WO2024117022A1 - Estimating device, electricity storage device, estimating method, and estimating program - Google Patents

Estimating device, electricity storage device, estimating method, and estimating program Download PDF

Info

Publication number
WO2024117022A1
WO2024117022A1 PCT/JP2023/042119 JP2023042119W WO2024117022A1 WO 2024117022 A1 WO2024117022 A1 WO 2024117022A1 JP 2023042119 W JP2023042119 W JP 2023042119W WO 2024117022 A1 WO2024117022 A1 WO 2024117022A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal resistance
time
storage element
boundary
resistance component
Prior art date
Application number
PCT/JP2023/042119
Other languages
French (fr)
Japanese (ja)
Inventor
佑介 吉岡
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Publication of WO2024117022A1 publication Critical patent/WO2024117022A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an estimation device, a power storage device, an estimation method, and an estimation program.
  • Energy storage elements such as lithium-ion secondary batteries are used as power sources for vehicles such as electric vehicles (EVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs).
  • EVs electric vehicles
  • HEVs hybrid electric vehicles
  • PHEVs plug-in hybrid electric vehicles
  • the internal resistance of a lithium-ion battery at a certain point after it starts to be used can be mainly classified into a positive electrode charge resistance component, a negative electrode charge resistance component, an ohmic resistance component (electrolyte resistance component), and a transport diffusion resistance component. There is a need to estimate the internal resistance value for each internal resistance component.
  • the battery diagnostic method disclosed in Patent Document 1 uses an AC impedance method to determine in advance the time when the electrolyte resistance component and the negative electrode charge resistance component appear, and further identifies the point at which the voltage rise changes from a curve to a linear shape.
  • the diagnostic method measures the battery voltage during constant current charging and discharging, and separates the voltage rise into the electrolyte resistance component and the negative electrode charge resistance component, the positive electrode charge resistance component, and the transport diffusion resistance component.
  • Patent Document 1 requires performing an AC impedance method in advance, and there is room for improvement in terms of easily estimating the internal resistance value for each internal resistance component.
  • the purpose of this disclosure is to provide a technology that can easily estimate the internal resistance value for each internal resistance component.
  • the estimation device includes an acquisition unit that acquires time series data of the voltage of a storage element when a constant current is passed through the storage element in one direction, and an estimation unit that estimates an internal resistance value for each internal resistance component based on the acquired time series data of the voltage of the storage element and the occurrence periods of multiple types of internal resistance components that are previously determined by passing a constant current in one direction.
  • the internal resistance value for each internal resistance component can be easily estimated.
  • FIG. 1 is a perspective view showing a configuration example of a power storage device including an estimation device;
  • FIG. 2 is a block diagram showing a configuration example of an estimation device.
  • 1 is a semi-logarithmic graph showing the internal resistance-time characteristics of an initial lithium ion battery and a degraded lithium ion battery.
  • 1 is a semi-logarithmic graph showing internal resistance versus time characteristics for various currents.
  • 1 is a semi-logarithmic graph showing internal resistance versus time characteristics for various temperatures.
  • 1 is a semi-logarithmic graph showing internal resistance versus time characteristics for various SOCs.
  • FIG. 13 is a diagram showing an example of the contents of boundary point information.
  • FIG. 2 is a diagram illustrating an estimation method executed by the estimation device.
  • 11 is a flowchart illustrating an example of a processing procedure executed by the estimation device.
  • An estimation device includes an acquisition unit that acquires time series data of a voltage of an energy storage element when a constant current is passed through the element in one direction, and an estimation unit that estimates an internal resistance value for each internal resistance component based on the acquired time series data of the voltage of the energy storage element and expression periods of multiple types of internal resistance components that are determined in advance by passing a constant current in one direction.
  • one direction may refer to the discharging direction of the storage element, but is not limited thereto, and may refer to the charging direction of the storage element.
  • the "constant current” may be a current that includes a certain degree of fluctuation due to the influence of ripple noise and the like.
  • the estimation device described in (1) above can easily estimate the internal resistance value for each internal resistance component of the storage element to be estimated based on the occurrence period of a known internal resistance component.
  • the internal resistance is estimated, for example, using the voltage behavior of the storage element when the storage element is discharged at a constant current. Therefore, for example, for an in-vehicle storage element, the internal resistance can be estimated under a normal usage environment. Since no alternating current is used to estimate the internal resistance, estimation is easy.
  • the estimation device may also estimate the power supply performance (SOF: State Of Function) of the storage element. In other words, other states and parameters, such as the SOF and the amount of deterioration of the storage capacity for each internal resistance component, may be estimated based on the internal resistance value for each internal resistance component.
  • SOF State Of Function
  • the boundary points of the period during which the known internal resistance components are expressed can be used.
  • the boundary points are determined in advance, for example, by a constant current discharge test of the storage element before it is installed in a moving body such as a vehicle or a stationary storage battery facility.
  • the output current of an AC impedance measuring device is limited to about 5 amperes (A) or less.
  • A amperes
  • DC constant current discharge
  • the current changes from moment to moment in a sinusoidal wave shape, so when the amplitude of the current becomes large, such as several hundred A, it is difficult to uniquely determine the position of the boundary point where the voltage changes.
  • the current is constant and not sinusoidal, so the position of the boundary point is easy to uniquely determine, and the internal resistance can be accurately separated into each resistance component.
  • LFP-Gr lithium-ion batteries which contain lithium iron phosphate in the positive electrode material and graphite in the negative electrode material, there is a tendency for the timing at which multiple types of internal resistance components appear to be separated in time when a constant current is passed through them.
  • energy storage elements that have similar tendencies to LFP-Gr lithium-ion batteries, it is easy to identify the boundary points, and this estimation method can be used effectively.
  • the estimation unit may estimate the internal resistance value for each internal resistance component using a boundary point of the period during which the internal resistance component occurs, which is determined based on the internal resistance-time characteristic obtained by passing a constant current through the storage element.
  • the estimation device described in (2) above can easily, accurately and frequently identify boundary points based on changes in the internal resistance-time characteristics.
  • the boundary points may be found, for example, based on changes in the slope of the internal resistance-time characteristics.
  • the internal resistance value is small, it is difficult to identify boundary points based on the internal resistance value itself, but by using changes in the slope of the internal resistance-time characteristics, it is possible to properly identify boundary points even when the internal resistance value is small.
  • Multiple types of internal resistance components can be accurately estimated based on changes in the internal resistance-time characteristics.
  • the internal resistance component may include a first resistance component and a second resistance component
  • the boundary point of the expression period may include a first boundary point corresponding to the first resistance component and a second boundary point corresponding to the second resistance component.
  • the internal resistance component may include a third resistance component
  • the boundary point of the expression period may include a third boundary point corresponding to the third resistance component.
  • the estimation unit may estimate an internal resistance value of the first resistance component based on the amount of change in the voltage of the storage element from the start of current flow through the storage element to the first boundary point, and after estimating the internal resistance value of the first resistance component, estimate an internal resistance value of the second resistance component based on the amount of change in the voltage of the storage element up to the second boundary point.
  • the estimation unit may further estimate an internal resistance value of the third resistance component based on the amount of change in the voltage of the storage element up to the third boundary point after estimating the internal resistance value of the second resistance component.
  • the estimation device described in (3) above can estimate the internal resistance value of each resistance component sequentially. Since the target resistance component can be estimated at the boundary point corresponding to each resistance component, distributed processing is possible and the calculation load is lighter than when the internal resistance value of each resistance component is estimated all at once at a certain point in time. In addition, the internal resistance value of each resistance component can be grasped at an earlier stage.
  • the boundary point of the onset period may be obtained in response to the current flowing through the storage element or the temperature of the storage element.
  • the estimation device described in (4) above can estimate the internal resistance value of each resistance component by taking into account the current or temperature of the storage element, i.e., the usage environment of the storage element.
  • the internal resistance can be estimated with high accuracy for storage elements that may be used under a variety of current or temperature conditions.
  • the boundary point of the manifestation period may be found for each current and temperature of the storage element.
  • a derivation unit may be provided that uses a data table indicating the relationship between the current of the storage element and the boundary point of the onset period to derive the boundary point according to the current of the storage element acquired by the acquisition unit.
  • the estimation device described in (5) above can easily and accurately identify the boundary point using a data table showing the relationship between the current and the boundary point.
  • the boundary point is found corresponding to the current of the storage element.
  • the acquisition unit of the estimation device may further acquire the temperature of the storage element, and the derivation unit may use a data table showing the relationship between the current and temperature and the boundary point to derive the boundary point of the manifestation period corresponding to the current and temperature of the storage element acquired by the acquisition unit.
  • the boundary point can be accurately derived and the internal resistance can be estimated.
  • the internal resistance component may include a total component of an ohmic resistance component and a negative electrode charge transfer resistance component, a positive electrode charge resistance component, and a transport diffusion resistance component.
  • the estimation device described in (6) above can separate the internal resistance of the storage element into the total ohmic resistance component and the negative electrode charge transfer resistance component, the positive electrode charge resistance component, and the transport diffusion resistance component, and estimate the value of each internal resistance.
  • a power storage device includes an estimation device according to any one of (1) to (6) above, and a power storage element.
  • the internal resistance can be separated into each internal resistance component within the energy storage device. Responsiveness can be improved by performing processing locally in a short time without communicating with a higher-level device (e.g., the vehicle's ECU (Electronic Control Unit), a monitoring device installed remotely, a cloud server, etc.).
  • Edge computing which estimates the internal resistance value for each internal resistance component as well as the SOF and other conditions and parameters in the energy storage device, allows a mobile object or facility in which the energy storage device is mounted to use the energy storage device more safely and stably.
  • the power storage device described in (7) above may be a 12V battery or a 48V battery.
  • the power storage device described in (8) above can be used suitably for mobile applications such as vehicles.
  • mobile objects have been required to have an automatic driving function.
  • the automatic driving function can be realized by the power storage device outputting status information such as SOF to a higher-level device (i.e., outputting whether or not a specified amount of power can be supplied for a specified period of time without causing an excessive voltage drop in the power storage device).
  • the estimation method acquires time series data of the voltage of a storage element when a constant current is passed through the storage element in one direction, and the computer executes a process of estimating the internal resistance value for each internal resistance component based on the acquired time series data of the voltage of the storage element and the occurrence periods of multiple types of internal resistance components that are previously determined by passing a constant current in one direction.
  • An estimation program acquires time series data of the voltage of a storage element when a constant current is passed through the storage element in one direction, and causes a computer to execute a process of estimating an internal resistance value for each internal resistance component based on the acquired time series data of the voltage of the storage element and the occurrence periods of multiple types of internal resistance components previously determined by passing a constant current in one direction.
  • FIG. 1 is a perspective view showing an example configuration of a power storage device 1 including an estimation device 3.
  • the power storage device 1 includes a plurality of power storage elements 2 (e.g., a plurality of power storage cells) and an estimation device 3.
  • the power storage elements 2 and the estimation device 3 are housed, for example, in a housing case (not shown).
  • the storage element 2 is a secondary battery that can be charged and discharged, for example a lithium ion battery with a liquid electrolyte.
  • the storage element 2 has a positive electrode in which a positive electrode active material layer is formed on a long strip of positive electrode substrate foil made of, for example, aluminum, an aluminum alloy, etc., and a negative electrode in which a negative electrode active material layer is formed on a long strip of negative electrode substrate foil made of, for example, copper or a copper alloy, etc.
  • the positive electrode active material used in the positive electrode active material layer or the negative electrode active material used in the negative electrode active material layer any known material can be used as long as it is a positive electrode active material or a negative electrode active material capable of absorbing and releasing lithium ions.
  • the storage element 2 is preferably an LFP-Gr cell in which the positive electrode active material contains lithium iron phosphate and the negative electrode active material contains graphite.
  • the energy storage element (cell) 2 may be a laminated (pouch) type lithium ion battery, a lithium ion battery with a gel electrolyte, an all-solid-state lithium ion battery, a bipolar lithium ion battery (a battery in which the electrodes are electrically connected in series), a zinc-air battery, a sodium ion battery, or other electrochemical cells.
  • the energy storage device 1 may have a single cell, or may have a module in which multiple cells are connected in series and/or parallel, a bank in which multiple modules are connected in series, or a domain in which multiple banks are connected in parallel.
  • the power storage device 1 of this embodiment is mounted on an engine vehicle having an internal combustion engine (engine) as a driving source, or an EV, HEV, or PHEV.
  • the power storage device 1 is a 12 volt (V) battery or a 48 V battery.
  • the 12 V battery can be, for example, a battery pack in which four LFP-Gr cells 2 are connected in series, or a battery pack in which four cell units in which two LFP-Gr cells 2 are connected in parallel are connected in series. Alternatively, a battery pack in which four cell units in which three LFP-Gr cells 2 are connected in parallel are connected in series may be used.
  • the power storage device 1 is connected to electrical loads such as a vehicle ECU, a starter motor for starting the engine, and electrical equipment. When the starter motor is rotated or the vehicle is started, the power storage device 1 discharges and supplies power to the electrical loads.
  • the estimation device 3 is, for example, a battery management system (BMS).
  • BMS battery management system
  • the estimation device 3 acquires measurement data including the voltages of the storage element 2 and the storage device 1, and the current flowing through the storage element 2, and estimates the internal resistance of the storage element 2 and the storage device 1 for each internal resistance component based on the acquired measurement data.
  • the estimation device 3 is a flat circuit board installed on the top surface of the energy storage device 1.
  • the estimation device 3 may be installed on the side of the energy storage device 1, or may be installed away from the energy storage device 1.
  • the estimation device 3 may be located away from the energy storage device 1 and may include a server device that is communicatively connected to the BMS, or a vehicle ECU. In this case, the measurement data measured regarding the energy storage device 1 may be transmitted to the server device, etc., via communication.
  • FIG. 2 is a block diagram showing an example configuration of the estimation device 3.
  • the estimation device 3 includes a control unit 31, a storage unit 32, an input unit 33, and an output unit 34.
  • the estimation device 3 is realized by a circuit board, but alternatively, the estimation device 3 may be configured to perform distributed processing by using multiple computers, may be realized by multiple virtual machines provided in a single server, or may be realized using a cloud server.
  • the control unit 31 is an arithmetic circuit equipped with a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), etc.
  • the CPU or GPU equipped in the control unit 31 executes various computer programs stored in the ROM or the storage unit 32, and controls the operation of each of the hardware components mentioned above.
  • the control unit 31 may also have functions such as a timer that measures the elapsed time from when an instruction to start measurement is given to when an instruction to end measurement is given, a counter that counts numbers, and a clock that outputs date and time information.
  • the storage unit 32 includes a non-volatile storage device such as a flash memory or a hard disk drive.
  • the storage unit 32 stores various computer programs and data referenced by the control unit 31.
  • the storage unit 32 may be an external storage device connected to the estimation device 3.
  • the storage unit 32 of this embodiment stores an estimation program 321 for causing a computer to execute processing related to internal resistance estimation, and boundary point information 322 as data necessary for executing the estimation program 321.
  • the boundary point information 322 stores information on boundary points that are the boundaries between the periods during which multiple types of internal resistance components are expressed. Details of the boundary point information 322 will be described later.
  • a computer program (program product) including the estimation program 321 may be provided by a non-transitory recording medium 3A on which the computer program is readably recorded.
  • the recording medium 3A is, for example, a portable memory such as a magnetic disk, an optical disk, or a semiconductor memory.
  • the control unit 31 reads the desired computer program from the recording medium 3A using a reading device (not shown) and stores the read computer program in the memory unit 32.
  • the computer program may be provided by communication.
  • the estimation program 321 may be a single computer program or may be composed of multiple computer programs, and may be executed on a single computer or on multiple computers interconnected by a communication network.
  • the input unit 33 has an interface for connecting various sensors.
  • the sensors connected to the input unit 33 include, for example, a current sensor 41, a voltage sensor 42, and a temperature sensor 43.
  • the current sensor 41 is, for example, a shunt resistor, a current transformer, or a Hall effect current sensor, and measures the magnitude and direction (charging or discharging) of the current flowing through the storage element 2 in a time series.
  • the voltage sensor 42 detects the terminal voltage of the storage element (cell) 2 in a time series.
  • the temperature sensor 43 is, for example, a thermocouple or a thermistor, and measures the temperature of the storage element 2 in a time series.
  • the control unit 31 acquires current data measured by the current sensor 41, voltage data measured by the voltage sensor 42, and temperature data measured by the temperature sensor 43 via the input unit 33 at any time.
  • a temperature estimation unit that estimates the temperature of the storage element 2 in a time series using the measurement value by the temperature sensor 43 may be realized by the estimation device 3.
  • the output unit 34 may include an interface for connecting a display device 5.
  • An example of the display device 5 is a liquid crystal display device.
  • the output unit 34 may be provided with a communication interface for communicating with an external device.
  • the external device communicatively connected to the output unit 34 may be a higher-level device (e.g., a vehicle ECU).
  • the control unit 31 transmits information based on the estimation result from the output unit 34 to the external device.
  • the external device receives the information transmitted from the output unit 34, for example, and displays the estimation result on a display of the own device based on the received information.
  • the internal resistance of the energy storage element 2 includes a plurality of types of internal resistance components.
  • the internal resistance of the energy storage element 2 is classified into a first resistance component, a second resistance component, and a third resistance component.
  • the first resistance component is a composite component of an ohmic resistance component and a negative electrode charge resistance component.
  • the second resistance component is a positive electrode charge resistance component.
  • the third resistance component is a transport diffusion resistance component.
  • the negative electrode charge resistance usually appears earlier than the positive electrode charge resistance, and the transport diffusion resistance appears last (appearing in the order of the first resistance component, the second resistance component, and the third resistance component).
  • the internal resistance-time characteristic may be a characteristic (profile) shown as a curve that represents the relationship between the internal resistance and time in the energy storage element 2.
  • the inventors considered that by identifying the point at which the slope of the internal resistance-time characteristic changes, the internal resistance can be separated into each internal resistance component.
  • the point at which the slope changes may be the point at which the slope of the internal resistance-time characteristic changes by a predetermined threshold value or more.
  • the point at which the slope changes corresponds to a boundary point.
  • the boundary point is the boundary of the expression period in which each internal resistance is expressed.
  • the type of internal resistance component changes before and after the boundary point.
  • the boundary point is represented by the time corresponding to the boundary point, and hereinafter the boundary point is also referred to as the boundary time.
  • the boundary point and boundary time may have a certain width.
  • the first boundary time T1 which is the time when the slope changes for the first time after the start of discharge
  • the second boundary time T2 which is the time when the slope changes next
  • the third boundary time T3 which is the time when the slope changes after that.
  • the internal resistance can be separated into each resistance component: the internal resistance appearing from the start of discharge to the first boundary time T1 is the first resistance component, the internal resistance appearing from the first boundary time T1 to the second boundary time T2 is the second resistance component, and the internal resistance appearing from the second boundary time T2 to the third boundary time T3 is the third resistance component.
  • the third boundary time T3 the internal resistance hardly increases and remains almost constant.
  • the inventors conducted constant current discharge tests under various conditions on LFP-Gr type lithium ion batteries in which the first boundary time T1, the second boundary time T2, and the third boundary time T3 are relatively far apart (the intervals between each boundary time are relatively wide), and investigated the factors that affect the boundary times.
  • Figure 3 is a semi-logarithmic graph showing the internal resistance-time characteristics of an initial lithium-ion battery and a degraded lithium-ion battery.
  • Figures 3 to 6 which will be described below, show the results of a constant-current discharge test using an LFP-Gr test cell (energy storage element).
  • the vertical axis of the graphs shown in Figures 3 to 6 is the internal resistance (DCR, in m ⁇ ), and the horizontal axis is the logarithm of the time (in seconds) that has elapsed since the start of discharge.
  • the internal resistance (R) is the value ( ⁇ V) obtained by subtracting the cell terminal voltage (open circuit voltage: OCV) before the start of discharge from the cell terminal voltage measured after a predetermined constant current discharge, divided by the current (I).
  • Figures 3 to 6 show the first boundary time T1, second boundary time T2, and third boundary time T3, which are determined from the slope of the internal resistance-time characteristics in correspondence with the internal resistance-time characteristics.
  • the upper graph in Figure 3 shows the characteristics of a degraded product
  • the lower graph shows the characteristics of an initial product.
  • Figure 4 is a semi-logarithmic graph showing the correlation between internal resistance and time for various currents. From the top of the graph, the characteristics of the test cell when discharging DC currents of 5A, 10A, 15A, 30A, 60A, and 150A are shown. As is clear from Figure 4, the time at which each internal resistance component appears changes depending on the magnitude of the current flowing through the storage element 2. The larger the current, the shorter the first boundary time T1, second boundary time T2, and third boundary time T3.
  • Figure 5 is a semi-logarithmic graph showing the correlation between internal resistance and time at various temperatures. From the top of the graph, the characteristics of the test cell when discharging the same DC current at temperatures of -30°C, -20°C, -10°C, 0°C, and 25°C are shown. As is clear from Figure 5, the time at which each internal resistance component appears changes depending on the temperature of the storage element 2. The higher the temperature, the shorter the first boundary time T1, second boundary time T2, and third boundary time T3.
  • Figure 6 is a semi-logarithmic graph showing the correlation between internal resistance and time for various SOCs (State of Charge). From the top of the graph, it shows the characteristics of the test cell when discharging the same DC current from SOCs of 10%, 30%, 70%, and 90%. As is clear from Figure 6, the time at which each internal resistance component appears is roughly the same, and each boundary time is independent of the SOC of the storage element 2 at the start of discharge.
  • boundary point information 322 is generated in advance, which specifies the above-mentioned first boundary time T1, second boundary time T2, and third boundary time T3 for each current and temperature of the storage element 2.
  • the obtained boundary point information 322 is used to estimate the internal resistance of the storage element 2 in the usage environment. The estimation method of this embodiment will be described in detail below.
  • FIG. 7 is a diagram showing an example of the contents of the boundary point information 322.
  • the boundary point information 322 is information that indicates the relationship between the current and temperature of the storage element 2 and the boundary time.
  • the boundary point information 322 includes a first boundary time table 3221, a second boundary time table 3222, and a third boundary time table 3223, and stores the relationship between the current and temperature and the boundary time in a data table format.
  • the first boundary time table 3221 is, for example, a two-dimensional table, and indicates a first boundary time T1 associated with temperature and current. A plurality of first boundary times T1 are stored for a plurality of temperatures at predetermined intervals of current. Similarly, the second boundary time table 3222 indicates a second boundary time T2 associated with temperature and current. The third boundary time table 3223 indicates a third boundary time T3 associated with temperature and current.
  • the first boundary time table 3221, the second boundary time table 3222, and the third boundary time table 3223 may further store boundary times by SOC.
  • boundary times For example, in the case of a storage element 2 whose boundary time is SOC-dependent, the accuracy of separation of the internal resistance components is improved by setting the boundary time taking into account the SOC in addition to the temperature and current.
  • the boundary point information 322 shown in FIG. 7 is an example and is not limited to this example.
  • the boundary point information 322 may store the relationship between the boundary point and the current and temperature using a function formula, graph, etc.
  • the boundary time may be indicated by the discharge rate (C rate) instead of the current (amperes).
  • the boundary point information 322 may be information indicating the relationship between the boundary time and at least one of the current and temperature.
  • the boundary point information 322 can be generated by performing a constant current discharge test in advance.
  • a graph of the internal resistance-time characteristics is generated from the voltage-time characteristics (discharge curve) when the test cell is discharged.
  • the internal resistance-time characteristics are semi-logarithmic graphs with the internal resistance on the vertical axis and the logarithm of time on the horizontal axis, as shown, for example, in Figures 3 to 6.
  • the internal resistance-time characteristics may be a graph with the internal resistance on the vertical axis and the time on the horizontal axis.
  • the first boundary time T1, the second boundary time T2, and the third boundary time T3 are obtained by determining the points (times at which the slope changes) where the slope of the internal resistance changes based on the generated internal resistance-time characteristic.
  • the points can be determined by analyzing the graph shape (waveform) to identify the points before and after which the slope of the graph changes by more than a predetermined threshold value.
  • the points where the slope changes may also be determined using other known methods such as graph analysis and fitting. Tests are performed under different currents and temperatures, and each boundary time is identified for each current and temperature, thereby obtaining boundary point information 322 as shown in FIG. 7.
  • the boundary point information 322 may be generated using a test cell that is the same as the storage element 2 whose internal resistance is to be estimated, or a test cell that has a structure, type, composition, etc. similar to that of the storage element 2.
  • the estimation device 3 acquires the boundary point information 322, for example, by communicating with an external server, and stores the acquired boundary point information 322 in the storage unit 32.
  • the boundary point information 322 may be written to the estimation device 3 at the time of manufacturing the energy storage device 1 or at the time of shipment from the factory, etc.
  • FIG. 8 is a diagram for explaining the estimation method executed by the estimation device 3.
  • the vertical axis in the upper graph of FIG. 8 indicates that the discharge current increases as it moves downward.
  • FIG. 8 shows that a small current (e.g., 10 A) is discharged from the storage element 2 until time 0, and a large current (e.g., 110 A) is discharged after time 0.
  • the terminal voltage of the storage element 2 decreases over time due to the discharge from the time 0.
  • the first boundary time T1 (t1 in FIG. 8) has passed, it is the first resistance component section in which the voltage behavior caused by the first resistance component appears.
  • T1 the first boundary time T1
  • T2 the second boundary time T2
  • the estimation device 3 acquires measurement data of the discharge current, voltage, and temperature of the storage element 2 through various sensors.
  • the estimation device 3 stores the acquired measurement data in the memory unit 32.
  • the estimation device 3 repeatedly acquires the measurement data at predetermined or appropriate intervals, and stores the data in chronological order in the memory unit 32. As a result, time series data of the current, voltage, and temperature is obtained, as shown in FIG. 8.
  • the estimation device 3 determines whether or not to estimate the internal resistance.
  • the estimation device 3 may determine whether or not to estimate the internal resistance by determining whether or not the current fluctuation ⁇ I is equal to or greater than a preset fluctuation threshold.
  • the current fluctuation ⁇ I may be the difference between the current at the time of determination and the current at the measurement time immediately preceding the time of determination. In this specification, “difference” refers to the absolute value of the difference.
  • the estimation device 3 estimates the internal resistance. If the current fluctuation ⁇ I is equal to or greater than a preset fluctuation threshold, the estimation device 3 estimates the internal resistance. If the current fluctuation ⁇ I is less than a preset fluctuation threshold, the estimation device 3 does not estimate the internal resistance.
  • the estimation device 3 may determine the direction of current flow based on the positive or negative of the obtained current, and estimate the internal resistance only if it is determined that discharging is occurring.
  • the estimation device 3 may estimate the internal resistance when the above-mentioned current fluctuation ⁇ I is detected after the current in the storage element 2 has been substantially constant for a predetermined period of time or more (the current fluctuation has been substantially zero for a predetermined period of time or more).
  • the fluctuation threshold value may be set taking into consideration the current value during cranking, when the engine crankshaft is rotated by the starter motor to start the engine.
  • the fluctuation threshold value may be set taking into consideration the current value when the high-voltage system is started.
  • the estimation device 3 may estimate the internal resistance when a current fluctuation ⁇ I occurs, regardless of the fluctuation value of the current, or when an instruction is received from a higher-level device.
  • the estimation device 3 may estimate the internal resistance when the current (absolute value of the current) at the time of determination is equal to or greater than a preset current threshold value.
  • the estimation device 3 When it is determined that the internal resistance is to be estimated, the estimation device 3 derives a first boundary time T1 that serves as a reference for estimating the internal resistance, based on the current and temperature at the time when it is determined that the internal resistance is to be estimated and the first boundary time table 3221 of the boundary point information 322. Based on the information stored in the first boundary time table 3221, the estimation device 3 reads out the first boundary time T1 (e.g., t1) that corresponds to the current and temperature at the time of determination.
  • T1 e.g., t1
  • the estimation device 3 waits until the first boundary time t1 has elapsed.
  • the estimation device 3 calculates the internal resistance value R1 of the first resistance component.
  • the internal resistance value R1 of the first resistance component is calculated by dividing the amount of change in voltage ⁇ V1 from the reference point to the point when the first boundary time t1 has elapsed (hereinafter also referred to as the first time point) by the current fluctuation ⁇ I.
  • the amount of change in voltage ⁇ V1 is found by calculating the difference between the voltage at the reference point and the voltage at the first time point.
  • the current fluctuation ⁇ I may also be found by calculating the difference between the average value of the current at each measurement time point before the first time point after the reference point and the current at the reference point (current before the fluctuation).
  • the estimation device 3 derives the second boundary time T2 based on the current and temperature at the first time point and the second boundary time table 3222 of the boundary point information 322.
  • the estimation device 3 reads out the second boundary time T2 (e.g., t2) corresponding to the current and temperature at the first time point based on the information stored in the second boundary time table 3222.
  • the estimation device 3 waits until the second boundary time t2 has elapsed.
  • the reference point for starting to measure the elapsed time may be the same as the reference point for the first boundary time t1.
  • the estimation device 3 calculates the internal resistance value R2 of the second resistance component.
  • the internal resistance value R2 of the second resistance component is calculated by dividing the amount of change in voltage ⁇ V2 from the first time point to the time point at which the second boundary time t2 has elapsed (hereinafter also referred to as the second time point) by the current fluctuation ⁇ I.
  • the amount of change in voltage ⁇ V2 is found by calculating the difference between the voltage at the second time point and the voltage at the first time point.
  • the current fluctuation ⁇ I may be the difference between the average value of the current at each measurement time point before the second time point that is later than the first time point and the current at the reference point.
  • the estimation device 3 derives the third boundary time T3 based on the current and temperature at the second time point and the third boundary time table 3223 of the boundary point information 322.
  • the estimation device 3 reads out the third boundary time T3 (e.g., t3) corresponding to the current and temperature at the second time point based on the information stored in the third boundary time table 3223.
  • the estimation device 3 waits until the third boundary time t3 has elapsed.
  • the reference point for starting to measure the elapsed time may be the same as the reference point for the first boundary time t1.
  • the estimation device 3 calculates the internal resistance value R3 of the third resistance component.
  • the internal resistance value R3 of the third resistance component is calculated by dividing the amount of change in voltage ⁇ V3 from the second time point to the time point at which the third boundary time t3 has elapsed (hereinafter also referred to as the third time point) by the current fluctuation ⁇ I.
  • the amount of change in voltage ⁇ V3 is found by calculating the difference between the voltage at the third time point and the voltage at the second time point.
  • the current fluctuation ⁇ I may be the difference between the average value of the current at each measurement time point before the third time point that is after the second time point and the current at the reference point.
  • each boundary time is determined using the temperature at each point in time.
  • each boundary time may be determined using the temperature at a common point in time.
  • the temperature at the common point in time may be, for example, the temperature at a reference point.
  • the first boundary time T1, the second boundary time T2, and the third boundary time T3 are identified in sequence at the reference point, the first time point, and the second time point.
  • the boundary times can be identified more accurately by taking into account the current at each time point, but alternatively, the boundary times may be identified at the same timing.
  • the estimation device 3 may refer to each table of the boundary point information 322 and identify the first boundary time T1, the second boundary time T2, and the third boundary time T3 based on the current and temperature at the reference point.
  • the estimation device 3 may estimate the first resistance component, the second resistance component, and the third resistance component together at the same time (e.g., the third time point).
  • the estimation device 3 may estimate the first resistance component at any time point after the first time point, may estimate the second resistance component at any time point after the second time point, and may estimate the third resistance component at any time point after the third time point.
  • FIG. 9 is a flowchart showing an example of a processing procedure executed by the estimation device 3.
  • the processing in the flowchart below may be executed by the control unit 31 in accordance with the estimation program 321 stored in the memory unit 32 of the estimation device 3, or may be realized by a dedicated hardware circuit (e.g., FPGA or ASIC) provided in the control unit 31, or may be realized by a combination of these.
  • the estimation device 3 repeatedly executes the following processing, for example, at predetermined or appropriate intervals.
  • the control unit 31 of the estimation device 3 acquires the current, voltage, and temperature of the storage element 2 by functioning as an acquisition unit (step S11).
  • the control unit 31 may acquire time series data of the current, voltage, and temperature by repeatedly acquiring the current, voltage, and temperature at a predetermined or appropriate interval.
  • the control unit 31 may acquire time series data of the current, voltage, and temperature by accepting measurement data of the current, voltage, and temperature of the storage element 2 in time series via the input unit 33.
  • the control unit 31 may read out the time series data stored in the memory unit 32.
  • the control unit 31 determines whether or not to estimate the internal resistance (step S12). For example, if it is determined that the internal resistance is not to be estimated because the current fluctuation ⁇ I is less than a preset fluctuation threshold (step S12: NO), the control unit 31 returns the process to step S12 and waits until the current fluctuation ⁇ I becomes equal to or greater than the fluctuation threshold.
  • step S12 If it is determined that the internal resistance is to be estimated because the current fluctuation ⁇ I is equal to or greater than a preset fluctuation threshold (step S12: YES), the control unit 31 derives a first boundary time T1 (step S13). The control unit 31 identifies the first boundary time T1 corresponding to the current and temperature at the determination time point when it is determined that the internal resistance is to be estimated, based on the current and temperature at the determination time point and the first boundary time table 3221.
  • the control unit 31 determines whether the first boundary time T1 has elapsed based on the time elapsed from the reference point (step S14). If it is determined that the first boundary time T1 has not elapsed (step S14: NO), the control unit 31 returns the process to step S14 and waits until the first boundary time T1 has elapsed.
  • step S14 If it is determined that the first boundary time T1 has elapsed (step S14: YES), the control unit 31, functioning as an estimation unit, estimates the internal resistance value R1 of the first resistance component (step S15).
  • the control unit 31 divides the amount of change in voltage ⁇ V1 from the reference point to the first point in time by the current fluctuation ⁇ I to obtain the internal resistance value R1 of the first resistance component.
  • the control unit 31 derives the second boundary time T2 (step S16).
  • the control unit 31 identifies the second boundary time T2 corresponding to the current and temperature at the first time point based on the current and temperature at the first time point and the second boundary time table 3222.
  • the control unit 31 determines whether the second boundary time T2 has elapsed based on the time elapsed from the reference point (step S17). If it is determined that the second boundary time T2 has not elapsed (step S17: NO), the control unit 31 returns the process to step S17 and waits until the second boundary time T2 has elapsed.
  • step S17 If it is determined that the second boundary time T2 has elapsed (step S17: YES), the control unit 31, functioning as an estimation unit, estimates the internal resistance value R2 of the second resistance component (step S18).
  • the control unit 31 divides the amount of change in voltage ⁇ V2 from the first point in time to the second point in time by the current fluctuation ⁇ I to obtain the internal resistance value R2 of the second resistance component.
  • the control unit 31 derives the third boundary time T3 (step S19).
  • the control unit 31 identifies the third boundary time T3 corresponding to the current and temperature at the second point in time based on the current and temperature at the second point in time and the third boundary time table 3223.
  • the control unit 31 determines whether or not the third boundary time T3 has elapsed based on the time elapsed from the reference point (step S20). If it is determined that the third boundary time T3 has not elapsed (step S20: NO), the control unit 31 returns the process to step S20 and waits until the third boundary time T3 has elapsed.
  • step S20 If it is determined that the third boundary time T3 has elapsed (step S20: YES), the control unit 31, functioning as an estimation unit, estimates the internal resistance value R3 of the third resistance component (step S21).
  • the control unit 31 divides the amount of change in voltage ⁇ V3 from the second point in time to the third point in time by the current fluctuation ⁇ I to obtain the internal resistance value R3 of the third resistance component.
  • the control unit 31 outputs the estimated results of the internal resistance, including the estimated internal resistance value R1 of the first resistance component, the estimated internal resistance value R2 of the second resistance component, and the estimated internal resistance value R3 of the third resistance component, to a higher-level device (step S22), and ends the series of processes.
  • the higher-level device may be, for example, a vehicle ECU.
  • the estimation device 3 or higher-level device may determine the power supply performance (e.g., charge acceptance performance, discharge performance, etc.) of the energy storage element 2 or energy storage device 1 based on the estimated internal resistance.
  • the estimation device 3 or higher-level device may estimate the voltage behavior of the energy storage element 2 and determine whether charging or discharging is possible, for example, by providing the estimated internal resistance values of the first resistance component, the second resistance component, and the third resistance component to an equivalent circuit model that simulates the voltage behavior of the energy storage element 2.
  • the accuracy of the determination of the power supply performance can be improved.
  • the internal resistance value can be easily and accurately estimated by separating each internal resistance component using pre-prepared boundary point information 322. Since the boundary point information 322 is set for each current and temperature, the boundary time can be determined taking into account the current and temperature used by the storage element 2. By determining each boundary time based on the current and temperature at each specific time, the internal resistance corresponding to the actual usage state of the storage element 2 can be accurately estimated.
  • the timing for starting internal resistance estimation can be adjusted by setting it to the time when current fluctuation ⁇ I is equal to or greater than the fluctuation threshold.
  • internal resistance estimation can be performed when an amount of current suitable for estimating internal resistance flows, such as during cranking or when the high-voltage system starts up, or when an operation is repeated in a cycle suitable for estimating internal resistance, enabling necessary and sufficient estimation.
  • the estimation device, estimation method, and estimation program can be applied to applications other than vehicles, and may be applied to flying objects such as aircraft, flying vehicles, and HAPS (High Altitude Platform Stations), as well as to ships and submarines.
  • the estimation device, estimation method, and estimation program are preferably applied to moving objects that require a high level of safety (requiring real-time calculations), but they may also be applied to stationary energy storage devices, not limited to moving objects.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

This estimating device comprises: an acquiring unit for acquiring time-series data of a voltage of an electricity storage element when the electricity storage element is energized using a unidirectional constant current; and an estimating unit for estimating an internal resistance value of each of a plurality of types of internal resistance component on the basis of the acquired time-series data of the voltage of the electricity storage element and a period of expression of the internal resistance components, obtained in advance by means of the unidirectional constant current energization.

Description

推定装置、蓄電装置、推定方法及び推定プログラムESTIMATION DEVICE, POWER STORAGE DEVICE, ESTIMATION METHOD, AND ESTIMATION PROGRAM
 本発明は、推定装置、蓄電装置、推定方法及び推定プログラムに関する。 The present invention relates to an estimation device, a power storage device, an estimation method, and an estimation program.
 リチウムイオン二次電池等の蓄電素子は、電気自動車(EV)、ハイブリッド電気自動車(HEV)、プラグインハイブリッド電気自動車(PHEV)等の車両用の電源として用いられている。 Energy storage elements such as lithium-ion secondary batteries are used as power sources for vehicles such as electric vehicles (EVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs).
 蓄電素子は、充放電を繰り返すことで内部抵抗が増加することが知られている。使用開始後のある時点におけるリチウムイオン電池の内部抵抗は、主に、正極電荷抵抗成分、負極電荷抵抗成分、オーム性抵抗成分(電解液抵抗成分)及び輸送拡散抵抗成分に分類できる。内部抵抗成分毎の内部抵抗値を推定することに対するニーズがある。 It is known that the internal resistance of energy storage elements increases as they are repeatedly charged and discharged. The internal resistance of a lithium-ion battery at a certain point after it starts to be used can be mainly classified into a positive electrode charge resistance component, a negative electrode charge resistance component, an ohmic resistance component (electrolyte resistance component), and a transport diffusion resistance component. There is a need to estimate the internal resistance value for each internal resistance component.
 特許文献1に開示される電池の診断方法は、交流インピーダンス法を用いて事前に電解液抵抗成分及び負極電荷抵抗成分が現れる時間を決定し、さらに、電圧の上昇が曲線状から直線状に変化する変化点を特定する。診断方法は、定電流充放電時の電池の電圧を計測して、電圧上昇分を、電解液抵抗成分及び負極電荷抵抗成分と、正極電荷抵抗成分と、輸送拡散抵抗成分とに分離する。 The battery diagnostic method disclosed in Patent Document 1 uses an AC impedance method to determine in advance the time when the electrolyte resistance component and the negative electrode charge resistance component appear, and further identifies the point at which the voltage rise changes from a curve to a linear shape. The diagnostic method measures the battery voltage during constant current charging and discharging, and separates the voltage rise into the electrolyte resistance component and the negative electrode charge resistance component, the positive electrode charge resistance component, and the transport diffusion resistance component.
特許第6883742号Patent No. 6883742
 特許文献1に記載の診断方法は、事前に交流インピーダンス法を行う必要があり、内部抵抗成分毎の内部抵抗値を容易に推定するという観点において改善の余地がある。 The diagnostic method described in Patent Document 1 requires performing an AC impedance method in advance, and there is room for improvement in terms of easily estimating the internal resistance value for each internal resistance component.
 本開示の目的は、内部抵抗成分毎の内部抵抗値を容易に推定する技術を提供することである。 The purpose of this disclosure is to provide a technology that can easily estimate the internal resistance value for each internal resistance component.
 本開示の一態様に係る推定装置は、蓄電素子を一方向の定電流で通電した際の前記蓄電素子の電圧の時系列データを取得する取得部と、取得した前記蓄電素子の電圧の時系列データと、一方向の定電流通電により予め求められた、複数種の内部抵抗成分の発現期間とに基づき、内部抵抗成分毎の内部抵抗値を推定する推定部とを備える。 The estimation device according to one aspect of the present disclosure includes an acquisition unit that acquires time series data of the voltage of a storage element when a constant current is passed through the storage element in one direction, and an estimation unit that estimates an internal resistance value for each internal resistance component based on the acquired time series data of the voltage of the storage element and the occurrence periods of multiple types of internal resistance components that are previously determined by passing a constant current in one direction.
 本開示によれば、内部抵抗成分毎の内部抵抗値を容易に推定することができる。 According to this disclosure, the internal resistance value for each internal resistance component can be easily estimated.
推定装置を備える蓄電装置の構成例を示す斜視図である。1 is a perspective view showing a configuration example of a power storage device including an estimation device; 推定装置の構成例を示すブロック図である。FIG. 2 is a block diagram showing a configuration example of an estimation device. リチウムイオン電池初期品とリチウムイオン電池劣化品との、内部抵抗-時間特性を示す片対数グラフである。1 is a semi-logarithmic graph showing the internal resistance-time characteristics of an initial lithium ion battery and a degraded lithium ion battery. 内部抵抗-時間特性を多様な電流について示す片対数グラフである。1 is a semi-logarithmic graph showing internal resistance versus time characteristics for various currents. 内部抵抗-時間特性を多様な温度について示す片対数グラフである。1 is a semi-logarithmic graph showing internal resistance versus time characteristics for various temperatures. 内部抵抗-時間特性を多様なSOCについて示す片対数グラフである。1 is a semi-logarithmic graph showing internal resistance versus time characteristics for various SOCs. 境界点情報の内容例を示す図である。FIG. 13 is a diagram showing an example of the contents of boundary point information. 推定装置が実行する推定方法を説明する図である。FIG. 2 is a diagram illustrating an estimation method executed by the estimation device. 推定装置が実行する処理手順の一例を示すフローチャートである。11 is a flowchart illustrating an example of a processing procedure executed by the estimation device.
 (1)本開示の一態様に係る推定装置は、蓄電素子を一方向の定電流で通電した際の前記蓄電素子の電圧の時系列データを取得する取得部と、取得した前記蓄電素子の電圧の時系列データと、一方向の定電流通電により予め求められた、複数種の内部抵抗成分の発現期間とに基づき、内部抵抗成分毎の内部抵抗値を推定する推定部とを備える。
 ここで「一方向」とは、蓄電素子の放電方向であってもよいが、それに限定はされず、蓄電素子の充電方向であってもよい。
 本明細書において、「定電流」は、リップルノイズ等の影響によりある程度の変動を含む電流であってもよい。
(1) An estimation device according to one aspect of the present disclosure includes an acquisition unit that acquires time series data of a voltage of an energy storage element when a constant current is passed through the element in one direction, and an estimation unit that estimates an internal resistance value for each internal resistance component based on the acquired time series data of the voltage of the energy storage element and expression periods of multiple types of internal resistance components that are determined in advance by passing a constant current in one direction.
Here, "one direction" may refer to the discharging direction of the storage element, but is not limited thereto, and may refer to the charging direction of the storage element.
In this specification, the "constant current" may be a current that includes a certain degree of fluctuation due to the influence of ripple noise and the like.
 上記(1)に記載の推定装置によれば、推定対象の蓄電素子について、既知の内部抵抗成分の発現期間に基づいて、容易に内部抵抗成分毎の内部抵抗値を推定できる。内部抵抗の推定は、例えば、蓄電素子を定電流で放電した際の蓄電素子の電圧挙動を用いて行われる。そのため、例えば車載蓄電素子に関し、通常の使用環境下で内部抵抗を推定できる。内部抵抗の推定のために交流電流を使用しないため、推定が容易となる。推定装置は、内部抵抗成分毎の内部抵抗値に加え、蓄電素子の電力供給性能(SOF:State Of Function)を推定してもよい。つまり、内部抵抗成分毎の内部抵抗値に基づいて、SOFや、内部抵抗成分毎の蓄電容量の劣化量など、その他の状態やパラメータが推定されてもよい。 The estimation device described in (1) above can easily estimate the internal resistance value for each internal resistance component of the storage element to be estimated based on the occurrence period of a known internal resistance component. The internal resistance is estimated, for example, using the voltage behavior of the storage element when the storage element is discharged at a constant current. Therefore, for example, for an in-vehicle storage element, the internal resistance can be estimated under a normal usage environment. Since no alternating current is used to estimate the internal resistance, estimation is easy. In addition to the internal resistance value for each internal resistance component, the estimation device may also estimate the power supply performance (SOF: State Of Function) of the storage element. In other words, other states and parameters, such as the SOF and the amount of deterioration of the storage capacity for each internal resistance component, may be estimated based on the internal resistance value for each internal resistance component.
 推定には、既知の内部抵抗成分の発現期間の境界点を用いることができる。境界点は、例えば、車両等の移動体や定置用蓄電池設備に搭載される前の蓄電素子の定電流放電試験により予め求められる。一般的に、交流インピーダンス測定装置の出力電流は5アンペア(A)程度以下に限られる。これに対し、蓄電素子からの定電流放電(直流)であれば数100Aまでの高出力が可能である。そのため、交流インピーダンス法を用いた場合に比べて、幅広い電流範囲の境界点を求めることができる。交流の場合には、電流が正弦波状に時々刻々と変化するため、電流の振幅が数100Aのように大きくなると、電圧の変化する境界点の位置が一意に定まりにくい。直流の場合には、電流が正弦波状でなく一定であるため、境界点の位置が一意に定まり易く、内部抵抗を精度よく各抵抗成分に分離できる。 For the estimation, the boundary points of the period during which the known internal resistance components are expressed can be used. The boundary points are determined in advance, for example, by a constant current discharge test of the storage element before it is installed in a moving body such as a vehicle or a stationary storage battery facility. In general, the output current of an AC impedance measuring device is limited to about 5 amperes (A) or less. In contrast, a high output of up to several hundred A is possible with constant current discharge (DC) from the storage element. Therefore, compared to the case where the AC impedance method is used, it is possible to determine the boundary points over a wider current range. In the case of AC, the current changes from moment to moment in a sinusoidal wave shape, so when the amplitude of the current becomes large, such as several hundred A, it is difficult to uniquely determine the position of the boundary point where the voltage changes. In the case of DC, the current is constant and not sinusoidal, so the position of the boundary point is easy to uniquely determine, and the internal resistance can be accurately separated into each resistance component.
 正極の材料にリン酸鉄リチウムを含むと共に負極の材料にグラファイトを含むLFP-Gr系のリチウムイオン電池は、定電流通電時に、複数種の内部抵抗成分の発現するタイミングが時間的に離れる傾向がある。特に、LFP-Gr系のリチウムイオン電池と同様な傾向を持つ蓄電素子に対し、境界点の特定が容易であり、本推定手法を好適に使用できる。 In LFP-Gr lithium-ion batteries, which contain lithium iron phosphate in the positive electrode material and graphite in the negative electrode material, there is a tendency for the timing at which multiple types of internal resistance components appear to be separated in time when a constant current is passed through them. In particular, for energy storage elements that have similar tendencies to LFP-Gr lithium-ion batteries, it is easy to identify the boundary points, and this estimation method can be used effectively.
 (2)上記(1)に記載の推定装置において、前記推定部は、前記蓄電素子の定電流通電により得られる内部抵抗-時間特性に基づき求められる内部抵抗成分の発現期間の境界点を用いて、前記内部抵抗成分毎の内部抵抗値を推定してもよい。 (2) In the estimation device described in (1) above, the estimation unit may estimate the internal resistance value for each internal resistance component using a boundary point of the period during which the internal resistance component occurs, which is determined based on the internal resistance-time characteristic obtained by passing a constant current through the storage element.
 上記(2)に記載の推定装置によれば、内部抵抗-時間特性の変化に基づいて、境界点を容易且つ精度よく高頻度で特定できる。境界点は、例えば内部抵抗-時間特性の傾きの変化に基づき求められてもよい。内部抵抗値が小さい場合には、内部抵抗値自体に基づき境界点を特定することが困難であるが、内部抵抗-時間特性の傾きの変化を用いることで、内部抵抗値が小さい場合であっても境界点を適正に特定できる。複数種の内部抵抗成分を、内部抵抗-時間特性の変化に基づき精度よく推定できる。 The estimation device described in (2) above can easily, accurately and frequently identify boundary points based on changes in the internal resistance-time characteristics. The boundary points may be found, for example, based on changes in the slope of the internal resistance-time characteristics. When the internal resistance value is small, it is difficult to identify boundary points based on the internal resistance value itself, but by using changes in the slope of the internal resistance-time characteristics, it is possible to properly identify boundary points even when the internal resistance value is small. Multiple types of internal resistance components can be accurately estimated based on changes in the internal resistance-time characteristics.
 (3)上記(1)又は(2)に記載の推定装置において、前記内部抵抗成分は、第1抵抗成分及び第2抵抗成分を含み、前記発現期間の境界点は、前記第1抵抗成分に対応する第1境界点及び前記第2抵抗成分に対応する第2境界点を含んでもよい。さらに、前記内部抵抗成分が第3抵抗成分を含み、前記発現期間の境界点が前記第3抵抗成分に対応する第3境界点を含んでもよい。前記推定部は、前記蓄電素子の通電を開始してから前記第1境界点までの前記蓄電素子の電圧の変化量に基づき、前記第1抵抗成分の内部抵抗値を推定し、前記第1抵抗成分の内部抵抗値を推定した後、前記第2境界点までの前記蓄電素子の電圧の変化量に基づき、前記第2抵抗成分の内部抵抗値を推定してもよい。前記推定部はさらに、前記第2抵抗成分の内部抵抗値を推定した後、前記第3境界点までの前記蓄電素子の電圧の変化量に基づき、前記第3抵抗成分の内部抵抗値を推定してもよい。 (3) In the estimation device described in (1) or (2) above, the internal resistance component may include a first resistance component and a second resistance component, and the boundary point of the expression period may include a first boundary point corresponding to the first resistance component and a second boundary point corresponding to the second resistance component. Furthermore, the internal resistance component may include a third resistance component, and the boundary point of the expression period may include a third boundary point corresponding to the third resistance component. The estimation unit may estimate an internal resistance value of the first resistance component based on the amount of change in the voltage of the storage element from the start of current flow through the storage element to the first boundary point, and after estimating the internal resistance value of the first resistance component, estimate an internal resistance value of the second resistance component based on the amount of change in the voltage of the storage element up to the second boundary point. The estimation unit may further estimate an internal resistance value of the third resistance component based on the amount of change in the voltage of the storage element up to the third boundary point after estimating the internal resistance value of the second resistance component.
 上記(3)に記載の推定装置によれば、各抵抗成分の内部抵抗値を順次推定できる。各抵抗成分に対応する境界点で対象の抵抗成分を推定できるため、ある時点でまとめて抵抗成分毎の内部抵抗値を推定する場合に比べて、分散処理が可能で計算負荷が軽い。また、より早い段階から抵抗成分毎の内部抵抗値を把握できる。 The estimation device described in (3) above can estimate the internal resistance value of each resistance component sequentially. Since the target resistance component can be estimated at the boundary point corresponding to each resistance component, distributed processing is possible and the calculation load is lighter than when the internal resistance value of each resistance component is estimated all at once at a certain point in time. In addition, the internal resistance value of each resistance component can be grasped at an earlier stage.
 (4)上記(1)から(3)のいずれかに記載の推定装置において、前記発現期間の境界点は、前記蓄電素子に通電される電流又は前記蓄電素子の温度に対応して求められてもよい。 (4) In the estimation device described in any one of (1) to (3) above, the boundary point of the onset period may be obtained in response to the current flowing through the storage element or the temperature of the storage element.
 上記(4)に記載の推定装置によれば、蓄電素子の電流又は温度、すなわち蓄電素子の使用環境を考慮して各抵抗成分の内部抵抗値を推定できる。多様な電流条件下又は温度条件下で使用される可能性のある蓄電素子に関し、精度よく内部抵抗を推定できる。前記発現期間の境界点は蓄電素子の電流及び温度毎に求められてもよい。蓄電素子の電流及び温度の両方を考慮することで、内部抵抗の推定精度をより向上できる。 The estimation device described in (4) above can estimate the internal resistance value of each resistance component by taking into account the current or temperature of the storage element, i.e., the usage environment of the storage element. The internal resistance can be estimated with high accuracy for storage elements that may be used under a variety of current or temperature conditions. The boundary point of the manifestation period may be found for each current and temperature of the storage element. By taking into account both the current and temperature of the storage element, the estimation accuracy of the internal resistance can be further improved.
 (5)上記(1)から(4)のいずれかに記載の推定装置において、蓄電素子の電流と前記発現期間の境界点との関係性を示すデータテーブルを用いて、前記取得部で取得した蓄電素子の電流に応じた前記境界点を導出する導出部を備えてもよい。 (5) In the estimation device described in any one of (1) to (4) above, a derivation unit may be provided that uses a data table indicating the relationship between the current of the storage element and the boundary point of the onset period to derive the boundary point according to the current of the storage element acquired by the acquisition unit.
 上記(5)に記載の推定装置によれば、電流と境界点との関係性を示すデータテーブルを用いて、容易且つ精度よく境界点を特定できる。境界点は、蓄電素子の電流に対応して求められる。推定装置の取得部は、蓄電素子の温度をさらに取得し、導出部は、電流及び温度と境界点との関係性を示すデータテーブルを用いて、前記取得部で取得した前記蓄電素子の電流及び温度に対応した前記発現期間の境界点を導出してもよい。多様な電流又は電流及び温度の条件下で使用される可能性のある蓄電素子に関し、精度よく境界点を導出し、内部抵抗を推定できる。 The estimation device described in (5) above can easily and accurately identify the boundary point using a data table showing the relationship between the current and the boundary point. The boundary point is found corresponding to the current of the storage element. The acquisition unit of the estimation device may further acquire the temperature of the storage element, and the derivation unit may use a data table showing the relationship between the current and temperature and the boundary point to derive the boundary point of the manifestation period corresponding to the current and temperature of the storage element acquired by the acquisition unit. For a storage element that may be used under various current or current and temperature conditions, the boundary point can be accurately derived and the internal resistance can be estimated.
 (6)上記(1)から(5)のいずれかに記載の推定装置において、前記内部抵抗成分は、オーム性抵抗成分と負極電荷移動抵抗成分との合計成分、正極電荷抵抗成分及び輸送拡散抵抗成分を含んでもよい。 (6) In the estimation device described in any one of (1) to (5) above, the internal resistance component may include a total component of an ohmic resistance component and a negative electrode charge transfer resistance component, a positive electrode charge resistance component, and a transport diffusion resistance component.
 上記(6)に記載の推定装置によれば、蓄電素子の内部抵抗を、オーム性抵抗成分と負極電荷移動抵抗成分との合計成分、正極電荷抵抗成分及び輸送拡散抵抗成分それぞれに分離し、各内部抵抗値を推定できる。 The estimation device described in (6) above can separate the internal resistance of the storage element into the total ohmic resistance component and the negative electrode charge transfer resistance component, the positive electrode charge resistance component, and the transport diffusion resistance component, and estimate the value of each internal resistance.
 (7)本開示の一態様に係る蓄電装置は、上記(1)から(6)のいずれか1つに記載の推定装置と、蓄電素子とを備える。 (7) A power storage device according to one aspect of the present disclosure includes an estimation device according to any one of (1) to (6) above, and a power storage element.
 上記(7)に記載の蓄電装置によれば、蓄電装置内で、内部抵抗の各内部抵抗成分への分離を行うことができる。上位装置(例えば、車両のECU(Electronic Control Unit)や、離れて設置される監視装置、クラウドサーバ等)との通信をせずに、短時間でローカル的に処理を行うことで、応答性を向上できる。内部抵抗成分毎の内部抵抗値に加え、SOFやその他の状態・パラメータを蓄電装置で推定するエッジコンピューティングにより、蓄電装置が搭載される移動体又は設備が、蓄電装置をより安全かつ安定的に使用できる。 According to the energy storage device described in (7) above, the internal resistance can be separated into each internal resistance component within the energy storage device. Responsiveness can be improved by performing processing locally in a short time without communicating with a higher-level device (e.g., the vehicle's ECU (Electronic Control Unit), a monitoring device installed remotely, a cloud server, etc.). Edge computing, which estimates the internal resistance value for each internal resistance component as well as the SOF and other conditions and parameters in the energy storage device, allows a mobile object or facility in which the energy storage device is mounted to use the energy storage device more safely and stably.
 (8)上記(7)に記載の蓄電装置は、12Vバッテリー又は48Vバッテリーであってもよい。 (8) The power storage device described in (7) above may be a 12V battery or a 48V battery.
 上記(8)に記載の蓄電装置によれば、例えば車両などの移動体用途に蓄電装置を好適に使用できる。近年、移動体には、自動運転機能が求められている。上位装置に対し、蓄電装置がSOF等の状態情報を出力する(つまり、蓄電装置の過度な電圧低下を生じることなく所定時間にわたり所定電力を供給できるか否かを出力する)ことで、自動運転機能を実現できる。 The power storage device described in (8) above can be used suitably for mobile applications such as vehicles. In recent years, mobile objects have been required to have an automatic driving function. The automatic driving function can be realized by the power storage device outputting status information such as SOF to a higher-level device (i.e., outputting whether or not a specified amount of power can be supplied for a specified period of time without causing an excessive voltage drop in the power storage device).
 (9)本開示の一態様に係る推定方法は、蓄電素子を一方向の定電流で通電した際の前記蓄電素子の電圧の時系列データを取得し、取得した前記蓄電素子の電圧の時系列データと、一方向の定電流通電により予め求められた、複数種の内部抵抗成分の発現期間とに基づき、内部抵抗成分毎の内部抵抗値を推定する処理をコンピュータが実行する。 (9) In one aspect of the present disclosure, the estimation method acquires time series data of the voltage of a storage element when a constant current is passed through the storage element in one direction, and the computer executes a process of estimating the internal resistance value for each internal resistance component based on the acquired time series data of the voltage of the storage element and the occurrence periods of multiple types of internal resistance components that are previously determined by passing a constant current in one direction.
 (10)本開示の一態様に係る推定プログラムは、蓄電素子を一方向の定電流で通電した際の前記蓄電素子の電圧の時系列データを取得し、取得した前記蓄電素子の電圧の時系列データと、一方向の定電流通電により予め求められた、複数種の内部抵抗成分の発現期間とに基づき、内部抵抗成分毎の内部抵抗値を推定する処理をコンピュータに実行させる。 (10) An estimation program according to one aspect of the present disclosure acquires time series data of the voltage of a storage element when a constant current is passed through the storage element in one direction, and causes a computer to execute a process of estimating an internal resistance value for each internal resistance component based on the acquired time series data of the voltage of the storage element and the occurrence periods of multiple types of internal resistance components previously determined by passing a constant current in one direction.
 本開示をその実施の形態を示す図面を参照して具体的に説明する。 This disclosure will be specifically described with reference to drawings showing its embodiments.
 図1は、推定装置3を備える蓄電装置1の構成例を示す斜視図である。蓄電装置1は、複数の蓄電素子2(例えば、複数の蓄電セル)と、推定装置3とを備える。蓄電素子2及び推定装置3は、例えば不図示の収容ケースに収容されている。 FIG. 1 is a perspective view showing an example configuration of a power storage device 1 including an estimation device 3. The power storage device 1 includes a plurality of power storage elements 2 (e.g., a plurality of power storage cells) and an estimation device 3. The power storage elements 2 and the estimation device 3 are housed, for example, in a housing case (not shown).
 蓄電素子2は、充電、放電ができる二次電池であり、例えば電解質が液体のリチウムイオン電池である。蓄電素子2は、例えばアルミニウム、アルミニウム合金等からなる長尺帯状の正極基材箔上に正極活物質層が形成された正極と、例えば銅又は銅合金等からなる長尺帯状の負極基材箔上に負極活物質層が形成された負極とを有する。正極活物質層に用いられる正極活物質又は負極活物質層に用いられる負極活物質としては、リチウムイオンを吸蔵放出可能な正極活物質又は負極活物質であれば、適宜公知の材料を使用できる。後述する境界点を容易に特定する観点から、蓄電素子2は、正極活物質にリン酸鉄リチウムを含み、且つ負極活物質にグラファイトを含むLFP-Gr系セルであることが好ましい。 The storage element 2 is a secondary battery that can be charged and discharged, for example a lithium ion battery with a liquid electrolyte. The storage element 2 has a positive electrode in which a positive electrode active material layer is formed on a long strip of positive electrode substrate foil made of, for example, aluminum, an aluminum alloy, etc., and a negative electrode in which a negative electrode active material layer is formed on a long strip of negative electrode substrate foil made of, for example, copper or a copper alloy, etc. As the positive electrode active material used in the positive electrode active material layer or the negative electrode active material used in the negative electrode active material layer, any known material can be used as long as it is a positive electrode active material or a negative electrode active material capable of absorbing and releasing lithium ions. From the viewpoint of easily identifying the boundary point described later, the storage element 2 is preferably an LFP-Gr cell in which the positive electrode active material contains lithium iron phosphate and the negative electrode active material contains graphite.
 代替的に、蓄電素子(セル)2は、ラミネートタイプ(パウチ型)のリチウムイオン電池、電解質がゲル状のリチウムイオン電池、全固体リチウムイオン電池、バイポーラ型リチウムイオン電池(電極が電気的直列に接続された電池)、亜鉛空気電池、ナトリウムイオン電池、又はその他の電気化学セルであってもよい。蓄電装置1は、単一のセルを有してもよいし、複数のセルを直列及び/又は並列に接続したモジュール、複数のモジュールを直列に接続したバンク、又は複数のバンクを並列に接続したドメインを有してもよい。 Alternatively, the energy storage element (cell) 2 may be a laminated (pouch) type lithium ion battery, a lithium ion battery with a gel electrolyte, an all-solid-state lithium ion battery, a bipolar lithium ion battery (a battery in which the electrodes are electrically connected in series), a zinc-air battery, a sodium ion battery, or other electrochemical cells. The energy storage device 1 may have a single cell, or may have a module in which multiple cells are connected in series and/or parallel, a bank in which multiple modules are connected in series, or a domain in which multiple banks are connected in parallel.
 本実施形態の蓄電装置1は、内燃機関(エンジン)を走行駆動源として有するエンジン車両や、EV、HEV、又はPHEVに搭載される。蓄電装置1は、12ボルト(V)バッテリー又は48Vバッテリーである。12Vバッテリーは、例えば、LFP-Gr系セル2を4個直列に接続した組電池、又は、2個のLFP-Gr系セル2を並列接続したセルユニットを4個直列に接続した組電池を用いることができる。さらに代替的に、3個のLFP-Gr系セル2を並列接続したセルユニットを4個直列に接続した組電池が用いられてもよい。蓄電装置1は、車両ECUや、エンジン始動用のスターターモータ、電装品等の電気負荷に接続されている。スターターモータを回転する場合や車両を起動する場合、蓄電装置1は放電して電気負荷に対して電力供給を行う。 The power storage device 1 of this embodiment is mounted on an engine vehicle having an internal combustion engine (engine) as a driving source, or an EV, HEV, or PHEV. The power storage device 1 is a 12 volt (V) battery or a 48 V battery. The 12 V battery can be, for example, a battery pack in which four LFP-Gr cells 2 are connected in series, or a battery pack in which four cell units in which two LFP-Gr cells 2 are connected in parallel are connected in series. Alternatively, a battery pack in which four cell units in which three LFP-Gr cells 2 are connected in parallel are connected in series may be used. The power storage device 1 is connected to electrical loads such as a vehicle ECU, a starter motor for starting the engine, and electrical equipment. When the starter motor is rotated or the vehicle is started, the power storage device 1 discharges and supplies power to the electrical loads.
 推定装置3は、例えば電池管理システム(BMS:Battery Management system)である。推定装置3は、蓄電素子2及び蓄電装置1の電圧、並びに蓄電素子2に流れる電流を含む計測データを取得し、取得した計測データに基づいて、蓄電素子2及び蓄電装置1の内部抵抗を内部抵抗成分毎に推定する。 The estimation device 3 is, for example, a battery management system (BMS). The estimation device 3 acquires measurement data including the voltages of the storage element 2 and the storage device 1, and the current flowing through the storage element 2, and estimates the internal resistance of the storage element 2 and the storage device 1 for each internal resistance component based on the acquired measurement data.
 図1の例では、推定装置3は、蓄電装置1の上面に設置された平板状の回路基板である。代替的に、推定装置3は、蓄電装置1の側面等に設置されてもよく、蓄電装置1から離隔して設置されてもよい。推定装置3は、蓄電装置1から離れた場所にあって、BMSと通信接続されるサーバ装置や、車両ECUを含んでもよい。この場合、蓄電装置1に関して計測される計測データは、通信によりサーバ装置等へ送信されるとよい。 In the example of FIG. 1, the estimation device 3 is a flat circuit board installed on the top surface of the energy storage device 1. Alternatively, the estimation device 3 may be installed on the side of the energy storage device 1, or may be installed away from the energy storage device 1. The estimation device 3 may be located away from the energy storage device 1 and may include a server device that is communicatively connected to the BMS, or a vehicle ECU. In this case, the measurement data measured regarding the energy storage device 1 may be transmitted to the server device, etc., via communication.
 図2は、推定装置3の構成例を示すブロック図である。推定装置3は、制御部31、記憶部32、入力部33及び出力部34を備える。本実施形態では、推定装置3は回路基板で実現されるが、代替的に、推定装置3は複数台のコンピュータで構成し分散処理する構成でもよく、1台のサーバ内に設けられた複数の仮想マシンによって実現されてもよく、クラウドサーバを用いて実現されてもよい。 FIG. 2 is a block diagram showing an example configuration of the estimation device 3. The estimation device 3 includes a control unit 31, a storage unit 32, an input unit 33, and an output unit 34. In this embodiment, the estimation device 3 is realized by a circuit board, but alternatively, the estimation device 3 may be configured to perform distributed processing by using multiple computers, may be realized by multiple virtual machines provided in a single server, or may be realized using a cloud server.
 制御部31は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を備える演算回路である。制御部31が備えるCPU又はGPUは、ROMや記憶部32に格納された各種コンピュータプログラムを実行し、上述したハードウェア各部の動作を制御する。制御部31は、計測開始指示を与えてから計測終了指示を与えるまでの経過時間を計測するタイマ、数をカウントするカウンタ、日時情報を出力するクロック等の機能を備えてもよい。 The control unit 31 is an arithmetic circuit equipped with a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), etc. The CPU or GPU equipped in the control unit 31 executes various computer programs stored in the ROM or the storage unit 32, and controls the operation of each of the hardware components mentioned above. The control unit 31 may also have functions such as a timer that measures the elapsed time from when an instruction to start measurement is given to when an instruction to end measurement is given, a counter that counts numbers, and a clock that outputs date and time information.
 記憶部32は、フラッシュメモリ、ハードディスクドライブ等の不揮発性記憶装置を備える。記憶部32は、制御部31が参照する各種コンピュータプログラム及びデータ等を記憶する。記憶部32は、推定装置3に接続された外部記憶装置であってもよい。 The storage unit 32 includes a non-volatile storage device such as a flash memory or a hard disk drive. The storage unit 32 stores various computer programs and data referenced by the control unit 31. The storage unit 32 may be an external storage device connected to the estimation device 3.
 本実施形態の記憶部32は、内部抵抗の推定に関する処理をコンピュータに実行させるための推定プログラム321と、推定プログラム321の実行に必要なデータとしての境界点情報322とを記憶している。境界点情報322は、複数種の内部抵抗成分の発現期間の境界となる境界点に関する情報を格納する。境界点情報322の詳細は後述する。 The storage unit 32 of this embodiment stores an estimation program 321 for causing a computer to execute processing related to internal resistance estimation, and boundary point information 322 as data necessary for executing the estimation program 321. The boundary point information 322 stores information on boundary points that are the boundaries between the periods during which multiple types of internal resistance components are expressed. Details of the boundary point information 322 will be described later.
 推定プログラム321を含むコンピュータプログラム(プログラム製品)は、当該コンピュータプログラムを読み取り可能に記録した非一時的な記録媒体3Aにより提供されてもよい。記録媒体3Aは、例えば磁気ディスク、光ディスク、半導体メモリ等の可搬型メモリである。制御部31は、図示しない読取装置を用いて、記録媒体3Aから所望のコンピュータプログラムを読み取り、読み取ったコンピュータプログラムを記憶部32に記憶させる。代替的に、上記コンピュータプログラムは通信により提供されてもよい。推定プログラム321は、単一のコンピュータプログラムでも複数のコンピュータプログラムにより構成されるものでもよく、また、単一のコンピュータ上で実行されても通信ネットワークによって相互接続された複数のコンピュータ上で実行されてもよい。 A computer program (program product) including the estimation program 321 may be provided by a non-transitory recording medium 3A on which the computer program is readably recorded. The recording medium 3A is, for example, a portable memory such as a magnetic disk, an optical disk, or a semiconductor memory. The control unit 31 reads the desired computer program from the recording medium 3A using a reading device (not shown) and stores the read computer program in the memory unit 32. Alternatively, the computer program may be provided by communication. The estimation program 321 may be a single computer program or may be composed of multiple computer programs, and may be executed on a single computer or on multiple computers interconnected by a communication network.
 入力部33は、各種センサを接続するためのインタフェースを備える。入力部33に接続されるセンサは、例えば電流センサ41、電圧センサ42、及び温度センサ43を含む。 The input unit 33 has an interface for connecting various sensors. The sensors connected to the input unit 33 include, for example, a current sensor 41, a voltage sensor 42, and a temperature sensor 43.
 電流センサ41は、例えばシャント抵抗、変流器、ホール効果型電流センサなどであり、蓄電素子2に流れる電流の大きさと向き(充電方向か放電方向か)を時系列的に計測する。電圧センサ42は、蓄電素子(セル)2の端子電圧を時系列的に検出する。温度センサ43は、例えば熱電対、サーミスタなどであり、蓄電素子2の温度を時系列的に計測する。制御部31は、入力部33を通じて、電流センサ41により計測される電流のデータ、電圧センサ42により計測される電圧のデータ、及び温度センサ43により計測される温度のデータを随時取得する。温度センサ43による計測値を用いて蓄電素子2の温度を時系列的に推定する温度推定部が、推定装置3により実現されてもよい。 The current sensor 41 is, for example, a shunt resistor, a current transformer, or a Hall effect current sensor, and measures the magnitude and direction (charging or discharging) of the current flowing through the storage element 2 in a time series. The voltage sensor 42 detects the terminal voltage of the storage element (cell) 2 in a time series. The temperature sensor 43 is, for example, a thermocouple or a thermistor, and measures the temperature of the storage element 2 in a time series. The control unit 31 acquires current data measured by the current sensor 41, voltage data measured by the voltage sensor 42, and temperature data measured by the temperature sensor 43 via the input unit 33 at any time. A temperature estimation unit that estimates the temperature of the storage element 2 in a time series using the measurement value by the temperature sensor 43 may be realized by the estimation device 3.
 出力部34は、表示装置5を接続するためのインタフェースを備えてもよい。表示装置5の一例は、液晶ディスプレイ装置である。 The output unit 34 may include an interface for connecting a display device 5. An example of the display device 5 is a liquid crystal display device.
 代替的に、出力部34は、外部装置と通信する通信インタフェースを備えてもよい。出力部34に通信可能に接続される外部装置は、上位装置(例えば車両ECU)であってもよい。制御部31は、推定結果が得られた場合、推定結果に基づく情報を出力部34から外部装置へ送信する。外部装置は、例えば出力部34より送信される情報を受信し、受信した情報に基づき自装置のディスプレイに推定結果を表示させる。 Alternatively, the output unit 34 may be provided with a communication interface for communicating with an external device. The external device communicatively connected to the output unit 34 may be a higher-level device (e.g., a vehicle ECU). When an estimation result is obtained, the control unit 31 transmits information based on the estimation result from the output unit 34 to the external device. The external device receives the information transmitted from the output unit 34, for example, and displays the estimation result on a display of the own device based on the received information.
 本実施形態の内部抵抗の推定方法について説明する。
 発明者は、直流の定電流を蓄電素子2に通電した場合の電圧挙動に基づいて、内部抵抗を解析することについて検討した。蓄電素子2の内部抵抗は、複数種の内部抵抗成分を含む。本実施形態では、蓄電素子2の内部抵抗を第1抵抗成分、第2抵抗成分及び第3抵抗成分に分類する。第1抵抗成分は、オーム性抵抗成分及び負極電荷抵抗成分の合成成分である。第2抵抗成分は、正極電荷抵抗成分である。第3抵抗成分は、輸送拡散抵抗成分である。蓄電素子2を所定時間に亘り放電させる場合、通常、正極電荷抵抗よりも負極電荷抵抗が早く現れ、輸送拡散抵抗は最も遅く現れる(第1抵抗成分、第2抵抗成分、第3抵抗成分の順に現れる)と推察される。
A method for estimating the internal resistance according to this embodiment will be described.
The inventors have studied the analysis of the internal resistance based on the voltage behavior when a constant direct current is passed through the energy storage element 2. The internal resistance of the energy storage element 2 includes a plurality of types of internal resistance components. In this embodiment, the internal resistance of the energy storage element 2 is classified into a first resistance component, a second resistance component, and a third resistance component. The first resistance component is a composite component of an ohmic resistance component and a negative electrode charge resistance component. The second resistance component is a positive electrode charge resistance component. The third resistance component is a transport diffusion resistance component. When the energy storage element 2 is discharged for a predetermined time, it is presumed that the negative electrode charge resistance usually appears earlier than the positive electrode charge resistance, and the transport diffusion resistance appears last (appearing in the order of the first resistance component, the second resistance component, and the third resistance component).
 蓄電素子2の内部抵抗-時間特性について説明する。内部抵抗-時間特性は、蓄電素子2における内部抵抗と時間との関係性を表す、曲線で示される特性(プロファイル)であってもよい。発明者は、内部抵抗-時間特性における傾きが変化する点を特定することで、内部抵抗を各内部抵抗成分に分離できると考えた。傾きが変化する点とは、内部抵抗-時間特性の傾きが予め定められた閾値以上変化する点であってもよい。傾きが変化する点は、境界点に相当する。境界点は、各内部抵抗の発現する発現期間の境界である。内部抵抗-時間特性において、境界点の前後で内部抵抗成分の種類が変化する。本実施形態では、境界点に対応する時間により境界点を表し、以下では境界点を境界時間とも称する。境界点、境界時間は、ある程度の幅を有してもよい。 The internal resistance-time characteristic of the energy storage element 2 will now be described. The internal resistance-time characteristic may be a characteristic (profile) shown as a curve that represents the relationship between the internal resistance and time in the energy storage element 2. The inventors considered that by identifying the point at which the slope of the internal resistance-time characteristic changes, the internal resistance can be separated into each internal resistance component. The point at which the slope changes may be the point at which the slope of the internal resistance-time characteristic changes by a predetermined threshold value or more. The point at which the slope changes corresponds to a boundary point. The boundary point is the boundary of the expression period in which each internal resistance is expressed. In the internal resistance-time characteristic, the type of internal resistance component changes before and after the boundary point. In this embodiment, the boundary point is represented by the time corresponding to the boundary point, and hereinafter the boundary point is also referred to as the boundary time. The boundary point and boundary time may have a certain width.
 図3に示すような内部抵抗-時間特性に基づいて、放電開始後、最初に傾きが変化する点の時間である第1境界時間T1と、次に傾きが変化する点の時間である第2境界時間T2と、その次に傾きが変化する点の時間である第3境界時間T3とを特定できる。放電開始から第1境界時間T1までに現れる内部抵抗を第1抵抗成分、第1境界時間T1から第2境界時間T2までに現れる内部抵抗を第2抵抗成分、第2境界時間T2から第3境界時間T3までに現れる内部抵抗を第3抵抗成分、と内部抵抗を各抵抗成分に分離できる。第3境界時間T3以降は、内部抵抗は殆ど増加せず、ほぼ一定となる。 Based on the internal resistance-time characteristics shown in Figure 3, it is possible to identify the first boundary time T1, which is the time when the slope changes for the first time after the start of discharge, the second boundary time T2, which is the time when the slope changes next, and the third boundary time T3, which is the time when the slope changes after that. The internal resistance can be separated into each resistance component: the internal resistance appearing from the start of discharge to the first boundary time T1 is the first resistance component, the internal resistance appearing from the first boundary time T1 to the second boundary time T2 is the second resistance component, and the internal resistance appearing from the second boundary time T2 to the third boundary time T3 is the third resistance component. After the third boundary time T3, the internal resistance hardly increases and remains almost constant.
 発明者は、第1境界時間T1、第2境界時間T2及び第3境界時間T3が比較的離れる(各境界時間の間隔が比較的広い)LFP-Gr系のリチウムイオン電池について、多様な条件下で定電流放電試験を行い、境界時間に影響を与える因子について検討した。 The inventors conducted constant current discharge tests under various conditions on LFP-Gr type lithium ion batteries in which the first boundary time T1, the second boundary time T2, and the third boundary time T3 are relatively far apart (the intervals between each boundary time are relatively wide), and investigated the factors that affect the boundary times.
 図3は、リチウムイオン電池初期品とリチウムイオン電池劣化品との、内部抵抗-時間特性を示す片対数グラフである。以下で説明する図3~図6は、LFP-Gr系の試験セル(蓄電素子)を用いた定電流放電試験の結果を示す。図3~図6に示すグラフの縦軸は内部抵抗(DCR、単位はmΩ)、横軸は放電開始から経過した時間(単位はs)の対数である。内部抵抗(R)は、所定の定電流放電後に計測されたセル端子電圧から放電開始前のセル端子電圧(開回路電圧:OCV)を減算した値(ΔV)を、電流(I)で除算した値である。図3~図6は、内部抵抗-時間特性に対応付けて、内部抵抗-時間特性の傾きから特定した第1境界時間T1、第2境界時間T2及び第3境界時間T3を示す。 Figure 3 is a semi-logarithmic graph showing the internal resistance-time characteristics of an initial lithium-ion battery and a degraded lithium-ion battery. Figures 3 to 6, which will be described below, show the results of a constant-current discharge test using an LFP-Gr test cell (energy storage element). The vertical axis of the graphs shown in Figures 3 to 6 is the internal resistance (DCR, in mΩ), and the horizontal axis is the logarithm of the time (in seconds) that has elapsed since the start of discharge. The internal resistance (R) is the value (ΔV) obtained by subtracting the cell terminal voltage (open circuit voltage: OCV) before the start of discharge from the cell terminal voltage measured after a predetermined constant current discharge, divided by the current (I). Figures 3 to 6 show the first boundary time T1, second boundary time T2, and third boundary time T3, which are determined from the slope of the internal resistance-time characteristics in correspondence with the internal resistance-time characteristics.
 図3に示す上側のグラフは劣化品の特性、下側のグラフは初期品の特性を示す。充放電を繰り返し行っていない初期の蓄電素子と、充放電を繰り返し行った劣化後の蓄電素子との各境界時間を比較したところ、各内部抵抗成分の現れる時間はほぼ同じであることが分かった。第1境界時間T1、第2境界時間T2及び第3境界時間T3のいずれも、新規品と劣化品とでほぼ同じであり、各境界時間は、蓄電素子2の劣化度には依存しない。 The upper graph in Figure 3 shows the characteristics of a degraded product, and the lower graph shows the characteristics of an initial product. When comparing the boundary times of an initial storage element that has not been repeatedly charged and discharged with a degraded storage element that has been repeatedly charged and discharged, it was found that the times at which each internal resistance component appears are almost the same. The first boundary time T1, second boundary time T2, and third boundary time T3 are all almost the same for new and degraded products, and each boundary time does not depend on the degree of degradation of the storage element 2.
 図4は、内部抵抗-時間の相関関係を多様な電流について示す片対数グラフである。グラフの上から、5A、10A、15A、30A、60A、150Aの直流電流を放電した場合の試験セルの特性を示す。図4から明らかなように、蓄電素子2に流れる電流の大きさにより、各内部抵抗成分の現れる時間が変化する。電流が大きい程、第1境界時間T1、第2境界時間T2及び第3境界時間T3が減少する。 Figure 4 is a semi-logarithmic graph showing the correlation between internal resistance and time for various currents. From the top of the graph, the characteristics of the test cell when discharging DC currents of 5A, 10A, 15A, 30A, 60A, and 150A are shown. As is clear from Figure 4, the time at which each internal resistance component appears changes depending on the magnitude of the current flowing through the storage element 2. The larger the current, the shorter the first boundary time T1, second boundary time T2, and third boundary time T3.
 図5は、内部抵抗-時間の相関関係を多様な温度について示す片対数グラフである。グラフの上から、-30℃、-20℃、-10℃、0℃、25℃の温度下で、同一の直流電流を放電した場合の試験セルの特性を示す。図5から明らかなように、蓄電素子2の温度により、各内部抵抗成分の現れる時間が変化する。温度が高い程、第1境界時間T1、第2境界時間T2及び第3境界時間T3が減少する。 Figure 5 is a semi-logarithmic graph showing the correlation between internal resistance and time at various temperatures. From the top of the graph, the characteristics of the test cell when discharging the same DC current at temperatures of -30°C, -20°C, -10°C, 0°C, and 25°C are shown. As is clear from Figure 5, the time at which each internal resistance component appears changes depending on the temperature of the storage element 2. The higher the temperature, the shorter the first boundary time T1, second boundary time T2, and third boundary time T3.
 図6は、内部抵抗-時間の相関関係を多様なSOC(State Of Charge)について示す片対数グラフである。グラフの上から、SOC10%、SOC30%、SOC70%、SOC90%から、同一の直流電流を放電した場合の試験セルの特性を示す。図6から明らかなように、各内部抵抗成分の現れる時間はほぼ同じであり、各境界時間は、放電開始時の蓄電素子2のSOCには依存しない。 Figure 6 is a semi-logarithmic graph showing the correlation between internal resistance and time for various SOCs (State of Charge). From the top of the graph, it shows the characteristics of the test cell when discharging the same DC current from SOCs of 10%, 30%, 70%, and 90%. As is clear from Figure 6, the time at which each internal resistance component appears is roughly the same, and each boundary time is independent of the SOC of the storage element 2 at the start of discharge.
 以上の特性を考慮して、本実施形態では、予め蓄電素子2の電流及び温度別に、上述の第1境界時間T1、第2境界時間T2及び第3境界時間T3を特定した境界点情報322を生成しておく。得られた境界点情報322を用いて、使用環境下の蓄電素子2の内部抵抗を推定する。以下、本実施形態の推定方法を具体的に説明する。 In consideration of the above characteristics, in this embodiment, boundary point information 322 is generated in advance, which specifies the above-mentioned first boundary time T1, second boundary time T2, and third boundary time T3 for each current and temperature of the storage element 2. The obtained boundary point information 322 is used to estimate the internal resistance of the storage element 2 in the usage environment. The estimation method of this embodiment will be described in detail below.
 図7は、境界点情報322の内容例を示す図である。境界点情報322は、蓄電素子2の電流及び温度と、境界時間との関係性を示す情報である。本実施形態では、境界点情報322は、第1境界時間テーブル3221、第2境界時間テーブル3222及び第3境界時間テーブル3223を含み、電流及び温度と、境界時間との関係性をデータテーブル形式で記憶する。 FIG. 7 is a diagram showing an example of the contents of the boundary point information 322. The boundary point information 322 is information that indicates the relationship between the current and temperature of the storage element 2 and the boundary time. In this embodiment, the boundary point information 322 includes a first boundary time table 3221, a second boundary time table 3222, and a third boundary time table 3223, and stores the relationship between the current and temperature and the boundary time in a data table format.
 第1境界時間テーブル3221は、例えば2次元テーブルであり、温度と電流とに対応付けた第1境界時間T1を示す。第1境界時間T1は、電流の所定間隔毎に、複数の温度に応じて複数記憶されている。同様に、第2境界時間テーブル3222は、温度と電流とに対応付けた第2境界時間T2を示す。第3境界時間テーブル3223は、温度と電流とに対応付けた第3境界時間T3を示す。 The first boundary time table 3221 is, for example, a two-dimensional table, and indicates a first boundary time T1 associated with temperature and current. A plurality of first boundary times T1 are stored for a plurality of temperatures at predetermined intervals of current. Similarly, the second boundary time table 3222 indicates a second boundary time T2 associated with temperature and current. The third boundary time table 3223 indicates a third boundary time T3 associated with temperature and current.
 第1境界時間テーブル3221、第2境界時間テーブル3222及び第3境界時間テーブル3223はさらに、SOC別に境界時間を記憶するものであってもよい。例えば境界時間がSOC依存性を有する蓄電素子2の場合、温度及び電流に加え、SOCを考慮して境界時間を設定することで、内部抵抗成分の分離の精度が向上する。 The first boundary time table 3221, the second boundary time table 3222, and the third boundary time table 3223 may further store boundary times by SOC. For example, in the case of a storage element 2 whose boundary time is SOC-dependent, the accuracy of separation of the internal resistance components is improved by setting the boundary time taking into account the SOC in addition to the temperature and current.
 図7に示す境界点情報322は、一例であり、この例に限定はされない。境界点情報322は、関数式、グラフ等により電流及び温度と境界点との関係性を記憶してもよい。境界時間は、電流(アンペア)に代えて、放電レート(Cレート)により示されてもよい。境界点情報322は、電流及び温度の少なくとも一方と、境界時間との関係性を示す情報であってもよい。 The boundary point information 322 shown in FIG. 7 is an example and is not limited to this example. The boundary point information 322 may store the relationship between the boundary point and the current and temperature using a function formula, graph, etc. The boundary time may be indicated by the discharge rate (C rate) instead of the current (amperes). The boundary point information 322 may be information indicating the relationship between the boundary time and at least one of the current and temperature.
 境界点情報322は、事前に定電流放電試験を行うことで生成できる。試験セルを放電した際の電圧-時間特性(放電曲線)から、内部抵抗-時間特性のグラフを生成する。内部抵抗-時間特性は、例えば図3~図6に例示した通り、縦軸を内部抵抗、横軸を時間の対数とする片対数グラフである。代替的に、内部抵抗-時間特性は、縦軸を内部抵抗、横軸を時間とするグラフであってもよい。 The boundary point information 322 can be generated by performing a constant current discharge test in advance. A graph of the internal resistance-time characteristics is generated from the voltage-time characteristics (discharge curve) when the test cell is discharged. The internal resistance-time characteristics are semi-logarithmic graphs with the internal resistance on the vertical axis and the logarithm of time on the horizontal axis, as shown, for example, in Figures 3 to 6. Alternatively, the internal resistance-time characteristics may be a graph with the internal resistance on the vertical axis and the time on the horizontal axis.
 生成した内部抵抗-時間特性に基づいて、内部抵抗の傾きが変化する点(傾きが変化する時間)を求めることで、第1境界時間T1、第2境界時間T2及び第3境界時間T3が得られる。グラフの傾きの変化点の求め方は特に限定されないが、例えば、グラフ形状(波形)を解析することにより、グラフの傾きがその前後で予め定められた閾値以上変化する点を特定することで求められる。傾きの変化点は、その他の公知のグラフ解析、フィッティング等の手法を用いて求めてもよい。異なる電流及び温度の元で試験を行い、電流及び温度別に各境界時間を特定することで、図7に示すような境界点情報322が得られる。 The first boundary time T1, the second boundary time T2, and the third boundary time T3 are obtained by determining the points (times at which the slope changes) where the slope of the internal resistance changes based on the generated internal resistance-time characteristic. There are no particular limitations on the method for determining the points where the slope of the graph changes, but for example, the points can be determined by analyzing the graph shape (waveform) to identify the points before and after which the slope of the graph changes by more than a predetermined threshold value. The points where the slope changes may also be determined using other known methods such as graph analysis and fitting. Tests are performed under different currents and temperatures, and each boundary time is identified for each current and temperature, thereby obtaining boundary point information 322 as shown in FIG. 7.
 境界点情報322は、内部抵抗の推定対象となる蓄電素子2と同じ試験セル、又は蓄電素子2に類似する構造、種類、組成等を有する試験セルを用いて生成されてもよい。 The boundary point information 322 may be generated using a test cell that is the same as the storage element 2 whose internal resistance is to be estimated, or a test cell that has a structure, type, composition, etc. similar to that of the storage element 2.
 推定装置3は、例えば外部サーバとの通信により境界点情報322を取得し、取得した境界点情報322を記憶部32に記憶しておく。境界点情報322は、蓄電装置1の製造時点又は工場出荷時点等の段階で推定装置3に書き込まれてもよい。 The estimation device 3 acquires the boundary point information 322, for example, by communicating with an external server, and stores the acquired boundary point information 322 in the storage unit 32. The boundary point information 322 may be written to the estimation device 3 at the time of manufacturing the energy storage device 1 or at the time of shipment from the factory, etc.
 図8は、推定装置3が実行する推定方法を説明する図である。図8の上側のグラフにおける縦軸は、下方向に向かうほど大電流で放電していることを表す。図8は、時間0までは蓄電素子2から小電流の(例えば10Aの)放電がされ、時間0を過ぎた時点で大電流の(例えば110Aの)放電がされることを示す。図8に示すように、時間0を過ぎた時点からの放電により、蓄電素子2の端子電圧が経時的に低下する。放電を開始してから第1境界時間T1(図8ではt1)が経過するまでは、第1抵抗成分に起因した電圧挙動の現れる第1抵抗成分区間となる。第1境界時間T1よりも後、第2境界時間T2(図8ではt2)が経過するまでは、第2抵抗成分に起因した電圧挙動の現れる第2抵抗成分区間となる。第2境界時間T2よりも後、第3境界時間T3(図8ではt3)が経過するまでは、第3抵抗成分に起因した電圧挙動の現れる第3抵抗成分区間となる。 FIG. 8 is a diagram for explaining the estimation method executed by the estimation device 3. The vertical axis in the upper graph of FIG. 8 indicates that the discharge current increases as it moves downward. FIG. 8 shows that a small current (e.g., 10 A) is discharged from the storage element 2 until time 0, and a large current (e.g., 110 A) is discharged after time 0. As shown in FIG. 8, the terminal voltage of the storage element 2 decreases over time due to the discharge from the time 0. From the start of discharge until the first boundary time T1 (t1 in FIG. 8) has passed, it is the first resistance component section in which the voltage behavior caused by the first resistance component appears. After the first boundary time T1, until the second boundary time T2 (t2 in FIG. 8) has passed, it is the second resistance component section in which the voltage behavior caused by the second resistance component appears. After the second boundary time T2, until the third boundary time T3 (t3 in FIG. 8) has passed, it is the third resistance component section in which the voltage behavior caused by the third resistance component appears.
 推定装置3は、各種センサを通じて蓄電素子2の放電電流、電圧及び温度の計測データを取得する。推定装置3は、取得した計測データを記憶部32に記憶する。推定装置3は、所定の又は適宜の間隔で計測データの取得を繰り返し実行し、時系列順に記憶部32に記憶する。これにより図8に示すように、電流、電圧及び温度の時系列データが得られる。 The estimation device 3 acquires measurement data of the discharge current, voltage, and temperature of the storage element 2 through various sensors. The estimation device 3 stores the acquired measurement data in the memory unit 32. The estimation device 3 repeatedly acquires the measurement data at predetermined or appropriate intervals, and stores the data in chronological order in the memory unit 32. As a result, time series data of the current, voltage, and temperature is obtained, as shown in FIG. 8.
 推定装置3は、新たな計測データを取得した場合、内部抵抗を推定するか否かを判定する。推定装置3は、電流変動ΔIが予め設定される変動閾値以上であるか否かを判定することにより、内部抵抗を推定するか否かを判定してもよい。電流変動ΔIとは、判定時点の電流と、判定時点よりも1つ前の計測時点の電流との差分であってもよい。本明細書において、「差分」とは、差分の絶対値を意味する。 When new measurement data is acquired, the estimation device 3 determines whether or not to estimate the internal resistance. The estimation device 3 may determine whether or not to estimate the internal resistance by determining whether or not the current fluctuation ΔI is equal to or greater than a preset fluctuation threshold. The current fluctuation ΔI may be the difference between the current at the time of determination and the current at the measurement time immediately preceding the time of determination. In this specification, "difference" refers to the absolute value of the difference.
 電流変動ΔIが予め設定される変動閾値以上である場合、推定装置3は、内部抵抗の推定を行う。電流変動ΔIが予め設定される変動閾値未満である場合、推定装置3は、内部抵抗の推定を行わない。推定装置3は、得られた電流の正負に基づいて通電方向を判定し、放電であると判定した場合にのみ、内部抵抗の推定を行ってもよい。推定装置3は、蓄電素子2の電流が所定時間以上に亘りほぼ一定であった(電流変動が所定時間以上に亘り略ゼロであった)後、上述の電流変動ΔIを検出した場合に、内部抵抗の推定を行ってもよい。 If the current fluctuation ΔI is equal to or greater than a preset fluctuation threshold, the estimation device 3 estimates the internal resistance. If the current fluctuation ΔI is less than a preset fluctuation threshold, the estimation device 3 does not estimate the internal resistance. The estimation device 3 may determine the direction of current flow based on the positive or negative of the obtained current, and estimate the internal resistance only if it is determined that discharging is occurring. The estimation device 3 may estimate the internal resistance when the above-mentioned current fluctuation ΔI is detected after the current in the storage element 2 has been substantially constant for a predetermined period of time or more (the current fluctuation has been substantially zero for a predetermined period of time or more).
 変動閾値は、例えば、蓄電装置1がエンジン車両に搭載される場合、スターターモータによりエンジンのクランク軸を回転させてエンジンを始動させるクランキング時の電流値を考慮して設定してもよい。変動閾値は、蓄電装置1がEVに搭載される場合、高電圧システム起動時の電流値を考慮して設定してもよい。 For example, when the energy storage device 1 is mounted on an engine vehicle, the fluctuation threshold value may be set taking into consideration the current value during cranking, when the engine crankshaft is rotated by the starter motor to start the engine. When the energy storage device 1 is mounted on an EV, the fluctuation threshold value may be set taking into consideration the current value when the high-voltage system is started.
 代替的に、推定装置3は、電流の変動値に関わらず、電流変動ΔIが発生した場合、又は上位装置からの指示を受けた場合に、内部抵抗の推定を行ってもよい。推定装置3は、判定時点の電流(電流の絶対値)が予め設定される電流閾値以上である場合、内部抵抗の推定を行ってもよい。 Alternatively, the estimation device 3 may estimate the internal resistance when a current fluctuation ΔI occurs, regardless of the fluctuation value of the current, or when an instruction is received from a higher-level device. The estimation device 3 may estimate the internal resistance when the current (absolute value of the current) at the time of determination is equal to or greater than a preset current threshold value.
 内部抵抗の推定を行うと判定した場合、推定装置3は、内部抵抗の推定を行うと判定した判定時点の電流及び温度と、境界点情報322の第1境界時間テーブル3221とに基づいて、内部抵抗の推定基準となる第1境界時間T1を導出する。推定装置3は、第1境界時間テーブル3221に記憶する情報に基づいて、判定時点の電流及び温度に対応する第1境界時間T1(例えばt1)を読み出す。 When it is determined that the internal resistance is to be estimated, the estimation device 3 derives a first boundary time T1 that serves as a reference for estimating the internal resistance, based on the current and temperature at the time when it is determined that the internal resistance is to be estimated and the first boundary time table 3221 of the boundary point information 322. Based on the information stored in the first boundary time table 3221, the estimation device 3 reads out the first boundary time T1 (e.g., t1) that corresponds to the current and temperature at the time of determination.
 推定装置3は、第1境界時間t1が経過するまで待機する。経過時間の計測を開始する基準点(t=0)は、例えば、電流変動が検出される直前の時点、すなわち内部抵抗の推定を行うと判定した判定時点よりも1つ前の計測時点としてもよい。第1境界時間t1が経過した後、推定装置3は、第1抵抗成分の内部抵抗値R1を算出する。 The estimation device 3 waits until the first boundary time t1 has elapsed. The reference point (t=0) for starting to measure the elapsed time may be, for example, the time immediately before a current fluctuation is detected, that is, the measurement time immediately preceding the time at which it is determined that the internal resistance should be estimated. After the first boundary time t1 has elapsed, the estimation device 3 calculates the internal resistance value R1 of the first resistance component.
 第1抵抗成分の内部抵抗値R1は、基準点から、第1境界時間t1が経過した時点(以下、第1時点とも記載する)までの電圧の変化量ΔV1を、電流変動ΔIで除算することで算出される。電圧の変化量ΔV1は、基準点の電圧と、第1時点の電圧との差分を算出することで求められる。電流変動ΔIは、微小な電流変化を考慮するため、基準点よりも後の第1時点以前における各計測時点の電流の平均値と、基準点の電流(変動前の電流)との差分を算出することで求めてもよい。 The internal resistance value R1 of the first resistance component is calculated by dividing the amount of change in voltage ΔV1 from the reference point to the point when the first boundary time t1 has elapsed (hereinafter also referred to as the first time point) by the current fluctuation ΔI. The amount of change in voltage ΔV1 is found by calculating the difference between the voltage at the reference point and the voltage at the first time point. To take into account minute current changes, the current fluctuation ΔI may also be found by calculating the difference between the average value of the current at each measurement time point before the first time point after the reference point and the current at the reference point (current before the fluctuation).
 同様に推定装置3は、第1時点の電流及び温度と、境界点情報322の第2境界時間テーブル3222とに基づいて、第2境界時間T2を導出する。推定装置3は、第2境界時間テーブル3222に記憶する情報に基づいて、第1時点の電流及び温度に対応する第2境界時間T2(例えばt2)を読み出す。 Similarly, the estimation device 3 derives the second boundary time T2 based on the current and temperature at the first time point and the second boundary time table 3222 of the boundary point information 322. The estimation device 3 reads out the second boundary time T2 (e.g., t2) corresponding to the current and temperature at the first time point based on the information stored in the second boundary time table 3222.
 推定装置3は、第2境界時間t2が経過するまで待機する。経過時間の計測を開始する基準点は、第1境界時間t1の基準点と同じであってもよい。第2境界時間t2が経過した後、推定装置3は、第2抵抗成分の内部抵抗値R2を算出する。第2抵抗成分の内部抵抗値R2は、第1時点から、第2境界時間t2が経過した時点(以下、第2時点とも記載する)までの電圧の変化量ΔV2を、電流変動ΔIで除算することで算出される。電圧の変化量ΔV2は、第2時点の電圧と、第1時点の電圧との差分を算出することで求められる。電流変動ΔIは、第1時点よりも後の第2時点以前における各計測時点の電流の平均値と、基準点の電流との差分であってもよい。 The estimation device 3 waits until the second boundary time t2 has elapsed. The reference point for starting to measure the elapsed time may be the same as the reference point for the first boundary time t1. After the second boundary time t2 has elapsed, the estimation device 3 calculates the internal resistance value R2 of the second resistance component. The internal resistance value R2 of the second resistance component is calculated by dividing the amount of change in voltage ΔV2 from the first time point to the time point at which the second boundary time t2 has elapsed (hereinafter also referred to as the second time point) by the current fluctuation ΔI. The amount of change in voltage ΔV2 is found by calculating the difference between the voltage at the second time point and the voltage at the first time point. The current fluctuation ΔI may be the difference between the average value of the current at each measurement time point before the second time point that is later than the first time point and the current at the reference point.
 推定装置3は、第2時点の電流及び温度と、境界点情報322の第3境界時間テーブル3223とに基づいて、第3境界時間T3を導出する。推定装置3は、第3境界時間テーブル3223に記憶する情報に基づいて、第2時点の電流及び温度に対応する第3境界時間T3(例えばt3)を読み出す。 The estimation device 3 derives the third boundary time T3 based on the current and temperature at the second time point and the third boundary time table 3223 of the boundary point information 322. The estimation device 3 reads out the third boundary time T3 (e.g., t3) corresponding to the current and temperature at the second time point based on the information stored in the third boundary time table 3223.
 推定装置3は、第3境界時間t3が経過するまで待機する。経過時間の計測を開始する基準点は、第1境界時間t1の基準点と同じであってもよい。第3境界時間t3が経過した後、推定装置3は、第3抵抗成分の内部抵抗値R3を算出する。第3抵抗成分の内部抵抗値R3は、第2時点から、第3境界時間t3が経過した時点(以下、第3時点とも記載する)までの電圧の変化量ΔV3を、電流変動ΔIで除算することで算出される。電圧の変化量ΔV3は、第3時点の電圧と、第2時点の電圧との差分を算出することで求められる。電流変動ΔIは、第2時点よりも後の第3時点以前における各計測時点の電流の平均値と、基準点の電流との差分であってもよい。 The estimation device 3 waits until the third boundary time t3 has elapsed. The reference point for starting to measure the elapsed time may be the same as the reference point for the first boundary time t1. After the third boundary time t3 has elapsed, the estimation device 3 calculates the internal resistance value R3 of the third resistance component. The internal resistance value R3 of the third resistance component is calculated by dividing the amount of change in voltage ΔV3 from the second time point to the time point at which the third boundary time t3 has elapsed (hereinafter also referred to as the third time point) by the current fluctuation ΔI. The amount of change in voltage ΔV3 is found by calculating the difference between the voltage at the third time point and the voltage at the second time point. The current fluctuation ΔI may be the difference between the average value of the current at each measurement time point before the third time point that is after the second time point and the current at the reference point.
 上記では、各時点の温度を用いて各境界時間を特定した。代替的に、温度変化が比較的少ない環境下で蓄電素子2が使用されると推察される場合、共通する時点の温度を使用して各境界時間を特定してもよい。共通する時点の温度は、例えば基準点の温度であってもよい。 In the above, each boundary time is determined using the temperature at each point in time. Alternatively, if it is assumed that the storage element 2 will be used in an environment with relatively little temperature change, each boundary time may be determined using the temperature at a common point in time. The temperature at the common point in time may be, for example, the temperature at a reference point.
 上記では、基準点、第1時点及び第2時点で順次、第1境界時間T1、第2境界時間T2及び第3境界時間T3を特定した。各時点の電流を考慮することで、境界時間をより正確に特定できるが、代替的に、境界時間の特定を同一のタイミングで行ってもよい。推定装置3は、例えば、境界点情報322の各テーブルを参照し、基準点の電流及び温度に基づいて、第1境界時間T1、第2境界時間T2及び第3境界時間T3を特定してもよい。 In the above, the first boundary time T1, the second boundary time T2, and the third boundary time T3 are identified in sequence at the reference point, the first time point, and the second time point. The boundary times can be identified more accurately by taking into account the current at each time point, but alternatively, the boundary times may be identified at the same timing. For example, the estimation device 3 may refer to each table of the boundary point information 322 and identify the first boundary time T1, the second boundary time T2, and the third boundary time T3 based on the current and temperature at the reference point.
 推定装置3は、同一のタイミング(例えば第3時点)で、第1抵抗成分、第2抵抗成分及び第3抵抗成分をまとめて推定してもよい。推定装置3は、第1時点以降の任意の時点で第1抵抗成分を推定してもよく、第2時点以降の任意の時点で第2抵抗成分を推定してもよく、第3時点以降の任意の時点で第3抵抗成分を推定してもよい。 The estimation device 3 may estimate the first resistance component, the second resistance component, and the third resistance component together at the same time (e.g., the third time point). The estimation device 3 may estimate the first resistance component at any time point after the first time point, may estimate the second resistance component at any time point after the second time point, and may estimate the third resistance component at any time point after the third time point.
 図9は、推定装置3が実行する処理手順の一例を示すフローチャートである。以下のフローチャートにおける処理は、推定装置3の記憶部32に記憶する推定プログラム321に従って制御部31により実行されてもよく、制御部31に備えられた専用のハードウェア回路(例えばFPGA又はASIC)により実現されてもよく、それらの組合せによって実現されてもよい。推定装置3は、例えば所定の又は適宜の間隔で以下の処理を繰り返し実行する。 FIG. 9 is a flowchart showing an example of a processing procedure executed by the estimation device 3. The processing in the flowchart below may be executed by the control unit 31 in accordance with the estimation program 321 stored in the memory unit 32 of the estimation device 3, or may be realized by a dedicated hardware circuit (e.g., FPGA or ASIC) provided in the control unit 31, or may be realized by a combination of these. The estimation device 3 repeatedly executes the following processing, for example, at predetermined or appropriate intervals.
 推定装置3の制御部31は、取得部としての機能により、蓄電素子2の電流、電圧及び温度を取得する(ステップS11)。制御部31は、所定の又は適宜の間隔で電流、電圧及び温度の取得を繰り返し実行することで、電流、電圧及び温度の時系列データを取得してもよい。制御部31は、入力部33を通じて、蓄電素子2の電流、電圧及び温度の計測データを時系列で受け付けることにより、電流、電圧及び温度の時系列データを取得してもよい。制御部31は、記憶部32に記憶した時系列データを読み出してもよい。 The control unit 31 of the estimation device 3 acquires the current, voltage, and temperature of the storage element 2 by functioning as an acquisition unit (step S11). The control unit 31 may acquire time series data of the current, voltage, and temperature by repeatedly acquiring the current, voltage, and temperature at a predetermined or appropriate interval. The control unit 31 may acquire time series data of the current, voltage, and temperature by accepting measurement data of the current, voltage, and temperature of the storage element 2 in time series via the input unit 33. The control unit 31 may read out the time series data stored in the memory unit 32.
 制御部31は、内部抵抗を推定するか否かを判定する(ステップS12)。例えば電流変動ΔIが予め設定される変動閾値未満であることにより、内部抵抗を推定しないと判定した場合(ステップS12:NO)、制御部31は、処理をステップS12に戻し、電流変動ΔIが変動閾値以上となるまで待機する。 The control unit 31 determines whether or not to estimate the internal resistance (step S12). For example, if it is determined that the internal resistance is not to be estimated because the current fluctuation ΔI is less than a preset fluctuation threshold (step S12: NO), the control unit 31 returns the process to step S12 and waits until the current fluctuation ΔI becomes equal to or greater than the fluctuation threshold.
 電流変動ΔIが予め設定される変動閾値以上であることにより、内部抵抗を推定すると判定した場合(ステップS12:YES)、制御部31は、第1境界時間T1を導出する(ステップS13)。制御部31は、内部抵抗の推定を行うと判定した判定時点の電流及び温度と、第1境界時間テーブル3221とに基づいて、判定時点の電流及び温度に対応する第1境界時間T1を特定する。 If it is determined that the internal resistance is to be estimated because the current fluctuation ΔI is equal to or greater than a preset fluctuation threshold (step S12: YES), the control unit 31 derives a first boundary time T1 (step S13). The control unit 31 identifies the first boundary time T1 corresponding to the current and temperature at the determination time point when it is determined that the internal resistance is to be estimated, based on the current and temperature at the determination time point and the first boundary time table 3221.
 制御部31は、基準点からの経過時間に基づいて、第1境界時間T1が経過したか否かを判定する(ステップS14)。第1境界時間T1が経過していないと判定した場合(ステップS14:NO)、制御部31は、処理をステップS14に戻し、第1境界時間T1が経過するまで待機する。 The control unit 31 determines whether the first boundary time T1 has elapsed based on the time elapsed from the reference point (step S14). If it is determined that the first boundary time T1 has not elapsed (step S14: NO), the control unit 31 returns the process to step S14 and waits until the first boundary time T1 has elapsed.
 第1境界時間T1が経過したと判定した場合(ステップS14:YES)、制御部31は、推定部としての機能により、第1抵抗成分の内部抵抗値R1を推定する(ステップS15)。制御部31は、基準点から第1時点までの電圧の変化量ΔV1を電流変動ΔIで除算して、第1抵抗成分の内部抵抗値R1を求める。 If it is determined that the first boundary time T1 has elapsed (step S14: YES), the control unit 31, functioning as an estimation unit, estimates the internal resistance value R1 of the first resistance component (step S15). The control unit 31 divides the amount of change in voltage ΔV1 from the reference point to the first point in time by the current fluctuation ΔI to obtain the internal resistance value R1 of the first resistance component.
 制御部31は、第2境界時間T2を導出する(ステップS16)。制御部31は、第1時点の電流及び温度と、第2境界時間テーブル3222とに基づいて、第1時点の電流及び温度に対応する第2境界時間T2を特定する。 The control unit 31 derives the second boundary time T2 (step S16). The control unit 31 identifies the second boundary time T2 corresponding to the current and temperature at the first time point based on the current and temperature at the first time point and the second boundary time table 3222.
 制御部31は、基準点からの経過時間に基づいて、第2境界時間T2が経過したか否かを判定する(ステップS17)。第2境界時間T2が経過していないと判定した場合(ステップS17:NO)、制御部31は、処理をステップS17に戻し、第2境界時間T2が経過するまで待機する。 The control unit 31 determines whether the second boundary time T2 has elapsed based on the time elapsed from the reference point (step S17). If it is determined that the second boundary time T2 has not elapsed (step S17: NO), the control unit 31 returns the process to step S17 and waits until the second boundary time T2 has elapsed.
 第2境界時間T2が経過したと判定した場合(ステップS17:YES)、制御部31は、推定部としての機能により、第2抵抗成分の内部抵抗値R2を推定する(ステップS18)。制御部31は、第1時点から第2時点までの電圧の変化量ΔV2を電流変動ΔIで除算して、第2抵抗成分の内部抵抗値R2を求める。 If it is determined that the second boundary time T2 has elapsed (step S17: YES), the control unit 31, functioning as an estimation unit, estimates the internal resistance value R2 of the second resistance component (step S18). The control unit 31 divides the amount of change in voltage ΔV2 from the first point in time to the second point in time by the current fluctuation ΔI to obtain the internal resistance value R2 of the second resistance component.
 制御部31は、第3境界時間T3を導出する(ステップS19)。制御部31は、第2時点の電流及び温度と、第3境界時間テーブル3223とに基づいて、第2時点の電流及び温度に対応する第3境界時間T3を特定する。 The control unit 31 derives the third boundary time T3 (step S19). The control unit 31 identifies the third boundary time T3 corresponding to the current and temperature at the second point in time based on the current and temperature at the second point in time and the third boundary time table 3223.
 制御部31は、基準点からの経過時間に基づいて、第3境界時間T3が経過したか否かを判定する(ステップS20)。第3境界時間T3が経過していないと判定した場合(ステップS20:NO)、制御部31は、処理をステップS20に戻し、第3境界時間T3が経過するまで待機する。 The control unit 31 determines whether or not the third boundary time T3 has elapsed based on the time elapsed from the reference point (step S20). If it is determined that the third boundary time T3 has not elapsed (step S20: NO), the control unit 31 returns the process to step S20 and waits until the third boundary time T3 has elapsed.
 第3境界時間T3が経過したと判定した場合(ステップS20:YES)、制御部31は、推定部としての機能により、第3抵抗成分の内部抵抗値R3を推定する(ステップS21)。制御部31は、第2時点から第3時点までの電圧の変化量ΔV3を電流変動ΔIで除算して、第3抵抗成分の内部抵抗値R3を求める。 If it is determined that the third boundary time T3 has elapsed (step S20: YES), the control unit 31, functioning as an estimation unit, estimates the internal resistance value R3 of the third resistance component (step S21). The control unit 31 divides the amount of change in voltage ΔV3 from the second point in time to the third point in time by the current fluctuation ΔI to obtain the internal resistance value R3 of the third resistance component.
 制御部31は、推定した第1抵抗成分の内部抵抗値R1、第2抵抗成分の内部抵抗値R2及び第3抵抗成分の内部抵抗値R3を含む内部抵抗の推定結果を上位装置へ出力し(ステップS22)、一連の処理を終了する。上位装置は、例えば車両ECUであってもよい。 The control unit 31 outputs the estimated results of the internal resistance, including the estimated internal resistance value R1 of the first resistance component, the estimated internal resistance value R2 of the second resistance component, and the estimated internal resistance value R3 of the third resistance component, to a higher-level device (step S22), and ends the series of processes. The higher-level device may be, for example, a vehicle ECU.
 推定装置3又は上位装置は、内部抵抗の推定結果に基づいて、蓄電素子2又は蓄電装置1の電力供給性能(例えば充電受入性能、放電性能等)を判定してもよい。推定装置3又は上位装置は、例えば蓄電素子2の電圧挙動を模擬する等価回路モデルに、推定した第1抵抗成分、第2抵抗成分及び第3抵抗成分それぞれの内部抵抗値を与えることで、蓄電素子2の電圧挙動を推定し、充放電の可否を判定してもよい。蓄電素子2の実際の電流及び温度に対応した内部抵抗値を用いることで、電力供給性能の判定精度を向上できる。 The estimation device 3 or higher-level device may determine the power supply performance (e.g., charge acceptance performance, discharge performance, etc.) of the energy storage element 2 or energy storage device 1 based on the estimated internal resistance. The estimation device 3 or higher-level device may estimate the voltage behavior of the energy storage element 2 and determine whether charging or discharging is possible, for example, by providing the estimated internal resistance values of the first resistance component, the second resistance component, and the third resistance component to an equivalent circuit model that simulates the voltage behavior of the energy storage element 2. By using the internal resistance value corresponding to the actual current and temperature of the energy storage element 2, the accuracy of the determination of the power supply performance can be improved.
 本実施形態によれば、予め用意される境界点情報322を用いて、内部抵抗成分毎に分離して内部抵抗値を容易且つ精度よく推定できる。境界点情報322は、電流及び温度別に設定されるため、蓄電素子2の使用される電流及び温度を加味して境界時間を特定できる。特定時点毎の電流及び温度に基づき各境界時点を特定することで、蓄電素子2の実際の使用状態に対応した内部抵抗を精度よく推定できる。 According to this embodiment, the internal resistance value can be easily and accurately estimated by separating each internal resistance component using pre-prepared boundary point information 322. Since the boundary point information 322 is set for each current and temperature, the boundary time can be determined taking into account the current and temperature used by the storage element 2. By determining each boundary time based on the current and temperature at each specific time, the internal resistance corresponding to the actual usage state of the storage element 2 can be accurately estimated.
 内部抵抗の推定開始タイミングを、電流変動ΔIが変動閾値以上となった場合とすることで、内部抵抗の推定処理の実行タイミングを調整することができる。例えばクランキング時、高電圧システム起動時等、内部抵抗の推定に好適な電流量が流れるタイミング、または、内部抵抗の推定に好適なサイクルで繰り返される動作のタイミングで内部抵抗の推定を実行させることができ、必要十分な推定が可能となる。 The timing for starting internal resistance estimation can be adjusted by setting it to the time when current fluctuation ΔI is equal to or greater than the fluctuation threshold. For example, internal resistance estimation can be performed when an amount of current suitable for estimating internal resistance flows, such as during cranking or when the high-voltage system starts up, or when an operation is repeated in a cycle suitable for estimating internal resistance, enabling necessary and sufficient estimation.
 推定装置、推定方法及び推定プログラムは、車両以外の用途にも適用可能であり、航空機、フライイングビークル、HAPS(High Altitude Platform Station)等の飛行体に適用されてもよいし、船舶や潜水艦に適用されてもよい。推定装置、推定方法及び推定プログラムは、高度な安全性が求められる(リアルタイム計算が求められる)移動体に適用することが好ましいが、移動体に限らず、定置用蓄電装置に適用されてもよい。 The estimation device, estimation method, and estimation program can be applied to applications other than vehicles, and may be applied to flying objects such as aircraft, flying vehicles, and HAPS (High Altitude Platform Stations), as well as to ships and submarines. The estimation device, estimation method, and estimation program are preferably applied to moving objects that require a high level of safety (requiring real-time calculations), but they may also be applied to stationary energy storage devices, not limited to moving objects.
 今回開示した実施の形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。各実施例にて記載されている技術的特徴は互いに組み合わせることができ、本発明の範囲は、特許請求の範囲内での全ての変更及び特許請求の範囲と均等の範囲が含まれることが意図される。
 各実施形態に示すシーケンスは限定されるものではなく、矛盾の無い範囲で、各処理手順はその順序を変更して実行されてもよく、また並行して複数の処理が実行されてもよい。各処理の処理主体は限定されるものではなく、矛盾の無い範囲で、各装置の処理を他の装置が実行してもよい。
The embodiments disclosed herein are illustrative in all respects and should not be considered as limiting. The technical features described in each embodiment can be combined with each other, and the scope of the present invention is intended to include all modifications within the scope of the claims and the scope equivalent to the claims.
The sequences shown in each embodiment are not limited, and the order of each process may be changed and multiple processes may be executed in parallel, as long as there is no contradiction. The subject of each process is not limited, and the process of each device may be executed by another device, as long as there is no contradiction.
 各実施形態に記載した事項は相互に組み合わせることが可能である。また、特許請求の範囲に記載した独立請求項及び従属請求項は、引用形式に関わらず全てのあらゆる組み合わせにおいて、相互に組み合わせることが可能である。さらに、特許請求の範囲には他の2以上のクレームを引用するクレームを記載する形式(マルチクレーム形式)を用いているが、これに限るものではない。マルチクレームを少なくとも一つ引用するマルチクレーム(マルチマルチクレーム)を記載する形式を用いて記載してもよい。  The matters described in each embodiment can be combined with each other. Furthermore, the independent claims and dependent claims described in the claims can be combined with each other in any and all combinations, regardless of the citation format. Furthermore, the claims use a format in which a claim cites two or more other claims (multi-claim format), but this is not limited to this. They may also be written in a format in which multiple claims cite at least one other claim (multi-multi-claim).
 1 蓄電装置
 2 蓄電素子
 3 推定装置
 31 制御部
 32 記憶部
 33 入力部
 34 出力部
 321 推定プログラム
 322 境界点情報
 3221 第1境界時間テーブル
 3222 第2境界時間テーブル
 3223 第3境界時間テーブル
 3A 記録媒体
REFERENCE SIGNS LIST 1 Energy storage device 2 Energy storage element 3 Estimation device 31 Control unit 32 Storage unit 33 Input unit 34 Output unit 321 Estimation program 322 Boundary point information 3221 First boundary time table 3222 Second boundary time table 3223 Third boundary time table 3A Recording medium

Claims (7)

  1.  蓄電素子を一方向の定電流で通電した際の前記蓄電素子の電圧の時系列データを取得する取得部と、
     取得した前記蓄電素子の電圧の時系列データと、一方向の定電流通電により予め求められた、複数種の内部抵抗成分の発現期間とに基づき、内部抵抗成分毎の内部抵抗値を推定する推定部と
     を備える推定装置。
    an acquisition unit that acquires time series data of a voltage of the storage element when a constant current is applied to the storage element in one direction;
    and an estimation unit that estimates an internal resistance value for each internal resistance component based on the acquired time series data of the voltage of the storage element and the occurrence periods of multiple types of internal resistance components that are previously obtained by passing a constant current in one direction.
  2.  前記推定部は、前記蓄電素子の定電流通電により得られる内部抵抗-時間特性に基づき求められる内部抵抗成分の発現期間の境界点を用いて、前記内部抵抗成分毎の内部抵抗値を推定する
     請求項1に記載の推定装置。
    The estimation device according to claim 1, wherein the estimation unit estimates the internal resistance value for each internal resistance component using a boundary point of a period during which the internal resistance component is expressed, the boundary point being determined based on an internal resistance-time characteristic obtained by passing a constant current through the storage element.
  3.  前記内部抵抗成分は、第1抵抗成分及び第2抵抗成分を含み、
     前記発現期間の境界点は、前記第1抵抗成分に対応する第1境界点及び前記第2抵抗成分に対応する第2境界点を含み、
     前記推定部は、
     前記蓄電素子の通電を開始してから前記第1境界点までの前記蓄電素子の電圧の変化量に基づき、前記第1抵抗成分の内部抵抗値を推定し、
     前記第1抵抗成分の内部抵抗値を推定した後、前記第2境界点までの前記蓄電素子の電圧の変化量に基づき、前記第2抵抗成分の内部抵抗値を推定する
     請求項1又は請求項2に記載の推定装置。
    the internal resistance component includes a first resistance component and a second resistance component,
    the boundary points of the onset period include a first boundary point corresponding to the first resistance component and a second boundary point corresponding to the second resistance component;
    The estimation unit is
    estimating an internal resistance value of the first resistance component based on an amount of change in voltage of the storage element from a time when current is started to be passed through the storage element to the first boundary point;
    3 . The estimation device according to claim 1 , further comprising: a step of estimating an internal resistance value of the first resistance component, and then estimating an internal resistance value of the second resistance component based on an amount of change in voltage of the storage element up to the second boundary point.
  4.  前記発現期間は、前記蓄電素子に通電される電流又は前記蓄電素子の温度に対応して求められる
     請求項1又は請求項2に記載の推定装置。
    The estimation device according to claim 1 or 2, wherein the onset period is determined in response to a current flowing through the power storage element or a temperature of the power storage element.
  5.  請求項1又は請求項2に記載の推定装置と、
     蓄電素子と
     を備える蓄電装置。
    The estimation device according to claim 1 or 2;
    A power storage device comprising: a power storage element.
  6.  蓄電素子を一方向の定電流で通電した際の前記蓄電素子の電圧の時系列データを取得し、
     取得した前記蓄電素子の電圧の時系列データと、一方向の定電流通電により予め求められた、複数種の内部抵抗成分の発現期間とに基づき、内部抵抗成分毎の内部抵抗値を推定する
     処理をコンピュータが実行する推定方法。
    Obtaining time series data of a voltage of the storage element when a constant current is applied to the storage element in one direction;
    The estimation method includes a process in which a computer executes a process of estimating an internal resistance value for each internal resistance component based on the acquired time series data of the voltage of the storage element and the occurrence periods of multiple types of internal resistance components obtained in advance by passing a constant current in one direction.
  7.  蓄電素子を一方向の定電流で通電した際の前記蓄電素子の電圧の時系列データを取得し、
     取得した前記蓄電素子の電圧の時系列データと、一方向の定電流通電により予め求められた、複数種の内部抵抗成分の発現期間とに基づき、内部抵抗成分毎の内部抵抗値を推定する
     処理をコンピュータに実行させる推定プログラム。
    Obtaining time series data of a voltage of the storage element when a constant current is applied to the storage element in one direction;
    An estimation program that causes a computer to execute a process of estimating an internal resistance value for each internal resistance component based on the acquired time series data of the voltage of the storage element and the occurrence periods of multiple types of internal resistance components that are previously obtained by passing a constant current in one direction.
PCT/JP2023/042119 2022-11-30 2023-11-24 Estimating device, electricity storage device, estimating method, and estimating program WO2024117022A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022191511A JP2024078902A (en) 2022-11-30 2022-11-30 Estimation device, power storage apparatus, estimation method and estimation program
JP2022-191511 2022-11-30

Publications (1)

Publication Number Publication Date
WO2024117022A1 true WO2024117022A1 (en) 2024-06-06

Family

ID=91323996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/042119 WO2024117022A1 (en) 2022-11-30 2023-11-24 Estimating device, electricity storage device, estimating method, and estimating program

Country Status (2)

Country Link
JP (1) JP2024078902A (en)
WO (1) WO2024117022A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10145979A (en) * 1996-11-07 1998-05-29 Nissan Motor Co Ltd Charging method for lithium ion battery
JP2011054413A (en) * 2009-09-01 2011-03-17 Nissan Motor Co Ltd System and method for determining deterioration state of secondary battery
WO2013128809A1 (en) * 2012-02-29 2013-09-06 Necエナジーデバイス株式会社 Battery control system and battery pack
JP2014048284A (en) * 2012-08-29 2014-03-17 Denso Corp Performance measurement method of battery unit and control device
JP2014149280A (en) * 2013-02-04 2014-08-21 Toshiba Corp Battery performance estimation method and battery performance estimation device
JP2015027137A (en) * 2013-07-24 2015-02-05 ローム株式会社 Battery management circuit, power source management system using the same, and electronic equipment
JP2015090342A (en) * 2013-11-07 2015-05-11 株式会社デンソー Battery characteristics learning apparatus
JP6883742B2 (en) * 2016-09-16 2021-06-09 パナソニックIpマネジメント株式会社 Battery diagnostic methods, battery diagnostic programs, battery management devices, and power storage systems

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10145979A (en) * 1996-11-07 1998-05-29 Nissan Motor Co Ltd Charging method for lithium ion battery
JP2011054413A (en) * 2009-09-01 2011-03-17 Nissan Motor Co Ltd System and method for determining deterioration state of secondary battery
WO2013128809A1 (en) * 2012-02-29 2013-09-06 Necエナジーデバイス株式会社 Battery control system and battery pack
JP2014048284A (en) * 2012-08-29 2014-03-17 Denso Corp Performance measurement method of battery unit and control device
JP2014149280A (en) * 2013-02-04 2014-08-21 Toshiba Corp Battery performance estimation method and battery performance estimation device
JP2015027137A (en) * 2013-07-24 2015-02-05 ローム株式会社 Battery management circuit, power source management system using the same, and electronic equipment
JP2015090342A (en) * 2013-11-07 2015-05-11 株式会社デンソー Battery characteristics learning apparatus
JP6883742B2 (en) * 2016-09-16 2021-06-09 パナソニックIpマネジメント株式会社 Battery diagnostic methods, battery diagnostic programs, battery management devices, and power storage systems

Also Published As

Publication number Publication date
JP2024078902A (en) 2024-06-11

Similar Documents

Publication Publication Date Title
CN110914696B (en) Method and system for estimating battery open cell voltage, state of charge, and state of health during operation of a battery
CN111801586B (en) Method for evaluating remaining performance of rechargeable battery, program for evaluating remaining performance of rechargeable battery, computing device, and system for evaluating remaining performance
CN107076801B (en) Electrochemical impedance spectroscopy in battery management systems
US10534038B2 (en) Method and system for estimating state of charge or depth of discharge of battery, and method and system for evaluating health of battery
EP2963433B1 (en) Method and apparatus for estimating state of battery
Lashway et al. Adaptive battery management and parameter estimation through physics-based modeling and experimental verification
US9952288B2 (en) Battery controller
JP6101714B2 (en) Battery control device, battery system
EP3107146B1 (en) Secondary battery internal temperature estimation device and secondary battery internal temperature estimation method
EP3141919B1 (en) Apparatus and method for estimating open circuit voltage
US10393814B2 (en) Secondary battery state detection device and secondary battery state detection method
US20150268307A1 (en) Systems and methods for determining battery system performance degradation
Kessels et al. On-line battery identification for electric driving range prediction
EP1835297A1 (en) A method and device for determining characteristics of an unknown battery
EP3594705B1 (en) Method and device for estimating service capacity and state of health of minimum battery cell and battery system
CN102077105A (en) Method for battery capacity estimation
Zhou et al. Peak power prediction for series-connected LiNCM battery pack based on representative cells
US10048320B2 (en) Systems and methods for estimating battery system power capability
JP2015524048A (en) Estimating battery charge
KR20150019190A (en) Method of Estimating Battery Stste-Of-Charge and Apparatus therefor the same
US20160139207A1 (en) Apparatus for calculating state of charge of storage battery
WO2020012720A1 (en) Secondary battery parameter estimation device, secondary battery parameter estimation method, and program
Nejad et al. Sensitivity of lumped parameter battery models to constituent parallel-RC element parameterisation error
US10338150B2 (en) Systems and methods for estimating battery system energy capability
Barreras et al. An improved parametrization method for Li-ion linear static Equivalent Circuit battery Models based on direct current resistance measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23897670

Country of ref document: EP

Kind code of ref document: A1