WO2024116876A1 - Block copolymer, dispersant, and coloring composition - Google Patents

Block copolymer, dispersant, and coloring composition Download PDF

Info

Publication number
WO2024116876A1
WO2024116876A1 PCT/JP2023/041305 JP2023041305W WO2024116876A1 WO 2024116876 A1 WO2024116876 A1 WO 2024116876A1 JP 2023041305 W JP2023041305 W JP 2023041305W WO 2024116876 A1 WO2024116876 A1 WO 2024116876A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
meth
structural unit
block copolymer
segment
Prior art date
Application number
PCT/JP2023/041305
Other languages
French (fr)
Japanese (ja)
Inventor
翔 池田
弘一郎 宮崎
Original Assignee
大塚化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大塚化学株式会社 filed Critical 大塚化学株式会社
Publication of WO2024116876A1 publication Critical patent/WO2024116876A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Definitions

  • the present invention relates to a block copolymer, and in particular to a block copolymer that can be used as a dispersant for a colorant in a coloring composition.
  • a coating film made of a coloring composition containing a mixture of pigment, dispersant, dispersion medium (solvent), binder resin, etc. is formed on a substrate, and is cured by irradiating radiation through a photomask with the desired pattern shape, followed by alkaline development.
  • Patent Document 2 describes the use of an A-B block copolymer consisting of an A block having a polylactone chain in the side chain and a B block having a tertiary amino group in the side chain as a pigment dispersion (see Patent Document 2 (paragraphs 0023 to 0045)).
  • the present invention was made in consideration of the above circumstances, and aims to provide a block copolymer that has high dispersibility of coloring materials when used as a dispersant for a coloring composition.
  • the block copolymer of the present invention which has been able to solve the above problems, is a block copolymer having an A segment and a B segment, wherein the A segment is substantially free of a structural unit (b-2) having a basic group, the B segment contains a structural unit (b-1) having a hydroxy group and a structural unit (b-2) having a basic group, and the molar ratio ((b-1)/(b-2)) of the structural unit (b-1) to the structural unit (b-2) in the B segment is 5/95 to 95/5.
  • the block copolymer of the present invention is designed so that the A segment has a high affinity with the solvent and the B segment has a high affinity with the colorant, and the basic group introduced into the B segment adsorbs to the colorant.
  • the affinity between the adsorption site and the dispersion medium is increased by copolymerizing the structural unit (b-1) having a hydroxyl group that easily interacts with the solvent into the B segment.
  • the block copolymer of the present invention has excellent dispersibility for colorants, and when used as a dispersant for colorants, a colored composition with excellent viscosity stability can be obtained.
  • the block copolymer of the present invention has an A segment and a B segment.
  • a segment refers to a portion of the copolymer that is composed of the "A block”
  • B segment refers to a portion of the copolymer that is composed of the "B block.”
  • V monomer refers to a monomer having a radically polymerizable carbon-carbon double bond in the molecule.
  • structural unit derived from a vinyl monomer refers to a structural unit in which the radically polymerizable carbon-carbon double bond of a vinyl monomer is polymerized to become a carbon-carbon single bond.
  • (Meth)acrylic refers to "at least one of acrylic and methacrylic.”
  • (Meth)acrylate refers to "at least one of acrylate and methacrylate.”
  • (Meth)acrylate means "an ester compound in which the hydrogen atom of the carboxyl group of (meth)acrylic acid is substituted with an organic group.”
  • (Meth)acryloyl refers to "at least one of acryloyl and methacryloyl.”
  • (Meth)acrylicmonomer means "a monomer having a (meth)acryloyl group in the molecule,” and includes “(meth)acrylate.”
  • the term “vinyl monomer” also includes "(meth)acrylate” and "(meth)acrylic monomer.”
  • the A segment refers to a portion of the block copolymer that is composed of an A block.
  • the block copolymer may have only one A block as the A segment, or may have multiple A blocks as the A segment. When the A segment has multiple A blocks, these A blocks may have the same composition or different compositions.
  • the A segment does not substantially contain a structural unit (b-2) having a basic group.
  • the A block is a block that does not substantially contain a structural unit (b-2) having a basic group.
  • structural units constituting the A block include structural units derived from (meth)acrylic monomers and structural units derived from vinyl monomers other than (meth)acrylic monomers.
  • the structural units constituting the A block may be of only one type, or may have two or more types. When two or more types of structural units are contained in the A block, the various structural units contained in the A block may be contained in the A block in any form, such as random copolymerization or block copolymerization, and are preferably contained in the A block in the form of random copolymerization from the viewpoint of uniformity.
  • Examples of the (meth)acrylic monomer that forms a structural unit derived from the (meth)acrylic monomer include (meth)acrylic monomers having a chain alkyl group, (meth)acrylic monomers having a cyclic alkyl group, (meth)acrylic monomers having an aryl group, (meth)acrylic monomers having a hydroxy group, (meth)acrylic monomers having an alkoxy group, (meth)acrylic monomers having an oxygen-containing heterocyclic group, (meth)acrylic monomers having an amide group, (meth)acrylic monomers having an acidic group, etc.
  • Examples of (meth)acrylic monomers having a chain alkyl group include (meth)acrylates having a straight-chain alkyl group and (meth)acrylates having a branched-chain alkyl group.
  • the (meth)acrylate having the linear alkyl group a (meth)acrylate having a linear alkyl group with a carbon number of 1 to 20 is preferred, and a (meth)acrylate having a linear alkyl group with a carbon number of 1 to 10 is more preferred.
  • the (meth)acrylate having the linear alkyl group examples include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, n-butyl (meth)acrylate, n-pentyl (meth)acrylate, n-hexyl (meth)acrylate, n-octyl (meth)acrylate, n-nonyl (meth)acrylate, n-decyl (meth)acrylate, n-lauryl (meth)acrylate, and n-stearyl (meth)acrylate.
  • the (meth)acrylate having a branched alkyl group a (meth)acrylate having a branched alkyl group with a carbon number of 3 to 20 is preferred, and a (meth)acrylate having a branched alkyl group with a carbon number of 3 to 10 is preferred.
  • (meth)acrylate having a branched alkyl group examples include isopropyl (meth)acrylate, isobutyl (meth)acrylate, sec-butyl (meth)acrylate, tert-butyl (meth)acrylate, isooctyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isononyl (meth)acrylate, isodecyl (meth)acrylate, etc.
  • Examples of the (meth)acrylic monomer having a cyclic alkyl group include (meth)acrylates having a cyclic alkyl group with a monocyclic structure and (meth)acrylates having a cyclic alkyl group with a bridged ring structure.
  • the (meth)acrylate having a cyclic alkyl group with a monocyclic structure is preferably a (meth)acrylate having a cyclic alkyl group with a monocyclic structure in which the cyclic alkyl group has 6 to 12 carbon atoms.
  • Specific examples of (meth)acrylates having a cyclic alkyl group with a monocyclic structure include cyclohexyl (meth)acrylate, methylcyclohexyl (meth)acrylate, and cyclododecyl (meth)acrylate.
  • the (meth)acrylate having a cyclic alkyl group with a bridged ring structure is preferably a (meth)acrylate having a bridged ring structure with a carbon number of 6 to 12.
  • Specific examples of (meth)acrylates having a cyclic alkyl group with a bridged ring structure include isobornyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, dicyclopentanyloxyethyl (meth)acrylate, 2-methyl-2-adamantyl (meth)acrylate, and 2-ethyl-2-adamantyl (meth)acrylate.
  • the (meth)acrylic monomer having an aryl group is preferably a (meth)acrylate having an aryl group with 6 to 12 carbon atoms.
  • the aryl group may have a chain portion such as an alkylaryl group, an aralkyl group, or an aryloxyalkyl group.
  • Specific examples of (meth)acrylates having an aryl group include benzyl (meth)acrylate, phenyl (meth)acrylate, and phenoxyethyl (meth)acrylate.
  • Examples of the (meth)acrylic monomer having a hydroxy group include (meth)acrylates having a hydroxyalkyl group, (meth)acrylates having a lactone-modified hydroxy group, and (meth)acrylates having a polyalkylene glycol group.
  • (meth)acrylates having the hydroxyalkyl group include 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, 8-hydroxyoctyl (meth)acrylate, 10-hydroxydecyl (meth)acrylate, and 12-hydroxylauryl (meth)acrylate.
  • the hydroxyalkyl group is preferably linear or branched.
  • the number of carbon atoms in the hydroxyalkyl group is preferably 1 to 10, and more preferably 1 to 5.
  • the (meth)acrylate having a lactone-modified hydroxy group include those obtained by adding lactone to the (meth)acrylate having a hydroxyalkyl group, and those obtained by adding caprolactone are preferred.
  • the amount of caprolactone added is preferably 1 mol to 20 mol, and more preferably 1 mol to 10 mol.
  • Preferred examples of the (meth)acrylate having a lactone-modified hydroxy group include 1 mol caprolactone adduct of 2-hydroxyethyl (meth)acrylate, 2 mol caprolactone adduct of 2-hydroxyethyl (meth)acrylate, 3 mol caprolactone adduct of 2-hydroxyethyl (meth)acrylate, 4 mol caprolactone adduct of 2-hydroxyethyl (meth)acrylate, 5 mol caprolactone adduct of 2-hydroxyethyl (meth)acrylate, and 10 mol caprolactone adduct of 2-hydroxyethyl (meth)acrylate.
  • Examples of the (meth)acrylic monomer having an alkoxy group include (meth)acrylates having an alkoxyalkyl group and (meth)acrylates having an alkoxypolyalkylene glycol group.
  • (meth)acrylates having the above-mentioned alkoxyalkyl groups include methoxyethyl (meth)acrylate, ethoxyethyl (meth)acrylate, etc.
  • the (meth)acrylic monomer having an oxygen-containing heterocyclic group is preferably a (meth)acrylate having a 4- to 6-membered oxygen-containing heterocyclic group.
  • Specific examples of (meth)acrylates having an oxygen-containing heterocyclic group include glycidyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, (3-ethyloxetan-3-yl)methyl (meth)acrylate, (2-methyl-2-ethyl-1,3-dioxolan-4-yl)methyl (meth)acrylate, cyclic trimethylolpropane formal (meth)acrylate, and 2-[(2-tetrahydropyranyl)oxy]ethyl (meth)acrylate.
  • (meth)acrylic monomer having an amide group examples include N,N-dimethyl(meth)acrylamide and 4-(meth)acryloylmorpholine.
  • Examples of the acidic group contained in the (meth)acrylic monomer having an acidic group include a carboxy group (-COOH), a sulfonic acid group (-SO 3 H), a phosphoric acid group (-OPO 3 H 2 ), a phosphonic acid group (-PO 3 H 2 ), and a phosphinic acid group (-PO 2 H 2 ).
  • Examples of the (meth)acrylic monomer having an acidic group include (meth)acrylic acid, a (meth)acrylate having a carboxy group, a (meth)acrylate having a phosphoric acid group, and a (meth)acrylate having a sulfonic acid group, and preferably, (meth)acrylic acid and a (meth)acrylate having a carboxy group.
  • (meth)acrylates having a carboxy group include monomers obtained by reacting (meth)acrylates having a hydroxyalkyl group, such as carboxyethyl (meth)acrylate, carboxypentyl (meth)acrylate, 2-(meth)acryloyloxyethyl succinate, 2-(meth)acryloyloxyethyl maleate, and 2-(meth)acryloyloxyethyl phthalate, with acid anhydrides, such as maleic anhydride, succinic anhydride, and phthalic anhydride.
  • Specific examples of (meth)acrylates having a phosphoric acid group include 2-(phosphonooxy)ethyl (meth)acrylate.
  • Specific examples of (meth)acrylates having a sulfonic acid group include ethyl sulfonate (meth)acrylate.
  • the structural units derived from vinyl monomers other than the (meth)acrylic monomer are not particularly limited as long as they are formed from vinyl monomers that can be copolymerized with both the (meth)acrylic monomer and the vinyl monomer that forms the B block described below.
  • vinyl monomers that form structural units derived from vinyl monomers other than the (meth)acrylic monomers include ⁇ -olefins, styrene-based monomers, vinyl monomers containing a hydroxyl group, vinyl monomers containing a heterocycle, vinyl amides, vinyl carboxylates, dienes, etc. These vinyl monomers may have a hydroxyl group or an epoxy group.
  • Examples of the ⁇ -olefin include 1-hexene, 1-octene, and 1-decene.
  • the styrene-based monomer may be substituted or unsubstituted styrene.
  • Examples of the substituent that may be substituted on styrene include an alkyl group, an aryl group, an alkoxy group, and an aryloxy group.
  • the styrene-based monomer also includes a condensed ring compound having two or more benzene rings.
  • styrene-based vinyl monomer examples include styrene, ⁇ -methylstyrene, 4-methylstyrene, 2-methylstyrene, 3-methylstyrene, 2,4-dimethylstyrene, 4-methoxystyrene, 4-phenylstyrene, 2-hydroxymethylstyrene, and 1-vinylnaphthalene.
  • vinyl monomer containing a hydroxy group include 4-vinylphenol and 4-hydroxybutyl vinyl ether.
  • vinyl monomer containing a heterocycle examples include 2-vinylthiophene, N-methyl-2-vinylpyrrole, and 1-vinyl-2-pyrrolidone.
  • Examples of the vinyl amide include N-vinylformamide, N-vinylacetamide, and N-vinyl- ⁇ -caprolactam.
  • Examples of the vinyl carboxylate include vinyl acetate, vinyl pivalate, and vinyl benzoate.
  • Examples of the dienes include butadiene, isoprene, 4-methyl-1,4-hexadiene, and 7-methyl-1,6-octadiene.
  • the A block preferably contains a structural unit derived from a (meth)acrylic monomer.
  • the structural unit derived from the (meth)acrylic monomer may be of only one type, or may have two or more types.
  • the affinity with the dispersion medium and the binder resin blended in the coloring composition is improved.
  • the content of the structural units derived from the (meth)acrylic monomer is preferably 80 mol% or more, more preferably 90 mol% or more, even more preferably 95 mol% or more, and particularly preferably 100 mol% out of 100 mol% of the structural units constituting the A block.
  • the content of the structural units derived from the (meth)acrylic monomer is preferably 80 mol% or more, more preferably 90 mol% or more, even more preferably 95 mol% or more, and particularly preferably 100 mol% in 100 mol% of the structural units constituting the A segment.
  • the A segment preferably contains a structural unit derived from at least one (meth)acrylic monomer selected from the group consisting of (meth)acrylic monomers having a chain alkyl group, (meth)acrylic monomers having a cyclic alkyl group, (meth)acrylic monomers having an aryl group, (meth)acrylic monomers having a hydroxy group, (meth)acrylic monomers having an alkoxy group, (meth)acrylic monomers having an oxygen-containing heterocyclic group, (meth)acrylic monomers having an amide group, and (meth)acrylic monomers having an acidic group.
  • the affinity with the dispersion medium and the binder resin blended in the coloring composition is further improved.
  • the A segment preferably contains, as a structural unit derived from a (meth)acrylic monomer, at least one structural unit derived from a (meth)acrylic monomer selected from the group consisting of structural unit (a-1) derived from a (meth)acrylate having a hydroxy group and structural unit (a-2) derived from a (meth)acrylate having an alkoxy group, more preferably structural unit (a-1) derived from a (meth)acrylate having a hydroxy group, and even more preferably structural unit derived from a (meth)acrylate having a lactone-modified hydroxy group.
  • the A segment having a hydroxy group or alkoxy group can further improve the dispersion performance of the colorant, and among them, the structural unit derived from a (meth)acrylate having a lactone-modified hydroxy group has an ester bond portion and a terminal hydroxy group in the side chain, and therefore has high affinity with the dispersion medium and binder resin, and enhances re-solubility in the dispersion medium.
  • n1 represents an integer of 1 to 10.
  • R 41 represents a hydrogen atom or a methyl group.
  • R 42 represents an alkylene group having 1 to 10 carbon atoms.
  • R 43 represents an alkylene group having 1 to 10 carbon atoms.
  • n1 is preferably an integer from 1 to 7, and more preferably an integer from 1 to 5.
  • the alkylene group having 1 to 10 carbon atoms represented by R 42 may be either linear or branched, but is preferably linear. Specific examples of the alkylene group having 1 to 10 carbon atoms represented by R 42 include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group, an octamethylene group, a nonamethylene group, a decamethylene group, and a 1-methylethylene group. R 42 is preferably an alkylene group having 1 to 5 carbon atoms.
  • the alkylene group having 1 to 10 carbon atoms represented by R 43 may be either linear or branched, but is preferably linear. Specific examples of the alkylene group having 1 to 10 carbon atoms represented by R 43 include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group, an octamethylene group, a nonamethylene group, and a decamethylene group. R 43 is preferably an alkylene group having 1 to 8 carbon atoms, and more preferably an alkylene group having 3 to 8 carbon atoms.
  • the total content thereof is preferably 5 mol% or more, more preferably 10 mol% or more, even more preferably 20 mol% or more, and preferably 95 mol% or less, more preferably 70 mol% or less, and even more preferably 40 mol% or less, in 100 mol% of the structural units constituting the A segment.
  • the dispersion performance of the colorant can be further improved.
  • the content is preferably 5 mol% or more, more preferably 10 mol% or more, even more preferably 20 mol% or more, and is preferably 95 mol% or less, more preferably 70 mol% or less, even more preferably 40 mol% or less, in 100 mol% of the structural units constituting the A segment.
  • the A segment may have a structural unit derived from a vinyl monomer having an acidic group (preferably a (meth)acrylic monomer having an acidic group, more preferably (meth)acrylic acid).
  • a vinyl monomer having an acidic group By having a structural unit derived from a vinyl monomer having an acidic group, the solubility in an alkaline developer is increased, and the alkaline developability of the coloring composition can be improved. However, if the proportion is high, there is a risk that the affinity with the dispersion medium and binder resin will be reduced. Therefore, it is preferable that the proportion of structural units derived from a vinyl monomer having an acidic group is such that the overall acid value of the block copolymer is lower than the amine value.
  • the content is preferably 2 mol% or more, and preferably 20 mol% or less, in 100 mol% of the structural units constituting the A segment. If the content of structural units derived from vinyl monomers having acidic groups is 2 mol% or more, the dissolution rate when neutralized with alkali during alkaline development is increased, and if it is 20 mol% or less, the hydrophilicity is not too high, and it is possible to prevent the formed pixels from becoming disordered.
  • the A segment does not substantially contain structural units (b-2) having a basic group.
  • the monomers constituting the A segment do not contain monomers having a basic group. If a basic group is present in the A segment, when used as a dispersant, the colorant will be adsorbed by both the A segment and the B segment, and the dispersibility of the colorant will decrease.
  • the content of structural units (b-2) having a basic group in 100 mol% of the structural units constituting the A segment is preferably 0.5 mol% or less, more preferably 0.1 mol% or less, even more preferably 0.05 mol% or less, and particularly preferably 0 mol%.
  • the B segment refers to a portion of the block copolymer that is composed of a B block.
  • the block copolymer may have only one B block as the B segment, or may have multiple B blocks as the B segment. When the B segment has multiple B blocks, these B blocks may have the same composition or different compositions.
  • the B segment contains a structural unit (b-1) having a hydroxy group and a structural unit (b-2) having a basic group.
  • Examples of the B segment include an embodiment containing a B block containing a structural unit (b-1) having a hydroxy group and a structural unit (b-2) having a basic group; an embodiment containing a B1 block containing a structural unit (b-1) having a hydroxy group and a structural unit (b-2) having a basic group, and a B2 block containing a structural unit (b-2) having a basic group; an embodiment containing a B1 block containing a structural unit (b-1) having a hydroxy group and a structural unit (b-2) having a basic group, and a B2 block containing a structural unit (b-1) having a hydroxy group and a structural unit (b-2) having a basic group, and a B2 block containing a structural unit (b-1) having a hydroxy group and a structural unit (b-2) having a basic
  • the B block is a block containing a structural unit (b-1) having a hydroxy group and a structural unit (b-2) having a basic group, or a block containing no structural unit (b-1) having a hydroxy group and containing a structural unit (b-2) having a basic group.
  • the various structural units contained in the B block may be contained in the B block in any form such as random copolymerization or block copolymerization, and from the viewpoint of uniformity, they are preferably contained in the form of random copolymerization.
  • At least one block of the B block contains a structural unit (b-1) having a hydroxy group.
  • the structural unit (b-1) may be of only one type, or may have two or more types. Note that the structural unit (b-2) having a basic group, which will be described later, is not included in the structural unit (b-1) having a hydroxy group.
  • the structural unit (b-1) may be, for example, a structure derived from a vinyl monomer having a hydroxyl group.
  • the structural unit (b-1) having a hydroxyl group is preferably a structural unit represented by formula (1).
  • R 11 represents a hydrogen atom or a methyl group.
  • a 11 represents an ester group, an amide group, or a single bond.
  • R 12 represents a divalent hydrocarbon group, -R 13 -(OCO-R 14 ) m - group, or -R 15 -(O-R 16 ) n - group.
  • R 13 to R 16 each independently represent a divalent hydrocarbon group.
  • m represents an integer from 1 to 10.
  • n represents an integer from 1 to 10.
  • the A 11 represents an ester group (-CO-O-), an amide group (-CO-NH-) or a single bond, and is preferably an ester group or an amide group in terms of affinity to the dispersion medium and alkaline developability.
  • the bonding direction of the ester group or the amide group is not particularly limited. Examples of the bonding mode of the ester group include C-CO-O-R 12 or C-O-CO-R 12 , and C-CO-O-R 12 is preferred. Examples of the bonding mode of the amide group include C-CO-NH-R 12 or C-NH-CO-R 12 , and C-CO-NH-R 12 is preferred.
  • the divalent hydrocarbon group represented by R 12 includes a linear alkylene group, a branched alkylene group, a cyclic alkylene group, and an arenediyl group, with linear alkylene groups and branched alkylene groups being preferred.
  • the linear alkylene group preferably has 1 to 20 carbon atoms, more preferably has 1 to 10 carbon atoms, and further preferably has 1 to 5 carbon atoms.
  • Examples of the linear alkylene group include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group, an octamethylene group, a nonamethylene group, a decamethylene group, and a dodecamethylene group.
  • the branched alkylene group preferably has a carbon number of 3 to 20, and more preferably has a carbon number of 3 to 10.
  • Examples of the branched alkylene group include a propylene group, a propylidene group, a 1,2-butanediyl group, and a 1,3-butanediyl group.
  • the cyclic alkylene group preferably has a carbon number of 6 to 12.
  • Examples of the cyclic alkylene group include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, and a cyclohexylene group.
  • the arenediyl group preferably has a carbon number of 6 to 12, and more preferably has a carbon number of 6 to 9. Examples of the arenediyl group include a phenylene group.
  • R 13 and R 14 in the —R 13 —(OCO—R 14 ) m — group represented by R 12 each independently represent a divalent hydrocarbon group.
  • m represents an integer of 1 to 10, preferably an integer of 1 to 7, and more preferably an integer of 1 to 5.
  • the divalent hydrocarbon group of R 13 includes a linear alkylene group and a branched alkylene group, and is preferably a linear alkylene group.
  • the linear alkylene group preferably has 1 to 10 carbon atoms, and more preferably has 1 to 5 carbon atoms.
  • the branched alkylene group preferably has 3 to 10 carbon atoms, and more preferably has 3 to 5 carbon atoms.
  • R 13 examples include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group, an octamethylene group, a nonamethylene group, a decamethylene group, and a 1-methylethylene group.
  • the divalent hydrocarbon group of R 14 includes a linear alkylene group, a branched alkylene group, etc., and a linear alkyl group is preferred.
  • the linear alkylene group preferably has 1 to 10 carbon atoms, more preferably has 1 to 8 carbon atoms, and even more preferably has 3 to 8 carbon atoms.
  • the branched alkylene group preferably has 3 to 10 carbon atoms, and more preferably has 3 to 8 carbon atoms.
  • R 14 examples include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group, an octamethylene group, a nonamethylene group, and a decamethylene group.
  • R 15 and R 16 in the —R 15 —(O—R 16 ) n — group represented by R 12 each independently represent a divalent hydrocarbon group.
  • the divalent hydrocarbon group of R 15 includes a linear alkylene group and a branched alkylene group, and a linear alkyl group is preferable.
  • the linear alkylene group preferably has 1 to 5 carbon atoms, and more preferably has 1 to 3 carbon atoms.
  • the branched alkylene group preferably has 3 to 5 carbon atoms.
  • Specific examples of R 15 include a methylene group, an ethylene group, and a propylene group.
  • the divalent hydrocarbon group of R 16 includes a linear alkylene group and a branched alkylene group, and a branched alkylene group is preferable.
  • the linear alkylene group preferably has 1 to 5 carbon atoms, and more preferably has 1 to 3 carbon atoms.
  • the branched alkylene group preferably has 3 to 5 carbon atoms.
  • Specific examples of R 16 include a methylene group, an ethylene group, and a propylene group.
  • vinyl monomers that form the structural unit represented by formula (1) are preferably (meth)acrylates having a hydroxyalkyl group, (meth)acrylates having a lactone-modified hydroxy group, (meth)acrylates having a polyalkylene glycol group, and vinyl monomers having a hydroxy group.
  • Examples of (meth)acrylates having a hydroxyalkyl group include 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, 8-hydroxyoctyl (meth)acrylate, 10-hydroxydecyl (meth)acrylate, 12-hydroxylauryl (meth)acrylate, and 2-hydroxy-3-phenoxypropyl (meth)acrylate.
  • Examples of the (meth)acrylate having a lactone-modified hydroxy group include 1 mol adduct of 2-hydroxyethyl (meth)acrylate with caprolactone, 2 mol adduct of 2-hydroxyethyl (meth)acrylate with caprolactone, 3 mol adduct of 2-hydroxyethyl (meth)acrylate with caprolactone, 4 mol adduct of 2-hydroxyethyl (meth)acrylate with caprolactone, 5 mol adduct of 2-hydroxyethyl (meth)acrylate with caprolactone, and 10 mol adduct of 2-hydroxyethyl (meth)acrylate with caprolactone.
  • vinyl monomers containing a hydroxy group examples include 4-vinylphenol and 4-hydroxybutyl vinyl ether.
  • the content of the structural unit (b-1) is preferably 5 mol% or more, more preferably 10 mol% or more, even more preferably 15 mol% or more, and is preferably 90 mol% or less, more preferably 80 mol% or less, even more preferably 65 mol% or less. If the content of the structural unit (b-1) is within the above range, it is considered that the B segment has high affinity with the colorant.
  • the content of the structural unit (b-1) in 100 mol% of the structural units constituting the B block is preferably more than 0 mol%, more preferably 1 mol% or more, even more preferably 10 mol% or more, and is preferably 99 mol% or less, more preferably 80 mol% or less, even more preferably 65 mol% or less.
  • the B block constituting the B segment contains a structural unit (b-2) having a basic group.
  • the copolymer has high adsorption ability for colorants.
  • the structural unit (b-2) may be of only one type, or may have two or more types.
  • the basic group is a group that exhibits basicity, and is preferably an amino group in terms of availability of raw materials and ease of synthesis.
  • the amino group includes, in addition to a general amino group (-NH 2 ), a substituted amino group represented by -NHR a or -NR a R b (R a and R b each independently represent a chain or cyclic hydrocarbon group. R a and R b may be bonded to each other to form a cyclic structure) in which H is substituted with a hydrocarbon group, and a nitrogen-containing heterocyclic group (pyridyl group, imidazole group, etc.).
  • a hydroxy group is not included in the basic group.
  • the structural unit (b-2) can be, for example, a structure derived from a vinyl monomer having a basic group.
  • the structural unit (b-2) is preferably a structural unit represented by formula (2).
  • R21 represents a hydrogen atom or a methyl group.
  • A21 represents an ester group, an amide group, or a single bond.
  • R22 represents a divalent hydrocarbon group.
  • R23 and R24 each independently represent a hydrocarbon group that may contain a heteroatom. R23 and R24 may be bonded to each other to form a cyclic structure.
  • the A 21 represents an ester group (-CO-O-), an amide group (-CO-NH-) or a single bond, and is preferably an ester group or an amide group in terms of affinity to the dispersion medium and alkaline developability.
  • the bonding direction of the ester group or the amide group is not particularly limited. Examples of the bonding mode of the ester group include C-CO-O-R 22 or C-O-CO-R 22 , and C-CO-O-R 22 is preferred. Examples of the bonding mode of the amide group include C-CO-NH-R 22 or C-NH-CO-R 22 , and C-CO-NH-R 22 is preferred.
  • the divalent hydrocarbon group represented by R 22 includes a linear alkylene group, a branched alkylene group, a cyclic alkylene group, an alkenylene group, an arenediyl group, etc., and the linear alkylene group is preferred.
  • the linear alkylene group preferably has a carbon number of 1 to 10, and more preferably has a carbon number of 1 to 5.
  • Examples of the linear alkylene group include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, and a pentamethylene group.
  • the branched alkylene group preferably has a carbon number of 3 to 10.
  • Examples of the branched alkylene group include a propylene group, a propylidene group, a 1,2-butanediyl group, and a 1,3-butanediyl group.
  • the cyclic alkylene group preferably has a carbon number of 6 to 12.
  • Examples of the cyclic alkylene group include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, and a cyclohexylene group.
  • the alkenylene group preferably has a carbon number of 2 to 10. Examples of the alkenylene group include an ethenylene group, a 2-propenylene group, a 2-butenylene group, and a 3-butenylene group.
  • the arenediyl group preferably has a carbon number of 6 to 12. Examples of the arenediyl group include a phenylene group.
  • divalent hydrocarbon groups include methylene, ethylene, trimethylene, hexamethylene, heptamethylene, octamethylene, and dodecamethylene groups.
  • the hydrocarbon group which may contain a heteroatom in R23 and R24 includes a chain hydrocarbon group and a cyclic hydrocarbon group, and the chain hydrocarbon group is preferable.
  • Examples of the chain-like hydrocarbon group include a linear alkyl group and a branched alkyl group, with the linear alkyl group being preferred.
  • the carbon number of the linear alkyl group is preferably 1 to 20, more preferably 1 to 10, and further preferably 1 to 5.
  • Examples of the linear alkyl group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-hexyl group, an n-octyl group, an n-nonyl group, an n-decyl group, and an n-lauryl group.
  • the carbon number of the branched alkyl group is preferably 3 to 20, more preferably 3 to 10, and further preferably 3 to 5.
  • Examples of the branched alkyl group include an isopropyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a 2-ethylhexyl group, a neopentyl group, and an isooctyl group.
  • Examples of the cyclic hydrocarbon group include a cyclic alkyl group and an aromatic group, and the cyclic alkyl group and the aromatic group may have a chain portion.
  • the number of carbon atoms in the cyclic alkyl group is preferably 4 to 18, more preferably 6 to 12, and even more preferably 6 to 10.
  • Examples of the cyclic alkyl group include a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • the number of carbon atoms in the aromatic group is preferably 6 to 18, more preferably 6 to 12, and even more preferably 6 to 8.
  • Examples of the aromatic group include a phenyl group, a tolyl group, a xylyl group, and a mesityl group.
  • Examples of the cyclic alkyl group having a chain portion and the chain portion of the aromatic group having a chain portion include alkylene groups having 1 to 12 carbon atoms, preferably alkylene groups having 1 to 6 carbon atoms, and more preferably alkylene groups having 1 to 3 carbon atoms.
  • the hydrocarbon group containing a heteroatom has a structure in which a carbon atom in the above-mentioned hydrocarbon group is replaced with a heteroatom.
  • the heteroatom that may be contained in the hydrocarbon group include an oxygen atom.
  • a hydrogen atom in the hydrocarbon group may be substituted with a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom.
  • R 23 and R 24 are bonded to each other to form a cyclic structure
  • R 23 and R 24 form a cyclic structure via a nitrogen atom.
  • the cyclic structure include a 5- to 7-membered nitrogen-containing heterocycle or a condensed ring formed by condensing two of these.
  • the nitrogen-containing heterocycle is preferably one that does not have aromaticity, and more preferably a saturated ring. Specific examples include structures represented by the following formulas (2-1), (2-2), and (2-3).
  • R 25 represents an alkyl group having 1 to 6 carbon atoms.
  • l represents an integer of 0 to 5.
  • m represents an integer of 0 to 4.
  • n represents an integer of 0 to 4. * represents a bond.
  • l is 2 to 5
  • m is 2 to 4
  • n is 2 to 4, multiple R 25s may be the same or different.
  • vinyl monomers that form the structural unit represented by formula (2) include dimethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylate, dimethylaminobutyl (meth)acrylate, diethylaminoethyl (meth)acrylate, diethylaminopropyl (meth)acrylate, diethylaminobutyl (meth)acrylate, ethylaminoethyl (meth)acrylate, ethylaminopropyl (meth)acrylate, ethylaminobutyl (meth)acrylate, propylaminoethyl (meth)acrylate, propylaminopropyl (meth)acrylate, propylaminobutyl (meth)acrylate, dimethylaminopropyl acid (meth)acrylamide, etc.
  • the difference ( ⁇ h1 - ⁇ h2 ) between the hydrogen bonding strength term ( ⁇ h1 ) of the Hansen solubility parameter of the structural unit (b-1) and the hydrogen bonding strength term ( ⁇ h2 ) of the Hansen solubility parameter of the structural unit ( b -2) is preferably 0.5 J 1/2 cm 1/2 mol -1 or more, more preferably 2.5 J 1/2 cm 1/2 mol -1 or more, even more preferably 5.0 J 1/2 cm 1/2 mol -1 or more, and is preferably 15.0 J 1/2 cm 1/2 mol -1 or less, more preferably 13.0 J 1/2 cm 1/2 mol -1 or less, even more preferably 10.0 J 1/2 cm 1/2 mol -1 or less, particularly preferably 8.0 J 1/2 cm 1/2 mol -1 or less.
  • the difference ( ⁇ h1 - ⁇ h2 ) is 0.5 J 1/2 ⁇ cm 1/2 ⁇ mol -1 or more, it is believed that in addition to adsorption to the colorant, the effect of increasing affinity to the dispersion medium will be further improved, and if it is 15.0 J 1/2 ⁇ cm 1/2 ⁇ mol -1 or less, improved storage stability can be expected without inhibiting adsorption between the structural unit (b-2) of the block copolymer and the colorant.
  • the average value of each hydrogen bonding term is calculated, and the difference ( ⁇ h1 - ⁇ h2 ) is calculated using the average value.
  • the average value of the hydrogen bonding term is calculated by multiplying the hydrogen bonding term of each structural unit by the molar fraction of each structural unit and adding up the results.
  • the average value of the hydrogen bonding term of the structural unit (b-1) is the sum of the product of the molar fraction of the structural unit (b-11) in all structural units (b-1) and the hydrogen bonding term of the structural unit (b-11), and the product of the molar fraction of the structural unit (b-12) in all structural units (b-1) and the hydrogen bonding term of the structural unit (b-12).
  • Hansen solubility parameter is a value used to predict the solubility of a substance, calculated by the method proposed by Hansen et al. Specifically, HSP is a value calculated by the following formula (Formula (1)).
  • represents the HSP of the polymer block.
  • ⁇ d represents the London dispersion term of the HSP.
  • ⁇ p represents the dipole-dipole term of the HSP.
  • ⁇ h represents the hydrogen bond term of the HSP.
  • ⁇ 2 ⁇ d2 + ⁇ p2 + ⁇ h2 ( 1 )
  • the ⁇ d , ⁇ p and ⁇ h are values calculated from the molar attractive force multipliers (F di , F pi , E hi ) and the molar volume V i of the atomic group i constituting the structural unit of the polymer block according to the following formulas (formulas (2) to (4)).
  • the content of the structural unit (b-2) is preferably 5 mol% or more, more preferably 15 mol% or more, even more preferably 30 mol% or more, and is preferably 90 mol% or less, more preferably 85 mol% or less, even more preferably 80 mol% or less, out of 100 mol% of the structural units constituting the B segment. If the content of the structural unit (b-2) is within the above range, the adsorption ability to the colorant is further improved.
  • the content of the structural unit (b-2) is preferably 1 mol% or more, more preferably 50 mol% or more, and even more preferably 65 mol% or more, and is preferably less than 100 mol%, more preferably 99 mol% or less, and even more preferably 90 mol% or less, out of 100 mol% of the structural units constituting the B block. If the content of the structural unit (b-2) is within the above range, the adsorption ability with the colorant is further improved.
  • the molar ratio ((b-1)/(b-2)) of the structural unit (b-1) to the structural unit (b-2) in the B segment is preferably 5/95 or more, more preferably 10/90 or more, even more preferably 20/80 or more, and is preferably 95/5 or less, more preferably 80/20 or less, even more preferably 70/30 or less. If the molar ratio ((b-1)/(b-2)) is within the above range, it is believed that adsorption to the colorant and affinity to the dispersion medium will work more effectively.
  • the total content ((b-1)+(b-2)) of the structural units (b-1) and (b-2) is preferably 30 mol% or more, more preferably 40 mol% or more, and even more preferably 50 mol% or more, and is preferably 100 mol% or less. If the total content ((b-1)+(b-2)) is within the above range, it can be expected that the dispersibility of the colorant will be further improved.
  • the B segment may contain a structural unit (b-3) having a salt of a basic group in addition to the structural unit (b-1) and the structural unit (b-2).
  • the structural unit (b-3) may be of only one type, or of two or more types.
  • the salt of the basic group examples include inorganic salts such as halide salts (F, Cl, Br, I, etc.) and sulfate salts of the basic group; and sulfonates, sulfates, phosphates, or carboxylates of organic compounds.
  • the salt of the basic group is preferably an amino group salt in view of availability of raw materials and ease of synthesis.
  • the salt of the amino group also includes salts (e.g., halides) of quaternary ammonium groups (-NR c R d R e (R c , R d and R e each independently represent a chain or cyclic hydrocarbon group.
  • the structural unit (b-3) having a salt of a basic group may be a salt formed by part of the basic group of the structural unit (b-2) having a basic group.
  • the structural unit (b-3) is preferably a structural unit represented by formula (3).
  • R 31 represents a hydrogen atom or a methyl group.
  • a 31 represents an ester group, an amide group, or a single bond.
  • R 32 represents a divalent hydrocarbon group.
  • R 33 , R 34 , and R 35 each independently represent a hydrocarbon group which may contain a heteroatom. Two or more of R 33 , R 34 , and R 35 may be bonded to each other to form a cyclic structure.
  • X ⁇ represents a counter ion.
  • the A 31 represents an ester group (-CO-O-), an amide group (-CO-NH-) or a single bond, and is preferably an ester group or an amide group in terms of affinity to the dispersion medium and alkaline developability.
  • the bonding direction of the ester group or the amide group is not particularly limited. Examples of the bonding form of the ester group include C-CO-O-R 32 or C-O-CO-R 32 , and C-CO-O-R 32 is preferred. Examples of the bonding form of the amide group include C-CO-NH-R 32 or C-NH-CO-R 32 , and C-CO-NH-R 32 is preferred.
  • the divalent hydrocarbon group represented by R 32 includes a linear alkylene group, a branched alkylene group, a cyclic alkylene group, an alkenylene group, an arenediyl group, etc., and the linear alkylene group is preferred.
  • the linear alkylene group preferably has a carbon number of 1 to 10, and more preferably has a carbon number of 1 to 5.
  • Examples of the linear alkylene group include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, and a pentamethylene group.
  • the branched alkylene group preferably has a carbon number of 3 to 10.
  • Examples of the branched alkylene group include a propylene group, a propylidene group, a 1,2-butanediyl group, and a 1,3-butanediyl group.
  • the cyclic alkylene group preferably has a carbon number of 6 to 12.
  • Examples of the cyclic alkylene group include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, and a cyclohexylene group.
  • the alkenylene group preferably has a carbon number of 2 to 10. Examples of the alkenylene group include an ethenylene group, a 2-propenylene group, a 2-butenylene group, and a 3-butenylene group.
  • the arenediyl group preferably has a carbon number of 6 to 12. Examples of the arenediyl group include a phenylene group.
  • divalent hydrocarbon groups include methylene, ethylene, n-propylene, n-hexylene, n-heptylene, n-octylene, and n-dodecylene groups.
  • the hydrocarbon group which may contain a heteroatom in R 33 , R 34 and R 35 includes a chain hydrocarbon group and a cyclic hydrocarbon group.
  • Examples of the chain-like hydrocarbon group include a linear alkyl group and a branched alkyl group, with the linear alkyl group being preferred.
  • the carbon number of the linear alkyl group is preferably 1 to 20, more preferably 1 to 10, and further preferably 1 to 5.
  • Examples of the linear alkyl group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-hexyl group, an n-octyl group, an n-nonyl group, an n-decyl group, and an n-lauryl group.
  • the carbon number of the branched alkyl group is preferably 3 to 20, more preferably 3 to 10, and further preferably 3 to 5.
  • Examples of the branched alkyl group include an isopropyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a 2-ethylhexyl group, a neopentyl group, and an isooctyl group.
  • Examples of the cyclic hydrocarbon group include a cyclic alkyl group and an aromatic group, and the cyclic alkyl group and the aromatic group may have a chain portion.
  • the number of carbon atoms in the cyclic alkyl group is preferably 4 to 18, more preferably 6 to 12, and even more preferably 6 to 10.
  • Examples of the cyclic alkyl group include a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • the number of carbon atoms in the aromatic group is preferably 6 to 18, more preferably 6 to 12, and even more preferably 6 to 8.
  • Examples of the aromatic group include a phenyl group, a tolyl group, a xylyl group, and a mesityl group.
  • Examples of the cyclic alkyl group having a chain portion and the chain portion of the aromatic group having a chain portion include alkylene groups having 1 to 12 carbon atoms, preferably alkylene groups having 1 to 6 carbon atoms, and more preferably alkylene groups having 1 to 3 carbon atoms.
  • R 33 , R 34 and R 35 are a combination of two straight-chain alkyl groups and one aromatic group, or all three are straight-chain alkyl groups.
  • the hydrocarbon group containing a heteroatom has a structure in which a carbon atom in the above-mentioned hydrocarbon group is replaced with a heteroatom.
  • the heteroatom that may be contained in the hydrocarbon group include an oxygen atom.
  • a hydrogen atom in the hydrocarbon group may be substituted with a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom.
  • R 33 , R 34 and R 35 are bonded together to form a cyclic structure
  • a cyclic structure means that two or more of R 33 , R 34 and R 35 form a cyclic structure via a nitrogen atom.
  • the cyclic structure include a 5- to 7-membered nitrogen-containing heterocycle or a condensed ring formed by condensing two of these.
  • the nitrogen-containing heterocycle is preferably one that does not have aromaticity, and more preferably a saturated ring. Specific examples include structures represented by the following formulae (3-1), (3-2) and (3-3).
  • R 36 is R 33.
  • R 37 represents an alkyl group having 1 to 6 carbon atoms.
  • l represents an integer of 0 to 5.
  • m represents an integer of 0 to 4.
  • n represents an integer of 0 to 4. * represents a bond.
  • l is 2 to 5
  • m is 2 to 4
  • n is 2 to 4, the multiple R 36 's may be the same or different.
  • X ⁇ includes a halogen anion, a carboxylate anion, a sulfate anion, a sulfonate anion, a phosphate anion, a nitroxide anion, and the like.
  • Examples of the halogen anion include a fluoro anion, a chloro anion, a bromo anion, and an iodo anion.
  • Examples of the carboxylate anion include alkyl carboxylate anions such as acetate anion and propionate anion; and aromatic carboxylate anions such as benzoate anion.
  • Examples of the sulfate anion include alkyl sulfate anions such as methyl sulfate anion and ethyl sulfate anion; and aromatic sulfate anions such as phenyl sulfate anion and benzyl sulfate anion.
  • Examples of the sulfonate anion include alkylsulfonate anions such as methanesulfonate anion and ethanesulfonate anion; and aromatic sulfonate anions such as benzenesulfonate anion and toluenesulfonate anion.
  • Examples of the phosphate anion include alkyl phosphate anions such as methylphosphonate anion and ethylphosphonate anion; and aromatic phosphate anions such as phenylphosphonate anion and benzylphosphonate anion.
  • vinyl monomers that form the structural unit represented by formula (3) include (meth)acryloyloxyethyl trimethyl ammonium chloride, (meth)acryloyloxypropyl trimethyl ammonium chloride, (meth)acryloyloxybutyl trimethyl ammonium chloride, (meth)acryloyloxyethyl benzyl dimethyl ammonium chloride, (meth)acryloyloxypropyl benzyl dimethyl ammonium chloride, (meth)acryloyloxybutyl benzyl dimethyl ammonium chloride, (meth)acryloyloxyethyl benzyl acryloyloxypropyl benzyl diethyl ammonium chloride, (meth)acryloyloxybutyl benzyl diethyl ammonium chloride, (meth)acryloyloxybutyl benzyl diethyl ammonium chloride, (meth)acryloyloxyethyl benz
  • the structural unit (b-3) When the structural unit (b-3) is contained, its content is preferably 5 mol% or more, more preferably 30 mol% or more, even more preferably 45 mol% or more, and preferably 90 mol% or less, more preferably 80 mol% or less, even more preferably 70 mol% or less, out of 100 mol% of the structural units constituting the B segment. If the content of the structural unit (b-3) is within the above range, strong adsorption to the colorant surface can be maintained for a long period of time, and storage stability is further improved.
  • the total content of the structural units (b-2) and (b-3) ((b-2) + (b-3)) in 100 mol% of the structural units constituting the B segment is preferably 5 mol% or more, more preferably 30 mol% or more, even more preferably 45 mol% or more, and is preferably 90 mol% or less, more preferably 80 mol% or less, and even more preferably 70 mol% or less. If the total content ((b-2) + (b-3)) is within the above range, it is believed that strong adsorption to the colorant surface can be maintained for a long period of time, and storage stability is further improved.
  • the molar ratio ((b-1)/ ⁇ (b-2)+(b-3) ⁇ ) of the structural unit (b-1) to the total amount of the structural unit (b-2) and the structural unit (b-3) in the B segment is preferably 5/95 or more, more preferably 10/90 or more, even more preferably 20/80 or more, and is preferably 95/5 or less, more preferably 80/20 or less, even more preferably 60/40 or less. If the molar ratio ((b-1)/ ⁇ (b-2)+(b-3) ⁇ ) is within the above range, it is believed that strong adsorption to the colorant surface can be maintained for a long period of time, and storage stability is further improved.
  • the B segment may contain other structural units in addition to the structural units (b-1), (b-2), and (b-3).
  • Specific examples of vinyl monomers that can form other structural units of the B segment include the same monomers as those exemplified as specific examples of monomers that can form structural units of the A block.
  • the content of the other structural units in 100 mol% of the structural units constituting the B segment is preferably 90 mol% or less, more preferably 70 mol% or less, and even more preferably 20 mol% or less.
  • the structure of the block copolymer is preferably a linear block copolymer.
  • the linear block copolymer may have any structure (sequence), but from the viewpoint of the physical properties of the linear block copolymer or the physical properties of the composition, when the A segment is expressed as A and the B segment is expressed as B, it is preferable that the copolymer has at least one structure selected from the group consisting of (A-B) m type, (A-B) m -A type, and (B-A) m -B type (m is an integer of 1 or more, for example, an integer of 1 to 3).
  • an A-B type block copolymer By forming an A-B type block copolymer, it is considered that the structural unit of the A segment and the structural unit (b-2) of the B segment are localized and can efficiently act favorably with the colorant, the dispersion medium, and the binder resin.
  • the block copolymer may have other blocks other than the A segment and the B segment.
  • a diblock copolymer composed of one A block and one B block, and a triblock copolymer composed of one A block and two B blocks are preferable.
  • the content of the total number of moles of structural units constituting the A segment is preferably 30 mol% or more, more preferably 35 mol% or more, even more preferably 40 mol% or more, and is preferably 75 mol% or less, more preferably 70 mol% or less, even more preferably 65 mol% or less, and particularly preferably 60 mol% or less.
  • the content of the total number of moles of structural units constituting the B segment is preferably 25 mol% or more, more preferably 30 mol% or more, even more preferably 35 mol% or more, and particularly preferably 40 mol% or more, and is preferably 70 mol% or less, more preferably 65 mol% or less, and even more preferably 60 mol% or less.
  • the molar ratio (A segment/B segment) of the total molar amount of the structural units constituting the A segment to the total molar amount of the structural units constituting the B segment is preferably 30/70 or more, more preferably 35/65 or more, even more preferably 40/60 or more, and is preferably 75/25 or less, more preferably 70/30 or less, even more preferably 65/35 or less, and particularly preferably 60/40 or less.
  • the molar ratio (A segment/B segment) is 30/70 or more, aggregation with the colorant is prevented due to the steric repulsion of the A segment, improving storage stability, and if it is 75/25 or less, strong adsorption of the basic group to the colorant surface can be maintained for a long period of time, further improving storage stability.
  • the weight average molecular weight (Mw) of the block copolymer is preferably 5,000 or more, more preferably 8,000 or more, even more preferably 10,000 or more, and is preferably 40,000 or less, more preferably 30,000 or less, even more preferably 20,000 or less. If the weight average molecular weight is within the above range, the dispersion performance when used as a dispersant will be better.
  • the molecular weight of the block copolymer is measured by gel permeation chromatography (hereinafter referred to as "GPC") method.
  • the molecular weight distribution (Mw/Mn) of the block copolymer is preferably less than 3.0, more preferably 2.0 or less, and even more preferably 1.7 or less. If the molecular weight distribution (Mw/Mn) is less than 3.0, the dispersion performance when used as a dispersant will be better.
  • the molecular weight distribution is calculated by (weight average molecular weight (Mw) of the block copolymer) / (number average molecular weight (Mn) of the block copolymer).
  • the lower limit of the molecular weight distribution is 1.0.
  • the amine value of the block copolymer is preferably 10 mgKOH/g or more, more preferably 25 mgKOH/g or more, and even more preferably 40 mgKOH/g or more, from the viewpoint of adsorption to the colorant and dispersibility of the colorant, and is preferably 150 mgKOH/g or less, more preferably 120 mgKOH/g or less, and even more preferably 100 mgKOH/g or less.
  • the acid value of the block copolymer is preferably 5 mgKOH/g or more and preferably 50 mgKOH/g or less. By setting the acid value within this range, the block copolymer can act favorably with the binder resin (alkali-soluble resin) without impairing its affinity with the colorant.
  • Examples of the method for producing the block copolymer include a method of first producing an A segment by a polymerization reaction of a vinyl monomer, and polymerizing a monomer of a B segment to the A segment; a method of first producing a B segment, and polymerizing a monomer of an A segment to the B segment; a method of separately producing an A segment and a B segment, and then coupling the A segment and the B segment; a method of first producing an A segment, polymerizing a monomer composition containing a vinyl monomer capable of forming structural units (b-1) and structural units (b-2) in the B segment, and quaternizing a part of the tertiary amine structure of the structural unit (b-2) in the obtained polymer; a method of polymerizing a monomer composition containing a vinyl monomer capable of forming structural units (b-1) and structural units (b-2), polymerizing a monomer of the A segment to this polymer, and
  • the polymerization method is not particularly limited, living polymerization is preferred. That is, the block copolymer is preferably one polymerized by living polymerization.
  • living polymerization is preferred in that termination reaction and chain transfer reaction are unlikely to occur, and the vinyl monomer reacts and the polymer chain grows without deactivating the reaction point (polymerization growth end), making it easy to precisely control the molecular weight distribution and produce a polymer with a uniform composition.
  • Living polymerization methods include living radical polymerization, living anionic polymerization, and living cationic polymerization. Among these, living radical polymerization is preferred from the viewpoint of the simplicity of polymerization. Living radical polymerization is also preferred in that it is easy to precisely control the molecular weight distribution and produce a polymer with a uniform composition while maintaining the simplicity and versatility of free radical polymerization (conventional radical polymerization).
  • Living radical polymerization methods include a method using a compound capable of generating nitroxide radicals (nitroxide method; NMP method) depending on the method of stabilizing the polymer growth end; a method using a metal complex such as copper or ruthenium to polymerize a halogenated compound as a polymerization initiator compound in a living manner from the polymerization initiator compound (ATRP method); a method using a dithiocarboxylic acid ester or a xanthate compound (RAFT method); a method using an organic tellurium compound (TERP method); a method using an organic iodine compound (ITP method); a method using an iodine compound as a polymerization initiator compound and an organic compound such as a phosphorus compound, a nitrogen compound, an oxygen compound, or a hydrocarbon as a catalyst (reversible transfer catalyst polymerization; RTCP method, reversible catalyst-mediated polymerization; RCMP method), etc.
  • a metal complex such
  • the TERP method is a method of polymerizing a radically polymerizable compound (vinyl monomer) using an organic tellurium compound as a chain transfer agent, and is described, for example, in WO 2004/14848, WO 2004/14962, WO 2004/072126, WO 2004/096870, and WO 2020/116144.
  • Specific polymerization methods of the TERP method include the following (a) to (d).
  • R 61 represents an alkyl group having 1 to 8 carbon atoms, an aryl group, or an aromatic heterocyclic group.
  • R 62 and R 63 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • R 64 represents an alkyl group having 1 to 8 carbon atoms, an aryl group, a substituted aryl group, an aromatic heterocyclic group, an alkoxy group, an acyl group, an amido group, an oxycarbonyl group, a cyano group, an allyl group, or a propargyl group.
  • R 61 represents an alkyl group having 1 to 8 carbon atoms, an aryl group, or an aromatic heterocyclic group.
  • organic tellurium compound represented by formula (6) examples include ethyl 2-methyl-2-n-butyltellanyl-propionate, ethyl 2-n-butyltellanyl-propionate, (2-hydroxyethyl) 2-methyl-methyltellanyl-propionate, and the organic tellurium compounds described in WO 2004/14848, WO 2004/14962, WO 2004/072126, WO 2004/096870, and WO 2020/116144.
  • organic ditelluride compound represented by formula (7) examples include dimethyl ditelluride, dibutyl ditelluride, and the like.
  • the azo polymerization initiator can be any azo polymerization initiator used in normal radical polymerization without any particular restrictions, and examples thereof include 2,2'-azobis(isobutyronitrile) (AIBN), 2,2'-azobis(2,4-dimethylvaleronitrile) (ADVN), 1,1'-azobis(1-cyclohexanecarbonitrile) (ACHN), dimethyl-2,2'-azobisisobutyrate (MAIB), 4,4'-azobis(4-cyanovaleric acid) (ACVA), 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile) (V-70), 2,2'-azobis(N-butyl-2-methylpropionamide) (VAm-110), and the like.
  • AIBN 2,2'-azobis(isobutyronitrile)
  • ADVN 2,2'-azobis(2,4-dimethylvaleronitrile)
  • ADVN 1,1'-azobis(1-
  • a vinyl monomer and an organic tellurium compound of formula (6) are mixed in a vessel purged with an inert gas, and for the purpose of promoting the reaction and controlling the molecular weight and molecular weight distribution depending on the type of vinyl monomer, an azo polymerization initiator and/or an organic ditelluride compound of formula (7) are further mixed.
  • the inert gas include nitrogen, argon, and helium. Argon and nitrogen are preferable.
  • the amounts of the vinyl monomer used in (a), (b), (c), and (d) above may be adjusted appropriately depending on the physical properties of the desired copolymer.
  • the polymerization reaction can be carried out without a solvent, but it can also be carried out by using an aprotic or protic solvent that is generally used in radical polymerization, and stirring the mixture.
  • aprotic solvents that can be used include acetonitrile, methyl ethyl ketone, anisole, benzene, toluene, propylene glycol monomethyl ether acetate, ethyl acetate, tetrahydrofuran (THF), N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N-methyl-2-pyrrolidone (NMP), acetone, dioxane, chloroform, and carbon tetrachloride.
  • protic solvents examples include water, methanol, ethanol, isopropanol, n-butanol, ethyl cellosolve, butyl cellosolve, 1-methoxy-2-propanol, hexafluoroisopropanol, and diacetone alcohol.
  • the solvents may be used alone or in combination of two or more.
  • the amount of solvent used may be adjusted as appropriate, and is preferably 0.01 ml to 50 ml per 1 g of vinyl monomer, for example.
  • a surfactant and/or a dispersant may also be used in the polymerization reaction.
  • the reaction temperature and reaction time may be adjusted as appropriate depending on the molecular weight or molecular weight distribution of the resulting copolymer, but typically the reaction is carried out at 0°C to 150°C and for 1 minute to 100 hours with stirring.
  • the pressure is typically normal, but it may be increased or decreased.
  • the polymerization reaction may also be carried out by irradiation with light. After the polymerization reaction is complete, the solvent used and residual vinyl monomers are removed from the resulting reaction mixture by standard separation and purification means, allowing the desired copolymer to be separated.
  • the growing end of the copolymer obtained by the polymerization reaction is in the form of -TeR 61 (wherein R 61 is the same as above) derived from the tellurium compound, and is deactivated by operation in air after the polymerization reaction is completed, but the tellurium atom may remain. Since a copolymer with tellurium atoms remaining at the end is colored or has poor thermal stability, it is preferable to remove the tellurium atoms.
  • Methods for removing tellurium atoms include a radical reduction method; a method of adsorption with activated carbon or the like; a method of adsorbing metal with an ion exchange resin or the like, and these methods can also be used in combination.
  • the other end (the end opposite to the growing end) of the copolymer obtained by the polymerization reaction is in the form of -CR 62 R 63 R 64 (wherein R 62 , R 63 and R 64 are the same as R 62 , R 63 and R 64 in formula (6)) derived from the tellurium compound. Therefore, the copolymer obtained by the TERP method does not have a substituent containing a sulfur atom at the end.
  • examples of the quaternizing agent include alkyl halides such as methyl chloride, ethyl chloride, methyl bromide, and methyl iodide; aralkyl halides such as benzyl chloride, benzyl bromide, and benzyl iodide; diaryl sulfates such as diphenyl sulfate; dialkyl sulfates such as dimethyl sulfate, diethyl sulfate, and di-n-propyl sulfate; and aromatic alkyl sulfonates such as methyl p-toluenesulfonate and ethyl p-toluenesulfonate.
  • alkyl halides such as methyl chloride, ethyl chloride, methyl bromide, and methyl iodide
  • aralkyl halides such as benzyl chloride, benzyl bromide,
  • aralkyl halides such as benzyl chloride, benzyl bromide, and benzyl iodide, dialkyl sulfates such as dimethyl sulfate, diethyl sulfate, and di-n-propyl sulfate, and aromatic alkyl sulfonates such as methyl p-toluenesulfonate and ethyl p-toluenesulfonate, and more preferred are benzyl chloride, dimethyl sulfate, and methyl p-toluenesulfonate.
  • An alkyl group or aralkyl group derived from the quaternizing agent is introduced into the structure after quaternization.
  • a method for quaternizing some of the tertiary amine structures of structural units having a basic group in a polymer a method of contacting the polymer with a quaternizing agent can be mentioned. Specifically, a method of polymerizing a monomer composition containing a vinyl monomer capable of forming a structural unit having a basic group, adding a quaternizing agent to the reaction liquid, and stirring the reaction liquid can be mentioned.
  • the temperature of the reaction liquid to which the quaternizing agent is added is preferably 55°C to 65°C, and the stirring time is preferably 5 hours to 20 hours.
  • the dispersant of the present invention contains the block copolymer as a main component (50% by mass or more).
  • the block copolymer exerts an effect of enhancing the dispersibility of the colorant by adsorbing the basic group in the structure (B segment) to the colorant.
  • the dispersant of the present invention is a component that disperses the colorant well by this effect, so there is no particular limitation on the type of colorant to be dispersed.
  • the dispersant of the present invention has high dispersibility for coloring materials and can be suitably used as a dispersant for colored compositions for color filters.
  • the dispersant of the present invention has high dispersibility for colorants, it can also be used in inkjet inks, printing inks, writing instrument inks, paints, etc.
  • the composition of the block copolymer By appropriately changing the composition of the block copolymer, it can be used not only in coloring compositions using organic solvents, but also in coloring compositions using aqueous solvents.
  • the content of the block copolymer in the dispersant is 50% by mass or more, preferably 70% by mass or more, and more preferably 90% by mass or more.
  • the dispersant may be composed of only the block copolymer.
  • the coloring composition of the present invention contains the dispersant, a colorant, and a dispersion medium.
  • the coloring composition of the present invention has high dispersibility of the colorant and can be suitably used as a coloring composition for color filters.
  • the type and particle size of the coloring material may be appropriately selected according to the application, and are not particularly limited.
  • the coloring composition preferably contains a pigment as a coloring material.
  • the pigment may be either an organic pigment or an inorganic pigment, but an organic pigment mainly composed of an organic compound is particularly preferred. Examples of the pigment include red pigments, yellow pigments, orange pigments, blue pigments, green pigments, purple pigments, and other pigments of various colors.
  • the structure of the pigment may include azo pigments such as monoazo pigments, diazo pigments, and condensed diazo pigments, diketopyrrolopyrrole pigments, phthalocyanine pigments, isoindolinone pigments, isoindoline pigments, quinacridone pigments, indigo pigments, thioindigo pigments, quinophthalone pigments, dioxazine pigments, anthraquinone pigments, perylene pigments, and polycyclic pigments such as perinone pigments.
  • the pigment contained in the coloring composition may be only one type or multiple types.
  • pigments include red pigments such as C.I. Pigment Red 7, 9, 14, 41, 48:1, 48:2, 48:3, 48:4, 81:1, 81:2, 81:3, 122, 123, 146, 149, 168, 177, 178, 179, 187, 200, 202, 208, 210, 215, 224, 254, 255, 264, and 291; C.I. Yellow pigments such as C.I.
  • Pigment Green 7, 36, 58, 59, 62, 63 aluminum phthalocyanine, polyhalogenated aluminum phthalocyanine, aluminum phthalocyanine hydroxide, diphenoxyphosphinyloxyaluminum phthalocyanine, diphenylphosphinyloxyaluminum phthalocyanine, polyhalogenated diphenoxyphosphinyloxyaluminum phthalocyanine, polyhalogenated diphenylphosphinyloxyaluminum phthalocyanine, and the like; and purple pigments such as C.I. Pigment Violet 23, 32, 50, and the like.
  • the pigments include C.I. Pigment Red 177, C.I. Pigment Red 254, C.I.
  • the colorant may contain a dye derivative as a dispersing aid.
  • the dye derivative preferably contains an acidic dye derivative having an acidic group in order to form an ionic bond with a basic group in the block copolymer contained in the dispersant and adsorb it. This dye derivative is one in which an acidic group has been introduced into the dye skeleton.
  • the dye skeleton is preferably the same or similar to the colorant constituting the coloring composition, or the same or similar to the compound that is the raw material of the colorant.
  • the dye skeleton include an azo dye skeleton, a phthalocyanine dye skeleton, an anthraquinone dye skeleton, a triazine dye skeleton, an acridine dye skeleton, and a perylene dye skeleton.
  • the acidic group introduced into the dye skeleton is preferably a carboxy group, a phosphoric acid group, or a sulfonic acid group. For convenience of synthesis and strength of acidity, a sulfonic acid group is preferred.
  • the acidic group may be directly bonded to the dye skeleton, or may be bonded to the dye skeleton via a hydrocarbon group such as an alkyl group or an aryl group; an ester, an ether, a sulfonamide, or a urethane bond.
  • the amount of the dye derivative used is not particularly limited, but is preferably, for example, 4 to 17 parts by weight per 100 parts by weight of the colorant.
  • the upper limit of the colorant content in the coloring composition is usually 80 mass %, preferably 70 mass %, and more preferably 60 mass %, based on the total solid content of the coloring composition, from the viewpoint of brightness.
  • the lower limit of the colorant content in the coloring composition is usually 10 mass %, preferably 20 mass %, and more preferably 30 mass %, based on the total solid content of the coloring composition.
  • the solid content refers to components other than the dispersion medium described below.
  • the content of the dispersant relative to the colorant in the coloring composition is preferably 5 parts by mass to 200 parts by mass, more preferably 10 parts by mass to 100 parts by mass, and even more preferably 10 parts by mass to 80 parts by mass, relative to 100 parts by mass of the colorant. If the content of the dispersant is within the above range, the viscosity of the coloring composition will be good.
  • the dispersion medium used in the present invention can be appropriately selected and used as long as it disperses or dissolves other components constituting the coloring composition, does not react with these components, and has moderate volatility.
  • organic solvents can be used, for example, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-n-butyl ether, propylene glycol-t-butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-butyl ether, methoxymethyl pentanol, dipropylene glycol monoethyl ether, dipropylene glycol monomethyl ether, 3-methyl-3-methoxybutanol, triethylene glycol monomethyl ether,
  • Ketones such as butyl ketone, cyclohexanone, ethyl amyl ketone, methyl butyl ketone, methyl hexyl ketone, methyl nonyl ketone, and methoxymethyl pentanone; monohydric or polyhydric alcohols such as ethanol, propanol, butanol, hexanol, cyclohexanol, ethylene glycol, propylene glycol, butanediol, diethylene glycol, dipropylene glycol, triethylene glycol, methoxypropanol, methoxymethyl pentanol, glycerin, and benzyl alcohol; n-pentane, n-octane, and diisobutylene.
  • monohydric or polyhydric alcohols such as ethanol, propanol, butanol, hexanol, cyclohexanol, ethylene glycol, propylene glyco
  • aliphatic hydrocarbons such as n-hexane, hexene, isoprene, dipentene, and dodecane
  • alicyclic hydrocarbons such as cyclohexane, methylcyclohexane, methylcyclohexene, and bicyclohexyl
  • aromatic hydrocarbons such as benzene, toluene, xylene, and cumene
  • the organic solvent include chain or cyclic esters such as ethyl benzoate,
  • the organic solvent is preferably glycol alkyl ether acetates, glycol monoalkyl ethers, and monohydric or polyhydric alcohols.
  • the dispersion medium contained in the coloring composition may be one type only, or may be a plurality of types.
  • the boiling point of the dispersion medium is preferably 100°C to 200°C (under a pressure condition of 1013.25 hPa. The same applies to all boiling points below), and more preferably 120°C to 170°C.
  • glycol alkyl ether acetates are preferred because they have a good balance of application properties, surface tension, etc., and the solubility of the components in the coloring composition is relatively high.
  • Glycol alkyl ether acetates may be used alone or in combination with other dispersion media. It is also preferable to use a dispersion medium having a boiling point of 150°C or higher in combination.
  • the dispersion medium having a boiling point of 150°C or higher may be a glycol alkyl ether acetate.
  • the content of the dispersion medium in the coloring composition is not particularly limited and can be adjusted as appropriate.
  • the upper limit of the content of the dispersion medium in the coloring composition is usually 99% by mass.
  • the lower limit of the content of the dispersion medium in the coloring composition is usually 70% by mass, preferably 80% by mass, taking into account the viscosity suitable for application of the coloring composition.
  • the above dispersion medium can be used as a solvent for dissolving and removing precipitates formed from the coloring composition.
  • the coloring composition may contain a binder resin (excluding the block copolymer).
  • the binder resin include an alkali-soluble resin, a polymerizable compound (polymerizable resin, a monomer having one polymerizable unsaturated bond in the molecule, a monomer having two or more polymerizable unsaturated bonds in the molecule, an oligomer, etc.), a thermosetting resin, a thermoplastic resin, etc. These can be used alone or in a mixture of two or more kinds. Among these, an alkali-soluble resin and/or a polymerizable compound is preferable.
  • the content of the binder resin in the coloring composition is the total amount of the binder resin used, and is preferably 1% by mass or more, more preferably 2% by mass or more, and even more preferably 5% by mass or more, of the total solid content of the coloring composition, and is preferably 70% by mass or less, more preferably 60% by mass or less, and even more preferably 50% by mass or less.
  • the alkali-soluble resin is not particularly limited as long as it acts as a binder for a colorant and is soluble in a developer, preferably an alkaline developer, used in the development process when producing a color filter.
  • a developer preferably an alkaline developer
  • the alkali-soluble resin is a resin having an acidic group such as a carboxy group or a phenolic hydroxy group.
  • the alkali-soluble resin examples include a resin obtained by adding an unsaturated monobasic acid to at least a portion of the epoxy groups in a copolymer of an epoxy group-containing (meth)acrylate and another radically polymerizable monomer, or a resin obtained by adding a polybasic acid anhydride to at least a portion of the hydroxyl groups produced by the addition reaction; a linear resin containing a carboxy group in the main chain; a resin in which an epoxy group-containing unsaturated compound is added to the carboxy group portion of a carboxy group-containing resin; a (meth)acrylic resin; an epoxy (meth)acrylate resin having a carboxy group, and the like. These can be used alone or in a mixture of two or more kinds.
  • Preferred examples of the alkali-soluble resin include random copolymers containing structural units derived from a carboxyl group-containing vinyl monomer, structural units derived from a (meth)acrylate, and styrene, synthetic resins in which a (meth)acrylic group has been introduced into an epoxy resin, and random copolymers containing structural units derived from a carboxyl group-containing vinyl monomer and structural units derived from a (meth)acrylate.
  • Preferred examples of the carboxyl group-containing vinyl monomer include (meth)acrylic acid.
  • Examples of the (meth)acrylate include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, adamantyl (meth)acrylate, tricyclodecanyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, hydroxypropyl (meth)acrylate, glycerol mono(meth)acrylate, glycidyl (meth)acrylate, (3,4-epoxycyclohexyl)methyl (meth)acrylate, and tetrahydrofurfuryl (meth)acrylate.
  • the alkali-soluble resin preferably has a total content of structural units derived from carboxyl group-containing vinyl monomers and structural units derived from (meth)acrylates of 50% by mass or more, more preferably 60% by mass or more, and even more preferably 70% by mass or more.
  • the alkali-soluble resin preferably has a total content of structures derived from carboxyl group-containing vinyl monomers of 5% by mass or more, more preferably 10% by mass or more, and even more preferably 20% by mass or more, and is preferably 90% by mass or less, and more preferably 70% by mass or less.
  • alkali-soluble resins random copolymers of carboxy-containing vinyl monomers and (meth)acrylates are preferred.
  • specific examples of such copolymers include random copolymers of (meth)acrylic acid and butyl (meth)acrylate, random copolymers of (meth)acrylic acid and benzyl (meth)acrylate, and random copolymers of (meth)acrylic acid, butyl (meth)acrylate, and benzyl (meth)acrylate.
  • the alkali-soluble resin is particularly preferably a random copolymer of (meth)acrylic acid and benzyl (meth)acrylate.
  • the content of (meth)acrylic acid is usually 5% by mass to 90% by mass, preferably 10% by mass to 70% by mass, and more preferably 20% by mass to 70% by mass, of the total monomer components.
  • the polymerization method for these random copolymers is not particularly limited, but living radical polymerization is preferred from the viewpoint of alkali solubility.
  • the alkali-soluble resin may have a radically polymerizable carbon-carbon double bond in the side chain.
  • a method for introducing a radically polymerizable carbon-carbon double bond in the side chain include a method of reacting a compound such as glycidyl (meth)acrylate, (3,4-epoxycyclohexyl)methyl (meth)acrylate, or o-(or m-, or p-)vinylbenzyl glycidyl ether with the acidic group of the binder resin.
  • the Mw of the alkali-soluble resin is preferably 3,000 to 100,000, more preferably 5,000 to 50,000, and even more preferably 5,000 to 20,000. If the Mw of the alkali-soluble resin is 3,000 or more, the heat resistance, film strength, etc. of the colored layer formed from the colored composition will be good, and if the Mw is 100,000 or less, the alkaline developability of this coating film will be even better.
  • the acid value of the alkali-soluble resin is preferably 20 mgKOH/g to 170 mgKOH/g, more preferably 50 mgKOH/g to 150 mgKOH/g, and even more preferably 90 mgKOH/g to 150 mgKOH/g. If the acid value of the alkali-soluble resin is 20 mgKOH/g or more, the alkali developability becomes even better when the coloring composition is used as a colored layer, and if it is 170 mgKOH/g or less, the heat resistance becomes good.
  • the coloring composition may contain only one type of alkali-soluble resin, or multiple types.
  • the content of the alkali-soluble resin is preferably 5 parts by mass to 200 parts by mass, more preferably 10 parts by mass to 100 parts by mass, and even more preferably 20 parts by mass to 80 parts by mass, per 100 parts by mass of the coloring material.
  • polymerizable compound examples include polymerizable resins (e.g., resins in which a crosslinkable group such as a (meth)acrylic compound or cinnamic acid is introduced into a linear polymer having a reactive substituent such as a hydroxy group, a carboxy group, or an amino group via an isocyanate group, an aldehyde group, or an epoxy group), compounds having one polymerizable unsaturated bond in the molecule (e.g., monofunctional (meth)acrylic monomers (alkyl (meth)acrylates, aralkyl (meth)acrylates, etc.)), compounds having two or more polymerizable unsaturated bonds in the molecule (e.g., polyfunctional (meth)acrylic monomers (di(meth)acrylates of dihydric alcohols, poly(meth)acrylates of trihydric or higher polyhydric alcohols, etc.)).
  • polymerizable unsaturated bond examples include carbon-
  • Examples of the monomer having two or more polymerizable unsaturated bonds in the molecule as the polymerizable compound include bisphenol A di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,3-butylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, glycerol di(meth)acrylate, neopentyl glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, dipentaeryth
  • the content of the polymerizable compound in the coloring composition is preferably 10 parts by mass to 1,000 parts by mass, and more preferably 20 parts by mass to 500 parts by mass, per 100 parts by mass of the coloring material. If the content of the polymerizable compound is within the above range, sufficient curability is obtained and alkaline developability is also good. It is also preferable to use an alkali-soluble resin and a polymerizable compound in combination as the binder resin.
  • thermosetting resin thermoplastic resin
  • thermoplastic resin examples include butyral resin, styrene-maleic acid copolymer, chlorinated polyethylene, chlorinated polypropylene, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polyvinyl acetate, polyurethane resin, phenol resin, polyester resin, (meth)acrylic resin, alkyd resin, styrene resin, polyamide resin, rubber resin, cyclized rubber, epoxy resin, cellulose, polybutadiene, polyimide resin, benzoguanamine resin, melamine resin, and urea resin.
  • the coloring composition of the present invention may contain a photopolymerization initiator as necessary. This can impart radiation sensitivity to the coloring composition.
  • the photopolymerization initiator is a compound that generates an active species that can initiate polymerization of a polymerizable compound by exposure to radiation such as visible light, ultraviolet light, far infrared light, electron beams, and X-rays.
  • the photopolymerization initiator may, for example, be a thioxanthone-based compound, an acetophenone-based compound, a biimidazole-based compound, a triazine-based compound, an O-acyloxime-based compound, an onium salt-based compound, a benzoin-based compound, a benzophenone-based compound, an ⁇ -diketone-based compound, a polynuclear quinone-based compound, a diazo-based compound, an imide sulfonate-based compound, or the like.
  • the photopolymerization initiator may be used alone or in a mixture of two or more types.
  • the content of the photopolymerization initiator is preferably 0.01 parts by mass to 120 parts by mass, and more preferably 1 part by mass to 100 parts by mass, relative to 100 parts by mass of the polymerizable compound. In this case, if the content of the photopolymerization initiator is too low, there is a risk that curing due to exposure to light will be insufficient, while if the content is too high, the formed coloring layer will tend to easily fall off from the substrate during development.
  • other compounding agents can be added in addition to the above compounding agents, so long as the preferable physical properties of the present invention are not impaired.
  • other compounding agents include dispersants other than the block copolymers (urethane-based dispersing agents, polyethyleneimine-based dispersing agents, polyoxyethylene alkyl ether-based dispersing agents, polyoxyethylene glycol diester-based dispersing agents, sorbitan aliphatic ester-based dispersing agents, aliphatic modified polyester-based dispersing agents, etc.), sensitizing dyes, thermal polymerization inhibitors, surfactants (nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants), plasticizers, organic carboxylic acid compounds, organic carboxylic anhydrides, antioxidants, ultraviolet absorbers, light stabilizers, pH adjusters, preservatives, antifungal agents, aggregation inhibitors, adhesion improvers
  • Sensitizing dyes include 4,4'-dimethylaminobenzophenone, 4,4'-diethylaminobenzophenone, 2-aminobenzophenone, 4-aminobenzophenone, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 3,4-diaminobenzophenone, 2-(p-dimethylaminophenyl)benzoxazole, 2-(p-diethylaminophenyl)benzoxazole, 2-(p-dimethylaminophenyl)benzo[4,5]benzoxazole, 2-(p-dimethylaminophenyl)benzo[6,7]benzoxazole, 2,5-bis(p-diethylaminophenyl)1,3,4- Examples include oxazole, 2-(p-dimethylaminophenyl)benzothiazole, 2-(p-diethylaminophenyl)benzothiazo
  • Thermal polymerization inhibitors include hydroquinone, p-methoxyphenol, pyrogallol, catechol, 2,6-t-butyl-p-cresol, and ⁇ -naphthol.
  • Nonionic surfactants include fluorine-based surfactants (1,1,2,2-tetrafluorooctyl (1,1,2,2-tetrafluoropropyl) ether, 1,1,2,2-tetrafluorooctylhexyl ether, octaethylene glycol di(1,1,2,2-tetrafluorobutyl) ether, hexaethylene glycol di(1,1,2,2,3,3-hexafluoropentyl) ether, octapropylene glycol di(1,1,2,2-tetrafluorobutyl) ether, hexapropylene glycol di(1,1,2,2,3,3-hexafluoropentyl) ether, sodium perfluorododecyl sulfonate, 1,1,2,2,8,8,9,9,10,10-decafluorododecane, 1,1,2,2, 3,3-hexafluorodecane, etc.), silicone surfactants, poly
  • Anionic surfactants include alkyl sulfonates, alkyl benzene sulfonates, alkyl naphthalene sulfonates, polyoxyethylene alkyl ether sulfonates, alkyl sulfates, alkyl sulfate ester salts, higher alcohol sulfate ester salts, aliphatic alcohol sulfate ester salts, polyoxyethylene alkyl ether sulfates, polyoxyethylene alkyl phenyl ether sulfates, alkyl phosphate ester salts, polyoxyethylene alkyl ether phosphates, polyoxyethylene alkyl phenyl ether phosphates, special polymer surfactants, etc.
  • Cationic surfactants include quaternary ammonium salts, imidazoline derivatives, alkylamine salts, etc.
  • amphoteric surfactants examples include betaine-type compounds, imidazolium salts, imidazolines, amino acids, etc.
  • Plasticizers include dioctyl phthalate, didodecyl phthalate, triethylene glycol dicaprylate, dimethyl glycol phthalate, tricresyl phosphate, dioctyl adipate, dibutyl sebacate, and triacetyl glycerin.
  • Organic carboxylic acid compounds include aliphatic monocarboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid, pivalic acid, caproic acid, glycolic acid, acrylic acid, and methacrylic acid; aliphatic dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, cyclohexanedicarboxylic acid, cyclohexenedicarboxylic acid, itaconic acid, citraconic acid, maleic acid, and fumaric acid; aliphatic tricarboxylic acids such as tricarballylic acid and aconitic acid; aromatic carboxylic acids in which a carboxyl group is directly bonded to a phenyl group such as benzoic acid, phthalic acid, trimesic acid, pyropetoic acid, and mellophanic acid; and aromatic carboxylic acids in which
  • organic carboxylic acid anhydrides include acetic anhydride, trichloroacetic anhydride, trifluoroacetic anhydride, tetrahydrophthalic anhydride, succinic anhydride, maleic anhydride, citraconic anhydride, itaconic anhydride, glutaric anhydride, 1,2-cyclohexene dicarboxylic anhydride, n-octadecylsuccinic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, and naphthalic anhydride.
  • the inclusion of an organic carboxylic acid anhydride can improve alkaline developability and background scumming.
  • the coloring composition can be prepared by mixing a coloring material, a dispersant (or a dispersant solution), a dispersion medium, and, if necessary, a binder resin, a photopolymerization initiator, and other compounding agents.
  • a mixer/disperser such as a paint shaker, a bead mill, a ball mill, a dissolver, or a kneader can be used.
  • the coloring composition is preferably filtered after mixing.
  • the coloring composition has alkaline developability, it can be suitably used for color filters.
  • an aqueous solution containing an organic solvent or a surfactant and an alkaline compound such as potassium hydroxide, sodium hydrogen carbonate, sodium carbonate, or tetramethylammonium hydroxide can be used.
  • the color filter of the present invention comprises a colored layer formed using the colored composition.
  • a coloring composition in which, for example, a red pigment is dispersed is applied to a transparent substrate such as a thermoplastic resin sheet such as polyester resin, polyolefin resin, polycarbonate resin, or polymethyl methacrylate resin, a thermosetting resin sheet such as epoxy resin, unsaturated polyester resin, or poly(meth)acrylic resin, or various types of glass.
  • a transparent substrate such as a thermoplastic resin sheet such as polyester resin, polyolefin resin, polycarbonate resin, or polymethyl methacrylate resin
  • a thermosetting resin sheet such as epoxy resin, unsaturated polyester resin, or poly(meth)acrylic resin, or various types of glass.
  • the coating is exposed to light through a photomask, and developed using an alkaline developer (an aqueous solution containing an organic solvent or a surfactant and an alkaline compound such as potassium hydroxide, sodium bicarbonate, sodium carbonate, or tetramethylammonium hydroxide) to dissolve and remove the unexposed portion of the coating.
  • an alkaline developer an aqueous solution containing an organic solvent or a surfactant and an alkaline compound such as potassium hydroxide, sodium bicarbonate, sodium carbonate, or tetramethylammonium hydroxide
  • post-baking is performed to form a pixel array in which red pixel patterns are arranged in a predetermined arrangement.
  • a green coloring composition or a blue coloring composition is used, and the coating, pre-baking, exposure, development, and post-baking of each coloring composition are performed in the same manner as above to sequentially form a green pixel array and a blue pixel array on the same substrate.
  • a color filter in which a pixel array of the three primary colors of red, green, and blue is arranged on the substrate.
  • the order in which the pixels of each color are formed is not limited to the above.
  • a black matrix may be provided on the transparent substrate used to form the pixel array of the three primary colors of red, green, and blue.
  • any suitable application method can be used, such as spraying, roll coating, rotary coating (spin coating), slit die coating, bar coating, etc., but it is particularly preferable to use spin coating and slit die coating.
  • a protective film is formed on the pixel pattern thus obtained, and then a transparent conductive film (ITO, etc.) is formed by sputtering. After the transparent conductive film is formed, a spacer can be further formed to form a color filter.
  • ITO transparent conductive film
  • the color filter of the present invention has high brightness, dimensional accuracy, etc., and can be suitably used in color liquid crystal display elements, color image pickup tube elements, color sensors, organic EL display elements, electronic paper, etc.
  • the present invention will be described in more detail below based on specific examples.
  • the present invention is not limited to the following examples, and can be modified as appropriate within the scope of the present invention.
  • the polymerization rate, weight average molecular weight (Mw), molecular weight distribution (Mw/Mn), amine value, and acid value of the block copolymer, as well as the viscosity of the colored composition, were evaluated according to the following methods.
  • BTEE Ethyl 2-methyl-2-n-butyltellanyl-propionate
  • DBDT Dibutyl ditelluride
  • AIBN 2,2'-azobis(isobutyronitrile)
  • CL5MA 2-hydroxyethyl methacrylate with 5 mol caprolactone adduct
  • CL5A 2-hydroxyethyl acrylate with 5 mol caprolactone adduct
  • HEMA 2-hydroxyethyl methacrylate
  • HEA 2-hydroxyethyl acrylate
  • BA n-butyl acrylate
  • CHMA Cyclohex
  • the molecular weight was determined by gel permeation chromatography (GPC) using a high performance liquid chromatograph (Tosoh, model HLC-8320).
  • GPC gel permeation chromatography
  • Tosoh, model HLC-8320 A column of SHODEX KF-603 ( ⁇ 6 mm ⁇ 150 mm) (SHODEX) was used, a lithium bromide (10 mmol/L)-acetic acid (10 mmol/L)-methylpyrrolidone solution was used as the mobile phase, and a differential refractometer was used as the detector.
  • the measurement conditions were a column temperature of 40° C., a sample concentration of 10 mg/mL, a sample injection amount of 10 ⁇ L, and a flow rate of 0.2 mL/min.
  • a calibration curve was prepared using polystyrene (molecular weights 70,500, 37,900, 19,920, 10,200, 4,290, 2,630, and 1,150) as a standard substance, and the weight average molecular weight (Mw) and number average molecular weight (Mn) were measured.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • the amine value represents the mass of potassium hydroxide (KOH) equivalent to the basic component per 1 g of solid content.
  • KOH potassium hydroxide
  • the measurement sample was dissolved in tetrahydrofuran, and the obtained solution was neutralized and titrated with a hydrochloric acid (0.1 mol/L)-propanol solution using a potentiometric titrator (product name: GT-06, manufactured by Mitsubishi Chemical).
  • the amine value (B) was calculated by the following formula, with the inflection point of the titration pH curve being the titration end point.
  • the acid value represents the mass of potassium hydroxide (KOH) required to neutralize the acidic components per 1 g of solid content.
  • KOH potassium hydroxide
  • the measurement sample was dissolved in tetrahydrofuran, and several drops of 1.0 w/v % phenolphthalein ethanol (90) solution were added to the obtained solution as an indicator, and neutralization titration was performed with potassium hydroxide (0.1 mol/L)-ethanol solution. The point where a slight reddish color remained was set as the titration end point, and the acid value was calculated by the following formula.
  • A 56.11 x Vs x 0.1 x f/w
  • f Potassium hydroxide (0.1 mol/L)-ethanol solution
  • w Measurement sample mass (g) (solid content equivalent)
  • the viscosity (mPa ⁇ s) was measured using an E-type viscometer (product name: RE-80L, manufactured by Toki Sangyo Co., Ltd.) with a cone rotor (0.8° ⁇ R24) at 25° C. and a rotor rotation speed of 60 rpm. After preparation, the colored composition was stored at 40° C. for one day, and then the initial viscosity was measured. In addition, after preparation, the colored composition was stored at 40° C. for one week, and then the viscosity over time was measured.
  • Block Copolymer No. 1 A flask equipped with an argon gas inlet tube and a stirrer was charged with 47.56 g of BMA, 129.40 g of CL5MA, 0.849 g of AIBN, and 75.85 g of PMA, and after replacing with nitrogen, 7.78 g of BTEE and 4.50 g of DBDT were added and reacted at 60° C. for 22.5 hours to polymerize the A block. The polymerization rate was 99.0%.
  • the polymerization rate was 99.5%.
  • the reaction solution was poured into stirred n-heptane.
  • the precipitated polymer was filtered by suction and dried to obtain block copolymer No. 1.
  • the resulting block copolymer No. 1 had an Mw of 19,235, an Mw/Mn of 1.64, and an amine value of 85 mg KOH/g.
  • Block Copolymers No. 2 to 16 Block copolymers No. 2 to 12 were prepared in the same manner as in the preparation of block copolymer No. 1.
  • Tables 2 and 3 show the monomers, organic tellurium compound (BTEE), organic ditelluride compound (DBDT), azo polymerization initiator (AIBN), solvent (PMA), reaction temperature, reaction time, and polymerization rate used.
  • Tables 4 and 5 show the composition, Mw, Mw/Mn, amine value, and acid value of each block copolymer. The content of each structural unit in the copolymer was calculated from the charge ratio and polymerization rate of the monomers used in the polymerization reaction.
  • Block Copolymer No. 17 392 mg of BzCl was added to 7.81 g of a PMA solution containing 5.0 g of solid content of block copolymer No. 1, and the mixture was reacted at 60° C. for 6 hours to quaternize the block copolymer, and then diluted with PMA to obtain a solution of block copolymer No. 17.
  • the obtained block copolymer No. 17 had Mw of 13,089, Mw/Mn of 1.22, and an amine value of 46 mgKOH/g.
  • the resulting reaction solution was cooled to room temperature, and 120.0 g of PMA was added to obtain an alkali-soluble resin solution with a non-volatile content of 39.9%.
  • the Mw of the alkali-soluble resin was 11,873, the Mw/Mn was 1.77, and the acid value was 127 mg KOH/g.
  • Colored compositions No. 2 to 17 were prepared in the same manner as in the preparation of colored composition No. 1, except that the dispersant (block copolymer) was changed. The obtained colored compositions were evaluated, and the results are shown in Tables 4 and 5. In addition, the evaluation result of the KOH solubility of the coating film formed using colored composition No. 15 was "X".
  • the A segment does not substantially contain a structural unit (b-2) having a basic group
  • the B segment contains a structural unit (b-1) having a hydroxy group and a structural unit (b-2) having a basic group
  • the molar ratio ((b-1)/(b-2)) of the structural unit (b-1) to the structural unit (b-2) in the B segment is 5/95 to 95/5.
  • Block copolymers No. 12 to 14 have a molar ratio ((b-1)/(b-2)) of the structural unit (b-1) to the structural unit (b-2) in the B segment of less than 5/95. Colored compositions No. 13 to 15 using these block copolymers No. 12 to 14 had low initial viscosities, but high aging viscosities and poor storage stability.
  • Block copolymers No. 15 and 16 are cases where the B segment does not contain the structural unit (b-2) having a basic group. Coloring compositions No. 16 and 17 using these block copolymers No. 15 and 16 had high initial viscosity and poor dispersibility of the coloring material.
  • the present invention includes the following aspects:
  • a block copolymer having an A segment and a B segment the A segment does not substantially contain a structural unit (b-2) having a basic group
  • the B segment contains a structural unit (b-1) having a hydroxy group and a structural unit (b-2) having a basic group
  • a block copolymer characterized in that the molar ratio ((b-1)/(b-2)) of the structural unit (b-1) to the structural unit (b-2) in the B segment is 5/95 to 95/5.
  • R 11 represents a hydrogen atom or a methyl group.
  • a 11 represents an ester group, an amide group, or a single bond.
  • R 12 represents a divalent hydrocarbon group, -R 13 -(OCO-R 14 ) m - group, or -R 15 -(O-R 16 ) n - group.
  • R 13 to R 16 each independently represent a divalent hydrocarbon group.
  • m represents an integer from 1 to 10.
  • n represents an integer from 1 to 10.
  • R21 represents a hydrogen atom or a methyl group.
  • A21 represents an ester group, an amide group, or a single bond.
  • R22 represents a divalent hydrocarbon group.
  • R23 and R24 each independently represent a hydrocarbon group that may contain a heteroatom. R23 and R24 may be bonded to each other to form a cyclic structure.
  • Aspect 7 The block copolymer according to any one of Aspects 1 to 6, wherein the A segment contains a structural unit derived from one or more (meth)acrylic monomers selected from the group consisting of a (meth)acrylic monomer having a chain alkyl group, a (meth)acrylic monomer having a cyclic alkyl group, a (meth)acrylic monomer having an aryl group, a (meth)acrylic monomer having a hydroxy group, a (meth)acrylic monomer having an alkoxy group, a (meth)acrylic monomer having an oxygen-containing heterocyclic group, a (meth)acrylic monomer having an amide group, and a (meth)acrylic monomer having an acidic group.
  • a (meth)acrylic monomers selected from the group consisting of a (meth)acrylic monomer having a chain alkyl group, a (meth)acrylic monomer having a cyclic alkyl group,
  • a molar ratio of the total molar amount of the structural units constituting the A segment to the total molar amount of the structural units constituting the B segment (A segment/B segment) is 30/70 to 75/25.
  • a dispersant comprising the block copolymer according to any one of Aspects 1 to 11.
  • a coloring composition comprising a colorant, a dispersion medium, and the dispersant according to aspect 12.
  • a color filter comprising a colored layer formed using the colored composition according to Aspect 14.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)

Abstract

[Problem] To provide a block copolymer having high colorant dispersing ability when being used as a dispersant for a coloring composition. [Solution] This block copolymer is characterized by having a segment A and a segment B, and is characterized in that the segment A substantially does not include a structural unit (b-2) having a basic group, the segment B includes a structural unit (b-1) having a hydroxy group and a structural unit (b-2) having a basic group, and the mole ratio ((b-1)/(b-2)) of the structural unit (b-1) and the structural unit (b-2) in the segment B is 5/95 to 95/5.

Description

ブロック共重合体、分散剤、および、着色組成物Block copolymer, dispersant, and coloring composition
 本発明は、ブロック共重合体に関し、特に着色組成物の着色材の分散剤として使用できるブロック共重合体に関する。 The present invention relates to a block copolymer, and in particular to a block copolymer that can be used as a dispersant for a colorant in a coloring composition.
 従来、液晶ディスプレー等に用いられるカラーフィルタの製造において、基材への着色材の付与方法としては、染色法、印刷法、インクジェット法、電着法、顔料分散法等が知られている。これらの中でも、分光特性、耐久性、パターン形状および精度の観点から、顔料分散法が主流となっている。この顔料分散法においては、顔料、分散剤、分散媒体(溶媒)、バインダー樹脂等を混合した着色組成物からなる塗布膜を基板上に形成し、所望のパターン形状のフォトマスクを介して放射線を照射して硬化し、アルカリ現像が行われる。  Traditionally, in the manufacture of color filters used in liquid crystal displays and the like, methods of applying coloring materials to a substrate include dyeing, printing, inkjet, electrodeposition, and pigment dispersion. Among these, the pigment dispersion method is mainstream from the viewpoints of spectral characteristics, durability, pattern shape, and precision. In this pigment dispersion method, a coating film made of a coloring composition containing a mixture of pigment, dispersant, dispersion medium (solvent), binder resin, etc. is formed on a substrate, and is cured by irradiating radiation through a photomask with the desired pattern shape, followed by alkaline development.
 近年、カラーフィルタの良好な色再現性および高コントラストを得るために着色組成物中の顔料の高濃度化が検討されている。顔料を高濃度化する場合、相対的に分散剤の割合が減少するため、分散剤には高い分散性が求められる(例えば、特許文献1(段落0004)参照)。また、アルカリ現像では、アルカリ可溶性を有するバインダー樹脂が大きな役割を果している。しかし、顔料を高濃度化した顔料分散組成物の場合には、現像成分であるバインダー樹脂の割合が減少し、アルカリ現像性が低下する。そのため、本来、バインダー樹脂に求められてきたアルカリ現像性が、分散剤にも求められる。このような分散剤として、特許文献2には、側鎖にポリラクトン鎖を有するAブロックと、側鎖に3級アミノ基を有するBブロックとからなる、A-Bブロック共重合体を顔料分散として用いることが記載されている(特許文献2(段落0023~0045)参照)。 In recent years, increasing the concentration of pigments in coloring compositions has been studied in order to obtain good color reproducibility and high contrast in color filters. When increasing the concentration of pigments, the proportion of dispersant decreases relatively, so the dispersant is required to have high dispersibility (see, for example, Patent Document 1 (paragraph 0004)). In addition, in alkaline development, binder resins having alkali solubility play a major role. However, in the case of pigment dispersion compositions with high pigment concentrations, the proportion of binder resin, which is a developing component, decreases, and alkaline developability decreases. Therefore, the alkaline developability that was originally required of binder resins is also required of dispersants. As such a dispersant, Patent Document 2 describes the use of an A-B block copolymer consisting of an A block having a polylactone chain in the side chain and a B block having a tertiary amino group in the side chain as a pigment dispersion (see Patent Document 2 (paragraphs 0023 to 0045)).
特開2009-265515号公報JP 2009-265515 A 特開2013-119568号公報JP 2013-119568 A
 樹脂型分散剤において、着色材の分散性を高めるために、側鎖に3級アミノ基を導入することが提案されている(特許文献2参照)。しかし、近年の着色組成物中の着色材の高濃度化から、さらなる分散性能の向上が求められている。 In resin-type dispersants, it has been proposed to introduce a tertiary amino group into the side chain in order to improve the dispersibility of colorants (see Patent Document 2). However, due to the recent trend toward higher concentrations of colorants in coloring compositions, further improvements in dispersibility are required.
 本発明は上記事情に鑑みてなされたものであり、着色組成物の分散剤として用いた際に、着色材の分散性能が高いブロック共重合体を提供することを目的とする。 The present invention was made in consideration of the above circumstances, and aims to provide a block copolymer that has high dispersibility of coloring materials when used as a dispersant for a coloring composition.
 上記課題を解決することができた本発明のブロック共重合体は、AセグメントとBセグメントとを有するブロック共重合体であって、前記Aセグメントが塩基性基を有する構造単位(b-2)を実質的に含有せず、前記Bセグメントがヒドロキシ基を有する構造単位(b-1)と、塩基性基を有する構造単位(b-2)とを含有し、前記Bセグメントにおける前記構造単位(b-1)と前記構造単位(b-2)とのモル比((b-1)/(b-2))が5/95~95/5であることを特徴とする。 The block copolymer of the present invention, which has been able to solve the above problems, is a block copolymer having an A segment and a B segment, wherein the A segment is substantially free of a structural unit (b-2) having a basic group, the B segment contains a structural unit (b-1) having a hydroxy group and a structural unit (b-2) having a basic group, and the molar ratio ((b-1)/(b-2)) of the structural unit (b-1) to the structural unit (b-2) in the B segment is 5/95 to 95/5.
 本発明のブロック共重合体は、Aセグメントが溶媒との親和性が高く、Bセグメントが着色材との親和性が高くなるように設計され、Bセグメントに導入された塩基性基が着色材に吸着する。ここで、Bセグメントに、溶剤と相互作用しやすいヒドロキシ基を有する構造単位(b-1)を共重合することで、吸着部位と分散媒体との親和性が高まると考えられる。よって、Bセグメントにおける構造単位(b-1)と構造単位(b-2)とのモル比((b-1)/(b-2))を所定の範囲に制御することで、Bセグメントの着色材に対する親和性を維持しつつ、分散媒体との親和性も高めることができ、ブロック共重合体の着色材を分散する性能を一層高めることができると考えられる。 The block copolymer of the present invention is designed so that the A segment has a high affinity with the solvent and the B segment has a high affinity with the colorant, and the basic group introduced into the B segment adsorbs to the colorant. Here, it is believed that the affinity between the adsorption site and the dispersion medium is increased by copolymerizing the structural unit (b-1) having a hydroxyl group that easily interacts with the solvent into the B segment. Therefore, by controlling the molar ratio ((b-1)/(b-2)) of the structural unit (b-1) to the structural unit (b-2) in the B segment within a predetermined range, it is possible to maintain the affinity of the B segment with the colorant while also increasing its affinity with the dispersion medium, and it is believed that the ability of the block copolymer to disperse the colorant can be further improved.
 本発明のブロック共重合体は着色材の分散性能に優れており、着色材の分散剤として使用すれば、粘度安定性に優れた着色組成物が得られる。 The block copolymer of the present invention has excellent dispersibility for colorants, and when used as a dispersant for colorants, a colored composition with excellent viscosity stability can be obtained.
 以下、本発明を実施した好ましい形態の一例について説明する。ただし、以下の実施形態は単なる例示である。本発明は以下の実施形態に何ら限定されない。 Below, an example of a preferred embodiment of the present invention will be described. However, the following embodiment is merely an example. The present invention is not limited to the following embodiment in any way.
<ブロック共重合体>
 本発明のブロック共重合体は、AセグメントとBセグメントとを有する。本明細書において、「Aセグメント」は共重合体中の「Aブロック」から構成されている部分を指し、「Bセグメント」は共重合体中の「Bブロック」から構成されている部分を指す。本明細書において、「ビニルモノマー」とは分子中にラジカル重合可能な炭素-炭素二重結合を有するモノマーのことをいう。「ビニルモノマーに由来する構造単位」とは、ビニルモノマーのラジカル重合可能な炭素-炭素二重結合が、重合して炭素-炭素単結合になった構造単位をいう。「(メタ)アクリル」は「アクリルおよびメタクリルの少なくとも一方」をいう。「(メタ)アクリレート」は「アクリレートおよびメタクリレートの少なくとも一方」をいう。「(メタ)アクリレート」とは、「(メタ)アクリル酸が有するカルボキシ基の水素原子が、有機基に置換されたエステル化合物」を意味する。「(メタ)アクリロイル」は「アクリロイルおよびメタクリロイルの少なくとも一方」をいう。「(メタ)アクリルモノマー」とは、「分子中に(メタ)アクリロイル基を有するモノマー」を意味し、「(メタ)アクリレート」も包含するものである。「ビニルモノマー」は、「(メタ)アクリレート」、「(メタ)アクリルモノマー」も包含するものである。
<Block copolymer>
The block copolymer of the present invention has an A segment and a B segment. In this specification, the term "A segment" refers to a portion of the copolymer that is composed of the "A block," and the term "B segment" refers to a portion of the copolymer that is composed of the "B block." In this specification, the term "vinyl monomer" refers to a monomer having a radically polymerizable carbon-carbon double bond in the molecule. The term "structural unit derived from a vinyl monomer" refers to a structural unit in which the radically polymerizable carbon-carbon double bond of a vinyl monomer is polymerized to become a carbon-carbon single bond. "(Meth)acrylic" refers to "at least one of acrylic and methacrylic.""(Meth)acrylate" refers to "at least one of acrylate and methacrylate.""(Meth)acrylate" means "an ester compound in which the hydrogen atom of the carboxyl group of (meth)acrylic acid is substituted with an organic group.""(Meth)acryloyl" refers to "at least one of acryloyl and methacryloyl.""(Meth)acrylicmonomer" means "a monomer having a (meth)acryloyl group in the molecule," and includes "(meth)acrylate." The term "vinyl monomer" also includes "(meth)acrylate" and "(meth)acrylic monomer."
 本明細書において、「X~Y」(X、Yは任意の数字)と記載した場合、「X以上、Y以下」を意味する。また、「X以上」(Xは任意の数字)と記載した場合、「X、または、X超」の意味を包含し、「Y以下」(Yは任意の数字)と記載した場合、「Y、または、Y未満」の意味も包含するものである。
 さらに、「Xおよび/またはY(X、Yは任意の構成)」とは、「XおよびYの少なくとも一方」を意味するものであって、「Xのみ」、「Yのみ」、「XおよびY」の3通りを意味するものである。
In this specification, when it is stated that "X to Y" (X and Y are any numbers), it means "X or more, Y or less." In addition, when it is stated that "X or more" (X is any number), it includes the meaning of "X or more than X," and when it is stated that "Y or less" (Y is any number), it also includes the meaning of "Y or less than Y."
Furthermore, "X and/or Y (X and Y are optional)" means "at least one of X and Y", and means three possibilities: "X only", "Y only", and "X and Y".
(Aセグメント)
 前記Aセグメントはブロック共重合体中のAブロックから構成されている部分を指す。前記ブロック共重合体は、Aセグメントとして1つのAブロックのみを有していてもよいし、Aセグメントとして複数のAブロックを有していてもよい。前記Aセグメントが複数のAブロックを有する場合、これらのAブロックは同一組成であってもよいし、異なる組成であってもよい。前記Aセグメントは、塩基性基を有する構造単位(b-2)を実質的に含有しない。
(A segment)
The A segment refers to a portion of the block copolymer that is composed of an A block. The block copolymer may have only one A block as the A segment, or may have multiple A blocks as the A segment. When the A segment has multiple A blocks, these A blocks may have the same composition or different compositions. The A segment does not substantially contain a structural unit (b-2) having a basic group.
 前記Aブロックは、塩基性基を有する構造単位(b-2)を実質的に含有しないブロックである。前記Aブロックを構成する構造単位としては、(メタ)アクリルモノマーに由来する構造単位、(メタ)アクリルモノマー以外のビニルモノマーに由来する構造単位が挙げられる。前記Aブロックを構成する構造単位は、1種のみでもあってもよいし、2種以上を有していてもよい。Aブロックにおいて2種以上の構造単位が含有される場合は、Aブロックに含有される各種構造単位は、Aブロック中においてランダム共重合、ブロック共重合等のいずれの態様で含有されていてもよく、均一性の観点からランダム共重合の態様で含有されていることが好ましい。 The A block is a block that does not substantially contain a structural unit (b-2) having a basic group. Examples of structural units constituting the A block include structural units derived from (meth)acrylic monomers and structural units derived from vinyl monomers other than (meth)acrylic monomers. The structural units constituting the A block may be of only one type, or may have two or more types. When two or more types of structural units are contained in the A block, the various structural units contained in the A block may be contained in the A block in any form, such as random copolymerization or block copolymerization, and are preferably contained in the A block in the form of random copolymerization from the viewpoint of uniformity.
 前記(メタ)アクリルモノマーに由来する構造単位を形成する(メタ)アクリルモノマーとしては、鎖状アルキル基を有する(メタ)アクリルモノマー、環状アルキル基を有する(メタ)アクリルモノマー、アリール基を有する(メタ)アクリルモノマー、ヒドロキシ基を有する(メタ)アクリルモノマー、アルコキシ基を有する(メタ)アクリルモノマー、含酸素ヘテロ環基を有する(メタ)アクリルモノマー、アミド基を有する(メタ)アクリルモノマー、酸性基を有する(メタ)アクリルモノマー等が挙げられる。 Examples of the (meth)acrylic monomer that forms a structural unit derived from the (meth)acrylic monomer include (meth)acrylic monomers having a chain alkyl group, (meth)acrylic monomers having a cyclic alkyl group, (meth)acrylic monomers having an aryl group, (meth)acrylic monomers having a hydroxy group, (meth)acrylic monomers having an alkoxy group, (meth)acrylic monomers having an oxygen-containing heterocyclic group, (meth)acrylic monomers having an amide group, (meth)acrylic monomers having an acidic group, etc.
 鎖状アルキル基を有する(メタ)アクリルモノマーとしては、直鎖状アルキル基を有する(メタ)アクリレート、分岐鎖状アルキル基を有する(メタ)アクリレートが挙げられる。 Examples of (meth)acrylic monomers having a chain alkyl group include (meth)acrylates having a straight-chain alkyl group and (meth)acrylates having a branched-chain alkyl group.
 前記直鎖状アルキル基を有する(メタ)アクリレートとしては、直鎖状アルキル基の炭素数が1~20である直鎖状アルキル基を有する(メタ)アクリレートが好ましく、直鎖状アルキル基の炭素数が1~10である直鎖状アルキル基を有する(メタ)アクリレートがより好ましい。前記直鎖状アルキル基を有する(メタ)アクリレートの具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸n-デシル、(メタ)アクリル酸n-ラウリル、(メタ)アクリル酸n-ステアリル等が挙げられる。 As the (meth)acrylate having the linear alkyl group, a (meth)acrylate having a linear alkyl group with a carbon number of 1 to 20 is preferred, and a (meth)acrylate having a linear alkyl group with a carbon number of 1 to 10 is more preferred. Specific examples of the (meth)acrylate having the linear alkyl group include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, n-butyl (meth)acrylate, n-pentyl (meth)acrylate, n-hexyl (meth)acrylate, n-octyl (meth)acrylate, n-nonyl (meth)acrylate, n-decyl (meth)acrylate, n-lauryl (meth)acrylate, and n-stearyl (meth)acrylate.
 前記分岐鎖状アルキル基を有する(メタ)アクリレートとしては、分岐鎖状アルキル基の炭素数が3~20である分岐鎖状アルキル基を有する(メタ)アクリレートが好ましく、分岐鎖状アルキル基の炭素数が3~10である分岐鎖状アルキル基を有する(メタ)アクリレートが好ましい。前記分岐鎖状アルキル基を有する(メタ)アクリレートの具体例としては、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸イソデシル等が挙げられる。 As the (meth)acrylate having a branched alkyl group, a (meth)acrylate having a branched alkyl group with a carbon number of 3 to 20 is preferred, and a (meth)acrylate having a branched alkyl group with a carbon number of 3 to 10 is preferred. Specific examples of the (meth)acrylate having a branched alkyl group include isopropyl (meth)acrylate, isobutyl (meth)acrylate, sec-butyl (meth)acrylate, tert-butyl (meth)acrylate, isooctyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isononyl (meth)acrylate, isodecyl (meth)acrylate, etc.
 前記環状アルキル基を有する(メタ)アクリルモノマーとしては、単環構造を有する環状アルキル基を有する(メタ)アクリレート、橋かけ環構造を有する環状アルキル基を有する(メタ)アクリレートが挙げられる。 Examples of the (meth)acrylic monomer having a cyclic alkyl group include (meth)acrylates having a cyclic alkyl group with a monocyclic structure and (meth)acrylates having a cyclic alkyl group with a bridged ring structure.
 前記単環構造の環状アルキル基を有する(メタ)アクリレートとしては、環状アルキル基の炭素数が6~12の単環構造の環状アルキル基を有する(メタ)アクリレートであることが好ましい。単環構造の環状アルキル基を有する(メタ)アクリレートの具体例としては、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸メチルシクロヘキシル、(メタ)アクリル酸シクロドデシル等が挙げられる。 The (meth)acrylate having a cyclic alkyl group with a monocyclic structure is preferably a (meth)acrylate having a cyclic alkyl group with a monocyclic structure in which the cyclic alkyl group has 6 to 12 carbon atoms. Specific examples of (meth)acrylates having a cyclic alkyl group with a monocyclic structure include cyclohexyl (meth)acrylate, methylcyclohexyl (meth)acrylate, and cyclododecyl (meth)acrylate.
 前記橋かけ環構造を有する環状アルキル基を有する(メタ)アクリレートとしては、橋かけ環構造の炭素数が6~12の橋かけ環構造を有する(メタ)アクリレートであることが好ましい。橋かけ環構造を有する環状アルキル基を有する(メタ)アクリレートの具体例としては、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンテニルオキシエチル、(メタ)アクリル酸ジシクロペンタニルオキシエチル、(メタ)アクリル酸2-メチル-2-アダマンチル、(メタ)アクリル酸2-エチル-2-アダマンチル等が挙げられる。 The (meth)acrylate having a cyclic alkyl group with a bridged ring structure is preferably a (meth)acrylate having a bridged ring structure with a carbon number of 6 to 12. Specific examples of (meth)acrylates having a cyclic alkyl group with a bridged ring structure include isobornyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, dicyclopentanyloxyethyl (meth)acrylate, 2-methyl-2-adamantyl (meth)acrylate, and 2-ethyl-2-adamantyl (meth)acrylate.
 前記アリール基を有する(メタ)アクリルモノマーとしては、アリール基の炭素数が6~12のアリール基を有する(メタ)アクリレートであることが好ましい。アリール基としては、アルキルアリール基、アラルキル基、アリールオキシアルキル基等のように鎖状部分を有していてもよい。アリール基を有する(メタ)アクリレートの具体例としては、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェニル、(メタ)アクリル酸フェノキシエチル等が挙げられる。 The (meth)acrylic monomer having an aryl group is preferably a (meth)acrylate having an aryl group with 6 to 12 carbon atoms. The aryl group may have a chain portion such as an alkylaryl group, an aralkyl group, or an aryloxyalkyl group. Specific examples of (meth)acrylates having an aryl group include benzyl (meth)acrylate, phenyl (meth)acrylate, and phenoxyethyl (meth)acrylate.
 前記ヒドロキシ基を有する(メタ)アクリルモノマーとしては、ヒドロキシアルキル基を有する(メタ)アクリレート、ラクトン変性ヒドロキシ基を有する(メタ)アクリレート、ポリアルキレングリコール基を有する(メタ)アクリレートが挙げられる。 Examples of the (meth)acrylic monomer having a hydroxy group include (meth)acrylates having a hydroxyalkyl group, (meth)acrylates having a lactone-modified hydroxy group, and (meth)acrylates having a polyalkylene glycol group.
 前記ヒドロキシアルキル基を有する(メタ)アクリレートの具体例としては、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル等が挙げられる。ヒドロキシアルキル基は、直鎖状または分岐鎖状が好ましい。また、ヒドロキシアルキル基の炭素数は、好ましくは1~10、より好ましくは1~5である。 Specific examples of (meth)acrylates having the hydroxyalkyl group include 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, 8-hydroxyoctyl (meth)acrylate, 10-hydroxydecyl (meth)acrylate, and 12-hydroxylauryl (meth)acrylate. The hydroxyalkyl group is preferably linear or branched. The number of carbon atoms in the hydroxyalkyl group is preferably 1 to 10, and more preferably 1 to 5.
 前記ラクトン変性ヒドロキシ基を有する(メタ)アクリレートの具体例としては、前記ヒドロキシアルキル基を有する(メタ)アクリレートにラクトンを付加したものが挙げられ、カプロラクトンを付加したものが好ましい。カプロラクトンの付加量は、1mol~20molが好ましく、1mol~10molがより好ましい。前記ラクトン変性ヒドロキシ基を有する(メタ)アクリレートとしては、(メタ)アクリル酸2-ヒドロキシエチルのカプロラクトン1mol付加物、(メタ)アクリル酸2-ヒドロキシエチルのカプロラクトン2mol付加物、(メタ)アクリル酸2-ヒドロキシエチルのカプロラクトン3mol付加物、(メタ)アクリル酸2-ヒドロキシエチルのカプロラクトン4mol付加物、(メタ)アクリル酸2-ヒドロキシエチルのカプロラクトン5mol付加物、(メタ)アクリル酸2-ヒドロキシエチルのカプロラクトン10mol付加物等が好ましい。 Specific examples of the (meth)acrylate having a lactone-modified hydroxy group include those obtained by adding lactone to the (meth)acrylate having a hydroxyalkyl group, and those obtained by adding caprolactone are preferred. The amount of caprolactone added is preferably 1 mol to 20 mol, and more preferably 1 mol to 10 mol. Preferred examples of the (meth)acrylate having a lactone-modified hydroxy group include 1 mol caprolactone adduct of 2-hydroxyethyl (meth)acrylate, 2 mol caprolactone adduct of 2-hydroxyethyl (meth)acrylate, 3 mol caprolactone adduct of 2-hydroxyethyl (meth)acrylate, 4 mol caprolactone adduct of 2-hydroxyethyl (meth)acrylate, 5 mol caprolactone adduct of 2-hydroxyethyl (meth)acrylate, and 10 mol caprolactone adduct of 2-hydroxyethyl (meth)acrylate.
 前記ポリアルキレングリコール基を有する(メタ)アクリレートの具体例としては、末端水酸基ポリエチレングリコール(重合度=2~10)モノ(メタ)アクリレート、末端水酸基ポリプロピレングリコール(重合度=2~10)モノ(メタ)アクリレート等が挙げられる。 Specific examples of (meth)acrylates having the polyalkylene glycol group include mono(meth)acrylate with a terminal hydroxyl group, polyethylene glycol (degree of polymerization = 2 to 10), mono(meth)acrylate with a terminal hydroxyl group, polypropylene glycol (degree of polymerization = 2 to 10), etc.
 前記アルコキシ基を有する(メタ)アクリルモノマーとしては、アルコキシアルキル基を有する(メタ)アクリレート、アルコキシポリアルキレングリコール基を有する(メタ)アクリレートが挙げられる。 Examples of the (meth)acrylic monomer having an alkoxy group include (meth)acrylates having an alkoxyalkyl group and (meth)acrylates having an alkoxypolyalkylene glycol group.
 前記アルコキシアルキル基を有する(メタ)アクリレートの具体例としては、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチル等が挙げられる。 Specific examples of (meth)acrylates having the above-mentioned alkoxyalkyl groups include methoxyethyl (meth)acrylate, ethoxyethyl (meth)acrylate, etc.
 前記アルコキシポリアルキレングリコール基を有する(メタ)アクリレートの具体例としては、ポリエチレングリコール(重合度=2~10)メチルエーテル(メタ)アクリレート、ポリエチレングリコール(重合度=2~10)エチルエーテル(メタ)アクリレート、ポリエチレングリコール(重合度=2~10)プロピルエーテル(メタ)アクリレート等のポリエチレングリコール構造を有する(メタ)アクリレート;ポリプロピレングリコール(重合度=2~10)メチルエーテル(メタ)アクリレート、ポリプロピレングリコール(重合度=2~10)エチルエーテル(メタ)アクリレート、ポリプロピレングリコール(重合度=2~10)プロピルエーテル(メタ)アクリレート等のポリプロピレングリコール構造単位を有する(メタ)アクリレート等が挙げられる。 Specific examples of (meth)acrylates having an alkoxy polyalkylene glycol group include (meth)acrylates having a polyethylene glycol structure such as polyethylene glycol (degree of polymerization = 2-10) methyl ether (meth)acrylate, polyethylene glycol (degree of polymerization = 2-10) ethyl ether (meth)acrylate, and polyethylene glycol (degree of polymerization = 2-10) propyl ether (meth)acrylate; and (meth)acrylates having a polypropylene glycol structural unit such as polypropylene glycol (degree of polymerization = 2-10) methyl ether (meth)acrylate, polypropylene glycol (degree of polymerization = 2-10) ethyl ether (meth)acrylate, and polypropylene glycol (degree of polymerization = 2-10) propyl ether (meth)acrylate.
 前記含酸素ヘテロ環基を有する(メタ)アクリルモノマーとしては、4員環~6員環の含酸素ヘテロ環基を有する(メタ)アクリレートであることが好ましい。含酸素ヘテロ環基を有する(メタ)アクリレートの具体例としては、(メタ)アクリル酸グリシジル、(メタ)アクリル酸テトラヒドロフルフリル、(メタ)アクリル酸(3-エチルオキセタン-3-イル)メチル、(メタ)アクリル酸(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチル、環状トリメチロールプロパンホルマール(メタ)アクリレート、(メタ)アクリル酸2-〔(2-テトラヒドロピラニル)オキシ〕エチル等が挙げられる。 The (meth)acrylic monomer having an oxygen-containing heterocyclic group is preferably a (meth)acrylate having a 4- to 6-membered oxygen-containing heterocyclic group. Specific examples of (meth)acrylates having an oxygen-containing heterocyclic group include glycidyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, (3-ethyloxetan-3-yl)methyl (meth)acrylate, (2-methyl-2-ethyl-1,3-dioxolan-4-yl)methyl (meth)acrylate, cyclic trimethylolpropane formal (meth)acrylate, and 2-[(2-tetrahydropyranyl)oxy]ethyl (meth)acrylate.
 前記アミド基を有する(メタ)アクリルモノマーの具体例としては、N,N-ジメチル(メタ)アクリルアミド、4-(メタ)アクリロイルモルフォリン等が挙げられる。 Specific examples of the (meth)acrylic monomer having an amide group include N,N-dimethyl(meth)acrylamide and 4-(meth)acryloylmorpholine.
 前記酸性基を有する(メタ)アクリルモノマーが有する酸性基としては、カルボキシ基(-COOH)、スルホン酸基(-SO3H)、リン酸基(-OPO32)、ホスホン酸基(-PO32)、ホスフィン酸基(-PO22)が挙げられる。前記酸性基を有する(メタ)アクリルモノマーとしては、(メタ)アクリル酸、カルボキシ基を有する(メタ)アクリレート、リン酸基を有する(メタ)アクリレート、スルホン酸基を有する(メタ)アクリレートが挙げられ、好ましくは(メタ)アクリル酸、カルボキシ基を有する(メタ)アクリレートである。 Examples of the acidic group contained in the (meth)acrylic monomer having an acidic group include a carboxy group (-COOH), a sulfonic acid group (-SO 3 H), a phosphoric acid group (-OPO 3 H 2 ), a phosphonic acid group (-PO 3 H 2 ), and a phosphinic acid group (-PO 2 H 2 ). Examples of the (meth)acrylic monomer having an acidic group include (meth)acrylic acid, a (meth)acrylate having a carboxy group, a (meth)acrylate having a phosphoric acid group, and a (meth)acrylate having a sulfonic acid group, and preferably, (meth)acrylic acid and a (meth)acrylate having a carboxy group.
 カルボキシ基を有する(メタ)アクリレートの具体例としては、(メタ)アクリル酸カルボキシエチル、(メタ)アクリル酸カルボキシペンチル、2-(メタ)アクリロイルオキシエチルサクシネート、2-(メタ)アクリロイルオキシエチルマレアート、2-(メタ)アクリロイルオキシエチルフタレート等のヒドロキシアルキル基を有する(メタ)アクリレートに無水マレイン酸、無水コハク酸、無水フタル酸等の酸無水物を反応させたモノマー等が挙げられる。リン酸基を有する(メタ)アクリレートの具体例としては、(メタ)アクリル酸2-(ホスホノオキシ)エチル等が挙げられる。スルホン酸基を有する(メタ)アクリレートの具体例としては、スルホン酸エチル(メタ)アクリレート等が挙げられる。 Specific examples of (meth)acrylates having a carboxy group include monomers obtained by reacting (meth)acrylates having a hydroxyalkyl group, such as carboxyethyl (meth)acrylate, carboxypentyl (meth)acrylate, 2-(meth)acryloyloxyethyl succinate, 2-(meth)acryloyloxyethyl maleate, and 2-(meth)acryloyloxyethyl phthalate, with acid anhydrides, such as maleic anhydride, succinic anhydride, and phthalic anhydride. Specific examples of (meth)acrylates having a phosphoric acid group include 2-(phosphonooxy)ethyl (meth)acrylate. Specific examples of (meth)acrylates having a sulfonic acid group include ethyl sulfonate (meth)acrylate.
 前記(メタ)アクリルモノマー以外のビニルモノマーに由来する構造単位としては、(メタ)アクリルモノマーおよび後述のBブロックを形成するビニルモノマーの両方と共重合し得るビニルモノマーにより形成されるものであれば特に制限はない。 The structural units derived from vinyl monomers other than the (meth)acrylic monomer are not particularly limited as long as they are formed from vinyl monomers that can be copolymerized with both the (meth)acrylic monomer and the vinyl monomer that forms the B block described below.
 前記(メタ)アクリルモノマー以外のビニルモノマーに由来する構造単位を形成するビニルモノマーの具体例としては、α-オレフィン、スチレン系モノマー、ヒドロキシ基を含有するビニルモノマー、ヘテロ環を含有するビニルモノマー、ビニルアミド、カルボン酸ビニル、ジエン類等が挙げられる。これらのビニルモノマーはヒドロキシ基、エポキシ基を有していてもよい。 Specific examples of vinyl monomers that form structural units derived from vinyl monomers other than the (meth)acrylic monomers include α-olefins, styrene-based monomers, vinyl monomers containing a hydroxyl group, vinyl monomers containing a heterocycle, vinyl amides, vinyl carboxylates, dienes, etc. These vinyl monomers may have a hydroxyl group or an epoxy group.
 前記α-オレフィンとしては、1-ヘキセン、1-オクテン、1-デセン等が挙げられる。
 前記スチレン系モノマーは、置換または無置換のスチレンを挙げることができる。スチレンに置換してもよい置換基としては、アルキル基、アリール基、アルコキシ基、アリールオキシ基等が挙げられる。また、スチレン系モノマーにはベンゼン環が2個以上した縮合環式化合物も含まれる。前記スチレン系ビニルモノマーの具体例としては、スチレン、α-メチルスチレン、4-メチルスチレン、2-メチルスチレン、3-メチルスチレン、2,4-ジメチルスチレン、4-メトキシスチレン、4-フェニルスチレン、2-ヒドロキシメチルスチレン、1-ビニルナフタレン等が挙げられる。
 前記ヒドロキシ基を含有するビニルモノマーとしては、4-ビニルフェノール、4-ヒドロキシブチルビニルエーテル等が挙げられる。
 前記ヘテロ環を含有するビニルモノマーとしては、2-ビニルチオフェン、N-メチル-2-ビニルピロール、1-ビニル-2-ピロリドン等が挙げられる。
 前記ビニルアミドとしては、N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニル-ε-カプロラクタム等が挙げられる。
 前記カルボン酸ビニルとしては、酢酸ビニル、ピバル酸ビニル、安息香酸ビニル等が挙げられる。
 前記ジエン類としては、ブタジエン、イソプレン、4-メチル-1,4-ヘキサジエン、7-メチル-1,6-オクタジエン等が挙げられる。
Examples of the α-olefin include 1-hexene, 1-octene, and 1-decene.
The styrene-based monomer may be substituted or unsubstituted styrene. Examples of the substituent that may be substituted on styrene include an alkyl group, an aryl group, an alkoxy group, and an aryloxy group. The styrene-based monomer also includes a condensed ring compound having two or more benzene rings. Specific examples of the styrene-based vinyl monomer include styrene, α-methylstyrene, 4-methylstyrene, 2-methylstyrene, 3-methylstyrene, 2,4-dimethylstyrene, 4-methoxystyrene, 4-phenylstyrene, 2-hydroxymethylstyrene, and 1-vinylnaphthalene.
Examples of the vinyl monomer containing a hydroxy group include 4-vinylphenol and 4-hydroxybutyl vinyl ether.
Examples of the vinyl monomer containing a heterocycle include 2-vinylthiophene, N-methyl-2-vinylpyrrole, and 1-vinyl-2-pyrrolidone.
Examples of the vinyl amide include N-vinylformamide, N-vinylacetamide, and N-vinyl-ε-caprolactam.
Examples of the vinyl carboxylate include vinyl acetate, vinyl pivalate, and vinyl benzoate.
Examples of the dienes include butadiene, isoprene, 4-methyl-1,4-hexadiene, and 7-methyl-1,6-octadiene.
 前記Aブロックは、(メタ)アクリルモノマーに由来する構造単位を含有することが好ましい。前記(メタ)アクリルモノマーに由来する構造単位は、1種のみでもあってもよいし、2種以上を有していてもよい。Aブロックが(メタ)アクリルモノマーに由来する構造単位を有することで、分散媒体、着色組成物に配合されるバインダー樹脂との親和性が向上する。 The A block preferably contains a structural unit derived from a (meth)acrylic monomer. The structural unit derived from the (meth)acrylic monomer may be of only one type, or may have two or more types. When the A block contains a structural unit derived from a (meth)acrylic monomer, the affinity with the dispersion medium and the binder resin blended in the coloring composition is improved.
 前記(メタ)アクリルモノマーに由来する構造単位の含有率は、前記Aブロックを構成する構造単位100mol%中において、80mol%以上が好ましく、より好ましくは90mol%以上、さらに好ましくは95mol%以上、特に好ましくは100mol%である。 The content of the structural units derived from the (meth)acrylic monomer is preferably 80 mol% or more, more preferably 90 mol% or more, even more preferably 95 mol% or more, and particularly preferably 100 mol% out of 100 mol% of the structural units constituting the A block.
 前記Aセグメントが複数のAブロックを有する場合、前記(メタ)アクリルモノマーに由来する構造単位の含有率は、前記Aセグメントを構成する構造単位100mol%中において、80mol%以上が好ましく、より好ましくは90mol%以上、さらに好ましくは95mol%以上、特に好ましくは100mol%である。 When the A segment has multiple A blocks, the content of the structural units derived from the (meth)acrylic monomer is preferably 80 mol% or more, more preferably 90 mol% or more, even more preferably 95 mol% or more, and particularly preferably 100 mol% in 100 mol% of the structural units constituting the A segment.
 前記Aセグメントは、鎖状アルキル基を有する(メタ)アクリルモノマー、環状アルキル基を有する(メタ)アクリルモノマー、アリール基を有する(メタ)アクリルモノマー、ヒドロキシ基を有する(メタ)アクリルモノマー、アルコキシ基を有する(メタ)アクリルモノマー、含酸素ヘテロ環基を有する(メタ)アクリルモノマー、アミド基を有する(メタ)アクルモノマーおよび酸性基を有する(メタ)アクリルモノマーよりなる群から選択される少なくとも1種の(メタ)アクリルモノマーに由来する構造単位を含有することが好ましい。これらの(メタ)アクリルモノマーに由来する構造単位を有することで、分散媒体、着色組成物に配合されるバインダー樹脂との親和性が一層向上する。 The A segment preferably contains a structural unit derived from at least one (meth)acrylic monomer selected from the group consisting of (meth)acrylic monomers having a chain alkyl group, (meth)acrylic monomers having a cyclic alkyl group, (meth)acrylic monomers having an aryl group, (meth)acrylic monomers having a hydroxy group, (meth)acrylic monomers having an alkoxy group, (meth)acrylic monomers having an oxygen-containing heterocyclic group, (meth)acrylic monomers having an amide group, and (meth)acrylic monomers having an acidic group. By containing structural units derived from these (meth)acrylic monomers, the affinity with the dispersion medium and the binder resin blended in the coloring composition is further improved.
 前記Aセグメントは、(メタ)アクリルモノマーに由来する構造単位として、ヒドロキシ基を有する(メタ)アクリレートに由来する構造単位(a-1)およびアルコキシ基を有する(メタ)アクリレートに由来する構造単位(a-2)よりなる群から選択される少なくとも1種の(メタ)アクリルモノマーに由来する構造単位を含有することが好ましく、ヒドロキシ基を有する(メタ)アクリレートに由来する構造単位(a-1)を含有することがより好ましく、ラクトン変性ヒドロキシ基を有する(メタ)アクリレートに由来する構造単位を含有することがさらに好ましい。前記Aセグメントが、ヒドロキシ基やアルコキシ基を有することで着色材の分散性能をより高めることができ、その中でもラクトン変性ヒドロキシ基を有する(メタ)アクリレートに由来する構造単位は、側鎖にエステル結合部分および末端ヒドロキシ基を有することから、分散媒体、バインダー樹脂との高い親和性を有し、分散媒体への再溶解性を高める。 The A segment preferably contains, as a structural unit derived from a (meth)acrylic monomer, at least one structural unit derived from a (meth)acrylic monomer selected from the group consisting of structural unit (a-1) derived from a (meth)acrylate having a hydroxy group and structural unit (a-2) derived from a (meth)acrylate having an alkoxy group, more preferably structural unit (a-1) derived from a (meth)acrylate having a hydroxy group, and even more preferably structural unit derived from a (meth)acrylate having a lactone-modified hydroxy group. The A segment having a hydroxy group or alkoxy group can further improve the dispersion performance of the colorant, and among them, the structural unit derived from a (meth)acrylate having a lactone-modified hydroxy group has an ester bond portion and a terminal hydroxy group in the side chain, and therefore has high affinity with the dispersion medium and binder resin, and enhances re-solubility in the dispersion medium.
 前記ラクトン変性ヒドロキシ基を有する(メタ)アクリレートに由来する構造単位としては、式(4)で表される構造単位が好ましい。 As the structural unit derived from the (meth)acrylate having a lactone-modified hydroxy group, a structural unit represented by formula (4) is preferred.
Figure JPOXMLDOC01-appb-C000003
[式(4)において、n1は1~10の整数を表す。R41は水素原子またはメチル基を表す。R42は炭素数が1~10のアルキレン基を表す。R43は炭素数が1~10のアルキレン基を表す。]
Figure JPOXMLDOC01-appb-C000003
[In formula (4), n1 represents an integer of 1 to 10. R 41 represents a hydrogen atom or a methyl group. R 42 represents an alkylene group having 1 to 10 carbon atoms. R 43 represents an alkylene group having 1 to 10 carbon atoms.]
 前記式(4)のn1は、1~7の整数であることが好ましく、1~5の整数であることがより好ましい。 In formula (4), n1 is preferably an integer from 1 to 7, and more preferably an integer from 1 to 5.
 前記R42で示される炭素数が1~10のアルキレン基は、直鎖状、分岐鎖状のいずれでもよいが、直鎖状が好ましい。前記R42で示される炭素数が1~10のアルキレン基の具体例としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、1-メチルエチレン基等が挙げられる。R42は、炭素数が1~5のアルキレン基であることが好ましい。 The alkylene group having 1 to 10 carbon atoms represented by R 42 may be either linear or branched, but is preferably linear. Specific examples of the alkylene group having 1 to 10 carbon atoms represented by R 42 include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group, an octamethylene group, a nonamethylene group, a decamethylene group, and a 1-methylethylene group. R 42 is preferably an alkylene group having 1 to 5 carbon atoms.
 前記R43で示される炭素数が1~10のアルキレン基は、直鎖状、分岐鎖状のいずれでもよいが、直鎖状が好ましい。前記R43で示される炭素数が1~10のアルキレン基の具体例としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基等が挙げられる。R43は、炭素数が1~8のアルキレン基であることが好ましく、炭素数が3~8のアルキレン基であることがより好ましい。 The alkylene group having 1 to 10 carbon atoms represented by R 43 may be either linear or branched, but is preferably linear. Specific examples of the alkylene group having 1 to 10 carbon atoms represented by R 43 include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group, an octamethylene group, a nonamethylene group, and a decamethylene group. R 43 is preferably an alkylene group having 1 to 8 carbon atoms, and more preferably an alkylene group having 3 to 8 carbon atoms.
 前記Aセグメントが、ヒドロキシ基を有する(メタ)アクリレートに由来する構造単位(a-1)および/またはアルコキシ基を有する(メタ)アクリレートに由来する構造単位(a-2)を含有する場合、それらの合計含有率は、Aセグメントを構成する構造単位100mol%中において5mol%以上が好ましく、より好ましくは10mol%以上、さらに好ましくは20mol%以上であり、95mol%以下が好ましく、より好ましくは70mol%以下、さらに好ましくは40mol%以下である。ヒドロキシ基を有する(メタ)アクリレートに由来する構造単位(a-1)およびアルコキシ基を有する(メタ)アクリレートに由来する構造単位(a-2)の合計含有量を上記範囲とすることで、着色材の分散性能をより高めることができる。 When the A segment contains structural units (a-1) derived from a (meth)acrylate having a hydroxy group and/or structural units (a-2) derived from a (meth)acrylate having an alkoxy group, the total content thereof is preferably 5 mol% or more, more preferably 10 mol% or more, even more preferably 20 mol% or more, and preferably 95 mol% or less, more preferably 70 mol% or less, and even more preferably 40 mol% or less, in 100 mol% of the structural units constituting the A segment. By setting the total content of structural units (a-1) derived from a (meth)acrylate having a hydroxy group and structural units (a-2) derived from a (meth)acrylate having an alkoxy group within the above range, the dispersion performance of the colorant can be further improved.
 前記Aセグメントが、ラクトン変性ヒドロキシ基を有する(メタ)アクリレートに由来する構造単位を含有する場合、その含有率は、Aセグメントを構成する構造単位100mol%中において5mol%以上が好ましく、より好ましくは10mol%以上、さらに好ましくは20mol%以上であり、95mol%以下が好ましく、より好ましくは70mol%以下、さらに好ましくは40mol%以下である。ラクトン変性ヒドロキシ基を有する(メタ)アクリレートに由来する構造単位の含有率を上記範囲内とすることで、ブロック共重合体を含有する着色組成物の再溶解性を高めることができる。 When the A segment contains a structural unit derived from a (meth)acrylate having a lactone-modified hydroxy group, the content is preferably 5 mol% or more, more preferably 10 mol% or more, even more preferably 20 mol% or more, and is preferably 95 mol% or less, more preferably 70 mol% or less, even more preferably 40 mol% or less, in 100 mol% of the structural units constituting the A segment. By setting the content of the structural unit derived from a (meth)acrylate having a lactone-modified hydroxy group within the above range, the resolubility of the coloring composition containing the block copolymer can be increased.
 Aセグメントは、酸性基を有するビニルモノマー(好ましくは酸性基を有する(メタ)アクリルモノマー、より好ましくは(メタ)アクリル酸)に由来する構造単位を有していてもよい。酸性基を有するビニルモノマーに由来する構造単位を有することでアルカリ現像液への溶解性が増し、着色組成物のアルカリ現像性を向上させることができる。しかし、その割合が多くなると、分散媒体、バインダー樹脂との親和性が低くなるおそれがある。そのため、酸性基を有するビニルモノマーに由来する構造単位の割合は、ブロック共重合体の全体の酸価がアミン価より低くなる割合とすることが好ましい。 The A segment may have a structural unit derived from a vinyl monomer having an acidic group (preferably a (meth)acrylic monomer having an acidic group, more preferably (meth)acrylic acid). By having a structural unit derived from a vinyl monomer having an acidic group, the solubility in an alkaline developer is increased, and the alkaline developability of the coloring composition can be improved. However, if the proportion is high, there is a risk that the affinity with the dispersion medium and binder resin will be reduced. Therefore, it is preferable that the proportion of structural units derived from a vinyl monomer having an acidic group is such that the overall acid value of the block copolymer is lower than the amine value.
 酸性基を有するビニルモノマーに由来する構造単位を含有する場合、その含有率は、Aセグメントを構成する構造単位100mol%中において2mol%以上が好ましく、20mol%以下が好ましい。酸性基を有するビニルモノマーに由来する構造単位の含有率が2mol%以上であればアルカリ現像において、アルカリで中和した際の溶解速度が速くなり、20mol%以下であれば親水性が高すぎず、形成される画素が乱雑になることを抑制できる。 When structural units derived from vinyl monomers having acidic groups are contained, the content is preferably 2 mol% or more, and preferably 20 mol% or less, in 100 mol% of the structural units constituting the A segment. If the content of structural units derived from vinyl monomers having acidic groups is 2 mol% or more, the dissolution rate when neutralized with alkali during alkaline development is increased, and if it is 20 mol% or less, the hydrophilicity is not too high, and it is possible to prevent the formed pixels from becoming disordered.
 Aセグメントは、塩基性基を有する構造単位(b-2)を実質的に含有しない。つまり、Aセグメントを構成するモノマーには、塩基性基を有するモノマーを含有しないことが好ましい。Aセグメントに塩基性基が存在すると、分散剤として使用した際に、着色材がAセグメントおよびBセグメントの両方に吸着されてしまい、着色材の分散性能が低下する。Aセグメントを構成する構造単位100mol%中の塩基性基を有する構造単位(b-2)の含有率は、0.5mol%以下が好ましく、より好ましくは0.1mol%以下、さらに好ましくは0.05mol%以下、特に好ましくは0mol%である。 The A segment does not substantially contain structural units (b-2) having a basic group. In other words, it is preferable that the monomers constituting the A segment do not contain monomers having a basic group. If a basic group is present in the A segment, when used as a dispersant, the colorant will be adsorbed by both the A segment and the B segment, and the dispersibility of the colorant will decrease. The content of structural units (b-2) having a basic group in 100 mol% of the structural units constituting the A segment is preferably 0.5 mol% or less, more preferably 0.1 mol% or less, even more preferably 0.05 mol% or less, and particularly preferably 0 mol%.
(Bセグメント)
 前記Bセグメントはブロック共重合体中のBブロックから構成されている部分を指す。前記ブロック共重合体は、Bセグメントとして1つのBブロックのみを有していてもよいし、Bセグメントとして複数のBブロックを有していてもよい。前記Bセグメントが複数のBブロックを有する場合、これらのBブロックは同一組成であってもよいし、異なる組成であってもよい。
(B segment)
The B segment refers to a portion of the block copolymer that is composed of a B block. The block copolymer may have only one B block as the B segment, or may have multiple B blocks as the B segment. When the B segment has multiple B blocks, these B blocks may have the same composition or different compositions.
 前記Bセグメントは、ヒドロキシ基を有する構造単位(b-1)および塩基性基を有する構造単位(b-2)を含有する。前記Bセグメントとしては、ヒドロキシ基を有する構造単位(b-1)および塩基性基を有する構造単位(b-2)を含有するBブロックを含有する態様;ヒドロキシ基を有する構造単位(b-1)および塩基性基を有する構造単位(b-2)を含有するB1ブロックと、塩基性基を有する構造単位(b-2)を含有するB2ブロックを含有する態様;ヒドロキシ基を有する構造単位(b-1)および塩基性基を有する構造単位(b-2)を含有するB1ブロックと、ヒドロキシ基を有する構造単位(b-1)および塩基性基を有する構造単位(b-2)を含有するB2ブロックを含有する態様等が挙げられる。 The B segment contains a structural unit (b-1) having a hydroxy group and a structural unit (b-2) having a basic group. Examples of the B segment include an embodiment containing a B block containing a structural unit (b-1) having a hydroxy group and a structural unit (b-2) having a basic group; an embodiment containing a B1 block containing a structural unit (b-1) having a hydroxy group and a structural unit (b-2) having a basic group, and a B2 block containing a structural unit (b-2) having a basic group; an embodiment containing a B1 block containing a structural unit (b-1) having a hydroxy group and a structural unit (b-2) having a basic group, and a B2 block containing a structural unit (b-1) having a hydroxy group and a structural unit (b-2) having a basic group, and a B2 block containing a structural unit (b-1) having a hydroxy group and a structural unit (b-2) having a basic group, and the like.
 前記Bブロックとしては、ヒドロキシ基を有する構造単位(b-1)および塩基性基を有する構造単位(b-2)を含有するブロック、または、ヒドロキシ基を有する構造単位(b-1)を含有せず、塩基性基を有する構造単位(b-2)を含有するブロックである。Bブロックに含有される各種構造単位は、Bブロック中においてランダム共重合、ブロック共重合等のいずれの態様で含有されていてもよく、均一性の観点からランダム共重合の態様で含有されていることが好ましい。 The B block is a block containing a structural unit (b-1) having a hydroxy group and a structural unit (b-2) having a basic group, or a block containing no structural unit (b-1) having a hydroxy group and containing a structural unit (b-2) having a basic group. The various structural units contained in the B block may be contained in the B block in any form such as random copolymerization or block copolymerization, and from the viewpoint of uniformity, they are preferably contained in the form of random copolymerization.
(ヒドロキシ基を有する構造単位(b-1))
 前記Bブロックの少なくとも1つのブロックは、ヒドロキシ基を有する構造単位(b-1)を含有する。前記Bブロックの少なくとも1つが構造単位(b-1)を含有することで、分散媒体への親和性を高めることができる。前記構造単位(b-1)は、1種のみでもあってもよいし、2種以上を有していてもよい。なお、後述する塩基性基を有する構造単位(b-2)は、ヒドロキシ基を有する構造単位(b-1)に含まれない。
(Structural unit (b-1) having a hydroxy group)
At least one block of the B block contains a structural unit (b-1) having a hydroxy group. When at least one block of the B block contains the structural unit (b-1), the affinity to the dispersion medium can be increased. The structural unit (b-1) may be of only one type, or may have two or more types. Note that the structural unit (b-2) having a basic group, which will be described later, is not included in the structural unit (b-1) having a hydroxy group.
 前記構造単位(b-1)としては、例えば、ヒドロキシ基を有するビニルモノマーに由来する構造を挙げることができる。前記ヒドロキシ基を有する構造単位(b-1)は、式(1)で表される構造単位が好ましい。 The structural unit (b-1) may be, for example, a structure derived from a vinyl monomer having a hydroxyl group. The structural unit (b-1) having a hydroxyl group is preferably a structural unit represented by formula (1).
Figure JPOXMLDOC01-appb-C000004
[式(1)において、R11は水素原子またはメチル基を表す。A11はエステル基、アミド基または単結合を表す。R12は2価の炭化水素基、-R13-(OCO-R14-基、または、-R15-(O-R16n-基を表す。R13~R16はそれぞれ独立して2価の炭化水素基を表す。mは1~10の整数を示す。nは1~10の整数を表す。]
Figure JPOXMLDOC01-appb-C000004
[In formula (1), R 11 represents a hydrogen atom or a methyl group. A 11 represents an ester group, an amide group, or a single bond. R 12 represents a divalent hydrocarbon group, -R 13 -(OCO-R 14 ) m - group, or -R 15 -(O-R 16 ) n - group. R 13 to R 16 each independently represent a divalent hydrocarbon group. m represents an integer from 1 to 10. n represents an integer from 1 to 10.]
 前記A11は、エステル基(-CO-O-)、アミド基(-CO-NH-)または単結合を示し、分散媒体への親和性およびアルカリ現像性の点からエステル基、アミド基が好ましい。なお、エステル基、アミド基の結合方向は特に限定されない。エステル基の結合態様としてはC-CO-O-R12またはC-O-CO-R12が挙げられ、C-CO-O-R12が好ましい。アミド基の結合態様としてはC-CO-NH-R12またはC-NH-CO-R12が挙げられ、C-CO-NH-R12が好ましい。 The A 11 represents an ester group (-CO-O-), an amide group (-CO-NH-) or a single bond, and is preferably an ester group or an amide group in terms of affinity to the dispersion medium and alkaline developability. The bonding direction of the ester group or the amide group is not particularly limited. Examples of the bonding mode of the ester group include C-CO-O-R 12 or C-O-CO-R 12 , and C-CO-O-R 12 is preferred. Examples of the bonding mode of the amide group include C-CO-NH-R 12 or C-NH-CO-R 12 , and C-CO-NH-R 12 is preferred.
 前記R12で示される2価の炭化水素基としては、直鎖状アルキレン基、分岐鎖状アルキレン基、環状アルキレン基、アレーンジイル基などが挙げられ、直鎖状アルキレン基、分岐鎖状アルキレン基が好ましい。 The divalent hydrocarbon group represented by R 12 includes a linear alkylene group, a branched alkylene group, a cyclic alkylene group, and an arenediyl group, with linear alkylene groups and branched alkylene groups being preferred.
 前記直鎖状アルキレン基としては、炭素数1~20であることが好ましく、炭素数1~10であることがより好ましく、炭素数1~5であることがさらに好ましい。直鎖状アルキレン基としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ドデカメチレン基等が挙げられる。
 前記分岐鎖状アルキレン基としては、炭素数3~20であることが好ましく、炭素数3~10であることがより好ましい。分岐鎖状アルキレン基としては、プロピレン基、プロピリデン基、1,2-ブタンジイル基、1,3-ブタンジイル基等が挙げられる。
 前記環状アルキレン基としては炭素数6~12であることが好ましい。環状アルキレン基としては、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基等が挙げられる。
 前記アレーンジイル基としては炭素数6~12であることが好ましく、炭素数6~9であることがより好ましい。アレーンジイル基としては、フェニレン基等が挙げられる。
The linear alkylene group preferably has 1 to 20 carbon atoms, more preferably has 1 to 10 carbon atoms, and further preferably has 1 to 5 carbon atoms. Examples of the linear alkylene group include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group, an octamethylene group, a nonamethylene group, a decamethylene group, and a dodecamethylene group.
The branched alkylene group preferably has a carbon number of 3 to 20, and more preferably has a carbon number of 3 to 10. Examples of the branched alkylene group include a propylene group, a propylidene group, a 1,2-butanediyl group, and a 1,3-butanediyl group.
The cyclic alkylene group preferably has a carbon number of 6 to 12. Examples of the cyclic alkylene group include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, and a cyclohexylene group.
The arenediyl group preferably has a carbon number of 6 to 12, and more preferably has a carbon number of 6 to 9. Examples of the arenediyl group include a phenylene group.
 前記R12で示される-R13-(OCO-R14-基のR13およびR14は、それぞれ独立して2価の炭化水素基を表す。mは1~10の整数を表し、1~7の整数であることが好ましく、1~5の整数であることがより好ましい。 R 13 and R 14 in the —R 13 —(OCO—R 14 ) m — group represented by R 12 each independently represent a divalent hydrocarbon group. m represents an integer of 1 to 10, preferably an integer of 1 to 7, and more preferably an integer of 1 to 5.
 前記R13の2価の炭化水素基としては、直鎖状アルキレン基、分岐鎖状アルキレン基等が挙げられ、直鎖状アルキレン基が好ましい。前記直鎖状アルキレン基としては炭素数1~10であることが好ましく、炭素数1~5がより好ましい。前記分岐鎖状アルキレン基としては炭素数3~10であることが好ましく、炭素数3~5がより好ましい。前記R13の具体例としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、1-メチルエチレン基等が挙げられる。 The divalent hydrocarbon group of R 13 includes a linear alkylene group and a branched alkylene group, and is preferably a linear alkylene group. The linear alkylene group preferably has 1 to 10 carbon atoms, and more preferably has 1 to 5 carbon atoms. The branched alkylene group preferably has 3 to 10 carbon atoms, and more preferably has 3 to 5 carbon atoms. Specific examples of R 13 include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group, an octamethylene group, a nonamethylene group, a decamethylene group, and a 1-methylethylene group.
 前記R14の2価の炭化水素基としては、直鎖状アルキレン基、分岐鎖状アルキレン基等が挙げられ、直鎖状アルキル基が好ましい。前記直鎖状アルキレン基としては炭素数1~10であることが好ましく、炭素数1~8がより好ましく、炭素数3~8がさらに好ましい。前記分岐鎖状アルキレン基としては炭素数3~10であることが好ましく、炭素数3~8がより好ましい。前記R14の具体例としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基等が挙げられる。 The divalent hydrocarbon group of R 14 includes a linear alkylene group, a branched alkylene group, etc., and a linear alkyl group is preferred. The linear alkylene group preferably has 1 to 10 carbon atoms, more preferably has 1 to 8 carbon atoms, and even more preferably has 3 to 8 carbon atoms. The branched alkylene group preferably has 3 to 10 carbon atoms, and more preferably has 3 to 8 carbon atoms. Specific examples of R 14 include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group, an octamethylene group, a nonamethylene group, and a decamethylene group.
 前記R12で示される-R15-(O-R16n-基のR15およびR16は、それぞれ独立して2価の炭化水素基を示す。nは1~10の整数を示す。 R 15 and R 16 in the —R 15 —(O—R 16 ) n — group represented by R 12 each independently represent a divalent hydrocarbon group.
 前記R15の2価の炭化水素基としては、直鎖状アルキレン基、分岐鎖状アルキレン基等が挙げられ、直鎖状アルキル基が好ましい。前記直鎖状アルキレン基としては炭素数1~5であることが好ましく、炭素数1~3がより好ましい。前記分岐鎖状アルキレン基としては炭素数3~5であることが好ましい。前記R15の具体例としては、メチレン基、エチレン基、プロピレン基等が挙げられる。 The divalent hydrocarbon group of R 15 includes a linear alkylene group and a branched alkylene group, and a linear alkyl group is preferable. The linear alkylene group preferably has 1 to 5 carbon atoms, and more preferably has 1 to 3 carbon atoms. The branched alkylene group preferably has 3 to 5 carbon atoms. Specific examples of R 15 include a methylene group, an ethylene group, and a propylene group.
 前記R16の2価の炭化水素基としては、直鎖状アルキレン基、分岐鎖状アルキレン基等が挙げられ、分岐鎖状アルキレン基が好ましい。前記直鎖状アルキレン基としては炭素数1~5であることが好ましく、炭素数1~3がより好ましい。前記分岐鎖状アルキレン基としては炭素数3~5であることが好ましい。前記R16の具体例としては、メチレン基、エチレン基、プロピレン基等が挙げられる。 The divalent hydrocarbon group of R 16 includes a linear alkylene group and a branched alkylene group, and a branched alkylene group is preferable. The linear alkylene group preferably has 1 to 5 carbon atoms, and more preferably has 1 to 3 carbon atoms. The branched alkylene group preferably has 3 to 5 carbon atoms. Specific examples of R 16 include a methylene group, an ethylene group, and a propylene group.
 式(1)で表される構造単位を形成するビニルモノマーの具体例としては、ヒドロキシアルキル基を有する(メタ)アクリレート、ラクトン変性ヒドロキシ基を有する(メタ)アクリレート、ポリアルキレングリコール基を有する(メタ)アクリレート、ヒドロキシ基を有するビニルモノマーが好ましい。 Specific examples of vinyl monomers that form the structural unit represented by formula (1) are preferably (meth)acrylates having a hydroxyalkyl group, (meth)acrylates having a lactone-modified hydroxy group, (meth)acrylates having a polyalkylene glycol group, and vinyl monomers having a hydroxy group.
 前記ヒドロキシアルキル基を有する(メタ)アクリレートとしては、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル、(メタ)アクリル酸2-ヒドロキシ-3-フェノキシプロピル等が挙げられる。 Examples of (meth)acrylates having a hydroxyalkyl group include 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 6-hydroxyhexyl (meth)acrylate, 8-hydroxyoctyl (meth)acrylate, 10-hydroxydecyl (meth)acrylate, 12-hydroxylauryl (meth)acrylate, and 2-hydroxy-3-phenoxypropyl (meth)acrylate.
 前記ラクトン変性ヒドロキシ基を有する(メタ)アクリレートとしては、(メタ)アクリル酸2-ヒドロキシエチルのカプロラクトン1mol付加物、(メタ)アクリル酸2-ヒドロキシエチルのカプロラクトン2mol付加物、(メタ)アクリル酸2-ヒドロキシエチルのカプロラクトン3mol付加物、(メタ)アクリル酸2-ヒドロキシエチルのカプロラクトン4mol付加物、(メタ)アクリル酸2-ヒドロキシエチルのカプロラクトン5mol付加物、(メタ)アクリル酸2-ヒドロキシエチルのカプロラクトン10mol付加物等が挙げられる。 Examples of the (meth)acrylate having a lactone-modified hydroxy group include 1 mol adduct of 2-hydroxyethyl (meth)acrylate with caprolactone, 2 mol adduct of 2-hydroxyethyl (meth)acrylate with caprolactone, 3 mol adduct of 2-hydroxyethyl (meth)acrylate with caprolactone, 4 mol adduct of 2-hydroxyethyl (meth)acrylate with caprolactone, 5 mol adduct of 2-hydroxyethyl (meth)acrylate with caprolactone, and 10 mol adduct of 2-hydroxyethyl (meth)acrylate with caprolactone.
 前記ポリアルキレングリコール基を有する(メタ)アクリレートとしては、末端水酸基ポリエチレングリコール(重合度=2~10)モノ(メタ)アクリレート、末端水酸基ポリプロピレングリコール(重合度=2~10)モノ(メタ)アクリレート等が挙げられる。 Examples of the (meth)acrylate having a polyalkylene glycol group include mono(meth)acrylate with a terminal hydroxyl group, polyethylene glycol (degree of polymerization = 2 to 10), mono(meth)acrylate with a terminal hydroxyl group, polypropylene glycol (degree of polymerization = 2 to 10), etc.
 前記ヒドロキシ基を含有するビニルモノマーとしては、4-ビニルフェノール、4-ヒドロキシブチルビニルエーテル等が挙げられる。 Examples of vinyl monomers containing a hydroxy group include 4-vinylphenol and 4-hydroxybutyl vinyl ether.
 前記Bセグメントを構成する構造単位100mol%中において、構造単位(b-1)の含有率は、5mol%以上が好ましく、より好ましくは10mol%以上、さらに好ましくは15mol%以上であり、90mol%以下が好ましく、より好ましくは80mol%以下、さらに好ましくは65mol%以下である。構造単位(b-1)の含有率が前記範囲であれば、Bセグメントが着色材と高い親和性を有すると考えられる。 In 100 mol% of the structural units constituting the B segment, the content of the structural unit (b-1) is preferably 5 mol% or more, more preferably 10 mol% or more, even more preferably 15 mol% or more, and is preferably 90 mol% or less, more preferably 80 mol% or less, even more preferably 65 mol% or less. If the content of the structural unit (b-1) is within the above range, it is considered that the B segment has high affinity with the colorant.
 前記構造単位(b-1)を含有するBブロックにおいて、前記Bブロックを構成する構造単位100モル%中の構造単位(b-1)の含有率は、0mol%超が好ましく、より好ましくは1mol%以上、さらに好ましくは10mol%以上であり、99mol%以下が好ましく、より好ましくは80mol%以下、さらに好ましくは65mol%以下である。 In the B block containing the structural unit (b-1), the content of the structural unit (b-1) in 100 mol% of the structural units constituting the B block is preferably more than 0 mol%, more preferably 1 mol% or more, even more preferably 10 mol% or more, and is preferably 99 mol% or less, more preferably 80 mol% or less, even more preferably 65 mol% or less.
(塩基性基を有する構造単位(b-2))
 前記Bセグメントを構成するBブロックは、塩基性基を有する構造単位(b-2)を含有する。構造単位(b-2)を有することで、着色材に対して高い吸着能を有する。前記構造単位(b-2)は、1種のみでもあってもよいし、2種以上を有していてもよい。
(Structural Unit (b-2) Having a Basic Group)
The B block constituting the B segment contains a structural unit (b-2) having a basic group. By containing the structural unit (b-2), the copolymer has high adsorption ability for colorants. The structural unit (b-2) may be of only one type, or may have two or more types.
 前記塩基性基とは塩基性を示す基であり、原料の入手および合成の容易さからアミノ基であることが好ましい。本明細書においてアミノ基とは、一般的なアミノ基(-NH2)に加え、Hが炭化水素基により置換された、-NHRa、-NRab(Ra、Rbはそれぞれ独立に鎖状または環状の炭化水素基を表す。また、RaおよびRbが互いに結合して環状構造を形成していてもよい。)で表される置換アミノ基、および、含窒素ヘテロ環基(ピリジル基、イミダゾール基など)などを包含する。なお、本明細書において、ヒドロキシ基は塩基性基に含まない。 The basic group is a group that exhibits basicity, and is preferably an amino group in terms of availability of raw materials and ease of synthesis. In this specification, the amino group includes, in addition to a general amino group (-NH 2 ), a substituted amino group represented by -NHR a or -NR a R b (R a and R b each independently represent a chain or cyclic hydrocarbon group. R a and R b may be bonded to each other to form a cyclic structure) in which H is substituted with a hydrocarbon group, and a nitrogen-containing heterocyclic group (pyridyl group, imidazole group, etc.). In this specification, a hydroxy group is not included in the basic group.
 前記構造単位(b-2)としては、例えば、塩基性基を有するビニルモノマーに由来する構造を挙げることができる。 The structural unit (b-2) can be, for example, a structure derived from a vinyl monomer having a basic group.
 前記構造単位(b-2)としては、式(2)で表される構造単位が好ましい。 The structural unit (b-2) is preferably a structural unit represented by formula (2).
Figure JPOXMLDOC01-appb-C000005
[式(2)において、R21は水素原子またはメチル基を表す。A21はエステル基、アミド基または単結合を表す。R22は2価の炭化水素基を表す。R23およびR24は、それぞれ独立して、ヘテロ原子を含んでいてもよい炭化水素基を表す。R23およびR24が互いに結合して環状構造を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000005
[In formula (2), R21 represents a hydrogen atom or a methyl group. A21 represents an ester group, an amide group, or a single bond. R22 represents a divalent hydrocarbon group. R23 and R24 each independently represent a hydrocarbon group that may contain a heteroatom. R23 and R24 may be bonded to each other to form a cyclic structure.]
 前記A21は、エステル基(-CO-O-)、アミド基(-CO-NH-)または単結合を示し、分散媒体への親和性およびアルカリ現像性の点からエステル基、アミド基が好ましい。なお、エステル基、アミド基の結合方向は特に限定されない。エステル基の結合態様としてはC-CO-O-R22またはC-O-CO-R22が挙げられ、C-CO-O-R22が好ましい。アミド基の結合態様としてはC-CO-NH-R22またはC-NH-CO-R22が挙げられ、C-CO-NH-R22が好ましい。 The A 21 represents an ester group (-CO-O-), an amide group (-CO-NH-) or a single bond, and is preferably an ester group or an amide group in terms of affinity to the dispersion medium and alkaline developability. The bonding direction of the ester group or the amide group is not particularly limited. Examples of the bonding mode of the ester group include C-CO-O-R 22 or C-O-CO-R 22 , and C-CO-O-R 22 is preferred. Examples of the bonding mode of the amide group include C-CO-NH-R 22 or C-NH-CO-R 22 , and C-CO-NH-R 22 is preferred.
 前記R22で示される2価の炭化水素基としては、直鎖状アルキレン基、分岐鎖状アルキレン基、環状アルキレン基、アルケニレン基、アレーンジイル基等が挙げられ、直鎖状アルキレン基が好ましい。
 前記直鎖状アルキレン基としては炭素数1~10であることが好ましく、炭素数1~5であることがより好ましい。直鎖状アルキレン基としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基等が挙げられる。
 前記分岐鎖状アルキレン基としては、炭素数3~10であることが好ましい。分岐鎖状アルキレン基としては、プロピレン基、プロピリデン基、1,2-ブタンジイル基、1,3-ブタンジイル基等が挙げられる。
 前記環状アルキレン基としては炭素数6~12であることが好ましい。環状アルキレン基としては、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基等が挙げられる。
 前記アルケニレン基としては炭素数2~10であることが好ましい。アルケニレン基としては、エテニレン基、2-プロペニレン基、2-ブテニレン基、3-ブテニレン基等が挙げられる。
 前記アレーンジイル基としては炭素数6~12であることが好ましい。アレーンジイル基としては、フェニレン基等が挙げられる。
The divalent hydrocarbon group represented by R 22 includes a linear alkylene group, a branched alkylene group, a cyclic alkylene group, an alkenylene group, an arenediyl group, etc., and the linear alkylene group is preferred.
The linear alkylene group preferably has a carbon number of 1 to 10, and more preferably has a carbon number of 1 to 5. Examples of the linear alkylene group include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, and a pentamethylene group.
The branched alkylene group preferably has a carbon number of 3 to 10. Examples of the branched alkylene group include a propylene group, a propylidene group, a 1,2-butanediyl group, and a 1,3-butanediyl group.
The cyclic alkylene group preferably has a carbon number of 6 to 12. Examples of the cyclic alkylene group include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, and a cyclohexylene group.
The alkenylene group preferably has a carbon number of 2 to 10. Examples of the alkenylene group include an ethenylene group, a 2-propenylene group, a 2-butenylene group, and a 3-butenylene group.
The arenediyl group preferably has a carbon number of 6 to 12. Examples of the arenediyl group include a phenylene group.
 2価の炭化水素基の具体例としては、メチレン基、エチレン基、トリメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ドデカメチレン基等が挙げられる。 Specific examples of divalent hydrocarbon groups include methylene, ethylene, trimethylene, hexamethylene, heptamethylene, octamethylene, and dodecamethylene groups.
 前記R23およびR24におけるヘテロ原子を含んでいてもよい炭化水素基としては、鎖状の炭化水素基、環状の炭化水素基が挙げられ、鎖状の炭化水素基が好ましい。 The hydrocarbon group which may contain a heteroatom in R23 and R24 includes a chain hydrocarbon group and a cyclic hydrocarbon group, and the chain hydrocarbon group is preferable.
 前記鎖状の炭化水素基としては、直鎖状アルキル基、分岐鎖状アルキル基等を挙げることができ、直鎖状アルキル基が好ましい。
 直鎖状アルキル基の炭素数としては、炭素数1~20が好ましく、炭素数1~10がより好ましく、炭素数1~5がさらに好ましい。直鎖状アルキル基としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ヘキシル基、n-オクチル基、n-ノニル基、n-デシル基、n-ラウリル基等が挙げられる。
 分岐鎖状アルキル基の炭素数としては、炭素数3~20が好ましく、炭素数3~10がより好ましく、炭素数3~5がさらに好ましい。前記分岐鎖状アルキル基としては、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、2-エチルヘキシル基、ネオペンチル基、イソオクチル基等が挙げられる。
Examples of the chain-like hydrocarbon group include a linear alkyl group and a branched alkyl group, with the linear alkyl group being preferred.
The carbon number of the linear alkyl group is preferably 1 to 20, more preferably 1 to 10, and further preferably 1 to 5. Examples of the linear alkyl group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-hexyl group, an n-octyl group, an n-nonyl group, an n-decyl group, and an n-lauryl group.
The carbon number of the branched alkyl group is preferably 3 to 20, more preferably 3 to 10, and further preferably 3 to 5. Examples of the branched alkyl group include an isopropyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a 2-ethylhexyl group, a neopentyl group, and an isooctyl group.
 前記環状の炭化水素基としては、環状アルキル基、芳香族基等が挙げられ、環状アルキル基および芳香族基は鎖状部分を有していてもよい。
 前記環状アルキル基の炭素数としては、炭素数4~18が好ましく、炭素数6~12がより好ましく、炭素数6~10がさらに好ましい。環状アルキル基としては、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等が挙げられる。
 芳香族基の炭素数としては、炭素数6~18が好ましく、炭素数6~12がより好まく、炭素数6~8がさらに好ましい。前記芳香族基としては、フェニル基、トリル基、キシリル基、メシチル基等が挙げられる。
 鎖状部分を有する環状アルキル基および鎖状部を有する芳香族基の鎖状部分の例としては、炭素数1~12のアルキレン基、好ましくは炭素数1~6のアルキレン基、より好ましくは炭素数1~3のアルキレン基が挙げられる。
Examples of the cyclic hydrocarbon group include a cyclic alkyl group and an aromatic group, and the cyclic alkyl group and the aromatic group may have a chain portion.
The number of carbon atoms in the cyclic alkyl group is preferably 4 to 18, more preferably 6 to 12, and even more preferably 6 to 10. Examples of the cyclic alkyl group include a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
The number of carbon atoms in the aromatic group is preferably 6 to 18, more preferably 6 to 12, and even more preferably 6 to 8. Examples of the aromatic group include a phenyl group, a tolyl group, a xylyl group, and a mesityl group.
Examples of the cyclic alkyl group having a chain portion and the chain portion of the aromatic group having a chain portion include alkylene groups having 1 to 12 carbon atoms, preferably alkylene groups having 1 to 6 carbon atoms, and more preferably alkylene groups having 1 to 3 carbon atoms.
 ヘテロ原子を含む炭化水素基とは、前記炭化水素基中の炭素原子がヘテロ原子で置き換えられた構造を有する。炭化水素基が含んでいてもよいヘテロ原子としては、例えば、酸素原子等が挙げられる。
 また、炭化水素基中の水素原子は、フッ素原子、塩素原子、臭素原子等のハロゲン原子により置換されていてもよい。
The hydrocarbon group containing a heteroatom has a structure in which a carbon atom in the above-mentioned hydrocarbon group is replaced with a heteroatom. Examples of the heteroatom that may be contained in the hydrocarbon group include an oxygen atom.
Furthermore, a hydrogen atom in the hydrocarbon group may be substituted with a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom.
 R23とR24が互いに結合して環状構造を形成しているとは、R23とR24が窒素原子を介して環状構造を形成していることをいう。前記環状構造としては、例えば、5員環~7員環の含窒素ヘテロ環またはこれらが2個縮合してなる縮合環が挙げられる。該含窒素ヘテロ環は芳香族性を有しないものが好ましく、飽和環がより好ましい。具体的には下記式(2-1)、(2-2)、(2-3)で表される構造が挙げられる。 The phrase "R 23 and R 24 are bonded to each other to form a cyclic structure" means that R 23 and R 24 form a cyclic structure via a nitrogen atom. Examples of the cyclic structure include a 5- to 7-membered nitrogen-containing heterocycle or a condensed ring formed by condensing two of these. The nitrogen-containing heterocycle is preferably one that does not have aromaticity, and more preferably a saturated ring. Specific examples include structures represented by the following formulas (2-1), (2-2), and (2-3).
Figure JPOXMLDOC01-appb-C000006
[式(2-1)、(2-2)、(2-3)において、R25は、炭素数1~6のアルキル基を示す。lは0~5の整数を表す。mは0~4の整数を表す。nは0~4の整数を表す。*は結合手を表す。lが2~5、mが2~4、nが2~4の場合、複数存在するR25は、それぞれ同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000006
[In formulas (2-1), (2-2), and (2-3), R 25 represents an alkyl group having 1 to 6 carbon atoms. l represents an integer of 0 to 5. m represents an integer of 0 to 4. n represents an integer of 0 to 4. * represents a bond. When l is 2 to 5, m is 2 to 4, and n is 2 to 4, multiple R 25s may be the same or different.]
 式(2)で表される構造単位を形成するビニルモノマーの具体例としては、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジメチルアミノプロピル、(メタ)アクリル酸ジメチルアミノブチル、(メタ)アクリル酸ジエチルアミノエチル、(メタ)アクリル酸ジエチルアミノプロピル、(メタ)アクリル酸ジエチルアミノブチル、(メタ)アクリル酸エチルアミノエチル、(メタ)アクリル酸エチルアミノプロピル、(メタ)アクリル酸エチルアミノブチル、(メタ)アクリル酸プロピルアミノエチル、(メタ)アクリル酸プロピルアミノプロピル、(メタ)アクリル酸プロピルアミノブチル、酸ジメチルアミノプロピル(メタ)アクリルアミド等が挙げられる。 Specific examples of vinyl monomers that form the structural unit represented by formula (2) include dimethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylate, dimethylaminobutyl (meth)acrylate, diethylaminoethyl (meth)acrylate, diethylaminopropyl (meth)acrylate, diethylaminobutyl (meth)acrylate, ethylaminoethyl (meth)acrylate, ethylaminopropyl (meth)acrylate, ethylaminobutyl (meth)acrylate, propylaminoethyl (meth)acrylate, propylaminopropyl (meth)acrylate, propylaminobutyl (meth)acrylate, dimethylaminopropyl acid (meth)acrylamide, etc.
 前記構造単位(b-1)のハンセン溶解度パラメータの水素結合力項(δh1)と前記構造単位(b-2)のハンセン溶解度パラメータの水素結合力項(δh2)との差(δh1-δh2)は0.5J1/2・cm1/2・mol-1以上が好ましく、より好ましくは2.5J1/2・cm1/2・mol-1以上、さらに好ましくは5.0J1/2・cm1/2・mol-1以上であり、15.0J1/2・cm1/2・mol-1以下が好ましく、より好ましくは13.0J1/2・cm1/2・mol-1以下、さらに好ましくは10.0J1/2・cm1/2・mol-1以下、特に好ましくは8.0J1/2・cm1/2・mol-1以下である。差(δh1-δh2)が0.5J1/2・cm1/2・mol-1以上であれば着色材への吸着に加え、分散媒体への親和性を高める効果がより向上すると考えられ、15.0J1/2・cm1/2・mol-1以下であればブロック共重合体の構造単位(b-2)と着色材との吸着を阻害することなく保存安定性の向上が期待できる。 The difference (δ h1 - δ h2 ) between the hydrogen bonding strength term (δ h1 ) of the Hansen solubility parameter of the structural unit (b-1) and the hydrogen bonding strength term (δ h2 ) of the Hansen solubility parameter of the structural unit ( b -2) is preferably 0.5 J 1/2 cm 1/2 mol -1 or more, more preferably 2.5 J 1/2 cm 1/2 mol -1 or more, even more preferably 5.0 J 1/2 cm 1/2 mol -1 or more, and is preferably 15.0 J 1/2 cm 1/2 mol -1 or less, more preferably 13.0 J 1/2 cm 1/2 mol -1 or less, even more preferably 10.0 J 1/2 cm 1/2 mol -1 or less, particularly preferably 8.0 J 1/2 cm 1/2 mol -1 or less. If the difference (δ h1 - δ h2 ) is 0.5 J 1/2 ·cm 1/2 ·mol -1 or more, it is believed that in addition to adsorption to the colorant, the effect of increasing affinity to the dispersion medium will be further improved, and if it is 15.0 J 1/2 ·cm 1/2 ·mol -1 or less, improved storage stability can be expected without inhibiting adsorption between the structural unit (b-2) of the block copolymer and the colorant.
 なお、Bセグメントが、構造単位(b-1)および/または構造単位(b-2)を複数種類有する場合は、それぞれの水素結合力項の平均値を求め、平均値を用いて差(δh1-δh2)を算出する。水素結合力項の平均値は、各構造単位の水素結合力項を算出し、それぞれの構造単位のモル分率を乗じたものを合算して求める。例えば、構造単位(b-1)として、構造単位(b-11)と(b-12)とを含有する場合、構造単位(b-1)の水素結合力項の平均値は、全構造単位(b-1)中の構造単位(b-11)のモル分率と構造単位(b-11)の水素結合力項との積と、全構造単位(b-1)中の構造単位(b-12)のモル分率と構造単位(b-12)の水素結合力項との積との合計である。 In addition, when the B segment has a plurality of types of structural units (b-1) and/or structural units (b-2), the average value of each hydrogen bonding term is calculated, and the difference (δ h1 - δ h2 ) is calculated using the average value. The average value of the hydrogen bonding term is calculated by multiplying the hydrogen bonding term of each structural unit by the molar fraction of each structural unit and adding up the results. For example, when structural units (b-1) are contained as structural units (b-11) and (b-12), the average value of the hydrogen bonding term of the structural unit (b-1) is the sum of the product of the molar fraction of the structural unit (b-11) in all structural units (b-1) and the hydrogen bonding term of the structural unit (b-11), and the product of the molar fraction of the structural unit (b-12) in all structural units (b-1) and the hydrogen bonding term of the structural unit (b-12).
(Hansen溶解度パラメーター)
 ハンセン溶解度パラメータ(Hansen solubility parameter,HSP)とは、Hansenらが提案した方法より算出される物質の溶解性の予測に用いられる値である。具体的には、HSPは下記式(数式(1))により算出された値である。数式(1)中、δはポリマーブロックのHSPを示す。δdはHSPのLondon分散力項を示す。δpはHSPの双極子間力項を示す。δhはHSPの水素結合力項を示す。
   δ2=δd 2+δp 2+δh 2   (1)
 前記δd、δpおよびδhは、ポリマーブロックの構造単位を構成する原子団iの各モル引力乗数(Fdi,Fpi,Ehi)およびモル体積Viを用いて下記式(数式(2)~(4))により算出された値である。
  δd=ΣFdi/ΣVi   (2)
  δp=(ΣFpi 21/2/ΣVi   (3)
  δh=(ΣEhi/ΣVi1/2   (4)
 代表的な原子団の各モル引力乗数(Fdi,Fpi,Ehi)およびモル体積Viを表1に示す。
(Hansen Solubility Parameter)
Hansen solubility parameter (HSP) is a value used to predict the solubility of a substance, calculated by the method proposed by Hansen et al. Specifically, HSP is a value calculated by the following formula (Formula (1)). In Formula (1), δ represents the HSP of the polymer block. δ d represents the London dispersion term of the HSP. δ p represents the dipole-dipole term of the HSP. δ h represents the hydrogen bond term of the HSP.
δ2 = δd2 + δp2 + δh2 ( 1 )
The δ d , δ p and δ h are values calculated from the molar attractive force multipliers (F di , F pi , E hi ) and the molar volume V i of the atomic group i constituting the structural unit of the polymer block according to the following formulas (formulas (2) to (4)).
δ d =ΣF di /ΣV i (2)
δ p = (ΣF pi 2 ) 1/2 /ΣV i (3)
δ h = (ΣE hi /ΣV i ) 1/2 (4)
Table 1 shows the molar attraction multipliers (F di , F pi , E hi ) and molar volumes V i of representative atomic groups.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 また、前記構造単位(b-2)の含有率は、前記Bセグメントを構成する構造単位100mol%中において、5mol%以上が好ましく、より好ましくは15mol%以上、さらに好ましくは30mol%以上であり、90mol%以下が好ましく、より好ましくは85mol%以下、さらに好ましくは80mol%以下である。構造単位(b-2)の含有率が前記範囲であれば着色材に対する吸着能がより向上する。 The content of the structural unit (b-2) is preferably 5 mol% or more, more preferably 15 mol% or more, even more preferably 30 mol% or more, and is preferably 90 mol% or less, more preferably 85 mol% or less, even more preferably 80 mol% or less, out of 100 mol% of the structural units constituting the B segment. If the content of the structural unit (b-2) is within the above range, the adsorption ability to the colorant is further improved.
 前記構造単位(b-2)の含有率は、前記Bブロックを構成する構造単位100モル%中において、1mol%以上が好ましく、より好ましくは50mol%以上、さらに好ましくは65mol%以上であり、100mol%未満が好ましく、より好ましくは99mol%以下、さらに好ましくは90mol%以下である。構造単位(b-2)の含有率が前記範囲であれば着色材との吸着能がより向上する。 The content of the structural unit (b-2) is preferably 1 mol% or more, more preferably 50 mol% or more, and even more preferably 65 mol% or more, and is preferably less than 100 mol%, more preferably 99 mol% or less, and even more preferably 90 mol% or less, out of 100 mol% of the structural units constituting the B block. If the content of the structural unit (b-2) is within the above range, the adsorption ability with the colorant is further improved.
 前記Bセグメントにおける前記構造単位(b-1)と前記構造単位(b-2)とのモル比((b-1)/(b-2))は、5/95以上が好ましく、より好ましくは10/90以上、さらに好ましくは20/80以上であり、95/5以下が好ましく、より好ましくは80/20以下、さらに好ましくは70/30以下である。前記モル比((b-1)/(b-2))が前記範囲内であれば着色材に対する吸着と分散媒体への親和性がより効果的に働くと考えられる。 The molar ratio ((b-1)/(b-2)) of the structural unit (b-1) to the structural unit (b-2) in the B segment is preferably 5/95 or more, more preferably 10/90 or more, even more preferably 20/80 or more, and is preferably 95/5 or less, more preferably 80/20 or less, even more preferably 70/30 or less. If the molar ratio ((b-1)/(b-2)) is within the above range, it is believed that adsorption to the colorant and affinity to the dispersion medium will work more effectively.
 前記Bセグメントを構成する構造単位100mol%において、前記構造単位(b-1)と前記構造単位(b-2)との合計含有率((b-1)+(b-2))は、30mol%以上が好ましく、より好ましくは40mol%以上、さらに好ましくは50mol%以上であり、100mol%以下が好ましい。前記合計含有率((b-1)+(b-2))が前記範囲内であれば着色材の分散性がより高まることが期待できる。 In the 100 mol% structural units constituting the B segment, the total content ((b-1)+(b-2)) of the structural units (b-1) and (b-2) is preferably 30 mol% or more, more preferably 40 mol% or more, and even more preferably 50 mol% or more, and is preferably 100 mol% or less. If the total content ((b-1)+(b-2)) is within the above range, it can be expected that the dispersibility of the colorant will be further improved.
(塩基性基の塩を有する構造単位(b-3))
 前記Bセグメントは、構造単位(b-1)、構造単位(b-2)以外に、塩基性基の塩を有する構造単位(b-3)を含有してもよい。前記構造単位(b-3)を有することで、着色材表面への強い吸着性を長期的に維持でき、保存安定性がより向上する。構造単位(b-3)は、1種のみでもあってもよいし、2種以上を有していてもよい。
(Structural Unit (b-3) Having a Salt of a Basic Group)
The B segment may contain a structural unit (b-3) having a salt of a basic group in addition to the structural unit (b-1) and the structural unit (b-2). By containing the structural unit (b-3), strong adsorptivity to the colorant surface can be maintained for a long period of time, and storage stability is further improved. The structural unit (b-3) may be of only one type, or of two or more types.
 塩基性基の塩としては、塩基性基のハロゲン化物塩(F、Cl、Br、I等)、硫酸塩等の無機塩;有機化合物のスルホン酸塩、硫酸塩、リン酸塩もしくはカルボン酸塩等が挙げられる。なお、塩基性基の塩としては、原料入手および合成の容易さからアミノ基の塩であることが好ましい。なお、本明細書においては、アミノ基の塩としては、第4級アンモニウム基(-NRcde(Rc、RdおよびReはそれぞれ独立に鎖状または環状の炭化水素基を表す。また、Rc、RdおよびReの2つ以上が互いに結合して環状構造を形成していてもよい。))の塩(例えばハロゲン化物等)も含む。また、塩基性基の塩を有する構造単位(b-3)は、塩基性基を有する構造単位(b-2)の塩基性基の一部が塩を形成したものであってもよい。 Examples of the salt of the basic group include inorganic salts such as halide salts (F, Cl, Br, I, etc.) and sulfate salts of the basic group; and sulfonates, sulfates, phosphates, or carboxylates of organic compounds. The salt of the basic group is preferably an amino group salt in view of availability of raw materials and ease of synthesis. In this specification, the salt of the amino group also includes salts (e.g., halides) of quaternary ammonium groups (-NR c R d R e (R c , R d and R e each independently represent a chain or cyclic hydrocarbon group. Two or more of R c , R d and R e may be bonded to each other to form a cyclic structure.)). The structural unit (b-3) having a salt of a basic group may be a salt formed by part of the basic group of the structural unit (b-2) having a basic group.
 前記構造単位(b-3)としては、式(3)で表される構造単位が好ましい。 The structural unit (b-3) is preferably a structural unit represented by formula (3).
Figure JPOXMLDOC01-appb-C000008
[式(3)において、R31は水素原子またはメチル基を表す。A31はエステル基、アミド基または単結合を表す。R32は2価の炭化水素基を表す。R33、R34およびR35は、それぞれ独立して、ヘテロ原子を含んでいてもよい炭化水素基を表す。R33、R34およびR35のうち2つ以上が互いに結合して環状構造を形成していてもよい。Xは対イオンを表す。]
Figure JPOXMLDOC01-appb-C000008
[In formula (3), R 31 represents a hydrogen atom or a methyl group. A 31 represents an ester group, an amide group, or a single bond. R 32 represents a divalent hydrocarbon group. R 33 , R 34 , and R 35 each independently represent a hydrocarbon group which may contain a heteroatom. Two or more of R 33 , R 34 , and R 35 may be bonded to each other to form a cyclic structure. X represents a counter ion.]
 前記A31は、エステル基(-CO-O-)、アミド基(-CO-NH-)または単結合を示し、分散媒体への親和性およびアルカリ現像性の点からエステル基、アミド基が好ましい。なお、エステル基、アミド基の結合方向は特に限定されない。エステル基の結合態様としては、C-CO-O-R32またはC-O-CO-R32が挙げられ、C-CO-O-R32が好ましい。アミド基の結合態様としては、C-CO-NH-R32またはC-NH-CO-R32が挙げられ、C-CO-NH-R32が好ましい。 The A 31 represents an ester group (-CO-O-), an amide group (-CO-NH-) or a single bond, and is preferably an ester group or an amide group in terms of affinity to the dispersion medium and alkaline developability. The bonding direction of the ester group or the amide group is not particularly limited. Examples of the bonding form of the ester group include C-CO-O-R 32 or C-O-CO-R 32 , and C-CO-O-R 32 is preferred. Examples of the bonding form of the amide group include C-CO-NH-R 32 or C-NH-CO-R 32 , and C-CO-NH-R 32 is preferred.
 前記R32で示される2価の炭化水素基としては、直鎖状アルキレン基、分岐鎖状アルキレン基、環状アルキレン基、アルケニレン基、アレーンジイル基等が挙げられ、直鎖状アルキレン基が好ましい。
 前記直鎖状アルキレン基としては炭素数1~10であることが好ましく、炭素数1~5であることがより好ましい。直鎖状アルキレン基としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基等が挙げられる。
 前記分岐鎖状アルキレン基としては、炭素数3~10であることが好ましい。分岐鎖状アルキレン基としては、プロピレン基、プロピリデン基、1,2-ブタンジイル基、1,3-ブタンジイル基等が挙げられる。
 前記環状アルキレン基としては炭素数6~12であることが好ましい。環状アルキレン基としては、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基等が挙げられる。
 前記アルケニレン基としては炭素数2~10であることが好ましい。アルケニレン基としては、エテニレン基、2-プロペニレン基、2-ブテニレン基、3-ブテニレン基等が挙げられる。
 前記アレーンジイル基としては炭素数6~12であることが好ましい。アレーンジイル基としては、フェニレン基等が挙げられる。
The divalent hydrocarbon group represented by R 32 includes a linear alkylene group, a branched alkylene group, a cyclic alkylene group, an alkenylene group, an arenediyl group, etc., and the linear alkylene group is preferred.
The linear alkylene group preferably has a carbon number of 1 to 10, and more preferably has a carbon number of 1 to 5. Examples of the linear alkylene group include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, and a pentamethylene group.
The branched alkylene group preferably has a carbon number of 3 to 10. Examples of the branched alkylene group include a propylene group, a propylidene group, a 1,2-butanediyl group, and a 1,3-butanediyl group.
The cyclic alkylene group preferably has a carbon number of 6 to 12. Examples of the cyclic alkylene group include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, and a cyclohexylene group.
The alkenylene group preferably has a carbon number of 2 to 10. Examples of the alkenylene group include an ethenylene group, a 2-propenylene group, a 2-butenylene group, and a 3-butenylene group.
The arenediyl group preferably has a carbon number of 6 to 12. Examples of the arenediyl group include a phenylene group.
 2価の炭化水素基の具体例としては、メチレン基、エチレン基、n-プロピレン基、n-へキシレン基、n-へプチレン基、n-オクチレン基、n-ドデシレン基等が挙げられる。 Specific examples of divalent hydrocarbon groups include methylene, ethylene, n-propylene, n-hexylene, n-heptylene, n-octylene, and n-dodecylene groups.
 前記R33、R34およびR35におけるヘテロ原子を含んでいてもよい炭化水素基としては、鎖状の炭化水素基、環状の炭化水素基が挙げられる。 The hydrocarbon group which may contain a heteroatom in R 33 , R 34 and R 35 includes a chain hydrocarbon group and a cyclic hydrocarbon group.
 前記鎖状の炭化水素基としては、直鎖状アルキル基、分岐鎖状アルキル基等を挙げることができ、直鎖状アルキル基が好ましい。
 直鎖状アルキル基の炭素数としては、炭素数1~20が好ましく、炭素数1~10がより好ましく、炭素数1~5がさらに好ましい。直鎖状アルキル基としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ヘキシル基、n-オクチル基、n-ノニル基、n-デシル基、n-ラウリル基等が挙げられる。
 分岐鎖状アルキル基の炭素数としては、炭素数3~20が好ましく、炭素数3~10がより好ましく、炭素数3~5がさらに好ましい。前記分岐鎖状アルキル基としては、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、2-エチルヘキシル基、ネオペンチル基、イソオクチル基等が挙げられる。
Examples of the chain-like hydrocarbon group include a linear alkyl group and a branched alkyl group, with the linear alkyl group being preferred.
The carbon number of the linear alkyl group is preferably 1 to 20, more preferably 1 to 10, and further preferably 1 to 5. Examples of the linear alkyl group include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-hexyl group, an n-octyl group, an n-nonyl group, an n-decyl group, and an n-lauryl group.
The carbon number of the branched alkyl group is preferably 3 to 20, more preferably 3 to 10, and further preferably 3 to 5. Examples of the branched alkyl group include an isopropyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a 2-ethylhexyl group, a neopentyl group, and an isooctyl group.
 前記環状の炭化水素基としては、環状アルキル基、芳香族基等が挙げられ、環状アルキル基および芳香族基は鎖状部分を有していてもよい。
 前記環状アルキル基の炭素数としては、炭素数4~18が好ましく、炭素数6~12がより好ましく、炭素数6~10がさらに好ましい。環状アルキル基としては、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等が挙げられる。
 芳香族基の炭素数としては、炭素数6~18が好ましく、炭素数6~12がより好まく、炭素数6~8がさらに好ましい。前記芳香族基としては、フェニル基、トリル基、キシリル基、メシチル基等が挙げられる。
 鎖状部分を有する環状アルキル基および鎖状部を有する芳香族基の鎖状部分の例としては、炭素数1~12のアルキレン基、好ましくは炭素数1~6のアルキレン基、より好ましくは炭素数1~3のアルキレン基が挙げられる。
Examples of the cyclic hydrocarbon group include a cyclic alkyl group and an aromatic group, and the cyclic alkyl group and the aromatic group may have a chain portion.
The number of carbon atoms in the cyclic alkyl group is preferably 4 to 18, more preferably 6 to 12, and even more preferably 6 to 10. Examples of the cyclic alkyl group include a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
The number of carbon atoms in the aromatic group is preferably 6 to 18, more preferably 6 to 12, and even more preferably 6 to 8. Examples of the aromatic group include a phenyl group, a tolyl group, a xylyl group, and a mesityl group.
Examples of the cyclic alkyl group having a chain portion and the chain portion of the aromatic group having a chain portion include alkylene groups having 1 to 12 carbon atoms, preferably alkylene groups having 1 to 6 carbon atoms, and more preferably alkylene groups having 1 to 3 carbon atoms.
 前記R33、R34およびR35としては、2つの直鎖状のアルキル基と1つの芳香族基の組みあわせ、または3つとも直鎖状のアルキル基であることが好ましい。 It is preferable that R 33 , R 34 and R 35 are a combination of two straight-chain alkyl groups and one aromatic group, or all three are straight-chain alkyl groups.
 ヘテロ原子を含む炭化水素基とは、前記炭化水素基中の炭素原子がヘテロ原子で置き換えられた構造を有する。炭化水素基が含んでいてもよいヘテロ原子としては、例えば、酸素原子等が挙げられる。
 また、炭化水素基中の水素原子は、フッ素原子、塩素原子、臭素原子等のハロゲン原子により置換されていてもよい。
The hydrocarbon group containing a heteroatom has a structure in which a carbon atom in the above-mentioned hydrocarbon group is replaced with a heteroatom. Examples of the heteroatom that may be contained in the hydrocarbon group include an oxygen atom.
Furthermore, a hydrogen atom in the hydrocarbon group may be substituted with a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom.
 R33、R34およびR35が互いに結合して環状構造を形成しているとは、R33、R34およびR35のうち2つ以上が窒素原子を介して環状構造を形成していることをいう。前記環状構造としては、例えば、5員環~7員環の含窒素ヘテロ環またはこれらが2個縮合してなる縮合環が挙げられる。該含窒素ヘテロ環は芳香族性を有しないものが好ましく、飽和環がより好ましい。具体的には下記式(3-1)、(3-2)、(3-3)で表される構造が挙げられる。 The expression "R 33 , R 34 and R 35 are bonded together to form a cyclic structure" means that two or more of R 33 , R 34 and R 35 form a cyclic structure via a nitrogen atom. Examples of the cyclic structure include a 5- to 7-membered nitrogen-containing heterocycle or a condensed ring formed by condensing two of these. The nitrogen-containing heterocycle is preferably one that does not have aromaticity, and more preferably a saturated ring. Specific examples include structures represented by the following formulae (3-1), (3-2) and (3-3).
Figure JPOXMLDOC01-appb-C000009
[式(3-1)、(3-2)、(3-3)において、R36は、R33である。R37は、炭素数1~6のアルキル基を示す。lは0~5の整数を表す。mは0~4の整数を表す。nは0~4の整数を表す。*は結合手を表す。lが2~5、mが2~4、nが2~4の場合、複数存在するR36は、それぞれ同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000009
[In formulas (3-1), (3-2) and (3-3), R 36 is R 33. R 37 represents an alkyl group having 1 to 6 carbon atoms. l represents an integer of 0 to 5. m represents an integer of 0 to 4. n represents an integer of 0 to 4. * represents a bond. When l is 2 to 5, m is 2 to 4 and n is 2 to 4, the multiple R 36 's may be the same or different.]
 X-としては、ハロゲンアニオン、カルボキシレートアニオン、スルフェートアニオン、スルホネートアニオン、ホスフェートアニオン、ニトロキシドアニオン等が挙げられる。 X includes a halogen anion, a carboxylate anion, a sulfate anion, a sulfonate anion, a phosphate anion, a nitroxide anion, and the like.
 前記ハロゲンアニオンとしては、フルオロアニオン、クロロアニオン、ブロモアニオン、ヨードアニオンが挙げられる。
 前記カルボキシレートアニオンとしては、酢酸アニオン、プロピオン酸アニオン等のアルキルカルボキシレートアニオン;安息香酸アニオン等の芳香族カルボキシレートアニオン等が挙げられる。
 前記スルフェートアニオンとしては、メチル硫酸アニオン、エチル硫酸アニオン等のアルキルスルフェートアニオン;フェニル硫酸アニオン、ベンジル硫酸アニオン等の芳香族 硫酸アニオン等が挙げられる。
 前記スルホネートアニオンとしては、メタンスルホン酸アニオン、エタンスルホン酸アニオン等のアルキルスルホネートアニオン;ベンゼンスルホン酸アニオン、トルエンスルホン酸アニオン等の芳香族スルホネートアニオン等が挙げられる。
 前記ホスフェートアニオンとしては、メチルホスホン酸アニオン、エチルホスホン酸アニオン等のアルキルホスフェートアニオン;フェニルホスホン酸アニオン、ベンジルホスホン酸アニオン等の芳香族ホスフェートアニオンが挙げられる。
Examples of the halogen anion include a fluoro anion, a chloro anion, a bromo anion, and an iodo anion.
Examples of the carboxylate anion include alkyl carboxylate anions such as acetate anion and propionate anion; and aromatic carboxylate anions such as benzoate anion.
Examples of the sulfate anion include alkyl sulfate anions such as methyl sulfate anion and ethyl sulfate anion; and aromatic sulfate anions such as phenyl sulfate anion and benzyl sulfate anion.
Examples of the sulfonate anion include alkylsulfonate anions such as methanesulfonate anion and ethanesulfonate anion; and aromatic sulfonate anions such as benzenesulfonate anion and toluenesulfonate anion.
Examples of the phosphate anion include alkyl phosphate anions such as methylphosphonate anion and ethylphosphonate anion; and aromatic phosphate anions such as phenylphosphonate anion and benzylphosphonate anion.
 式(3)で示される構造単位を形成するビニルモノマーの具体例としては、(メタ)アクリロイルオキシエチルトリメチルアンモニウムクロリド、(メタ)アクリロイルオキシプロピルトリメチルアンモニウムクロリド、(メタ)アクリロイルオキシブチルトリメチルアンモニウムクロリド、(メタ)アクリロイルオキシエチルベンジルジメチルアンモニウムクロリド、(メタ)アクリロイルオキシプロピルベンジルジメチルアンモニウムクロリド、(メタ)アクリロイルオキシブチルベンジルジメチルアンモニウムクロリド、(メタ)アクリロイルオキシエチルベンジルジエチルアンモニウムクロリド、(メタ)アクリロイルオキシプロピルベンジルジエチルアンモニウムクロリド、(メタ)アクリロイルオキシブチルベンジルジエチルアンモニウムクロリド、(メタ)アクリロイルオキシエチルベンジルジエチルアンモニウムブロミド、(メタ)アクリロイルオキシプロピルベンジルジエチルアンモニウムブロミド、(メタ)アクリロイルオキシブチルベンジルジエチルアンモニウムブロミド、(メタ)アクリロイルオキシエチルベンジルジエチルアンモニウムヨージド、(メタ)アクリロイルオキシプロピルベンジルジエチルアンモニウムヨージド、(メタ)アクリロイルオキシブチルベンジルジエチルアンモニウムヨージド、(メタ)アクリロイルオキシエチルベンジルジエチルアンモニウムフロリド、(メタ)アクリロイルオキシプロピルベンジルジエチルアンモニウムフロリド、(メタ)アクリロイルオキシブチルベンジルジエチルアンモニウムフロリド、(メタ)アクリロイルオキシエチルトリメチルアンモニウム・メチルスルファート、(メタ)アクリロイルオキシプロピルトリメチルアンモニウム・メチルスルファート、(メタ)アクリロイルオキシブチルトリメチルアンモニウム・メチルスルファート、(メタ)アクリロイルオキシエチルジメチルエチルアンモニウム・エチルスルファート、(メタ)アクリロイルオキシプロピルジメチルエチルアンモニウム・エチルスルファート、(メタ)アクリロイルオキシブチルジメチルエチルアンモニウム・エチルスルファート、(メタ)アクリロイルオキシエチルトリメチルアンモニウム・トルエン-4-スルホナート、(メタ)アクリロイルオキシプロピルトリメチルアンモニウム・トルエン-4-スルホナート、(メタ)アクリロイルオキシブチルトリメチルアンモニウム・トルエン-4-スルホナート等が挙げられる。 Specific examples of vinyl monomers that form the structural unit represented by formula (3) include (meth)acryloyloxyethyl trimethyl ammonium chloride, (meth)acryloyloxypropyl trimethyl ammonium chloride, (meth)acryloyloxybutyl trimethyl ammonium chloride, (meth)acryloyloxyethyl benzyl dimethyl ammonium chloride, (meth)acryloyloxypropyl benzyl dimethyl ammonium chloride, (meth)acryloyloxybutyl benzyl dimethyl ammonium chloride, (meth)acryloyloxyethyl benzyl acryloyloxypropyl benzyl diethyl ammonium chloride, (meth)acryloyloxybutyl benzyl diethyl ammonium chloride, (meth)acryloyloxyethyl benzyl diethyl ammonium bromide, (meth)acryloyloxypropyl benzyl diethyl ammonium bromide, (meth)acryloyloxybutyl benzyl diethyl ammonium bromide, (meth)acryloyloxyethyl benzyl diethyl ammonium iodide, (meth)acryloyloxypropyl benzyl diethyl ammonium Iodide, (meth)acryloyloxybutylbenzyl diethylammonium iodide, (meth)acryloyloxyethylbenzyl diethylammonium fluoride, (meth)acryloyloxypropylbenzyl diethylammonium fluoride, (meth)acryloyloxybutylbenzyl diethylammonium fluoride, (meth)acryloyloxyethyltrimethylammonium methylsulfate, (meth)acryloyloxypropyltrimethylammonium methylsulfate, (meth)acryloyloxybutyltrimethylammonium methylsulfate ester, (meth)acryloyloxyethyl dimethylethyl ammonium ethyl sulfate, (meth)acryloyloxypropyl dimethylethyl ammonium ethyl sulfate, (meth)acryloyloxybutyl dimethylethyl ammonium ethyl sulfate, (meth)acryloyloxyethyl trimethyl ammonium toluene-4-sulfonate, (meth)acryloyloxypropyl trimethyl ammonium toluene-4-sulfonate, (meth)acryloyloxybutyl trimethyl ammonium toluene-4-sulfonate, etc.
 構造単位(b-3)を含有する場合、その含有率は、前記Bセグメントを構成する構造単位100mol%中において5mol%以上が好ましく、より好ましくは30mol%以上、さらに好ましくは45mol%以上であり、90mol%以下が好ましく、より好ましくは80mol%以下、さらに好ましくは70mol%以下である。構造単位(b-3)の含有率が前記範囲であれば着色材表面への強い吸着性を長期的に維持でき、保存安定性がより向上する。 When the structural unit (b-3) is contained, its content is preferably 5 mol% or more, more preferably 30 mol% or more, even more preferably 45 mol% or more, and preferably 90 mol% or less, more preferably 80 mol% or less, even more preferably 70 mol% or less, out of 100 mol% of the structural units constituting the B segment. If the content of the structural unit (b-3) is within the above range, strong adsorption to the colorant surface can be maintained for a long period of time, and storage stability is further improved.
 構造単位(b-3)を含有する場合、前記Bセグメントを構成する構造単位100mol%において、前記構造単位(b-2)と前記構造単位(b-3)との合計含有率((b-2)+(b-3))は、5mol%以上が好ましく、より好ましくは30mol%以上、さらに好ましくは45mol%以上であり、90mol%以下が好ましく、より好ましくは80mol%以下、さらに好ましくは70mol%以下である。前記合計含有率((b-2)+(b-3))が上記範囲内であれば着色材表面への強い吸着性を長期的に維持でき、保存安定性がより向上すると考えられる。 When the structural unit (b-3) is contained, the total content of the structural units (b-2) and (b-3) ((b-2) + (b-3)) in 100 mol% of the structural units constituting the B segment is preferably 5 mol% or more, more preferably 30 mol% or more, even more preferably 45 mol% or more, and is preferably 90 mol% or less, more preferably 80 mol% or less, and even more preferably 70 mol% or less. If the total content ((b-2) + (b-3)) is within the above range, it is believed that strong adsorption to the colorant surface can be maintained for a long period of time, and storage stability is further improved.
 構造単位(b-3)を含有する場合、前記Bセグメントにおける前記構造単位(b-2)と構造単位(b-3)との合計量に対する前記構造単位(b-1)のモル比((b-1)/{(b-2)+(b-3)})は、5/95以上が好ましく、より好ましくは10/90以上、さらに好ましくは20/80以上であり、95/5以下が好ましく、より好ましくは80/20以下、さらに好ましくは60/40以下である。前記モル比((b-1)/{(b-2)+(b-3)})が上記範囲内であれば着色材表面への強い吸着性を長期的に維持でき、保存安定性がより向上すると考えられる。 When the structural unit (b-3) is contained, the molar ratio ((b-1)/{(b-2)+(b-3)}) of the structural unit (b-1) to the total amount of the structural unit (b-2) and the structural unit (b-3) in the B segment is preferably 5/95 or more, more preferably 10/90 or more, even more preferably 20/80 or more, and is preferably 95/5 or less, more preferably 80/20 or less, even more preferably 60/40 or less. If the molar ratio ((b-1)/{(b-2)+(b-3)}) is within the above range, it is believed that strong adsorption to the colorant surface can be maintained for a long period of time, and storage stability is further improved.
 Bセグメントは、構造単位(b-1)、構造単位(b-2)、構造単位(b-3)以外に、他の構造単位を含有してもよい。Bセグメントの他の構造単位を形成し得るビニルモノマーの具体例としては、Aブロックの構造単位を形成し得るモノマーの具体例として例示したものと同一のものを挙げることができる。 The B segment may contain other structural units in addition to the structural units (b-1), (b-2), and (b-3). Specific examples of vinyl monomers that can form other structural units of the B segment include the same monomers as those exemplified as specific examples of monomers that can form structural units of the A block.
 他の構造単位を含有する場合、前記Bセグメントを構成する構造単位100mol%において、前記他の構造単位の含有率は、90mol%以下が好ましく、より好ましくは70mol%以下、さらに好ましくは20mol%以下である。 If other structural units are contained, the content of the other structural units in 100 mol% of the structural units constituting the B segment is preferably 90 mol% or less, more preferably 70 mol% or less, and even more preferably 20 mol% or less.
(ブロック共重合体)
 前記ブロック共重合体の構造は、線状ブロック共重合体であることが好ましい。また、線状ブロック共重合体は、いずれの構造(配列)であっても良いが、線状ブロック共重合体の物性、または組成物の物性の観点から、AセグメントをA、BセグメントをBと表現したとき、(A-B)m型、(A-B)m-A型、(B-A)m-B型(mは1以上の整数、例えば1~3の整数)よりなる群から選択される少なくとも1種の構造を持つ共重合体であることが好ましい。これらの中でも、加工時の取扱い性、組成物の物性の観点から、A-B型ブロック共重合体であることが好ましい。A-B型ブロック共重合体を構成することで、Aセグメントの構造単位、Bセグメントの構造単位(b-2)が局在化し、効率的に着色材と、分散媒体、バインダー樹脂と好適に作用することができると考えられる。前記ブロック共重合体は、AセグメントおよびBセグメント以外の他のブロックを有していてもよい。前記ブロック共重合体としては、1つのAブロックと1つのBブロックから構成されるジブロック共重合体、1つのAブロックと2つのBブロックから構成されるトリブロック共重合体が好ましい。
(Block Copolymer)
The structure of the block copolymer is preferably a linear block copolymer. The linear block copolymer may have any structure (sequence), but from the viewpoint of the physical properties of the linear block copolymer or the physical properties of the composition, when the A segment is expressed as A and the B segment is expressed as B, it is preferable that the copolymer has at least one structure selected from the group consisting of (A-B) m type, (A-B) m -A type, and (B-A) m -B type (m is an integer of 1 or more, for example, an integer of 1 to 3). Among these, from the viewpoint of the handling property during processing and the physical properties of the composition, it is preferable to be an A-B type block copolymer. By forming an A-B type block copolymer, it is considered that the structural unit of the A segment and the structural unit (b-2) of the B segment are localized and can efficiently act favorably with the colorant, the dispersion medium, and the binder resin. The block copolymer may have other blocks other than the A segment and the B segment. As the block copolymer, a diblock copolymer composed of one A block and one B block, and a triblock copolymer composed of one A block and two B blocks are preferable.
 ブロック共重合体を構成する全構造単位において、前記Aセグメントを構成する構造単位の総モル数の含有率は、30mol%以上が好ましく、より好ましくは35mol%以上、さらに好ましくは40mol%以上であり、75mol%以下が好ましく、より好ましくは70mol%以下、さらに好ましくは65mol%以下、特に好ましくは60mol%以下である。 In all structural units constituting the block copolymer, the content of the total number of moles of structural units constituting the A segment is preferably 30 mol% or more, more preferably 35 mol% or more, even more preferably 40 mol% or more, and is preferably 75 mol% or less, more preferably 70 mol% or less, even more preferably 65 mol% or less, and particularly preferably 60 mol% or less.
 ブロック共重合体を構成する全構造単位において、前記Bセグメントを構成する構造単位の総モル数の含有率は、25mol%以上が好ましく、より好ましくは30mol%以上、さらに好ましくは35mol%以上、特に好ましくは40mol%以上であり、70mol%以下が好ましく、より好ましくは65mol%以下、さらに好ましくは60mol%以下である。 In all structural units constituting the block copolymer, the content of the total number of moles of structural units constituting the B segment is preferably 25 mol% or more, more preferably 30 mol% or more, even more preferably 35 mol% or more, and particularly preferably 40 mol% or more, and is preferably 70 mol% or less, more preferably 65 mol% or less, and even more preferably 60 mol% or less.
 ブロック共重合体において、前記Aセグメントを構成する構造単位の総モル量と、前記Bセグメントを構成する構造単位の総モル量とのモル比(Aセグメント/Bセグメント)は、30/70以上が好ましく、より好ましくは35/65以上、さらに好ましくは40/60以上であり、75/25以下が好ましく、より好ましくは70/30以下、さらに好ましくは65/35以下、特に好ましくは60/40以下である。前記モル比(Aセグメント/Bセグメント)が30/70以上であればAセグメントの立体反発により着色材との凝集を防ぎ、保存安定性が向上し、75/25以下であれば塩基性基の着色材表面への強い吸着性を長期的に維持でき、保存安定性がより向上すると考えられる。 In the block copolymer, the molar ratio (A segment/B segment) of the total molar amount of the structural units constituting the A segment to the total molar amount of the structural units constituting the B segment is preferably 30/70 or more, more preferably 35/65 or more, even more preferably 40/60 or more, and is preferably 75/25 or less, more preferably 70/30 or less, even more preferably 65/35 or less, and particularly preferably 60/40 or less. If the molar ratio (A segment/B segment) is 30/70 or more, aggregation with the colorant is prevented due to the steric repulsion of the A segment, improving storage stability, and if it is 75/25 or less, strong adsorption of the basic group to the colorant surface can be maintained for a long period of time, further improving storage stability.
 前記ブロック共重合体の重量平均分子量(Mw)は5,000以上が好ましく、より好ましくは8,000以上、さらに好ましくは10,000以上であり、40,000以下が好ましく、より好ましくは30,000以下、さらに好ましくは20,000以下である。重量平均分子量が上記範囲内にあれば、分散剤として使用した際の分散性能がより良好となる。前記ブロック共重合体の分子量は、ゲル浸透クロマトグラフィー(以下「GPC」という)法により測定される。 The weight average molecular weight (Mw) of the block copolymer is preferably 5,000 or more, more preferably 8,000 or more, even more preferably 10,000 or more, and is preferably 40,000 or less, more preferably 30,000 or less, even more preferably 20,000 or less. If the weight average molecular weight is within the above range, the dispersion performance when used as a dispersant will be better. The molecular weight of the block copolymer is measured by gel permeation chromatography (hereinafter referred to as "GPC") method.
 前記ブロック共重合体の分子量分布(Mw/Mn)は、3.0未満が好ましく、より好ましくは2.0以下、さらに好ましくは1.7以下である。分子量分布(Mw/Mn)が3.0未満であれば、分散剤として使用した際の分散性能がより良好となる。なお、分子量分布とは、(ブロック共重合体の重量平均分子量(Mw))/(ブロック共重合体の数平均分子量(Mn))によって求められる。分子量分布の値が小さいほど分子量分布の幅が狭い、分子量のそろった共重合体となり、その値が1.0のとき最も分子量分布の幅が狭い。即ち、分子量分布の下限値は1.0である。 The molecular weight distribution (Mw/Mn) of the block copolymer is preferably less than 3.0, more preferably 2.0 or less, and even more preferably 1.7 or less. If the molecular weight distribution (Mw/Mn) is less than 3.0, the dispersion performance when used as a dispersant will be better. The molecular weight distribution is calculated by (weight average molecular weight (Mw) of the block copolymer) / (number average molecular weight (Mn) of the block copolymer). The smaller the value of the molecular weight distribution, the narrower the molecular weight distribution width, resulting in a copolymer with a uniform molecular weight, and when the value is 1.0, the width of the molecular weight distribution is the narrowest. In other words, the lower limit of the molecular weight distribution is 1.0.
 前記ブロック共重合体のアミン価は、着色材への吸着性および着色材分散性の観点から、10mgKOH/g以上が好ましく、より好ましくは25mgKOH/g以上、さらに好ましくは40mgKOH/g以上であり、150mgKOH/g以下が好ましく、より好ましくは120mgKOH/g以下、さらに好ましくは100mgKOH/g以下である。 The amine value of the block copolymer is preferably 10 mgKOH/g or more, more preferably 25 mgKOH/g or more, and even more preferably 40 mgKOH/g or more, from the viewpoint of adsorption to the colorant and dispersibility of the colorant, and is preferably 150 mgKOH/g or less, more preferably 120 mgKOH/g or less, and even more preferably 100 mgKOH/g or less.
 前記ブロック共重合体が酸性基を有する構造単位を含有する場合、ブロック共重合体の酸価は、5mgKOH/g以上が好ましく、50mgKOH/g以下が好ましい。酸価をこの範囲にすることで、ブロック共重合体の着色材との親和性を損なうことなく、バインダー樹脂(アルカリ可溶性樹脂)と好適に作用することができる。 When the block copolymer contains a structural unit having an acidic group, the acid value of the block copolymer is preferably 5 mgKOH/g or more and preferably 50 mgKOH/g or less. By setting the acid value within this range, the block copolymer can act favorably with the binder resin (alkali-soluble resin) without impairing its affinity with the colorant.
(ブロック共重合体の製造方法)
 前記ブロック共重合体の製造方法としては、ビニルモノマーの重合反応によって、Aセグメントを先に製造し、AセグメントにBセグメントのモノマーを重合する方法;Bセグメントを先に製造し、BセグメントにAセグメントのモノマーを重合する方法;AセグメントとBセグメントとを別々に製造した後、AセグメントとBセグメントとをカップリングする方法;Aセグメントを先に製造し、Bセグメントに構造単位(b-1)および構造単位(b-2)を形成し得るビニルモノマーを含有するモノマー組成物を重合し、得られた重合物中の構造単位(b-2)の一部の3級アミン構造を4級化する方法;構造単位(b-1)および構造単位(b-2)を形成し得るビニルモノマーを含有するモノマー組成物を重合し、この重合物にAセグメントのモノマーを重合し、得られた重合物中の構造単位(b-2)の一部の3級アミン構造を4級化する方法;Aセグメントと構造単位(b-1)および構造単位(b-2)を有するセグメントとを別々に製造し、これらのセグメントをカップリングした後、得られた重合物中の構造単位(b-2)の一部の3級アミン構造を4級化する方法等が挙げられる。
(Method for Producing Block Copolymer)
Examples of the method for producing the block copolymer include a method of first producing an A segment by a polymerization reaction of a vinyl monomer, and polymerizing a monomer of a B segment to the A segment; a method of first producing a B segment, and polymerizing a monomer of an A segment to the B segment; a method of separately producing an A segment and a B segment, and then coupling the A segment and the B segment; a method of first producing an A segment, polymerizing a monomer composition containing a vinyl monomer capable of forming structural units (b-1) and structural units (b-2) in the B segment, and quaternizing a part of the tertiary amine structure of the structural unit (b-2) in the obtained polymer; a method of polymerizing a monomer composition containing a vinyl monomer capable of forming structural units (b-1) and structural units (b-2), polymerizing a monomer of the A segment to this polymer, and quaternizing a part of the tertiary amine structure of the structural unit (b-2) in the obtained polymer; a method of separately producing an A segment and a segment having structural units (b-1) and structural units (b-2), coupling these segments, and then quaternizing a part of the tertiary amine structure of the structural unit (b-2) in the obtained polymer.
 重合法は特に限定されないが、リビング重合法が好ましい。すなわち、前記ブロック共重合体としては、リビング重合により重合されたものが好ましい。リビング重合法は、連鎖重合における開始反応、成長反応、停止反応、連鎖移動反応の4つの素反応のなかで、停止反応および連鎖移動反応が起こりにくく、反応点(重合成長末端)が失活することなくビニルモノマーが反応しポリマー鎖が成長するため、分子量分布の精密制御、均一な組成のポリマーの製造が容易である点で好ましい。リビング重合法には、リビングラジカル重合法、リビングアニオン重合法、リビングカチオン重合法等がある。これらの中でも、重合の簡便性の観点から、リビングラジカル重合法であることが好ましい。また、リビングラジカル重合法は、フリーラジカル重合法(従来のラジカル重合法)の簡便性と汎用性を保ちながら、分子量分布の精密制御、均一な組成のポリマーの製造が容易である点でも好ましい。 Although the polymerization method is not particularly limited, living polymerization is preferred. That is, the block copolymer is preferably one polymerized by living polymerization. Among the four elementary reactions in chain polymerization, namely, initiation reaction, propagation reaction, termination reaction, and chain transfer reaction, living polymerization is preferred in that termination reaction and chain transfer reaction are unlikely to occur, and the vinyl monomer reacts and the polymer chain grows without deactivating the reaction point (polymerization growth end), making it easy to precisely control the molecular weight distribution and produce a polymer with a uniform composition. Living polymerization methods include living radical polymerization, living anionic polymerization, and living cationic polymerization. Among these, living radical polymerization is preferred from the viewpoint of the simplicity of polymerization. Living radical polymerization is also preferred in that it is easy to precisely control the molecular weight distribution and produce a polymer with a uniform composition while maintaining the simplicity and versatility of free radical polymerization (conventional radical polymerization).
 リビングラジカル重合法には、重合成長末端を安定化させる手法の違いにより、ニトロキサイドラジカルを生じ得る化合物を用いる方法(ニトロキサイド法;NMP法);銅、ルテニウム等の金属錯体を用いて、ハロゲン化化合物を重合開始化合物として、その重合開始化合物からリビング的に重合させる方法(ATRP法);ジチオカルボン酸エステルやザンテート化合物を用いる方法(RAFT法);有機テルル化合物を用いる方法(TERP法);有機ヨウ素化合物を用いる方法(ITP法);ヨウ素化合物を重合開始化合物とし、リン化合物、窒素化合物、酸素化合物、又は炭化水素などの有機化合物を触媒として用いる方法(可逆的移動触媒重合;RTCP法、可逆的触媒媒介重合;RCMP法)等の方法がある。これらの方法の中でも、使用できるモノマーの多様性、高分子領域での分子量制御、均一な組成、または着色の観点から、TERP法を用いることが好ましい。 Living radical polymerization methods include a method using a compound capable of generating nitroxide radicals (nitroxide method; NMP method) depending on the method of stabilizing the polymer growth end; a method using a metal complex such as copper or ruthenium to polymerize a halogenated compound as a polymerization initiator compound in a living manner from the polymerization initiator compound (ATRP method); a method using a dithiocarboxylic acid ester or a xanthate compound (RAFT method); a method using an organic tellurium compound (TERP method); a method using an organic iodine compound (ITP method); a method using an iodine compound as a polymerization initiator compound and an organic compound such as a phosphorus compound, a nitrogen compound, an oxygen compound, or a hydrocarbon as a catalyst (reversible transfer catalyst polymerization; RTCP method, reversible catalyst-mediated polymerization; RCMP method), etc. Among these methods, the TERP method is preferable from the viewpoint of the diversity of monomers that can be used, molecular weight control in the polymer region, uniform composition, or coloring.
 TERP法とは、有機テルル化合物を連鎖移動剤として用い、ラジカル重合性化合物(ビニルモノマー)を重合させる方法であり、例えば、国際公開第2004/14848号、国際公開第2004/14962号、国際公開第2004/072126号、国際公開第2004/096870号および国際公開第2020/116144号に記載された方法である。 The TERP method is a method of polymerizing a radically polymerizable compound (vinyl monomer) using an organic tellurium compound as a chain transfer agent, and is described, for example, in WO 2004/14848, WO 2004/14962, WO 2004/072126, WO 2004/096870, and WO 2020/116144.
 TERP法の具体的な重合法としては、下記(a)~(d)が挙げられる。
 (a)ビニルモノマーを、式(6)で表される有機テルル化合物を用いて重合する方法。
 (b)ビニルモノマーを、式(6)で表される有機テルル化合物とアゾ系重合開始剤との混合物を用いて重合する方法。
 (c)ビニルモノマーを、式(6)で表される有機テルル化合物と式(7)で表される有機ジテルリド化合物との混合物を用いて重合する方法。
 (d)ビニルモノマーを、式(6)で表される有機テルル化合物とアゾ系重合開始剤と式(7)で表される有機ジテルリド化合物との混合物を用いて重合する方法。
Specific polymerization methods of the TERP method include the following (a) to (d).
(a) A method of polymerizing a vinyl monomer using an organotellurium compound represented by formula (6):
(b) A method of polymerizing a vinyl monomer using a mixture of an organotellurium compound represented by formula (6) and an azo-based polymerization initiator.
(c) A method of polymerizing a vinyl monomer using a mixture of an organotellurium compound represented by formula (6) and an organoditelluride compound represented by formula (7).
(d) A method of polymerizing a vinyl monomer using a mixture of an organotellurium compound represented by formula (6), an azo-based polymerization initiator, and an organoditelluride compound represented by formula (7).
Figure JPOXMLDOC01-appb-C000010
[式(6)において、R61は、炭素数1~8のアルキル基、アリール基または芳香族ヘテロ環基を示す。R62およびR63は、それぞれ独立に、水素原子または炭素数1~8のアルキル基を示す。R64は、炭素数1~8のアルキル基、アリール基、置換アリール基、芳香族ヘテロ環基、アルコキシ基、アシル基、アミド基、オキシカルボニル基、シアノ基、アリル基またはプロパルギル基を示す。
 式(7)において、R61は、炭素数1~8のアルキル基、アリール基または芳香族ヘテロ環基を示す。]
Figure JPOXMLDOC01-appb-C000010
In formula (6), R 61 represents an alkyl group having 1 to 8 carbon atoms, an aryl group, or an aromatic heterocyclic group. R 62 and R 63 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms. R 64 represents an alkyl group having 1 to 8 carbon atoms, an aryl group, a substituted aryl group, an aromatic heterocyclic group, an alkoxy group, an acyl group, an amido group, an oxycarbonyl group, a cyano group, an allyl group, or a propargyl group.
In formula (7), R 61 represents an alkyl group having 1 to 8 carbon atoms, an aryl group, or an aromatic heterocyclic group.
 式(6)で表される有機テルル化合物は、具体的にはエチル=2-メチル-2-n-ブチルテラニル-プロピオネート、エチル=2-n-ブチルテラニル-プロピオネート、(2-ヒドロキシエチル)=2-メチル-メチルテラニル-プロピオネート等、国際公開第2004/14848号、国際公開第2004/14962号、国際公開第2004/072126号、国際公開第2004/096870号および国際公開第2020/116144号に記載された有機テルル化合物が挙げられる。式(7)で表される有機ジテルリド化合物の具体例としては、ジメチルジテルリド、ジブチルジテルリド等が挙げられる。アゾ系重合開始剤は、通常のラジカル重合で使用するアゾ系重合開始剤であれば特に制限なく使用することができ、例えば、2,2’-アゾビス(イソブチロニトリル)(AIBN)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)(ADVN)、1,1’-アゾビス(1-シクロヘキサンカルボニトリル)(ACHN)、ジメチル-2,2’-アゾビスイソブチレート(MAIB)、4,4’-アゾビス(4-シアノバレリアン酸)(ACVA)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(V-70)、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)(VAm-110)等が挙げられる。 Specific examples of the organic tellurium compound represented by formula (6) include ethyl 2-methyl-2-n-butyltellanyl-propionate, ethyl 2-n-butyltellanyl-propionate, (2-hydroxyethyl) 2-methyl-methyltellanyl-propionate, and the organic tellurium compounds described in WO 2004/14848, WO 2004/14962, WO 2004/072126, WO 2004/096870, and WO 2020/116144. Specific examples of the organic ditelluride compound represented by formula (7) include dimethyl ditelluride, dibutyl ditelluride, and the like. The azo polymerization initiator can be any azo polymerization initiator used in normal radical polymerization without any particular restrictions, and examples thereof include 2,2'-azobis(isobutyronitrile) (AIBN), 2,2'-azobis(2,4-dimethylvaleronitrile) (ADVN), 1,1'-azobis(1-cyclohexanecarbonitrile) (ACHN), dimethyl-2,2'-azobisisobutyrate (MAIB), 4,4'-azobis(4-cyanovaleric acid) (ACVA), 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile) (V-70), 2,2'-azobis(N-butyl-2-methylpropionamide) (VAm-110), and the like.
 重合工程は、不活性ガスで置換した容器で、ビニルモノマーと式(6)の有機テルル化合物と、ビニルモノマーの種類に応じて反応促進、分子量および分子量分布の制御等の目的で、さらにアゾ系重合開始剤および/または式(7)の有機ジテルリド化合物を混合する。このとき、不活性ガスとしては、窒素、アルゴン、ヘリウム等を挙げることができる。好ましくは、アルゴン、窒素が良い。前記(a)、(b)、(c)および(d)におけるビニルモノマーの使用量は、目的とする共重合体の物性により適宜調節すればよい。 In the polymerization process, a vinyl monomer and an organic tellurium compound of formula (6) are mixed in a vessel purged with an inert gas, and for the purpose of promoting the reaction and controlling the molecular weight and molecular weight distribution depending on the type of vinyl monomer, an azo polymerization initiator and/or an organic ditelluride compound of formula (7) are further mixed. Examples of the inert gas include nitrogen, argon, and helium. Argon and nitrogen are preferable. The amounts of the vinyl monomer used in (a), (b), (c), and (d) above may be adjusted appropriately depending on the physical properties of the desired copolymer.
 重合反応は、無溶媒でも行うことができるが、ラジカル重合で一般に使用される非プロトン性溶媒またはプロトン性溶媒を使用し、前記混合物を撹拌して行なってもよい。使用できる非プロトン性溶媒は、例えば、アセトニトリル、メチルエチルケトン、アニソール、ベンゼン、トルエン、プロピレングリコールモノメチルエーテルアセテート、酢酸エチル、テトラヒドロフラン(THF)、N,N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、N-メチル-2-ピロリドン(NMP)、アセトン、ジオキサン、クロロホルム、四塩化炭素等が挙げられる。また、プロトン性溶媒としては、例えば、水、メタノール、エタノール、イソプロパノール、n-ブタノール、エチルセロソルブ、ブチルセロソルブ、1-メトキシ-2-プロパノール、ヘキサフルオロイソプロパノール、ジアセトンアルコール等が挙げられる。溶媒は単独で使用してもよいし、2種以上を併用してもよい。溶媒の使用量としては、適宜調節すればよく、例えば、ビニルモノマー1gに対して、0.01ml~50mlが好ましい。重合反応では、溶媒に加え、さらに界面活性剤および/または分散剤を使用することもできる。 The polymerization reaction can be carried out without a solvent, but it can also be carried out by using an aprotic or protic solvent that is generally used in radical polymerization, and stirring the mixture. Examples of aprotic solvents that can be used include acetonitrile, methyl ethyl ketone, anisole, benzene, toluene, propylene glycol monomethyl ether acetate, ethyl acetate, tetrahydrofuran (THF), N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N-methyl-2-pyrrolidone (NMP), acetone, dioxane, chloroform, and carbon tetrachloride. Examples of protic solvents include water, methanol, ethanol, isopropanol, n-butanol, ethyl cellosolve, butyl cellosolve, 1-methoxy-2-propanol, hexafluoroisopropanol, and diacetone alcohol. The solvents may be used alone or in combination of two or more. The amount of solvent used may be adjusted as appropriate, and is preferably 0.01 ml to 50 ml per 1 g of vinyl monomer, for example. In addition to the solvent, a surfactant and/or a dispersant may also be used in the polymerization reaction.
 反応温度、反応時間は、得られる共重合体の分子量或いは分子量分布により適宜調節すればよいが、通常、0℃~150℃で、1分~100時間撹拌する。このとき、圧力は、通常、常圧で行われるが、加圧または減圧しても構わない。また、重合反応は、光照射して行ってもよい。重合反応の終了後、得られた反応混合物から、通常の分離精製手段により、使用溶媒、残存ビニルモノマーの除去等を行い、目的とする共重合体を分離することができる。 The reaction temperature and reaction time may be adjusted as appropriate depending on the molecular weight or molecular weight distribution of the resulting copolymer, but typically the reaction is carried out at 0°C to 150°C and for 1 minute to 100 hours with stirring. The pressure is typically normal, but it may be increased or decreased. The polymerization reaction may also be carried out by irradiation with light. After the polymerization reaction is complete, the solvent used and residual vinyl monomers are removed from the resulting reaction mixture by standard separation and purification means, allowing the desired copolymer to be separated.
 重合反応により得られる共重合体の成長末端は、テルル化合物由来の-TeR61(式中、R61は上記と同じである)の形態であり、重合反応終了後の空気中の操作により失活していくが、テルル原子が残存する場合がある。テルル原子が末端に残存した共重合体は着色したり、熱安定性が劣ったりするため、テルル原子を除去することが好ましい。テルル原子を除去する方法としては、ラジカル還元方法;活性炭等で吸着する方法;イオン交換樹脂等で金属を吸着する方法等が挙げられ、また、これらの方法を組み合わせて用いることもできる。なお、重合反応により得られる共重合体の他方端(成長末端と反対側の末端)は、テルル化合物由来の-CR626364(式中、R62、R63およびR64は、式(6)中のR62、R63およびR64と同じである。)の形態である。よって、TERP法により得られる共重合体は、末端に硫黄原子を含有する置換基を有さない。 The growing end of the copolymer obtained by the polymerization reaction is in the form of -TeR 61 (wherein R 61 is the same as above) derived from the tellurium compound, and is deactivated by operation in air after the polymerization reaction is completed, but the tellurium atom may remain. Since a copolymer with tellurium atoms remaining at the end is colored or has poor thermal stability, it is preferable to remove the tellurium atoms. Methods for removing tellurium atoms include a radical reduction method; a method of adsorption with activated carbon or the like; a method of adsorbing metal with an ion exchange resin or the like, and these methods can also be used in combination. The other end (the end opposite to the growing end) of the copolymer obtained by the polymerization reaction is in the form of -CR 62 R 63 R 64 (wherein R 62 , R 63 and R 64 are the same as R 62 , R 63 and R 64 in formula (6)) derived from the tellurium compound. Therefore, the copolymer obtained by the TERP method does not have a substituent containing a sulfur atom at the end.
 塩基性基を有する構造単位の3級アミノ基を4級化する場合、4級化剤としては、塩化メチル、塩化エチル、臭化メチル、ヨウ化メチル等のハロゲン化アルキル;塩化ベンジル、臭化ベンジル、ヨウ化ベンジル等のハロゲン化アラルキル;硫酸ジフェニル等の硫酸ジアリール;硫酸ジメチル、硫酸ジエチル、硫酸ジ-n-プロピル等の硫酸ジアルキル;p-トルエンスルホン酸メチル、p-トルエンスルホン酸エチル等の芳香族スルホン酸アルキル等が挙げられる。これらの中でも、好ましくは塩化ベンジル、臭化ベンジル、ヨウ化ベンジル等のハロゲン化アラルキル、硫酸ジメチル、硫酸ジエチル、硫酸ジ-n-プロピル等の硫酸ジアルキル、p-トルエンスルホン酸メチル、p-トルエンスルホン酸エチル等の芳香族スルホン酸アルキルであり、より好ましくは塩化ベンジル、硫酸ジメチル、p-トルエンスルホン酸メチルである。4級化後の構造には、4級化剤に由来するアルキル基、アラルキル基が導入される。 When tertiary amino groups of structural units having basic groups are quaternized, examples of the quaternizing agent include alkyl halides such as methyl chloride, ethyl chloride, methyl bromide, and methyl iodide; aralkyl halides such as benzyl chloride, benzyl bromide, and benzyl iodide; diaryl sulfates such as diphenyl sulfate; dialkyl sulfates such as dimethyl sulfate, diethyl sulfate, and di-n-propyl sulfate; and aromatic alkyl sulfonates such as methyl p-toluenesulfonate and ethyl p-toluenesulfonate. Among these, preferred are aralkyl halides such as benzyl chloride, benzyl bromide, and benzyl iodide, dialkyl sulfates such as dimethyl sulfate, diethyl sulfate, and di-n-propyl sulfate, and aromatic alkyl sulfonates such as methyl p-toluenesulfonate and ethyl p-toluenesulfonate, and more preferred are benzyl chloride, dimethyl sulfate, and methyl p-toluenesulfonate. An alkyl group or aralkyl group derived from the quaternizing agent is introduced into the structure after quaternization.
 重合物中の塩基性基を有する構造単位の一部の3級アミン構造を4級化する方法としては、重合物と4級化剤とを接触させる方法が挙げられる。具体的には、塩基性基を有する構造単位を形成し得るビニルモノマーを含有するモノマー組成物を重合した後、この反応液に4級化剤を添加し、撹拌する方法が挙げられる。4級化剤を添加する反応液の温度は55℃~65℃が好ましく、撹拌時間は、5時間~20時間が好ましい。 As a method for quaternizing some of the tertiary amine structures of structural units having a basic group in a polymer, a method of contacting the polymer with a quaternizing agent can be mentioned. Specifically, a method of polymerizing a monomer composition containing a vinyl monomer capable of forming a structural unit having a basic group, adding a quaternizing agent to the reaction liquid, and stirring the reaction liquid can be mentioned. The temperature of the reaction liquid to which the quaternizing agent is added is preferably 55°C to 65°C, and the stirring time is preferably 5 hours to 20 hours.
<分散剤>
 本発明の分散剤は、前記ブロック共重合体を主成分(50質量%以上)として含有するものである。前記ブロック共重合体は、その構造中(Bセグメント)の塩基性基が着色材に吸着することで、着色材分散性を高める作用を発揮する。すなわち、本発明の分散剤は、この作用によって着色材の良好に分散させる成分であるので、分散させる着色材の種類については特に限定されない。
 本発明の分散剤は、着色材の分散性能が高く、カラーフィルタ用の着色組成物の分散剤として好適に使用できる。
 また、本発明の分散剤は、着色材の分散性能が高いことから、インクジェット用インク、印刷用インク、筆記用具用インク、塗料等にも使用できる。なお、ブロック共重合体の組成を適宜変更することで、有機溶媒を用いた着色組成物だけでなく、水性溶媒を用いた着色組成物にも使用できる。
<Dispersant>
The dispersant of the present invention contains the block copolymer as a main component (50% by mass or more). The block copolymer exerts an effect of enhancing the dispersibility of the colorant by adsorbing the basic group in the structure (B segment) to the colorant. In other words, the dispersant of the present invention is a component that disperses the colorant well by this effect, so there is no particular limitation on the type of colorant to be dispersed.
The dispersant of the present invention has high dispersibility for coloring materials and can be suitably used as a dispersant for colored compositions for color filters.
In addition, since the dispersant of the present invention has high dispersibility for colorants, it can also be used in inkjet inks, printing inks, writing instrument inks, paints, etc. By appropriately changing the composition of the block copolymer, it can be used not only in coloring compositions using organic solvents, but also in coloring compositions using aqueous solvents.
 前記分散剤中の前記ブロック共重合体の含有率は、50質量%以上、好ましくは70質量%以上、さらに好ましくは90質量%以上である。前記分散剤は、前記ブロック共重合体のみから構成されていてもよい。 The content of the block copolymer in the dispersant is 50% by mass or more, preferably 70% by mass or more, and more preferably 90% by mass or more. The dispersant may be composed of only the block copolymer.
<着色組成物>
 本発明の着色組成物は、前記分散剤、着色材、および、分散媒体を含有する。本発明の着色組成物は、着色材の分散性能が高く、カラーフィルタ用の着色組成物として好適に使用できる。
<Coloring composition>
The coloring composition of the present invention contains the dispersant, a colorant, and a dispersion medium. The coloring composition of the present invention has high dispersibility of the colorant and can be suitably used as a coloring composition for color filters.
(着色材)
 前記着色材の種類および粒子径は、その用途に応じて適宜選択すればよく、特に限定されない。前記着色組成物は、着色材として顔料を含有することが好ましい。顔料としては、有機顔料および無機顔料のいずれでもよいが、有機化合物を主成分とする有機顔料が特に好ましい。顔料としては、例えば、赤色顔料、黄色顔料、橙色顔料、青色顔料、緑色顔料、紫色顔料等の各色の顔料が挙げられる。顔料の構造は、モノアゾ系顔料、ジアゾ系顔料、縮合ジアゾ系顔料等のアゾ系顔料、ジケトピロロピロール系顔料、フタロシアニン系顔料、イソインドリノン系顔料、イソインドリン系顔料、キナクリドン系顔料、インディゴ系顔料、チオインディゴ系顔料、キノフタロン系顔料、ジオキサジン系顔料、アントラキノン系顔料、ペリレン系顔料、ペリノン系顔料等の多環系顔料等が挙げられる。着色組成物に含まれる顔料は、1種類のみであってもよいし、複数種類であってもよい。
(Coloring material)
The type and particle size of the coloring material may be appropriately selected according to the application, and are not particularly limited. The coloring composition preferably contains a pigment as a coloring material. The pigment may be either an organic pigment or an inorganic pigment, but an organic pigment mainly composed of an organic compound is particularly preferred. Examples of the pigment include red pigments, yellow pigments, orange pigments, blue pigments, green pigments, purple pigments, and other pigments of various colors. The structure of the pigment may include azo pigments such as monoazo pigments, diazo pigments, and condensed diazo pigments, diketopyrrolopyrrole pigments, phthalocyanine pigments, isoindolinone pigments, isoindoline pigments, quinacridone pigments, indigo pigments, thioindigo pigments, quinophthalone pigments, dioxazine pigments, anthraquinone pigments, perylene pigments, and polycyclic pigments such as perinone pigments. The pigment contained in the coloring composition may be only one type or multiple types.
 顔料の具体例としては、C.I.Pigment Red 7、9、14、41、48:1、48:2、48:3、48:4、81:1、81:2、81:3、122、123、146、149、168、177、178、179、187、200、202、208、210、215、224、254、255、264、291等の赤色顔料;C.I.Pigment Yellow 1、3、5、6、14、55、60、61、62、63、65、73、74、77、81、93、97、98、104、108、110、138、139、147、150、151、154、155、166、167、168、170、180、185、188、193、194、213等の黄色顔料;C.I.Pigment Orange 36、38、43等の橙色顔料;C.I.Pigment Blue 15、15:2、15:3、15:4、15:6、16、22、60等の青色顔料;C.I.Pigment Green 7、36、58、59、62、63、アルミニウムフタロシアニン、ポリハロゲン化アルミニウムフタロシアニン、アルミニウムフタロシアニンハイドロオキサイド、ジフェノキシホスフィニルオキシアルミニウムフタロシアニン、ジフェニルホスフィニルオキシアルミニウムフタロシアニン、ポリハロゲン化ジフェノキシホスフィニルオキシアルミニウムフタロシアニン、ポリハロゲン化ジフェニルホスフィニルオキシアルミニウムフタロシアニン等の緑色顔料;C.I.Pigment Violet 23、32、50等の紫色顔料等が挙げられる。顔料は、これらの中でも、C.I.Pigment Red 177、C.I.Pigment Red 254、C.I.Pigment Red 255、C.I.Pigment Red 264、C.I.Pigment Red 291、C.I.Pigment Blue 15、C.I.Pigment Blue 15:2、C.I.Pigment Blue 15:3、C.I.Pigment Blue 15:4、C.I.Pigment Blue 15:6、C.I.Pigment Blue 16、C.I.Pigment Green 7、C.I.Pigment Green 36、C.I.Pigment Green 58、C.I.Pigment Green 59、C.I.Pigment Green 62、Pigment Green 63等が好ましい。 Specific examples of pigments include red pigments such as C.I. Pigment Red 7, 9, 14, 41, 48:1, 48:2, 48:3, 48:4, 81:1, 81:2, 81:3, 122, 123, 146, 149, 168, 177, 178, 179, 187, 200, 202, 208, 210, 215, 224, 254, 255, 264, and 291; C.I. Yellow pigments such as C.I. Pigment Yellow 1, 3, 5, 6, 14, 55, 60, 61, 62, 63, 65, 73, 74, 77, 81, 93, 97, 98, 104, 108, 110, 138, 139, 147, 150, 151, 154, 155, 166, 167, 168, 170, 180, 185, 188, 193, 194, 213; orange pigments such as C.I. Pigment Orange 36, 38, 43; blue pigments such as C.I. Pigment Blue 15, 15:2, 15:3, 15:4, 15:6, 16, 22, 60; Examples of the pigments include green pigments such as C.I. Pigment Green 7, 36, 58, 59, 62, 63, aluminum phthalocyanine, polyhalogenated aluminum phthalocyanine, aluminum phthalocyanine hydroxide, diphenoxyphosphinyloxyaluminum phthalocyanine, diphenylphosphinyloxyaluminum phthalocyanine, polyhalogenated diphenoxyphosphinyloxyaluminum phthalocyanine, polyhalogenated diphenylphosphinyloxyaluminum phthalocyanine, and the like; and purple pigments such as C.I. Pigment Violet 23, 32, 50, and the like. Among these, the pigments include C.I. Pigment Red 177, C.I. Pigment Red 254, C.I. Pigment Red 255, C.I. Pigment Red 264, C.I. Pigment Red 291, C. I. Pigment Blue 15, C. I. Pigment Blue 15:2, C.I. I. Pigment Blue 15:3, C.I. I. Pigment Blue 15:4, C.I. I. Pigment Blue 15:6, C.I. I. Pigment Blue 16, C. I. Pigment Green 7, C. I. Pigment Green 36, C. I. Pigment Green 58, C. I. Pigment Green 59, C. I. Pigment Green 62, Pigment Green 63, etc. are preferred.
 また、前記着色材は、分散助剤として色素誘導体を含有していてもよい。前記色素誘導体としては、分散剤に含まれるブロック共重合体中の塩基性基とイオン結合させて吸着させるために、酸性基を有する酸性の色素誘導体を含有することが好ましい。この色素誘導体は、色素骨格に酸性基が導入されたものである。色素骨格としては、着色組成物を構成している着色材と同一または類似の骨格、該着色材の原料となる化合物と同一または類似の骨格が好ましい。色素骨格の具体例としては、アゾ系色素骨格、フタロシアニン系色素骨格、アントラキノン系色素骨格、トリアジン系色素骨格、アクリジン系色素骨格、ペリレン系色素骨格等を挙げることができる。色素骨格に導入される酸性基としては、カルボキシ基、リン酸基、スルホン酸基が好ましい。なお、合成の都合上、および酸性度の強さからスルホン酸基が好ましい。また、酸性基は、色素骨格に直接結合してもよいが、アルキル基やアリール基等の炭化水素基;エステル、エーテル、スルホンアミド、ウレタン結合を介して色素骨格に結合してもよい。
 色素誘導体の使用量は特に限定はないが、例えば、着色材100質量部に対して4質量部~17質量部であることが好ましい。
The colorant may contain a dye derivative as a dispersing aid. The dye derivative preferably contains an acidic dye derivative having an acidic group in order to form an ionic bond with a basic group in the block copolymer contained in the dispersant and adsorb it. This dye derivative is one in which an acidic group has been introduced into the dye skeleton. The dye skeleton is preferably the same or similar to the colorant constituting the coloring composition, or the same or similar to the compound that is the raw material of the colorant. Specific examples of the dye skeleton include an azo dye skeleton, a phthalocyanine dye skeleton, an anthraquinone dye skeleton, a triazine dye skeleton, an acridine dye skeleton, and a perylene dye skeleton. The acidic group introduced into the dye skeleton is preferably a carboxy group, a phosphoric acid group, or a sulfonic acid group. For convenience of synthesis and strength of acidity, a sulfonic acid group is preferred. The acidic group may be directly bonded to the dye skeleton, or may be bonded to the dye skeleton via a hydrocarbon group such as an alkyl group or an aryl group; an ester, an ether, a sulfonamide, or a urethane bond.
The amount of the dye derivative used is not particularly limited, but is preferably, for example, 4 to 17 parts by weight per 100 parts by weight of the colorant.
 着色組成物における着色材の含有量の上限値は、輝度の観点から、着色組成物の固形分全量中において、通常80質量%であり、70質量%が好ましく、60質量%がより好ましい。また、着色組成物における着色材の含有量の下限値は、着色組成物の固形分全量中において、通常10質量%であり、20質量%が好ましく、30質量%がより好ましい。ここで固形分とは、後述する分散媒体以外の成分である。 The upper limit of the colorant content in the coloring composition is usually 80 mass %, preferably 70 mass %, and more preferably 60 mass %, based on the total solid content of the coloring composition, from the viewpoint of brightness. The lower limit of the colorant content in the coloring composition is usually 10 mass %, preferably 20 mass %, and more preferably 30 mass %, based on the total solid content of the coloring composition. Here, the solid content refers to components other than the dispersion medium described below.
 着色組成物における着色材に対する分散剤の含有量は、着色材100質量部に対して5質量部~200質量部が好ましく、10質量部~100質量部がより好ましく、10質量部~80質量部がさらに好ましい。分散剤の含有量が前記範囲であれば着色組成物の粘度が良好となる。 The content of the dispersant relative to the colorant in the coloring composition is preferably 5 parts by mass to 200 parts by mass, more preferably 10 parts by mass to 100 parts by mass, and even more preferably 10 parts by mass to 80 parts by mass, relative to 100 parts by mass of the colorant. If the content of the dispersant is within the above range, the viscosity of the coloring composition will be good.
(分散媒体)
 本発明で使用する分散媒体としては、着色組成物を構成する他の成分を分散または溶解し、かつこれらの成分と反応せず、適度に揮発性を有するものである限り、適宜に選択して使用できる。例えば、従来公知の有機溶媒を使用することができ、例えば、従来公知の有機溶媒を使用することができ、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-ブチルエーテル、プロピレングリコール-t-ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、メトキシメチルペンタノール、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、3-メチル-3-メトキシブタノール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリプロピレングリコールメチルエーテル等のグリコールモノアルキルエーテル類;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル、ジプロピレングリコールジメチルエーテル等のグリコールジアルキルエーテル類;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノ-n-ブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、メトキシブチルアセテート、3-メトキシブチルアセテート、メトキシペンチルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノ-n-ブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノエチルエーテルアセテート、3-メチル-3-メトキシブチルアセテート等のグリコールアルキルエーテルアセテート類;エチレングリコールジアセテート、1,3-ブチレングリコールジアセテート、1,6-ヘキサノールジアセテート等のグリコールジアセテート類;シクロヘキサノールアセテート等のアルキルアセテート類;アミルエーテル、プロピルエーテル、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ブチルエーテル、ジアミルエーテル、エチルイソブチルエーテル、ジヘキシルエーテル等のエーテル類;アセトン、メチルエチルケトン、メチルアミルケトン、メチルイソプロピルケトン、メチルイソアミルケトン、ジイソプロピルケトン、ジイソブチルケトン、メチルイソブチルケトン、シクロヘキサノン、エチルアミルケトン、メチルブチルケトン、メチルヘキシルケトン、メチルノニルケトン、メトキシメチルペンタノン等のケトン類;エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、エチレングリコール、プロピレングリコール、ブタンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、メトキシプロパノール、メトキシメチルペンタノール、グリセリン、ベンジルアルコール等の1価または多価アルコール類;n-ペンタン、n-オクタン、ジイソブチレン、n-ヘキサン、ヘキセン、イソプレン、ジペンテン、ドデカン等の脂肪族炭化水素類;シクロヘキサン、メチルシクロヘキサン、メチルシクロヘキセン、ビシクロヘキシル等の脂環式炭化水素類;ベンゼン、トルエン、キシレン、クメン等の芳香族炭化水素類;アミルホルメート、エチルホルメート、酢酸エチル、酢酸ブチル、酢酸プロピル、酢酸アミル、メチルイソブチレート、エチレングリコールアセテート、エチルプロピオネート、プロピルプロピオネート、酪酸ブチル、酪酸イソブチル、イソ酪酸メチル、エチルカプリレート、ブチルステアレート、エチルベンゾエート、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、γ-ブチロラクトン等の鎖状または環状エステル類;3-メトキシプロピオン酸、3-エトキシプロピオン酸等のアルコキシカルボン酸類;ブチルクロライド、アミルクロライド等のハロゲン化炭化水素類;メトキシメチルペンタノン等のエーテルケトン類;アセトニトリル、ベンゾニトリル等のニトリル類等が挙げられる。有機溶媒は、着色材等の分散性、分散剤の溶解性、着色組成物の塗布性等の観点から、グリコールアルキルエーテルアセテート類、グリコールモノアルキルエーテル類、1価または多価アルコール類であることが好ましい。着色組成物に含まれる分散媒体は、1種類のみであってもよいし、複数種類であってもよい。
(Dispersion Medium)
The dispersion medium used in the present invention can be appropriately selected and used as long as it disperses or dissolves other components constituting the coloring composition, does not react with these components, and has moderate volatility. For example, conventionally known organic solvents can be used, for example, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-n-butyl ether, propylene glycol-t-butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-butyl ether, methoxymethyl pentanol, dipropylene glycol monoethyl ether, dipropylene glycol monomethyl ether, 3-methyl-3-methoxybutanol, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, tripropylene glycol methyl ether and other glycol monoalkyl ethers; ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, Glycol dialkyl ethers such as diethylene glycol dipropyl ether, diethylene glycol dibutyl ether, and dipropylene glycol dimethyl ether; glycol alkyl ether acetates such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol mono-n-butyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, propylene glycol monobutyl ether acetate, methoxybutyl acetate, 3-methoxybutyl acetate, methoxypentyl acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol mono-n-butyl ether acetate, dipropylene glycol monomethyl ether acetate, triethylene glycol monomethyl ether acetate, triethylene glycol monoethyl ether acetate, and 3-methyl-3-methoxybutyl acetate; ethylene glycol diacetate glycol diacetates such as 1,3-butylene glycol diacetate and 1,6-hexanol diacetate; alkyl acetates such as cyclohexanol acetate; ethers such as amyl ether, propyl ether, diethyl ether, dipropyl ether, diisopropyl ether, butyl ether, diamyl ether, ethyl isobutyl ether and dihexyl ether; acetone, methyl ethyl ketone, methyl amyl ketone, methyl isopropyl ketone, methyl isoamyl ketone, diisopropyl ketone, diisobutyl ketone, methyl isopropyl ether, diisobutyl ketone, methyl ethyl ketone, diisobutyl ketone, methyl ethyl ketone, diisopropyl ether ... Ketones such as butyl ketone, cyclohexanone, ethyl amyl ketone, methyl butyl ketone, methyl hexyl ketone, methyl nonyl ketone, and methoxymethyl pentanone; monohydric or polyhydric alcohols such as ethanol, propanol, butanol, hexanol, cyclohexanol, ethylene glycol, propylene glycol, butanediol, diethylene glycol, dipropylene glycol, triethylene glycol, methoxypropanol, methoxymethyl pentanol, glycerin, and benzyl alcohol; n-pentane, n-octane, and diisobutylene. aliphatic hydrocarbons such as n-hexane, hexene, isoprene, dipentene, and dodecane; alicyclic hydrocarbons such as cyclohexane, methylcyclohexane, methylcyclohexene, and bicyclohexyl; aromatic hydrocarbons such as benzene, toluene, xylene, and cumene; amyl formate, ethyl formate, ethyl acetate, butyl acetate, propyl acetate, amyl acetate, methyl isobutyrate, ethylene glycol acetate, ethyl propionate, propyl propionate, butyl butyrate, isobutyl butyrate, methyl isobutyrate, ethyl caprylate, butyl stearate, Examples of the organic solvent include chain or cyclic esters such as ethyl benzoate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, propyl 3-methoxypropionate, butyl 3-methoxypropionate, and γ-butyrolactone; alkoxycarboxylic acids such as 3-methoxypropionic acid and 3-ethoxypropionic acid; halogenated hydrocarbons such as butyl chloride and amyl chloride; ether ketones such as methoxymethylpentanone; and nitriles such as acetonitrile and benzonitrile. From the viewpoints of dispersibility of colorants, solubility of dispersants, and coatability of the coloring composition, the organic solvent is preferably glycol alkyl ether acetates, glycol monoalkyl ethers, and monohydric or polyhydric alcohols. The dispersion medium contained in the coloring composition may be one type only, or may be a plurality of types.
 フォトリソグラフィ法にてカラーフィルタの画素を形成する場合、分散媒体の沸点が100℃~200℃(圧力1013.25hPa条件下。以下、沸点に関しては全て同様。)が好ましく、120℃~170℃がより好ましい。上記分散媒体の中でも、塗布性、表面張力などのバランスがよく、着色組成物中の構成成分の溶解度が比較的高い点から、グリコールアルキルエーテルアセテート類が好ましい。グリコールアルキルエーテルアセテート類は単独で使用しても良いし、他の分散媒体を併用しても良い。また、沸点が150℃以上の分散媒体を併用することも好ましい。沸点の高い分散媒体を併用することにより、着色組成物が急激に乾燥することによる着色組成物の相互関係の破壊を抑制できる。なお、沸点が150℃以上の分散媒体が、グリコールアルキルエーテルアセテート類であってもよい。 When forming pixels of a color filter by photolithography, the boiling point of the dispersion medium is preferably 100°C to 200°C (under a pressure condition of 1013.25 hPa. The same applies to all boiling points below), and more preferably 120°C to 170°C. Among the above dispersion media, glycol alkyl ether acetates are preferred because they have a good balance of application properties, surface tension, etc., and the solubility of the components in the coloring composition is relatively high. Glycol alkyl ether acetates may be used alone or in combination with other dispersion media. It is also preferable to use a dispersion medium having a boiling point of 150°C or higher in combination. By using a dispersion medium with a high boiling point in combination, the destruction of the interrelationships of the coloring composition due to the rapid drying of the coloring composition can be suppressed. The dispersion medium having a boiling point of 150°C or higher may be a glycol alkyl ether acetate.
 着色組成物中の分散媒体の含有量は、特に限定されず、適宜調整することができる。着色組成物中の分散媒体の含有量の上限値は、通常99質量%である。また、着色組成物中の分散媒体の含有量の下限値は、着色組成物の塗布に適した粘度を考慮して、通常70質量%であり、80質量%であることが好ましい。上記分散媒体は、着色組成物から形成される析出物を溶解、除去するための溶媒として使用できる。 The content of the dispersion medium in the coloring composition is not particularly limited and can be adjusted as appropriate. The upper limit of the content of the dispersion medium in the coloring composition is usually 99% by mass. The lower limit of the content of the dispersion medium in the coloring composition is usually 70% by mass, preferably 80% by mass, taking into account the viscosity suitable for application of the coloring composition. The above dispersion medium can be used as a solvent for dissolving and removing precipitates formed from the coloring composition.
(バインダー樹脂)
 前記着色組成物は、バインダー樹脂(ただし、前記ブロック共重合体は除く。)を含有してもよい。前記バインダー樹脂としては、アルカリ可溶性樹脂、重合性化合物(重合性樹脂、重合性不飽和結合を分子内に1個有するモノマー、重合性不飽和結合を分子内に2個以上有するモノマー、オリゴマー等)、熱硬化性樹脂、熱可塑性樹脂等が挙げられる。これらは単独又は2種以上を混合して用いることができる。これらの中でも、好ましくはアルカリ可溶性樹脂および/または重合性化合物である。
(Binder resin)
The coloring composition may contain a binder resin (excluding the block copolymer). Examples of the binder resin include an alkali-soluble resin, a polymerizable compound (polymerizable resin, a monomer having one polymerizable unsaturated bond in the molecule, a monomer having two or more polymerizable unsaturated bonds in the molecule, an oligomer, etc.), a thermosetting resin, a thermoplastic resin, etc. These can be used alone or in a mixture of two or more kinds. Among these, an alkali-soluble resin and/or a polymerizable compound is preferable.
 着色組成物におけるバインダー樹脂の含有量は、使用するバインダー樹脂の合計量で、着色組成物の固形分全量中、1質量%以上が好ましく、より好ましくは2質量%以上、さらに好ましくは5質量%以上であり、70質量%以下が好ましく、より好ましくは60質量%以下、さらに好ましくは50質量%以下である。 The content of the binder resin in the coloring composition is the total amount of the binder resin used, and is preferably 1% by mass or more, more preferably 2% by mass or more, and even more preferably 5% by mass or more, of the total solid content of the coloring composition, and is preferably 70% by mass or less, more preferably 60% by mass or less, and even more preferably 50% by mass or less.
(アルカリ可溶性樹脂)
 前記アルカリ可溶性樹脂としては、着色材に対してバインダーとして作用し、かつカラーフィルタを製造する際に、その現像処理工程において用いられる現像液、好ましくはアルカリ現像液に対して可溶性を有するものであれば、特に限定されるものではないが、カルボキシ基、フェノール性ヒドロキシ基等の酸性基を有する樹脂であることが好ましい。
(Alkali-soluble resin)
The alkali-soluble resin is not particularly limited as long as it acts as a binder for a colorant and is soluble in a developer, preferably an alkaline developer, used in the development process when producing a color filter. However, it is preferable that the alkali-soluble resin is a resin having an acidic group such as a carboxy group or a phenolic hydroxy group.
 前記アルカリ可溶性樹脂としては、例えば、エポキシ基含有(メタ)アクリレートと、他のラジカル重合性単量体との共重合体に対し、該共重合体が有するエポキシ基の少なくとも一部に不飽和一塩基酸を付加させてなる樹脂、または該付加反応により生じたヒドロキシ基の少なくとも一部に多塩基酸無水物を付加させて得られる樹脂;主鎖にカルボキシ基を含有する直鎖状樹脂;カルボキシ基含有樹脂のカルボキシ基部分に、エポキシ基含有不飽和化合物を付加させた樹脂;(メタ)アクリル系樹脂;カルボキシ基を有するエポキシ(メタ)アクリレート樹脂等を挙げることができ、これらを単独または2種以上を混合して使用することができる。 Examples of the alkali-soluble resin include a resin obtained by adding an unsaturated monobasic acid to at least a portion of the epoxy groups in a copolymer of an epoxy group-containing (meth)acrylate and another radically polymerizable monomer, or a resin obtained by adding a polybasic acid anhydride to at least a portion of the hydroxyl groups produced by the addition reaction; a linear resin containing a carboxy group in the main chain; a resin in which an epoxy group-containing unsaturated compound is added to the carboxy group portion of a carboxy group-containing resin; a (meth)acrylic resin; an epoxy (meth)acrylate resin having a carboxy group, and the like. These can be used alone or in a mixture of two or more kinds.
 前記アルカリ可溶性樹脂としては、カルボキシ基含有ビニルモノマーに由来する構造単位と(メタ)アクリレートに由来する構造単位とスチレンとを含有するランダム共重合体、エポキシ樹脂に(メタ)アクリル基が導入された合成樹脂、カルボキシ基含有ビニルモノマーに由来する構造単位と(メタ)アクリレートに由来する構造単位とを含有するランダム共重合体が好ましい。前記カルボキシ基含有ビニルモノマーとしては、(メタ)アクリル酸が好ましい。前記(メタ)アクリレートとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸トリシクロデカニル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸ヒドロキシプロピル、モノ(メタ)アクリル酸グリセロール、(メタ)アクリル酸グリシジル、(メタ)アクリル酸(3,4-エポキシシクロヘキシル)メチル、(メタ)アクリル酸テトラヒドロフルフリル等が挙げられる。 Preferred examples of the alkali-soluble resin include random copolymers containing structural units derived from a carboxyl group-containing vinyl monomer, structural units derived from a (meth)acrylate, and styrene, synthetic resins in which a (meth)acrylic group has been introduced into an epoxy resin, and random copolymers containing structural units derived from a carboxyl group-containing vinyl monomer and structural units derived from a (meth)acrylate. Preferred examples of the carboxyl group-containing vinyl monomer include (meth)acrylic acid. Examples of the (meth)acrylate include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, benzyl (meth)acrylate, phenoxyethyl (meth)acrylate, cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, adamantyl (meth)acrylate, tricyclodecanyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, hydroxypropyl (meth)acrylate, glycerol mono(meth)acrylate, glycidyl (meth)acrylate, (3,4-epoxycyclohexyl)methyl (meth)acrylate, and tetrahydrofurfuryl (meth)acrylate.
 前記アルカリ可溶性樹脂は、カルボキシ基含有ビニルモノマーに由来する構造単位と(メタ)アクリレートに由来する構造単位との合計含有率が、50質量%以上が好ましく、より好ましくは60質量%以上、さらに好ましくは70質量%以上である。また、前記アルカリ可溶性樹脂は、カルボキシ基含有ビニルモノマーに由来する構造の含有率が、5質量%以上が好ましく、より好ましくは10質量%以上、さらに好ましくは20質量%以上であり、90質量%以下が好ましく、より好ましくは70質量%以下である。 The alkali-soluble resin preferably has a total content of structural units derived from carboxyl group-containing vinyl monomers and structural units derived from (meth)acrylates of 50% by mass or more, more preferably 60% by mass or more, and even more preferably 70% by mass or more. The alkali-soluble resin preferably has a total content of structures derived from carboxyl group-containing vinyl monomers of 5% by mass or more, more preferably 10% by mass or more, and even more preferably 20% by mass or more, and is preferably 90% by mass or less, and more preferably 70% by mass or less.
 前記アルカリ可溶性樹脂の中でも、カルボキシ基含有ビニルモノマーと(メタ)アクリレートとのランダム共重合体であることが好ましい。このような共重合体の具体例としては、(メタ)アクリル酸と(メタ)アクリル酸ブチルとのランダム共重合体、(メタ)アクリル酸と(メタ)アクリル酸ベンジルとのランダム共重合体、(メタ)アクリル酸と(メタ)アクリル酸ブチルと(メタ)アクリル酸ベンジルとのランダム共重合体等が挙げられる。アルカリ可溶性樹脂と着色材との親和性の観点からは、アルカリ可溶性樹脂は、(メタ)アクリル酸と(メタ)アクリル酸ベンジルとのランダム共重合体であることが特に好ましい。カルボキシ基含有ビニルモノマーと(メタ)アクリレートとの共重合体において、(メタ)アクリル酸の含有量は、全モノマー成分中、通常5質量%~90質量%であり、10質量%~70質量%であることが好ましく、20質量%~70質量%であることがより好ましい。これらランダム共重合体の重合法は特に限定されないが、アルカリ可溶解性の観点からリビングラジカル重合が好ましい。 Among the above-mentioned alkali-soluble resins, random copolymers of carboxy-containing vinyl monomers and (meth)acrylates are preferred. Specific examples of such copolymers include random copolymers of (meth)acrylic acid and butyl (meth)acrylate, random copolymers of (meth)acrylic acid and benzyl (meth)acrylate, and random copolymers of (meth)acrylic acid, butyl (meth)acrylate, and benzyl (meth)acrylate. From the viewpoint of the affinity between the alkali-soluble resin and the colorant, the alkali-soluble resin is particularly preferably a random copolymer of (meth)acrylic acid and benzyl (meth)acrylate. In the copolymer of a carboxy-containing vinyl monomer and a (meth)acrylate, the content of (meth)acrylic acid is usually 5% by mass to 90% by mass, preferably 10% by mass to 70% by mass, and more preferably 20% by mass to 70% by mass, of the total monomer components. The polymerization method for these random copolymers is not particularly limited, but living radical polymerization is preferred from the viewpoint of alkali solubility.
 前記アルカリ可溶性樹脂は、側鎖にラジカル重合可能な炭素-炭素二重結合を有するものであってもよい。側鎖に二重結合を有することで、本発明に係る着色組成物の光硬化性が高まるため、解像度、密着性を更に向上することができる。側鎖にラジカル重合可能な炭素-炭素二重結合を導入する方法としては、例えば、(メタ)アクリル酸グリシジル、(メタ)アクリル酸(3,4-エポキシシクロヘキシル)メチル、o-(またはm-、またはp-)ビニルベンジルグリシジルエーテル等の化合物を、前記バインダー樹脂の酸性基に反応させる方法が挙げられる。 The alkali-soluble resin may have a radically polymerizable carbon-carbon double bond in the side chain. By having a double bond in the side chain, the photocurability of the coloring composition according to the present invention is increased, and therefore the resolution and adhesion can be further improved. Examples of a method for introducing a radically polymerizable carbon-carbon double bond in the side chain include a method of reacting a compound such as glycidyl (meth)acrylate, (3,4-epoxycyclohexyl)methyl (meth)acrylate, or o-(or m-, or p-)vinylbenzyl glycidyl ether with the acidic group of the binder resin.
 アルカリ可溶性樹脂のMwは、3,000~100,000であることが好ましく、5,000~50,000がより好ましく、5,000~20,000がさらに好ましい。アルカリ可溶性樹脂のMwが3,000以上であると、着色組成物から形成された着色層の耐熱性、膜強度等が良好となり、Mwが100,000以下であると、この塗布膜のアルカリ現像性がより一層良好となる。 The Mw of the alkali-soluble resin is preferably 3,000 to 100,000, more preferably 5,000 to 50,000, and even more preferably 5,000 to 20,000. If the Mw of the alkali-soluble resin is 3,000 or more, the heat resistance, film strength, etc. of the colored layer formed from the colored composition will be good, and if the Mw is 100,000 or less, the alkaline developability of this coating film will be even better.
 アルカリ可溶性樹脂の酸価は、20mgKOH/g~170mgKOH/gが好ましく、50mgKOH/g~150mgKOH/gがより好ましく、90mgKOH/g~150mgKOH/gがさらに好ましい。アルカリ可溶性樹脂の酸価が20mgKOH/g以上であると、着色組成物を着色層としたときのアルカリ現像性がより一層良好となり、170mgKOH/g以下であると耐熱性が良好となる。 The acid value of the alkali-soluble resin is preferably 20 mgKOH/g to 170 mgKOH/g, more preferably 50 mgKOH/g to 150 mgKOH/g, and even more preferably 90 mgKOH/g to 150 mgKOH/g. If the acid value of the alkali-soluble resin is 20 mgKOH/g or more, the alkali developability becomes even better when the coloring composition is used as a colored layer, and if it is 170 mgKOH/g or less, the heat resistance becomes good.
 着色組成物に含まれるアルカリ可溶性樹脂は、1種類のみであってもよいし、複数種類であってもよい。着色組成物において、アルカリ可溶性樹脂の含有量は、着色材100質量部に対して、5質量部~200質量部が好ましく、10質量部~100質量部がより好ましく、20質量部~80質量部がさらに好ましい。 The coloring composition may contain only one type of alkali-soluble resin, or multiple types. In the coloring composition, the content of the alkali-soluble resin is preferably 5 parts by mass to 200 parts by mass, more preferably 10 parts by mass to 100 parts by mass, and even more preferably 20 parts by mass to 80 parts by mass, per 100 parts by mass of the coloring material.
(重合性化合物)
 前記重合性化合物としての重合性樹脂(例えば、ヒドロキシ基、カルボキシ基、アミノ基等の反応性の置換基を有する線状高分子にイソシアネート基、アルデヒド基、エポキシ基等を介して、(メタ)アクリル化合物、ケイヒ酸等の架橋性基を導入した樹脂)、重合性不飽和結合を分子内に1個有する化合物(例えば、単官能(メタ)アクリルモノマー(アルキル(メタ)アクリレート、アラルキル(メタ)アクリレート等))、重合性不飽和結合を分子内に2個以上有する化合物(例えば、多官能(メタ)アクリルモノマー(2価アルコールのジ(メタ)アクリレート、3価以上の多価アルコールのポリ(メタ)アクリレート等))等が挙げられる。重合性不飽和結合としては、炭素-炭素二重結合、炭素-炭素三重結合が挙げられる。これらは単独又は2種以上を混合して用いることができる。これらの中でも重合性不飽和結合を分子内に2個以上有する化合物が好ましい。
(Polymerizable compound)
Examples of the polymerizable compound include polymerizable resins (e.g., resins in which a crosslinkable group such as a (meth)acrylic compound or cinnamic acid is introduced into a linear polymer having a reactive substituent such as a hydroxy group, a carboxy group, or an amino group via an isocyanate group, an aldehyde group, or an epoxy group), compounds having one polymerizable unsaturated bond in the molecule (e.g., monofunctional (meth)acrylic monomers (alkyl (meth)acrylates, aralkyl (meth)acrylates, etc.)), compounds having two or more polymerizable unsaturated bonds in the molecule (e.g., polyfunctional (meth)acrylic monomers (di(meth)acrylates of dihydric alcohols, poly(meth)acrylates of trihydric or higher polyhydric alcohols, etc.)). Examples of the polymerizable unsaturated bond include carbon-carbon double bonds and carbon-carbon triple bonds. These can be used alone or in combination of two or more. Among these, compounds having two or more polymerizable unsaturated bonds in the molecule are preferred.
 前記重合性化合物としての重合性不飽和結合を分子内に2個以上有するモノマーとしては、ビスフェノールAジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等が挙げられる。  Examples of the monomer having two or more polymerizable unsaturated bonds in the molecule as the polymerizable compound include bisphenol A di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,3-butylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, glycerol di(meth)acrylate, neopentyl glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, dipentaerythritol penta(meth)acrylate, etc.
 着色組成物における重合性化合物の含有量は、着色材100質量部に対して、10質量部~1,000質量部が好ましく、20質量部~500質量部がより好ましい。重合性化合物の含有量が上記範囲内であれば、十分な硬化性が得られ、アルカリ現像性も良好となる。バインダー樹脂として、アルカリ可溶性樹脂と重合性化合物とを併用することも好ましい。 The content of the polymerizable compound in the coloring composition is preferably 10 parts by mass to 1,000 parts by mass, and more preferably 20 parts by mass to 500 parts by mass, per 100 parts by mass of the coloring material. If the content of the polymerizable compound is within the above range, sufficient curability is obtained and alkaline developability is also good. It is also preferable to use an alkali-soluble resin and a polymerizable compound in combination as the binder resin.
(熱硬化性樹脂、熱可塑性樹脂)
 前記熱硬化性樹脂や熱可塑性樹脂としては、例えば、ブチラール樹脂、スチレン-マレイン酸共重合体、塩素化ポリエチレン、塩素化ポリプロピレン、ポリ塩化ビニル、塩化ビニル-酢酸ビニル共重合体、ポリ酢酸ビニル、ポリウレタン系樹脂、フェノール樹脂、ポリエステル樹脂、(メタ)アクリル系樹脂、アルキッド樹脂、スチレン樹脂、ポリアミド樹脂、ゴム系樹脂、環化ゴム、エポキシ樹脂、セルロース類、ポリブタジエン、ポリイミド樹脂、ベンゾグアナミン樹脂、メラミン樹脂、尿素樹脂等が挙げられる。
(Thermosetting resin, thermoplastic resin)
Examples of the thermosetting resin and thermoplastic resin include butyral resin, styrene-maleic acid copolymer, chlorinated polyethylene, chlorinated polypropylene, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polyvinyl acetate, polyurethane resin, phenol resin, polyester resin, (meth)acrylic resin, alkyd resin, styrene resin, polyamide resin, rubber resin, cyclized rubber, epoxy resin, cellulose, polybutadiene, polyimide resin, benzoguanamine resin, melamine resin, and urea resin.
(光重合開始剤)
 本発明の着色組成物は、必要に応じて、光重合開始剤を含有してもよい。これにより、着色組成物に感放射線性を付与することができる。前記光重合開始剤は、可視光線、紫外線、遠赤外線、電子線、X線等の放射線の露光により、重合性化合物の重合を開始し得る活性種を発生する化合物である。
(Photopolymerization initiator)
The coloring composition of the present invention may contain a photopolymerization initiator as necessary. This can impart radiation sensitivity to the coloring composition. The photopolymerization initiator is a compound that generates an active species that can initiate polymerization of a polymerizable compound by exposure to radiation such as visible light, ultraviolet light, far infrared light, electron beams, and X-rays.
 前記光重合開始剤としては、例えば、チオキサントン系化合物、アセトフェノン系化合物、ビイミダゾール系化合物、トリアジン系化合物、O-アシルオキシム系化合物、オニウム塩系化合物、ベンゾイン系化合物、ベンゾフェノン系化合物、α-ジケトン系化合物、多核キノン系化合物、ジアゾ系化合物、イミドスルホナート系化合物等を挙げることができる。光重合開始剤は、単独または2種以上を混合して使用することができる。 The photopolymerization initiator may, for example, be a thioxanthone-based compound, an acetophenone-based compound, a biimidazole-based compound, a triazine-based compound, an O-acyloxime-based compound, an onium salt-based compound, a benzoin-based compound, a benzophenone-based compound, an α-diketone-based compound, a polynuclear quinone-based compound, a diazo-based compound, an imide sulfonate-based compound, or the like. The photopolymerization initiator may be used alone or in a mixture of two or more types.
 本発明の着色組成物において、光重合開始剤の含有量は、重合性化合物100質量部に対して、0.01質量部~120質量部が好ましく、1質量部~100質量部がより好ましい。この場合、光重合開始剤の含有量が少なすぎると、露光により硬化が不十分となるおそれがあり、一方多すぎると、形成された着色層が現像時に基板から脱落しやすくなる傾向がある。 In the coloring composition of the present invention, the content of the photopolymerization initiator is preferably 0.01 parts by mass to 120 parts by mass, and more preferably 1 part by mass to 100 parts by mass, relative to 100 parts by mass of the polymerizable compound. In this case, if the content of the photopolymerization initiator is too low, there is a risk that curing due to exposure to light will be insufficient, while if the content is too high, the formed coloring layer will tend to easily fall off from the substrate during development.
(他の配合剤)
 本発明の着色組成物には、本発明の好ましい物性を損なわない範囲であれば、前記配合剤以外に、他の配合剤を配合することができる。他の配合剤としては、上記ブロック共重合体を除く分散剤(ウレタン系分散剤、ポリエチレンイミン系分散剤、ポリオキシエチレンアルキルエーテル系分散剤、ポリオキシエチレングリコールジエステル系分散剤、ソルビタン脂肪族エステル系分散剤、脂肪族変性ポリエステル系分散剤等)、増感色素、熱重合防止剤、界面活性剤(非イオン系界面活性剤、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤)、可塑剤、有機カルボン酸化合物、有機カルボン酸無水物、酸化防止剤、紫外線吸収剤、光安定剤、pH調整剤、防腐剤、防カビ剤、凝集防止剤、密着性改良剤、現像改良剤、保存安定剤等を挙げることができる。
(Other compounding agents)
In the coloring composition of the present invention, other compounding agents can be added in addition to the above compounding agents, so long as the preferable physical properties of the present invention are not impaired. Examples of other compounding agents include dispersants other than the block copolymers (urethane-based dispersing agents, polyethyleneimine-based dispersing agents, polyoxyethylene alkyl ether-based dispersing agents, polyoxyethylene glycol diester-based dispersing agents, sorbitan aliphatic ester-based dispersing agents, aliphatic modified polyester-based dispersing agents, etc.), sensitizing dyes, thermal polymerization inhibitors, surfactants (nonionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants), plasticizers, organic carboxylic acid compounds, organic carboxylic anhydrides, antioxidants, ultraviolet absorbers, light stabilizers, pH adjusters, preservatives, antifungal agents, aggregation inhibitors, adhesion improvers, development improvers, storage stabilizers, etc.
 増感色素としては、4,4’-ジメチルアミノベンゾフェノン、4,4’-ジエチルアミノベンゾフェノン、2-アミノベンゾフェノン、4-アミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4-ジアミノベンゾフェノン、2-(p-ジメチルアミノフェニル)ベンゾオキサゾール、2-(p-ジエチルアミノフェニル)ベンゾオキサゾール、2-(p-ジメチルアミノフェニル)ベンゾ[4,5]ベンゾオキサゾール、2-(p-ジメチルアミノフェニル)ベンゾ[6,7]ベンゾオキサゾール、2,5-ビス(p-ジエチルアミノフェニル)1,3,4-オキサゾール、2-(p-ジメチルアミノフェニル)ベンゾチアゾール、2-(p-ジエチルアミノフェニル)ベンゾチアゾール、2-(p-ジメチルアミノフェニル)ベンゾイミダゾール、2-(p-ジエチルアミノフェニル)ベンゾイミダゾール、2,5-ビス(p-ジエチルアミノフェニル)1,3,4-チアジアゾール、(p-ジメチルアミノフェニル)ピリジン、(p-ジエチルアミノフェニル)ピリジン、(p-ジメチルアミノフェニル)キノリン、(p-ジエチルアミノフェニル)キノリン、(p-ジメチルアミノフェニル)ピリミジン、(p-ジエチルアミノフェニル)ピリミジン等が挙げられる。 Sensitizing dyes include 4,4'-dimethylaminobenzophenone, 4,4'-diethylaminobenzophenone, 2-aminobenzophenone, 4-aminobenzophenone, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 3,4-diaminobenzophenone, 2-(p-dimethylaminophenyl)benzoxazole, 2-(p-diethylaminophenyl)benzoxazole, 2-(p-dimethylaminophenyl)benzo[4,5]benzoxazole, 2-(p-dimethylaminophenyl)benzo[6,7]benzoxazole, 2,5-bis(p-diethylaminophenyl)1,3,4- Examples include oxazole, 2-(p-dimethylaminophenyl)benzothiazole, 2-(p-diethylaminophenyl)benzothiazole, 2-(p-dimethylaminophenyl)benzimidazole, 2-(p-diethylaminophenyl)benzimidazole, 2,5-bis(p-diethylaminophenyl)1,3,4-thiadiazole, (p-dimethylaminophenyl)pyridine, (p-diethylaminophenyl)pyridine, (p-dimethylaminophenyl)quinoline, (p-diethylaminophenyl)quinoline, (p-dimethylaminophenyl)pyrimidine, (p-diethylaminophenyl)pyrimidine, etc.
 熱重合防止剤としては、ハイドロキノン、p-メトキシフェノール、ピロガロール、カテコール、2,6-t-ブチル-p-クレゾール、β-ナフトール等が挙げられる。 Thermal polymerization inhibitors include hydroquinone, p-methoxyphenol, pyrogallol, catechol, 2,6-t-butyl-p-cresol, and β-naphthol.
 非イオン系界面活性剤としては、フッ素系界面活性剤(1,1,2,2-テトラフロロオクチル(1,1,2,2-テトラフロロプロピル)エーテル、1,1,2,2-テトラフロロオクチルヘキシルエーテル、オクタエチレングリコールジ(1,1,2,2-テトラフロロブチル)エーテル、ヘキサエチレングリコールジ(1,1,2,2,3,3-ヘキサフロロペンチル)エーテル、オクタプロピレングリコールジ(1,1,2,2-テトラフロロブチル)エーテル、ヘキサプロピレングリコールジ(1,1,2,2,3,3-ヘキサフロロペンチル)エーテル、パーフロロドデシルスルホン酸ナトリウム、1,1,2,2,8,8,9,9,10,10-デカフロロドデカン、1,1,2,2,3,3-ヘキサフロロデカン等)、シリコーン系界面活性剤、ポリオキシエチレン系界面活性剤(ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンポリオキシプロピレンアルキルエーテル類、ポリオキシエチレンアルキルフェニルエーテル類、ポリオキシエチレンアルキルエステル類、ポリオキシエチレン脂肪酸エステル類、グリセリン脂肪酸エステル類、ポリオキシエチレングリセリン脂肪酸エステル類、ペンタエリスリット脂肪酸エステル類、ポリオキシエチレンペンタエリスリット脂肪酸エステル類、ソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタン脂肪酸エステル類、ソルビット脂肪酸エステル類、ポリオキシエチレンソルビット脂肪酸エステル類等)等が挙げられる。 Nonionic surfactants include fluorine-based surfactants (1,1,2,2-tetrafluorooctyl (1,1,2,2-tetrafluoropropyl) ether, 1,1,2,2-tetrafluorooctylhexyl ether, octaethylene glycol di(1,1,2,2-tetrafluorobutyl) ether, hexaethylene glycol di(1,1,2,2,3,3-hexafluoropentyl) ether, octapropylene glycol di(1,1,2,2-tetrafluorobutyl) ether, hexapropylene glycol di(1,1,2,2,3,3-hexafluoropentyl) ether, sodium perfluorododecyl sulfonate, 1,1,2,2,8,8,9,9,10,10-decafluorododecane, 1,1,2,2, 3,3-hexafluorodecane, etc.), silicone surfactants, polyoxyethylene surfactants (polyoxyethylene alkyl ethers, polyoxyethylene polyoxypropylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, polyoxyethylene alkyl esters, polyoxyethylene fatty acid esters, glycerin fatty acid esters, polyoxyethylene glycerin fatty acid esters, pentaerythritol fatty acid esters, polyoxyethylene pentaerythritol fatty acid esters, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, sorbitol fatty acid esters, polyoxyethylene sorbitol fatty acid esters, etc.), etc.
 アニオン系界面活性剤としては、アルキルスルホン酸塩類、アルキルベンゼンスルホン酸塩類、アルキルナフタレンスルホン酸塩類、ポリオキシエチレンアルキルエーテルスルホン酸塩類、アルキル硫酸塩類、アルキル硫酸エステル塩類、高級アルコール硫酸エステル塩類、脂肪族アルコール硫酸エステル塩類、ポリオキシエチレンアルキルエーテル硫酸塩類、ポリオキシエチレンアルキルフェニルエーテル硫酸塩類、アルキル燐酸エステル塩類、ポリオキシエチレンアルキルエーテル燐酸塩類、ポリオキシエチレンアルキルフェニルエーテル燐酸塩類、特殊高分子系界面活性剤等が挙げられる。 Anionic surfactants include alkyl sulfonates, alkyl benzene sulfonates, alkyl naphthalene sulfonates, polyoxyethylene alkyl ether sulfonates, alkyl sulfates, alkyl sulfate ester salts, higher alcohol sulfate ester salts, aliphatic alcohol sulfate ester salts, polyoxyethylene alkyl ether sulfates, polyoxyethylene alkyl phenyl ether sulfates, alkyl phosphate ester salts, polyoxyethylene alkyl ether phosphates, polyoxyethylene alkyl phenyl ether phosphates, special polymer surfactants, etc.
 カチオン系界面活性剤としては、第4級アンモニウム塩類、イミダゾリン誘導体類、アルキルアミン塩類等が挙げられる。 Cationic surfactants include quaternary ammonium salts, imidazoline derivatives, alkylamine salts, etc.
 両性界面活性剤としては、ベタイン型化合物類、イミダゾリウム塩類、イミダゾリン類、アミノ酸類等が挙げられる。 Examples of amphoteric surfactants include betaine-type compounds, imidazolium salts, imidazolines, amino acids, etc.
 可塑剤としては、ジオクチルフタレート、ジドデシルフタレート、トリエチレングリコールジカプリレート、ジメチルグリコールフタレート、トリクレジルホスフェート、ジオクチルアジペート、ジブチルセバケート、トリアセチルグリセリン等が挙げられる。 Plasticizers include dioctyl phthalate, didodecyl phthalate, triethylene glycol dicaprylate, dimethyl glycol phthalate, tricresyl phosphate, dioctyl adipate, dibutyl sebacate, and triacetyl glycerin.
 有機カルボン酸化合物としては、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、ピバル酸、カプロン酸、グリコール酸、アクリル酸、メタクリル酸などの脂肪族モノカルボン酸;シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、シクロヘキサンジカルボン酸、シクロヘキセンジカルボン酸、イタコン酸、シトラコン酸、マレイン酸、フマル酸などの脂肪族ジカルボン酸;トリカルバリル酸、アコニット酸などの脂肪族トリカルボン酸;安息香酸、フタル酸、トリメシン酸、ピロペット酸、メロファン酸などのフェニル基に直接カルボキシル基が結合した芳香族カルボン酸;フェニル酢酸、ヒドロアトロパ酸、ヒドロケイ皮酸、フェニルコハク酸、シンナミリンデン酢酸などのフェニル基から炭素結合を介してカルボキシル基が結合した芳香族カルボン酸等が挙げられる。有機カルボン酸化合物を含有することで、アルカリ現像性および地汚れ改善することができる。 Organic carboxylic acid compounds include aliphatic monocarboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid, pivalic acid, caproic acid, glycolic acid, acrylic acid, and methacrylic acid; aliphatic dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, cyclohexanedicarboxylic acid, cyclohexenedicarboxylic acid, itaconic acid, citraconic acid, maleic acid, and fumaric acid; aliphatic tricarboxylic acids such as tricarballylic acid and aconitic acid; aromatic carboxylic acids in which a carboxyl group is directly bonded to a phenyl group such as benzoic acid, phthalic acid, trimesic acid, pyropetoic acid, and mellophanic acid; and aromatic carboxylic acids in which a carboxyl group is bonded to a phenyl group via a carbon bond such as phenylacetic acid, hydroatropic acid, hydrocinnamic acid, phenylsuccinic acid, and cinnamylindeneacetic acid. By including an organic carboxylic acid compound, alkaline developability and background scumming can be improved.
 有機カルボン酸無水物としては、無水酢酸、無水トリクロロ酢酸、無水トリフルオロ酢酸、無水テトラヒドロフタル酸、無水コハク酸、無水マレイン酸、無水シトラコン酸、無水イタコン酸、無水グルタル酸、無水1,2-シクロヘキセンジカルボン酸、無水n-オクタデシルコハク酸、無水5-ノルボルネン-2,3-ジカルボン酸、無水フタル酸、トリメリット酸無水物、ピロメリット酸無水物、無水ナフタル酸等が挙げられる。有機カルボン酸無水物を含有することで、アルカリ現像性および地汚れ改善することができる。 Examples of organic carboxylic acid anhydrides include acetic anhydride, trichloroacetic anhydride, trifluoroacetic anhydride, tetrahydrophthalic anhydride, succinic anhydride, maleic anhydride, citraconic anhydride, itaconic anhydride, glutaric anhydride, 1,2-cyclohexene dicarboxylic anhydride, n-octadecylsuccinic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, and naphthalic anhydride. The inclusion of an organic carboxylic acid anhydride can improve alkaline developability and background scumming.
<着色組成物の製造方法>
 前記着色組成物は、着色材、分散剤(または分散剤溶液)、分散媒体、必要に応じて、バインダー樹脂、光重合開始剤、他の配合剤を混合することで調製できる。混合は、例えば、ペイントシェーカー、ビーズミル、ボールミル、ディゾルバー、ニーダー等の混合分散機を用いることができる。着色組成物は、混合後に濾過することが好ましい。前記着色組成物がアルカリ現像性を有する場合、カラーフィルタ用として好適に使用することができる。アルカリ現像液としては、有機溶剤又は界面活性剤と水酸化カリウム、炭酸水素ナトリウム、炭酸ナトリウム、水酸化テトラメチルアンモニウム等のアルカリ性化合物とを含む水溶液が使用できる。
<Method of producing colored composition>
The coloring composition can be prepared by mixing a coloring material, a dispersant (or a dispersant solution), a dispersion medium, and, if necessary, a binder resin, a photopolymerization initiator, and other compounding agents. For mixing, for example, a mixer/disperser such as a paint shaker, a bead mill, a ball mill, a dissolver, or a kneader can be used. The coloring composition is preferably filtered after mixing. When the coloring composition has alkaline developability, it can be suitably used for color filters. As the alkaline developer, an aqueous solution containing an organic solvent or a surfactant and an alkaline compound such as potassium hydroxide, sodium hydrogen carbonate, sodium carbonate, or tetramethylammonium hydroxide can be used.
<カラーフィルタ>
 本発明のカラーフィルタは、前記着色組成物を用いて形成された着色層を備えるものである。
<Color filter>
The color filter of the present invention comprises a colored layer formed using the colored composition.
 カラーフィルタを製造する方法としては、例えば、次の方法が挙げられる。まず、ポリエステル系樹脂、ポリオレフィン系樹脂、ポリカーボネート樹脂、ポリメチルメタクリレート樹脂等の熱可塑性樹脂製シート、エポキシ樹脂、不飽和ポリエステル樹脂、ポリ(メタ)アクリル系樹脂等の熱硬化性樹脂シート、各種ガラス等の透明基板上に、例えば、赤色顔料が分散された着色組成物を塗布したのち、プレベークを行って溶媒(分散媒体)を蒸発させ、塗膜を形成する。次いで、この塗膜にフォトマスクを介して露光したのち、アルカリ現像液(有機溶剤又は界面活性剤と水酸化カリウム、炭酸水素ナトリウム、炭酸ナトリウム、水酸化テトラメチルアンモニウム等のアルカリ性化合物とを含む水溶液等)を用いて現像して、塗膜の未露光部を溶解除去する。その後、ポストベークすることにより、赤色の画素パターンが所定の配列で配置された画素アレイを形成する。次いで、緑色の着色組成物または青色の着色組成物を用い、上記と同様にして、各着色組成物の塗布、プレベーク、露光、現像およびポストベークを行って、緑色の画素アレイおよび青色の画素アレイを同一基板上に順次形成する。これにより、赤色、緑色および青色の三原色の画素アレイが基板上に配置されたカラーフィルタが得られる。但し、本発明においては、各色の画素を形成する順序は、上記のものに限定されない。また、赤色、緑色および青色の三原色の画素アレイを形成に用いる透明基板上には、ブラックマトリックスが設けられていてもよい。 The following method can be used to manufacture a color filter. First, a coloring composition in which, for example, a red pigment is dispersed is applied to a transparent substrate such as a thermoplastic resin sheet such as polyester resin, polyolefin resin, polycarbonate resin, or polymethyl methacrylate resin, a thermosetting resin sheet such as epoxy resin, unsaturated polyester resin, or poly(meth)acrylic resin, or various types of glass. Then, the coating is exposed to light through a photomask, and developed using an alkaline developer (an aqueous solution containing an organic solvent or a surfactant and an alkaline compound such as potassium hydroxide, sodium bicarbonate, sodium carbonate, or tetramethylammonium hydroxide) to dissolve and remove the unexposed portion of the coating. Then, post-baking is performed to form a pixel array in which red pixel patterns are arranged in a predetermined arrangement. Next, a green coloring composition or a blue coloring composition is used, and the coating, pre-baking, exposure, development, and post-baking of each coloring composition are performed in the same manner as above to sequentially form a green pixel array and a blue pixel array on the same substrate. This results in a color filter in which a pixel array of the three primary colors of red, green, and blue is arranged on the substrate. However, in the present invention, the order in which the pixels of each color are formed is not limited to the above. In addition, a black matrix may be provided on the transparent substrate used to form the pixel array of the three primary colors of red, green, and blue.
 着色組成物を基板に塗布する際には、スプレー法、ロールコート法、回転塗布法(スピンコート法)、スリットダイ塗布法、バー塗布法等の適宜の塗布法を採用することができるが、特に、スピンコート法、スリットダイ塗布法を採用することが好ましい。 When applying the coloring composition to a substrate, any suitable application method can be used, such as spraying, roll coating, rotary coating (spin coating), slit die coating, bar coating, etc., but it is particularly preferable to use spin coating and slit die coating.
 このようにして得られた画素パターン上に、必要に応じて保護膜を形成した後、透明導電膜(ITO等)をスパッタリングにより形成する。透明導電膜を形成した後、更にスペーサーを形成してカラーフィルタとすることもできる。  If necessary, a protective film is formed on the pixel pattern thus obtained, and then a transparent conductive film (ITO, etc.) is formed by sputtering. After the transparent conductive film is formed, a spacer can be further formed to form a color filter.
 本発明のカラーフィルタは、輝度、寸法精度等が高く、カラー液晶表示素子、カラー撮像管素子、カラーセンサー、有機EL表示素子、電子ペーパー等に好適に使用することができる。 The color filter of the present invention has high brightness, dimensional accuracy, etc., and can be suitably used in color liquid crystal display elements, color image pickup tube elements, color sensors, organic EL display elements, electronic paper, etc.
 以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明する。本発明は、以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。なお、ブロック共重合体の重合率、重量平均分子量(Mw)、分子量分布(Mw/Mn)、アミン価および酸価、ならびに、着色組成物の粘度は、下記の方法に従って評価した。 The present invention will be described in more detail below based on specific examples. The present invention is not limited to the following examples, and can be modified as appropriate within the scope of the present invention. The polymerization rate, weight average molecular weight (Mw), molecular weight distribution (Mw/Mn), amine value, and acid value of the block copolymer, as well as the viscosity of the colored composition, were evaluated according to the following methods.
なお、略語の意味は下記のとおりである。
 BTEE:エチル=2-メチル-2-n-ブチルテラニル-プロピオネート
 DBDT:ジブチルジテルリド
 AIBN:2,2’-アゾビス(イソブチロニトリル)
 CL5MA:メタクリル酸2-ヒドロキシエチルの5molカプロラクトン付加物
 CL5A:アクリル酸2-ヒドロキシエチルの5molカプロラクトン付加物
 H2EGM:末端水酸基ポリエチレングリコール(重合度=2)モノメタクリレート
 M4EGM:ポリエチレングリコール(重合度=4)メチルエーテルメタクリレート
 M9EGM:ポリエチレングリコール(重合度=9)メチルエーテルメタクリレート
 HEMA:メタクリル酸2-ヒドロキシエチル
 HEA:アクリル酸2-ヒドロキシエチル
 BMA:メタクリル酸n-ブチル
 BA:アクリル酸n-ブチル
 CHMA:メタクリル酸シクロへキシル
 BzMA:メタクリル酸ベンジル
 DMAEMA:メタクリル酸ジメチルアミノエチル
 DMAEA:アクリル酸ジメチルアミノエチル
 DMAEMA・BzCl:メタクリロイルオキシエチルベンジルジメチルアンモニウムクロリド
 MAA:メタクリル酸
 BzCl:ベンジルクロライド
 PMA:プロピレングリコールモノメチルエーテルアセテート
The meanings of the abbreviations are as follows:
BTEE: Ethyl 2-methyl-2-n-butyltellanyl-propionate DBDT: Dibutyl ditelluride AIBN: 2,2'-azobis(isobutyronitrile)
CL5MA: 2-hydroxyethyl methacrylate with 5 mol caprolactone adduct CL5A: 2-hydroxyethyl acrylate with 5 mol caprolactone adduct H2EGM: Polyethylene glycol with terminal hydroxyl group (degree of polymerization = 2) monomethacrylate M4EGM: Polyethylene glycol (degree of polymerization = 4) methyl ether methacrylate M9EGM: Polyethylene glycol (degree of polymerization = 9) methyl ether methacrylate HEMA: 2-hydroxyethyl methacrylate HEA: 2-hydroxyethyl acrylate BMA: n-butyl methacrylate BA: n-butyl acrylate CHMA: Cyclohexyl methacrylate BzMA: Benzyl methacrylate DMAEMA: Dimethylaminoethyl methacrylate DMAEA: Dimethylaminoethyl acrylate DMAEMA.BzCl: Methacryloyloxyethyl benzyl dimethyl ammonium chloride MAA: Methacrylic acid BzCl: Benzyl chloride PMA: Propylene glycol monomethyl ether acetate
(重合率)
 核磁気共鳴(NMR)測定装置(ブルカー・バイオスピン製、型式:AVANCE500(周波数500MHz))を用いて、1H-NMRを測定(溶媒:CDCl3、内部標準:テトラメチルシラン)した。得られたNMRスペクトルについて、モノマー由来のピークとポリマー由来のピークの積分比を求め、モノマーの重合率を算出した。
(Polymerization rate)
1H -NMR was measured (solvent: CDCl3 , internal standard: tetramethylsilane) using a nuclear magnetic resonance (NMR) measurement device (manufactured by Bruker Biospin, model: AVANCE500 (frequency 500 MHz)). From the obtained NMR spectrum, the integral ratio of the peak derived from the monomer to the peak derived from the polymer was obtained, and the polymerization rate of the monomer was calculated.
(重量平均分子量(Mw)および分子量分布(Mw/Mn))
 高速液体クロマトグラフ(東ソー製、型式HLC-8320)を用いて、ゲル浸透クロマトグラフィー(GPC)より求めた。カラムはSHODEX KF-603(φ6mm×150mm)(SHODEX製)を1本、移動相に臭化リチウム(10mmol/L)-酢酸(10mmol/L)-メチルピロリドン溶液、検出器に示差屈折計を使用した。測定条件は、カラム温度を40℃、試料濃度を10mg/mL、試料注入量を10μL、流速を0.2mL/minとした。標準物質としてポリスチレン(分子量70,500、37,900、19,920、10,200、4,290、2,630、1,150)を使用して検量線(校正曲線)を作成し、重量平均分子量(Mw)、数平均分子量(Mn)を測定した。この測定値から分子量分布(Mw/Mn)を算出した。
(Weight average molecular weight (Mw) and molecular weight distribution (Mw/Mn))
The molecular weight was determined by gel permeation chromatography (GPC) using a high performance liquid chromatograph (Tosoh, model HLC-8320). A column of SHODEX KF-603 (φ6 mm×150 mm) (SHODEX) was used, a lithium bromide (10 mmol/L)-acetic acid (10 mmol/L)-methylpyrrolidone solution was used as the mobile phase, and a differential refractometer was used as the detector. The measurement conditions were a column temperature of 40° C., a sample concentration of 10 mg/mL, a sample injection amount of 10 μL, and a flow rate of 0.2 mL/min. A calibration curve was prepared using polystyrene (molecular weights 70,500, 37,900, 19,920, 10,200, 4,290, 2,630, and 1,150) as a standard substance, and the weight average molecular weight (Mw) and number average molecular weight (Mn) were measured. The molecular weight distribution (Mw/Mn) was calculated from the measured values.
(アミン価)
 アミン価は、固形分1gあたりの塩基性成分と当量の水酸化カリウム(KOH)の質量を表したものである。測定試料をテトラヒドロフランに溶解し、電位差滴定装置(商品名:GT-06、三菱化学製)を用いて、得られた溶液を塩酸(0.1mol/L)-プロパノール溶液で中和滴定した。滴定pH曲線の変曲点を滴定終点として次式によりアミン価(B)を算出した。
B=56.11×Vs×0.1×f/w
B:アミン価(mgKOH/g)
Vs:滴定に要した塩酸(0.1mol/L)-プロパノール溶液の使用量(mL)
f:塩酸(0.1mol/L)-プロパノール溶液の力価
w:測定サンプルの質量(g)(固形分換算)
(Amine value)
The amine value represents the mass of potassium hydroxide (KOH) equivalent to the basic component per 1 g of solid content. The measurement sample was dissolved in tetrahydrofuran, and the obtained solution was neutralized and titrated with a hydrochloric acid (0.1 mol/L)-propanol solution using a potentiometric titrator (product name: GT-06, manufactured by Mitsubishi Chemical). The amine value (B) was calculated by the following formula, with the inflection point of the titration pH curve being the titration end point.
B = 56.11 x Vs x 0.1 x f/w
B: Amine value (mg KOH/g)
Vs: Amount (mL) of hydrochloric acid (0.1 mol/L)-propanol solution required for titration
f: Potency of hydrochloric acid (0.1 mol/L)-propanol solution w: Mass (g) of the measurement sample (solid content equivalent)
(酸価)
 酸価は、固形分1gあたりの酸性成分を中和するのに要する水酸化カリウム(KOH)の質量を表したものである。測定試料をテトラヒドロフランに溶解し、得られた溶液に1.0w/v%フェノールフタレインエタノール(90)溶液を指示薬として数滴加え、水酸化カリウム(0.1mol/L)-エタノール溶液で中和滴定した。少し赤みが残るところを滴定終点として、次式により酸価を算出した。
A=56.11×Vs×0.1×f/w
A:酸価(mgKOH/g)
Vs:滴定に要した水酸化カリウム(0.1mol/L)-エタノール溶液の使用量(mL)
f:水酸化カリウム(0.1mol/L)-エタノール溶液の力価
w:測定サンプル質量(g)(固形分換算)
(Acid value)
The acid value represents the mass of potassium hydroxide (KOH) required to neutralize the acidic components per 1 g of solid content. The measurement sample was dissolved in tetrahydrofuran, and several drops of 1.0 w/v % phenolphthalein ethanol (90) solution were added to the obtained solution as an indicator, and neutralization titration was performed with potassium hydroxide (0.1 mol/L)-ethanol solution. The point where a slight reddish color remained was set as the titration end point, and the acid value was calculated by the following formula.
A = 56.11 x Vs x 0.1 x f/w
A: Acid value (mg KOH / g)
Vs: Amount (mL) of potassium hydroxide (0.1 mol/L)-ethanol solution required for titration
f: Potassium hydroxide (0.1 mol/L)-ethanol solution w: Measurement sample mass (g) (solid content equivalent)
(初期粘度、経時粘度)
 E型粘度計(商品名:RE-80L、東機産業製)を用い、コーンローター(0.8°×R24)を使用して、25℃下、ローター回転数60rpmで粘度(mPa・s)を測定した。
 着色組成物は、調製後、40℃で1日保管した後に初期粘度を測定した。また、調製後、40℃で1週間保管した後に経時粘度を測定した。
(Initial viscosity, viscosity over time)
The viscosity (mPa·s) was measured using an E-type viscometer (product name: RE-80L, manufactured by Toki Sangyo Co., Ltd.) with a cone rotor (0.8°×R24) at 25° C. and a rotor rotation speed of 60 rpm.
After preparation, the colored composition was stored at 40° C. for one day, and then the initial viscosity was measured. In addition, after preparation, the colored composition was stored at 40° C. for one week, and then the viscosity over time was measured.
(KOH(水酸化カリウム)溶解性)
 表面を洗浄したガラス板(50mm×50mm)上に、スピンコーター(商品名:MS-A100、ミカサ製)を用いて、10000rpm、10秒で着色組成物の塗布膜を形成し、100℃で5分間乾燥した。次に、塗布膜を形成したガラス板を0.1%水酸化カリウム水溶液に浸漬し、23℃で溶解性を観察した。その溶解性を以下の基準により評価した。
 〇:1時間後にガラス基板上から顔料分散液がほぼ完全に剥がれている。
 ×:1時間後にガラス基板上から顔料分散液がほとんど残っている。
(KOH (potassium hydroxide) solubility)
A coating film of the coloring composition was formed on a glass plate (50 mm x 50 mm) whose surface had been washed, using a spin coater (product name: MS-A100, manufactured by Mikasa) at 10,000 rpm for 10 seconds, and dried for 5 minutes at 100° C. Next, the glass plate on which the coating film was formed was immersed in a 0.1% aqueous potassium hydroxide solution, and the solubility was observed at 23° C. The solubility was evaluated according to the following criteria.
◯: After 1 hour, the pigment dispersion liquid was almost completely peeled off from the glass substrate.
x: Almost all of the pigment dispersion remained on the glass substrate after 1 hour.
<ブロック共重合体の合成>
(ブロック共重合体No.1)
 アルゴンガス導入管、撹拌機を備えたフラスコにBMA 47.56g、CL5MA 129.40g、AIBN 0.849g、PMA 75.85gを仕込み、窒素置換後、BTEE 7.78g,DBDT 4.50gを加え、60℃で22.5時間反応させAブロックを重合した。重合率は99.0%であった。
<Synthesis of block copolymer>
(Block Copolymer No. 1)
A flask equipped with an argon gas inlet tube and a stirrer was charged with 47.56 g of BMA, 129.40 g of CL5MA, 0.849 g of AIBN, and 75.85 g of PMA, and after replacing with nitrogen, 7.78 g of BTEE and 4.50 g of DBDT were added and reacted at 60° C. for 22.5 hours to polymerize the A block. The polymerization rate was 99.0%.
 反応溶液に、予めアルゴン置換したDMAEMA 59.95g、HEMA 13.28g、AIBN 0.424g、PMA 31.40gの混合溶液を加え、60℃で23.0時間反応させ、Bブロックを重合した。重合率は99.5%であった。 A mixed solution of 59.95 g of DMAEMA, 13.28 g of HEMA, 0.424 g of AIBN, and 31.40 g of PMA, which had been previously purged with argon, was added to the reaction solution, and the mixture was reacted at 60°C for 23.0 hours to polymerize the B block. The polymerization rate was 99.5%.
 反応終了後、撹拌しているn-ヘプタン中に反応液を注いだ。析出したポリマーを吸引濾過、乾燥することによりブロック共重合体No.1を得た。得られたブロック共重合体No.1は、Mwが19,235、Mw/Mnが1.64、アミン価が85mgKOH/gであった。 After the reaction was completed, the reaction solution was poured into stirred n-heptane. The precipitated polymer was filtered by suction and dried to obtain block copolymer No. 1. The resulting block copolymer No. 1 had an Mw of 19,235, an Mw/Mn of 1.64, and an amine value of 85 mg KOH/g.
(ブロック共重合体No.2~16)
 ブロック共重合体No.1の製造法と同様にして、ブロック共重合体No.2~12を作製した。表2、3に、使用したモノマー、有機テルル化合物(BTEE)、有機ジテルリド化合物(DBDT)、アゾ系重合開始剤(AIBN)、溶媒(PMA)、反応温度、反応時間、重合率を示した。また、表4、5に各ブロック共重合体の組成、Mw、Mw/Mn、アミン価、酸価を示した。なお、共重合体中の各構造単位の含有率は、重合反応に用いたモノマーの仕込み比率および重合率から算出した。
(Block Copolymers No. 2 to 16)
Block copolymers No. 2 to 12 were prepared in the same manner as in the preparation of block copolymer No. 1. Tables 2 and 3 show the monomers, organic tellurium compound (BTEE), organic ditelluride compound (DBDT), azo polymerization initiator (AIBN), solvent (PMA), reaction temperature, reaction time, and polymerization rate used. Tables 4 and 5 show the composition, Mw, Mw/Mn, amine value, and acid value of each block copolymer. The content of each structural unit in the copolymer was calculated from the charge ratio and polymerization rate of the monomers used in the polymerization reaction.
(ブロック共重合体No.17)
 ブロック共重合体No.1の固形分5.0gが含まれるPMA溶液7.81gに対し、BzCl 392mgを加え、60℃で6時間反応させることで4級化し、PMAで希釈することでブロック共重合体No.17の溶液を得た。得られたブロック共重合体No.17は、Mwが13,089、Mw/Mnが1.22、アミン価が46mgKOH/gであった。
(Block Copolymer No. 17)
392 mg of BzCl was added to 7.81 g of a PMA solution containing 5.0 g of solid content of block copolymer No. 1, and the mixture was reacted at 60° C. for 6 hours to quaternize the block copolymer, and then diluted with PMA to obtain a solution of block copolymer No. 17. The obtained block copolymer No. 17 had Mw of 13,089, Mw/Mn of 1.22, and an amine value of 46 mgKOH/g.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
<アルカリ可溶性樹脂(バインダー樹脂)の合成>
 アルゴンガス導入管、撹拌機を備えたフラスコにMAA 20.0g、BzMA 80.0g、PMA 290.0gを仕込み、アルゴン置換後、AIBN 1.5g、n-ドデカンチオール 2.0g、PMA 10.0gを加え90℃まで昇温した。その溶液を90℃に保ちながら、その溶液にMAA 40.0g、BzMA 160.0g、AIBN 3.0g、n-ドデカンチオール 4.0g、PMA 25.0gを1.5時間かけて滴下した。滴下が終了してから60分後、温度を110℃まで昇温し、AIBN 0.3g、PMA 5.0gを加えて1時間反応させ、さらにAIBN 0.3g、PMA 5.0gを加え1時間反応させ、さらにAIBN 0.3g、PMA 5.0gを加え1時間反応させた。
<Synthesis of alkali-soluble resin (binder resin)>
A flask equipped with an argon gas inlet tube and a stirrer was charged with 20.0 g of MAA, 80.0 g of BzMA, and 290.0 g of PMA, and after replacing with argon, 1.5 g of AIBN, 2.0 g of n-dodecanethiol, and 10.0 g of PMA were added and heated to 90° C. While maintaining the solution at 90° C., 40.0 g of MAA, 160.0 g of BzMA, 3.0 g of AIBN, 4.0 g of n-dodecanethiol, and 25.0 g of PMA were added dropwise to the solution over 1.5 hours. 60 minutes after the dropwise addition was completed, the temperature was raised to 110° C., 0.3 g of AIBN and 5.0 g of PMA were added and reacted for 1 hour, 0.3 g of AIBN and 5.0 g of PMA were further added and reacted for 1 hour, and 0.3 g of AIBN and 5.0 g of PMA were further added and reacted for 1 hour.
 得られた反応溶液を室温に冷却し、PMA 120.0gを加え、不揮発分39.9%のアルカリ可溶性樹脂の溶液を得た。アルカリ可溶性樹脂のMwは11,873、Mw/Mnは1.77、酸価は127mgKOH/gであった。 The resulting reaction solution was cooled to room temperature, and 120.0 g of PMA was added to obtain an alkali-soluble resin solution with a non-volatile content of 39.9%. The Mw of the alkali-soluble resin was 11,873, the Mw/Mn was 1.77, and the acid value was 127 mg KOH/g.
<着色組成物の調製>
(着色組成物No.1)
 顔料濃度が10質量%になるように、顔料(C.I.Pigment Red 254)1.8g、分散剤としてのブロック共重合体No.1の溶液(顔料100質量部に対してブロック共重合体40質量部)、アルカリ可溶性樹脂の溶液(顔料100質量部に対してアルカリ可溶性樹脂40質量部)、及びPMAをビーズミル(商品名:DISPERMAT CA、VMA-GETZMANN GmbH社製)に投入し、さらにジルコニアビーズ(φ0.3mm)50gを入れ、2時間撹拌した。撹拌終了後、ビーズをろ別して、着色組成物No.1を調製した。得られた着色組成物について、分散性能を評価し、結果を表4に示した。また、着色組成物No.1を用いて形成した塗布膜のKOH溶解性の評価結果は「〇」であった。
<Preparation of Coloring Composition>
(Coloring composition No. 1)
In order to obtain a pigment concentration of 10% by mass, 1.8 g of pigment (C.I. Pigment Red 254), a solution of block copolymer No. 1 as a dispersant (40 parts by mass of block copolymer per 100 parts by mass of pigment), a solution of alkali-soluble resin (40 parts by mass of alkali-soluble resin per 100 parts by mass of pigment), and PMA were added to a bead mill (trade name: DISPERMAT CA, manufactured by VMA-GETZMANN GmbH), and 50 g of zirconia beads (φ0.3 mm) were added and stirred for 2 hours. After stirring, the beads were filtered to prepare colored composition No. 1. The dispersion performance of the obtained colored composition was evaluated, and the results are shown in Table 4. In addition, the evaluation result of the KOH solubility of the coating film formed using colored composition No. 1 was "good".
(着色組成物No.2~17)
 分散剤(ブロック共重合体)を変更したこと以外は着色組成物No.1の調製法と同様にして、着色組成物No.2~17を調製した。得られた着色組成物を評価し、結果を表4、5に示した。また、着色組成物No.15を用いて形成した塗布膜のKOH溶解性の評価結果は「×」であった。
(Coloring Compositions Nos. 2 to 17)
Colored compositions No. 2 to 17 were prepared in the same manner as in the preparation of colored composition No. 1, except that the dispersant (block copolymer) was changed. The obtained colored compositions were evaluated, and the results are shown in Tables 4 and 5. In addition, the evaluation result of the KOH solubility of the coating film formed using colored composition No. 15 was "X".
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 ブロック共重合体No.1~11および17は、前記Aセグメントが塩基性基を有する構造単位(b-2)を実質的に含有せず、前記Bセグメントが、ヒドロキシ基を有する構造単位(b-1)と、塩基性基を有する構造単位(b-2)とを含有し、前記Bセグメントにおける前記構造単位(b-1)と前記構造単位(b-2)とのモル比((b-1)/(b-2))が5/95~95/5である。
 これらのブロック共重合体No.1~11および17を分散剤として使用した着色組成物No.1~12は、いずれも初期粘度が低く、かつ、経時粘度との差も小さく、着色材の分散性が高かった。
In block copolymers No. 1 to 11 and 17, the A segment does not substantially contain a structural unit (b-2) having a basic group, the B segment contains a structural unit (b-1) having a hydroxy group and a structural unit (b-2) having a basic group, and the molar ratio ((b-1)/(b-2)) of the structural unit (b-1) to the structural unit (b-2) in the B segment is 5/95 to 95/5.
Colored compositions Nos. 1 to 12, which used these block copolymers Nos. 1 to 11 and 17 as dispersants, all had low initial viscosities and small differences in viscosity over time, and had high dispersibility of the colorant.
 ブロック共重合体No.12~14は、Bセグメントにおける前記構造単位(b-1)と前記構造単位(b-2)とのモル比((b-1)/(b-2))が5/95未満である。これらのブロック共重合体No.12~14を用いた着色組成物No.13~15は、初期粘度は低いものの、経時粘度が高く、保存安定性が劣っていた。 Block copolymers No. 12 to 14 have a molar ratio ((b-1)/(b-2)) of the structural unit (b-1) to the structural unit (b-2) in the B segment of less than 5/95. Colored compositions No. 13 to 15 using these block copolymers No. 12 to 14 had low initial viscosities, but high aging viscosities and poor storage stability.
 ブロック共重合体No.15および16は、Bセグメントが塩基性基を有する構造単位(b-2)を含有しない場合である。これらのブロック共重合体No.15、16を用いた着色組成物No.16および17は、初期粘度が高く、着色材の分散性が劣っていた。 Block copolymers No. 15 and 16 are cases where the B segment does not contain the structural unit (b-2) having a basic group. Coloring compositions No. 16 and 17 using these block copolymers No. 15 and 16 had high initial viscosity and poor dispersibility of the coloring material.
 本発明は、以下の態様を含む。 The present invention includes the following aspects:
(態様1)
 AセグメントとBセグメントとを有するブロック共重合体であって、
 前記Aセグメントが、塩基性基を有する構造単位(b-2)を実質的に含有せず、
 前記Bセグメントが、ヒドロキシ基を有する構造単位(b-1)と、塩基性基を有する構造単位(b-2)とを含有し、
 前記Bセグメントにおける前記構造単位(b-1)と前記構造単位(b-2)とのモル比((b-1)/(b-2))が5/95~95/5であることを特徴とするブロック共重合体。
(Aspect 1)
A block copolymer having an A segment and a B segment,
the A segment does not substantially contain a structural unit (b-2) having a basic group,
the B segment contains a structural unit (b-1) having a hydroxy group and a structural unit (b-2) having a basic group,
A block copolymer, characterized in that the molar ratio ((b-1)/(b-2)) of the structural unit (b-1) to the structural unit (b-2) in the B segment is 5/95 to 95/5.
(態様2)
 前記構造単位(b-1)のハンセン溶解度パラメータの水素結合力項(δh1)と前記構造単位(b-2)のハンセン溶解度パラメータの水素結合力項(δh2)との差(δh1-δh2)が0.5J1/2・cm1/2・mol-1以上である、態様1に記載のブロック共重合体。
(Aspect 2)
The block copolymer according to aspect 1, wherein the difference (δ h1 - δ h2 ) between the hydrogen bonding strength term (δ h1 ) of the Hansen solubility parameter of the structural unit (b-1) and the hydrogen bonding strength term (δ h2 ) of the Hansen solubility parameter of the structural unit ( b -2) is 0.5 J 1/2 cm 1/2 mol -1 or more.
(態様3)
 前記ブロック共重合体のアミン価が、10mgKOH/g~150mgKOH/gである、態様1または2に記載のブロック共重合体。
(Aspect 3)
3. The block copolymer according to claim 1 or 2, wherein the amine value of the block copolymer is from 10 mg KOH/g to 150 mg KOH/g.
(態様4)
 前記構造単位(b-1)が式(1)で表される構造単位である、態様1~3のいずれか1項に記載のブロック共重合体。
(Aspect 4)
The block copolymer according to any one of aspects 1 to 3, wherein the structural unit (b-1) is a structural unit represented by formula (1):
Figure JPOXMLDOC01-appb-C000015
[式(1)において、R11は水素原子またはメチル基を表す。A11はエステル基、アミド基または単結合を表す。R12は2価の炭化水素基、-R13-(OCO-R14-基、または、-R15-(O-R16n-基を表す。R13~R16はそれぞれ独立して2価の炭化水素基を表す。mは1~10の整数を示す。nは1~10の整数を表す。]
Figure JPOXMLDOC01-appb-C000015
[In formula (1), R 11 represents a hydrogen atom or a methyl group. A 11 represents an ester group, an amide group, or a single bond. R 12 represents a divalent hydrocarbon group, -R 13 -(OCO-R 14 ) m - group, or -R 15 -(O-R 16 ) n - group. R 13 to R 16 each independently represent a divalent hydrocarbon group. m represents an integer from 1 to 10. n represents an integer from 1 to 10.]
(態様5)
 前記構造単位(b-2)が式(2)で表される構造単位である、態様1~4のいずれか1項に記載のブロック共重合体。
(Aspect 5)
The block copolymer according to any one of aspects 1 to 4, wherein the structural unit (b-2) is a structural unit represented by formula (2):
Figure JPOXMLDOC01-appb-C000016
[式(2)において、R21は水素原子またはメチル基を表す。A21はエステル基、アミド基または単結合を表す。R22は2価の炭化水素基を表す。R23およびR24は、それぞれ独立して、ヘテロ原子を含んでいてもよい炭化水素基を表す。R23およびR24が互いに結合して環状構造を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000016
[In formula (2), R21 represents a hydrogen atom or a methyl group. A21 represents an ester group, an amide group, or a single bond. R22 represents a divalent hydrocarbon group. R23 and R24 each independently represent a hydrocarbon group that may contain a heteroatom. R23 and R24 may be bonded to each other to form a cyclic structure.]
(態様6)
 前記Aセグメントを構成する構造単位100mol%中において(メタ)アクリルモノマーに由来する構造単位を80mol%以上含有する、態様1~5のいずれか1項に記載のブロック共重合体。
(Aspect 6)
The block copolymer according to any one of aspects 1 to 5, wherein 80 mol % or more of structural units derived from a (meth)acrylic monomer are contained in 100 mol % of structural units constituting the A segment.
(態様7)
 前記Aセグメントが、鎖状アルキル基を有する(メタ)アクリルモノマー、環状アルキル基を有する(メタ)アクリルモノマー、アリール基を有する(メタ)アクリルモノマー、ヒドロキシ基を有する(メタ)アクリルモノマー、アルコキシ基を有する(メタ)アクリルモノマー、含酸素ヘテロ環基を有する(メタ)アクリルモノマー、アミド基を有する(メタ)アクリルモノマーおよび酸性基を有する(メタ)アクリルモノマーよりなる群から選択される1種または2種以上の(メタ)アクリルモノマーに由来する構造単位を含有する、態様1~6のいずれか1項に記載のブロック共重合体。
(Aspect 7)
The block copolymer according to any one of Aspects 1 to 6, wherein the A segment contains a structural unit derived from one or more (meth)acrylic monomers selected from the group consisting of a (meth)acrylic monomer having a chain alkyl group, a (meth)acrylic monomer having a cyclic alkyl group, a (meth)acrylic monomer having an aryl group, a (meth)acrylic monomer having a hydroxy group, a (meth)acrylic monomer having an alkoxy group, a (meth)acrylic monomer having an oxygen-containing heterocyclic group, a (meth)acrylic monomer having an amide group, and a (meth)acrylic monomer having an acidic group.
(態様8)
 前記Bセグメントを構成する構造単位100mol%中における前記構造単位(b-1)の含有率が、5mol%~90mol%である、態様1~7のいずれか1項に記載のブロック共重合体。
(Aspect 8)
A block copolymer according to any one of claims 1 to 7, wherein the content of the structural unit (b-1) in 100 mol % of the structural units constituting the B segment is 5 mol % to 90 mol %.
(態様9)
 前記Aセグメントを構成する構造単位の総モル量と、前記Bセグメントを構成する構造単位の総モル量とのモル比(Aセグメント/Bセグメント)が、30/70~75/25である、態様1~8のいずれか1項に記載のブロック共重合体。
(Aspect 9)
A molar ratio of the total molar amount of the structural units constituting the A segment to the total molar amount of the structural units constituting the B segment (A segment/B segment) is 30/70 to 75/25. The block copolymer according to any one of claims 1 to 8.
(態様10)
 前記ブロック共重合体の重量平均分子量が、5000~40000である、態様1~9のいずれか1項に記載のブロック共重合体。
(Aspect 10)
The block copolymer according to any one of claims 1 to 9, wherein the weight average molecular weight of the block copolymer is 5,000 to 40,000.
(態様11)
 前記ブロック共重合体がリビング重合で得られたものであり、その分子量分布(Mw/Mn)が3.0未満である、態様1~10のいずれか1項に記載のブロック共重合体。
(Aspect 11)
The block copolymer according to any one of claims 1 to 10, wherein the block copolymer is obtained by living polymerization and has a molecular weight distribution (Mw/Mn) of less than 3.0.
(態様12)
 態様1~11のいずれか1項に記載のブロック共重合体を含有することを特徴とする分散剤。
(Aspect 12)
A dispersant comprising the block copolymer according to any one of Aspects 1 to 11.
(態様13)
 着色材、分散媒体、および、態様12に記載の分散剤を含有することを特徴とする着色組成物。
(Aspect 13)
A coloring composition comprising a colorant, a dispersion medium, and the dispersant according to aspect 12.
(態様14)
 カラーフィルタ用である態様13に記載の着色組成物。
(Aspect 14)
The coloring composition according to embodiment 13, which is for use in a color filter.
(態様15)
 態様14に記載の着色組成物を用いて形成された着色層を備えることを特徴とするカ ラーフィルタ。
 
(Aspect 15)
A color filter comprising a colored layer formed using the colored composition according to Aspect 14.

Claims (15)

  1.  AセグメントとBセグメントとを有するブロック共重合体であって、
     前記Aセグメントが、塩基性基を有する構造単位(b-2)を実質的に含有せず、
     前記Bセグメントが、ヒドロキシ基を有する構造単位(b-1)と、塩基性基を有する構造単位(b-2)とを含有し、
     前記Bセグメントにおける前記構造単位(b-1)と前記構造単位(b-2)とのモル比((b-1)/(b-2))が5/95~95/5であることを特徴とするブロック共重合体。
    A block copolymer having an A segment and a B segment,
    the A segment does not substantially contain a structural unit (b-2) having a basic group,
    the B segment contains a structural unit (b-1) having a hydroxy group and a structural unit (b-2) having a basic group,
    A block copolymer, characterized in that the molar ratio ((b-1)/(b-2)) of the structural unit (b-1) to the structural unit (b-2) in the B segment is 5/95 to 95/5.
  2.  前記構造単位(b-1)のハンセン溶解度パラメータの水素結合力項(δh1)と前記構造単位(b-2)のハンセン溶解度パラメータの水素結合力項(δh2)との差(δh1-δh2)が0.5J1/2・cm1/2・mol-1以上である、請求項1に記載のブロック共重合体。 The block copolymer according to claim 1, wherein the difference (δ h1 - δ h2 ) between the hydrogen bond strength term (δ h1 ) of the Hansen solubility parameter of the structural unit (b-1) and the hydrogen bond strength term (δ h2 ) of the Hansen solubility parameter of the structural unit ( b -2) is 0.5 J 1/2 cm 1/2 mol -1 or more.
  3.  前記ブロック共重合体のアミン価が、10mgKOH/g~150mgKOH/gである、請求項1または2に記載のブロック共重合体。 The block copolymer according to claim 1 or 2, wherein the amine value of the block copolymer is 10 mg KOH/g to 150 mg KOH/g.
  4.  前記構造単位(b-1)が式(1)で表される構造単位である、請求項1または2に記載のブロック共重合体。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)において、R11は水素原子またはメチル基を表す。A11はエステル基、アミド基または単結合を表す。R12は2価の炭化水素基、-R13-(OCO-R14-基、または、-R15-(O-R16n-基を表す。R13~R16はそれぞれ独立して2価の炭化水素基を表す。mは1~10の整数を示す。nは1~10の整数を表す。]
    The block copolymer according to claim 1 or 2, wherein the structural unit (b-1) is a structural unit represented by formula (1):
    Figure JPOXMLDOC01-appb-C000001
    [In formula (1), R 11 represents a hydrogen atom or a methyl group. A 11 represents an ester group, an amide group, or a single bond. R 12 represents a divalent hydrocarbon group, -R 13 -(OCO-R 14 ) m - group, or -R 15 -(O-R 16 ) n - group. R 13 to R 16 each independently represent a divalent hydrocarbon group. m represents an integer from 1 to 10. n represents an integer from 1 to 10.]
  5.  前記構造単位(b-2)が式(2)で表される構造単位である、請求項1または2に記載のブロック共重合体。
    Figure JPOXMLDOC01-appb-C000002
    [式(2)において、R21は水素原子またはメチル基を表す。A21はエステル基、アミド基または単結合を表す。R22は2価の炭化水素基を表す。R23およびR24は、それぞれ独立して、ヘテロ原子を含んでいてもよい炭化水素基を表す。R23およびR24が互いに結合して環状構造を形成していてもよい。]
    The block copolymer according to claim 1 or 2, wherein the structural unit (b-2) is a structural unit represented by formula (2):
    Figure JPOXMLDOC01-appb-C000002
    [In formula (2), R21 represents a hydrogen atom or a methyl group. A21 represents an ester group, an amide group, or a single bond. R22 represents a divalent hydrocarbon group. R23 and R24 each independently represent a hydrocarbon group that may contain a heteroatom. R23 and R24 may be bonded to each other to form a cyclic structure.]
  6.  前記Aセグメントを構成する構造単位100mol%中における(メタ)アクリルモノマーに由来する構造単位の含有率が80mol%以上である、請求項1または2に記載のブロック共重合体。 The block copolymer according to claim 1 or 2, in which the content of structural units derived from (meth)acrylic monomers in 100 mol % of the structural units constituting the A segment is 80 mol % or more.
  7.  前記Aセグメントが、鎖状アルキル基を有する(メタ)アクリルモノマー、環状アルキル基を有する(メタ)アクリルモノマー、アリール基を有する(メタ)アクリルモノマー、ヒドロキシ基を有する(メタ)アクリルモノマー、アルコキシ基を有する(メタ)アクリルモノマー、含酸素ヘテロ環基を有する(メタ)アクリルモノマー、アミド基を有する(メタ)アクリルモノマーおよび酸性基を有する(メタ)アクリルモノマーよりなる群から選択される1種または2種以上の(メタ)アクリルモノマーに由来する構造単位を含有する、請求項1または2に記載のブロック共重合体。 The block copolymer according to claim 1 or 2, wherein the A segment contains structural units derived from one or more (meth)acrylic monomers selected from the group consisting of (meth)acrylic monomers having a chain alkyl group, (meth)acrylic monomers having a cyclic alkyl group, (meth)acrylic monomers having an aryl group, (meth)acrylic monomers having a hydroxy group, (meth)acrylic monomers having an alkoxy group, (meth)acrylic monomers having an oxygen-containing heterocyclic group, (meth)acrylic monomers having an amide group, and (meth)acrylic monomers having an acidic group.
  8.  前記Bセグメントを構成する構造単位100mol%中における前記構造単位(b-1)の含有率が、5mol%~90mol%である、請求項1または2に記載のブロック共重合体。 The block copolymer according to claim 1 or 2, wherein the content of the structural unit (b-1) in 100 mol % of the structural units constituting the B segment is 5 mol % to 90 mol %.
  9.  前記Aセグメントを構成する構造単位の総モル量と、前記Bセグメントを構成する構造単位の総モル量とのモル比(Aセグメント/Bセグメント)が、30/70~75/25である、請求項1または2に記載のブロック共重合体。 The block copolymer according to claim 1 or 2, wherein the molar ratio (A segment/B segment) of the total molar amount of the structural units constituting the A segment to the total molar amount of the structural units constituting the B segment is 30/70 to 75/25.
  10.  前記ブロック共重合体の重量平均分子量が、5000~40000である、請求項1また2に記載のブロック共重合体。 The block copolymer according to claim 1 or 2, wherein the weight average molecular weight of the block copolymer is 5,000 to 40,000.
  11.  前記ブロック共重合体がリビング重合で得られたものであり、その分子量分布(Mw/Mn)が3.0未満である、請求項1または2に記載のブロック共重合体。 The block copolymer according to claim 1 or 2, wherein the block copolymer is obtained by living polymerization and has a molecular weight distribution (Mw/Mn) of less than 3.0.
  12.  請求項1または2に記載のブロック共重合体を含有することを特徴とする分散剤。 A dispersant containing the block copolymer according to claim 1 or 2.
  13.  着色材、分散媒体、および、請求項12に記載の分散剤を含有することを特徴とする着色組成物。 A coloring composition comprising a colorant, a dispersion medium, and the dispersant described in claim 12.
  14.  カラーフィルタ用である請求項13に記載の着色組成物。 The coloring composition according to claim 13, which is for use in a color filter.
  15.  請求項14に記載の着色組成物を用いて形成された着色層を備えることを特徴とするカ ラーフィルタ。
     
    A color filter comprising a colored layer formed using the colored composition according to claim 14.
PCT/JP2023/041305 2022-12-02 2023-11-16 Block copolymer, dispersant, and coloring composition WO2024116876A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022193752 2022-12-02
JP2022-193752 2022-12-02

Publications (1)

Publication Number Publication Date
WO2024116876A1 true WO2024116876A1 (en) 2024-06-06

Family

ID=91323573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041305 WO2024116876A1 (en) 2022-12-02 2023-11-16 Block copolymer, dispersant, and coloring composition

Country Status (1)

Country Link
WO (1) WO2024116876A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10324819A (en) * 1996-12-13 1998-12-08 Nippon Shokubai Co Ltd Carbon-black-composited polymer, its production and its use
JP2009543145A (en) * 2006-07-11 2009-12-03 チバ ホールディング インコーポレーテッド Color filter composition
JP2011080050A (en) * 2009-09-09 2011-04-21 Kansai Paint Co Ltd Method for producing pigment dispersion resin, pigment dispersion resin, pigment dispersion, and coating
JP2020066687A (en) * 2018-10-25 2020-04-30 大塚化学株式会社 Coloring composition and color filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10324819A (en) * 1996-12-13 1998-12-08 Nippon Shokubai Co Ltd Carbon-black-composited polymer, its production and its use
JP2009543145A (en) * 2006-07-11 2009-12-03 チバ ホールディング インコーポレーテッド Color filter composition
JP2011080050A (en) * 2009-09-09 2011-04-21 Kansai Paint Co Ltd Method for producing pigment dispersion resin, pigment dispersion resin, pigment dispersion, and coating
JP2020066687A (en) * 2018-10-25 2020-04-30 大塚化学株式会社 Coloring composition and color filter

Similar Documents

Publication Publication Date Title
TWI788555B (en) Dispersant composition, coloring composition and color filter
JP7235474B2 (en) Coloring composition and color filter
JP6567905B2 (en) Block copolymer, dispersant and pigment dispersion composition
JP7348998B2 (en) Polymerization products containing block copolymers
JP7235475B2 (en) Coloring composition and color filter
JP7299894B2 (en) Dispersant composition, coloring composition, and color filter
CN112334505B (en) Dispersing agent composition, coloring composition and color filter
JP7217680B2 (en) Block copolymers, dispersants, coloring compositions and color filters
WO2024116876A1 (en) Block copolymer, dispersant, and coloring composition
JP7348804B2 (en) Dispersant compositions, coloring compositions and color filters
WO2024116875A1 (en) Block copolymer, dispersing agent, and colored composition
JP7466359B2 (en) Coloring composition and color filter
JP7344106B2 (en) Colored compositions and color filters
JP7324623B2 (en) Block copolymer, dispersant, coloring composition, and color filter
JP2023085227A (en) Dispersant, coloring composition, and color filter
JP6797483B2 (en) Block copolymers, dispersants, coloring compositions and color filters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23897527

Country of ref document: EP

Kind code of ref document: A1