WO2024116863A1 - Absorbent article - Google Patents

Absorbent article Download PDF

Info

Publication number
WO2024116863A1
WO2024116863A1 PCT/JP2023/041200 JP2023041200W WO2024116863A1 WO 2024116863 A1 WO2024116863 A1 WO 2024116863A1 JP 2023041200 W JP2023041200 W JP 2023041200W WO 2024116863 A1 WO2024116863 A1 WO 2024116863A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
absorbent article
soluble polymer
nattokinase
viscosity
Prior art date
Application number
PCT/JP2023/041200
Other languages
French (fr)
Japanese (ja)
Inventor
久孝 七海
牧子 岩本
Original Assignee
ユニ・チャーム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニ・チャーム株式会社 filed Critical ユニ・チャーム株式会社
Publication of WO2024116863A1 publication Critical patent/WO2024116863A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/51Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
    • A61F13/511Topsheet, i.e. the permeable cover or layer facing the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials

Definitions

  • This disclosure relates to absorbent articles.
  • Absorbent articles having functional compositions for breaking down blood clots are being studied. This makes it possible to reduce the viscosity of blood clots on the absorbent article, making it easier for the absorbent article to absorb the reduced-viscosity blood clots.
  • Patent Document 1 proposes an absorbent personal care article that includes at least one layer, the layer including a support having a treatment agent applied thereto, the treatment agent including a bound enzyme.
  • Patent Document 1 discloses that "The use of conjugated enzymes can reduce skin or mucosal sensitization in the event that the conjugated enzyme migrates into the user's body, as compared to unmodified enzymes. Furthermore, the conjugated enzymes are less likely to migrate from the treated material to the user, thereby reducing the risk of sensitization to users of absorbent products containing the conjugated enzymes.”
  • an object of the present disclosure is to provide an absorbent article in which nattokinase is less susceptible to the effects of low-viscosity liquids, has excellent effects on blood clots, and is less likely to affect the skin.
  • the present inventors have discovered an absorbent article that includes a functional composition containing a functional substance (A) that has the function of inhibiting factors that act on blood clotting, including nattokinase, and a water-soluble polymer (B), and that is characterized in that at least a portion of the nattokinase is not bound to the water-soluble polymer (B).
  • A a functional substance that has the function of inhibiting factors that act on blood clotting, including nattokinase, and a water-soluble polymer (B)
  • the absorbent article according to the present disclosure includes a functional composition containing nattokinase, which is less susceptible to the effects of low-viscosity liquids, has excellent effects on blood clots, and is less likely to affect the skin.
  • An absorbent article comprising a functional composition containing a functional substance (A) having a function of inhibiting a blood coagulation factor, including nattokinase, and a water-soluble polymer (B), At least a portion of the nattokinase is not bound to the water-soluble polymer (B);
  • A functional substance having a function of inhibiting a blood coagulation factor, including nattokinase
  • B water-soluble polymer
  • the functional substance (A) having the function of inhibiting blood clotting factors is held by the water-soluble polymer (B) in the functional composition.
  • the functional composition comes into contact with a low-viscosity liquid, it takes a certain amount of time for the water-soluble polymer (B) to dissolve.
  • the functional substance (A) having the function of inhibiting blood clotting factors, particularly nattokinase is less likely to flow out of the functional composition, and the functional substance (A) having the function of inhibiting blood clotting factors, particularly nattokinase, is less likely to be affected by low-viscosity liquids.
  • nattokinase dissolves from the functional composition, and the nattokinase decomposes fibrin in the blood clot, thereby reducing the viscosity of the blood clot. Furthermore, at least a portion of the nattokinase is not bound to the water-soluble polymer (B), i.e., is in a free state, and therefore the nattokinase in the free state can efficiently decompose fibrin in the blood clot, thereby efficiently reducing the viscosity of the blood clot.
  • B water-soluble polymer
  • nattokinase in the above-mentioned functional composition, although a portion of the nattokinase is in a free state, the nattokinase in the free state is unlikely to act on the skin of a user of the article.
  • nattokinase in the absorbent article, nattokinase is less affected by low viscosity liquids, has excellent effects on blood clots, and is less likely to act on the skin.
  • the functional composition contains a functional substance (A) that has the function of inhibiting factors that act on blood clotting, and a water-soluble polymer (B) in a specified mass ratio, so in the absorbent article, nattokinase is less affected by low-viscosity liquids, has excellent action against blood clots, and is less likely to act on the skin.
  • the functional substance (A) that has the function of inhibiting factors that act on blood clotting has a water immersion solubility rate that is different from the water immersion solubility rate of the water-soluble polymer (B), so that the functional component in the absorbent article is less susceptible to the effects of low-viscosity liquids.
  • the water-soluble polymer (B) has a predetermined water immersion solubility rate, so that nattokinase in the above absorbent article is less susceptible to the effects of low-viscosity liquids and has excellent action against blood clots.
  • the functional composition is unlikely to flow out even when it comes into contact with a low-viscosity liquid, and when the functional composition comes into contact with a blood clot, the functional substance (A), which has the function of inhibiting factors that act on blood clotting, is likely to diffuse into the blood clot.
  • the above absorbent article is more likely to exhibit the effects of aspect 1 because the water-soluble polymer (B) contains a specific one.
  • the functional composition is arranged in a specific state, which makes it easier to achieve the effect of aspect 1.
  • the functional composition is arranged in a specific state, which makes it easier to achieve the effect of aspect 1.
  • absorbent article according to the present disclosure will be described in detail below.
  • absorbent articles according to the present disclosure include sanitary napkins, sanitary shorts, panty liners, and the like.
  • the functional composition includes a functional substance (A) having a function of inhibiting factors that act on blood clotting, including nattokinase, and a water-soluble polymer (B).
  • a functional substance (A) having a function of inhibiting factors that act on blood clotting may be simply referred to as the "functional substance (A)".
  • Nattokinase is a serine protease that exhibits high fibrin decomposition activity, and can promote the reduction of the viscosity of blood clots (e.g., menstrual blood) and inhibit blood coagulation.
  • Nattokinase is an enzyme (serine protease) that has the ability to degrade fibrin. Nattokinase is generally contained in natto and can be produced by Bacillus subtilis var. natto. Nattokinase can degrade fibrin mainly into DD (175 kDa) and LD (110 kDa). Without intending to be limited by theory, nattokinase has a three-dimensional structure suitable for degrading fibrin and is thought to degrade fibrin by a mechanism similar to that of plasmin. It has been reported that the specificity constant of nattokinase for fibrin is approximately six times that of plasmin. This indicates that nattokinase has a higher fibrinolytic activity than plasmin.
  • nattokinase exhibits particularly high activity at temperatures of 30-40°C and pH levels of 6-9. Absorbent articles, particularly sanitary napkins, reach a temperature of around 35°C due to body temperature when worn, and the pH of menstrual blood is around 7. Therefore, it is believed that nattokinase functions particularly well under the conditions in which absorbent articles are used to absorb menstrual blood.
  • Nattokinase is highly safe for the human body. Therefore, when nattokinase is applied as a functional substance to absorbent articles, the safety is particularly excellent.
  • Nattokinase is commercially available in the form of a powder, for example.
  • Nattokinase manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • Nattokinase with a granular size of 15 to 35 ⁇ m is commercially available.
  • the functional substance (A) contains nattokinase in an amount of preferably more than 50% by mass, more preferably 60% by mass or more, even more preferably 70% by mass or more, even more preferably 80% by mass or more, and even more preferably 90% by mass or more. This can promote low viscosity of blood clots and inhibit blood coagulation.
  • the upper limit of nattokinase in the functional substance (A) is 100% by mass.
  • the functional substance (A) may contain a functional substance other than nattokinase that has a function of inhibiting factors that act on blood coagulation.
  • factors that act on blood coagulation include fibrin (particularly fibrin monomer, fibrin polymer, and/or stabilized fibrin), blood coagulation factors, platelets, and platelet aggregation promoters.
  • blood coagulation factors include thrombin, activated factor II, activated factor VII, activated factor IX, activated factor X, and activated factor XIII.
  • platelet aggregation promoters include TXA2 and cAMP.
  • Functional substances that have the function of inhibiting factors that act on blood clotting include enzymes with fibrin decomposition ability, substances (particularly compounds) with antiplatelet activity, factors that promote the activation of plasmin, and coagulation inhibitors.
  • the above-mentioned enzymes with fibrinolytic properties and factors that promote the activation of plasmin mainly have the effect of promoting the reduction of the viscosity of blood clots.
  • substances with antiplatelet properties and coagulation inhibitors mainly have the function of suppressing blood coagulation.
  • the fibrin decomposition enzyme may be a protease, in particular a serine protease or a cysteine protease.
  • the fibrin decomposition enzyme is particularly capable of cleaving fibrin polymers and/or stabilized fibrin.
  • blood coagulation factors including a series of molecules act in blood to generate fibrin monomers from fibrinogen, polymerize the fibrin monomers, and crosslink (stabilize) the fibrin, resulting in blood clotting.
  • Fibrin polymers and stabilized fibrin form a mesh-like structure, which aggregates red blood cells, platelets, etc., causing blood to clot.
  • Enzymes with fibrin-decomposing ability can inhibit blood clotting by decomposing fibrin polymers and stabilized fibrin, in particular, and can also promote the reduction of the viscosity of blood clots by decomposing fibrin polymers and stabilized fibrin that have formed mesh-like structures.
  • enzymes with fibrin decomposition ability include plasmin, DFE27, subtilisin DFE, subtilisin QK-2, bromelain, and serrapeptase.
  • the above-mentioned plasmin is an enzyme (serine protease) that has the ability to degrade fibrin (fibrinolytic ability) and is usually present in blood (e.g., menstrual blood). Plasmin can degrade fibrin. When plasmin degrades fibrin, a degradation product called D-dimer and other degradation products are generated.
  • DFE27 is an enzyme (serine protease) that has the ability to degrade fibrin.
  • DFE27 is generally contained in Douchi and can be produced by B. subtilis DC27.
  • Subtilisin DFE is an enzyme (serine protease) that has the ability to degrade fibrin.
  • Subtilisin DFE is generally contained in Douchi and can be produced by B. amyloliquefaciens DC-4.
  • Subtilisin QK-2 is an enzyme (serine protease) that has the ability to degrade fibrin.
  • Subtilisin QK-2 is generally contained in fermented soybeans and can be produced by B. subtilis QK02.
  • Bromelain is an enzyme (cysteine protease) that has the ability to break down fibrin. Bromelain is found in pineapple fruits, etc.
  • Serrapeptase is an enzyme that has the ability to degrade fibrin. Serrapeptase is generally contained in silkworms and can be produced by the non-pathogenic bacterium Serratia marcescens E15.
  • the functional composition may further include an auxiliary component capable of improving the fibrin decomposition (fibrinolytic ability) of an enzyme having fibrin decomposition ability, for example, nattokinase.
  • the auxiliary ingredients include fatty acids having 12 to 18 carbon atoms, ground vegetables, EPA, DHA, spices, zinc ions (Zn 2+ ), manganese ions (Mn 2+ ), calcium ions (Ca 2+ ), and potassium ions (K + ).
  • Fatty acids with 12 to 18 carbon atoms can particularly improve the fibrinolytic ability of nattokinase. It is preferable to use fatty acids with 12 to 18 carbon atoms at a ratio of 4 to 12 mg/2000 FU relative to nattokinase.
  • Ground vegetables can improve the fibrinolytic ability of nattokinase.
  • Ground vegetables include, for example, onion powder.
  • Spices in particular, can improve the fibrinolytic ability of nattokinase, including chili peppers (especially in powder form).
  • Zinc ions can particularly improve the fibrinolytic ability of nattokinase, while manganese ions (Mn 2+ ), calcium ions (Ca 2+ ), and potassium ions (K + ) can particularly improve the fibrinolytic ability of douchi-derived protease.
  • the functional substance (A) may also contain a factor that promotes the activation of plasmin.
  • Plasmin is usually present in menstrual blood and is capable of decomposing fibrin, so by using a factor that promotes the activation of plasmin, it is possible to promote the reduction of the viscosity of highly viscous menstrual blood.
  • Factors that promote the activation of plasmin include factors that have the effect of inhibiting the activity of the lysis inhibitor PAI-1.
  • An example of a factor that has the effect of inhibiting the activity of the lysis inhibitor PAI-1 is the above-mentioned nattokinase. Bromelain and DFE27 also have the effect of promoting the conversion of plasminogen to plasmin.
  • plasmin is produced from plasminogen.
  • t-PA is inactivated by binding to the solubility-inhibiting factor PAI-1. Without intending to be limited by theory, it is believed that the inactivation of t-PA is suppressed by inhibiting the activity of the solubility-inhibiting factor PAI-1, and thus the production of plasmin from plasminogen by t-PA is promoted. Plasmin is inactivated in the body by binding to a plasmin inhibitor (antiplasmin).
  • Examples of compounds with the above-mentioned antiplatelet effect include bromelain, acetylsalicylic acid (Aspirin (trademark), Bufferin (registered trademark), etc.), the PGI2 derivative beraprost, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and NO-related preparations (e.g., nitroglycerin, etc.).
  • Other examples of compounds with antiplatelet effect include clopidogrel sulfate, prasugrel hydrochloride, ticlopidine hydrochloride, ticagrelor, cilostazol, and sarpogrelate hydrochloride.
  • platelet aggregation occurs when platelets are activated in the blood due to factors such as damage to the blood endothelium or contact with collagen. Platelet aggregation is a reversible reaction. It is believed that blood coagulation can be inhibited by using compounds with antiplatelet activity.
  • acetylsalicylic acid has the effect of irreversibly inactivating cyclooxygenase (COX), which acts to produce TXA2 , a substance that promotes platelet aggregation, thereby exerting an antiplatelet effect.
  • COX cyclooxygenase
  • the PGI2 derivative beraprost inhibits platelet aggregation by increasing the synthesis of PGI2 , a substance that inhibits platelet aggregation.
  • EPA and/or DHA produce TXA3 from platelets, which does not have platelet aggregation activity, and as a result, platelet aggregation is inhibited.
  • Fibrin degradation products produced by fibrin-decomposing enzymes also have the effect of inhibiting platelet aggregation.
  • Fibrin degradation products produced by nattokinase include DD (175 kDa) and LD (110 kDa).
  • the functional substance (A) may also contain a coagulation inhibitor that has a fibrin production inhibitory effect.
  • a coagulation inhibitor that has a fibrin production inhibitory effect.
  • the coagulation inhibitor include bromelain, EDTA, heparin, sodium citrate, warfarin, and sodium fluoride.
  • blood clotting progresses in blood due to blood clotting factors.
  • thrombin produces fibrin monomers from fibrinogen.
  • activated factor XIII stabilizes the structure composed of fibrin by bridging between molecules of fibrin polymers, thereby producing stabilized fibrin.
  • Coagulation inhibitors can inhibit blood clotting by blocking the action of blood clotting factors.
  • bromelain is believed to inhibit the conversion of fibrinogen to fibrin by causing a significant prolongation of the prothrombin time (PT) and activated partial thromboplastin time (APTT).
  • PT prothrombin time
  • APTT activated partial thromboplastin time
  • EDTA inhibits the activation of thrombin, which is necessary for fibrin production, by chelating the calcium ions necessary for thrombin activity.
  • Sodium citrate is also believed to work by a similar mechanism.
  • warfarin inhibits vitamin K, which is necessary for the functioning of blood clotting factors II, VII, IX, and X, which activate thrombin, thereby suppressing the activation of thrombin, which is necessary for the production of fibrin.
  • heparin suppresses the activation of thrombin, which is necessary for the production of fibrin, by enhancing the action of antithrombin, which inhibits thrombin.
  • Nattokinase and serrapeptase also have fibrin production inhibitory effects. Without intending to be limited by theory, it is believed that nattokinase present in blood exerts its fibrin inhibitory effect by reducing activated factor XIII, which crosslinks fibrin, and/or by inhibiting thrombin activity, which is necessary for fibrin production.
  • the water-soluble polymer (B) is not particularly limited as long as it is a polymer that can be dissolved in water, and may be a polymer that can be dissolved in heated water.
  • the water-soluble polymer (B) preferably has a solubility of 5.0 g or more in 100 g of water at 25°C. The water solubility may be measured by dissolving the water-soluble polymer (B) in heated water and then adjusting the temperature to 25°C.
  • the water solubility is measured as follows. (1) 100 g of deionized water and 20 g of water-soluble polymer (B) are mixed and stirred for 120 minutes using a stirrer to form a mixed solution. The 100 g of deionized water may be heated. The mixed solution may be heated when the mixed solution is stirred and mixed. (2) After stirring and mixing, the resulting mixture is adjusted to 25°C. (3) The aqueous phase in the mixed liquid adjusted to 25° C. is sampled and dried at 100° C. for 1 hour. The amount of water-soluble polymer (B) in the aqueous phase is determined from the loss on drying, and the solubility in 100 g of water at 25° C. is calculated.
  • water-soluble polymer (B) examples include polyvinyl alcohol, polyethylene oxide, polyethylene glycol, water-soluble acrylic resin, polyvinylpyrrolidone, polyvinyl butyral, carboxymethylcellulose, sodium carboxymethylcellulose, and natural polysaccharides.
  • polyvinyl alcohol examples include vinyl alcohol homopolymers obtained by saponifying polyvinyl acetate, which is a homopolymer of vinyl acetate, and polyvinyl alcohol copolymers obtained by saponifying a copolymer of vinyl acetate and another monomer that can be copolymerized with it.
  • the polyvinyl alcohol may be unmodified polyvinyl alcohol, which does not have any functional groups other than hydroxyl groups (OH groups) and acetate groups ( OCOCH3 groups), or modified polyvinyl alcohol, which has functional groups other than hydroxyl groups and acetate groups.
  • the functional groups that may be introduced into the modified polyvinyl alcohol include carboxy groups, carbonyl groups, sulfonic acid groups, phosphoric acid groups, silanol groups, cationic groups, and alkyl groups.
  • the modified polyvinyl alcohol is preferably anion-modified polyvinyl alcohol, and more preferably carboxy-modified polyvinyl alcohol.
  • Examples of methods for producing the modified polyvinyl alcohol include a method of saponifying a copolymer of vinyl acetate and a monomer having a functional group other than a hydroxyl group and an acetate group that is copolymerizable with vinyl acetate; a method of reacting the hydroxyl group and/or acetate group in the vinyl alcohol homopolymer or polyvinyl alcohol copolymer with a compound that is reactive with the hydroxyl group and/or acetate group and has a functional group other than a hydroxyl group and an acetate group; and the like.
  • the method for producing the polyethylene oxide is not particularly limited, and for example, one obtained by ring-opening polymerization of ethylene oxide can be used.
  • the polyethylene oxide may have an oxypropylene group ( -CH2 -CH( CH3 )-O-) in the molecule. Therefore, the polyethylene oxide may be a copolymer of ethylene oxide and propylene oxide.
  • the method for producing the polyethylene glycol is not particularly limited, and for example, one obtained by subjecting ethylene oxide to condensation ring-opening polymerization with ethylene glycol, one obtained by ring-opening polymerization of ethylene oxide in the presence of water, etc. may be used.
  • the polyethylene glycol may also have an oxypropylene group in the molecule.
  • the water-soluble acrylic resin may be, for example, a water-soluble acrylic resin containing a structural unit derived from a hydrophilic (meth)acrylic monomer.
  • hydrophilic (meth)acrylic monomer examples include carboxyl group-containing (meth)acrylic monomers such as (meth)acrylic acid and crotonic acid; hydroxyl group-containing (meth)acrylic monomers such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and ring-opening adducts of these hydroxy (meth)acrylates with caprolactone, ethylene oxide, or the like; (meth)acrylic monomers having a polyoxyalkylene chain and no hydroxyl group; acrylamide monomers such as acrylamide and N-methoxymethylacrylamide; and amino group-containing (meth)acrylic monomers such as N,N-dimethylaminoethyl (meth)acrylate. These may be used alone or in combination of two or
  • the water-soluble acrylic resin may contain structural units derived from other (meth)acrylic monomers, styrene-based monomers, or vinyl-based monomers in addition to the structural units derived from the hydrophilic (meth)acrylic monomers.
  • the water-soluble acrylic resin can be obtained by polymerizing a hydrophilic (meth)acrylic monomer, and may be copolymerized with the other (meth)acrylic monomers, styrene-based monomers, or vinyl-based monomers, as necessary.
  • a copolymer of a hydrophilic polymerizable unsaturated monomer and a (meth)acrylic monomer may be used as the water-soluble acrylic resin.
  • the hydrophilic polymerizable unsaturated monomer may, for example, be N-vinyl-2-pyrrolidone.
  • the water-soluble acrylic resin may be one obtained by making the resin water-soluble with an acid, an alkali, or the like.
  • the resin when the hydrophilic (meth)acrylic monomer is a carboxyl group-containing (meth)acrylic monomer, the resin may be made water-soluble by neutralizing the monomer with an amine or ammonia, and when the monomer is an amino-containing (meth)acrylic monomer, the resin may be made water-soluble by neutralizing the monomer with an organic acid, or the like.
  • Examples of the natural polysaccharides include xanthan gum, guar gum, tamarind seed gum, locust bean gum, carrageenan, quince seed, alginic acid, pullulan, pectin, etc.
  • the water-soluble polymer (B) contains at least one of polyvinyl alcohol, polyethylene oxide, polyethylene glycol, and water-soluble acrylic resin.
  • the water-soluble polymer (B) is preferably polyvinyl alcohol with a saponification degree of 50 to 100, preferably 70 to 99, and an average polymerization degree of 100 to 4,000, preferably 200 to 3,000.
  • At least a portion of the nattokinase is not bound to the water-soluble polymer (B). Also, 100% by mass of the nattokinase does not have to be bound to the water-soluble polymer (B). This allows the nattokinase to efficiently decompose fibrin in the blood clot and efficiently reduce the viscosity of the blood clot while suppressing the effect of nattokinase on the skin of the user of the absorbent article.
  • nattokinase is not bound to the water-soluble polymer (B)
  • nattokinase is not chemically bound to the water-soluble polymer (B) by a covalent bond or an ionic bond.
  • the fact that nattokinase is not bound to the water-soluble polymer (B) does not include the fact that nattokinase is hydrogen bonded to the water-soluble polymer (B).
  • the functional composition contains the functional substance (A) and the water-soluble polymer (B) in a mass ratio of preferably 5 and 95 to 95 and 5, more preferably 10 and 90 to 80 and 20, even more preferably 13 and 87 to 75 and 25, and even more preferably 15 and 85 to 70 and 30, based on 100 parts by mass of the total solid content of the functional substance (A) and the water-soluble polymer (B).
  • the difference in water immersion solubility between the functional substance (A) (mass%) and the water immersion solubility of the water-soluble polymer (B) (mass%), that is, (a-b), is preferably 0 ⁇ (a-b), more preferably 20 ⁇ (a-b), and even more preferably 60 ⁇ (a-b). This makes the above functional composition less susceptible to the effects of low-viscosity liquids.
  • (a-b) is preferably (a-b) ⁇ 99, more preferably (a-b) ⁇ 98, even more preferably (a-b) ⁇ 95, and even more preferably (a-b) ⁇ 90.
  • the functional substance (A) in particular, nattokinase, is less susceptible to the influence of low-viscosity liquids and is more likely to form a coating that has excellent action against blood coagulation.
  • the water-soluble polymer (B) preferably has a water immersion solubility of 5% by mass or more, more preferably 8% by mass or more, and even more preferably 10% by mass or more.
  • the water-soluble polymer (B) also preferably has a water immersion solubility of 70% by mass or less, more preferably 60% by mass or less, even more preferably 40% by mass or less, and even more preferably 20% by mass or less. This makes the functional composition, particularly nattokinase, less susceptible to the effects of low-viscosity liquids and more likely to have excellent action on blood coagulation.
  • the water immersion dissolution rate (mass%) is measured as follows.
  • the target substance (functional substance (A), water-soluble polymer (B), etc.) is coated, diluted with deionized water as necessary, onto a glass plate (100 mm x 150 mm) whose mass: m0 (g) has been measured, and the glass plate coated with the target substance is dried at 100°C for 1 hour to form a sample coated with the target substance to a thickness of 20 ⁇ m on the glass plate, and the mass: m1 (g) of the sample is measured.
  • the sample is immersed in deionized water (20°C, 5 L) and left to stand for 3 minutes. The sample is then removed and dried at 100°C for 1 hour, and the mass ( m2 ) of the sample after immersion in water is measured.
  • a 10% by mass aqueous solution of the water-soluble polymer (B) preferably has a viscosity of 9,000 mPa ⁇ s or less, more preferably 5,000 mPa ⁇ s or less, even more preferably 3,000 mPa ⁇ s or less, even more preferably 2,000 mPa ⁇ s or less, and even more preferably 1,000 mPa ⁇ s or less.
  • a 10% by mass aqueous solution of the water-soluble polymer (B) preferably has a viscosity of 100 mPa ⁇ s or more.
  • the functional composition As a result, even if the functional composition comes into contact with a low-viscosity liquid, the functional composition is less likely to flow out, and when the functional composition comes into contact with a blood clot, the functional substance (A) is more likely to diffuse into the blood clot.
  • the above viscosity refers to the viscosity measured under the following conditions: temperature: 20°C, viscometer: B-type viscometer, rotor rotation speed: 60 rpm. In this specification, the viscosity under these conditions may be expressed as "viscosity (B-type, 20°C, 60 rpm)".
  • the functional composition may contain other components in addition to the functional substance (A) and the water-soluble polymer (B).
  • the other components include polymers other than the water-soluble polymer (B), fillers, fragrances, preservatives, antioxidants, pH adjusters, deodorants, antibacterial agents, etc.
  • the functional composition can be arranged on the absorbent article in the form of particles, a film, an impregnated form, a stripe form, etc., without any particular limitations.
  • the functional composition can be arranged, for example, in the form of particles on the fibers constituting the nonwoven fabric or tissue, arranged so as to cover the fibers constituting the nonwoven fabric or tissue, arranged so as to be impregnated into the fibers constituting the nonwoven fabric or tissue, arranged in the form of particles on a perforated film, arranged in the form of a film on a perforated film, or arranged in the form of stripes on the nonwoven fabric, tissue, or perforated film.
  • the functional composition can be formed, for example, by applying a treatment liquid containing a functional substance (A) including nattokinase, a water-soluble polymer (B), and an aqueous solvent (C) to an absorbent article.
  • a treatment liquid containing a functional substance (A) including nattokinase, a water-soluble polymer (B), and an aqueous solvent (C) to an absorbent article.
  • the aqueous solvent (C) may be water or a mixture of water and a water-soluble organic solvent in any ratio.
  • the water-soluble organic solvent include alcohols such as methanol, ethanol, 1-propanol, 2-propanol (isopropanol), glycerin, ethylene glycol, and propylene glycol; ethers such as ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, and tetrahydrofuran; and ketones such as acetone. These may be used alone or in combination of two or more.
  • the water-soluble organic solvent preferably includes at least one selected from alcohols and ethers.
  • the alcohols are preferably alcohols having 1 to 4 carbon atoms, more preferably alcohols having 1 to 4 carbon atoms and one hydroxyl group, and particularly preferably contain at least one selected from ethanol, 1-propanol, and 2-propanol.
  • ethers having 1 to 4 carbon atoms are more preferable, and it is particularly preferable that they include at least one selected from propylene glycol monomethyl ether and tetrahydrofuran.
  • the treatment liquid can be produced by mixing the functional material (A), the water-soluble polymer (B), the aqueous solvent (C), other components, etc., using a known mixing means.
  • the treatment liquid preferably has a solids concentration of 1 to 20% by mass.
  • the solids concentration of the treatment liquid can be measured by drying the treatment liquid at 130° C. for 3 hours.
  • the treatment liquid preferably has a pH of 5.0 to 10.0, and more preferably 5.2 to 9.8 at 20° C. in order to maintain the activity of the functional substance (A).
  • the pH can be measured, for example, using a twin pH meter F-52 manufactured by Horiba, Ltd.
  • the treatment liquid preferably has a viscosity of 3,000 mPa ⁇ s or less, and more preferably 1,000 mPa ⁇ s or less.
  • the treatment liquid preferably has a viscosity of 10 mPa ⁇ s or more. This makes it easier to form a functional composition on an absorbent article from the treatment liquid.
  • the viscosity is measured under the following conditions: temperature: 20°C, viscometer: B-type viscometer, rotor rotation speed: 60 rpm.
  • the treatment liquid can be applied to the material constituting the absorbent article by a conventionally known method, such as a spiral coater, curtain coater, spray coater, dip coater, etc., without any particular restriction. There is no particular restriction on the number of times the treatment liquid is applied to the material constituting the absorbent article, and for example, it may be applied once or multiple times, i.e., two or more times.
  • Materials constituting the absorbent article include a liquid-permeable top sheet (nonwoven fabric, perforated film, etc.), a liquid-impermeable back sheet (film, etc.), an absorbent placed between them (for example, an absorbent core (pulp fiber, etc.) and a core wrap (nonwoven fabric, tissue, etc.) covering the absorbent core), an optional upper diffusion sheet (nonwoven fabric, etc.) placed between the top sheet and absorbent, and an optional lower diffusion sheet (nonwoven fabric, etc.) placed between the absorbent and back sheet.
  • a liquid-permeable top sheet nonwoven fabric, perforated film, etc.
  • a liquid-impermeable back sheet film, etc.
  • an absorbent placed between them for example, an absorbent core (pulp fiber, etc.) and a core wrap (nonwoven fabric, tissue, etc.) covering the absorbent core
  • an optional upper diffusion sheet nonwoven fabric, etc.
  • an optional lower diffusion sheet placed between the absorbent and back sheet.
  • the treatment liquid can be applied to the top sheet, absorbent (e.g., absorbent core and core wrap covering said absorbent core), optional upper diffusion sheet, optional lower diffusion sheet, etc., and is preferably applied to the material on the skin contact side, e.g., the top sheet, in order to efficiently decompose menstrual blood.
  • absorbent e.g., absorbent core and core wrap covering said absorbent core
  • optional upper diffusion sheet e.g., absorbent core and core wrap covering said absorbent core
  • optional lower diffusion sheet e.g., etc.
  • Treatment solutions No. 2 to No. 18 were obtained in the same manner as in Production Example 1, except that the formulation in Production Example 1 was changed as shown in Table 1.
  • Table 1 shows the water immersion solubility (%) of the functional substance (A) and the water-soluble polymer (B) in Treatment Solutions No. 2 to No. 18, the water immersion solubility difference (%) which is the difference between the water immersion solubility of the functional substance (A) and the water-soluble polymer (B) (referred to as "solubility difference (%)"), and the viscosity of the water-soluble polymer (B) at a 10% concentration (B type, 20°C, 60 rpm) (referred to as "10% viscosity").
  • (Notes 1) to (Notes 10) in Table 1 are as follows: (Note 1) Nattokinase powder, manufactured by Fujifilm Wako Pure Chemical Industries, dissolution rate when immersed in water: 99% or more (Note 2) Polyethylene glycol (PEG) Average molecular weight: 20,000, water immersion solubility: 57%, viscosity at 10% concentration (B type, 20°C, 60 rpm): 3 mPa ⁇ s (Note 3) Polyvinyl alcohol (PVA-1) Average degree of polymerization: 300, degree of saponification: 98, solubility in water: 11%, viscosity at 10% concentration (B type, 20°C, 60 rpm): 17 mPa ⁇ s
  • SPA Sodium polyacrylate
  • Polyvinyl alcohol (PVA-2) Average degree of polymerization: 1,000, saponification degree: 98, water immersion solubility: 13%, viscosity at 10% concentration (B type, 20°C, 60 rpm): 291 mPa ⁇ s
  • Polyvinyl alcohol (PVA-3) Average degree of polymerization: 1,700, degree of saponification: 88, solubility in water: 15%, viscosity at 10% concentration (B type, 20°C, 60 rpm): 700 mPa ⁇ s
  • a treatment liquid (each of No. 1 to No. 18) is sprayed uniformly over an area of 5 cm x 3 cm (longitudinal x widthwise) centered on the longitudinal center and widthwise center (hereinafter referred to as the "sanitary napkin center") of the top sheet of a sanitary napkin (Bodyfit Regular, manufactured by Unicharm Corporation) so that the basis weight of the functional substance (A) adhered to the top sheet is as shown in Table 1.
  • the sanitary napkins sprayed with treatment liquids No. 1 to No. 18 were left to stand at 30° C. for 120 minutes to dry, producing sanitary napkins No. 1 to No. 18.
  • a sanitary napkin (Bodyfit Regular, manufactured by Unicharm Corporation) that was not sprayed with a treatment liquid was used as sanitary napkin No. 19 (blank).
  • Sanitary napkins No. 1A to No. 19A and sanitary napkins No. 1B to No. 19B are left to stand for 45 minutes under conditions of temperature: 35° C. and relative humidity: 60% RH.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

The purpose of the present disclosure is to provide an absorbent article wherein nattokinase is not readily affected by a low-viscosity liquid, demonstrates superior action against blood clots, and does not readily act on skin. An absorbent article according to the present disclosure has the following configuration. An absorbent article that is provided with a functional composition, said functional composition including a functional substance (A) that includes nattokinase and has a function of inhibiting a factor that contributes to blood coagulation, and a water-soluble polymer (B), said absorbent article being characterized in that at least a portion of the nattokinase is not bonded to the water-soluble polymer (B).

Description

吸収性物品Absorbent articles
 本開示は、吸収性物品に関する。 This disclosure relates to absorbent articles.
 血液凝固物(例えば、経血等)を分解するための機能性組成物を有する吸収性物品の検討が行われている。それにより、吸収性物品上で血液凝固物を低粘度化することができ、低粘度化した血液凝固物を吸収性物品に吸収しやすくすることができる。 Absorbent articles having functional compositions for breaking down blood clots (e.g., menstrual blood) are being studied. This makes it possible to reduce the viscosity of blood clots on the absorbent article, making it easier for the absorbent article to absorb the reduced-viscosity blood clots.
 例えば、特許文献1には、少なくとも1つの層を含む吸収性パーソナルケア物品であって、前記層は、施された処理剤を有する支持体を含み、前記処理剤は、結合された酵素を含む、前記吸収性パーソナルケア物品が提案されている。 For example, Patent Document 1 proposes an absorbent personal care article that includes at least one layer, the layer including a support having a treatment agent applied thereto, the treatment agent including a bound enzyme.
 特許文献1の段落[0004]には、「結合された酵素の使用は、改変されていない酵素と比較して、結合された酵素が使用者の体に移動する場合には皮膚又は粘膜の感作を減少させることができる。更に、結合された酵素は、処理された材料から使用者に移動しそうになく、それによって、結合された酵素を含有する吸収性製品の使用者に対して感作リスクを減少させる」ことが開示されている。 Paragraph [0004] of Patent Document 1 discloses that "The use of conjugated enzymes can reduce skin or mucosal sensitization in the event that the conjugated enzyme migrates into the user's body, as compared to unmodified enzymes. Furthermore, the conjugated enzymes are less likely to migrate from the treated material to the user, thereby reducing the risk of sensitization to users of absorbent products containing the conjugated enzymes."
特表2007-535361号公報JP 2007-535361 A
 特許文献1に開示される吸収性物品では、酵素が担体材料に結合されていることから、酵素が使用者の皮膚感作を減少させることができるとともに、低粘度の液体による影響を受けにくいものの、月経分泌物に対して酵素が十分に機能できないものであった。
 従って、本開示は、ナットウキナーゼが、低粘度の液体の影響を受けにくく、血液凝固物に対する作用に優れるとともに、皮膚に作用しにくい吸収性物品を提供することを目的とする。
In the absorbent article disclosed in Patent Document 1, the enzyme is bound to a carrier material, which allows the enzyme to reduce skin sensitization of the user and is less susceptible to the effects of low-viscosity liquids; however, the enzyme cannot function sufficiently with menstrual secretions.
Therefore, an object of the present disclosure is to provide an absorbent article in which nattokinase is less susceptible to the effects of low-viscosity liquids, has excellent effects on blood clots, and is less likely to affect the skin.
 本開示者らは、ナットウキナーゼを含む血液の凝固に働く因子を阻害する機能を有する機能性物質(A)と、水溶性ポリマー(B)とを含む機能性組成物を備えている吸収性物品であって、上記ナットウキナーゼの少なくとも一部が、水溶性ポリマー(B)に結合されていないことを特徴とする吸収性物品を見出した。 The present inventors have discovered an absorbent article that includes a functional composition containing a functional substance (A) that has the function of inhibiting factors that act on blood clotting, including nattokinase, and a water-soluble polymer (B), and that is characterized in that at least a portion of the nattokinase is not bound to the water-soluble polymer (B).
 本開示に係る吸収性物品は、ナットウキナーゼを含む機能性組成物を備えており、ナットウキナーゼが、低粘度の液体の影響を受けにくく、血液凝固物に対する作用に優れるとともに、皮膚に作用しにくい。 The absorbent article according to the present disclosure includes a functional composition containing nattokinase, which is less susceptible to the effects of low-viscosity liquids, has excellent effects on blood clots, and is less likely to affect the skin.
 具体的には、本開示は以下の態様に関する。
[態様1]
 ナットウキナーゼを含む血液の凝固に働く因子を阻害する機能を有する機能性物質(A)と、水溶性ポリマー(B)とを含む機能性組成物を備えている吸収性物品であって、
 上記ナットウキナーゼの少なくとも一部が、水溶性ポリマー(B)に結合されていない、
 ことを特徴とする、上記吸収性物品。
Specifically, the present disclosure relates to the following aspects:
[Aspect 1]
An absorbent article comprising a functional composition containing a functional substance (A) having a function of inhibiting a blood coagulation factor, including nattokinase, and a water-soluble polymer (B),
At least a portion of the nattokinase is not bound to the water-soluble polymer (B);
The absorbent article as described above.
 上記吸収性物品では、上記機能性組成物において、血液の凝固に働く因子を阻害する機能を有する機能性物質(A)が水溶性ポリマー(B)に保持されていることから、上記機能性組成物が低粘度の液体と接触した場合に、水溶性ポリマー(B)の溶解に一定の時間がかかることから、機能性組成物から血液の凝固に働く因子を阻害する機能を有する機能性物質(A)、特に、ナットウキナーゼが流出しにくく、血液の凝固に働く因子を阻害する機能を有する機能性物質(A)、特に、ナットウキナーゼが低粘度の液体の影響を受けにくい。 In the above absorbent article, the functional substance (A) having the function of inhibiting blood clotting factors is held by the water-soluble polymer (B) in the functional composition. When the functional composition comes into contact with a low-viscosity liquid, it takes a certain amount of time for the water-soluble polymer (B) to dissolve. This means that the functional substance (A) having the function of inhibiting blood clotting factors, particularly nattokinase, is less likely to flow out of the functional composition, and the functional substance (A) having the function of inhibiting blood clotting factors, particularly nattokinase, is less likely to be affected by low-viscosity liquids.
 また、上記機能性組成物が血液凝固物と接触すると、機能性組成物からナットウキナーゼが溶解し、ナットウキナーゼが血液凝固物中のフィブリンを分解し、血液凝固物を低粘度化することができる。また、上記ナットウキナーゼの少なくとも一部は、水溶性ポリマー(B)に結合されていない、すなわち、遊離状態にあることから、遊離状態におけるナットウキナーゼが、血液凝固物中のフィブリンを効率よく分解し、血液凝固物を効率よく低粘度化することができる。 Furthermore, when the functional composition comes into contact with a blood clot, nattokinase dissolves from the functional composition, and the nattokinase decomposes fibrin in the blood clot, thereby reducing the viscosity of the blood clot. Furthermore, at least a portion of the nattokinase is not bound to the water-soluble polymer (B), i.e., is in a free state, and therefore the nattokinase in the free state can efficiently decompose fibrin in the blood clot, thereby efficiently reducing the viscosity of the blood clot.
 さらに、上記機能性組成物では、ナットウキナーゼの一部が遊離状態にあるものの、遊離状態におけるナットウキナーゼが、物品の使用者の皮膚に作用しにくい。
 以上より、上記吸収性物品では、ナットウキナーゼが、低粘度の液体の影響を受けにくく、血液凝固物に対する作用に優れるとともに、皮膚に作用しにくい。
Furthermore, in the above-mentioned functional composition, although a portion of the nattokinase is in a free state, the nattokinase in the free state is unlikely to act on the skin of a user of the article.
As described above, in the absorbent article, nattokinase is less affected by low viscosity liquids, has excellent effects on blood clots, and is less likely to act on the skin.
[態様2]
 血液の凝固に働く因子を阻害する機能を有する機能性物質(A)が、上記ナットウキナーゼを50質量%超含む、態様1に記載の吸収性物品。
 上記吸収性物品では、血液の凝固に働く因子を阻害する機能を有する機能性物質(A)がナットウキナーゼを所定量含むことから、上記吸収性物品では、ナットウキナーゼが、低粘度の液体の影響を受けにくく、血液凝固物に対する作用に優れるとともに、皮膚に作用しにくい。
[Aspect 2]
The absorbent article according to aspect 1, wherein the functional substance (A) having a function of inhibiting a factor acting on blood coagulation contains more than 50% by mass of the nattokinase.
In the above absorbent article, the functional substance (A) having the function of inhibiting factors that act on blood coagulation contains a predetermined amount of nattokinase, so that in the above absorbent article, nattokinase is less affected by low-viscosity liquids, has excellent action on blood coagulation, and is less likely to act on the skin.
[態様3]
 上記機能性組成物が、血液の凝固に働く因子を阻害する機能を有する機能性物質(A)及び水溶性ポリマー(B)を、血液の凝固に働く因子を阻害する機能を有する機能性物質(A)及び水溶性ポリマー(B)の固形分計100質量部に基づいて、5及び95~95及び5の質量比で含む、態様1又は2に記載の吸収性物品。
[Aspect 3]
The absorbent article according to aspect 1 or 2, wherein the functional composition contains a functional substance (A) having a function of inhibiting a factor acting on blood coagulation and a water-soluble polymer (B) in a mass ratio of 5:95 to 95:5 based on 100 parts by mass of the total solid content of the functional substance (A) having a function of inhibiting a factor acting on blood coagulation and the water-soluble polymer (B).
 上記機能性組成物は、血液の凝固に働く因子を阻害する機能を有する機能性物質(A)及び水溶性ポリマー(B)を所定の質量比で含むことから、上記吸収性物品では、ナットウキナーゼが、低粘度の液体の影響を受けにくく、血液凝固物に対する作用に優れるとともに、皮膚に作用しにくい。 The functional composition contains a functional substance (A) that has the function of inhibiting factors that act on blood clotting, and a water-soluble polymer (B) in a specified mass ratio, so in the absorbent article, nattokinase is less affected by low-viscosity liquids, has excellent action against blood clots, and is less likely to act on the skin.
[態様4]
 血液の凝固に働く因子を阻害する機能を有する機能性物質(A)の水浸漬溶解率:a(質量%)と、水溶性ポリマー(B)の水浸漬溶解率:b(質量%)とが、0<(a-b)の水浸漬溶解率差を有する、態様1~3のいずれか一項に記載の吸収性物品。
[Aspect 4]
The absorbent article according to any one of aspects 1 to 3, wherein the difference in solubility in water of the functional substance (A) having a function of inhibiting a factor acting on blood coagulation: a (% by mass) and the solubility in water of the water-soluble polymer (B): b (% by mass) is 0<(a-b).
 上記吸収性物品では、血液の凝固に働く因子を阻害する機能を有する機能性物質(A)の水浸漬溶解率と、水溶性ポリマー(B)の水浸漬溶解率とが所定の水浸漬溶解率差を有することから、上記吸収性物品において、機能性成分は、低粘度の液体の影響を受けにくくなる。 In the absorbent article, the functional substance (A) that has the function of inhibiting factors that act on blood clotting has a water immersion solubility rate that is different from the water immersion solubility rate of the water-soluble polymer (B), so that the functional component in the absorbent article is less susceptible to the effects of low-viscosity liquids.
[態様5]
 水溶性ポリマー(B)が、5~70質量%の水浸漬溶解率を有する、態様1~4のいずれか一項に記載の吸収性物品。
[Aspect 5]
The absorbent article according to any one of the preceding claims, wherein the water-soluble polymer (B) has a water immersion solubility of 5 to 70 mass %.
 上記吸収性物品では、水溶性ポリマー(B)が所定の水浸漬溶解率を有することから、上記吸収性物品では、ナットウキナーゼが、低粘度の液体の影響を受けにくく、血液凝固物に対する作用に優れる。 In the above absorbent article, the water-soluble polymer (B) has a predetermined water immersion solubility rate, so that nattokinase in the above absorbent article is less susceptible to the effects of low-viscosity liquids and has excellent action against blood clots.
[態様6]
 水溶性ポリマー(B)が、10質量%水溶液,温度:20℃,粘度計:B型粘度計,ローター回転速度:60rpmの測定条件において、9,000mPa・s以下の粘度を有する、態様1~5のいずれか一項に記載の吸収性物品。
[Aspect 6]
The absorbent article according to any one of claims 1 to 5, wherein the water-soluble polymer (B) has a viscosity of 9,000 mPa·s or less under the measurement conditions of a 10% by mass aqueous solution, a temperature of 20°C, a viscometer: a B-type viscometer, and a rotor rotation speed of 60 rpm.
 上記吸収性物品では、水溶性ポリマー(B)が所定の粘度を有することから、上記機能性組成物が低粘度の液体と接触した場合であっても、機能性組成物が流出しにくく、そして機能性組成物が血液凝固物と接触した際に、血液の凝固に働く因子を阻害する機能を有する機能性物質(A)が、血液凝固物に拡散しやすくなる。 In the absorbent article, since the water-soluble polymer (B) has a predetermined viscosity, the functional composition is unlikely to flow out even when it comes into contact with a low-viscosity liquid, and when the functional composition comes into contact with a blood clot, the functional substance (A), which has the function of inhibiting factors that act on blood clotting, is likely to diffuse into the blood clot.
[態様7]
 水溶性ポリマー(B)が、ポリビニルアルコール、ポリエチレンオキサイド、ポリエチレングリコール、及び水溶性アクリル樹脂を少なくとも1種含む、態様1~6のいずれか一項に記載の吸収性物品。
[Aspect 7]
The absorbent article according to any one of the preceding claims, wherein the water-soluble polymer (B) comprises at least one of polyvinyl alcohol, polyethylene oxide, polyethylene glycol, and a water-soluble acrylic resin.
 上記吸収性物品では、水溶性ポリマー(B)が所定のものを含むことから、態様1の効果を発揮しやすくなる。 The above absorbent article is more likely to exhibit the effects of aspect 1 because the water-soluble polymer (B) contains a specific one.
[態様8]
 上記吸収性物品が、不織布を含む液透過性のトップシートを備えており、上記機能性組成物が、上記不織布を構成する繊維の表面に粒子状に配置されているか、上記不織布を構成する繊維を被覆するように配置されているか、又は上記不織布を構成する繊維に含浸されている、態様1~7のいずれか一項に記載の吸収性物品。
[Aspect 8]
The absorbent article according to any one of aspects 1 to 7, wherein the absorbent article comprises a liquid-permeable top sheet including a nonwoven fabric, and the functional composition is disposed in the form of particles on the surface of the fibers constituting the nonwoven fabric, disposed so as to cover the fibers constituting the nonwoven fabric, or impregnated into the fibers constituting the nonwoven fabric.
 上記吸収性物品では、上記機能性組成物が所定の状態で配置されていることから、態様1の効果を発揮しやすくなる。 In the absorbent article, the functional composition is arranged in a specific state, which makes it easier to achieve the effect of aspect 1.
[態様9]
 上記吸収性物品が、開孔フィルムを含む液透過性のトップシートを備えており、上記機能性組成物が、上記開孔フィルムの表面に粒子状に配置されているか、又は上記開孔フィルムの表面にフィルム状に配置されている、態様1~8のいずれか一項に記載の吸収性物品。
[Aspect 9]
The absorbent article according to any one of aspects 1 to 8, wherein the absorbent article comprises a liquid-permeable top sheet including a perforated film, and the functional composition is disposed in the form of particles on the surface of the perforated film, or in the form of a film on the surface of the perforated film.
 上記吸収性物品では、上記機能性組成物が所定の状態で配置されていることから、態様1の効果を発揮しやすくなる。 In the absorbent article, the functional composition is arranged in a specific state, which makes it easier to achieve the effect of aspect 1.
 本開示に係る吸収性物品について、以下、詳細に説明する。
 本開示に係る吸収性物品としては、例えば、生理用ナプキン、生理用ショーツ、パンティーライナー等が挙げられる。
The absorbent article according to the present disclosure will be described in detail below.
Examples of absorbent articles according to the present disclosure include sanitary napkins, sanitary shorts, panty liners, and the like.
 本開示に係る吸収性物品において、機能性組成物は、ナットウキナーゼを含む血液の凝固に働く因子を阻害する機能を有する機能性物質(A)と、水溶性ポリマー(B)とを含む。なお、本明細書において、「血液の凝固に働く因子を阻害する機能を有する機能性物質(A)」を、単に『機能性物質(A)』と称する場合がある。
 ナットウキナーゼ(Nattokinase)は、高いフィブリン分解能を示すセリンプロテアーゼであり、血液凝固物(例えば、経血)の低粘度化を促進することができ、かつ血液の凝固を抑制することができる。
In the absorbent article according to the present disclosure, the functional composition includes a functional substance (A) having a function of inhibiting factors that act on blood clotting, including nattokinase, and a water-soluble polymer (B). In this specification, the "functional substance (A) having a function of inhibiting factors that act on blood clotting" may be simply referred to as the "functional substance (A)".
Nattokinase is a serine protease that exhibits high fibrin decomposition activity, and can promote the reduction of the viscosity of blood clots (e.g., menstrual blood) and inhibit blood coagulation.
 ナットウキナーゼは、フィブリンを分解する能力を有する酵素(セリンプロテアーゼ)である。ナットウキナーゼは、一般に、納豆に含有され、納豆菌によって産出することができる。ナットウキナーゼは、フィブリンを、主にDD(175kDa)及びLD(110kDa)へと分解しうる。理論によって限定する意図はないが、ナットウキナーゼは、フィブリンを分解するために適した立体構造を有しており、プラスミンと同様の機構によって、フィブリンを分解すると考えられる。ナットウキナーゼは、フィブリンに対する酵素の特異性定数が、プラスミンの約6倍であるという報告がある。このことは、ナットウキナーゼが、プラスミンよりも高いフィブリン分解作用を有することを示している。 Nattokinase is an enzyme (serine protease) that has the ability to degrade fibrin. Nattokinase is generally contained in natto and can be produced by Bacillus subtilis var. natto. Nattokinase can degrade fibrin mainly into DD (175 kDa) and LD (110 kDa). Without intending to be limited by theory, nattokinase has a three-dimensional structure suitable for degrading fibrin and is thought to degrade fibrin by a mechanism similar to that of plasmin. It has been reported that the specificity constant of nattokinase for fibrin is approximately six times that of plasmin. This indicates that nattokinase has a higher fibrinolytic activity than plasmin.
 理論によって限定する意図はないが、ナットウキナーゼは、30~40℃の温度及びpH6~9の条件で、特に高い活性を示す。吸収性物品、特に生理用ナプキンは装着時に体温に起因して35℃前後の温度となり、かつ経血のpHは7前後であるので、ナットウキナーゼは、経血を吸収するための吸収性物品の使用条件下において、特に良好に機能すると考えられる。 Without intending to be limited by theory, nattokinase exhibits particularly high activity at temperatures of 30-40°C and pH levels of 6-9. Absorbent articles, particularly sanitary napkins, reach a temperature of around 35°C due to body temperature when worn, and the pH of menstrual blood is around 7. Therefore, it is believed that nattokinase functions particularly well under the conditions in which absorbent articles are used to absorb menstrual blood.
 また、理論によって限定する意図はないが、フィブリノゲンとナットウキナーゼとの結合様式についてのシミュレーション結果によれば、ナットウキナーゼは、その8個のアミノ酸残基(Gly61、Ser63、Thr99、Phe189、Leu209、Tyr217、Asn218、Met222)を介してフィブリノゲンと相互作用し、主にSer221を介してフィブリンの分解を行うと考えられる。ナットウキナーゼの作用機序に関するこのような詳細な知見を利用することによって、吸収性物品における血液凝固の抑制作用と、血液凝固物の低粘度化作用とを、さらに向上させることができると考えられる。 In addition, without intending to be limited by theory, simulation results on the binding mode between fibrinogen and nattokinase suggest that nattokinase interacts with fibrinogen via its eight amino acid residues (Gly61, Ser63, Thr99, Phe189, Leu209, Tyr217, Asn218, Met222) and decomposes fibrin mainly via Ser221. By utilizing such detailed knowledge of the mechanism of action of nattokinase, it is believed that it is possible to further improve the blood coagulation inhibition effect and the viscosity reduction effect of blood clots in absorbent articles.
 ナットウキナーゼは、人体に対する安全性が高い。したがって、機能性物質としてナットウキナーゼを吸収性物品に適用した場合には、安全性に特に優れる。
 ナットウキナーゼは、例えば、粉末状の形態で、市販品として入手可能である。例えば、粒形15~35μmのNattokinase(富士フィルム和光純薬社製)が市販されている。
Nattokinase is highly safe for the human body. Therefore, when nattokinase is applied as a functional substance to absorbent articles, the safety is particularly excellent.
Nattokinase is commercially available in the form of a powder, for example. For example, Nattokinase (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) with a granular size of 15 to 35 μm is commercially available.
 機能性物質(A)は、ナットウキナーゼを、好ましくは50質量%超、より好ましくは60質量%以上、さらに好ましくは70質量%以上、さらにいっそう好ましくは80質量%以上、そしてさらにいっそう好ましくは90質量%以上含む。それにより、血液凝固物の低粘度化を促進することができ、かつ血液の凝固を抑制することができる。なお、機能性物質(A)におけるナットウキナーゼの上限は、100質量%である。 The functional substance (A) contains nattokinase in an amount of preferably more than 50% by mass, more preferably 60% by mass or more, even more preferably 70% by mass or more, even more preferably 80% by mass or more, and even more preferably 90% by mass or more. This can promote low viscosity of blood clots and inhibit blood coagulation. The upper limit of nattokinase in the functional substance (A) is 100% by mass.
 機能性物質(A)は、ナットウキナーゼ以外の、血液の凝固に働く因子を阻害する機能を有する機能性物質を含むことができる。
 上記血液の凝固に働く因子としては、例えば、フィブリン(特には、フィブリンモノマー、フィブリンポリマー及び/又は安定化フィブリン)、血液凝固因子、血小板、及び血小板の凝集促進物質が挙げられる。血液凝固因子としては、特に、トロンビン、活性化第II因子、活性化第VII因子、活性化第IX因子、活性化第X因子、及び活性化第XIII因子が挙げられる。また、血小板の凝集促進物質としては、特に、TXA2及びcAMPが挙げられる。
The functional substance (A) may contain a functional substance other than nattokinase that has a function of inhibiting factors that act on blood coagulation.
Examples of the factors that act on blood coagulation include fibrin (particularly fibrin monomer, fibrin polymer, and/or stabilized fibrin), blood coagulation factors, platelets, and platelet aggregation promoters. Examples of blood coagulation factors include thrombin, activated factor II, activated factor VII, activated factor IX, activated factor X, and activated factor XIII. Examples of platelet aggregation promoters include TXA2 and cAMP.
 上記血液の凝固に働く因子を阻害する機能を有する機能性物質としては、フィブリン分解能を有する酵素、抗血小板作用を有する物質(特には化合物)、プラスミンの活性化を促進させる因子、及び凝固阻害剤が挙げられる。 Functional substances that have the function of inhibiting factors that act on blood clotting include enzymes with fibrin decomposition ability, substances (particularly compounds) with antiplatelet activity, factors that promote the activation of plasmin, and coagulation inhibitors.
 上記フィブリン分解能を有する酵素及びプラスミンの活性化を促進させる因子は、主に、血液凝固物の低粘度化を促進する作用を有する。また、抗血小板作用を有する物質及び凝固阻害剤は、主に、血液の凝固を抑制する機能を有する。 The above-mentioned enzymes with fibrinolytic properties and factors that promote the activation of plasmin mainly have the effect of promoting the reduction of the viscosity of blood clots. In addition, substances with antiplatelet properties and coagulation inhibitors mainly have the function of suppressing blood coagulation.
 上記フィブリン分解能を有する酵素は、プロテアーゼであってよく、特に、セリンプロテアーゼ又はシステインプロテアーゼであってよい。フィブリン分解能を有する酵素は、特には、フィブリンポリマー及び/又は安定化フィブリンを切断することができる。 The fibrin decomposition enzyme may be a protease, in particular a serine protease or a cysteine protease. The fibrin decomposition enzyme is particularly capable of cleaving fibrin polymers and/or stabilized fibrin.
 理論によって限定する意図はないが、血液中では、一連の分子を含む血液凝固因子が働くことによって、フィブリノゲンからのフィブリンモノマーの生成、フィブリンモノマーのポリマー化、及びフィブリンの架橋(安定化)が進行し、血液が凝固する。フィブリンポリマー、及び安定化フィブリンは、網目状(メッシュ状)の構造を形成し、この構造で赤血球、血小板等を凝集させて、血液を凝固させる。フィブリン分解能を有する酵素は、特に、フィブリンポリマー及び安定化フィブリンを分解することによって血液の凝固を抑制することができ、また、網目状の構造を形成したフィブリンポリマー及び安定化フィブリンを分解することによって、血液凝固物の低粘度化を促進することができる。 Without intending to be limited by theory, blood coagulation factors including a series of molecules act in blood to generate fibrin monomers from fibrinogen, polymerize the fibrin monomers, and crosslink (stabilize) the fibrin, resulting in blood clotting. Fibrin polymers and stabilized fibrin form a mesh-like structure, which aggregates red blood cells, platelets, etc., causing blood to clot. Enzymes with fibrin-decomposing ability can inhibit blood clotting by decomposing fibrin polymers and stabilized fibrin, in particular, and can also promote the reduction of the viscosity of blood clots by decomposing fibrin polymers and stabilized fibrin that have formed mesh-like structures.
 上記フィブリン分解能を有する酵素としては、ナットウキナーゼの他に、プラスミン、DFE27、Subtilisin DFE、Subtilisin QK-2、ブロメライン、及びセラペプターゼが挙げられる。 In addition to nattokinase, other enzymes with fibrin decomposition ability include plasmin, DFE27, subtilisin DFE, subtilisin QK-2, bromelain, and serrapeptase.
 上記プラスミンは、フィブリンを分解する能力(線溶能力)を有する酵素(セリンプロテアーゼ)であり、通常、血液(例えば、経血)に存在する。プラスミンは、フィブリンを分解することができる。プラスミンがフィブリンを分解することによって、D-ダイマーと呼ばれる分解産物、及びその他の分解産物が生成される。 The above-mentioned plasmin is an enzyme (serine protease) that has the ability to degrade fibrin (fibrinolytic ability) and is usually present in blood (e.g., menstrual blood). Plasmin can degrade fibrin. When plasmin degrades fibrin, a degradation product called D-dimer and other degradation products are generated.
 DFE27は、フィブリンを分解する能力を有する酵素(セリンプロテアーゼ)である。DFE27は、一般に、トウチ(Douchi)に含有され、B.subtilis DC27(枯草菌DC27)によって産生することができる。 DFE27 is an enzyme (serine protease) that has the ability to degrade fibrin. DFE27 is generally contained in Douchi and can be produced by B. subtilis DC27.
 Subtilisin DFE は、フィブリンを分解する能力を有する酵素(セリンプロテアーゼ)である。Subtilisin DFE は、一般に、トウチ(Douchi)に含有され、B.amyloliquefaciens DC-4によって産生することができる。 Subtilisin DFE is an enzyme (serine protease) that has the ability to degrade fibrin. Subtilisin DFE is generally contained in Douchi and can be produced by B. amyloliquefaciens DC-4.
 Subtilisin QK-2は、フィブリンを分解する能力を有する酵素(セリンプロテアーゼ)である。Subtilisin QK-2は、一般に、発酵大豆に含有され、B.subtilis QK02によって産生することができる。 Subtilisin QK-2 is an enzyme (serine protease) that has the ability to degrade fibrin. Subtilisin QK-2 is generally contained in fermented soybeans and can be produced by B. subtilis QK02.
 ブロメラインは、フィブリンを分解する能力を有する酵素(システインプロテアーゼ)である。プロメラインは、パイナップルの果実等に含まれる。 Bromelain is an enzyme (cysteine protease) that has the ability to break down fibrin. Bromelain is found in pineapple fruits, etc.
 セラペプターゼは、フィブリンを分解する能力を有する酵素である。セラペプターゼは、一般に、カイコに含有され、非病原性細菌セラチアE15によって産生することができる。 Serrapeptase is an enzyme that has the ability to degrade fibrin. Serrapeptase is generally contained in silkworms and can be produced by the non-pathogenic bacterium Serratia marcescens E15.
 上記機能性組成物は、フィブリン分解能を有する酵素、例えば、ナットウキナーゼのフィブリン分解能(線溶能力)を向上させることができる補助成分をさらに含むことができる。
 上記補助成分としては、炭素数12~18の脂肪酸、野菜粉砕物、EPA、DHA、香辛料、亜鉛イオン(Zn2+)、マンガンイオン(Mn2+)、カルシウムイオン(Ca2+)、カリウムイオン(K+)が挙げられる。
The functional composition may further include an auxiliary component capable of improving the fibrin decomposition (fibrinolytic ability) of an enzyme having fibrin decomposition ability, for example, nattokinase.
The auxiliary ingredients include fatty acids having 12 to 18 carbon atoms, ground vegetables, EPA, DHA, spices, zinc ions (Zn 2+ ), manganese ions (Mn 2+ ), calcium ions (Ca 2+ ), and potassium ions (K + ).
 炭素数12~18の脂肪酸は、特に、ナットウキナーゼの線溶能力を向上させることができる。炭素数12~18の脂肪酸は、ナットウキナーゼに対して、4~12mg/2000FUの配合比で用いることが好ましい。 Fatty acids with 12 to 18 carbon atoms can particularly improve the fibrinolytic ability of nattokinase. It is preferable to use fatty acids with 12 to 18 carbon atoms at a ratio of 4 to 12 mg/2000 FU relative to nattokinase.
 野菜粉砕物、EPA、及びDHAは、特に、ナットウキナーゼの線溶能力を向上させることができる。野菜粉砕物としては、例えば、玉ねぎ粉末が挙げられる。
 香辛料は、特に、ナットウキナーゼの線溶能力を向上させることができる。香辛料として、(特には粉末状の)唐辛子が挙げられる。
Ground vegetables, EPA, and DHA, in particular, can improve the fibrinolytic ability of nattokinase. Ground vegetables include, for example, onion powder.
Spices, in particular, can improve the fibrinolytic ability of nattokinase, including chili peppers (especially in powder form).
 亜鉛イオン(Zn2+)は、特に、ナットウキナーゼの線溶能力を向上させることができる。また、マンガンイオン(Mn2+)、カルシウムイオン(Ca2+)、及びカリウムイオン(K+)は、特に、ドウチ由来のプロテアーゼの線溶能力を向上させることができる。 Zinc ions (Zn 2+ ) can particularly improve the fibrinolytic ability of nattokinase, while manganese ions (Mn 2+ ), calcium ions (Ca 2+ ), and potassium ions (K + ) can particularly improve the fibrinolytic ability of douchi-derived protease.
 機能性物質(A)は、プラスミンの活性化を促進させる因子を含むこともできる。通常、経血中にはプラスミンが存在しており、フィブリンを分解することができるので、プラスミンの活性化を促進させる因子を用いることによって、高粘性経血の低粘度化を促進することができる。プラスミンの活性化を促進させる因子としては、溶解阻害因子PAI-1の活性を阻害する作用を有する因子が挙げられる。溶解阻害因子PAI-1の活性を阻害する作用を有する因子としては、上記ナットウキナーゼが挙げられる。また、ブロメライン及びDFE27も、プラスミノーゲンからプラスミンへの変化を促進する作用を有する。 The functional substance (A) may also contain a factor that promotes the activation of plasmin. Plasmin is usually present in menstrual blood and is capable of decomposing fibrin, so by using a factor that promotes the activation of plasmin, it is possible to promote the reduction of the viscosity of highly viscous menstrual blood. Factors that promote the activation of plasmin include factors that have the effect of inhibiting the activity of the lysis inhibitor PAI-1. An example of a factor that has the effect of inhibiting the activity of the lysis inhibitor PAI-1 is the above-mentioned nattokinase. Bromelain and DFE27 also have the effect of promoting the conversion of plasminogen to plasmin.
 溶解促進因子t-PAが活性化すると、プラスミノーゲンからプラスミンが生成される。t-PAは、溶解阻害因子PAI-1と結合することによって、不活性化する。理論によって限定する意図はないが、溶解阻害因子PAI-1の活性を阻害することによって、t-PAの不活性化が抑制されるので、t-PAによるプラスミノーゲンからのプラスミンの生成が促進されると考えられる。なお、プラスミンは、生体内でプラスミンインヒビター(antiplasmin)と結合して不活性化する。 When the solubility-promoting factor t-PA is activated, plasmin is produced from plasminogen. t-PA is inactivated by binding to the solubility-inhibiting factor PAI-1. Without intending to be limited by theory, it is believed that the inactivation of t-PA is suppressed by inhibiting the activity of the solubility-inhibiting factor PAI-1, and thus the production of plasmin from plasminogen by t-PA is promoted. Plasmin is inactivated in the body by binding to a plasmin inhibitor (antiplasmin).
 上記抗血小板作用を有する化合物としては、ブロメライン、アセチルサリチル酸(アスピリン(商標)、バファリン(登録商標)等)、PGI2誘導体ベラプロスト、エイコサペンタエン酸(EPA)、ドコサヘキサエン酸(DHA)、(例えば、ニトログリセリン等の)NO関連製剤が挙げられる。その他、抗血小板作用を有する化合物として、クロピドグレル硫酸塩、プラスグレル塩酸塩、チクロピジン塩酸塩、チカグレロル、シロスタゾール、サルポグレラート塩酸塩を挙げることもできる。 Examples of compounds with the above-mentioned antiplatelet effect include bromelain, acetylsalicylic acid (Aspirin (trademark), Bufferin (registered trademark), etc.), the PGI2 derivative beraprost, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and NO-related preparations (e.g., nitroglycerin, etc.). Other examples of compounds with antiplatelet effect include clopidogrel sulfate, prasugrel hydrochloride, ticlopidine hydrochloride, ticagrelor, cilostazol, and sarpogrelate hydrochloride.
 一般に、血液内皮の破損又はコラーゲンとの接触等の要因によって、血液中で血小板が活性化すると、血小板の凝集が起こる。血小板の凝集は、可逆反応である。抗血小板作用を有する化合物を用いることによって、血液の凝固を抑制することができると考えられる。 Generally, when platelets are activated in the blood due to factors such as damage to the blood endothelium or contact with collagen, platelet aggregation occurs. Platelet aggregation is a reversible reaction. It is believed that blood coagulation can be inhibited by using compounds with antiplatelet activity.
 理論によって限定する意図はないが、アセチルサリチル酸は、血小板の凝集促進物質であるTXA2の産生に働くシクロオキシゲナーゼ(COX)を不可逆的に失活させる作用を有しており、これによって、抗血小板作用を示すと考えられる。 Without intending to be limited by theory, it is believed that acetylsalicylic acid has the effect of irreversibly inactivating cyclooxygenase (COX), which acts to produce TXA2 , a substance that promotes platelet aggregation, thereby exerting an antiplatelet effect.
 また、理論によって限定する意図はないが、PGI2誘導体ベラプロストは、血小板の凝集を抑制する物質であるPGI2の合成を増加させることによって、血小板の凝集を抑制すると考えられる。 Also, without intending to be limited by theory, it is believed that the PGI2 derivative beraprost inhibits platelet aggregation by increasing the synthesis of PGI2 , a substance that inhibits platelet aggregation.
 また、理論によって限定する意図はないが、EPA及び/又はDHAによって、血小板から血小板凝集作用を有しないTXA3が生成し、結果として、血小板の凝集を抑制すると考えられる。 Furthermore, without intending to be limited by theory, it is believed that EPA and/or DHA produce TXA3 from platelets, which does not have platelet aggregation activity, and as a result, platelet aggregation is inhibited.
 フィブリン分解能を有する酵素(特にはナットウキナーゼ)によるフィブリン分解産物も、血小板凝集抑制作用を有する。ナットウキナーゼによるフィブリン分解産物としては、DD(175kDa)及びLD(110kDa)が挙げられる。 Fibrin degradation products produced by fibrin-decomposing enzymes (especially nattokinase) also have the effect of inhibiting platelet aggregation. Fibrin degradation products produced by nattokinase include DD (175 kDa) and LD (110 kDa).
 機能性物質(A)は、フィブリン生成阻害作用を有する凝固阻害剤を含むこともできる。上記凝固阻害剤としては、ブロメライン、EDTA、ヘパリン、クエン酸ナトリウム、ワルファリン、及びフッ化ナトリウムが挙げられる。 The functional substance (A) may also contain a coagulation inhibitor that has a fibrin production inhibitory effect. Examples of the coagulation inhibitor include bromelain, EDTA, heparin, sodium citrate, warfarin, and sodium fluoride.
 理論によって限定する意図はないが、血液では、血液凝固因子によって凝固が進行する。例えば、血液凝固因子のうち、トロンビンは、フィブリノゲンからフィブリンモノマーを生成する。また、血液凝固因子のうち、活性化第XIII因子は、フィブリンポリマーの分子間を架橋することによって、フィブリンから構成される構造体を安定化させ、安定化フィブリンを生成する。 Without intending to be limited by theory, blood clotting progresses in blood due to blood clotting factors. For example, among blood clotting factors, thrombin produces fibrin monomers from fibrinogen. Also, among blood clotting factors, activated factor XIII stabilizes the structure composed of fibrin by bridging between molecules of fibrin polymers, thereby producing stabilized fibrin.
 凝固阻害剤は、血液凝固因子の作用を阻害することによって、血液の凝固を阻害することができる。 Coagulation inhibitors can inhibit blood clotting by blocking the action of blood clotting factors.
 理論によって限定する意図はないが、例えば、ブロメラインは、プロトロンビン時間(PT)及び活性化部分トロンボプラスチン時間(APTT)の著しい延長をもたらすことによって、フィブリノゲンからフィブリンへの変換を抑制すると考えられる。 Without intending to be limited by theory, for example, bromelain is believed to inhibit the conversion of fibrinogen to fibrin by causing a significant prolongation of the prothrombin time (PT) and activated partial thromboplastin time (APTT).
 また、理論によって限定する意図はないが、例えば、EDTAは、トロンビンの活性に必要なカルシウムイオンをキレートすることによって、フィブリン生成に必要なトロンビンの活性化を阻害すると考えられる。クエン酸ナトリウムも、同様の機序で働くと考えられる。 Also, without intending to be limited by theory, it is believed that, for example, EDTA inhibits the activation of thrombin, which is necessary for fibrin production, by chelating the calcium ions necessary for thrombin activity. Sodium citrate is also believed to work by a similar mechanism.
 また、理論によって限定する意図はないが、例えば、ワルファリンは、血液凝固因子でありトロンビンの活性化に働く第II因子、第VII因子、第IX因子、及び第X因子が作用するために必要なビタミンKを阻害することによって、フィブリンの生成に必要なトロンビンの活性化を抑制すると考えられる。 In addition, without intending to be limited by theory, it is believed that, for example, warfarin inhibits vitamin K, which is necessary for the functioning of blood clotting factors II, VII, IX, and X, which activate thrombin, thereby suppressing the activation of thrombin, which is necessary for the production of fibrin.
 また、理論によって限定する意図はないが、例えば、ヘパリンは、トロンビンを阻害するアンチトロンビンの作用を高めることによって、フィブリンの生成に必要なトロンビンの活性化を抑制すると考えられる。 In addition, without intending to be limited by theory, it is believed that, for example, heparin suppresses the activation of thrombin, which is necessary for the production of fibrin, by enhancing the action of antithrombin, which inhibits thrombin.
 ナットウキナーゼ及びセラペプターゼも、フィブリン生成阻害作用を有する。理論によって限定する意図はないが、血液中に存在するナットウキナーゼは、フィブリン同士を架橋する活性化第XIII因子の減少、及び/又は、フィブリン生成に必要なトロンビン活性の阻害等を通じて、フィブリン阻害作用を発揮すると考えられる。 Nattokinase and serrapeptase also have fibrin production inhibitory effects. Without intending to be limited by theory, it is believed that nattokinase present in blood exerts its fibrin inhibitory effect by reducing activated factor XIII, which crosslinks fibrin, and/or by inhibiting thrombin activity, which is necessary for fibrin production.
 水溶性ポリマー(B)は、水に溶解し得るポリマーであれば、特に制限されず、加温した水に溶解し得るポリマーであってもよい。水溶性ポリマー(B)は、25℃の水100gに対する溶解度が5.0g以上であることが好ましい。上記水溶解度は、加温した水に水溶性ポリマー(B)を溶解させた後、25℃に調整して測定してもよい。 The water-soluble polymer (B) is not particularly limited as long as it is a polymer that can be dissolved in water, and may be a polymer that can be dissolved in heated water. The water-soluble polymer (B) preferably has a solubility of 5.0 g or more in 100 g of water at 25°C. The water solubility may be measured by dissolving the water-soluble polymer (B) in heated water and then adjusting the temperature to 25°C.
 上記水溶解度は、以下の通り測定される。
(1)脱イオン水100gと、水溶性ポリマー(B)20gとを、攪拌機を用いて120分間攪拌混合して、混合液を形成する。なお、上記脱イオン水100gは加温されていてもよい。また、上記攪拌混合を行う際に、上記混合液を加温してもよい。
(2)攪拌混合後、得られた混合液を25℃に調整する。
(3)25℃に調整された混合液中の水相を採取し、水相を100℃で1時間乾燥して、乾燥減量から水相中の水溶性ポリマー(B)量を求めて、25℃の水100gに対する溶解度を算出する。
The water solubility is measured as follows.
(1) 100 g of deionized water and 20 g of water-soluble polymer (B) are mixed and stirred for 120 minutes using a stirrer to form a mixed solution. The 100 g of deionized water may be heated. The mixed solution may be heated when the mixed solution is stirred and mixed.
(2) After stirring and mixing, the resulting mixture is adjusted to 25°C.
(3) The aqueous phase in the mixed liquid adjusted to 25° C. is sampled and dried at 100° C. for 1 hour. The amount of water-soluble polymer (B) in the aqueous phase is determined from the loss on drying, and the solubility in 100 g of water at 25° C. is calculated.
 水溶性ポリマー(B)の具体例としては、例えば、ポリビニルアルコール、ポリエチレンオキサイド、ポリエチレングリコール、水溶性アクリル樹脂、ポリビニルピロリドン、ポリビニルブチラール、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、天然多糖類等が挙げられる。 Specific examples of the water-soluble polymer (B) include polyvinyl alcohol, polyethylene oxide, polyethylene glycol, water-soluble acrylic resin, polyvinylpyrrolidone, polyvinyl butyral, carboxymethylcellulose, sodium carboxymethylcellulose, and natural polysaccharides.
 上記ポリビニルアルコールとしては、例えば、酢酸ビニルの単独重合体であるポリ酢酸ビニルをケン化処理して得られるビニルアルコールホモポリマー、酢酸ビニルとこれに共重合可能な他の単量体との共重合体をケン化処理して得られるポリビニルアルコール系共重合体等が挙げられる。 Examples of the polyvinyl alcohol include vinyl alcohol homopolymers obtained by saponifying polyvinyl acetate, which is a homopolymer of vinyl acetate, and polyvinyl alcohol copolymers obtained by saponifying a copolymer of vinyl acetate and another monomer that can be copolymerized with it.
 また、上記ポリビニルアルコールとしては、水酸基(OH基)及び酢酸基(OCOCH3基)以外の官能基を導入していない未変性ポリビニルアルコール、水酸基及び酢酸基以外の官能基を導入した変性ポリビニルアルコールが挙げられる。上記変性ポリビニルアルコールに導入される官能基としては、例えば、カルボキシ基、カルボニル基、スルホン酸基、リン酸基、シラノール基、カチオン基、アルキル基等が挙げられる。上記変性ポリビニルアルコールは、アニオン変性ポリビニルアルコールであることが好ましく、そしてカルボキシ変性ポリビニルアルコールであることがより好ましい。 The polyvinyl alcohol may be unmodified polyvinyl alcohol, which does not have any functional groups other than hydroxyl groups (OH groups) and acetate groups ( OCOCH3 groups), or modified polyvinyl alcohol, which has functional groups other than hydroxyl groups and acetate groups. Examples of the functional groups that may be introduced into the modified polyvinyl alcohol include carboxy groups, carbonyl groups, sulfonic acid groups, phosphoric acid groups, silanol groups, cationic groups, and alkyl groups. The modified polyvinyl alcohol is preferably anion-modified polyvinyl alcohol, and more preferably carboxy-modified polyvinyl alcohol.
 上記変性ポリビニルアルコールを製造する方法としては、例えば、酢酸ビニルと、酢酸ビニルと共重合可能な水酸基及び酢酸基以外の官能基を有する単量体との共重合体をケン化処理して得る方法;上記ビニルアルコールホモポリマー又はポリビニルアルコール系共重合体中の水酸基及び/又は酢酸基と、水酸基及び/又は酢酸基との反応性を有し、かつ水酸基及び酢酸基以外の官能基を有する化合物とを反応させて得る方法;等を挙げることができる。 Examples of methods for producing the modified polyvinyl alcohol include a method of saponifying a copolymer of vinyl acetate and a monomer having a functional group other than a hydroxyl group and an acetate group that is copolymerizable with vinyl acetate; a method of reacting the hydroxyl group and/or acetate group in the vinyl alcohol homopolymer or polyvinyl alcohol copolymer with a compound that is reactive with the hydroxyl group and/or acetate group and has a functional group other than a hydroxyl group and an acetate group; and the like.
 上記ポリエチレンオキサイドとしては、その製造方法については特に限定されるものではなく、例えば、エチレンオキサイドを開環重合して得られるものを使用することができる。また、上記ポリエチレンオキサイドは、分子中にオキシプロピレン基(-CH2-CH(CH3)-O-)を有していてもよい。このため、上記ポリエチレンオキサイドは、エチレンオキサイドとプロピレンオキサイドとの共重合体であってもよい。 The method for producing the polyethylene oxide is not particularly limited, and for example, one obtained by ring-opening polymerization of ethylene oxide can be used. The polyethylene oxide may have an oxypropylene group ( -CH2 -CH( CH3 )-O-) in the molecule. Therefore, the polyethylene oxide may be a copolymer of ethylene oxide and propylene oxide.
 上記ポリエチレングリコールとしては、その製造方法については特に限定されるものではなく、例えば、エチレングリコールにエチレンオキサイドを縮合開環重合させて得られるもの、水の存在下でエチレンオキサイドを開環重合して得られるもの等を使用することができる。また、上記ポリエチレングリコールは、分子中にオキシプロピレン基を有していてもよい。 The method for producing the polyethylene glycol is not particularly limited, and for example, one obtained by subjecting ethylene oxide to condensation ring-opening polymerization with ethylene glycol, one obtained by ring-opening polymerization of ethylene oxide in the presence of water, etc. may be used. The polyethylene glycol may also have an oxypropylene group in the molecule.
 上記水溶性アクリル樹脂としては、例えば、親水性(メタ)アクリルモノマーに由来する構造単位を含む水溶性のアクリル樹脂を挙げることができる。
 上記親水性(メタ)アクリルモノマーとしては、例えば、(メタ)アクリル酸、クロトン酸等のカルボキシル基含有(メタ)アクリルモノマー;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、これらヒドロキシ(メタ)アクリレートとカプロラクトン、エチレンオキサイド等が反応した開環付加物等の水酸基含有(メタ)アクリルモノマー;ポリオキシアルキレン鎖を有し、かつ水酸基を有さない(メタ)アクリルモノマー;アクリルアミド、N-メトキシメチルアクリルアミド等のアクリルアミドモノマー;N,N-ジメチルアミノエチル(メタ)アクリレート等のアミノ基含有(メタ)アクリルモノマー等が挙げられ、これらはそれぞれ単独でもしくは2種以上を組み合わせて使用することができる。
The water-soluble acrylic resin may be, for example, a water-soluble acrylic resin containing a structural unit derived from a hydrophilic (meth)acrylic monomer.
Examples of the hydrophilic (meth)acrylic monomer include carboxyl group-containing (meth)acrylic monomers such as (meth)acrylic acid and crotonic acid; hydroxyl group-containing (meth)acrylic monomers such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and ring-opening adducts of these hydroxy (meth)acrylates with caprolactone, ethylene oxide, or the like; (meth)acrylic monomers having a polyoxyalkylene chain and no hydroxyl group; acrylamide monomers such as acrylamide and N-methoxymethylacrylamide; and amino group-containing (meth)acrylic monomers such as N,N-dimethylaminoethyl (meth)acrylate. These may be used alone or in combination of two or more.
 また、上記水溶性アクリル樹脂は、親水性(メタ)アクリルモノマーに由来する構造単位のほかに、他の(メタ)アクリルモノマー、スチレン系モノマー、ビニル系モノマーに由来する構造単位を含むものであってもよい。
 上記水溶性アクリル樹脂は、親水性(メタ)アクリルモノマーを重合して得ることができるが、必要に応じて、上記他の(メタ)アクリルモノマー、スチレン系モノマー、ビニル系モノマーと共重合したものであってもよい。
 また、上記水溶性アクリル樹脂としては、親水性の重合性不飽和モノマーと(メタ)アクリルモノマーとの共重合体を使用してもよい。
 上記親水性の重合性不飽和モノマーとしては、例えば、N-ビニル-2-ピロリドン等が挙げられる。
The water-soluble acrylic resin may contain structural units derived from other (meth)acrylic monomers, styrene-based monomers, or vinyl-based monomers in addition to the structural units derived from the hydrophilic (meth)acrylic monomers.
The water-soluble acrylic resin can be obtained by polymerizing a hydrophilic (meth)acrylic monomer, and may be copolymerized with the other (meth)acrylic monomers, styrene-based monomers, or vinyl-based monomers, as necessary.
Furthermore, as the water-soluble acrylic resin, a copolymer of a hydrophilic polymerizable unsaturated monomer and a (meth)acrylic monomer may be used.
The hydrophilic polymerizable unsaturated monomer may, for example, be N-vinyl-2-pyrrolidone.
 また、上記水溶性アクリル樹脂は、酸、アルカリ等で水溶性化して得られるものでもよい。水溶性化については、例えば、親水性(メタ)アクリルモノマーがカルボキシル基含有(メタ)アクリルモノマーである場合にはアミンやアンモニアを用いて中和することにより行うことができ、アミノ含有(メタ)アクリルモノマーである場合には有機酸等を用いて中和することにより行うことができる。 The water-soluble acrylic resin may be one obtained by making the resin water-soluble with an acid, an alkali, or the like. For example, when the hydrophilic (meth)acrylic monomer is a carboxyl group-containing (meth)acrylic monomer, the resin may be made water-soluble by neutralizing the monomer with an amine or ammonia, and when the monomer is an amino-containing (meth)acrylic monomer, the resin may be made water-soluble by neutralizing the monomer with an organic acid, or the like.
 上記天然多糖類としては、例えば、キサンタンガム、グアーガム、タマリンドシードガム、ローカストビーンガム、カラギナン、クインスシード、アルギン酸、プルラン、ペクチン等を挙げることができる。 Examples of the natural polysaccharides include xanthan gum, guar gum, tamarind seed gum, locust bean gum, carrageenan, quince seed, alginic acid, pullulan, pectin, etc.
 水溶性ポリマー(B)としては、ポリビニルアルコール、ポリエチレンオキサイド、ポリエチレングリコール、及び水溶性アクリル樹脂のいずれかを少なくとも1種以上含むものあることが、汎用性の観点から好適である。 From the viewpoint of versatility, it is preferable that the water-soluble polymer (B) contains at least one of polyvinyl alcohol, polyethylene oxide, polyethylene glycol, and water-soluble acrylic resin.
 低粘度の液体の影響を受けにくい被膜を形成するために、水溶性ポリマー(B)の水浸漬溶解率を低くする場合には、水溶性ポリマー(B)は、ケン化度50~100、好ましくは70~99で且つ平均重合度が100~4,000、好ましくは200~3,000のポリビニルアルコールであることが好ましい。 When the water immersion solubility rate of the water-soluble polymer (B) is reduced in order to form a coating that is not easily affected by low-viscosity liquids, the water-soluble polymer (B) is preferably polyvinyl alcohol with a saponification degree of 50 to 100, preferably 70 to 99, and an average polymerization degree of 100 to 4,000, preferably 200 to 3,000.
 ナットウキナーゼの少なくとも一部、好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは70質量%以上、そしてさらにいっそう好ましくは80質量%以上は、水溶性ポリマー(B)に結合されていない。また、ナットウキナーゼの100質量%が、水溶性ポリマー(B)に結合されていなくともよい。それにより、ナットウキナーゼによる吸収性物品の使用者の皮膚への作用を抑制しながら、ナットウキナーゼが、血液凝固物中のフィブリンを効率よく分解し、血液凝固物を効率よく低粘度化することができる。 At least a portion of the nattokinase, preferably 50% by mass or more, more preferably 60% by mass or more, even more preferably 70% by mass or more, and even more preferably 80% by mass or more, is not bound to the water-soluble polymer (B). Also, 100% by mass of the nattokinase does not have to be bound to the water-soluble polymer (B). This allows the nattokinase to efficiently decompose fibrin in the blood clot and efficiently reduce the viscosity of the blood clot while suppressing the effect of nattokinase on the skin of the user of the absorbent article.
 本明細書において、ナットウキナーゼが水溶性ポリマー(B)に結合されていないことには、ナットウキナーゼが、水溶性ポリマー(B)に共有結合又はイオン結合によって化学的に結合されていないことを意味する。
 なお、ナットウキナーゼが水溶性ポリマー(B)に結合されていないことには、ナットウキナーゼが、水溶性ポリマー(B)と水素結合していることは含まれない。
In this specification, "nattokinase is not bound to the water-soluble polymer (B)" means that nattokinase is not chemically bound to the water-soluble polymer (B) by a covalent bond or an ionic bond.
In addition, the fact that nattokinase is not bound to the water-soluble polymer (B) does not include the fact that nattokinase is hydrogen bonded to the water-soluble polymer (B).
 上記機能性組成物は、機能性物質(A)及び水溶性ポリマー(B)を、機能性物質(A)及び水溶性ポリマー(B)の固形分計100質量部に基づいて、好ましくは5及び95~95及び5、より好ましくは10及び90~80及び20、さらに好ましくは13及び87~75及び25、そしてさらにいっそう好ましくは15及び85~70及び30の質量比で含む。それにより、上記機能性組成物、ひいてはナットウキナーゼが、低粘度の液体の影響を受けにくく、血液凝固物に対する作用に優れるとともに、皮膚に作用しにくくなる。 The functional composition contains the functional substance (A) and the water-soluble polymer (B) in a mass ratio of preferably 5 and 95 to 95 and 5, more preferably 10 and 90 to 80 and 20, even more preferably 13 and 87 to 75 and 25, and even more preferably 15 and 85 to 70 and 30, based on 100 parts by mass of the total solid content of the functional substance (A) and the water-soluble polymer (B). This makes the functional composition, and thus nattokinase, less susceptible to the effects of low-viscosity liquids, has excellent action on blood clots, and is less likely to act on the skin.
 上記機能性組成物において、機能性物質(A)の水浸漬溶解率:a(質量%)と、水溶性ポリマー(B)の水浸漬溶解率:b(質量%)との差である水浸漬溶解率差:(a-b)は、好ましくは0<(a-b)、より好ましくは20<(a-b)、そしてさらに好ましくは60<(a-b)である。それにより、上記機能性組成物が、低粘度の液体の影響を受けにくくなる。 In the above functional composition, the difference in water immersion solubility between the functional substance (A) (mass%) and the water immersion solubility of the water-soluble polymer (B) (mass%), that is, (a-b), is preferably 0<(a-b), more preferably 20<(a-b), and even more preferably 60<(a-b). This makes the above functional composition less susceptible to the effects of low-viscosity liquids.
 また、上記水浸漬溶解率差:(a-b)は、好ましくは(a-b)≦99、より好ましくは(a-b)≦98、さらに好ましくは(a-b)<95、そしてさらにいっそう好ましくは(a-b)<90である。それにより、上記機能性組成物が血液凝固物と接触した場合に、機能性物質(A)の血液凝固物中への溶解速度を確保しやすくなり、血液凝固物に対する作用に優れる。
 上記水浸漬溶解率差の上限及び下限が上述の範囲にあることにより、上記吸収性物品において、機能性物質(A)、特に、ナットウキナーゼが、低粘度の液体の影響を受けにくく、血液凝固物に対する作用に優れる被膜を形成しやすくなる。
Moreover, the difference in the water immersion dissolution rates: (a-b) is preferably (a-b)≦99, more preferably (a-b)≦98, even more preferably (a-b)<95, and even more preferably (a-b)<90. Thereby, when the functional composition comes into contact with a blood coagulate, it becomes easier to ensure the dissolution rate of the functional substance (A) in the blood coagulate, and the functional composition has an excellent effect on the blood coagulate.
When the upper and lower limits of the difference in water immersion dissolution rate are within the above-mentioned ranges, in the absorbent article, the functional substance (A), in particular, nattokinase, is less susceptible to the influence of low-viscosity liquids and is more likely to form a coating that has excellent action against blood coagulation.
 水溶性ポリマー(B)は、好ましくは5質量%以上、より好ましくは8質量%以上、そしてさらに好ましくは10質量%以上の水浸漬溶解率を有する。また、水溶性ポリマー(B)は、好ましくは70質量%以下、より好ましくは60質量%以下、さらに好ましくは40質量%以下、そしてさらに好ましくは20質量%以下の水浸漬溶解率を有する。それにより、上記機能性組成物、特に、ナットウキナーゼが、低粘度の液体の影響を受けにくく、血液凝固物に対する作用に優れやすくなる。 The water-soluble polymer (B) preferably has a water immersion solubility of 5% by mass or more, more preferably 8% by mass or more, and even more preferably 10% by mass or more. The water-soluble polymer (B) also preferably has a water immersion solubility of 70% by mass or less, more preferably 60% by mass or less, even more preferably 40% by mass or less, and even more preferably 20% by mass or less. This makes the functional composition, particularly nattokinase, less susceptible to the effects of low-viscosity liquids and more likely to have excellent action on blood coagulation.
 本明細書において、上記水浸漬溶解率(質量%)は、以下の通り測定される。
(1)質量:m0(g)を測定したガラス板(100mm×150mm)に、対象物(機能性物質(A),水溶性ポリマー(B)等)を、必要に応じて脱イオン水で希釈して塗工し、対象物を塗工したガラス板を100℃で1時間乾燥して、ガラス板上に、20μmの厚さの対象物を塗工したサンプルを形成し、当該サンプルの質量:m1(g)を測定する。
(2)サンプルを、脱イオン水(20℃,5L)に浸漬し、3分間静置した後、サンプルを取り出し、水浸漬後のサンプルを100℃で1時間乾燥し、水浸漬後のサンプルの質量:m2(g)を測定する。
In this specification, the water immersion dissolution rate (mass%) is measured as follows.
(1) The target substance (functional substance (A), water-soluble polymer (B), etc.) is coated, diluted with deionized water as necessary, onto a glass plate (100 mm x 150 mm) whose mass: m0 (g) has been measured, and the glass plate coated with the target substance is dried at 100°C for 1 hour to form a sample coated with the target substance to a thickness of 20 μm on the glass plate, and the mass: m1 (g) of the sample is measured.
(2) The sample is immersed in deionized water (20°C, 5 L) and left to stand for 3 minutes. The sample is then removed and dried at 100°C for 1 hour, and the mass ( m2 ) of the sample after immersion in water is measured.
(3)水浸漬溶解率(質量%)を、次の式:
 水浸漬溶解率(質量%)=100×(m1-m2)/(m1-m0
 により算出する。
(4)異なるサンプルで計5回、上記水浸漬溶解率を測定し、その平均値を、対象物の水浸漬溶解率として採用する。
(3) The water immersion dissolution rate (mass%) was calculated using the following formula:
Water immersion dissolution rate (mass%)=100×(m 1 −m 2 )/(m 1 −m 0 )
It is calculated as follows.
(4) The water immersion dissolution rate is measured five times for different samples, and the average value is used as the water immersion dissolution rate of the object.
 水溶性ポリマー(B)の10質量%水溶液は、好ましくは9,000mPa・s以下、より好ましくは5,000mPa・s以下、さらに好ましくは3,000mPa・s以下、さらにいっそう好ましくは2,000mPa・s以下、そしてさらにいっそう好ましくは1,000mPa・s以下の粘度を有する。また、水溶性ポリマー(B)の10質量%水溶液は、好ましくは100mPa・s以上の粘度を有する。それにより、上記機能性組成物が低粘度の液体と接触した場合であっても、機能性組成物が流出しにくく、そして機能性組成物が血液凝固物と接触した際に、機能性物質(A)が血液凝固物に拡散しやすくなる。なお、上記粘度は、温度:20℃,粘度計:B型粘度計、ローター回転速度:60rpmの条件で測定される粘度を意味する。また、本明細書において、当該条件における粘度を、「粘度(B型,20℃,60rpm)」と表記する場合がある。 A 10% by mass aqueous solution of the water-soluble polymer (B) preferably has a viscosity of 9,000 mPa·s or less, more preferably 5,000 mPa·s or less, even more preferably 3,000 mPa·s or less, even more preferably 2,000 mPa·s or less, and even more preferably 1,000 mPa·s or less. A 10% by mass aqueous solution of the water-soluble polymer (B) preferably has a viscosity of 100 mPa·s or more. As a result, even if the functional composition comes into contact with a low-viscosity liquid, the functional composition is less likely to flow out, and when the functional composition comes into contact with a blood clot, the functional substance (A) is more likely to diffuse into the blood clot. The above viscosity refers to the viscosity measured under the following conditions: temperature: 20°C, viscometer: B-type viscometer, rotor rotation speed: 60 rpm. In this specification, the viscosity under these conditions may be expressed as "viscosity (B-type, 20°C, 60 rpm)".
 上記機能性組成物は、機能性物質(A)及び水溶性ポリマー(B)に加えて、他の成分を含むことができる。上記他の成分としては、例えば、水溶性ポリマー(B)以外のポリマー、フィラー、香料、防腐剤、酸化防止剤、pH調整剤、消臭剤、抗菌剤等が挙げられる。 The functional composition may contain other components in addition to the functional substance (A) and the water-soluble polymer (B). Examples of the other components include polymers other than the water-soluble polymer (B), fillers, fragrances, preservatives, antioxidants, pH adjusters, deodorants, antibacterial agents, etc.
 上記機能性組成物は、吸収性物品上で、特に制限されず、例えば、粒子状、フィルム状、含浸状、ストライプ状等で配置されうる。上記機能性組成物を吸収性物品を構成する資材に配置する場合には、上記機能性組成物は、例えば、不織布又はティッシュを構成する繊維に粒子状に配置される、不織布又はティッシュを構成する繊維を被覆するように配置される、不織布又はティッシュを構成する繊維に含浸されるように配置される、開孔フィルム上に粒子状に配置される、開孔フィルム上にフィルム状に配置される、不織布、ティッシュ又は開孔フィルム上にストライプ状に配置されることができる。 The functional composition can be arranged on the absorbent article in the form of particles, a film, an impregnated form, a stripe form, etc., without any particular limitations. When the functional composition is arranged on the material constituting the absorbent article, the functional composition can be arranged, for example, in the form of particles on the fibers constituting the nonwoven fabric or tissue, arranged so as to cover the fibers constituting the nonwoven fabric or tissue, arranged so as to be impregnated into the fibers constituting the nonwoven fabric or tissue, arranged in the form of particles on a perforated film, arranged in the form of a film on a perforated film, or arranged in the form of stripes on the nonwoven fabric, tissue, or perforated film.
 上記機能性組成物は、例えば、ナットウキナーゼを含む機能性物質(A)と、水溶性ポリマー(B)と、水系溶媒(C)とを含む処理液を、吸収性物品に塗工することにより形成することができる。 The functional composition can be formed, for example, by applying a treatment liquid containing a functional substance (A) including nattokinase, a water-soluble polymer (B), and an aqueous solvent (C) to an absorbent article.
 上記処理液において、水系溶媒(C)としては、水、又は水と、水に可溶である有機溶媒とが任意の比率で混合された溶媒を使用することができる。上記水に可溶である有機溶媒としては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール(イソプロパノール)、グリセリン、エチレングリコール、プロピレングリコール等のアルコール類、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、テトラヒドロフラン等のエーテル類、アセトン等のケトン類等が挙げられ、これらは1種又は2種以上を併用することができる。上記水に可溶である有機溶媒としては、アルコール類及びエーテル類から選ばれる少なくとも1種を含むことが好ましい。 In the above treatment liquid, the aqueous solvent (C) may be water or a mixture of water and a water-soluble organic solvent in any ratio. Examples of the water-soluble organic solvent include alcohols such as methanol, ethanol, 1-propanol, 2-propanol (isopropanol), glycerin, ethylene glycol, and propylene glycol; ethers such as ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, and tetrahydrofuran; and ketones such as acetone. These may be used alone or in combination of two or more. The water-soluble organic solvent preferably includes at least one selected from alcohols and ethers.
 また、上記処理液から形成される機能性組成物への残存性の低さの点から、上記アルコール類としては、炭素数1~4のアルコール類が好ましく、炭素数1~4であり且つ水酸基を1個有するアルコール類がより好ましく、エタノール、1-プロパノール及び2-プロパノールから選ばれる少なくとも一種を含むことが特に好ましい。
 また、上記エーテル類としては、上記処理液から形成される機能性組成物への残存性の低さの点から、炭素数1~4のエーテル類がより好ましく、プロピレングリコールモノメチルエーテル及びテトラヒドロフランから選ばれる少なくとも一種を含むことが特に好ましい。
 上記処理液は、機能性物質(A)、水溶性ポリマー(B)、水系溶媒(C)、他の成分等を公知の混合手段を用いて混合することにより製造することができる。
In addition, from the viewpoint of low residual property in the functional composition formed from the treatment liquid, the alcohols are preferably alcohols having 1 to 4 carbon atoms, more preferably alcohols having 1 to 4 carbon atoms and one hydroxyl group, and particularly preferably contain at least one selected from ethanol, 1-propanol, and 2-propanol.
Moreover, as the ethers, from the viewpoint of low residual property in the functional composition formed from the treatment liquid, ethers having 1 to 4 carbon atoms are more preferable, and it is particularly preferable that they include at least one selected from propylene glycol monomethyl ether and tetrahydrofuran.
The treatment liquid can be produced by mixing the functional material (A), the water-soluble polymer (B), the aqueous solvent (C), other components, etc., using a known mixing means.
 上記処理液は、通常、1~20質量%の固形分濃度を有することが好ましい。
 上記処理液の固形分濃度は、処理液を130℃で3時間で乾燥させることにより測定することができる。
 上記処理液は、20℃において、好ましくは5.0~10.0、そしてより好ましくは5.2~9.8のpHを有する。機能性物質(A)の活性を維持するためである。
 上記pHは、例えば、株式会社堀場製作所製のtwin pHメーター F-52を用いて測定することができる。
The treatment liquid preferably has a solids concentration of 1 to 20% by mass.
The solids concentration of the treatment liquid can be measured by drying the treatment liquid at 130° C. for 3 hours.
The treatment liquid preferably has a pH of 5.0 to 10.0, and more preferably 5.2 to 9.8 at 20° C. in order to maintain the activity of the functional substance (A).
The pH can be measured, for example, using a twin pH meter F-52 manufactured by Horiba, Ltd.
 上記処理液は、好ましくは3,000mPa・s以下、そしてより好ましくは1,000mPa・s以下の粘度を有する。また、上記処理液は、好ましくは10mPa・s以上の粘度を有する。それにより、処理液から、吸収性物品上に機能性組成物を形成しやすくなる。なお、上記粘度は、温度:20℃,粘度計:B型粘度計、ローター回転速度:60rpmの条件で測定される粘度を意味する。 The treatment liquid preferably has a viscosity of 3,000 mPa·s or less, and more preferably 1,000 mPa·s or less. The treatment liquid preferably has a viscosity of 10 mPa·s or more. This makes it easier to form a functional composition on an absorbent article from the treatment liquid. The viscosity is measured under the following conditions: temperature: 20°C, viscometer: B-type viscometer, rotor rotation speed: 60 rpm.
 上記処理液は、特に制限なく従来公知の方法、例えば、スパイラルコーター、カーテンコーター、スプレーコーター、ディップコーター等により、吸収性物品を構成する資材に塗布されることができる。上記処理液を吸収性物品を構成する資材に塗布する回数に特に制限はなく、例えば、1回又は複数回、すなわち、2回以上塗布してもよい。 The treatment liquid can be applied to the material constituting the absorbent article by a conventionally known method, such as a spiral coater, curtain coater, spray coater, dip coater, etc., without any particular restriction. There is no particular restriction on the number of times the treatment liquid is applied to the material constituting the absorbent article, and for example, it may be applied once or multiple times, i.e., two or more times.
 上記吸収性物品を構成する資材として、液透過性のトップシート(不織布、開孔フィルム等)、液不透過性のバックシート(フィルム等)、それらの間に配置される吸収体(例えば、吸収コア(パルプ繊維等)及び当該吸収コアを覆うコアラップ(不織布、ティッシュ等))、上記トップシート及び吸収体の間に配置される所望による上側拡散シート(不織布等)、上記吸収体及びバックシートの間に配置される所望による下側拡散シート(不織布等)等が挙げられる。 Materials constituting the absorbent article include a liquid-permeable top sheet (nonwoven fabric, perforated film, etc.), a liquid-impermeable back sheet (film, etc.), an absorbent placed between them (for example, an absorbent core (pulp fiber, etc.) and a core wrap (nonwoven fabric, tissue, etc.) covering the absorbent core), an optional upper diffusion sheet (nonwoven fabric, etc.) placed between the top sheet and absorbent, and an optional lower diffusion sheet (nonwoven fabric, etc.) placed between the absorbent and back sheet.
 上記処理液は、トップシート、吸収体(例えば、吸収コア及び当該吸収コアを覆うコアラップ)、所望による上側拡散シート、所望による下側拡散シート等に塗布されることができ、肌当接面側の資材、例えば、トップシートに塗工されることが好ましい。経血を効率よく分解するためである。 The treatment liquid can be applied to the top sheet, absorbent (e.g., absorbent core and core wrap covering said absorbent core), optional upper diffusion sheet, optional lower diffusion sheet, etc., and is preferably applied to the material on the skin contact side, e.g., the top sheet, in order to efficiently decompose menstrual blood.
 以下、実施例及び比較例を挙げて、本開示をより具体的に説明する。ただし、本開示は、実施例のみに限定されるものではない。なお、「部」及び「%」は、特に記載のない限り、質量基準による。 The present disclosure will be explained in more detail below with reference to examples and comparative examples. However, the present disclosure is not limited to the examples. Note that "parts" and "%" are by mass unless otherwise specified.
[処理液の作製]
[製造例1]
 機能性物質(A)としてのナットウキナーゼ(注1)5.0gと、水溶性ポリマー(B)としてのポリエチレングリコール(注2)5.0gと、水系溶媒(C)としての脱イオン水90.0gとを混合し、処理液No.1を得た。処理液No.1のpHは5.4であった。
[Preparation of Processing Solution]
[Production Example 1]
5.0 g of nattokinase (note 1) as the functional substance (A), 5.0 g of polyethylene glycol (note 2) as the water-soluble polymer (B), and 90.0 g of deionized water as the aqueous solvent (C) were mixed to obtain treatment solution No. 1. The pH of treatment solution No. 1 was 5.4.
[製造例2~17,及び参考製造例1]
 製造例1において、配合を表1のとおりとする以外は製造例1と同様にして、処理液No.2~No.18を得た。処理液No.2~No.18中の機能性物質(A)及び水溶性ポリマー(B)の水浸漬溶解率(%)、機能性物質(A)の水浸漬溶解率と水溶性ポリマー(B)の水浸漬溶解率との差である水浸漬溶解率差(%)(「溶解率差(%)」と表記)、並びに水溶性ポリマー(B)の10%濃度における粘度(B型,20℃,60rpm)(「10%粘度」と表記)を表1に示す。
[Production Examples 2 to 17, and Reference Production Example 1]
Treatment solutions No. 2 to No. 18 were obtained in the same manner as in Production Example 1, except that the formulation in Production Example 1 was changed as shown in Table 1. Table 1 shows the water immersion solubility (%) of the functional substance (A) and the water-soluble polymer (B) in Treatment Solutions No. 2 to No. 18, the water immersion solubility difference (%) which is the difference between the water immersion solubility of the functional substance (A) and the water-soluble polymer (B) (referred to as "solubility difference (%)"), and the viscosity of the water-soluble polymer (B) at a 10% concentration (B type, 20°C, 60 rpm) (referred to as "10% viscosity").
 表1中の(注1)~(注10)は下記のとおりである。
(注1)ナットウキナーゼ(Nattokinase)粉末
 富士フィルム和光純薬社製、水浸漬溶解率:99%以上
(注2)ポリエチレングリコール(PEG)
 平均分子量:20,000、水浸漬溶解率:57%、10%濃度における粘度(B型,20℃,60rpm):3mPa・s
(注3)ポリビニルアルコール(PVA-1)
 平均重合度:300、ケン化度:98、水浸漬溶解率:11%、10%濃度における粘度(B型,20℃,60rpm):17mPa・s
(Notes 1) to (Notes 10) in Table 1 are as follows:
(Note 1) Nattokinase powder, manufactured by Fujifilm Wako Pure Chemical Industries, dissolution rate when immersed in water: 99% or more (Note 2) Polyethylene glycol (PEG)
Average molecular weight: 20,000, water immersion solubility: 57%, viscosity at 10% concentration (B type, 20°C, 60 rpm): 3 mPa·s
(Note 3) Polyvinyl alcohol (PVA-1)
Average degree of polymerization: 300, degree of saponification: 98, solubility in water: 11%, viscosity at 10% concentration (B type, 20°C, 60 rpm): 17 mPa·s
(注4)ポリアクリル酸ナトリウム(SPA)
 平均分子量:50,000、水浸漬溶解率:95%、10%濃度における粘度(B型,20℃,60rpm):29mPa・s
(注5)ポリビニルアルコール(PVA-2)
 平均重合度:1,000、ケン化度:98、水浸漬溶解率:13%、10%濃度における粘度(B型,20℃,60rpm):291mPa・s
(注6)ポリビニルアルコール(PVA-3)
 平均重合度:1,700、ケン化度:88、水浸漬溶解率:15%、10%濃度における粘度(B型,20℃,60rpm):700mPa・s
(Note 4) Sodium polyacrylate (SPA)
Average molecular weight: 50,000, water immersion solubility: 95%, viscosity at 10% concentration (B type, 20°C, 60 rpm): 29 mPa·s
(Note 5) Polyvinyl alcohol (PVA-2)
Average degree of polymerization: 1,000, saponification degree: 98, water immersion solubility: 13%, viscosity at 10% concentration (B type, 20°C, 60 rpm): 291 mPa·s
(Note 6) Polyvinyl alcohol (PVA-3)
Average degree of polymerization: 1,700, degree of saponification: 88, solubility in water: 15%, viscosity at 10% concentration (B type, 20°C, 60 rpm): 700 mPa·s
(注7)ポリエチレンオキサイド(PEO)
 平均分子量:300,000、水浸漬溶解率:69%、10%濃度における粘度(B型,20℃,60rpm):790mPa・s
(注8)カルボキシ変性ポリビニルアルコール(C変性PVA)
 平均重合度:1,700、ケン化度:96、水浸漬溶解率:37%、10%濃度における粘度(B型,20℃,60rpm):820mPa・s
(注9)ポリビニルアルコール(PVA-4)
 平均重合度:1,700、ケン化度:96、水浸漬溶解率:19%、10%濃度における粘度(B型,20℃,60rpm):920mPa・s
(注10)ポリビニルアルコール(PVA-5)
 平均重合度:3,300、ケン化度:88、水浸漬溶解率:18%、10%濃度における粘度(B型,20℃,60rpm):8,100mPa・s
(Note 7) Polyethylene oxide (PEO)
Average molecular weight: 300,000, water immersion solubility: 69%, viscosity at 10% concentration (B type, 20°C, 60 rpm): 790 mPa·s
(Note 8) Carboxy-modified polyvinyl alcohol (C-modified PVA)
Average degree of polymerization: 1,700, degree of saponification: 96, solubility in water: 37%, viscosity at 10% concentration (B type, 20°C, 60 rpm): 820 mPa·s
(Note 9) Polyvinyl alcohol (PVA-4)
Average degree of polymerization: 1,700, saponification degree: 96, water immersion solubility: 19%, viscosity at 10% concentration (B type, 20°C, 60 rpm): 920 mPa·s
(Note 10) Polyvinyl alcohol (PVA-5)
Average degree of polymerization: 3,300, degree of saponification: 88, solubility in water: 18%, viscosity at 10% concentration (B type, 20°C, 60 rpm): 8,100 mPa·s
[実施例1~17,参考例1及び比較例1]
[「低粘性経血を滴下しない場合の高粘性経血残存率」、及び「低粘性経血滴下後の高粘性経血残存率」]
 処理液No.1~No.18から形成される機能性組成物に関して、低粘性経血を滴下しない場合の高粘性経血残存率と、低粘性経血滴下後の高粘性経血残存率とを、以下の方法に従って測定した。結果を表1に示す。
[Examples 1 to 17, Reference Example 1 and Comparative Example 1]
["Rate of remaining high-viscosity menstrual blood when low-viscosity menstrual blood is not dripped" and "Rate of remaining high-viscosity menstrual blood after dripping low-viscosity menstrual blood"]
Regarding the functional compositions formed from treatment liquids No. 1 to No. 18, the residual rate of high-viscosity menstrual blood when low-viscosity menstrual blood was not dripped and the residual rate of high-viscosity menstrual blood after dripping of low-viscosity menstrual blood were measured according to the following method. The results are shown in Table 1.
[模擬高粘性経血の作成]
(1)フィブリノゲン(Fibrinogen,富士フィルム和光純薬社製)の生理食塩水溶液(6.7mg/mL)と、トロンビン(Thrombin、富士フィルム和光純薬社製)の生理食塩水溶液(333units/mL)とのそれぞれを35℃で保温する。
(2)シャーレ中で、フィブリノゲンの生理食塩水溶液2.1mLと、トロンビンの生理食塩水溶液0.3mLとの比率で混和し、2秒間攪拌し、35℃で1時間静置することによって、模擬高粘性経血を作成する。
[模擬低粘性経血の作成]
(1)ウマ脱繊維血液(ジャパン・バイオシーラム製)を、模擬低粘性経血とする。
[Creation of simulated high-viscosity menstrual blood]
(1) A solution of fibrinogen (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) in physiological saline (6.7 mg/mL) and a solution of thrombin (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) in physiological saline (333 units/mL) were each kept at 35°C.
(2) 2.1 mL of a solution of fibrinogen in saline and 0.3 mL of a solution of thrombin in saline were mixed in a petri dish, stirred for 2 seconds, and allowed to stand at 35° C. for 1 hour to prepare simulated high-viscosity menstrual blood.
[Creation of simulated low-viscosity menstrual blood]
(1) Defiberized horse blood (manufactured by Japan Bioserum) was used as a simulated low-viscosity menstrual blood.
[試験方法]
(1)生理用ナプキン(ユニ・チャーム社製,ボディフィット レギュラー)のトップシートの長手方向中心及び幅方向中心(以下、「生理用ナプキン中心」と称する)を中心として、5cm×3cm(長手方向×幅方向)の領域において、トップシートに付着する機能性物質(A)の坪量が表1に示されるとおりになるように、処理液(No.1~No.18のそれぞれ)を均一に噴霧する。
(2)処理液No.1~No.18を噴霧された生理用ナプキンを、30℃で120分間静置して乾燥させて、生理用ナプキンNo.1~No.18を作成する。処理液を噴霧していない生理用ナプキン(ユニ・チャーム社製,ボディフィット レギュラー)を、生理用ナプキンNo.19(ブランク)とする。
[Test method]
(1) A treatment liquid (each of No. 1 to No. 18) is sprayed uniformly over an area of 5 cm x 3 cm (longitudinal x widthwise) centered on the longitudinal center and widthwise center (hereinafter referred to as the "sanitary napkin center") of the top sheet of a sanitary napkin (Bodyfit Regular, manufactured by Unicharm Corporation) so that the basis weight of the functional substance (A) adhered to the top sheet is as shown in Table 1.
(2) The sanitary napkins sprayed with treatment liquids No. 1 to No. 18 were left to stand at 30° C. for 120 minutes to dry, producing sanitary napkins No. 1 to No. 18. A sanitary napkin (Bodyfit Regular, manufactured by Unicharm Corporation) that was not sprayed with a treatment liquid was used as sanitary napkin No. 19 (blank).
(3)低粘性経血を滴下しない場合の高粘性経血残存率試験用サンプルの作成
 生理用ナプキンNo.1~No.19のそれぞれのトップシートの生理用ナプキン中心に、模擬高粘性経血2.4mLを滴下して、低粘性経血を滴下しない場合の高粘性経血残存率試験用の生理用ナプキンNo.1A~No.19Aを作成する。
(4)低粘性経血滴下後の高粘性経血残存率試験用サンプルの作成
 生理用ナプキンNo.1~No.19のそれぞれのトップシートの生理用ナプキン中心に、模擬低粘性経血6.0mLを滴下した後、模擬高粘性経血2.4mLを滴下して、低粘性経血滴下後の高粘性経血残存率試験用の生理用ナプキンNo.1B~No.19Bを作成する。
(3) Preparation of samples for testing high-viscosity menstrual blood remaining rate without dripping low-viscosity menstrual blood 2.4 mL of simulated high-viscosity menstrual blood was dripped onto the center of the top sheet of each of sanitary napkins No. 1 to No. 19 to prepare sanitary napkins No. 1A to No. 19A for testing high-viscosity menstrual blood remaining rate without dripping low-viscosity menstrual blood.
(4) Preparation of samples for testing the rate of remaining high-viscosity menstrual blood after dropping of low-viscosity menstrual blood 6.0 mL of simulated low-viscosity menstrual blood was dropped onto the center of the top sheet of each of sanitary napkins No. 1 to No. 19, and then 2.4 mL of simulated high-viscosity menstrual blood was dropped to prepare sanitary napkins No. 1B to No. 19B for testing the rate of remaining high-viscosity menstrual blood after dropping of low-viscosity menstrual blood.
(5)生理用ナプキンNo.1A~No.19Aと、生理用ナプキンNo.1B~No.19Bとを、温度:35℃及び相対湿度:60%RHの条件で45分間静置する。
(6)45分静置後の生理用ナプキンNo.19A(ブランク)において、トップシート上に残存している模擬高粘性経血を回収して、その質量(m10(g))を測定する。
(5) Sanitary napkins No. 1A to No. 19A and sanitary napkins No. 1B to No. 19B are left to stand for 45 minutes under conditions of temperature: 35° C. and relative humidity: 60% RH.
(6) After leaving the sanitary napkin No. 19A (blank) for 45 minutes, the simulated highly viscous menstrual blood remaining on the top sheet is collected and its mass (m 10 (g)) is measured.
(7)45分静置後の生理用ナプキンNo.1Aにおいて、トップシート上に残存している模擬高粘性経血を回収して、その質量(m11(g))を測定する。
(8)生理用ナプキンNo.19A(ブランク)における模擬高粘性経血の残存量に対する、生理用ナプキンNo.1Aの模擬高粘性経血の残存量の比である高粘性経血残存率(%)を次の式:
 [低粘性経血を滴下しない場合の高粘性経血残存率](%)
=100×m11/m10
 により算出する。
(7) After leaving the sanitary napkin No. 1A for 45 minutes, the simulated highly viscous menstrual blood remaining on the top sheet is collected and its mass (m 11 (g)) is measured.
(8) The high-viscosity menstrual blood remaining rate (%), which is the ratio of the remaining amount of simulated high-viscosity menstrual blood in sanitary napkin No. 1A to the remaining amount of simulated high-viscosity menstrual blood in sanitary napkin No. 19A (blank), was calculated using the following formula:
[Rate of high-viscosity menstrual blood remaining when low-viscosity menstrual blood is not dripped] (%)
= 100 × m11 / m10
It is calculated as follows.
(9)生理用ナプキンNo.2A~No.18Aについても、生理用ナプキンNo.1Aと同様にして、「低粘性経血を滴下しない場合の高粘性経血残存率(%)」を算出する。結果を、表1に示す。
(10)45分静置後の生理用ナプキンNo.19B(ブランク)において、トップシート上に残存している模擬高粘性経血を回収して、その質量(m20(g))を測定する。
(11)45分静置後の生理用ナプキンNo.1Bにおいて、トップシート上に残存している模擬高粘性経血を回収して、その質量(m21(g))を測定する。
(9) For sanitary napkins No. 2A to No. 18A, the "remaining rate (%) of high viscosity menstrual blood when low viscosity menstrual blood is not dripped" was calculated in the same manner as for sanitary napkin No. 1A. The results are shown in Table 1.
(10) After leaving the sanitary napkin No. 19B (blank) for 45 minutes, the simulated highly viscous menstrual blood remaining on the top sheet is collected and its mass (m 20 (g)) is measured.
(11) After leaving the sanitary napkin No. 1B for 45 minutes, the simulated highly viscous menstrual blood remaining on the top sheet is collected and its mass (m 21 (g)) is measured.
(12)生理用ナプキンNo.19B(ブランク)における模擬高粘性経血の残存量に対する、生理用ナプキンNo.1Bの模擬高粘性経血の残存量の比である低粘性経血滴下後の高粘性経血残存率(%)を次の式:
 [低粘性経血滴下後の高粘性経血残存率(%)]
=100×m21/m20
 により算出する。
(13)生理用ナプキンNo.2B~No.18Bについても、生理用ナプキンNo.1Bと同様にして、低粘性経血滴下後の高粘性経血残存率(%)を算出する。結果を表1に示す。
(12) The remaining rate (%) of high-viscosity menstrual blood after dropping of low-viscosity menstrual blood, which is the ratio of the remaining amount of simulated high-viscosity menstrual blood in sanitary napkin No. 1B to the remaining amount of simulated high-viscosity menstrual blood in sanitary napkin No. 19B (blank), was calculated using the following formula:
[Rate of high-viscosity menstrual blood remaining after low-viscosity menstrual blood dripping (%)]
= 100 × m21 / m20
It is calculated as follows.
(13) For sanitary napkins No. 2B to No. 18B, the percentage of high-viscosity menstrual blood remaining after low-viscosity menstrual blood was calculated in the same manner as for sanitary napkin No. 1B. The results are shown in Table 1.
 表1において、低粘性経血滴下後の高粘性経血残存率(%)が低いほど、低粘性経血の影響を受けずに、高粘性経血を低粘度化しているといえる。また、表1において、低粘性経血滴下後の高粘性経血残存率(%)が、低粘性経血を滴下しない場合の高粘性経血残存率(%)との差が小さいほど、低粘性経血の影響を受けずに、高粘性経血を低粘度化しているといえる。 In Table 1, the lower the percentage of high-viscosity menstrual blood remaining after low-viscosity menstrual blood is dripped, the more the high-viscosity menstrual blood is reduced in viscosity without being affected by the low-viscosity menstrual blood. Also, in Table 1, the smaller the difference between the percentage of high-viscosity menstrual blood remaining after low-viscosity menstrual blood is dripped and the percentage of high-viscosity menstrual blood remaining when low-viscosity menstrual blood is not dripped, the more the high-viscosity menstrual blood is reduced in viscosity without being affected by the low-viscosity menstrual blood.
 生理用ナプキンNo.1~No.19を、ボランティアの被験者に着用してもらったところ、生理用ナプキンNo.1~No.17は、生理用ナプキンNo.18と比較して、経血がトップシートに残存しにくかったとの回答を得たとともに、経血の残存しにくさは、概ね、表1における「低粘性経血滴下後の高粘性経血残存率(%)」と同等との結果を得た。また、生理用ナプキンNo.1~No.18は、肌荒れしにくかったとの回答を得た。 When volunteer subjects tried wearing sanitary napkins No. 1 to No. 19, they responded that sanitary napkins No. 1 to No. 17 were less likely to leave menstrual blood on the top sheet than sanitary napkin No. 18, and that the degree to which menstrual blood remained was roughly equivalent to the "Rate of high-viscosity menstrual blood remaining after low-viscosity menstrual blood was applied (%)" in Table 1. They also responded that sanitary napkins No. 1 to No. 18 were less likely to cause skin irritation.

Claims (9)

  1.  ナットウキナーゼを含む血液の凝固に働く因子を阻害する機能を有する機能性物質(A)と、水溶性ポリマー(B)とを含む機能性組成物を備えている吸収性物品であって、
     前記ナットウキナーゼの少なくとも一部が、水溶性ポリマー(B)に結合されていない、
     ことを特徴とする、前記吸収性物品。
    An absorbent article comprising a functional composition containing a functional substance (A) having a function of inhibiting a blood coagulation factor, including nattokinase, and a water-soluble polymer (B),
    At least a portion of the nattokinase is not bound to the water-soluble polymer (B);
    The absorbent article.
  2.  血液の凝固に働く因子を阻害する機能を有する機能性物質(A)が、前記ナットウキナーゼを50質量%超含む、請求項1に記載の吸収性物品。 The absorbent article according to claim 1, wherein the functional substance (A) having the function of inhibiting factors that act on blood clotting contains more than 50% by mass of the nattokinase.
  3.  前記機能性組成物が、血液の凝固に働く因子を阻害する機能を有する機能性物質(A)及び水溶性ポリマー(B)を、血液の凝固に働く因子を阻害する機能を有する機能性物質(A)及び水溶性ポリマー(B)の固形分計100質量部に基づいて、5及び95~95及び5の質量比で含む、請求項1又は2に記載の吸収性物品。 The absorbent article according to claim 1 or 2, wherein the functional composition contains a functional substance (A) having a function of inhibiting factors that act on blood clotting and a water-soluble polymer (B) in a mass ratio of 5:95 to 95:5 based on 100 parts by mass of the total solid content of the functional substance (A) having a function of inhibiting factors that act on blood clotting and the water-soluble polymer (B).
  4.  血液の凝固に働く因子を阻害する機能を有する機能性物質(A)の水浸漬溶解率:a(質量%)と、水溶性ポリマー(B)の水浸漬溶解率:b(質量%)とが、0<(a-b)の水浸漬溶解率差を有する、請求項1~3のいずれか一項に記載の吸収性物品。 The absorbent article according to any one of claims 1 to 3, in which the difference in solubility in water of the functional substance (A) having the function of inhibiting factors that act on blood coagulation: a (mass%) and the water-soluble polymer (B) having the solubility in water of b (mass%) is 0<(a-b).
  5.  水溶性ポリマー(B)が、5~70質量%の水浸漬溶解率を有する、請求項1~4のいずれか一項に記載の吸収性物品。 The absorbent article according to any one of claims 1 to 4, wherein the water-soluble polymer (B) has a water immersion solubility of 5 to 70% by mass.
  6.  水溶性ポリマー(B)が、10質量%水溶液,温度:20℃,粘度計:B型粘度計,ローター回転速度:60rpmの測定条件において、9,000mPa・s以下の粘度を有する、請求項1~5のいずれか一項に記載の吸収性物品。 The absorbent article according to any one of claims 1 to 5, wherein the water-soluble polymer (B) has a viscosity of 9,000 mPa·s or less under the following measurement conditions: 10% by weight aqueous solution, temperature: 20°C, viscometer: B-type viscometer, rotor rotation speed: 60 rpm.
  7.  水溶性ポリマー(B)が、ポリビニルアルコール、ポリエチレンオキサイド、ポリエチレングリコール、及び水溶性アクリル樹脂を少なくとも1種含む、請求項1~6のいずれか一項に記載の吸収性物品。 The absorbent article according to any one of claims 1 to 6, wherein the water-soluble polymer (B) comprises at least one of polyvinyl alcohol, polyethylene oxide, polyethylene glycol, and a water-soluble acrylic resin.
  8.  前記吸収性物品が、不織布を含む液透過性のトップシートを備えており、前記機能性組成物が、前記不織布を構成する繊維の表面に粒子状に配置されているか、前記不織布を構成する繊維を被覆するように配置されているか、又は前記不織布を構成する繊維に含浸されている、請求項1~7のいずれか一項に記載の吸収性物品。 The absorbent article according to any one of claims 1 to 7, wherein the absorbent article comprises a liquid-permeable top sheet containing a nonwoven fabric, and the functional composition is disposed in the form of particles on the surface of the fibers constituting the nonwoven fabric, disposed so as to cover the fibers constituting the nonwoven fabric, or impregnated into the fibers constituting the nonwoven fabric.
  9.  前記吸収性物品が、開孔フィルムを含む液透過性のトップシートを備えており、前記機能性組成物が、前記開孔フィルムの表面に粒子状に配置されているか、又は前記開孔フィルムの表面にフィルム状に配置されている、請求項1~8のいずれか一項に記載の吸収性物品。 The absorbent article according to any one of claims 1 to 8, wherein the absorbent article comprises a liquid-permeable top sheet including a perforated film, and the functional composition is disposed in the form of particles on the surface of the perforated film, or in the form of a film on the surface of the perforated film.
PCT/JP2023/041200 2022-11-30 2023-11-16 Absorbent article WO2024116863A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022192296 2022-11-30
JP2022-192296 2022-11-30

Publications (1)

Publication Number Publication Date
WO2024116863A1 true WO2024116863A1 (en) 2024-06-06

Family

ID=91323565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041200 WO2024116863A1 (en) 2022-11-30 2023-11-16 Absorbent article

Country Status (1)

Country Link
WO (1) WO2024116863A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150038933A1 (en) * 2013-07-31 2015-02-05 Kimberly-Clark Worldwide, Inc. Treated Three-Dimensional Apertured Liners
JP2016013976A (en) * 2014-07-01 2016-01-28 小林製薬株式会社 Oral composition
JP2020147512A (en) * 2019-03-12 2020-09-17 オルガノフードテック株式会社 Thrombolytic agent, thrombolytic action promoter, and thrombolytic action promoting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150038933A1 (en) * 2013-07-31 2015-02-05 Kimberly-Clark Worldwide, Inc. Treated Three-Dimensional Apertured Liners
JP2016013976A (en) * 2014-07-01 2016-01-28 小林製薬株式会社 Oral composition
JP2020147512A (en) * 2019-03-12 2020-09-17 オルガノフードテック株式会社 Thrombolytic agent, thrombolytic action promoter, and thrombolytic action promoting method

Similar Documents

Publication Publication Date Title
Yang et al. A multifunctional chitosan hydrogel dressing for liver hemostasis and infected wound healing
KR101445900B1 (en) Novel agent for salting out active principles in dressings containing at least one fatty substance
JP2016512829A (en) Dissolvable gel-forming film for active agent delivery
Shivakumar et al. Prospection of chitosan and its derivatives in wound healing: Proof of patent analysis (2010–2020)
AU2013344659B2 (en) Stable thermolysin hydrogel
RU2601899C2 (en) Application of synthetic polysulphonated oligosaccharides as an agent for wound cleaning
CA2687730C (en) Novel active ingredient in cicatrization and use thereof
JP5878870B2 (en) How to use wound hydrogel sheet
Liang et al. Injectable, antibacterial, ROS scavenging and pro-angiogenic hydrogel adhesives promote chronic wound healing in diabetes via synergistic release of NMN and Mg2+
Zhuo et al. Supramolecular hydrogels for wound repair and hemostasis
CA2808454A1 (en) Method and system for reversal of interactions between hydrophobically modified biopolymers and vesicles or cell membranes
Liao et al. Sprayable hydrogel for biomedical applications
Wang et al. HClO/ClO–-Indicative Interpenetrating Polymer Network Hydrogels as Intelligent Bioactive Materials for Wound Healing
JP2009525975A (en) Composition and method for promoting tissue healing in multicellular organisms
WO2024116863A1 (en) Absorbent article
Xu et al. Etamsylate loaded oxidized Konjac glucomannan-ε-polylysine injectable hydrogels for rapid hemostasis and wound healing
WO2024116867A1 (en) Treatment liquid
Deng et al. Rapid hemostatic antibacterial self-gelling powder based on methacryloylsulfonyl betaine and quaternized carboxymethyl chitosan
WO2010062734A1 (en) Blood coagulation inducing polymer hydrogel
Chummun et al. Assessing the mechanisms of action of natural molecules/extracts for phase-directed wound healing in hydrogel scaffolds
WO2022254943A1 (en) Absorbent article for absorbing menstrual blood
AU2022283721A1 (en) Hemostatic material composition
Huang et al. Chitosan catechol-tannic acid composite hydrogel and cryogel with antimicrobial and hemostatic properties
Wang et al. Multifunctional chitosan-based hydrogels loaded with iridium nanoenzymes for skin wound repair
Shi et al. A biguanide chitosan-based hydrogel adhesive accelerates the healing of bacterial-infected wounds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23897514

Country of ref document: EP

Kind code of ref document: A1