the IDT electrode 3 to change, and may also affect the power resistance of the IDT electrode 3. The elastic wave device 1 according to this embodiment exhibits stable power resistance even when subjected to a heat treatment of, for example, 300°C or higher to harden the resin layer 6. The specifics are described below.
 <IDT電極3の構成>
 (概要)
 従来の弾性波装置において、弾性波の励振効率、放射損失および電気抵抗等を考慮して、AlからなるIDT電極を設けた構成が一般的である。これに対して、近年、弾性波装置に入力される高周波信号の電力が大きくなっていることから、Alからなる電極よりも耐電力性に優れた電極が求められている。
<Configuration of IDT electrode 3>
(overview)
Conventional acoustic wave devices generally have an IDT electrode made of Al, taking into consideration the excitation efficiency of acoustic waves, radiation loss, electrical resistance, etc. However, in recent years, the power of high-frequency signals input to acoustic wave devices has been increasing, and so there is a demand for electrodes with better power durability than electrodes made of Al.
 しかしながら、単にMo等の高い強度を有する電極材料に置き換えるのみでは、弾性波の励振効率、放射損失および電気抵抗の各特性がトレードオフの関係にあるため、Alからなる電極から置き換えるに足る特性を発現させることはできなかった。 However, simply replacing the electrode material with one with high strength such as Mo would not have been sufficient to replace the Al electrodes, as there is a trade-off between the excitation efficiency of the elastic waves, radiation loss, and electrical resistance.
 そこで、本実施形態に係る弾性波装置1では、耐電力性を改善し、かつ、現状のAl電極と同等程度の各特性を発現することのできる可能性のある材料としてCuを選出した。また、AlおよびCuを含むIDT電極3が、例えば300℃以上の熱処理を施された場合でも、安定して耐電力性を維持できる構成を見出した。 Therefore, in the elastic wave device 1 according to this embodiment, Cu was selected as a material that could improve power resistance and potentially exhibit characteristics equivalent to those of current Al electrodes. In addition, a configuration was found in which the IDT electrode 3 containing Al and Cu can stably maintain its power resistance even when subjected to heat treatment at, for example, 300°C or higher.
 図2に示すように、IDT電極3は、第1層34および第2層35を有している。図2には、電極指32の積層構成を例示しているが、IDT電極3が備えるバスバー31、電極指32およびダミー電極指33がそれぞれ、このような積層構成を有していてよい。 As shown in FIG. 2, the IDT electrode 3 has a first layer 34 and a second layer 35. FIG. 2 illustrates an example of the layered structure of the electrode fingers 32, but the busbar 31, electrode fingers 32, and dummy electrode fingers 33 of the IDT electrode 3 may each have such a layered structure.
 (第1層)
 第1層34は、導電性材料を含む層である。第1層34は、導電性材料としてAlを含んでいてよい。第1層34がAl以外の成分を含む場合、第1層34は、Al以外の成分の含有量を、Alの原子数に対する原子数比で10%以下となるように含んでいてよい。Alは、高い導電性を有する材料である。第1層34がこのような量のAlを含んでいることで、IDT電極3は良好な電気特性を発揮できる。
(First layer)
The first layer 34 is a layer containing a conductive material. The first layer 34 may contain Al as a conductive material. When the first layer 34 contains a component other than Al, the first layer 34 may contain the component other than Al such that the content of the component other than Al is 10% or less in terms of the atomic ratio to the atomic number of Al. Al is a material having high electrical conductivity. When the first layer 34 contains such an amount of Al, the IDT electrode 3 can exhibit good electrical characteristics.
 第1層34が含むAl以外の成分としては、例えばCuおよびMgが挙げられる。第1層34が、このようなAl以外の成分を含んでいると、製造工程等におけるIDT電極3の加熱による、第2層34からのCu等の成分の拡散を低減できる。 Examples of components other than Al contained in the first layer 34 include Cu and Mg. If the first layer 34 contains such components other than Al, it is possible to reduce the diffusion of components such as Cu from the second layer 34 due to heating of the IDT electrode 3 during the manufacturing process, etc.
 (第2層)
 第2層35は、第1層34と圧電基板2との間に位置している。第2層35は、CuAl合金を含んでいる。CuAl合金は、例えばCuAlであってよい。弾性波装置1は、高い強度を有するCuAl合金を含む第2層35を備えていることで、良好な耐電力性を有している。また、第2層35は、粒界への偏析またはCuAl結晶に固溶する程度の不純物を含んでいてもよい。第2層35におけるこのような不純物の濃度は、原子数比において、5%未満としてもよく、2%未満としてもよい。
(Second layer)
The second layer 35 is located between the first layer 34 and the piezoelectric substrate 2. The second layer 35 contains a CuAl alloy. The CuAl alloy may be, for example, CuAl2 . The acoustic wave device 1 has good power durability because it includes the second layer 35 containing a CuAl alloy having high strength. The second layer 35 may also contain impurities to the extent that they segregate to grain boundaries or are solid-soluble in CuAl2 crystals. The concentration of such impurities in the second layer 35 may be less than 5% or less than 2% in terms of atomic ratio.
 第2層35は、第1層側に位置する第1面35aを有している。第1面35aは、中間層36と接する面であってよい。また、IDT電極3が中間層36を備えていない場合、第1面35aは、第1層34と接する面であってもよい。 The second layer 35 has a first surface 35a located on the first layer side. The first surface 35a may be a surface that contacts the intermediate layer 36. Also, if the IDT electrode 3 does not have an intermediate layer 36, the first surface 35a may be a surface that contacts the first layer 34.
 IDT電極3について、安定して良好な耐電力性を発揮するために、第2層35におけるCu:Alの原子数比を1:xと定義した場合に、xの範囲を調整することが有効であることを見出し、本開示に至った。 In order to ensure stable and good power durability for the IDT electrode 3, it was discovered that, when the atomic ratio of Cu:Al in the second layer 35 is defined as 1:x, it is effective to adjust the range of x, which led to the present disclosure.
 ここで、弾性波装置1は、従来一般的な方法により製造できる。図3は、弾性波装置1の製造工程の一部における、IDT電極3の断面を模式的に示す図であり、左図は成膜時の状態を、右図は第2層35のアニール後の状態をそれぞれ示している。図3に示すように、第2層35は、Cuからなる層とAlからなる層とを積層し、例えば260℃、70分で加熱するアニール処理を施すことで、CuAl合金からなる層としてもよい。前記xは、例えば、成膜時におけるCuからなる層とAlからなる層との厚みを変えることで調整されてよい。また、第2層35は、CuAl合金を直接成膜して形成してもよい。 Here, the elastic wave device 1 can be manufactured by a conventional method. FIG. 3 is a schematic diagram showing a cross section of the IDT electrode 3 during a part of the manufacturing process of the elastic wave device 1, with the left diagram showing the state during film formation and the right diagram showing the state after annealing of the second layer 35. As shown in FIG. 3, the second layer 35 may be a layer made of a CuAl alloy by laminating a layer made of Cu and a layer made of Al, and performing an annealing treatment, for example, by heating at 260° C. for 70 minutes. The x may be adjusted, for example, by changing the thicknesses of the layer made of Cu and the layer made of Al during film formation. The second layer 35 may also be formed by directly depositing a film of the CuAl alloy.
 第2層35は、第2層35におけるCu:Alの原子数比を1:xと定義した場合に、xが2.1よりも大きくなる範囲で成膜することで、以下に示す種々の数値範囲を満たすCu:Alの原子数比を有する第2層35を形成できる。 If the atomic ratio of Cu:Al in the second layer 35 is defined as 1:x, then by depositing the second layer 35 in a range where x is greater than 2.1, it is possible to form a second layer 35 having an atomic ratio of Cu:Al that satisfies the various numerical ranges shown below.
 また、弾性波装置1の製造工程では、例えば保護層5の形成、樹脂層6の熱硬化および半田リフロー等、第2層35の形成後も適宜熱処理が行われる。これらの熱処理では、例えば300℃以上での加熱が行われる場合もある。 In addition, in the manufacturing process of the elastic wave device 1, appropriate heat treatments are also performed after the formation of the second layer 35, such as forming the protective layer 5, thermally curing the resin layer 6, and solder reflow. In these heat treatments, heating at 300°C or higher may be performed.
 このような加熱によって、第2層35に含まれるCuの一部が第1層34に拡散してしまう場合がある。図4は、アニール後のIDT電極3に対して、300℃、70分で加熱した後のIDT電極3の状態を模式的に示す平面図である。図4に示すように、第2層35から第1層34へのCuの拡散に伴い、IDT電極3に斑点が発生する場合がある。当該斑点箇所では、第1層34にCuの析出が観察される。 Such heating may cause some of the Cu contained in the second layer 35 to diffuse into the first layer 34. Figure 4 is a plan view that shows a schematic state of the IDT electrode 3 after it has been heated at 300°C for 70 minutes after annealing. As shown in Figure 4, the diffusion of Cu from the second layer 35 to the first layer 34 may cause spots to appear on the IDT electrode 3. At the spots, precipitation of Cu is observed in the first layer 34.
 第1層34にCuが拡散すると、IDT電極3のフィルタロス特性が劣化してしまう。図5は、IDT電極3により構成されるTxフィルタおよびRxフィルタの、最小挿入損失と加熱回数との相関を検討したグラフを示す。加熱はそれぞれ、330℃、60分の条件で、ホットプレートを用いて実施した。図5に示すように、加熱回数が増加するほど、IDT電極3のフィルタロス特性が劣化していくことが示された。 If Cu diffuses into the first layer 34, the filter loss characteristics of the IDT electrode 3 will deteriorate. Figure 5 shows a graph examining the correlation between the minimum insertion loss and the number of heating cycles for the Tx filter and Rx filter composed of the IDT electrode 3. Heating was performed using a hot plate at 330°C for 60 minutes. As shown in Figure 5, it was shown that the filter loss characteristics of the IDT electrode 3 deteriorate more as the number of heating cycles increases.
 このような、IDT電極3のフィルタロス特性の劣化は、第1層34へのCuの拡散による、第1層34の電気抵抗値の上昇が一因であると考えられる。また、このようなCuの拡散は、IDT電極3の耐電力性の低減にも繋がる。フィルタロス特性の劣化も、耐電力性の低減の一因となっていると考えられる。本開示では、第2層35における前記xの範囲を調整することで、第1層34へのCuの拡散を低減できることを見出した。 This deterioration in the filter loss characteristics of the IDT electrode 3 is believed to be due in part to an increase in the electrical resistance of the first layer 34 caused by the diffusion of Cu into the first layer 34. Such diffusion of Cu also leads to a reduction in the power resistance of the IDT electrode 3. The deterioration in the filter loss characteristics is also believed to be a factor in the reduction in power resistance. In this disclosure, it has been discovered that the diffusion of Cu into the first layer 34 can be reduced by adjusting the range of x in the second layer 35.
 IDT電極3において、第2層35は、少なくとも第1面35a側において、前記xの平均値が2.1より大きい。第2層35がこのような構成であれば、加熱による第2層35から第1層34へのCuの拡散を低減できる。これは、第2層35における前記xの平均値が2.1より大きい部分が、Cuの濃度が相対的に低いことでCuが拡散しにくいことから、第1層34へのCuの拡散を低減する機能を果たすためと考えられる。 In the IDT electrode 3, the second layer 35 has an average value of x greater than 2.1, at least on the first surface 35a side. If the second layer 35 has such a configuration, it is possible to reduce the diffusion of Cu from the second layer 35 to the first layer 34 due to heating. This is thought to be because the portion of the second layer 35 where the average value of x is greater than 2.1 has a relatively low Cu concentration, making it difficult for Cu to diffuse, and therefore serves the function of reducing the diffusion of Cu to the first layer 34.
 第2層35における「第1面35a側」とは、第1面35aを含む部分であって、圧電基板2よりも第1面35に近い側の部分であってよい。第2層35の第1面35a側における前記xの値は、例えば、第2層35の上方から第1面35aを測定して得られる値であってよい。また、第2層35の測定においてIDT電極3の積層方向の断面を観察する場合、当該断面において、第2層35における第1面35aまたはその近傍を測定して得られる値を、第2層35の第1面35a側における前記xの値としてよい。第2層35における第1面35aの近傍とは、例えば、IDT電極3の積層方向において、第1面35aから10nmの部分であってもよいが、これに限られない。このような、第2層35における第1面35aの近傍は、第2層35における第1面35a側の部分の一例である。 The "first surface 35a side" of the second layer 35 may be a portion including the first surface 35a and closer to the first surface 35 than the piezoelectric substrate 2. The value of x on the first surface 35a side of the second layer 35 may be, for example, a value obtained by measuring the first surface 35a from above the second layer 35. When observing a cross section of the IDT electrode 3 in the lamination direction in measuring the second layer 35, the value obtained by measuring the first surface 35a or its vicinity in the cross section may be the value of x on the first surface 35a side of the second layer 35. The vicinity of the first surface 35a of the second layer 35 may be, for example, a portion 10 nm from the first surface 35a in the lamination direction of the IDT electrode 3, but is not limited to this. Such a vicinity of the first surface 35a of the second layer 35 is an example of a portion on the first surface 35a side of the second layer 35.
 前記xの平均値とは、第2層35における測定対象部分において、無作為に選ばれた2箇所以上の測定値の平均値であってよい。測定箇所は2箇所以上であればよいが、より多くの測定箇所から得られた測定値の平均値を、より信頼性の高い値と評価してもよい。これは、第2層35の第1面35a側における前記xの平均値に限られず、第2層35全体等における前記xの平均値の場合にも適用できる。 The average value of x may be the average value of measurements taken at two or more randomly selected locations in the measurement target portion of the second layer 35. Two or more measurement locations are sufficient, but the average value of measurements taken at more measurement locations may be evaluated as a more reliable value. This is not limited to the average value of x on the first surface 35a side of the second layer 35, but can also be applied to the average value of x in the entire second layer 35, etc.
 第2層35の少なくとも第1面35a側において、前記xの平均値は2.7以上であってもよく、8以上であってもよい。また、第2層35の少なくとも第1面35a側において、前記xの平均値は20以下であってよく、15以下であってもよい。 At least on the first surface 35a side of the second layer 35, the average value of x may be 2.7 or more, or may be 8 or more. Also, at least on the first surface 35a side of the second layer 35, the average value of x may be 20 or less, or may be 15 or less.
 第2層35は、第1面35a側の90%以上の部分において、前記xが2.1より大きくてもよい。また、第2層35は、第1面35a側の90%以上の部分において、前記xが20以下であってよく、15以下であってもよい。また、第2層35は、第1面35a側の全体において、前記xが2.1より大きくてもよい。また、第2層35は、第1面35a側の全体において、前記xが20以下であってよく、15以下であってもよい。 The second layer 35 may have x greater than 2.1 in 90% or more of the first surface 35a side. Also, the second layer 35 may have x less than 20, or less than 15, in 90% or more of the first surface 35a side. Also, the second layer 35 may have x greater than 2.1 over the entire first surface 35a side. Also, the second layer 35 may have x less than 20, or less than 15, over the entire first surface 35a side.
 第2層35は、前記xの平均値が2.1より大きくてもよい。これは、第2層35の全体における前記xの平均値が2.1より大きければよいことを示す。また、第2層35は、前記xの平均値が2.7以上であってもよい。また、第2層35は、前記xの平均値が5.6以下であってもよく、4.7以下であってもよく、4.0以下であってもよい。 The second layer 35 may have an average value of x greater than 2.1. This indicates that it is sufficient that the average value of x in the entire second layer 35 is greater than 2.1. Furthermore, the second layer 35 may have an average value of x greater than or equal to 2.7. Furthermore, the second layer 35 may have an average value of x less than or equal to 5.6, less than or equal to 4.7, or less than or equal to 4.0.
 第2層35は、90体積%以上の部分において、前記xが2.1より大きくてもよい。また、第2層35は、90体積%以上の部分において、前記xが5.6以下であってもよい。また、第2層35は、全体において前記xが2.1より大きくてもよい。また、第2層35は、全体において前記xが5.6以下であってもよい。 The second layer 35 may have x greater than 2.1 in 90% or more by volume. The second layer 35 may have x less than 5.6 in 90% or more by volume. The second layer 35 may have x greater than 2.1 throughout. The second layer 35 may have x less than 5.6 throughout.
 第2層35における前記xの値がこのような範囲内であれば、Cuの含有により第2層35における耐電力性を維持しながら、加熱による第2層35から第1層34へのCuの拡散を効果的に低減できる。これにより、優れた耐電力性を安定して備え、かつ、電気抵抗によるロスの発生を低減したIDT電極3が得られる。 If the value of x in the second layer 35 is within this range, the inclusion of Cu maintains the power resistance of the second layer 35, while effectively reducing the diffusion of Cu from the second layer 35 to the first layer 34 due to heating. This results in an IDT electrode 3 that is stably equipped with excellent power resistance and reduces the generation of loss due to electrical resistance.
 このようなIDT電極3によれば、高効率かつ長寿命な弾性波装置1を実現できる。このような効果は、例えば、国連が提唱する持続可能な開発目標(SDGs)の目標7.3「エネルギー効率の改善」および目標12.5「廃棄物の発生削減」等の達成にも貢献するものである。 By using such an IDT electrode 3, it is possible to realize an acoustic wave device 1 that is highly efficient and has a long life. This effect contributes to achieving, for example, Goal 7.3 "Improve energy efficiency" and Goal 12.5 "Reduce waste generation" of the Sustainable Development Goals (SDGs) advocated by the United Nations.
 図2および後述する図8に示すように、第2層35は、第1層34側に位置する第3層35bを含んでいてもよい。第3層35bは、第2層35において、圧電基板2よりも第1層34に近い側に位置していればよい。第3層35bは、第1面35aを一部に含んでいてもよい。第3層35bは、第2層35における第1面35a側の部分の一例である。 As shown in FIG. 2 and FIG. 8 described later, the second layer 35 may include a third layer 35b located on the first layer 34 side. The third layer 35b may be located on the side of the second layer 35 closer to the first layer 34 than the piezoelectric substrate 2. The third layer 35b may include a portion of the first surface 35a. The third layer 35b is an example of a portion of the second layer 35 on the first surface 35a side.
 また、第2層35は、圧電基板2側に位置する第5層35dを含んでいてもよい。第5層35dは、第2層35において、第1層34よりも圧電基板2に近い側に位置していればよい。このとき、第2層35において、第3層35bと第5層35dとの間の部分を、第4層35cと定義できる。第2層35は、第1層34側から、第3層35b、第4層35cおよび第5層35dがこの順で位置する積層構造を有していてもよい。 The second layer 35 may also include a fifth layer 35d located on the piezoelectric substrate 2 side. The fifth layer 35d may be located on the side of the second layer 35 closer to the piezoelectric substrate 2 than the first layer 34. In this case, the portion of the second layer 35 between the third layer 35b and the fifth layer 35d can be defined as the fourth layer 35c. The second layer 35 may have a layered structure in which, from the first layer 34 side, the third layer 35b, the fourth layer 35c, and the fifth layer 35d are located in this order.
 第3層35bは、第2層35における、第2層35の中央と第3層35bとの間に位置する第1部分35eよりも、Alに対するCuの原子数比が小さくてもよい。第1部分35eは、第4層35cの少なくとも一部であって、第2層35の中央よりも第1層34側の部分であってよい。 The third layer 35b may have a smaller atomic ratio of Cu to Al than the first portion 35e of the second layer 35 located between the center of the second layer 35 and the third layer 35b. The first portion 35e may be at least a part of the fourth layer 35c, and may be a portion of the second layer 35 closer to the first layer 34 than the center of the second layer 35.
 第3層35bおよび第5層35dは、第2層35において相対的にCu濃度が小さい部分であってよい。言い換えれば、第3層35bおよび第5層35dは、第4層35cよりもCu濃度が小さく、Al濃度が大きい層であってよい。第2層35がこのような第3層35bを含んでいれば、第2層35から第1層34へのCuの拡散を効果的に低減できる。 The third layer 35b and the fifth layer 35d may be portions of the second layer 35 that have a relatively low Cu concentration. In other words, the third layer 35b and the fifth layer 35d may be layers that have a lower Cu concentration and a higher Al concentration than the fourth layer 35c. If the second layer 35 includes such a third layer 35b, the diffusion of Cu from the second layer 35 to the first layer 34 can be effectively reduced.
 第3層35bは、前記xの平均値が8以上であってよい。また、第3層35bは、前記xの平均値が20以下であってよく、15以下であってもよい。第3層35bがこのような構成であれば、第2層35から第1層34へのCuの拡散をより効果的に低減できる。 The third layer 35b may have an average value of x of 8 or more. The third layer 35b may have an average value of x of 20 or less, or may have an average value of 15 or less. If the third layer 35b has such a configuration, the diffusion of Cu from the second layer 35 to the first layer 34 can be more effectively reduced.
 第2層35の結晶性は特に限定されない。第2層35は、アモルファス状であってもよく、多結晶体となっていてもよい。これは、第2層35に含まれる第3層35b、第4層35cおよび第5層35dのいずれにも適用されてよい。 The crystallinity of the second layer 35 is not particularly limited. The second layer 35 may be amorphous or polycrystalline. This may be applied to any of the third layer 35b, fourth layer 35c, and fifth layer 35d contained in the second layer 35.
 第3層35b、第4層35cおよび第5層35dは、例えば、第2層35の成膜時に、第2層35における前記xの平均値が2.1より大きくなるように、Alからなる層およびCuからなる層を積層し、アニール処理を実施することで形成できる。第3層35bおよび第5層35dは、第2層35の表層におけるアルミニウムが酸化して、例えばAl等の酸化アルミニウムの層となり、アニール処理によるCuとAlとの合金化の際に、第2層35の表層に残ることで形成されるものであってよい。 The third layer 35b, the fourth layer 35c, and the fifth layer 35d can be formed, for example, by stacking layers made of Al and layers made of Cu and performing an annealing treatment so that the average value of x in the second layer 35 is greater than 2.1 when the second layer 35 is formed. The third layer 35b and the fifth layer 35d may be formed by oxidizing aluminum in the surface layer of the second layer 35 to become an aluminum oxide layer such as Al2O3 , which remains in the surface layer of the second layer 35 when Cu and Al are alloyed by annealing.
 第2層35の厚みは、特に限定されない。例えば、第2層35の厚みT2は、第1層34の厚みT1と第2層35の厚みT2との合計厚みT1+T2に対して、30%以下であってよい。言い換えれば、第2層35の厚みT2は、「T2≦0.3(T1+T2)」の関係が成立する厚みであってよい。また、第2層35の厚みT2は、合計厚みT1+T2に対して5%以上であってよい。 The thickness of the second layer 35 is not particularly limited. For example, the thickness T2 of the second layer 35 may be 30% or less of the total thickness T1+T2 of the thickness T1 of the first layer 34 and the thickness T2 of the second layer 35. In other words, the thickness T2 of the second layer 35 may be a thickness that satisfies the relationship "T2≦0.3(T1+T2)". Furthermore, the thickness T2 of the second layer 35 may be 5% or more of the total thickness T1+T2.
 IDT電極3において、第2層35の割合が大きくなるにつれて、耐電力性は高くなる。しかし、第2層35の割合が大きくなると、電極としての電気抵抗が高くなり、電気的な損失が大きくなりやすい。第2層35の厚みT2が上述の範囲であれば、耐電力性に優れ、かつ、電気抵抗によるロスの発生を低減したIDT電極3が得られる。 In the IDT electrode 3, as the proportion of the second layer 35 increases, the power resistance increases. However, as the proportion of the second layer 35 increases, the electrical resistance of the electrode increases, and electrical loss is likely to increase. If the thickness T2 of the second layer 35 is within the above-mentioned range, an IDT electrode 3 with excellent power resistance and reduced loss due to electrical resistance can be obtained.
 第2層35は、第1層34よりも圧電基板2に近い側に位置していてよい。第2層35が圧電基板2側に位置している場合には、振動の強い圧電基板2に近い側に、強度の高い第2層35を設けることができる。そのため、耐電力性に優れた弾性波装置1を提供できる。また、IDT電極3の重心を下方に移動させることができるので、電気機械結合係数を小さくすることができ、伝搬損失を小さくすることができる。第1層34が、第2層35よりも圧電基板2に近い側に位置していてもよい。 The second layer 35 may be located closer to the piezoelectric substrate 2 than the first layer 34. If the second layer 35 is located on the piezoelectric substrate 2 side, the second layer 35, which has higher strength, can be provided on the side closer to the piezoelectric substrate 2, which has stronger vibrations. This makes it possible to provide an elastic wave device 1 with excellent power durability. In addition, the center of gravity of the IDT electrode 3 can be moved downward, making it possible to reduce the electromechanical coupling coefficient and thus the propagation loss. The first layer 34 may be located closer to the piezoelectric substrate 2 than the second layer 35.
 (中間層)
 IDT電極3は、中間層36を有していてもよい。中間層36は、第1層34と第2層35との間に位置する層である。中間層36は、CuおよびAlとの反応性が低く、Alよりも強度が強く化学的に安定で、かつ、導電性を有する材料を含む層であってよい。例えば、中間層36は、Ti、Cr、Mo、NiCr合金及びAlTi合金からなる群より選ばれる1種を主成分とする層であってよい。また、中間層36は、これらの成分のうちいずれか1種からなる層であってもよく、2種以上を含む層であってもよい。
(Middle class)
The IDT electrode 3 may have an intermediate layer 36. The intermediate layer 36 is a layer located between the first layer 34 and the second layer 35. The intermediate layer 36 may be a layer containing a material that has low reactivity with Cu and Al, is stronger and more chemically stable than Al, and has electrical conductivity. For example, the intermediate layer 36 may be a layer containing one selected from the group consisting of Ti, Cr, Mo, a NiCr alloy, and an AlTi alloy as a main component. The intermediate layer 36 may be a layer containing any one of these components, or may be a layer containing two or more of them.
 中間層36は、IDT電極3の厚みの5%以下の厚みを有する層であってよい。また、中間層36は、20~100Åの厚みを有する層であってもよく、60Åの厚みを有する層であってもよい。中間層36がこのような厚みを有していれば、隣接する層間におけるCu等の成分の拡散低減機能を発揮できる。また、このような厚みの中間層36は、弾性波の励振および電極としての電気特性に悪影響を及ぼしにくい。IDT電極3は、このような中間層36を有することで、第1層34と第2層35との間のCu等の拡散を低減でき、安定した耐電力性等の特性を確保できる。 The intermediate layer 36 may be a layer having a thickness of 5% or less than the thickness of the IDT electrode 3. The intermediate layer 36 may also be a layer having a thickness of 20 to 100 Å, or may be a layer having a thickness of 60 Å. If the intermediate layer 36 has such a thickness, it can exhibit a function of reducing the diffusion of components such as Cu between adjacent layers. Furthermore, an intermediate layer 36 of such a thickness is unlikely to adversely affect the excitation of acoustic waves and the electrical characteristics as an electrode. By having such an intermediate layer 36, the IDT electrode 3 can reduce the diffusion of Cu and the like between the first layer 34 and the second layer 35, ensuring stable characteristics such as power resistance.
 IDT電極3は、複数の第1層34および第2層35を有していてもよい。その場合には、第1層34と第2層35とを交互に積層し、両者の間の全てに中間層36が位置していてもよいし、両者の間の少なくとも一部に中間層36が位置していてもよい。 The IDT electrode 3 may have a plurality of first layers 34 and second layers 35. In this case, the first layers 34 and the second layers 35 may be alternately stacked, with the intermediate layer 36 positioned entirely between them, or at least partially between them.
 (下地層)
 IDT電極3は、下地層37を有していてもよい。下地層37は、第2層35と圧電基板2との間に位置する層である。下地層37は、圧電基板2とは異なる材料からなる層であってよい。下地層37は、例えば、Ti、Cr、あるいはこれらの合金からなる層であってよい。下地層37の厚みは、IDT電極3の電気特性に影響しにくい程度の厚みであってよく、例えば、IDT電極3の厚みの5%以下の厚みであってよい。
(Base layer)
The IDT electrode 3 may have an underlayer 37. The underlayer 37 is a layer located between the second layer 35 and the piezoelectric substrate 2. The underlayer 37 may be a layer made of a material different from that of the piezoelectric substrate 2. The underlayer 37 may be a layer made of, for example, Ti, Cr, or an alloy thereof. The thickness of the underlayer 37 may be such that it does not affect the electrical characteristics of the IDT electrode 3, and may be, for example, 5% or less of the thickness of the IDT electrode 3.
 下地層37は、IDT電極3の電極指32と接する面積よりも圧電基板2と接する面積の方を大きくしてもよい。その場合には、下地層37によってもIDT電極3の耐電力性を高めることができる。 The area of the underlayer 37 in contact with the piezoelectric substrate 2 may be larger than the area of the underlayer in contact with the electrode fingers 32 of the IDT electrode 3. In this case, the underlayer 37 can also increase the power resistance of the IDT electrode 3.
 このように、IDT電極3は、圧電基板2の上面2aと接触して位置していてもよいし、下地層37を介して、圧電基板2の上面2aに位置していてもよい。 In this way, the IDT electrode 3 may be located in contact with the upper surface 2a of the piezoelectric substrate 2, or may be located on the upper surface 2a of the piezoelectric substrate 2 via the base layer 37.
 (別の実施形態)
 第1層34および第2層35の積層方向における断面形状は、図2に示すように矩形状であってもよいがこれに限られず、例えば台形状であってもよい。また、第2層35は、電極指32の幅方向において外縁から離れた位置に厚みの薄い部分が存在してもよい。このような構成とすることで、IDT電極3の耐電力性を高めつつ、電気抵抗による損失を低減することができる弾性波装置1を提供できる。
(Another embodiment)
2, the cross-sectional shape of the first layer 34 and the second layer 35 in the stacking direction may be rectangular, but is not limited to this and may be, for example, trapezoidal. The second layer 35 may have a thin portion at a position away from the outer edge in the width direction of the electrode finger 32. With this configuration, it is possible to provide an acoustic wave device 1 that can reduce loss due to electrical resistance while improving the power durability of the IDT electrode 3.
 また、図2に示す例では、十分に厚い圧電基板2を用いた場合を例に説明したが、薄い圧電基板2を用いて、その下面に支持基板を貼り合せた、いわゆる貼り合せ基板を用いてもよい。この場合には、圧電基板2の厚みは、例えば、0.5μm~20μm程度とし、支持基板は、圧電基板2を支持できる厚みとすればよい。特に支持基板として、サファイア基板またはSi基板等を用いた場合には、圧電基板2の温度変化による変形を低減できるため、温度特性に優れた弾性波装置1を提供することができる。圧電基板2の厚みは、波長比で0.2λ以上10λ以下としてもよい。また、圧電基板2と支持基板との間に、接合層等が位置していてもよい。 In the example shown in FIG. 2, a sufficiently thick piezoelectric substrate 2 is used, but a so-called laminated substrate may be used in which a thin piezoelectric substrate 2 is used and a support substrate is bonded to the underside of the thin piezoelectric substrate 2. In this case, the thickness of the piezoelectric substrate 2 may be, for example, about 0.5 μm to 20 μm, and the support substrate may be thick enough to support the piezoelectric substrate 2. In particular, when a sapphire substrate or a Si substrate is used as the support substrate, deformation of the piezoelectric substrate 2 due to temperature changes can be reduced, and an elastic wave device 1 with excellent temperature characteristics can be provided. The thickness of the piezoelectric substrate 2 may be 0.2 λ or more and 10 λ or less in wavelength ratio. A bonding layer or the like may be located between the piezoelectric substrate 2 and the support substrate.
 また、上述の例ではIDT電極3を一様な層構成および厚みを有するものとして説明したが、この限りではない。例えば、バスバー31は、電極指32に比べ厚みが厚くてもよいし、電極指32とは異なる層構成を備えていてもよい。 In addition, in the above example, the IDT electrode 3 has been described as having a uniform layer structure and thickness, but this is not limited to the above. For example, the bus bar 31 may be thicker than the electrode fingers 32, or may have a layer structure different from that of the electrode fingers 32.
 <通信装置>
 図6は、本開示の一実施形態に係る通信装置101の要部を示すブロック図である。通信装置101は、弾性波装置1を備えている。通信装置101は、電波を利用した無線通信を行う装置であってよい。通信装置101が備える分波器7は、通信装置101において送信周波数の信号と受信周波数の信号とを分波する機能を有していてよい。分波器7は、弾性波装置1を有しており、弾性波装置1は、分波器7による信号の分波に供されるものであってよい。通信装置101は、本開示の一実施形態に係る弾性波装置1を備えていればよく、その他の構成については一般的な構成であってよい。
<Communication Device>
6 is a block diagram showing a main part of a communication device 101 according to an embodiment of the present disclosure. The communication device 101 includes an elastic wave device 1. The communication device 101 may be a device that performs wireless communication using radio waves. A branching filter 7 included in the communication device 101 may have a function of branching a signal of a transmission frequency and a signal of a reception frequency in the communication device 101. The branching filter 7 includes an elastic wave device 1, and the elastic wave device 1 may be used to branch the signal by the branching filter 7. It is sufficient that the communication device 101 includes the elastic wave device 1 according to an embodiment of the present disclosure, and other configurations may be general configurations.
 通信装置101の一例について以下に説明する。通信装置101において、送信すべき情報を含む送信情報信号TISは、RF-IC103によって変調および周波数の引き上げであって、搬送波周波数の高周波信号への変換がなされて、送信信号TSとされる。送信信号TSは、バンドパスフィルタ105によって送信用の通過帯域以外の不要成分が除去され、増幅器107によって増幅されて分波器7に入力される。分波器7は、弾性波装置1によって、入力された送信信号TSから送信用の通過帯域以外の不要成分を除去し、アンテナ109に出力する。アンテナ109は、入力された電気信号(送信信号TS)を無線信号に変換して送信する。 An example of a communication device 101 is described below. In communication device 101, a transmission information signal TIS containing information to be transmitted is modulated and frequency-raised by RF-IC 103, converted into a high-frequency signal of a carrier frequency, and becomes a transmission signal TS. Unwanted components outside the transmission passband are removed from the transmission signal TS by bandpass filter 105, amplified by amplifier 107, and input to splitter 7. Splitter 7 uses elastic wave device 1 to remove unwanted components outside the transmission passband from the input transmission signal TS, and outputs the signal to antenna 109. Antenna 109 converts the input electrical signal (transmission signal TS) into a radio signal and transmits it.
 通信装置101において、アンテナ109によって受信された無線信号は、アンテナ109によって電気信号である受信信号RSに変換されて、分波器7に入力される。分波器7は、弾性波装置1によって、入力された受信信号RSから受信用の通過帯域以外の不要成分を除去して、増幅器111に出力する。出力された受信信号RSは、増幅器111によって増幅され、バンドパスフィルタ113によって受信用の通過帯域以外の不要成分が除去される。そして、受信信号RSは、RF-IC103によって周波数の引き下げおよび復調がなされて受信情報信号RISとされる。 In communication device 101, a radio signal received by antenna 109 is converted by antenna 109 into a received signal RS, which is an electrical signal, and input to splitter 7. Splitter 7 uses elastic wave device 1 to remove unnecessary components outside the receiving passband from the received signal RS, and outputs the signal to amplifier 111. The output received signal RS is amplified by amplifier 111, and unnecessary components outside the receiving passband are removed by bandpass filter 113. The received signal RS is then frequency-downshifted and demodulated by RF-IC 103 to produce received information signal RIS.
 〔まとめ〕
 本開示の態様1に係る弾性波装置は、圧電基板と、前記圧電基板上に位置するIDT電極と、を備え、前記IDT電極は、導電性材料を含む第1層と、前記第1層と前記圧電基板との間に位置し、CuAl合金を含む第2層と、を有し、前記第2層は、前記第1層側に位置する第1面を有し、前記第2層におけるCu:Alの原子数比を1:xと定義すると、前記第2層の少なくとも前記第1面側において、前記xの平均値が2.1より大きい。
〔summary〕
An elastic wave device according to a first aspect of the present disclosure comprises a piezoelectric substrate and an IDT electrode located on the piezoelectric substrate, the IDT electrode having a first layer including a conductive material and a second layer located between the first layer and the piezoelectric substrate and including a CuAl alloy, the second layer having a first surface located on the first layer side, and where an atomic ratio of Cu:Al in the second layer is defined as 1:x, the average value of x is greater than 2.1 at least on the first surface side of the second layer.
 本開示の態様2に係る弾性波装置は、前記態様1において、前記第2層の、前記第1面側の90%以上の部分において、前記xが2.1より大きくてもよい。 The elastic wave device according to aspect 2 of the present disclosure may be the same as in aspect 1, in which x is greater than 2.1 in 90% or more of the second layer on the first surface side.
 本開示の態様3に係る弾性波装置は、前記態様1または2において、前記第2層において、前記xの平均値が2.1より大きい、請求項1に記載の弾性波装置。 The elastic wave device according to aspect 3 of the present disclosure is the elastic wave device according to claim 1, in which in aspect 1 or 2, the average value of x in the second layer is greater than 2.1.
 本開示の態様4に係る弾性波装置は、前記態様1から3のいずれかにおいて、前記第2層の90体積%以上の部分において、前記xが2.1より大きくてもよい。 In the elastic wave device according to aspect 4 of the present disclosure, in any one of aspects 1 to 3, x may be greater than 2.1 in at least 90 volume % of the second layer.
 本開示の態様5に係る弾性波装置は、前記態様1から4のいずれかにおいて、前記第2層において、前記xの平均値が5.6以下であってもよい。 The elastic wave device according to aspect 5 of the present disclosure may be such that in any one of aspects 1 to 4, the average value of x in the second layer is 5.6 or less.
 本開示の態様6に係る弾性波装置は、前記態様1から5のいずれかにおいて、前記第2層の90体積%以上の部分において、前記xが5.6以下であってもよい。 The elastic wave device according to aspect 6 of the present disclosure may be any one of aspects 1 to 5, in which x is 5.6 or less in 90 volume % or more of the second layer.
 本開示の態様7に係る弾性波装置は、前記態様1から6のいずれかにおいて、前記第2層において、前記xの平均値が4.0以下であってもよい。 The elastic wave device according to aspect 7 of the present disclosure may be such that in any one of aspects 1 to 6, the average value of x in the second layer is 4.0 or less.
 本開示の態様8に係る弾性波装置は、前記態様1から6のいずれかにおいて、前記第2層において、前記xの平均値が2.7以上4.7以下であってもよい。 The elastic wave device according to aspect 8 of the present disclosure may be such that in any one of aspects 1 to 6, the average value of x in the second layer is 2.7 or more and 4.7 or less.
 本開示の態様9に係る弾性波装置は、前記態様1から8のいずれかにおいて、前記第2層は、前記第1層側に位置する第3層を含み、前記第3層は、前記第2層における、前記第2層の中央と前記第3層との間に位置する第1部分よりも、Alに対するCuの原子数比が小さくてもよい。 The elastic wave device according to aspect 9 of the present disclosure is any one of aspects 1 to 8, in which the second layer includes a third layer located on the first layer side, and the third layer may have a smaller atomic ratio of Cu to Al than a first portion of the second layer that is located between the center of the second layer and the third layer.
 本開示の態様10に係る弾性波装置は、前記態様9において、前記第3層において、前記xの平均値が8以上であってもよい。 The elastic wave device according to aspect 10 of the present disclosure may be the same as aspect 9, in which the average value of x in the third layer is 8 or greater.
 本開示の態様11に係る弾性波装置は、前記態様1から10のいずれかにおいて、前記IDT電極は、前記第1層と前記第2層との間に位置する中間層をさらに有していてもよい。 In an elastic wave device according to aspect 11 of the present disclosure, in any one of aspects 1 to 10, the IDT electrode may further include an intermediate layer located between the first layer and the second layer.
 本開示の態様12に係る弾性波装置は、前記態様11において、前記中間層は、Ti、Cr、Mo、NiCr合金及びAlTi合金からなる群より選ばれる1種を主成分とし、20~100Åの厚みを有していてもよい。 The elastic wave device according to aspect 12 of the present disclosure is the same as in aspect 11, except that the intermediate layer may be mainly composed of one selected from the group consisting of Ti, Cr, Mo, NiCr alloy, and AlTi alloy, and may have a thickness of 20 to 100 Å.
 本開示の態様13に係る弾性波装置は、前記態様1から12のいずれかにおいて、前記第1層は、Alを含むと共に、Al以外の成分の含有量が原子数比で10%以下であってもよい。 The elastic wave device according to aspect 13 of the present disclosure is any one of aspects 1 to 12, in which the first layer contains Al and the content of components other than Al is 10% or less in atomic ratio.
 本開示の態様14に係る弾性波装置は、前記態様1から13のいずれかにおいて、前記圧電基板上に位置する樹脂層をさらに備え、前記樹脂層は熱硬化性樹脂を含んでいてもよい。 The elastic wave device according to aspect 14 of the present disclosure may be any of aspects 1 to 13, further comprising a resin layer located on the piezoelectric substrate, the resin layer including a thermosetting resin.
 本開示の態様15に係る弾性波装置は、前記態様14において、前記樹脂層が、300℃以上で硬化する熱硬化性樹脂を含んでいてもよい。 The elastic wave device according to aspect 15 of the present disclosure may be the same as in aspect 14, in which the resin layer contains a thermosetting resin that hardens at 300°C or higher.
 本開示の態様16に係る弾性波装置は、前記態様14において、前記樹脂層が、ポリイミドまたはアクリルの少なくともいずれかを含んでいてもよい。 The elastic wave device according to aspect 16 of the present disclosure may be the same as that according to aspect 14, except that the resin layer contains at least one of polyimide and acrylic.
 本開示の態様17に係る弾性波装置は、前記態様1から16のいずれかにおいて、前記第1層と前記第2層との合計厚みに対して、前記第2層の厚みは30%以下であってもよい。 The elastic wave device according to aspect 17 of the present disclosure may be any one of aspects 1 to 16, in which the thickness of the second layer is 30% or less of the total thickness of the first layer and the second layer.
 本開示の態様18に係る通信装置は、前記態様1から17のいずれかにおける弾性波装置を備えている。 The communication device according to aspect 18 of the present disclosure includes an elastic wave device according to any one of aspects 1 to 17.
 本開示の一実施例について以下に説明する。 One embodiment of this disclosure is described below.
 <Cu:Al原子数比と耐電力性との関係>
 第2層におけるCu:Al原子数比を変化させて弾性波装置1を製造し、その耐電力性を評価した。各弾性波装置1を、サンプルS1~S6とする。各サンプルは、IDT電極3の電極指32の部分において、樹脂層6、保護層5、第1層34、中間層36、第2層35、下地層37および圧電基板2がこの順で位置する積層構造を有している。
<Relationship between Cu:Al atomic ratio and power durability>
Acoustic wave devices 1 were manufactured by varying the Cu:Al atomic ratio in the second layer, and their power durability was evaluated. Each acoustic wave device 1 is designated as sample S1 to S6. Each sample has a layered structure in which resin layer 6, protective layer 5, first layer 34, intermediate layer 36, second layer 35, underlayer 37, and piezoelectric substrate 2 are located in this order in the portion of electrode fingers 32 of IDT electrode 3.
 第1層34はAlを主成分とし、1%(原子数比)のCuを含む層とした。第2層35はCuAl合金からなる層とした。中間層36および下地層37はTiからなる層とした。各サンプルの総膜厚は1500Åとし、第1層34の厚みは1104Å、第2層35の厚みは276Å、中間層36および下地層37の厚みは60Åとした。第2層35は、成膜時におけるAl層およびCu層の厚みをそれぞれ変化させ、260℃、70minの条件で加熱してアニールし、CuAl合金からなる層とした。下記表1に、第2層35のCu:Alの原子数比および成膜時の各層の厚み(Å)を示す。各サンプルの電極ピッチの平均値は1.13μmである。 The first layer 34 was a layer mainly composed of Al and containing 1% (atomic ratio) Cu. The second layer 35 was a layer made of a CuAl alloy. The intermediate layer 36 and the underlayer 37 were layers made of Ti. The total thickness of each sample was 1500 Å, the thickness of the first layer 34 was 1104 Å, the thickness of the second layer 35 was 276 Å, and the thickness of the intermediate layer 36 and the underlayer 37 was 60 Å. The second layer 35 was formed by changing the thicknesses of the Al layer and the Cu layer during film formation, and heating and annealing at 260°C for 70 minutes to form a layer made of a CuAl alloy. Table 1 below shows the atomic ratio of Cu:Al in the second layer 35 and the thickness (Å) of each layer during film formation. The average electrode pitch of each sample was 1.13 μm.
 得られた各サンプルを、ホットプレートにより330℃、60minの条件でさらに加熱した。加熱後の各サンプルについて、発生した斑点の評価を実施した。 Each of the obtained samples was further heated on a hot plate at 330°C for 60 minutes. After heating, each sample was evaluated for the occurrence of spots.
 斑点の評価は、平面視において、バスバー31に発生した斑点の面積比率を算出することで実施した。各斑点の範囲は、CADソフトウェア「AutoCAD(登録商標)」を用いた面積計算処理により特定した。バスバー31全体の面積に対する、全ての斑点の合計面積の比率を、斑点の面積比率として算出した。 The evaluation of spots was carried out by calculating the area ratio of spots that occurred on the busbar 31 in a plan view. The range of each spot was determined by area calculation processing using the CAD software "AutoCAD (registered trademark)". The ratio of the total area of all spots to the entire area of the busbar 31 was calculated as the spot area ratio.
 また一方で、各サンプルに対して、耐電力試験を実施した。耐電力試験は環境温度50℃で、CW信号にて基準電力を31dBmとし、入力電力による加速試験を実施し、各サンプルにおける入力電力(dBm)と寿命(h)との関係の推定値を取得した。各サンプルの「耐電力強さ」を、寿命5000hに対応する入力電力の大きさと定義して、耐電力性の評価指標とした。 A power resistance test was also conducted on each sample. The power resistance test was conducted at an environmental temperature of 50°C, with a reference power of 31 dBm for a CW signal, and an accelerated test with input power was performed to obtain an estimate of the relationship between the input power (dBm) and lifespan (h) for each sample. The "power resistance strength" of each sample was defined as the magnitude of the input power corresponding to a lifespan of 5000 hours, and used as an evaluation index for power resistance.
 図7に、各サンプルにおける耐電力試験の結果を示す。また、図8に、各サンプルにおける、斑点の面積比率と第2層におけるAl比率との関係をグラフにより示す。図7および図8に示すように、バスバー31における斑点の面積比率は、前記xの値が増加するほど減少していた。各サンプルの耐電力性について、前記xの値が4付近となるまでは、斑点の減少に伴って耐電力強さが急激に上昇していた。これは、第1層34に拡散したCuに起因する斑点が、IDT電極3の耐電力性に大きく影響するという、本開示において示す新規な知見である。 Figure 7 shows the results of the power resistance test for each sample. Figure 8 is a graph showing the relationship between the area ratio of spots and the Al ratio in the second layer for each sample. As shown in Figures 7 and 8, the area ratio of spots in the busbar 31 decreased as the value of x increased. Regarding the power resistance of each sample, the power resistance strength increased rapidly as the number of spots decreased until the value of x reached approximately 4. This is a novel finding presented in this disclosure that spots caused by Cu diffused into the first layer 34 significantly affect the power resistance of the IDT electrode 3.
 一方で、前記xの値が4付近で斑点の面積比率の減少は緩やかになることから、前記xの値が4よりも大きくなるようにAlの比率を増加させても、斑点発生の低減効果は小さいことが示された。また、前記xの値について4を超えて増加させた場合、前記xの値の増加に伴って耐電力強さは減少することが分かった。これは、Alを含む第2層にCuを加えることによる耐電力性の上昇効果が、Cu比率の減少に伴って低減することを示していると考えられる。 On the other hand, since the decrease in the area ratio of spots becomes gradual when the value of x is around 4, it was shown that even if the ratio of Al is increased so that the value of x is greater than 4, the effect of reducing the occurrence of spots is small. In addition, it was found that when the value of x is increased beyond 4, the power resistance strength decreases with the increase in the value of x. This is thought to indicate that the effect of increasing power resistance by adding Cu to the second layer containing Al decreases with a decrease in the Cu ratio.
 <第2層におけるCuの分布>
 本開示の一実施形態に係るIDT電極3について、第2層35中のCuの分布を評価した。図9は、前記表1に示すサンプルS5の、積層方向の断面を透過電子顕微鏡(TEM)により観察した状態を模式的に示す。図10は、図9に示す測定箇所P1、P2におけるエネルギー分散型蛍光X線分析(EDX分析)の結果を示す。図9および後述する図11では、第2層35におけるCuの濃度分布を模式的に表現しており、各層の断面のハッチングについては省略している。
<Cu distribution in the second layer>
The Cu distribution in the second layer 35 of the IDT electrode 3 according to an embodiment of the present disclosure was evaluated. Fig. 9 is a schematic diagram of a cross section in the lamination direction of sample S5 shown in Table 1, observed by a transmission electron microscope (TEM). Fig. 10 is a diagram of the results of energy dispersive X-ray fluorescence analysis (EDX analysis) at measurement points P1 and P2 shown in Fig. 9. Fig. 9 and Fig. 11 described later show a schematic representation of the Cu concentration distribution in the second layer 35, and the hatching of the cross section of each layer is omitted.
 図9に示すように、第2層35には、第3層35b、第4層35cおよび第5層35dが形成されていた。また、第4層35cは濃淡が見られ、CuおよびAlの分布が一様でないことが示唆された。そこで、TEM画像中、第4層35cにおける色が濃い箇所P1および色が薄い箇所P2についてそれぞれ、EDX分析により各測定箇所における元素の比率を測定した。EDX分析の結果について、図10および下記表2に示す。 As shown in FIG. 9, the second layer 35 contained the third layer 35b, the fourth layer 35c, and the fifth layer 35d. The fourth layer 35c also showed variations in shade, suggesting that the distribution of Cu and Al was not uniform. Therefore, the ratio of elements at each measurement point was measured by EDX analysis for the dark area P1 and the light area P2 in the fourth layer 35c in the TEM image. The results of the EDX analysis are shown in FIG. 10 and Table 2 below.
 下記表2において、各元素の原子数比の測定値(%)を示すと共に、当該測定値に基づいて算出した各測定箇所におけるCu:Alの原子数比についても示す。また、下記表2には参考として、前記xが2となるよう製造したサンプルS2についても、EDX分析の結果を示す。サンプルS2は、第2層35において濃淡がほとんど見られなかったため、1箇所のみEDX分析を行った。 Table 2 below shows the measured atomic ratio values (%) of each element, as well as the Cu:Al atomic ratio at each measurement point calculated based on the measured values. For reference, Table 2 below also shows the results of EDX analysis of sample S2, which was manufactured so that x was 2. Sample S2 had almost no shading in the second layer 35, so EDX analysis was performed on only one point.
 前記表2に示すように、前記xが2となるよう製造したサンプルS2は、第2層35全体の原子数比と、測定箇所の原子数比とがほぼ一致していた。一方で、図10および前記表2に示すように、前記xが3.6となるよう製造したサンプルS4は、第4層35cにおけるCu:Alの原子数比が、第2層35全体におけるCu:Alの原子数比とは異なっていた。具体的には、第2層35全体と比較して、第4層35cではAlの原子数比が小さい傾向が見られた。これについて、サンプルS4では、第3層35bおよび第5層35dが形成されており、これらの層にAlが偏析している可能性が考えられた。 As shown in Table 2, in sample S2 manufactured so that x was 2, the atomic ratio of the entire second layer 35 was almost the same as the atomic ratio at the measurement point. On the other hand, as shown in FIG. 10 and Table 2, in sample S4 manufactured so that x was 3.6, the atomic ratio of Cu:Al in the fourth layer 35c was different from the atomic ratio of Cu:Al in the entire second layer 35. Specifically, the atomic ratio of Al tended to be smaller in the fourth layer 35c compared to the entire second layer 35. In regard to this, in sample S4, the third layer 35b and the fifth layer 35d were formed, and it was considered possible that Al was segregated in these layers.
 そこで、前記xが2.7となるよう製造したサンプルS3について、第3層35b、第4層35cおよび第5層35dのそれぞれにおける元素比率を、EDX分析により測定した。図11は、前記表1に示すサンプルS3の、積層方向の断面をTEMにより観察した状態を模式的に示す。図12は、図11に示す測定箇所P3、P4におけるEDX分析の結果を示す。図13は、図11に示す測定箇所P5、P6におけるEDX分析の結果を示す。各測定箇所について、TEM画像中、第4層35cにおいて色が薄い箇所が測定箇所P3、色が濃い箇所が測定箇所P4である。また、測定箇所P5は第3層35bから、測定箇所P6は第5層35dからそれぞれ選択した。 Therefore, for sample S3 manufactured so that x was 2.7, the element ratios in each of the third layer 35b, the fourth layer 35c, and the fifth layer 35d were measured by EDX analysis. Figure 11 shows a schematic view of a cross section in the stacking direction of sample S3 shown in Table 1, observed by TEM. Figure 12 shows the results of EDX analysis at measurement points P3 and P4 shown in Figure 11. Figure 13 shows the results of EDX analysis at measurement points P5 and P6 shown in Figure 11. For each measurement point, in the TEM image, the light-colored area in the fourth layer 35c is measurement point P3, and the dark-colored area is measurement point P4. Measurement point P5 was selected from the third layer 35b, and measurement point P6 was selected from the fifth layer 35d.
 図11から図13および下記表3に、EDX分析における測定結果を示す。 The measurement results of the EDX analysis are shown in Figures 11 to 13 and Table 3 below.
 図11から図13および前記表3に示すように、サンプルS3は、第4層35cにおける前記xの値に対して、第3層35bおよび第5層35dにおける前記xの値が顕著に大きな値となっていた。すなわち、第2層35全体のAlの原子数比が大きな値となるように第2層35を形成すると、Alが第3層35bおよび第4層35dに偏析することが示された。Alの原子数比が大きいとは、例えば、前記xの値が2.1よりも大きい場合であってよい。 As shown in Figures 11 to 13 and Table 3, in sample S3, the value of x in the third layer 35b and the fifth layer 35d was significantly larger than the value of x in the fourth layer 35c. In other words, it was shown that when the second layer 35 is formed so that the atomic ratio of Al in the entire second layer 35 is large, Al segregates in the third layer 35b and the fourth layer 35d. A large atomic ratio of Al may mean, for example, that the value of x is greater than 2.1.
 〔付記事項〕
 以上、本開示に係る発明について、諸図面および実施例に基づいて説明してきた。しかし、本開示に係る発明は上述した各実施形態に限定されるものではない。すなわち、本開示に係る発明は本開示で示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示に係る発明の技術的範囲に含まれる。つまり、当業者であれば本開示に基づき種々の変形または修正を行うことが容易であることに注意されたい。また、これらの変形または修正は本開示の範囲に含まれることに留意されたい。
[Additional Notes]
The invention according to the present disclosure has been described above based on the drawings and examples. However, the invention according to the present disclosure is not limited to the above-mentioned embodiments. In other words, the invention according to the present disclosure can be modified in various ways within the scope of the present disclosure, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments are also included in the technical scope of the invention according to the present disclosure. In other words, it should be noted that a person skilled in the art can easily make various modifications or corrections based on the present disclosure. It should also be noted that these modifications or corrections are included in the scope of the present disclosure.
 1   弾性波装置
 2   圧電基板
 3   IDT電極
 34  第1層
 35  第2層
 35b 第3層
 36  中間層
 6   樹脂層
 101 通信装置
REFERENCE SIGNS LIST 1 Acoustic wave device 2 Piezoelectric substrate 3 IDT electrode 34 First layer 35 Second layer 35b Third layer 36 Intermediate layer 6 Resin layer 101 Communication device

Claims (18)

  1.  圧電基板と、
     前記圧電基板上に位置するIDT電極と、を備え、
     前記IDT電極は、
      導電性材料を含む第1層と、
      前記第1層と前記圧電基板との間に位置し、CuAl合金を含む第2層と、を有し、
     前記第2層は、前記第1層側に位置する第1面を有し、
     前記第2層におけるCu:Alの原子数比を1:xと定義すると、前記第2層の少なくとも前記第1面側において、前記xの平均値が2.1より大きい、弾性波装置。
    A piezoelectric substrate;
    an IDT electrode located on the piezoelectric substrate,
    The IDT electrode is
    a first layer comprising a conductive material;
    a second layer located between the first layer and the piezoelectric substrate, the second layer including a CuAl alloy;
    the second layer has a first surface located on the first layer side,
    An elastic wave device, wherein, when an atomic ratio of Cu:Al in the second layer is defined as 1:x, an average value of x is greater than 2.1 at least on the first surface side of the second layer.
  2.  前記第2層の、前記第1面側の90%以上の部分において、前記xが2.1より大きい、請求項1に記載の弾性波装置。 The elastic wave device of claim 1, wherein x is greater than 2.1 in 90% or more of the second layer on the first surface side.
  3.  前記第2層において、前記xの平均値が2.1より大きい、請求項1または2に記載の弾性波装置。 The elastic wave device according to claim 1 or 2, wherein the average value of x in the second layer is greater than 2.1.
  4.  前記第2層の90体積%以上の部分において、前記xが2.1より大きい、請求項1から3のいずれか1項に記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 3, wherein x is greater than 2.1 in at least 90% by volume of the second layer.
  5.  前記第2層において、前記xの平均値が5.6以下である、請求項1から4のいずれか1項に記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 4, wherein the average value of x in the second layer is 5.6 or less.
  6.  前記第2層の90体積%以上の部分において、前記xが5.6以下である、請求項1から5のいずれか1項に記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 5, wherein x is 5.6 or less in 90% or more by volume of the second layer.
  7.  前記第2層において、前記xの平均値が4.0以下である、請求項1から6のいずれか1項に記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 6, wherein the average value of x in the second layer is 4.0 or less.
  8.  前記第2層において、前記xの平均値が2.7以上4.7以下である、請求項1から6のいずれか1項に記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 6, wherein the average value of x in the second layer is 2.7 or more and 4.7 or less.
  9.  前記第2層は、前記第1層側に位置する第3層を含み、
     前記第3層は、前記第2層における、前記第2層の中央と前記第3層との間に位置する第1部分よりも、Alに対するCuの原子数比が小さい、請求項1から8のいずれか1項に記載の弾性波装置。
    the second layer includes a third layer located on the first layer side,
    9. The elastic wave device according to claim 1, wherein the third layer has a smaller atomic ratio of Cu to Al than a first portion of the second layer that is located between a center of the second layer and the third layer.
  10.  前記第3層において、前記xの平均値が8以上である、請求項9に記載の弾性波装置。 The elastic wave device according to claim 9, wherein the average value of x in the third layer is 8 or more.
  11.  前記IDT電極は、前記第1層と前記第2層との間に位置する中間層をさらに有する、請求項1から10のいずれか1項に記載の弾性波装置。 The acoustic wave device according to any one of claims 1 to 10, wherein the IDT electrode further includes an intermediate layer located between the first layer and the second layer.
  12.  前記中間層は、Ti、Cr、Mo、NiCr合金及びAlTi合金からなる群より選ばれる1種を主成分とし、20~100Åの厚みを有する、請求項11に記載の弾性波装置。 The elastic wave device according to claim 11, wherein the intermediate layer is mainly composed of one selected from the group consisting of Ti, Cr, Mo, NiCr alloy, and AlTi alloy, and has a thickness of 20 to 100 Å.
  13.  前記第1層は、Alを含むと共に、Al以外の成分の含有量が原子数比で10%以下である、請求項1から12のいずれか1項に記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 12, wherein the first layer contains Al and the content of components other than Al is 10% or less in terms of atomic ratio.
  14.  前記圧電基板上に位置する樹脂層を更に備え、
     前記樹脂層は熱硬化性樹脂を含む、請求項1から13のいずれか1項に記載の弾性波装置。
    Further comprising a resin layer located on the piezoelectric substrate,
    The acoustic wave device according to claim 1 , wherein the resin layer includes a thermosetting resin.
  15.  前記樹脂層が、300℃以上で硬化する熱硬化性樹脂を含む、請求項14に記載の弾性波装置。 The elastic wave device according to claim 14, wherein the resin layer contains a thermosetting resin that hardens at 300°C or higher.
  16.  前記樹脂層が、ポリイミドまたはアクリルの少なくともいずれかを含む、請求項14に記載の弾性波装置。 The elastic wave device according to claim 14, wherein the resin layer includes at least one of polyimide and acrylic.
  17.  前記第1層と前記第2層との合計厚みに対して、前記第2層の厚みは30%以下である、請求項1から16のいずれか1項に記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 16, wherein the thickness of the second layer is 30% or less of the total thickness of the first layer and the second layer.
  18.  請求項1から17のいずれか1項に記載の弾性波装置を備える、通信装置。 A communication device comprising the elastic wave device according to any one of claims 1 to 17.
PCT/JP2023/042298 2022-11-28 2023-11-27 Acoustic wave device and communication device WO2024117061A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022189497 2022-11-28
JP2022-189497 2022-11-28

Publications (1)

Publication Number Publication Date
WO2024117061A1 true WO2024117061A1 (en) 2024-06-06

Family

ID=91323981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/042298 WO2024117061A1 (en) 2022-11-28 2023-11-27 Acoustic wave device and communication device

Country Status (1)

Country Link
WO (1) WO2024117061A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10145171A (en) * 1996-11-11 1998-05-29 Matsushita Electric Ind Co Ltd Surface acoustic wave device and method of manufacturing the same
JP2005286871A (en) * 2004-03-30 2005-10-13 Sanyo Electric Co Ltd Surface acoustic wave element
WO2011058930A1 (en) * 2009-11-13 2011-05-19 株式会社村田製作所 Acoustic wave element and manufacturing method of same
JP2015088896A (en) * 2013-10-30 2015-05-07 株式会社村田製作所 Acoustic wave device and method of manufacturing the same
JP2019092019A (en) * 2017-11-14 2019-06-13 株式会社村田製作所 Acoustic wave device, high-frequency front-end circuit, and communication device
WO2021085465A1 (en) * 2019-10-30 2021-05-06 株式会社村田製作所 Elastic wave device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10145171A (en) * 1996-11-11 1998-05-29 Matsushita Electric Ind Co Ltd Surface acoustic wave device and method of manufacturing the same
JP2005286871A (en) * 2004-03-30 2005-10-13 Sanyo Electric Co Ltd Surface acoustic wave element
WO2011058930A1 (en) * 2009-11-13 2011-05-19 株式会社村田製作所 Acoustic wave element and manufacturing method of same
JP2015088896A (en) * 2013-10-30 2015-05-07 株式会社村田製作所 Acoustic wave device and method of manufacturing the same
JP2019092019A (en) * 2017-11-14 2019-06-13 株式会社村田製作所 Acoustic wave device, high-frequency front-end circuit, and communication device
WO2021085465A1 (en) * 2019-10-30 2021-05-06 株式会社村田製作所 Elastic wave device

Similar Documents

Publication Publication Date Title
CN103250348B (en) Surface acoustic wave apparatus
JP6856825B2 (en) Elastic wave device, demultiplexer and communication device
US12218648B2 (en) Acoustic wave element, filter element, and communication apparatus
US9048813B2 (en) Acoustic wave device and antenna duplexer using the same
US10333487B2 (en) Acoustic wave element, filter element, and communication device
US8471653B2 (en) Elastic wave resonator and ladder filter
US8564172B2 (en) Elastic wave element and electronic apparatus using same
US8183737B2 (en) Surface acoustic wave device including electrode fingers partially disposed in grooves in a piezoelectric substrate
US12149222B2 (en) Acoustic wave device, multiplexer, and communication apparatus
US20150070227A1 (en) Acoustic wave element, branching filter and communication module
JP2018088670A (en) Acoustic wave device, high-frequency front end circuit, and communication device
CN107204750B (en) Acoustic wave device
US7554428B2 (en) Boundary acoustic wave device comprising Ni diffused in Au and method for manufacturing the same
EP1470639A1 (en) Surface acoustic wave device having improved performance and method of making the device
JP2021193818A (en) Elastic wave element, filter element, and communication device
WO2024117061A1 (en) Acoustic wave device and communication device
JP2011135469A (en) Acoustic wave apparatus
JPH06350377A (en) Surface acoustic wave element
JP2018207371A (en) Acoustic wave element and communication device
WO2021020102A1 (en) Elastic wave device and communication device
US8154171B2 (en) Boundary acoustic wave device
JP2011035872A (en) Surface acoustic wave device
JP2010074224A (en) Saw resonator and saw oscillator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23897709

Country of ref document: EP

Kind code of ref document: A1