WO2024116693A1 - Resin composition, adhesive, sealing material, die attachment material, cured product and electronic device - Google Patents

Resin composition, adhesive, sealing material, die attachment material, cured product and electronic device Download PDF

Info

Publication number
WO2024116693A1
WO2024116693A1 PCT/JP2023/039072 JP2023039072W WO2024116693A1 WO 2024116693 A1 WO2024116693 A1 WO 2024116693A1 JP 2023039072 W JP2023039072 W JP 2023039072W WO 2024116693 A1 WO2024116693 A1 WO 2024116693A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
component
mass
resin
cured product
Prior art date
Application number
PCT/JP2023/039072
Other languages
French (fr)
Japanese (ja)
Inventor
友也 中井
宏樹 上地
陽太 内藤
Original Assignee
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナミックス株式会社 filed Critical ナミックス株式会社
Publication of WO2024116693A1 publication Critical patent/WO2024116693A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof

Definitions

  • the present invention relates to a resin composition, an adhesive, a sealing material, a die attachment agent, a cured product, and an electronic device.
  • the resin composition used to join and seal parts greatly affects the reliability of the electronic equipment, such as moisture resistance and durability.
  • the resin composition may be configured so that the glass transition temperature (Tg) of the cured product is high.
  • Patent Document 1 proposes a resin composition that uses an epoxy compound that has multifunctional groups and an aromatic ring in the molecule to obtain a cured product, in order to increase reliability in harsh environments such as high temperatures and high humidity.
  • a high Tg is, for example, 80°C or higher.
  • Resin compositions containing aromatic epoxy compounds that have aromatic rings in the molecule tend to have high viscosities. When assembling electronic devices, it may be necessary to join small areas or narrow gaps, and a resin composition that has a low viscosity of, for example, 200 Pa ⁇ s or less at 25°C and is easy to handle may be required.
  • the present invention aims to provide a resin composition that can produce a cured product with a high Tg and has a low viscosity, as well as an adhesive or sealant, die attachment agent, cured product, and electronic device that contain this resin composition.
  • the means for solving the above problems are as follows, and the present invention includes the following aspects.
  • a resin composition comprising (A) pentaerythritol tetraglycidyl ether and (B) an epoxy resin other than the component (A), wherein the component (A) accounts for less than 30 mass% of 100 mass% of an organic substance comprising the components (A) and (B).
  • the component (B) contains an epoxy resin having an epoxy equivalent of 90 to 500 g/eq.
  • a die attachment agent comprising the resin composition according to any one of [1] to [4] above.
  • a cured product obtained by curing the resin composition described in any one of [1] to [4] above, the adhesive or sealant described in [5] above, or the die attachment agent described in [6] above.
  • An electronic device comprising the cured product according to [7] above.
  • the present invention makes it possible to obtain a cured product with a high Tg, and to provide a resin composition with low viscosity, an adhesive or sealant containing this resin composition, a die attachment agent, a cured product, and an electronic device.
  • the resin composition according to the present disclosure an adhesive or encapsulant containing the resin composition, a die attachment agent, a cured product obtained by curing the resin composition, the adhesive, the encapsulant or the die attachment agent, and an electronic device containing the cured product will be described based on the embodiments.
  • the embodiments shown below are examples for embodying the technical idea of the present invention, and the present invention is not limited to the following resin composition, the adhesive, the encapsulant or the die attachment agent containing the resin composition, the cured product obtained by curing it, and the electronic device containing the cured product.
  • a name including the term "resin”, which normally refers to a polymer (particularly a synthetic polymer), may be used for a component that constitutes a curable resin composition before curing, even though the component is not a polymer.
  • the resin composition according to a first embodiment of the present invention contains (A) pentaerythritol tetraglycidyl ether (hereinafter also referred to as “component (A)”), and (B) an epoxy resin other than the component (A) (hereinafter also referred to as “component (B)”), and the amount of component (A) is less than 30 mass% in 100 mass% of organic matter containing components (A) and (B) in the resin composition.
  • component (A) pentaerythritol tetraglycidyl ether
  • component (B) an epoxy resin other than the component (A)
  • Component (A) pentaerythritol tetraglycidyl ether (hereinafter, also referred to as “PETG”), is a compound represented by the following formula (1).
  • component (A) PETG is a multifunctional epoxy compound having four epoxy groups, each epoxy group can react to increase the crosslink density, and the resin composition containing component (A) can be made into a cured product having a high Tg of, for example, 80°C or higher. Furthermore, since component (A) PETG does not have an aromatic ring in the compound, the viscosity of the resin composition can be reduced.
  • Component (A) PETG is liquid. In this specification, a substance being "liquid” means that the substance is in a liquid state at 20°C or higher and 30°C or lower.
  • liquid means a fluid whose viscosity at 20°C or higher and 30°C or lower is preferably 0.001 Pa ⁇ s or higher and 1,000 Pa ⁇ s or lower, as measured using a rotational viscometer (e.g., manufactured by Brookfield).
  • a “liquid” substance may be a pure substance or a mixture. This mixture may be in a homogeneous form (such as a solution) or in a heterogeneous form (such as an emulsion or suspension). In other words, unless otherwise specified, if the mixture as a whole satisfies the above-mentioned fluid requirements, the mixture can be considered to be liquid even if it contains components that do not qualify as liquids.
  • Component (A) in the resin composition is less than 30% by mass, preferably 29.99% by mass or less, more preferably 29% by mass or less, even more preferably 28% by mass or less, may be 25% by mass or less, or may be 20% by mass or less, based on 100% by mass of the organic matter contained in the resin composition.
  • Component (A) in the resin composition is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, even more preferably 1.0% by mass or more, may be 1.2% by mass or more, or may be 1.5% by mass or more, based on 100% by mass of the organic matter contained in the resin composition.
  • the component (A) in the resin composition is 0.1% by mass or more and less than 30% by mass, preferably 0.5% by mass or more and 29.99% by mass or less, more preferably 0.5% by mass or more and 29% by mass or less, even more preferably 1.0% by mass or more and 28% by mass or less, particularly preferably 1.2% by mass or more and 25% by mass or less, and most preferably 1.5% by mass or more and 20% by mass or less, based on 100% by mass of the organic matter contained in the resin composition.
  • component (A) is 30% by mass or more based on 100% by mass of the organic matter contained in the resin composition, some of the adjacent functional groups are not involved in polymerization due to the influence of steric hindrance, so that the crosslink density after curing cannot be increased and Tg decreases.
  • a cured product with a low crosslink density and a low Tg may have reduced reliability such as moisture resistance or durability.
  • component (A) is less than 30% by mass, preferably 0.1% by mass or more and 29.99% by mass or less, based on 100% by mass of the organic matter contained in the resin composition, the viscosity of the resin composition can be maintained low while the functional groups are easily reactive, the crosslink density can be increased, and a cured product with a high Tg can be obtained.
  • the organic matter in the resin composition refers to 100% by mass of the organic matter excluding the inorganic matter, when the resin composition contains an inorganic matter.
  • An example of the inorganic matter contained in the resin composition is the (C) filler made of an inorganic matter, which will be described later.
  • the (C) filler which will be described later, is made of an organic matter, or when the (C) filler contains an organic matter, the organic matter that is the (C) filler or the organic matter contained in the (C) filler is included in the organic matter in the resin composition.
  • the organic matter contained in the resin composition preferably contains the (D) hardener, which will be described later, and when the (E) hardener and/or (F) dispersant are contained, part of the organic matter contains the (E) hardener and/or (F) dispersant.
  • PETG of component (A) a commercially available product can be used, for example, Showfree (registered trademark) PETG (manufactured by Showa Denko K.K.).
  • the commercially available PETG of component (A) is preferably one with high purity, for example, a chlorine concentration of less than 50 ppm by mass measured by ion chromatography in accordance with JIS K0127 "General rules for ion chromatography.”
  • the resin composition contains an epoxy resin other than component (A) as component (B).
  • the epoxy resin of component (B) may be one type of epoxy resin or two or more types of epoxy resins. If the resin composition is liquid, component (B) may be liquid or solid. Component (B) is preferably liquid. When two or more types of components (B) are used in combination, component (B) refers to a mixture obtained by mixing all of the components (B).
  • Component (B) preferably contains at least one type of multifunctional epoxy resin.
  • a multifunctional epoxy resin is an epoxy resin having two or more epoxy groups. Examples of multifunctional epoxy resins include aliphatic multifunctional epoxy resins and aromatic multifunctional epoxy resins.
  • aliphatic multifunctional epoxy resins include: - diepoxy resins such as (poly)ethylene glycol diglycidyl ether, (poly)propylene glycol diglycidyl ether, butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane diglycidyl ether, polytetramethylene ether glycol diglycidyl ether, glycerin diglycidyl ether, neopentyl glycol diglycidyl ether, cyclohexane type diglycidyl ether, dicyclopentadiene type diglycidyl ether; - triepoxy resins such as trimethylolpropane triglycidyl ether, glycerin triglycidyl ether; - alicyclic epoxy resins such as vinyl(
  • cyclohexane-type diglycidyl ether refers to a compound having a structure in which two glycidyl groups are bonded, each via an ether bond, to a divalent saturated hydrocarbon group having one cyclohexane ring as the parent structure.
  • Dicyclopentadiene-type diglycidyl ether refers to a compound having a structure in which two glycidyl groups are bonded, each via an ether bond, to a divalent saturated hydrocarbon group having a dicyclopentadiene skeleton as the parent structure.
  • the aliphatic polyfunctional epoxy resin preferably has a molecular weight of 150 to 800.
  • the molecular weight of the aliphatic polyfunctional epoxy resin is within the range of 150 to 800, the viscosity of the resin composition containing the aliphatic polyfunctional epoxy resin as component (B) can be maintained low, improving the handleability.
  • the resin composition can have a high crosslink density and a cured product with a high Tg can be obtained by reacting component (A) with component (B).
  • the aromatic polyfunctional epoxy resin is a polyfunctional epoxy resin having a structure containing an aromatic ring such as a benzene ring.
  • aromatic polyfunctional epoxy resins include: - bisphenol A type epoxy resin; - branched polyfunctional bisphenol A type epoxy resins such as p-glycidyloxyphenyldimethyltribisphenol A diglycidyl ether; - bisphenol F type epoxy resin; - Novolac type epoxy resins; - tetrabromobisphenol A type epoxy resin; - fluorene type epoxy resin; - biphenyl aralkyl epoxy resins; -Diepoxy resins such as 1,4-phenyldimethanol diglycidyl ether; -Biphenyl type epoxy resins such as 3,3',5,5'-tetramethyl-4,4'-diglycidyloxybiphenyl; -glycidylamine type epoxy resins such as diglycidylaniline, diglycidyl-o-
  • the aromatic polyfunctional epoxy resin preferably has a molecular weight of 200 to 400.
  • the molecular weight of the aromatic polyfunctional epoxy resin is within the range of 200 to 400, the viscosity of the resin composition containing the aromatic polyfunctional epoxy resin as component (B) can be maintained low and the handleability can be improved.
  • the resin composition can increase the crosslink density by reacting component (A) with component (B), and obtain a cured product having a high Tg.
  • Component (B) preferably contains an epoxy resin having an aromatic ring and a bifunctional or higher epoxy group.
  • component (B) preferably contains an epoxy resin having an aromatic ring and a bifunctional or higher epoxy group.
  • component (B) reacts with component (A) to increase the crosslinking density, thereby making it possible to obtain a cured product with a high Tg.
  • component (B) preferably contains a bifunctional epoxy resin having an aromatic ring and two epoxy groups.
  • Component (B) preferably contains an epoxy resin with an epoxy equivalent of 90 to 500 g/eq. If the epoxy equivalent is too large, many epoxy resins are solid at room temperature, making it difficult to maintain a low viscosity of the resin composition. If the epoxy equivalent is too small, many epoxy resins have one functional group, and a sufficient number of crosslinking structures are not formed, making it difficult to obtain a cured product with a high Tg.
  • the epoxy equivalent of component (B) is more preferably 100 to 400 g/eq, even more preferably 110 to 350 g/eq, even more preferably 120 to 300 g/eq, and particularly preferably 130 to 250 g/eq.
  • the epoxy equivalent is the value obtained by dividing the mass (g) of the epoxy resin by the total number of epoxy groups.
  • the epoxy equivalent can be determined in accordance with the method described in JIS K7236.
  • the epoxy equivalent may be the value obtained by dividing the mass (g) equivalent to one molecule contained in the epoxy resin by the total number of epoxy groups in one molecule contained in the epoxy resin.
  • the resin composition preferably contains component (B) in the range of 1% by mass to 60% by mass, more preferably 3% by mass to 55% by mass, even more preferably 4% by mass to 50% by mass, and even more preferably 4% by mass to 45% by mass.
  • component (B) in the resin composition is in the range of 1% by mass to 60% by mass, the crosslinking density can be increased by the reaction of component (A) and component (B) to obtain a cured product having a high Tg, and the viscosity of the resin composition can be maintained low by suppressing an increase in the viscosity of the resin composition.
  • the content of component (B) is preferably in the range of 10% by mass to 90% by mass, and more preferably in the range of 15% by mass to 85% by mass, of 100% by mass of organic matter containing components (A) and (B) in the resin composition (excluding organic particles described later).
  • the resin composition preferably contains a filler (C).
  • the filler (C) (hereinafter also referred to as “component (C)”) include particles made of inorganic or organic matter.
  • component (C) is not included in 100% by mass of the organic matter in the resin composition, which includes components (A) and (B).
  • component (C) is also included in 100% by mass of the organic matter in the resin composition.
  • component (C) is an inorganic substance
  • examples of the inorganic substance include silica particles, alumina particles, talc particles, calcium carbonate particles, silver particles, copper particles, alloy particles, etc.
  • insulating particles such as silica particles, alumina particles, talc particles, calcium carbonate particles, etc. are preferable.
  • component (C) is an organic substance
  • examples of the organic substance include silicone particles, polytetrafluoroethylene (PTFE) particles, acrylic particles, styrene particles, etc. From the viewpoint of dispersibility, silicone particles are preferred.
  • the average particle size of the particles is preferably 0.1 ⁇ m or more and 5.0 ⁇ m or less.
  • the average particle size refers to the particle size (volume median diameter) at which the volume cumulative frequency from the small diameter side in the volume-based particle size distribution measured by a laser diffraction method in accordance with ISO-13320 (2009) reaches 50%.
  • the average particle size of the filler of component (C) is 5.0 ⁇ m or less, component (C) is easily dispersed in the resin composition, and it is easy to attach it to a narrow area when using the resin composition for bonding or sealing electronic components.
  • the average particle size of the filler of component (C) is 0.1 ⁇ m or more, the increase in viscosity can be suppressed even when the resin composition contains component (C).
  • the average particle size of the filler of component (C) may be 0.2 ⁇ m or more and 4.0 ⁇ m or less, or 0.2 ⁇ m or more and 3.0 ⁇ m or less.
  • the content of component (C) is preferably in the range of 20% by mass to 90% by mass, more preferably in the range of 25% by mass to 88% by mass, and even more preferably in the range of 30% by mass to 85% by mass, relative to the total mass of the resin composition.
  • component (C) is contained in the range of 20% by mass to 65% by mass, relative to the total mass of the resin composition, the adhesive strength to the adherend is sufficiently maintained while suppressing an increase in the viscosity of the resin composition, and the resin composition can be injected and applied even in narrow areas, improving handleability.
  • Component (C) may be a commercially available product; in the case of silica particles, SO-E5 (manufactured by Admatechs Co., Ltd.) may be used; in the case of alumina particles, AG2051 (manufactured by Admatechs Co., Ltd.) may be used; and in the case of silicone particles, EP2601 (manufactured by Dow Toray Co., Ltd.) may be used.
  • Component (C) may be used alone or in combination of two or more types. When two or more types of component (C) are used, two or more types of inorganic substances may be used, or one or more types of inorganic substances and one or more types of organic substances may be used in combination.
  • the resin composition preferably contains (D) a curing agent (hereinafter also referred to as “component (D)”).
  • Component (D) is not particularly limited as long as it can cure the epoxy resin of component (B).
  • Examples of component (D) include at least one selected from the group consisting of phenolic resins, acid anhydrides, thiol compounds, and amine compounds (such as aromatic amines).
  • phenolic resins examples include allylated phenolic resins, phenolic novolac resins, cresol novolac resins, naphthol-modified phenolic resins, dicyclopentadiene-modified phenolic resins, and p-xylene-modified phenolic resins.
  • Commercially available phenolic resins can be used, such as MEH8005 (allylated phenolic resin, manufactured by UBE Co., Ltd.), Shownol (registered trademark) BRM-553 (phenolic novolac resin, manufactured by Aica Kogyo Co., Ltd.), and Shownol (registered trademark) BRG-558 (phenolic novolac resin, manufactured by Aica Kogyo Co., Ltd.).
  • acid anhydrides examples include methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, alkylated tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhymic anhydride, dodecenyl succinic anhydride, and methylnadic anhydride.
  • thiol compounds include trimethylolpropane tris(3-mercaptopropionate) (manufactured by SC Organic Chemical Co., Ltd.: TMMP), tris-[(3-mercaptopropionyloxy)-ethyl]-isocyanurate (manufactured by SC Organic Chemical Co., Ltd.: TEMPIC), pentaerythritol tetrakis(3-mercaptopropionate) (manufactured by SC Organic Chemical Co., Ltd.: PEMP), tetraethylene glycol bis(3-mercaptopropionate ) (manufactured by SC Organic Chemical Industries, Ltd.: EGMP-4), dipentaerythritol hexakis(3-mercaptopropionate) (manufactured by SC Organic Chemical Industries, Ltd.: DPMP), pentaerythritol tetrakis(3-mercaptobutyrate) (manufactured by Show
  • amine compounds include aromatic amines such as methylenedianiline, m-phenylenediamine, 4,4'-diaminodiphenyl sulfone, and 3,3'-diaminodiphenyl sulfone.
  • Component (D) preferably contains at least one selected from the group consisting of phenolic resins, acid anhydrides, thiol compounds, and amine compounds.
  • the phenolic resin may be liquid or solid at 20°C or higher and 30°C or lower.
  • the resin composition according to the present invention has a low viscosity, but from the viewpoint of further reducing the viscosity of the resin composition, it is preferable that the phenolic resin in component (D) is an allylated phenolic resin.
  • the total amount of functional groups (hydroxyl groups, acid anhydride groups, amino groups, etc.) that react with epoxy groups in component (D) in the resin composition may be approximately equivalent to the total amount of epoxy groups in components (A) and (B). If the total amount of epoxy groups in components (A) and (B) in the resin composition is taken as 1 equivalent, the total amount of functional groups that react with epoxy groups in component (D) may be 0.01 to 1.5 equivalents, or 0.01 to 1.2 equivalents. If the total amount of functional groups in component (D) in the resin composition is outside the above-mentioned range, there will be many unreacted functional groups, which may make it difficult to increase the crosslink density, make it difficult to obtain a cured product with a high Tg, and make it difficult to obtain reliability.
  • component (D) is a phenolic resin
  • using a small amount of component (D) can increase the shear strength of the cured product after PCT (pressure cooker test).
  • the equivalent number of the hydroxyl group of the component (D) is preferably 0.01 to 0.3, more preferably 0.01 to 0.2, and even more preferably 0.01 to 0.1, when the total equivalent number of the epoxy groups of the components (A) and (B) in the resin composition is taken as 1.
  • the equivalent number of the hydroxyl group of the component (D) is less than 0.01 or exceeds 0.3, when the total equivalent number of the epoxy groups of the components (A) and (B) in the resin composition is taken as 1, the shear strength of the cured product after PCT may decrease.
  • the phenolic resin as the component (D) is considered to have a longer distance between crosslinking points than the component (A).
  • the resin composition preferably contains component (D) in the range of 0.3% by mass to 50% by mass, more preferably 0.5% by mass to 45% by mass, even more preferably 0.6% by mass to 42% by mass, and even more preferably 0.7% by mass to 40% by mass, relative to the total mass of the resin composition.
  • component (D) in the resin composition is in the range of 0.3% by mass to 50% by mass, the crosslink density can be increased to obtain a cured product with a high Tg, and an increase in the viscosity of the resin composition can be suppressed to maintain the low viscosity of the resin composition.
  • the resin composition may contain (E) a curing accelerator (hereinafter also referred to as “component (E)”).
  • component (E) is not particularly limited as long as it is a compound that can accelerate the curing of components (A) and (B).
  • Component (E) can be, for example, an imidazole compound. Component (E) may be used alone or in combination of two or more types.
  • imidazole compounds include 1-methylimidazole, 2-heptadecylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-undecylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2,4-diamino-6-(2'-methylimidazolyl-(1)')-ethyl-S-triazine isocyanuric acid adduct, 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole.
  • imidazole compound examples include 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole-trimellitate, 1-cyanoethyl-2-phenylimidazole-trimellitate, N-(2-methylimidazolyl-1-ethyl)-urea, N,N'-(2-methylimidazolyl-(1)-ethyl)-adiboyldiamide, 1-[([1,1'-biphenyl]-2-yl)oxy]-3-(2-methyl-1H-imidazol-1-yl)propan-2-ol, etc.
  • imidazole compounds can be used, for example, 2P4MZ (2-phenyl-4-methylimidazole, manufactured by Shikoku Chemical Industry Co., Ltd.).
  • the imidazole compound may be a synthesized compound, and 1-[([1,1'-biphenyl]-2-yl)oxy]-3-(2-methyl-1H-imidazol-1-yl)propan-2-ol may be synthesized by referring to the description in, for example, WO 2021/201060.
  • Component (E) may be a latent curing accelerator.
  • a latent curing accelerator is a compound that is inactive at room temperature of about 25°C and is activated by heating or the like to function as a curing accelerator.
  • Examples of latent curing accelerators include imidazole compounds that are solid at room temperature; solid-dispersed amine adduct-based latent curing accelerators such as reaction products of amine compounds and epoxy compounds (amine-epoxy adduct systems); and reaction products of amine compounds and isocyanate compounds or urea compounds (urea adduct systems).
  • amine-epoxy adduct systems include amine-epoxy adduct systems (amine adduct systems): “Amicure (registered trademark) PN-23” (manufactured by Ajinomoto Fine-Techno Co., Ltd.), “Amicure (registered trademark) PN-40” (manufactured by Ajinomoto Fine-Techno Co., Ltd.), “Amicure (registered trademark) PN-50" (manufactured by Ajinomoto Fine-Techno Co., Ltd.), “Hardener X-3661S” (manufactured by ACS Co., Ltd.), “Hardener X-3670S” (manufactured by ACS Co., Ltd.), and “Novacure (registered trademark) HX-3742” (manufactured by Asahi Chemical Industry Co., Ltd.).
  • Examples of such compounds include “Novacure (registered trademark) HX-3721” (manufactured by Asahi Kasei Corporation), “Novacure (registered trademark) HXA9322HP” (manufactured by Asahi Kasei Corporation), “Novacure (registered trademark) HXA3922HP” (manufactured by Asahi Kasei Corporation), “Novacure (registered trademark) HXA3932HP” (manufactured by Asahi Kasei Corporation), “Novacure (registered trademark) HXA5945HP” (manufactured by Asahi Kasei Corporation), “Novacure (registered trademark) HXA5911HP” (manufactured by Asahi Kasei Corporation), and “Novacure (registered trademark) HXA9382HP” (manufactured by Asahi Kasei Corporation).
  • urea-type adducts examples include "Fujicure FXE-1000" (manufactured by T&K TOKA Corporation), “Fujicure FXR1020” (manufactured by T&K TOKA Corporation), “Fujicure FXR-1030” (manufactured by T&K TOKA Corporation), “Fujicure FXR1121” (manufactured by T&K TOKA Corporation), “Fujicure FXR1081” (manufactured by T&K TOKA Corporation), “Fujicure FXR1061” (manufactured by T&K TOKA Corporation), and “Fujicure FXR1171” (manufactured by T&K TOKA Corporation), but are not limited to these.
  • Component (E) may be used alone or in combination of two or more types.
  • Component (E) is preferably a latent curing accelerator.
  • component (E) is provided in the form of a dispersion in which a solid compound having a solid latent hardening accelerating effect is dispersed in a liquid epoxy resin.
  • component (E) in such a form is used, the amount of epoxy resin in which the solid compound is dispersed is included in the amount of epoxy resin in component (B).
  • the resin composition preferably contains component (E) in the range of 1% by mass to 40% by mass, more preferably 2% by mass to 35% by mass, and even more preferably 2% by mass to 32% by mass, relative to the total mass of the resin composition.
  • component (E) in the resin composition is in the range of 1% by mass to 40% by mass, the reaction of components (A) and (B) is promoted while maintaining a low viscosity, and a cured product having a high Tg can be obtained.
  • the resin composition may contain (F) a dispersant (hereinafter also referred to as “component (F)”).
  • Component (F) is not particularly limited as long as it facilitates dispersion of, for example, component (C) in the resin composition.
  • component (F) include phosphate polyesters.
  • commercially available dispersants for component (F) include, for example, BYK111 (manufactured by BYK Japan KK) under the trade name.
  • the resin composition preferably contains component (F) in the range of 0.1% by mass or more and 2.0% by mass or less, based on the total mass of the resin composition.
  • the resin composition may not contain component (F), and the component (F) may be 0% by mass.
  • the resin composition may contain optional components other than components (A) to (F).
  • optional components contained in the resin composition include stabilizers and coupling agents.
  • stabilizers include liquid boric acid ester compounds.
  • coupling agents include silane coupling agents.
  • optional components include additives, leveling agents, antioxidants, defoamers, thixotropic agents, viscosity modifiers, flame retardants, colorants, solvents, etc.
  • additives include carbon black and titanium black.
  • the amount of the optional components is in a range of 0.001 parts by mass to 30 parts by mass or less, may be in a range of 0.05 parts by mass to 25 parts by mass or less, or may be in a range of 0.1 parts by mass to 20 parts by mass or less, relative to 100 parts by mass of the total amount of components (A), (B), (D), and (E).
  • the resin composition can be produced by mixing components (A) and (B), and if necessary, component (C), and further if necessary, components (D), (E) and (F).
  • the resin composition may be produced by mixing each component together with additives if necessary. Each component is introduced simultaneously or separately into an appropriate mixer, and if necessary, the components are stirred and mixed while being melted by heating to obtain a resin composition.
  • the method for producing the resin composition is not particularly limited.
  • the resin composition can be produced by mixing the raw materials for each component with a mixer such as a Raikai mixer, a Henschel mixer, a roll mill, a three-roll mill, a ball mill, a planetary mixer, a bead mill, or a hybrid mixer equipped with a stirring device and a heating device.
  • a mixer such as a Raikai mixer, a Henschel mixer, a roll mill, a three-roll mill, a ball mill, a planetary mixer, a bead mill, or a hybrid mixer equipped with a stirring device and a heating device.
  • the resin composition may also be produced by using an appropriate combination of the above devices.
  • the resin composition is liquid at 20°C to 30°C.
  • the viscosity of the resin composition is preferably 200 Pa ⁇ s or less, or may be 190 Pa ⁇ s or less, and is preferably 1 Pa ⁇ s or more, measured using a Brookfield rotational viscometer (HBDV-I or RVDV-I type, spindle: SC4-14 spindle, rotation speed: 50 rpm, measurement temperature: 25°C) immediately after preparation of the resin composition and after leaving the resin composition at room temperature (approximately 25°C) for a predetermined period of time.
  • Brookfield rotational viscometer HBDV-I or RVDV-I type, spindle: SC4-14 spindle, rotation speed: 50 rpm, measurement temperature: 25°C
  • the resin composition can be used as an adhesive or sealing material for fixing, bonding or protecting components constituting an electronic device, and can also be used as an adhesive or sealing material containing the resin composition.
  • the resin composition can also be used as a die attachment agent for die bonding of bare chips, bonding of light-emitting diodes (LEDs), bonding of electrodes and lead wires, etc.
  • the resin composition may be an adhesive or sealing material.
  • the resin composition may be a die attachment agent.
  • the resin composition can be supplied using a jet dispenser, an air dispenser, etc. Also, it can be supplied by a known coating method (dip coating, spray coating, bar coater coating, gravure coating, reverse gravure coating, spin coater coating, etc.) and a known printing method (lithographic printing, carton printing, metal printing, offset printing, screen printing, gravure printing, flexographic printing, inkjet printing, etc.).
  • a known coating method dip coating, spray coating, bar coater coating, gravure coating, reverse gravure coating, spin coater coating, etc.
  • a known printing method lithographic printing, carton printing, metal printing, offset printing, screen printing, gravure printing, flexographic printing, inkjet printing, etc.
  • the resin composition is thermosetting and can be cured by heating, for example, at 40°C or more and 150°C or less.
  • the curing temperature of the resin composition is preferably 40°C or more and 120°C or less. It may be a high-temperature, short-time curing type that cures in a few seconds at 150°C.
  • the heating time for curing the resin composition is preferably 15 minutes to 4 hours, more preferably 30 minutes to 2 hours, and even more preferably 30 minutes to 60 minutes.
  • a cured product is obtained by curing a resin composition, an adhesive or sealing material containing the resin composition, or a die attachment agent containing the resin composition.
  • the cured product obtained by curing the resin composition at 120 ° C. for 60 minutes has a glass transition temperature (Tg) of preferably 80 ° C. or higher, more preferably 82 ° C. or higher, and even more preferably 83 ° C. or higher, when measured at a heating rate of 3 ° C. / min using a dynamic viscoelasticity measuring device (e.g., DMA850, manufactured by TA Instruments Japan Co., Ltd.), and may be 200 ° C. or lower, 195 ° C. or lower, or 190 ° C. or lower. If the Tg of the obtained cured product is 80 ° C. or higher, a cured product with improved moisture resistance or durability can be obtained.
  • Tg glass transition temperature
  • an electronic device containing a cured product obtained by curing the resin composition, adhesive, sealant or die attachment agent is obtained.
  • the electronic device may be a semiconductor device. Examples of electronic devices include mobile phones, smartphones, notebook computers, tablet terminals, camera modules, etc.
  • the resin composition is used as an adhesive or sealant containing the resin composition, or a die attachment agent containing the resin composition for fixing, bonding or protecting an electronic component
  • the cured product having a Tg of 80 ° C. or more has improved reliability such as moisture resistance or durability, and can provide an electronic device that is reliable even in harsh environments such as high temperature and high humidity.
  • the present invention will be specifically explained below with reference to examples.
  • the present invention is not limited to these examples.
  • the numbers indicating the blending ratio of each component contained in the resin composition represent mass % relative to the total mass of the resin composition, unless otherwise specified.
  • B-4 jER630 (4-(diglycidylamino)phenyl glycidyl ether), liquid, epoxy equivalent: 98 g/eq, manufactured by Mitsubishi Chemical Corporation
  • B-5 EP3980S (diglycidyl-o-toluidine), liquid, epoxy equivalent: 115 g/eq, manufactured by ADEKA Corporation
  • D-3 Shownol (registered trademark) BRG-558 (phenol novolac resin), solid at 25°C (softening point: 95°C), hydroxyl equivalent: 106 g/eq, manufactured by Aica Kogyo Co., Ltd.
  • E Curing accelerator E-1: 2P4MZ (2-phenyl-4-methylimidazole), manufactured by Shikoku Chemical Industry Co., Ltd.
  • E-2 OPPG-2MZH (1-[([1,1'-biphenyl]-2-yl)oxy]-3-(2-methyl-1H-imidazol-1-yl)propan-2-ol), manufactured by Namics Corporation
  • E-3 Novacure (registered trademark) HXA9322HP (core-shell type) (core-shell type epoxy-amine adduct type latent curing catalyst), manufactured by Asahi Kasei Corporation
  • E-4 Novacure (registered trade) HXA5911HP (core-shell type) (core-shell type epoxy-amine adduct type latent curing catalyst), manufactured by Asahi Kasei Corporation
  • E-5 FXR1020 (modified amine) (modified amine type latent curing catalyst), manufactured by T&K TOKA Corporation Incidentally, E-3 is in the form of
  • Dispersant F-1 BYK111 (polyester phosphate), manufactured by BYK-Chemie Japan Co., Ltd.
  • Examples 1 to 23 Comparative Examples 1 to 2 Component (A), component (B), component (C), component (D), and component (E), and optionally component (F), were mixed in the proportions shown in Tables 1 to 3, and a three-roll mill was used when the filler of component (C) was included, and a planetary mixer was used when the filler of component (C) was not included, to produce each resin composition of the examples and comparative examples.
  • values without units represent mass % relative to 100 mass % of the total mass of the resin composition, or mass % relative to 100 mass % of the organic matter in the resin composition.
  • component (A) both the mass % of component (A) in 100 mass % of the organic matter and the mass % of component (A) in 100 mass % of the total mass of the resin composition were listed.
  • the symbol "-" indicates that the corresponding component is not included in the resin composition or could not be measured.
  • Viscosity (Pa ⁇ s) For each of the resin compositions in the Examples and Comparative Examples, the viscosity (Pa ⁇ s) was measured using a rotational viscometer HBDV-1 (manufactured by Brookfield) or a rotational viscometer RVDV-1 (manufactured by Brookfield) at 50 rpm and 25° C. using a spindle SC4-14. When the viscosity was less than 10 Pa ⁇ s, the measurement was performed using the rotational viscometer RVDV-1, and when the viscosity was 10 Pa ⁇ s or more, the measurement was performed using the rotational viscometer HBDV-1.
  • Glass transition temperature Tg (°C) The glass transition temperature Tg (°C) of the cured product obtained by curing each of the resin compositions of the Examples and Comparative Examples was measured using a dynamic viscoelasticity measuring device. Specifically, a Teflon (registered trademark) sheet was attached to the surface of a glass plate having a thickness of 1.5 mm, and spacers were placed in two places on the Teflon sheet so that the film thickness when cured was 200 ⁇ 100 ⁇ m. Next, the resin composition was applied between the two spacers, and the Teflon sheet was sandwiched between another glass plate with a Teflon sheet attached to the surface without trapping air bubbles, and cured at 120 ° C for 60 minutes to obtain a cured product.
  • a Teflon (registered trademark) sheet was attached to the surface of a glass plate having a thickness of 1.5 mm, and spacers were placed in two places on the Teflon sheet so that the film thickness when cured was 200 ⁇ 100 ⁇ m
  • the cured product was peeled off from the glass plate with the Teflon sheet attached, and then cut into a predetermined size (3 mm long x 15 mm wide) with a cutter to obtain a test piece.
  • the cut edge of the test piece was smoothed with sandpaper.
  • the test piece was subjected to measurements using a dynamic viscoelasticity measuring device (Discovery DMA850, manufactured by TA Instruments Japan, Inc.) in the range of ⁇ 25° C. to 200° C., at a frequency of 1 Hz, a temperature rise rate of 3° C./min, and a strain amplitude of 20 ⁇ m, using a tensile method.
  • the peak temperature of tan ⁇ was read and taken as the glass transition temperature Tg (° C.).
  • each of the resin compositions of Examples 1 to 23 had a low viscosity of 200 Pa ⁇ s or less at 25°C, and could be used to bond small areas and narrow gaps, and had good handleability.
  • the cured products obtained by curing each of the resin compositions of Examples 1 to 23 at 120°C for 60 minutes had a high Tg of 80°C or more, and a highly reliable cured product was obtained even when used in harsh environments such as high temperatures and high humidity.
  • the resin composition of Comparative Example 1 did not contain PETG, and therefore a cured product with a high Tg of 80°C or higher was obtained, but the viscosity of the resin composition became too high to measure.
  • the resin composition of Comparative Example 2 contained 35% by mass of PETG (component (A)) relative to 100% by mass of the organic matter, including components (A) and (B), contained in the resin composition, and therefore the cured product obtained by curing the resin composition at 120°C for 60 minutes had a Tg of 75°C, which did not meet the Tg of 80°C, and there was a risk of a decrease in reliability in terms of moisture resistance or durability.
  • test piece was subjected to PCT (conditions: 121 ° C, 2 atmospheres, 100% RH, 20 hours) using a highly accelerated life tester (EHS-221M: manufactured by Espec Corporation), and then the stress (unit: N) was measured at a test speed of 200 ⁇ m / s using a universal bond tester.
  • PCT condition: 121 ° C, 2 atmospheres, 100% RH, 20 hours
  • EHS-221M manufactured by Espec Corporation
  • Water absorption rate after PCT (%) The water absorption rate was measured from the weight ratio before and after PCT of the cured product obtained by curing each of the resin compositions of Examples 2, 9, and 10. Specifically, first, spacers were placed in two places on a 4 cm x 6 cm SUS (Steel Special Use Stainless) 304 plate so that the film thickness when the resin composition was cured was 250 ⁇ m. Next, the resin composition was applied and cured at 120 ° C for 60 minutes to obtain a test piece, and the weight of the test piece was measured.
  • test piece was subjected to PCT (conditions: 121 ° C, 2 atmospheres, 100% RH, 20 hours) using a highly accelerated life tester (EHS-221M: manufactured by Espec Corporation), and then the weight was measured again.
  • EHS-221M highly accelerated life tester
  • the water absorption rate (unit: %) was calculated from (weight after PCT [g]) / (weight before PCT [g]) ⁇ 100. The results are shown in Table 5.
  • Example 9 Compared to Example 9, which did not contain phenolic resin, the water absorption rate was lower when a small amount of phenolic resin was used. Between Examples 2 and 10, Example 2, which used a very small amount of phenolic resin, had a lower water absorption rate.
  • the resin composition according to the present invention can be suitably used as an adhesive or sealant for fixing, joining or protecting components constituting an electronic device.
  • the resin composition according to the present invention can also be suitably used as a die attachment agent.
  • the resin composition according to the embodiment of the present invention, the adhesive or sealant containing the resin composition, the cured product obtained by curing the die attachment agent, and the electronic device containing the cured product can be used, for example, in mobile phones, smartphones, notebook computers, tablet terminals, camera modules, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)

Abstract

The present invention provides: a resin composition which has a low viscosity and enables the achievement of a cured product that has a high Tg; an adhesive and a sealing material, each of which comprises this resin composition; a die attachment material; a cured product; and an electronic device. This resin composition is characterized by containing (A) a pentaerythritol tetraglycidyl ether and (B) an epoxy resin other than the component (A), and is also characterized in that the amount of the component (A) is less than 30% by mass in 100% by mass of organic matters that include the component (A) and the component (B). 

Description

樹脂組成物、接着剤、封止材、ダイアタッチ剤、硬化物及び電子デバイスResin composition, adhesive, sealing material, die attach agent, cured product, and electronic device
 本発明は、樹脂組成物、接着剤、封止材、ダイアタッチ剤、硬化物及び電子デバイスに関する。 The present invention relates to a resin composition, an adhesive, a sealing material, a die attachment agent, a cured product, and an electronic device.
 電子デバイス等の電子機器は、高温や多湿等の様々な環境下で使用する場合が想定されている。電子機器を組み立てる際に、部品の接合や封止に用いられる樹脂組成物は、電子機器の耐湿性又は耐久性等の信頼性を大きく左右させる。高温や多湿等の過酷な環境下で電子機器を使用する場合であっても、電子機器の信頼性を向上させるために、樹脂組成物を硬化させた硬化物のガラス転移温度(Tg)が高くなるように樹脂組成物を構成する場合がある。 Electronic devices and other electronic equipment are expected to be used in various environments, including high temperatures and high humidity. When assembling electronic equipment, the resin composition used to join and seal parts greatly affects the reliability of the electronic equipment, such as moisture resistance and durability. In order to improve the reliability of electronic equipment, even when the electronic equipment is used in harsh environments such as high temperatures and high humidity, the resin composition may be configured so that the glass transition temperature (Tg) of the cured product is high.
 多官能基を有する化合物を用い、架橋密度を高めることで、得られる硬化物のTgを高くすることが可能である。特許文献1には、高温や多湿等の過酷な環境下での信頼性を高めるために、多官能基を有し、芳香族環を分子内に有するエポキシ化合物を使用して、硬化物が得られる樹脂組成物が提案されている。高いTgとしては、例えば80℃以上であることが考えられる。 By using a compound with multifunctional groups to increase the crosslink density, it is possible to increase the Tg of the resulting cured product. Patent Document 1 proposes a resin composition that uses an epoxy compound that has multifunctional groups and an aromatic ring in the molecule to obtain a cured product, in order to increase reliability in harsh environments such as high temperatures and high humidity. A high Tg is, for example, 80°C or higher.
特開平05-175370号公報Japanese Patent Application Laid-Open No. 05-175370
 芳香族環を分子内に有する芳香族エポキシ化合物を含む樹脂組成物は、粘度が高くなりやすい。電子機器を組み立てる際には、微小領域や狭いギャップの部分の接合が必要な場合もあり、例えば25℃で、200Pa・s以下の低い粘度を有し、取り扱い性のよい樹脂組成物が求められる場合もある。 Resin compositions containing aromatic epoxy compounds that have aromatic rings in the molecule tend to have high viscosities. When assembling electronic devices, it may be necessary to join small areas or narrow gaps, and a resin composition that has a low viscosity of, for example, 200 Pa·s or less at 25°C and is easy to handle may be required.
 そこで、本発明は、高いTgを有する硬化物を得ることができ、低い粘度を有する樹脂組成物、この樹脂組成物を含む接着剤又は封止材、ダイアタッチ剤、硬化物、及び電子デバイスを提供することを目的とする。 The present invention aims to provide a resin composition that can produce a cured product with a high Tg and has a low viscosity, as well as an adhesive or sealant, die attachment agent, cured product, and electronic device that contain this resin composition.
 前記課題を解決するための手段は、以下の通りであり、本発明は、以下の態様を包含する。 The means for solving the above problems are as follows, and the present invention includes the following aspects.
 [1](A)ペンタエリスリトールテトラグリシジルエーテル、及び(B)前記成分(A)以外のエポキシ樹脂を含み、前記成分(A)及び前記成分(B)を含む有機物100質量%中、前記成分(A)が30質量%未満であることを特徴とする樹脂組成物である。
 [2]前記成分(B)が芳香環を有し、2官能以上のエポキシ基を有するエポキシ樹脂を含む、前記[1]に記載の樹脂組成物である。
 [3]前記成分(B)がエポキシ当量90~500g/eqのエポキシ樹脂を含む、[1]又は[2]に記載の樹脂組成物である。
 [4](C)充填剤を含む、前記[1]~[3]のいずれかに記載の樹脂組成物である。
 [5]前記[1]~[4]のいずれかに記載の樹脂組成物を含む、接着剤又は封止材である。
 [6]前記[1]~[4]のいずれかに記載の樹脂組成物を含む、ダイアタッチ剤である。
 [7]前記[1]~[4]のいずれかに記載の樹脂組成物、前記[5]に記載の接着剤若しくは封止材、又は、前記[6]に記載のダイアタッチ剤、を硬化させて得られる硬化物である。
 [8]前記[7]に記載の硬化物を含む、電子デバイスである。
[1] A resin composition comprising (A) pentaerythritol tetraglycidyl ether and (B) an epoxy resin other than the component (A), wherein the component (A) accounts for less than 30 mass% of 100 mass% of an organic substance comprising the components (A) and (B).
[2] The resin composition according to [1] above, wherein the component (B) contains an epoxy resin having an aromatic ring and an epoxy group having two or more functionalities.
[3] The resin composition according to [1] or [2], wherein the component (B) contains an epoxy resin having an epoxy equivalent of 90 to 500 g/eq.
[4] The resin composition according to any one of [1] to [3] above, further comprising a filler (C).
[5] An adhesive or sealant comprising the resin composition according to any one of [1] to [4] above.
[6] A die attachment agent comprising the resin composition according to any one of [1] to [4] above.
[7] A cured product obtained by curing the resin composition described in any one of [1] to [4] above, the adhesive or sealant described in [5] above, or the die attachment agent described in [6] above.
[8] An electronic device comprising the cured product according to [7] above.
 本発明によれば、高いTgを有する硬化物を得ることができ、低い粘度を有する樹脂組成物、この樹脂組成物を含む接着剤又は封止材、ダイアタッチ剤、硬化物、及び電子デバイスを提供することができる。 The present invention makes it possible to obtain a cured product with a high Tg, and to provide a resin composition with low viscosity, an adhesive or sealant containing this resin composition, a die attachment agent, a cured product, and an electronic device.
 以下、本開示に係る樹脂組成物、樹脂組成物を含む接着剤又は封止材、ダイアタッチ剤、樹脂組成物、接着剤、封止材又はダイアタッチ剤を硬化させてなる硬化物、硬化物を含む電子デバイスを実施形態に基づいて説明する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための例示であって、本発明は、以下の樹脂組成物、樹脂組成物を含む接着剤、封止材又はダイアタッチ剤、それを硬化させてなる硬化物、及び硬化物を含む電子デバイスに限定されない。
 本明細書においては、合成樹脂の分野における慣例に倣い、硬化前の硬化性樹脂組成物を構成する成分に対して、通常は高分子(特に合成高分子)を指す用語「樹脂」を含む名称を、その成分が高分子ではないにも関わらず、用いる場合がある。
Hereinafter, the resin composition according to the present disclosure, an adhesive or encapsulant containing the resin composition, a die attachment agent, a cured product obtained by curing the resin composition, the adhesive, the encapsulant or the die attachment agent, and an electronic device containing the cured product will be described based on the embodiments. However, the embodiments shown below are examples for embodying the technical idea of the present invention, and the present invention is not limited to the following resin composition, the adhesive, the encapsulant or the die attachment agent containing the resin composition, the cured product obtained by curing it, and the electronic device containing the cured product.
In this specification, following the convention in the field of synthetic resins, a name including the term "resin", which normally refers to a polymer (particularly a synthetic polymer), may be used for a component that constitutes a curable resin composition before curing, even though the component is not a polymer.
 樹脂組成物
 本発明の第一の実施形態に係る樹脂組成物は、(A)ペンタエリスリトールテトラグリシジルエーテル(以下、「成分(A)」ともいう。)、及び(B)前記成分(A)以外のエポキシ樹脂(以下、「成分(B)」ともいう。)を含み、樹脂組成物中の成分(A)及び成分(B)を含む有機物100質量%中、成分(A)が30質量%未満である。
Resin Composition The resin composition according to a first embodiment of the present invention contains (A) pentaerythritol tetraglycidyl ether (hereinafter also referred to as "component (A)"), and (B) an epoxy resin other than the component (A) (hereinafter also referred to as "component (B)"), and the amount of component (A) is less than 30 mass% in 100 mass% of organic matter containing components (A) and (B) in the resin composition.
 成分(A)のペンタエリスリトールテトラグリシジルエーテル(以下、「PETG」ともいう。)は、下記式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000001
Component (A), pentaerythritol tetraglycidyl ether (hereinafter, also referred to as “PETG”), is a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
 成分(A)のPETGは、4個のエポキシ基を有する多官能エポキシ化合物であるため、各エポキシ基が反応して架橋密度を高めることができ、成分(A)を含む樹脂組成物は、例えば80℃以上の高いTgを有する硬化物とすることができる。また、成分(A)のPETGは、化合物中に芳香族環を有していないため、樹脂組成物の粘度を低くすることができる。成分(A)のPETGは、液状である。本明細書において、ある物質が「液状」であるとは、その物質が20℃以上30℃以下において、液体の状態であることを意味する。本明細書において、「液体」とは、回転粘度計(例えばブルックフィールド社製)を用いて測定した20℃以上30℃以下における粘度が好ましくは0.001Pa・s以上1,000Pa・s以下である流体を意味する。「液状」である物質は、純物質であってもよく、混合物であってもよい。この混合物は、均一系の形態にあるもの(溶液等)であってもよく、不均一系の形態にあるもの(乳液、懸濁液等)にあってもよい。すなわち、特に断らない限り、混合物が全体として、上述の流体の要件を満足していれば、混合物中に液体に該当しない成分を含んでいても、この混合物は液状であるとみなすことができる。 Since component (A) PETG is a multifunctional epoxy compound having four epoxy groups, each epoxy group can react to increase the crosslink density, and the resin composition containing component (A) can be made into a cured product having a high Tg of, for example, 80°C or higher. Furthermore, since component (A) PETG does not have an aromatic ring in the compound, the viscosity of the resin composition can be reduced. Component (A) PETG is liquid. In this specification, a substance being "liquid" means that the substance is in a liquid state at 20°C or higher and 30°C or lower. In this specification, "liquid" means a fluid whose viscosity at 20°C or higher and 30°C or lower is preferably 0.001 Pa·s or higher and 1,000 Pa·s or lower, as measured using a rotational viscometer (e.g., manufactured by Brookfield). A "liquid" substance may be a pure substance or a mixture. This mixture may be in a homogeneous form (such as a solution) or in a heterogeneous form (such as an emulsion or suspension). In other words, unless otherwise specified, if the mixture as a whole satisfies the above-mentioned fluid requirements, the mixture can be considered to be liquid even if it contains components that do not qualify as liquids.
 樹脂組成物中の成分(A)は、樹脂組成物に含まれる有機物100質量%に対して、30質量%未満であり、好ましくは29.99質量%以下であり、より好ましくは29質量%以下であり、さらに好ましく28質量%以下であり、25質量%以下でもよく、20質量%以下でもよい。樹脂組成物中の成分(A)は、樹脂組成物に含まれる有機物100質量%に対して、好ましくは0.1質量%以上であり、より好ましくは0.5質量%以上であり、さらに好ましくは1.0質量%以上であり、1.2質量%以上でもよく、1.5質量%以上でもよい。一態様において、樹脂組成物中の成分(A)は、樹脂組成物に含まれる有機物100質量%に対して、0.1質量%以上30質量%未満であり、好ましくは0.5質量%以上29.99質量%以下であり、より好ましくは0.5質量%以上29質量%以下であり、さらに好ましくは1.0質量%以上28質量%以下であり、特に好ましくは1.2質量%以上25質量%以下であり、最も好ましくは1.5質量%以上20質量%以下である。成分(A)が、樹脂組成物に含まれる有機物100質量%に対して、30質量%以上であると、隣接する官能基の一部が立体障害の影響で重合に関与しないため、硬化後の架橋密度を高くすることができず、Tgが低下する。架橋密度が低くTgの低い硬化物は、耐湿性又は耐久性等の信頼性が低下する可能性がある。成分(A)が、樹脂組成物に含まれる有機物100質量%に対して、30質量%未満であり、好ましくは0.1質量%以上29.99質量%以下であると、樹脂組成物の粘度を低く維持しながら、官能基が反応しやすく、架橋密度を高くして、高いTgを有する硬化物を得ることができる。 Component (A) in the resin composition is less than 30% by mass, preferably 29.99% by mass or less, more preferably 29% by mass or less, even more preferably 28% by mass or less, may be 25% by mass or less, or may be 20% by mass or less, based on 100% by mass of the organic matter contained in the resin composition. Component (A) in the resin composition is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, even more preferably 1.0% by mass or more, may be 1.2% by mass or more, or may be 1.5% by mass or more, based on 100% by mass of the organic matter contained in the resin composition. In one embodiment, the component (A) in the resin composition is 0.1% by mass or more and less than 30% by mass, preferably 0.5% by mass or more and 29.99% by mass or less, more preferably 0.5% by mass or more and 29% by mass or less, even more preferably 1.0% by mass or more and 28% by mass or less, particularly preferably 1.2% by mass or more and 25% by mass or less, and most preferably 1.5% by mass or more and 20% by mass or less, based on 100% by mass of the organic matter contained in the resin composition. If the component (A) is 30% by mass or more based on 100% by mass of the organic matter contained in the resin composition, some of the adjacent functional groups are not involved in polymerization due to the influence of steric hindrance, so that the crosslink density after curing cannot be increased and Tg decreases. A cured product with a low crosslink density and a low Tg may have reduced reliability such as moisture resistance or durability. When component (A) is less than 30% by mass, preferably 0.1% by mass or more and 29.99% by mass or less, based on 100% by mass of the organic matter contained in the resin composition, the viscosity of the resin composition can be maintained low while the functional groups are easily reactive, the crosslink density can be increased, and a cured product with a high Tg can be obtained.
 樹脂組成物中の成分(A)及び成分(B)を含む有機物は、樹脂組成物中に無機物を含む場合には、無機物を除いた有機物100質量%をいう。樹脂組成物に含まれる無機物としては、後述する無機物からなる(C)充填剤が例示できる。後述する(C)充填剤が有機物からなる場合、又は、(C)充填剤が有機物を含む場合には、(C)充填剤である有機物又は(C)充填剤に含まれる有機物は、樹脂組成物中の有機物に含まれる。樹脂組成物に含まれる有機物は、成分(A)及び成分(B)の他に、後述する(D)硬化剤を含むことが好ましく、(E)硬化促進剤、及び/又は(F)分散剤を含む場合には、有機物の一部に、(E)硬化促進剤及び/又は(F)分散剤が含まれる。 The organic matter in the resin composition, including components (A) and (B), refers to 100% by mass of the organic matter excluding the inorganic matter, when the resin composition contains an inorganic matter. An example of the inorganic matter contained in the resin composition is the (C) filler made of an inorganic matter, which will be described later. When the (C) filler, which will be described later, is made of an organic matter, or when the (C) filler contains an organic matter, the organic matter that is the (C) filler or the organic matter contained in the (C) filler is included in the organic matter in the resin composition. In addition to components (A) and (B), the organic matter contained in the resin composition preferably contains the (D) hardener, which will be described later, and when the (E) hardener and/or (F) dispersant are contained, part of the organic matter contains the (E) hardener and/or (F) dispersant.
 成分(A)のPETGについては、市販品を使用することができ、例えばショウフリー(登録商標)PETG(昭和電工株式会社製)を使用することができる。成分(A)のPETGの市販品は、例えばJIS K0127の「イオンクロマトグラフィー通則」に準拠して、イオンクロマトグラフィー法により測定した塩素濃度が50質量ppm未満の純度の高いものであることが好ましい。 For the PETG of component (A), a commercially available product can be used, for example, Showfree (registered trademark) PETG (manufactured by Showa Denko K.K.). The commercially available PETG of component (A) is preferably one with high purity, for example, a chlorine concentration of less than 50 ppm by mass measured by ion chromatography in accordance with JIS K0127 "General rules for ion chromatography."
 樹脂組成物は、成分(A)以外のエポキシ樹脂を成分(B)として含む。成分(B)のエポキシ樹脂は、1種のエポキシ樹脂であってもよく、2種以上のエポキシ樹脂であってもよい。樹脂組成物が液状であれば、成分(B)は液状であってもよく、固体であってもよい。成分(B)は好ましくは液状である。2種以上の成分(B)を併用する場合、成分(B)は、全ての成分(B)を混合して得られる混合物をいう。 The resin composition contains an epoxy resin other than component (A) as component (B). The epoxy resin of component (B) may be one type of epoxy resin or two or more types of epoxy resins. If the resin composition is liquid, component (B) may be liquid or solid. Component (B) is preferably liquid. When two or more types of components (B) are used in combination, component (B) refers to a mixture obtained by mixing all of the components (B).
 成分(B)は、少なくとも1種の多官能エポキシ樹脂を含むことが好ましい。多官能エポキシ樹脂とは、2個以上のエポキシ基を有するエポキシ樹脂をいう。多官能エポキシ樹脂としては、脂肪族多官能エポキシ樹脂と芳香族多官能エポキシ樹脂が挙げられる。 Component (B) preferably contains at least one type of multifunctional epoxy resin. A multifunctional epoxy resin is an epoxy resin having two or more epoxy groups. Examples of multifunctional epoxy resins include aliphatic multifunctional epoxy resins and aromatic multifunctional epoxy resins.
 脂肪族多官能エポキシ樹脂の例としては、
 -(ポリ)エチレングルコールジグリシジルエーテル、(ポリ)プロピレングリコールジグリシジルエーテル、ブタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパンジグリシジルエーテル、ポリテトラメチレンエーテルグリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、シクロヘキサン型ジグリシジルエーテル、ジシクロペンタジエン型ジグリシジルエーテルのようなジエポキシ樹脂;
 -トリメチロールプロパントリグリシジルエーテル、グリセリントリグリシジルエーテルのようなトリエポキシ樹脂;
 -ビニル(3,4-シクロヘキセン)ジオキシド、2-(3,4-エポキシシクロヘキシル)-5,1-スピロ-(3,4-エポキシシクロヘキシル)-m-ジオキサンのような脂環式エポキシ樹脂;
 -テトラグリシジルビス(アミノメチル)シクロヘキサンのようなグリシジルアミン型エポキシ樹脂;
 -1,3-ジグリシジル-5-メチル-5-エチレンヒダントインのようなヒダントイン型エポキシ樹脂;及び
 -1,3-ビス(3-グリシドキシプロピル)-1,1,3,3-テトラメチルジシロキサンのようなシリコーン骨格を有するエポキシ樹脂等が挙げられる。これらに限定されるものではない。
Examples of aliphatic multifunctional epoxy resins include:
- diepoxy resins such as (poly)ethylene glycol diglycidyl ether, (poly)propylene glycol diglycidyl ether, butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, trimethylolpropane diglycidyl ether, polytetramethylene ether glycol diglycidyl ether, glycerin diglycidyl ether, neopentyl glycol diglycidyl ether, cyclohexane type diglycidyl ether, dicyclopentadiene type diglycidyl ether;
- triepoxy resins such as trimethylolpropane triglycidyl ether, glycerin triglycidyl ether;
- alicyclic epoxy resins such as vinyl(3,4-cyclohexene) dioxide, 2-(3,4-epoxycyclohexyl)-5,1-spiro-(3,4-epoxycyclohexyl)-m-dioxane;
- glycidylamine type epoxy resins such as tetraglycidylbis(aminomethyl)cyclohexane;
Hydantoin type epoxy resins such as -1,3-diglycidyl-5-methyl-5-ethylenehydantoin, and epoxy resins having a silicone skeleton such as -1,3-bis(3-glycidoxypropyl)-1,1,3,3-tetramethyldisiloxane, but are not limited thereto.
 前述の例のうち、「シクロヘキサン型ジグリシジルエーテル」とは、2個のグリシジル基が、各々エーテル結合を介して、1個のシクロヘキサン環を母体構造として有する2価の飽和炭化水素基に結合した構造を有する化合物を意味する。「ジシクロペンタジエン型ジグリシジルエーテル」とは、2個のグリシジル基が、各々エーテル結合を介して、ジシクロペンタジエン骨格を母体構造として有する2価の飽和炭化水素基に結合した構造を有する化合物を意味する。シクロヘキサン型ジグリシジルエーテルとしては、1,4-シクロヘキサンジメタノールジグリシジルエーテルが挙げられる。脂肪族多官能エポキシ樹脂は、分子量が150~800であるものが好ましい。脂肪族多官能エポキシ樹脂の分子量が150~800の範囲内であると、成分(B)として脂肪族多官能エポキシ樹脂を含む樹脂組成物の粘度を低く維持して取り扱い性を向上することができる。また、樹脂組成物は、成分(A)と成分(B)が反応することにより、架橋密度を高くして、高いTgを有する硬化物を得ることができる。 Among the above examples, "cyclohexane-type diglycidyl ether" refers to a compound having a structure in which two glycidyl groups are bonded, each via an ether bond, to a divalent saturated hydrocarbon group having one cyclohexane ring as the parent structure. "Dicyclopentadiene-type diglycidyl ether" refers to a compound having a structure in which two glycidyl groups are bonded, each via an ether bond, to a divalent saturated hydrocarbon group having a dicyclopentadiene skeleton as the parent structure. An example of a cyclohexane-type diglycidyl ether is 1,4-cyclohexanedimethanol diglycidyl ether. The aliphatic polyfunctional epoxy resin preferably has a molecular weight of 150 to 800. When the molecular weight of the aliphatic polyfunctional epoxy resin is within the range of 150 to 800, the viscosity of the resin composition containing the aliphatic polyfunctional epoxy resin as component (B) can be maintained low, improving the handleability. In addition, the resin composition can have a high crosslink density and a cured product with a high Tg can be obtained by reacting component (A) with component (B).
 芳香族多官能エポキシ樹脂は、ベンゼン環等の芳香環を含む構造を有する多官能エポキシ樹脂である。芳香族多官能エポキシ樹脂の例としては、
 -ビスフェノールA型エポキシ樹脂;
 -p-グリシジルオキシフェニルジメチルトリビスフェノールAジグリシジルエーテルのような分岐状多官能ビスフェノールA型エポキシ樹脂;
 -ビスフェノールF型エポキシ樹脂;
 -ノボラック型エポキシ樹脂;
 -テトラブロモビスフェノールA型エポキシ樹脂;
 -フルオレン型エポキシ樹脂;
 -ビフェニルアラルキルエポキシ樹脂;
 -1,4-フェニルジメタノールジグリシジルエーテルのようなジエポキシ樹脂;
 -3,3’,5,5’-テトラメチル-4,4’-ジグリシジルオキシビフェニルのようなビフェニル型エポキシ樹脂;-ジグリシジルアニリン、ジグリシジル-o-トルイジン、トリグリシジル-p-アミノフェノール、テトラグリシジル-m-キシリレンジアミン、4-(ジグリシジルアミノ)フェニルグリシジルエーテルのようなグリシジルアミン型エポキシ樹脂;及び
 -ナフタレン環含有エポキシ樹脂等が挙げられる。これらに限定されるものではない。芳香族多官能エポキシ樹脂は、分子量が200~400であるものが好ましい。芳香族多官能エポキシ樹脂の分子量が200~400の範囲内であると、成分(B)として芳香族多官能エポキシ樹脂を含む樹脂組成物の粘度を低く維持して取り扱い性を向上することができる。また、樹脂組成物は、成分(A)と成分(B)が反応することにより、架橋密度を高くして、高いTgを有する硬化物を得ることができる。
The aromatic polyfunctional epoxy resin is a polyfunctional epoxy resin having a structure containing an aromatic ring such as a benzene ring. Examples of aromatic polyfunctional epoxy resins include:
- bisphenol A type epoxy resin;
- branched polyfunctional bisphenol A type epoxy resins such as p-glycidyloxyphenyldimethyltribisphenol A diglycidyl ether;
- bisphenol F type epoxy resin;
- Novolac type epoxy resins;
- tetrabromobisphenol A type epoxy resin;
- fluorene type epoxy resin;
- biphenyl aralkyl epoxy resins;
-Diepoxy resins such as 1,4-phenyldimethanol diglycidyl ether;
-Biphenyl type epoxy resins such as 3,3',5,5'-tetramethyl-4,4'-diglycidyloxybiphenyl; -glycidylamine type epoxy resins such as diglycidylaniline, diglycidyl-o-toluidine, triglycidyl-p-aminophenol, tetraglycidyl-m-xylylenediamine, and 4-(diglycidylamino)phenyl glycidyl ether; and -naphthalene ring-containing epoxy resins. Not limited to these. The aromatic polyfunctional epoxy resin preferably has a molecular weight of 200 to 400. When the molecular weight of the aromatic polyfunctional epoxy resin is within the range of 200 to 400, the viscosity of the resin composition containing the aromatic polyfunctional epoxy resin as component (B) can be maintained low and the handleability can be improved. In addition, the resin composition can increase the crosslink density by reacting component (A) with component (B), and obtain a cured product having a high Tg.
 成分(B)は、芳香環を有し、2官能以上のエポキシ基を有するエポキシ樹脂を含むことが好ましい。成分(B)が、芳香環を有し、2官能以上のエポキシ樹脂を含むと、成分(B)と成分(A)が反応してより架橋密度を高くして、高いTgを有する硬化物を得ることができるためである。一態様において、成分(B)は、芳香環を有し、2個のエポキシ基を有する2官能のエポキシ樹脂を含むことが好ましい。 Component (B) preferably contains an epoxy resin having an aromatic ring and a bifunctional or higher epoxy group. When component (B) contains an epoxy resin having an aromatic ring and a bifunctional or higher epoxy group, component (B) reacts with component (A) to increase the crosslinking density, thereby making it possible to obtain a cured product with a high Tg. In one embodiment, component (B) preferably contains a bifunctional epoxy resin having an aromatic ring and two epoxy groups.
 成分(B)は、エポキシ当量が90~500g/eqのエポキシ樹脂を含むことが好ましい。エポキシ当量が大きすぎると、常温で固体のものが多く、樹脂組成物の低い粘度を維持することが難しくなる。エポキシ当量が小さすぎると、エポキシ樹脂の官能基数は1個のものが多く、十分な数の架橋構造が形成されず、高いTgを有する硬化物が得られにくくなる。成分(B)のエポキシ当量は、より好ましくは100~400g/eqであり、さらに好ましくは110~350g/eqであり、よりさらに好ましくは120~300g/eqであり、特に好ましくは130~250g/eqである。エポキシ当量は、エポキシ樹脂の質量(g)をエポキシ基の総数で除した値である。エポキシ当量は、JIS K7236に記載されている方法に準拠して求めることができる。エポキシ樹脂に含まれる1分子に相当する質量(g)をエポキシ樹脂に含まれる1分子中のエポキシ基の総数で除した値をエポキシ当量としてもよい。 Component (B) preferably contains an epoxy resin with an epoxy equivalent of 90 to 500 g/eq. If the epoxy equivalent is too large, many epoxy resins are solid at room temperature, making it difficult to maintain a low viscosity of the resin composition. If the epoxy equivalent is too small, many epoxy resins have one functional group, and a sufficient number of crosslinking structures are not formed, making it difficult to obtain a cured product with a high Tg. The epoxy equivalent of component (B) is more preferably 100 to 400 g/eq, even more preferably 110 to 350 g/eq, even more preferably 120 to 300 g/eq, and particularly preferably 130 to 250 g/eq. The epoxy equivalent is the value obtained by dividing the mass (g) of the epoxy resin by the total number of epoxy groups. The epoxy equivalent can be determined in accordance with the method described in JIS K7236. The epoxy equivalent may be the value obtained by dividing the mass (g) equivalent to one molecule contained in the epoxy resin by the total number of epoxy groups in one molecule contained in the epoxy resin.
 樹脂組成物は、樹脂組成物の総質量に対して、成分(B)を1質量%以上60質量%以下の範囲内で含むことが好ましく、3質量%以上55質量%以下の範囲内で含むことがより好ましく、4質量%以上50質量%以下の範囲内で含むことがさらに好ましく、4質量%以上45質量%以下の範囲内で含むことがよりさらに好ましい。樹脂組成物中に含まれる成分(B)の含有量が1質量%以上60質量%以下の範囲内であると、成分(A)と成分(B)が反応することにより、架橋密度を高くして、高いTgを有する硬化物を得ることができ、樹脂組成物の粘度の上昇を抑制して樹脂組成物の低い粘度を維持することができる。このような効果を得る観点から、樹脂組成物中の成分(A)及び成分(B)を含む有機物100質量%(但し後述する有機粒子を除く)中、成分(B)は10質量%以上90質量%以下の範囲であることが好ましく、15質量%以上85質量%以下の範囲であることがより好ましい。 The resin composition preferably contains component (B) in the range of 1% by mass to 60% by mass, more preferably 3% by mass to 55% by mass, even more preferably 4% by mass to 50% by mass, and even more preferably 4% by mass to 45% by mass. When the content of component (B) in the resin composition is in the range of 1% by mass to 60% by mass, the crosslinking density can be increased by the reaction of component (A) and component (B) to obtain a cured product having a high Tg, and the viscosity of the resin composition can be maintained low by suppressing an increase in the viscosity of the resin composition. From the viewpoint of obtaining such an effect, the content of component (B) is preferably in the range of 10% by mass to 90% by mass, and more preferably in the range of 15% by mass to 85% by mass, of 100% by mass of organic matter containing components (A) and (B) in the resin composition (excluding organic particles described later).
 樹脂組成物は、(C)充填剤を含むことが好ましい。(C)充填剤(以下、「成分(C)」ともいう。)としては、無機物又は有機物からなる粒子が挙げられる。成分(C)が無機物である場合は、樹脂組成物中の成分(A)及び成分(B)を含む有機物100質量%中には、成分(C)は含まれない。成分(C)が有機物である場合は、樹脂組成物中の有機物100質量%中に成分(C)も含まれる。 The resin composition preferably contains a filler (C). Examples of the filler (C) (hereinafter also referred to as "component (C)") include particles made of inorganic or organic matter. When component (C) is an inorganic matter, component (C) is not included in 100% by mass of the organic matter in the resin composition, which includes components (A) and (B). When component (C) is an organic matter, component (C) is also included in 100% by mass of the organic matter in the resin composition.
 成分(C)が無機物である場合は、シリカ粒子、アルミナ粒子、タルク粒子、炭酸カルシウム粒子、銀粒子、銅粒子、合金粒子等が挙げられる。分散性の観点から、好ましくは、シリカ粒子、アルミナ粒子、タルク粒子、炭酸カルシウム粒子等の絶縁粒子である。 When component (C) is an inorganic substance, examples of the inorganic substance include silica particles, alumina particles, talc particles, calcium carbonate particles, silver particles, copper particles, alloy particles, etc. From the viewpoint of dispersibility, insulating particles such as silica particles, alumina particles, talc particles, calcium carbonate particles, etc. are preferable.
 成分(C)が有機物である場合は、シリコーン粒子、ポリテトラフルオロエチレン(PTFE)粒子、アクリル粒子、スチレン粒子等が挙げられる。分散性の観点から、好ましくは、シリコーン粒子である。 When component (C) is an organic substance, examples of the organic substance include silicone particles, polytetrafluoroethylene (PTFE) particles, acrylic particles, styrene particles, etc. From the viewpoint of dispersibility, silicone particles are preferred.
 成分(C)の充填剤が、無機物又は有機物からなる粒子である場合は、粒子の平均粒径が0.1μm以上5.0μm以下であること好ましい。平均粒径は、特に断りのない限り、ISO-13320(2009)に準拠したレーザー回折法により測定した体積基準の粒度分布における小径側からの体積累積頻度が50%に達する粒径(体積メジアン径)をいう。成分(C)の充填剤の平均粒径が5.0μm以下であると、成分(C)が樹脂組成物中に分散されやすくなり、電子部品の接着や封止に樹脂組成物を使用する際の狭小領域に付着させやすくなる。平均粒径が5.0μmを超える充填剤の場合は、粗粒が樹脂組成物に含有されやすくなり、例えばジェットディスペンサーを使用して電子部品等の接着や封止を行う場合に、ノズルが摩耗しやすく、吐出される樹脂組成物が狭小領域に注入しにくくなる。成分(C)の充填剤の平均粒径が0.1μm以上であると、樹脂組成物に成分(C)を含む場合であっても粘度の上昇を抑制することができる。成分(C)の充填剤の平均粒径は、0.2μm以上4.0μm以下であってもよく、0.2μm以上3.0μm以下であってもよい。 When the filler of component (C) is a particle made of an inorganic or organic substance, the average particle size of the particles is preferably 0.1 μm or more and 5.0 μm or less. Unless otherwise specified, the average particle size refers to the particle size (volume median diameter) at which the volume cumulative frequency from the small diameter side in the volume-based particle size distribution measured by a laser diffraction method in accordance with ISO-13320 (2009) reaches 50%. When the average particle size of the filler of component (C) is 5.0 μm or less, component (C) is easily dispersed in the resin composition, and it is easy to attach it to a narrow area when using the resin composition for bonding or sealing electronic components. In the case of a filler with an average particle size of more than 5.0 μm, coarse particles are easily contained in the resin composition, and for example, when bonding or sealing electronic components, etc. using a jet dispenser, the nozzle is easily worn, and the discharged resin composition is difficult to inject into a narrow area. When the average particle size of the filler of component (C) is 0.1 μm or more, the increase in viscosity can be suppressed even when the resin composition contains component (C). The average particle size of the filler of component (C) may be 0.2 μm or more and 4.0 μm or less, or 0.2 μm or more and 3.0 μm or less.
 成分(C)の充填剤が無機物又は有機物からなる場合、成分(C)は、樹脂組成物の総質量に対して、20質量%以上90質量%以下の範囲内であることが好ましく、25質量%以上88質量%以下の範囲内であることがより好ましく、30質量%以上85質量%以下の範囲内であることがさらに好ましい。成分(C)の充填剤が無機物又は有機物からなる場合、成分(C)が樹脂組成物の総質量に対して20質量%以上65質量%以下の範囲内で含有されていると、被接着物に対する接着強度を十分に維持しながら、樹脂組成物の粘度の上昇を抑制し、狭小領域にも注入塗布することができ、取り扱い性を向上することができる。 When the filler of component (C) is an inorganic or organic substance, the content of component (C) is preferably in the range of 20% by mass to 90% by mass, more preferably in the range of 25% by mass to 88% by mass, and even more preferably in the range of 30% by mass to 85% by mass, relative to the total mass of the resin composition. When the filler of component (C) is an inorganic or organic substance, if component (C) is contained in the range of 20% by mass to 65% by mass, relative to the total mass of the resin composition, the adhesive strength to the adherend is sufficiently maintained while suppressing an increase in the viscosity of the resin composition, and the resin composition can be injected and applied even in narrow areas, improving handleability.
 成分(C)は、市販品を使用することができ、シリカ粒子である場合はSO-E5(株式会社アドマテックス製)、アルミナ粒子である場合はAG2051(株式会社アドマテックス製)、シリコーン粒子である場合はEP2601(ダウ・東レ株式会社製)を使用することができる。成分(C)は1種を単独で用いることができ、2種以上を併用してもよい。成分(C)を2種以上使用する場合は、無機物を2種以上用いてもよく、無機物及び有機物をそれぞれ1種以上併用してもよい。 Component (C) may be a commercially available product; in the case of silica particles, SO-E5 (manufactured by Admatechs Co., Ltd.) may be used; in the case of alumina particles, AG2051 (manufactured by Admatechs Co., Ltd.) may be used; and in the case of silicone particles, EP2601 (manufactured by Dow Toray Co., Ltd.) may be used. Component (C) may be used alone or in combination of two or more types. When two or more types of component (C) are used, two or more types of inorganic substances may be used, or one or more types of inorganic substances and one or more types of organic substances may be used in combination.
 樹脂組成物は、(D)硬化剤(以下、「成分(D)」ともいう。)を含むことが好ましい。成分(D)は、成分(B)のエポキシ樹脂を硬化させることができれば、特に限定されない。成分(D)の例としては、フェノール樹脂、酸無水物、チオール化合物及びアミン化合物(芳香族アミン等)からなる群から選択される少なくとも1種を挙げることができる。 The resin composition preferably contains (D) a curing agent (hereinafter also referred to as "component (D)"). Component (D) is not particularly limited as long as it can cure the epoxy resin of component (B). Examples of component (D) include at least one selected from the group consisting of phenolic resins, acid anhydrides, thiol compounds, and amine compounds (such as aromatic amines).
 フェノール樹脂の例としては、アリル化フェノール樹脂、フェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトール修飾フェノール樹脂、ジシクロペンタジエン修飾フェノール樹脂及びp-キシレン修飾フェノール樹脂を挙げることができる。フェノール樹脂は、市販品を使用することができ、例えばMEH8005(アリル化フェノール樹脂、UBE株式会社製)、ショウノール(登録商標)BRM-553(フェノールノボラック樹脂、アイカ工業株式会社製)、ショウノール(登録商標)BRG-558(フェノールノボラック樹脂、アイカ工業株式会社製)を使用することができる。 Examples of phenolic resins include allylated phenolic resins, phenolic novolac resins, cresol novolac resins, naphthol-modified phenolic resins, dicyclopentadiene-modified phenolic resins, and p-xylene-modified phenolic resins. Commercially available phenolic resins can be used, such as MEH8005 (allylated phenolic resin, manufactured by UBE Co., Ltd.), Shownol (registered trademark) BRM-553 (phenolic novolac resin, manufactured by Aica Kogyo Co., Ltd.), and Shownol (registered trademark) BRG-558 (phenolic novolac resin, manufactured by Aica Kogyo Co., Ltd.).
 酸無水物の例としては、メチルテトラヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、アルキル化テトラヒドロフタル酸無水物、ヘキサヒドロフタル酸無水物、メチルハイミック無水物、ドデセニル無水コハク酸及びメチルナド酸無水物を挙げることができる。 Examples of acid anhydrides include methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, alkylated tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhymic anhydride, dodecenyl succinic anhydride, and methylnadic anhydride.
 チオール化合物の例としては、トリメチロールプロパントリス(3-メルカプトプロピオネート)(SC有機化学株式会社製:TMMP)、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート(SC有機化学株式会社製:TEMPIC)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)(SC有機化学株式会社製:PEMP)、テトラエチレングリコールビス(3-メルカプトプロピオネート)(SC有機化学株式会社製:EGMP-4)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)(SC有機化学株式会社製:DPMP)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)(昭和電工株式会社製:カレンズMT(登録商標)PE1)、1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン(昭和電工株式会社製:カレンズMT(登録商標)NR1)、1,3,4,6-テトラキス(2-メルカプトエチル)グリコールウリル(四国化成工業株式会社製:TS-G)、(1,3,4,6-テトラキス(3-メルカプトプロピル)グリコールウリル(四国化成工業株式会社製:C3 TS-G)、ペンタエリスリトールトリプロパンチオール(SC有機化学株式会社製:PEPT)、3-[2,3-ビス(3-サルファニルプロポキシ)プロポキシ]プロパン-1-チオール、3-[2,2-ビス[(3-メルカプトプロポキシ)メチル]ブトキシ]-1-プロパンチオール、ペンタエリスリトールテトラプロパンチオール、1,2,3-トリス(メルカプトメチルチオ)プロパン、1,2,3-トリス(2-メルカプトエチルチオ)プロパン、1,2,3-トリス(3-メルカプトプロピルチオ)プロパン、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、テトラキス(メルカプトメチルチオメチル)メタン、テトラキス(2-メルカプトエチルチオメチル)メタン、テトラキス(3-メルカプトプロピルチオメチル)メタン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、1,1,2,2-テトラキス(メルカプトメチルチオ)エタン、1,1,5,5-テトラキス(メルカプトメチルチオ)-3-チアペンタン、1,1,6,6-テトラキス(メルカプトメチルチオ)-3,4-ジチアヘキサン、2,2-ビス(メルカプトメチルチオ)エタンチオール、3-メルカプトメチルチオ-1,7-ジメルカプト-2,6-ジチアヘプタン、3,6-ビス(メルカプトメチルチオ)-1,9-ジメルカプト-2,5,8-トリチアノナン、3-メルカプトメチルチオ-1,6-ジメルカプト-2,5-ジチアヘキサン、1,1,9,9-テトラキス(メルカプトメチルチオ)-5-(3,3-ビス(メルカプトメチルチオ)-1-チアプロピル)3,7-ジチアノナン、トリス(2,2-ビス(メルカプトメチルチオ)エチル)メタン、トリス(4,4-ビス(メルカプトメチルチオ)-2-チアブチル)メタン、テトラキス(2,2-ビス(メルカプトメチルチオ)エチル)メタン、テトラキス(4,4-ビス(メルカプトメチルチオ)-2-チアブチル)メタン、3,5,9,11-テトラキス(メルカプトメチルチオ)-1,13-ジメルカプト-2,6,8,12-テトラチアトリデカン、3,5,9,11,15,17-ヘキサキス(メルカプトメチルチオ)-1,19-ジメルカプト-2,6,8,12,14,18-ヘキサチアノナデカン、9-(2,2-ビス(メルカプトメチルチオ)エチル)-3,5,13,15-テトラキス(メルカプトメチルチオ)-1,17-ジメルカプト-2,6,8,10,12,16-ヘキサチアヘプタデカン、3,4,8,9-テトラキス(メルカプトメチルチオ)-1,11-ジメルカプト-2,5,7,10-テトラチアウンデカン、3,4,8,9,13,14-ヘキサキス(メルカプトメチルチオ)-1,16-ジメルカプト-2,5,7,10,12,15-ヘキサチアヘキサデカン、8-[ビス(メルカプトメチルチオ)メチル]-3,4,12,13-テトラキス(メルカプトメチルチオ)-1,15-ジメルカプト-2,5,7,9,11,14-ヘキサチアペンタデカン、4,6-ビス[3,5-ビス(メルカプトメチルチオ)-7-メルカプト-2,6-ジチアヘプチルチオ]-1,3-ジチアン、4-[3,5-ビス(メルカプトメチルチオ)-7-メルカプト-2,6-ジチアヘプチルチオ]-6-メルカプトメチルチオ-1,3-ジチアン、1,1-ビス[4-(6-メルカプトメチルチオ)-1,3-ジチアニルチオ]-1,3-ビス(メルカプトメチルチオ)プロパン、1-[4-(6-メルカプトメチルチオ)-1,3-ジチアニルチオ]-3-[2,2-ビス(メルカプトメチルチオ)エチル]-7,9-ビス(メルカプトメチルチオ)-2,4,6,10-テトラチアウンデカン、3-[2-(1,3-ジチエタニル)]メチル-7,9-ビス(メルカプトメチルチオ)-1,11-ジメルカプト-2,4,6,10-テトラチアウンデカン、9-[2-(1,3-ジチエタニル)]メチル-3,5,13,15-テトラキス(メルカプトメチルチオ)-1,17-ジメルカプト-2,6,8,10,12,16-ヘキサチアヘプタデカン、3-[2-(1,3-ジチエタニル)]メチル-7,9,13,15-テトラキス(メルカプトメチルチオ)-1,17-ジメルカプト-2,4,6,10,12,16-ヘキサチアヘプタデカン、4,6-ビス[4-(6-メルカプトメチルチオ)-1,3-ジチアニルチオ]-6-[4-(6-メルカプトメチルチオ)-1,3-ジチアニルチオ]-1,3-ジチアン、4-[3,4,8,9-テトラキス(メルカプトメチルチオ)-11-メルカプト-2,5,7,10-テトラチアウンデシル]-5-メルカプトメチルチオ-1,3-ジチオラン、4,5-ビス[3,4-ビス(メルカプトメチルチオ)-6-メルカプト-2,5-ジチアヘキシルチオ]-1,3-ジチオラン、4-[3,4-ビス(メルカプトメチルチオ)-6-メルカプト-2,5-ジチアヘキシルチオ]-5-メルカプトメチルチオ-1,3-ジチオラン、4-[3-ビス(メルカプトメチルチオ)メチル-5,6-ビス(メルカプトメチルチオ)-8-メルカプト-2,4,7-トリチアオクチル]-5-メルカプトメチルチオ-1,3-ジチオラン、2-{ビス[3,4-ビス(メルカプトメチルチオ)-6-メルカプト-2,5-ジチアヘキシルチオ]メチル}-1,3-ジチエタン、2-[3,4-ビス(メルカプトメチルチオ)-6-メルカプト-2,5-ジチアヘキシルチオ]メルカプトメチルチオメチル-1,3-ジチエタン、2-[3,4,8,9-テトラキス(メルカプトメチルチオ)-11-メルカプト-2,5,7,10-テトラチアウンデシルチオ]メルカプトメチルチオメチル-1,3-ジチエタン、2-[3-ビス(メルカプトメチルチオ)メチル-5,6-ビス(メルカプトメチルチオ)-8-メルカプト-2,4,7-トリチアオクチル]メルカプトメチルチオメチル-1,3-ジチエタン、4-{1-[2-(1,3-ジチエタニル)]-3-メルカプト-2-チアプロピルチオ}-5-[1,2-ビス(メルカプトメチルチオ)-4-メルカプト-3-チアブチルチオ]-1,3-ジチオラン等を挙げることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of thiol compounds include trimethylolpropane tris(3-mercaptopropionate) (manufactured by SC Organic Chemical Co., Ltd.: TMMP), tris-[(3-mercaptopropionyloxy)-ethyl]-isocyanurate (manufactured by SC Organic Chemical Co., Ltd.: TEMPIC), pentaerythritol tetrakis(3-mercaptopropionate) (manufactured by SC Organic Chemical Co., Ltd.: PEMP), tetraethylene glycol bis(3-mercaptopropionate ) (manufactured by SC Organic Chemical Industries, Ltd.: EGMP-4), dipentaerythritol hexakis(3-mercaptopropionate) (manufactured by SC Organic Chemical Industries, Ltd.: DPMP), pentaerythritol tetrakis(3-mercaptobutyrate) (manufactured by Showa Denko K.K.: KarenzMT (registered trademark) PE1), 1,3,5-tris(3-mercaptobutyryloxyethyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (manufactured by Showa Denko K.K.: Karenz MT (registered trademark) NR1), 1,3,4,6-tetrakis (2-mercaptoethyl) glycoluril (manufactured by Shikoku Chemical Industry Co., Ltd.: TS-G), (1,3,4,6-tetrakis (3-mercaptopropyl) glycoluril (manufactured by Shikoku Chemical Industry Co., Ltd.: C3 TS-G), pentaerythritol trippropanethiol (manufactured by SC Organic Chemical Co., Ltd.: PEPT), 3-[2,3-bis(3-sulfanylpropoxy)propoxy]propane-1- Thiol, 3-[2,2-bis[(3-mercaptopropoxy)methyl]butoxy]-1-propanethiol, pentaerythritol tetrapropanethiol, 1,2,3-tris(mercaptomethylthio)propane, 1,2,3-tris(2-mercaptoethylthio)propane, 1,2,3-tris(3-mercaptopropylthio)propane, 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, 5,7-dimercaptomethyl -1,11-dimercapto-3,6,9-trithiaundecane, 4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, tetrakis(mercaptomethylthiomethyl)methane, tetrakis(2-mercaptoethylthiomethyl)methane, tetrakis(3-mercaptopropylthiomethyl)methane, 1,1,3,3-tetrakis(2-mercaptoethylthiomethyl)methane, tetrakis(3-mercaptopropylthiomethyl)methane, bis(mercaptomethylthio)propane, 1,1,2,2-tetrakis(mercaptomethylthio)ethane, 1,1,5,5-tetrakis(mercaptomethylthio)-3-thiapentane, 1,1,6,6-tetrakis(mercaptomethylthio)-3,4-dithiahexane, 2,2-bis(mercaptomethylthio)ethanethiol, 3-mercaptomethylthio-1,7-dimercapto-2,6-dithiaheptane, 3,6-bis(mercaptomethylthio)-1 ,9-dimercapto-2,5,8-trithianonane, 3-mercaptomethylthio-1,6-dimercapto-2,5-dithiahexane, 1,1,9,9-tetrakis(mercaptomethylthio)-5-(3,3-bis(mercaptomethylthio)-1-thiapropyl)-3,7-dithianonane, tris(2,2-bis(mercaptomethylthio)ethyl)methane, tris(4,4-bis(mercaptomethylthio)-2-thiabutyl)methane, tetrakis(2,2 -bis(mercaptomethylthio)ethyl)methane, tetrakis(4,4-bis(mercaptomethylthio)-2-thiabutyl)methane, 3,5,9,11-tetrakis(mercaptomethylthio)-1,13-dimercapto-2,6,8,12-tetrathiatridecane, 3,5,9,11,15,17-hexakis(mercaptomethylthio)-1,19-dimercapto-2,6,8,12,14,18-hexathianonadecane, 9-(2,2-bis(mercaptomethylthio)ethyl)methane, 3,4,8,9-tetrakis(mercaptomethylthio)-1,11-dimercapto-2,5,7,10-tetrathiaundecane, 3,4,8,9,13,14-hexakis(mercaptomethylthio)-1,16-dimercapto-2,5,7,10,12,15-hexakis Ahexadecane, 8-[bis(mercaptomethylthio)methyl]-3,4,12,13-tetrakis(mercaptomethylthio)-1,15-dimercapto-2,5,7,9,11,14-hexathiapentadecane, 4,6-bis[3,5-bis(mercaptomethylthio)-7-mercapto-2,6-dithiaheptylthio]-1,3-dithiane, 4-[3,5-bis(mercaptomethylthio)-7-mercapto-2,6-dithiaheptylthio]-6-methyl mercaptomethylthio-1,3-dithiane, 1,1-bis[4-(6-mercaptomethylthio)-1,3-dithianylthio]-1,3-bis(mercaptomethylthio)propane, 1-[4-(6-mercaptomethylthio)-1,3-dithianylthio]-3-[2,2-bis(mercaptomethylthio)ethyl]-7,9-bis(mercaptomethylthio)-2,4,6,10-tetrathiaundecane, 3-[2-(1,3-dithietanyl)]methyl-7,9 -bis(mercaptomethylthio)-1,11-dimercapto-2,4,6,10-tetrathiaundecane, 9-[2-(1,3-dithietanyl)]methyl-3,5,13,15-tetrakis(mercaptomethylthio)-1,17-dimercapto-2,6,8,10,12,16-hexathiaheptadecane, 3-[2-(1,3-dithietanyl)]methyl-7,9,13,15-tetrakis(mercaptomethylthio)-1,17-dimercapto-2,4 , 6,10,12,16-hexathiaheptadecane, 4,6-bis[4-(6-mercaptomethylthio)-1,3-dithianylthio]-6-[4-(6-mercaptomethylthio)-1,3-dithianylthio]-1,3-dithiane, 4-[3,4,8,9-tetrakis(mercaptomethylthio)-11-mercapto-2,5,7,10-tetrathiaundecyl]-5-mercaptomethylthio-1,3-dithiolane, 4,5-bis[3,4-bis(mercaptomethylthio) 4-[3,4-bis(mercaptomethylthio)methyl-6-mercapto-2,5-dithiahexylthio]-1,3-dithiolane, 4-[3-bis(mercaptomethylthio)methyl-5,6-bis(mercaptomethylthio)-8-mercapto-2,4,7-trithiaoctyl]-5-mercaptomethylthio-1,3-dithiolane, 2-{ Bis[3,4-bis(mercaptomethylthio)-6-mercapto-2,5-dithiahexylthio]methyl}-1,3-dithietane, 2-[3,4-bis(mercaptomethylthio)-6-mercapto-2,5-dithiahexylthio]mercaptomethylthiomethyl-1,3-dithietane, 2-[3,4,8,9-tetrakis(mercaptomethylthio)-11-mercapto-2,5,7,10-tetrathiaundecylthio]mercaptomethylthiomethyl-1 , 3-dithietane, 2-[3-bis(mercaptomethylthio)methyl-5,6-bis(mercaptomethylthio)-8-mercapto-2,4,7-trithiaoctyl]mercaptomethylthiomethyl-1,3-dithietane, 4-{1-[2-(1,3-dithietanyl)]-3-mercapto-2-thiapropylthio}-5-[1,2-bis(mercaptomethylthio)-4-mercapto-3-thiabutylthio]-1,3-dithiolane, etc. These may be used alone or in combination of two or more.
 アミン化合物の例としては、芳香族アミン、例えばメチレンジアニリン、m-フェニレンジアミン、4,4’-ジアミノジフェニルスルホン及び3,3’-ジアミノジフェニルスルホンを挙げることができる。 Examples of amine compounds include aromatic amines such as methylenedianiline, m-phenylenediamine, 4,4'-diaminodiphenyl sulfone, and 3,3'-diaminodiphenyl sulfone.
 成分(D)は、フェノール樹脂、酸無水物、チオール化合物及びアミン化合物からなる群から選択される少なくとも1種を含むことが好ましい。フェノール樹脂は、20℃以上30℃以下において、液状の液体であってもよく、固体であってもよい。本発明に係る樹脂組成物は低粘度であるが、樹脂組成物をより低粘度化する観点からは、成分(D)は、フェノール樹脂は、アリル化フェノール樹脂であることが好ましい。 Component (D) preferably contains at least one selected from the group consisting of phenolic resins, acid anhydrides, thiol compounds, and amine compounds. The phenolic resin may be liquid or solid at 20°C or higher and 30°C or lower. The resin composition according to the present invention has a low viscosity, but from the viewpoint of further reducing the viscosity of the resin composition, it is preferable that the phenolic resin in component (D) is an allylated phenolic resin.
 樹脂組成物中の成分(D)は、成分(A)及び成分(B)のエポキシ基の合計量に対して、エポキシ基と反応する官能基(ヒドロキシル基、酸無水基、アミノ基等)の合計量がほぼ当量でもよい。樹脂組成物中の成分(A)及び成分(B)のエポキシ基の合計量を1当量とすると、成分(D)のエポキシ基と反応する官能基の合計量が、0.01~1.5当量でもよく、0.01~1.2当量でもよい。樹脂組成物中の成分(D)の官能基の合計量が、前述の範囲外であると、未反応の官能基が多くなるため、架橋密度を高くすることが難しい場合があり、高いTgを有する硬化物が得難くなり、信頼性が得難い場合がある。成分(D)がフェノール樹脂である場合、成分(D)を少量用いると、PCT(プレッシャークッカー試験)後の硬化物のシェア強度を高くできる。成分(D)がフェノール樹脂である場合、一態様において、樹脂組成物中の成分(A)及び成分(B)のエポキシ基の合計当量数を1としたとき、成分(D)のヒドロキシル基の当量数は、好ましくは0.01~0.3、より好ましくは0.01~0.2、さらに好ましくは0.01~0.1である。樹脂組成物中の成分(A)及び成分(B)のエポキシ基の合計当量数を1としたときの、成分(D)のヒドロキシル基の当量数が0.01未満、又は、0.3を超える場合、その硬化物のPCT後のシェア強度が低下する可能性がある。成分(D)としてのフェノール樹脂は、成分(A)と比べて、架橋点間距離が長いと考えられる。このため、樹脂組成物中の成分(A)及び成分(B)のエポキシ基の合計当量数を1とした時の、成分(D)のヒドロキシル基の当量数が0.01未満の場合、成分(D)としてのフェノール樹脂の比率が少なく、成分(A)の架橋点間距離が短いことにより立体障害が起こる。この立体障害の影響で、重合に関与しない一部のエポキシ基が残存し、架橋密度が低下するため、PCT中に分子鎖の隙間に水が取り込まれ、PCT後のシェア強度が低下すると考えられる。他方、樹脂組成物中の成分(A)及び成分(B)のエポキシ基の合計当量数を1とした時の、成分(D)のヒドロキシル基の当量数が0.3を超える場合、成分(D)としてのフェノール樹脂の比率が多く、架橋点間距離が長くなる。このため、架橋密度が低下し、PCT中に分子鎖の隙間に水が取り込まれ、PCT後のシェア強度が低下すると考えられる。 The total amount of functional groups (hydroxyl groups, acid anhydride groups, amino groups, etc.) that react with epoxy groups in component (D) in the resin composition may be approximately equivalent to the total amount of epoxy groups in components (A) and (B). If the total amount of epoxy groups in components (A) and (B) in the resin composition is taken as 1 equivalent, the total amount of functional groups that react with epoxy groups in component (D) may be 0.01 to 1.5 equivalents, or 0.01 to 1.2 equivalents. If the total amount of functional groups in component (D) in the resin composition is outside the above-mentioned range, there will be many unreacted functional groups, which may make it difficult to increase the crosslink density, make it difficult to obtain a cured product with a high Tg, and make it difficult to obtain reliability. When component (D) is a phenolic resin, using a small amount of component (D) can increase the shear strength of the cured product after PCT (pressure cooker test). In one embodiment, when the component (D) is a phenolic resin, the equivalent number of the hydroxyl group of the component (D) is preferably 0.01 to 0.3, more preferably 0.01 to 0.2, and even more preferably 0.01 to 0.1, when the total equivalent number of the epoxy groups of the components (A) and (B) in the resin composition is taken as 1. When the equivalent number of the hydroxyl group of the component (D) is less than 0.01 or exceeds 0.3, when the total equivalent number of the epoxy groups of the components (A) and (B) in the resin composition is taken as 1, the shear strength of the cured product after PCT may decrease. The phenolic resin as the component (D) is considered to have a longer distance between crosslinking points than the component (A). For this reason, when the total equivalent number of the epoxy groups of the components (A) and (B) in the resin composition is taken as 1, when the equivalent number of the hydroxyl group of the component (D) is less than 0.01, the ratio of the phenolic resin as the component (D) is small, and the distance between the crosslinking points of the component (A) is short, resulting in steric hindrance. Due to the influence of this steric hindrance, some epoxy groups that are not involved in polymerization remain, and the crosslink density decreases, so water is taken into the gaps in the molecular chains during PCT, and the shear strength after PCT decreases. On the other hand, when the total equivalent number of the epoxy groups in components (A) and (B) in the resin composition is taken as 1, if the equivalent number of the hydroxyl groups in component (D) exceeds 0.3, the ratio of the phenolic resin as component (D) is high and the distance between the crosslink points becomes long. For this reason, the crosslink density decreases, water is taken into the gaps in the molecular chains during PCT, and the shear strength after PCT decreases.
 樹脂組成物は、樹脂組成物の総質量に対して、成分(D)を0.3質量%以上50質量%以下の範囲内で含むことが好ましく、0.5質量%以上45質量%以下の範囲内で含むことがより好ましく、0.6質量%以上42質量%以下の範囲内で含むことがさらに好ましく、0.7質量%以上40質量%以下の範囲内で含むことがよりさらに好ましい。樹脂組成物中に含まれる成分(D)の含有量が0.3質量%以上50質量%以下の範囲内であると、架橋密度を高くして、高いTgを有する硬化物を得ることができ、樹脂組成物の粘度の上昇を抑制して樹脂組成物の低い粘度を維持することができる。 The resin composition preferably contains component (D) in the range of 0.3% by mass to 50% by mass, more preferably 0.5% by mass to 45% by mass, even more preferably 0.6% by mass to 42% by mass, and even more preferably 0.7% by mass to 40% by mass, relative to the total mass of the resin composition. When the content of component (D) in the resin composition is in the range of 0.3% by mass to 50% by mass, the crosslink density can be increased to obtain a cured product with a high Tg, and an increase in the viscosity of the resin composition can be suppressed to maintain the low viscosity of the resin composition.
 樹脂組成物は、(E)硬化促進剤(以下、「成分(E)」ともいう。)を含んでいてもよい。成分(E)は、成分(A)及び成分(B)の硬化を促進しうる化合物であれば、特に限定されない。 The resin composition may contain (E) a curing accelerator (hereinafter also referred to as "component (E)"). Component (E) is not particularly limited as long as it is a compound that can accelerate the curing of components (A) and (B).
 成分(E)は、例えばイミダゾール化合物が挙げられる。成分(E)は、1種を単独で使用してもよく、2種以上を併用してもよい。 Component (E) can be, for example, an imidazole compound. Component (E) may be used alone or in combination of two or more types.
 イミダゾール化合物の例としては、1-メチルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-ウンデシルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,4-ジアミノ-6-(2’-メチルイミダゾリル-(1)’)-エチル-S-トリアジン・イソシアヌール酸付加物、2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール-トリメリテイト、1-シアノエチル-2-フェニルイミダゾールートリメリテイト、N-(2-メチルイミダゾリル-1-エチル)-尿素、N,N’-(2-メチルイミダゾリル-(1)-エチル)-アジボイルジアミド、1-[([1,1’-ビフェニル]-2-イル)オキシ]-3-(2-メチル-1H-イミダゾール-1-イル)プロパン-2-オール等が挙げられる。イミダゾール化合物は、市販品を使用することができ、例えば2P4MZ(2-フェニル-4-メチルイミダゾール、四国化成工業株式会社製)を使用することができる。イミダゾール化合物は、合成したものを使用してもよく、1-[([1,1’-ビフェニル]-2-イル)オキシ]-3-(2-メチル-1H-イミダゾール-1-イル)プロパン-2-オールは、例えば国際公開第2021/201060号の記載を参照にして合成したものを使用することができる。 Examples of imidazole compounds include 1-methylimidazole, 2-heptadecylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-undecylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2,4-diamino-6-(2'-methylimidazolyl-(1)')-ethyl-S-triazine isocyanuric acid adduct, 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole. Examples of the imidazole compound include 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole-trimellitate, 1-cyanoethyl-2-phenylimidazole-trimellitate, N-(2-methylimidazolyl-1-ethyl)-urea, N,N'-(2-methylimidazolyl-(1)-ethyl)-adiboyldiamide, 1-[([1,1'-biphenyl]-2-yl)oxy]-3-(2-methyl-1H-imidazol-1-yl)propan-2-ol, etc. Commercially available imidazole compounds can be used, for example, 2P4MZ (2-phenyl-4-methylimidazole, manufactured by Shikoku Chemical Industry Co., Ltd.). The imidazole compound may be a synthesized compound, and 1-[([1,1'-biphenyl]-2-yl)oxy]-3-(2-methyl-1H-imidazol-1-yl)propan-2-ol may be synthesized by referring to the description in, for example, WO 2021/201060.
 成分(E)は、潜在性硬化促進剤であってもよい。潜在性硬化促進剤は、25℃程度の室温で不活性の状態で、加熱等により活性化され、硬化促進剤として機能する化合物である。潜在性硬化促進剤としては、例えば常温で固体のイミダゾール化合物;アミン化合物とエポキシ化合物の反応生成物(アミン-エポキシアダクト系)等の固体分散型アミンアダクト系潜在性硬化促進剤;アミン化合物とイソシアネート化合物又は尿素化合物の反応生成物(尿素型アダクト系)等が挙げられる。 Component (E) may be a latent curing accelerator. A latent curing accelerator is a compound that is inactive at room temperature of about 25°C and is activated by heating or the like to function as a curing accelerator. Examples of latent curing accelerators include imidazole compounds that are solid at room temperature; solid-dispersed amine adduct-based latent curing accelerators such as reaction products of amine compounds and epoxy compounds (amine-epoxy adduct systems); and reaction products of amine compounds and isocyanate compounds or urea compounds (urea adduct systems).
 潜在性硬化触媒の市販品の代表的な例としては、アミン-エポキシアダクト系(アミンアダクト系)としては、「アミキュア(登録商標)PN-23」(味の素ファインテクノ株式会社製)、「アミキュア(登録商標)PN-40」(味の素ファインテクノ株式会社製)、「アミキュア(登録商標)PN-50」(味の素ファインテクノ株式会社)、「ハードナーX-3661S」(エー・シー・アール株式会社製)、「ハードナーX-3670S」(エー・シー・アール株式会社製)、「ノバキュア(登録商標)HX-3742」(旭化成株式会社製)、「ノバキュア(登録商標)HX-3721」(旭化成株式会社製)、「ノバキュア(登録商標)HXA9322HP」(旭化成株式会社製)、「ノバキュア(登録商標)HXA3922HP」(旭化成株式会社製)、「ノバキュア(登録商標)HXA3932HP」(旭化成株式会社製)、「ノバキュア(登録商標)HXA5945HP」(旭化成株式会社製)、「ノバキュア(登録商標)HXA5911HP」(旭化成株式会社製)、「ノバキュア(登録商標)HXA9382HP」(旭化成株式会社製)等が挙げられる。また、尿素型アダクト系としては、「フジキュアーFXE-1000」(株式会社T&K TOKA製)、フジキュアーFXR1020」(株式会社T&K TOKA製)、「フジキュアーFXR-1030」(株式会社T&K TOKA製)、「フジキュアーFXR1121」(株式会社T&K TOKA製)、「フジキュアーFXR1081」(株式会社T&K TOKA製)、「フジキュアーFXR1061」(株式会社T&K TOKA製)、「フジキュアーFXR1171」(株式会社T&K TOKA製)等が挙げられるが、これらに限定されるものではない。成分(E)は、いずれか1種を用いてもよいし、2種以上を併用してもよい。成分(E)は、潜在性硬化促進剤であることが好ましい。 Representative examples of commercially available latent curing catalysts include amine-epoxy adduct systems (amine adduct systems): "Amicure (registered trademark) PN-23" (manufactured by Ajinomoto Fine-Techno Co., Ltd.), "Amicure (registered trademark) PN-40" (manufactured by Ajinomoto Fine-Techno Co., Ltd.), "Amicure (registered trademark) PN-50" (manufactured by Ajinomoto Fine-Techno Co., Ltd.), "Hardener X-3661S" (manufactured by ACS Co., Ltd.), "Hardener X-3670S" (manufactured by ACS Co., Ltd.), and "Novacure (registered trademark) HX-3742" (manufactured by Asahi Chemical Industry Co., Ltd.). Examples of such compounds include "Novacure (registered trademark) HX-3721" (manufactured by Asahi Kasei Corporation), "Novacure (registered trademark) HXA9322HP" (manufactured by Asahi Kasei Corporation), "Novacure (registered trademark) HXA3922HP" (manufactured by Asahi Kasei Corporation), "Novacure (registered trademark) HXA3932HP" (manufactured by Asahi Kasei Corporation), "Novacure (registered trademark) HXA5945HP" (manufactured by Asahi Kasei Corporation), "Novacure (registered trademark) HXA5911HP" (manufactured by Asahi Kasei Corporation), and "Novacure (registered trademark) HXA9382HP" (manufactured by Asahi Kasei Corporation). Examples of urea-type adducts include "Fujicure FXE-1000" (manufactured by T&K TOKA Corporation), "Fujicure FXR1020" (manufactured by T&K TOKA Corporation), "Fujicure FXR-1030" (manufactured by T&K TOKA Corporation), "Fujicure FXR1121" (manufactured by T&K TOKA Corporation), "Fujicure FXR1081" (manufactured by T&K TOKA Corporation), "Fujicure FXR1061" (manufactured by T&K TOKA Corporation), and "Fujicure FXR1171" (manufactured by T&K TOKA Corporation), but are not limited to these. Component (E) may be used alone or in combination of two or more types. Component (E) is preferably a latent curing accelerator.
 成分(E)には、液状のエポキシ樹脂に固体の潜在性硬化促進作用を有する固体の化合物が分散された分散液の形態で提供されるものがある。そのような形態の成分(E)を使用する場合、固体の化合物が分散しているエポキシ樹脂の量は、成分(B)のエポキシ樹脂の量に含まれる。 Some component (E) is provided in the form of a dispersion in which a solid compound having a solid latent hardening accelerating effect is dispersed in a liquid epoxy resin. When component (E) in such a form is used, the amount of epoxy resin in which the solid compound is dispersed is included in the amount of epoxy resin in component (B).
 樹脂組成物は、樹脂組成物の総質量に対して、成分(E)を1質量%以上40質量%以下の範囲内で含むことが好ましく、2質量%以上35質量%以下の範囲内で含むことがより好ましく、2質量%以上32質量%以下の範囲内で含むことがさらに好ましい。樹脂組成物中に含まれる成分(E)の含有量が1質量%以上40質量%以下の範囲内であると、低い粘度が維持されながら、成分(A)及び成分(B)の反応が促進され、高いTgを有する硬化物を得ることができる。 The resin composition preferably contains component (E) in the range of 1% by mass to 40% by mass, more preferably 2% by mass to 35% by mass, and even more preferably 2% by mass to 32% by mass, relative to the total mass of the resin composition. When the content of component (E) in the resin composition is in the range of 1% by mass to 40% by mass, the reaction of components (A) and (B) is promoted while maintaining a low viscosity, and a cured product having a high Tg can be obtained.
 樹脂組成物は、(F)分散剤(以下、「成分(F)」ともいう。)を含んでいてもよい。成分(F)は、樹脂組成物中に例えば成分(C)を分散させやすくするものであれば、特に限定されない。成分(F)としては、例えばリン酸ポリエステル等が挙げられる。成分(F)の分散剤の市販品としては、商品名で、例えばBYK111(ビックケミー・ジャパン株式会社製)等が挙げられる。 The resin composition may contain (F) a dispersant (hereinafter also referred to as "component (F)"). Component (F) is not particularly limited as long as it facilitates dispersion of, for example, component (C) in the resin composition. Examples of component (F) include phosphate polyesters. Examples of commercially available dispersants for component (F) include, for example, BYK111 (manufactured by BYK Japan KK) under the trade name.
 樹脂組成物は、樹脂組成物の総質量に対して、成分(F)を0.1質量%以上2.0質量%以下の範囲内で含むことが好ましい。樹脂組成物は、成分(F)を含んでいなくてもよく、成分(F)が0質量%であってもよい。 The resin composition preferably contains component (F) in the range of 0.1% by mass or more and 2.0% by mass or less, based on the total mass of the resin composition. The resin composition may not contain component (F), and the component (F) may be 0% by mass.
 樹脂組成物は、成分(A)~成分(F)以外の任意成分を含んでいてもよい。樹脂組成物に含まれる任意成分としては、安定剤、カップリング剤等が挙げられる。安定剤としては、例えば液状ホウ酸エステル化合物が挙げられる。また、カップリング剤としては、シランカップリング剤等が挙げられる。また、任意成分としては、添加剤、レベリング剤、酸化防止剤、消泡剤、揺変剤、粘度調整剤、難燃剤、着色剤、溶剤等が挙げられる。添加材としては、例えばカーボンブラック、チタンブラック等が挙げられる。樹脂組成物に任意成分が含まれる場合には、高いTgを有する硬化物が得られ、樹脂組成物の粘度の上昇を抑制できる範囲であればよく、例えば成分(A)、成分(B)、成分(D)及び成分(E)の合計量100質量部に対して、任意成分の量が0.001質量部30質量部以下の範囲内であり、0.05質量部以上25質量部以下の範囲内でもよく、0.1質量部以上20質量部以下の範囲内でもよい。 The resin composition may contain optional components other than components (A) to (F). Examples of optional components contained in the resin composition include stabilizers and coupling agents. Examples of stabilizers include liquid boric acid ester compounds. Examples of coupling agents include silane coupling agents. Examples of optional components include additives, leveling agents, antioxidants, defoamers, thixotropic agents, viscosity modifiers, flame retardants, colorants, solvents, etc. Examples of additives include carbon black and titanium black. When optional components are contained in the resin composition, the amount of the optional components may be in a range that can obtain a cured product having a high Tg and suppress an increase in the viscosity of the resin composition. For example, the amount of the optional components is in a range of 0.001 parts by mass to 30 parts by mass or less, may be in a range of 0.05 parts by mass to 25 parts by mass or less, or may be in a range of 0.1 parts by mass to 20 parts by mass or less, relative to 100 parts by mass of the total amount of components (A), (B), (D), and (E).
 樹脂組成物の製造方法
 樹脂組成物は、成分(A)及び成分(B)、必要に応じて成分(C)、さらに必要に応じて成分(D)、成分(E)及び成分(F)を混合することにより製造できる。樹脂組成物は、必要に応じて添加材とともに、各成分を、混合して製造してもよい。各成分は適切な混合機に同時に、又は、別々に導入し、必要であれば加熱により溶融しながら撹拌して混合し、樹脂組成物を得ることができる。樹脂組成物の製造方法は特に限定されない。樹脂組成物は、各成分となる原料を、撹拌装置及び加熱装置を備えたライカイ機、ヘンシェルミキサー、ロールミル、3本ロールミル、ボールミル、プラネタリーミキサー、ビーズミル、ハイブリッドミキサー等の混合機によって混合することで製造することができる。また、前記装置を適宜組み合わせて使用し、樹脂組成物を製造してもよい。
2. Method for Producing Resin Composition The resin composition can be produced by mixing components (A) and (B), and if necessary, component (C), and further if necessary, components (D), (E) and (F). The resin composition may be produced by mixing each component together with additives if necessary. Each component is introduced simultaneously or separately into an appropriate mixer, and if necessary, the components are stirred and mixed while being melted by heating to obtain a resin composition. The method for producing the resin composition is not particularly limited. The resin composition can be produced by mixing the raw materials for each component with a mixer such as a Raikai mixer, a Henschel mixer, a roll mill, a three-roll mill, a ball mill, a planetary mixer, a bead mill, or a hybrid mixer equipped with a stirring device and a heating device. The resin composition may also be produced by using an appropriate combination of the above devices.
 樹脂組成物は、20℃から30℃で液状である。樹脂組成物は、樹脂組成物を作製した直後、及び、樹脂組成物を室温(約25℃)に所定時間放置した後の粘度を、ブルックフィールド回転粘度計(HBDV-I型又はRVDV-I型、スピンドル:SC4-14スピンドル、回転数:50rpm、測定温度:25℃)を使用して測定した粘度が200Pa・s以下であることが好ましく、190Pa・s以下でもよく、1Pa・s以上であることが好ましい。 The resin composition is liquid at 20°C to 30°C. The viscosity of the resin composition is preferably 200 Pa·s or less, or may be 190 Pa·s or less, and is preferably 1 Pa·s or more, measured using a Brookfield rotational viscometer (HBDV-I or RVDV-I type, spindle: SC4-14 spindle, rotation speed: 50 rpm, measurement temperature: 25°C) immediately after preparation of the resin composition and after leaving the resin composition at room temperature (approximately 25°C) for a predetermined period of time.
 接着剤又は封止材、ダイアタッチ剤
 樹脂組成物は、電子デバイスを構成する部品同士を固定、接合又は保護するための接着剤、封止材として使用することができ、樹脂組成物を含む接着剤又は封止材としても使用できる。樹脂組成物は、部品同士を固定、接合又は保護するための接着剤の中でも、ベアチップのダイボンド用、発光ダイオード(LED)の接着、電極とリード線の接着等を行う、ダイアタッチ剤としても使用することができる。樹脂組成物が、接着剤又は封止材であってもよい。樹脂組成物が、ダイアタッチ剤であってもよい。
Adhesive or sealing material, die attachment agent The resin composition can be used as an adhesive or sealing material for fixing, bonding or protecting components constituting an electronic device, and can also be used as an adhesive or sealing material containing the resin composition. Among the adhesives for fixing, bonding or protecting components, the resin composition can also be used as a die attachment agent for die bonding of bare chips, bonding of light-emitting diodes (LEDs), bonding of electrodes and lead wires, etc. The resin composition may be an adhesive or sealing material. The resin composition may be a die attachment agent.
 樹脂組成物の供給方法
 樹脂組成物は、ジェットディスペンサー、エアーディスペンサー等を使用して供給することができる。また、公知のコーティング法(ディップ塗工、スプレー塗工、バーコーター塗工、グラビア塗工、リバースグラビア塗工、スピンコータ塗工等)及び公知の印刷法(平板印刷、カルトン印刷、金属印刷、オフセット印刷、スクリーン印刷、グラビア印刷、フレキソ印刷、インクジェット印刷等)により供給することができる。
Method for Supplying Resin Composition The resin composition can be supplied using a jet dispenser, an air dispenser, etc. Also, it can be supplied by a known coating method (dip coating, spray coating, bar coater coating, gravure coating, reverse gravure coating, spin coater coating, etc.) and a known printing method (lithographic printing, carton printing, metal printing, offset printing, screen printing, gravure printing, flexographic printing, inkjet printing, etc.).
 樹脂組成物の硬化条件
 樹脂組成物は、熱硬化性であり、例えば40℃以上150℃以下で加熱することにより硬化させることができる。樹脂組成物の硬化温度は、40℃以上120℃以下であることが好ましい。150℃で、数秒で硬化する、高温、短時間の硬化型でもよい。樹脂組成物を硬化させるための加熱時間は、15分間以上4時間以内であること好ましく、30分間以上2時間以内であることがより好ましく、30分間以上60分間以内であることがさらに好ましい。
Curing conditions of the resin composition The resin composition is thermosetting and can be cured by heating, for example, at 40°C or more and 150°C or less. The curing temperature of the resin composition is preferably 40°C or more and 120°C or less. It may be a high-temperature, short-time curing type that cures in a few seconds at 150°C. The heating time for curing the resin composition is preferably 15 minutes to 4 hours, more preferably 30 minutes to 2 hours, and even more preferably 30 minutes to 60 minutes.
 硬化物
 樹脂組成物、樹脂組成物を含む接着剤又は封止材、樹脂組成物を含むダイアタッチ剤を硬化させることによって、硬化物が得られる。樹脂組成物を、120℃で60分間硬化させてなる硬化物は、動的粘弾性測定装置(例えばDMA850、ティー・エイ・インスツルメント・ジャパン株式会社製)を使用し、昇温速度3℃/minで測定した時のガラス転移温度(Tg)が80℃以上であることが好ましく、82℃以上であることがより好ましく、83℃以上であることがさらに好ましく、200℃以下でもよく、195℃以下でもよく、190℃以下でもよい。得られる硬化物のTgが80℃以上であれば、耐湿性又は耐久性を向上した硬化物が得られる。
Cured product A cured product is obtained by curing a resin composition, an adhesive or sealing material containing the resin composition, or a die attachment agent containing the resin composition. The cured product obtained by curing the resin composition at 120 ° C. for 60 minutes has a glass transition temperature (Tg) of preferably 80 ° C. or higher, more preferably 82 ° C. or higher, and even more preferably 83 ° C. or higher, when measured at a heating rate of 3 ° C. / min using a dynamic viscoelasticity measuring device (e.g., DMA850, manufactured by TA Instruments Japan Co., Ltd.), and may be 200 ° C. or lower, 195 ° C. or lower, or 190 ° C. or lower. If the Tg of the obtained cured product is 80 ° C. or higher, a cured product with improved moisture resistance or durability can be obtained.
 電子デバイス
 樹脂組成物は、樹脂組成物を含む接着剤又は封止材、樹脂組成物を含むダイアタッチ剤を電子部品の固定、接合又は保護に使用した場合は、樹脂組成物、接着剤、封止材又はダイアタッチ剤を硬化させてなる硬化物を含む電子デバイスが得られる。電子デバイスは、半導体装置であってもよい。電子デバイスとしては、例えば携帯電話、スマートフォン、ノートパソコン、タブレット端末、カメラモジュール等が挙げられる。樹脂組成物は、樹脂組成物を含む接着剤又は封止材、樹脂組成物を含むダイアタッチ剤を電子部品の固定、接合又は保護に使用し、Tgが80℃以上の硬化物は、耐湿性又は耐久性等の信頼性が向上し、高温や多湿等の過酷な環境下でも信頼性の高い、電子デバイスを提供することができる。
Electronic Device When the resin composition is used as an adhesive or sealant containing the resin composition, or a die attachment agent containing the resin composition for fixing, bonding or protecting an electronic component, an electronic device containing a cured product obtained by curing the resin composition, adhesive, sealant or die attachment agent is obtained. The electronic device may be a semiconductor device. Examples of electronic devices include mobile phones, smartphones, notebook computers, tablet terminals, camera modules, etc. When the resin composition is used as an adhesive or sealant containing the resin composition, or a die attachment agent containing the resin composition for fixing, bonding or protecting an electronic component, the cured product having a Tg of 80 ° C. or more has improved reliability such as moisture resistance or durability, and can provide an electronic device that is reliable even in harsh environments such as high temperature and high humidity.
 以下、本発明を実施例により具体的に説明する。本発明は、これらの実施例に限定されるものではない。以下の実施例及び比較例において、樹脂組成物に含まれる各成分の配合割合を示す数字は、特に断りのない限り、樹脂組成物の総質量に対する質量%を表す。 The present invention will be specifically explained below with reference to examples. The present invention is not limited to these examples. In the following examples and comparative examples, the numbers indicating the blending ratio of each component contained in the resin composition represent mass % relative to the total mass of the resin composition, unless otherwise specified.
 成分(A):ショウフリー(登録商標)PETG(ペンタエリスリトールグリシジルエーテル)、液状、イオンクロマトグラフィー法により測定した塩素濃度が50質量ppm未満、昭和電工株式会社製 Component (A): Showfree (registered trademark) PETG (pentaerythritol glycidyl ether), liquid, chlorine concentration measured by ion chromatography is less than 50 ppm by mass, manufactured by Showa Denko K.K.
 成分(B):成分(A)のPETG以外のエポキシ樹脂
 B-1:YDF8170(ビスフェノールF型エポキシ樹脂)、液状、エポキシ当量:159g/eq、日鉄ケミカル&マテリアル株式会社製)
 B-2:RE410S(ビスフェノールA型エポキシ樹脂)、液状、エポキシ当量:180g/eq、日本化薬株式会社製
 B-3:CDMDG(1,4-シクロヘキサンジメタノールジグリシジルエーテル)、液状、エポキシ当量:135g/eq、昭和電工株式会社製
 B-4:jER630(4-(ジグリシジルアミノ)フェニルグリシジルエーテル)、液状、エポキシ当量:98g/eq、三菱ケミカル株式会社製
 B-5:EP3980S(ジグリシジル-o-トルイジン)、液状、エポキシ当量115g/eq、株式会社ADEKA製
Component (B): Epoxy resin other than PETG of component (A) B-1: YDF8170 (bisphenol F type epoxy resin), liquid, epoxy equivalent: 159 g/eq, manufactured by Nippon Steel Chemical & Material Co., Ltd.
B-2: RE410S (bisphenol A type epoxy resin), liquid, epoxy equivalent: 180 g/eq, manufactured by Nippon Kayaku Co., Ltd. B-3: CDMDG (1,4-cyclohexanedimethanol diglycidyl ether), liquid, epoxy equivalent: 135 g/eq, manufactured by Showa Denko K.K. B-4: jER630 (4-(diglycidylamino)phenyl glycidyl ether), liquid, epoxy equivalent: 98 g/eq, manufactured by Mitsubishi Chemical Corporation B-5: EP3980S (diglycidyl-o-toluidine), liquid, epoxy equivalent: 115 g/eq, manufactured by ADEKA Corporation
 成分(C):充填剤
 C-1:SO E5(二酸化ケイ素)、平均粒径:1.3μm~1.7μm(カタログ値)、株式会社アドマテックス製
 C-2:AG2051-SXM(酸化アルミニウム)、平均粒径:0.3μm、株式会社アドマテックス製
 C-3:EP-2601(シリコーンエラストマー)、平均粒径:2μm、ダウ・東レ株式会社製
Component (C): Filler C-1: SO E5 (silicon dioxide), average particle size: 1.3 μm to 1.7 μm (catalog value), manufactured by Admatechs Co., Ltd. C-2: AG2051-SXM (aluminum oxide), average particle size: 0.3 μm, manufactured by Admatechs Co., Ltd. C-3: EP-2601 (silicone elastomer), average particle size: 2 μm, manufactured by Dow Toray Co., Ltd.
 成分(D):硬化剤
 D-1:MEH8005(アリル化フェノール樹脂)、25℃で液状、水酸基当量:135g/eq、UBE株式会社製
 D-2:ショウノール(登録商標)BRM-553(フェノールノボラック樹脂)、25℃で高粘度液体、水酸基当量:102g/eq、アイカ工業株式会社製
 D-3:ショウノール(登録商標)BRG-558(フェノールノボラック樹脂)、25℃で固体(軟化点:95℃)、水酸基当量:106g/eq、アイカ工業株式会社製
Component (D): Curing agent D-1: MEH8005 (allylated phenol resin), liquid at 25°C, hydroxyl equivalent: 135 g/eq, manufactured by UBE Co., Ltd. D-2: Shownol (registered trademark) BRM-553 (phenol novolac resin), high viscosity liquid at 25°C, hydroxyl equivalent: 102 g/eq, manufactured by Aica Kogyo Co., Ltd. D-3: Shownol (registered trademark) BRG-558 (phenol novolac resin), solid at 25°C (softening point: 95°C), hydroxyl equivalent: 106 g/eq, manufactured by Aica Kogyo Co., Ltd.
 成分(E):硬化促進剤
 E-1:2P4MZ(2-フェニル-4-メチルイミダゾール)、四国化成工業株式会社製
 E-2:OPPG-2MZH(1-[([1,1’-ビフェニル]-2-イル)オキシ]-3-(2-メチル-1H-イミダゾール-1-イル)プロパン-2-オール)、ナミックス株式会社製
 E-3:ノバキュア(登録商標)HXA9322HP(コアシェル型)(コアシェル型エポキシ-アミンアダクト系潜在性硬化触媒)、旭化成株式会社製
 E-4:ノバキュア(登録商業)HXA5911HP(コアシェル型)(コアシェル型エポキシ-アミンアダクト系潜在性硬化触媒)、旭化成株式会社製
 E-5:FXR1020(変性アミン)(変性アミン系潜在性硬化触媒)、株式会社T&K TOKA製
 なお、E-3は、微粒子状の潜在性硬化触媒が、エポキシ樹脂(ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合物(エポキシ当量:165g/eq))に分散されてなる分散液(潜在性硬化触媒/ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合物=33/67(質量比))の形態である。
 また、E-4は、微粒子状の潜在性硬化触媒が、エポキシ樹脂(ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合物(エポキシ当量:172g/eq))に分散されてなる分散液(潜在性硬化触媒/ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合物=50/50(質量比))の形態である。
Component (E): Curing accelerator E-1: 2P4MZ (2-phenyl-4-methylimidazole), manufactured by Shikoku Chemical Industry Co., Ltd. E-2: OPPG-2MZH (1-[([1,1'-biphenyl]-2-yl)oxy]-3-(2-methyl-1H-imidazol-1-yl)propan-2-ol), manufactured by Namics Corporation E-3: Novacure (registered trademark) HXA9322HP (core-shell type) (core-shell type epoxy-amine adduct type latent curing catalyst), manufactured by Asahi Kasei Corporation E-4: Novacure (registered trade) HXA5911HP (core-shell type) (core-shell type epoxy-amine adduct type latent curing catalyst), manufactured by Asahi Kasei Corporation E-5: FXR1020 (modified amine) (modified amine type latent curing catalyst), manufactured by T&K TOKA Corporation Incidentally, E-3 is in the form of a dispersion liquid (latent curing catalyst/mixture of bisphenol A type epoxy resin and bisphenol F type epoxy resin=33/67 (mass ratio)) in which fine particle-like latent curing catalyst is dispersed in epoxy resin (mixture of bisphenol A type epoxy resin and bisphenol F type epoxy resin (epoxy equivalent: 165 g/eq)).
E-4 is in the form of a dispersion (latent curing catalyst/mixture of bisphenol A type epoxy resin and bisphenol F type epoxy resin=50/50 (mass ratio)) in which a fine particle latent curing catalyst is dispersed in an epoxy resin (mixture of bisphenol A type epoxy resin and bisphenol F type epoxy resin (epoxy equivalent: 172 g/eq)).
 成分(F):分散剤
 F-1:BYK111(リン酸ポリエステル)、ビッグケミー・ジャパン株式会社製
Component (F): Dispersant F-1: BYK111 (polyester phosphate), manufactured by BYK-Chemie Japan Co., Ltd.
 実施例1~23、比較例1~2
 成分(A)、成分(B)、成分(C)、成分(D)、及び成分(E)、必要に応じて成分(F)を、表1~3に示す配合割合となるように各材料を配合し、成分(C)の充填剤を含む場合は三本ロールミルを用い、成分(C)の充填剤を含まない場合はプラネタリーミキサーを用いて撹拌混合し、実施例及び比較例の各樹脂組成物を製造した。表中、単位が記載されていない数値は、樹脂組成物の総質量100質量%に対する質量%、又は、樹脂組成物中の有機物100質量%に対する質量%を表す。成分(A)は、有機物の100質量%中の成分(A)の質量%、及び、樹脂組成物の総質量の100質量%中の成分(A)の質量%の両方を記載した。また、表中、「-」の記号は、該当する成分が樹脂組成物中に含まれていないか、測定ができなかったことを表す。
Examples 1 to 23, Comparative Examples 1 to 2
Component (A), component (B), component (C), component (D), and component (E), and optionally component (F), were mixed in the proportions shown in Tables 1 to 3, and a three-roll mill was used when the filler of component (C) was included, and a planetary mixer was used when the filler of component (C) was not included, to produce each resin composition of the examples and comparative examples. In the tables, values without units represent mass % relative to 100 mass % of the total mass of the resin composition, or mass % relative to 100 mass % of the organic matter in the resin composition. For component (A), both the mass % of component (A) in 100 mass % of the organic matter and the mass % of component (A) in 100 mass % of the total mass of the resin composition were listed. In addition, in the tables, the symbol "-" indicates that the corresponding component is not included in the resin composition or could not be measured.
 実施例及び比較例の各樹脂組成物、及び、各樹脂組成物を硬化させてなる硬化物について、以下の評価を行った。結果を表1~3に記載する。 The following evaluations were carried out on each of the resin compositions in the Examples and Comparative Examples, and on the cured products obtained by curing each of the resin compositions. The results are shown in Tables 1 to 3.
 評価:粘度(Pa・s)
 実施例及び比較例の各樹脂組成物について、回転粘度計HBDV-1(ブルックフィールド社製)又は回転粘度計RVDV-1(ブルックフィールド社製)を用いて、いずれもスピンドルSC4-14を使用し、50rpmで25℃における粘度(Pa・s)を測定した。粘度が10Pa・s未満の場合は、回転粘度計RVDV-1を使用して測定し、粘度が10Pa・s以上の場合は、回転粘度計HBDV-1を使用して測定した。
Evaluation: Viscosity (Pa·s)
For each of the resin compositions in the Examples and Comparative Examples, the viscosity (Pa·s) was measured using a rotational viscometer HBDV-1 (manufactured by Brookfield) or a rotational viscometer RVDV-1 (manufactured by Brookfield) at 50 rpm and 25° C. using a spindle SC4-14. When the viscosity was less than 10 Pa·s, the measurement was performed using the rotational viscometer RVDV-1, and when the viscosity was 10 Pa·s or more, the measurement was performed using the rotational viscometer HBDV-1.
 ガラス転移温度Tg(℃)
 実施例及び比較例の各樹脂組成物を硬化させた硬化物のガラス転移温度Tg(℃)を、動的粘弾性測定装置を使用して測定した。具体的には、厚さ1.5mmのガラス板の表面にテフロン(登録商標)シートを貼り、その上に硬化した際の膜厚が200±100μmとなるようにスペーサーを2箇所に配置した。次に。2箇所のスペーサーの間に樹脂組成物を塗布し、気泡を巻き込まないようにして、表面にテフロンシートを貼った別のガラス板で挟み込み、120℃で60分間硬化させて硬化物を得た。最後に、この硬化物をテフロンシートを貼ったガラス板から剥がした後、カッターで所定寸法(縦3mm×横15mm)に切り取り、試験片を得た。試験片の切り口はサンドペーパーで滑らかにした。この試験片を、動的粘弾性測定装置(Discovery DMA850、ティー・エイ・インスツルメント・ジャパン株式会社製)を使用して、-25℃~200℃の範囲、周波数1Hz、昇温速度3℃/min、ひずみ振幅20μm、引張法で測定を行った。tanδのピーク温度を読み取りガラス転移温度Tg(℃)とした。
Glass transition temperature Tg (°C)
The glass transition temperature Tg (°C) of the cured product obtained by curing each of the resin compositions of the Examples and Comparative Examples was measured using a dynamic viscoelasticity measuring device. Specifically, a Teflon (registered trademark) sheet was attached to the surface of a glass plate having a thickness of 1.5 mm, and spacers were placed in two places on the Teflon sheet so that the film thickness when cured was 200 ± 100 μm. Next, the resin composition was applied between the two spacers, and the Teflon sheet was sandwiched between another glass plate with a Teflon sheet attached to the surface without trapping air bubbles, and cured at 120 ° C for 60 minutes to obtain a cured product. Finally, the cured product was peeled off from the glass plate with the Teflon sheet attached, and then cut into a predetermined size (3 mm long x 15 mm wide) with a cutter to obtain a test piece. The cut edge of the test piece was smoothed with sandpaper. The test piece was subjected to measurements using a dynamic viscoelasticity measuring device (Discovery DMA850, manufactured by TA Instruments Japan, Inc.) in the range of −25° C. to 200° C., at a frequency of 1 Hz, a temperature rise rate of 3° C./min, and a strain amplitude of 20 μm, using a tensile method. The peak temperature of tan δ was read and taken as the glass transition temperature Tg (° C.).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1~3に示すように、実施例1~23の各樹脂組成物は、25℃で200Pa・s以下の低い粘度を有し、微小領域や狭いギャップの部分の接合にも用いることができ、取り扱い性がよかった。実施例1~23の各樹脂組成物を120℃で60分間硬化させて得られた硬化物は、80℃以上の高いTgを有し、高温や多湿等の過酷な環境下で使用された場合であっても、高い信頼性を有する硬化物が得られた。 As shown in Tables 1 to 3, each of the resin compositions of Examples 1 to 23 had a low viscosity of 200 Pa·s or less at 25°C, and could be used to bond small areas and narrow gaps, and had good handleability. The cured products obtained by curing each of the resin compositions of Examples 1 to 23 at 120°C for 60 minutes had a high Tg of 80°C or more, and a highly reliable cured product was obtained even when used in harsh environments such as high temperatures and high humidity.
 比較例1の樹脂組成物は、PETGを含有していないため、80℃以上の高いTgを有する硬化物を得られたが、樹脂組成物の粘度が高くなりすぎて、粘度の測定ができなかった。比較例2の樹脂組成物は、樹脂組成物に含まれる成分(A)及び成分(B)を含む有機物100質量%に対して、成分(A)のPETGを35質量%含有しているため、樹脂組成物を120℃で60分間硬化させて得られた硬化物はTgが75℃で、Tgが80℃を満たしておらず、耐湿性又は耐久性等の信頼性が低下するおそれがあった。 The resin composition of Comparative Example 1 did not contain PETG, and therefore a cured product with a high Tg of 80°C or higher was obtained, but the viscosity of the resin composition became too high to measure. The resin composition of Comparative Example 2 contained 35% by mass of PETG (component (A)) relative to 100% by mass of the organic matter, including components (A) and (B), contained in the resin composition, and therefore the cured product obtained by curing the resin composition at 120°C for 60 minutes had a Tg of 75°C, which did not meet the Tg of 80°C, and there was a risk of a decrease in reliability in terms of moisture resistance or durability.
 PCT後のシェア強度(N)
 実施例2、9、10、12、13、及び14の各樹脂組成物を硬化させた硬化物のPCT後のシェア強度を万能型ボンドテスター(シリーズ4000:ノードソン・アドバンスト・テクノロジー社製)を用いて測定した。具体的には、まず、樹脂組成物を20mm×20mmのセラミック基板に、直径2mm(2mmΦ)の大きさで孔版印刷した。次に、印刷した樹脂組成物に2mm角のシリコンチップ(SiN膜を形成したもの)を載せ、120℃で60分間硬化させて試験片を得た。その後、試験片を高度加速寿命試験機(EHS-221M:エスペック社製)にて、PCT(条件:121℃、2気圧、100%RH、20時間)を行った後に万能型ボンドテスターを用いて、テストスピード200μm/sで、応力(単位:N)を測定した。結果を表4に示す。
Share strength after PCT (N)
The shear strength of the cured product obtained by curing each of the resin compositions of Examples 2, 9, 10, 12, 13, and 14 after PCT was measured using a universal bond tester (series 4000: manufactured by Nordson Advanced Technology Co., Ltd.). Specifically, the resin composition was first stencil-printed on a ceramic substrate of 20 mm x 20 mm with a diameter of 2 mm (2 mmΦ). Next, a 2 mm square silicon chip (with a SiN film formed) was placed on the printed resin composition and cured at 120 ° C for 60 minutes to obtain a test piece. Thereafter, the test piece was subjected to PCT (conditions: 121 ° C, 2 atmospheres, 100% RH, 20 hours) using a highly accelerated life tester (EHS-221M: manufactured by Espec Corporation), and then the stress (unit: N) was measured at a test speed of 200 μm / s using a universal bond tester. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表4に示したように、成分(A)及び(B)の合計に対し、成分(D)としてフェノール樹脂を少量用いた場合、硬化物のPCT後のシェア強度が高かった。これは、このような硬化物では、吸水率が低かったことが原因と考えられた。特に、実施例2や実施例13のように、フェノール樹脂をごく少量用いた場合には、PCT後のシェア強度がより高かった。 As shown in Table 4, when a small amount of phenolic resin was used as component (D) relative to the total amount of components (A) and (B), the shear strength of the cured material after PCT was high. This was thought to be due to the low water absorption rate of such cured materials. In particular, when a very small amount of phenolic resin was used, as in Examples 2 and 13, the shear strength after PCT was higher.
 PCT後の吸水率(%)
 実施例2、9、及び10の各樹脂組成物を硬化させた硬化物のPCT前後の重量比から吸水率を測定した。具体的には、まず、4cm×6cmのSUS(Steel Special Use Stainless)304板上に、樹脂組成物を硬化した際の膜厚が250μmとなるようにスペーサーを2箇所に配置した。次に、樹脂組成物を塗布し、120℃で60分間硬化させ、試験片を得た後に、試験片の重量を計量した。その後、試験片を高度加速寿命試験機(EHS-221M:エスペック社製)にて、PCT(条件:121℃、2気圧、100%RH、20時間)を行った後に、再度重量を計量した。(PCT後の重量[g])/(PCT前の重量[g])×100から吸水率(単位:%)を算出した。結果を表5に示す。
Water absorption rate after PCT (%)
The water absorption rate was measured from the weight ratio before and after PCT of the cured product obtained by curing each of the resin compositions of Examples 2, 9, and 10. Specifically, first, spacers were placed in two places on a 4 cm x 6 cm SUS (Steel Special Use Stainless) 304 plate so that the film thickness when the resin composition was cured was 250 μm. Next, the resin composition was applied and cured at 120 ° C for 60 minutes to obtain a test piece, and the weight of the test piece was measured. Then, the test piece was subjected to PCT (conditions: 121 ° C, 2 atmospheres, 100% RH, 20 hours) using a highly accelerated life tester (EHS-221M: manufactured by Espec Corporation), and then the weight was measured again. The water absorption rate (unit: %) was calculated from (weight after PCT [g]) / (weight before PCT [g]) × 100. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 フェノール樹脂を含まない実施例9に比べ、フェノール樹脂を少量用いた場合には、吸水率が低くなっていた。実施例2と10では、フェノール樹脂をごく少量用いた実施例2の方が、吸水率が低かった。 Compared to Example 9, which did not contain phenolic resin, the water absorption rate was lower when a small amount of phenolic resin was used. Between Examples 2 and 10, Example 2, which used a very small amount of phenolic resin, had a lower water absorption rate.
 本発明に係る樹脂組成物は、電子デバイスを構成する部品同士を固定、接合又は保護するための接着剤、封止材として好適に使用することができる。また、本発明に係る樹脂組成物は、ダイアタッチ剤として好適に使用することができる。本発明の実施形態の樹脂組成物、樹脂組成物を含む接着剤又は封止材、ダイアタッチ剤を硬化させてなる硬化物、硬化物を含む電子デバイスは、例えば携帯電話、スマートフォン、ノートパソコン、タブレット端末、カメラモジュール等に使用することができる。
 
The resin composition according to the present invention can be suitably used as an adhesive or sealant for fixing, joining or protecting components constituting an electronic device. The resin composition according to the present invention can also be suitably used as a die attachment agent. The resin composition according to the embodiment of the present invention, the adhesive or sealant containing the resin composition, the cured product obtained by curing the die attachment agent, and the electronic device containing the cured product can be used, for example, in mobile phones, smartphones, notebook computers, tablet terminals, camera modules, etc.

Claims (8)

  1.  (A)ペンタエリスリトールテトラグリシジルエーテル、及び
     (B)前記成分(A)以外のエポキシ樹脂を含み、
     前記成分(A)及び前記成分(B)を含む有機物100質量%中、前記成分(A)が30質量%未満であることを特徴とする樹脂組成物。
    (A) pentaerythritol tetraglycidyl ether, and (B) an epoxy resin other than the component (A),
    A resin composition, comprising 100% by mass of an organic substance containing the components (A) and (B), and wherein the component (A) is less than 30% by mass.
  2.  前記成分(B)が芳香環を有し、2官能以上のエポキシ基を有するエポキシ樹脂を含む、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein component (B) contains an epoxy resin having an aromatic ring and an epoxy group having two or more functionalities.
  3.  前記成分(B)がエポキシ当量90~500g/eqのエポキシ樹脂を含む、請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein component (B) contains an epoxy resin having an epoxy equivalent of 90 to 500 g/eq.
  4.  (C)充填材を含む、請求項1~3のいずれか1項に記載の樹脂組成物。  (C) The resin composition according to any one of claims 1 to 3, which contains a filler.
  5.  請求項1~4のいずれか1項に記載の樹脂組成物を含む、接着剤又は封止材。 An adhesive or sealant comprising the resin composition according to any one of claims 1 to 4.
  6.  請求項1~4のいずれか1項に記載の樹脂組成物を含む、ダイアタッチ剤。 A die attachment agent comprising the resin composition according to any one of claims 1 to 4.
  7.  請求項1~4のいずれか1項に記載の樹脂組成物、請求項5に記載の接着剤若しくは封止材、又は、請求項6に記載のダイアタッチ剤、を硬化させて得られる、硬化物。 A cured product obtained by curing the resin composition according to any one of claims 1 to 4, the adhesive or sealant according to claim 5, or the die attachment agent according to claim 6.
  8.  請求項7に記載の硬化物を含む電子デバイス。
     
    An electronic device comprising the cured product according to claim 7.
PCT/JP2023/039072 2022-11-30 2023-10-30 Resin composition, adhesive, sealing material, die attachment material, cured product and electronic device WO2024116693A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022191530 2022-11-30
JP2022-191530 2022-11-30

Publications (1)

Publication Number Publication Date
WO2024116693A1 true WO2024116693A1 (en) 2024-06-06

Family

ID=91323752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/039072 WO2024116693A1 (en) 2022-11-30 2023-10-30 Resin composition, adhesive, sealing material, die attachment material, cured product and electronic device

Country Status (1)

Country Link
WO (1) WO2024116693A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001323048A (en) * 2000-05-18 2001-11-20 Otsuka Chem Co Ltd Epoxy resin composition
JP2019179230A (en) * 2018-03-30 2019-10-17 太陽インキ製造株式会社 Curable resin composition, dry film, cured product and printed wiring board
JP2021098786A (en) * 2019-12-20 2021-07-01 信越化学工業株式会社 Liquid epoxy resin composition
WO2023127800A1 (en) * 2021-12-28 2023-07-06 旭化成株式会社 Epoxy resin composition, cured product, sealing material, and adhesive
JP2023140271A (en) * 2022-03-22 2023-10-04 株式会社リコー Adhesive structure and method for manufacturing the same, electronic component and method for manufacturing the same, and adhesive layer for transfer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001323048A (en) * 2000-05-18 2001-11-20 Otsuka Chem Co Ltd Epoxy resin composition
JP2019179230A (en) * 2018-03-30 2019-10-17 太陽インキ製造株式会社 Curable resin composition, dry film, cured product and printed wiring board
JP2021098786A (en) * 2019-12-20 2021-07-01 信越化学工業株式会社 Liquid epoxy resin composition
WO2023127800A1 (en) * 2021-12-28 2023-07-06 旭化成株式会社 Epoxy resin composition, cured product, sealing material, and adhesive
JP2023140271A (en) * 2022-03-22 2023-10-04 株式会社リコー Adhesive structure and method for manufacturing the same, electronic component and method for manufacturing the same, and adhesive layer for transfer

Similar Documents

Publication Publication Date Title
US10450407B2 (en) Coated particles
JP6667843B1 (en) Epoxy resin composition
TWI827873B (en) Epoxy resin composition
TWI826714B (en) Epoxy resin composition
KR20070104621A (en) Latent hardener for epoxy resin and epoxy resin composition
KR101151063B1 (en) Liquid resin composition for electronic component and electronic component device
KR20200072358A (en) Two part adhesive composition and cured product thereof and vehicle material adhesive method
WO2020170778A1 (en) Liquid epoxy resin composition, and cured product obtained by curing same
JPWO2019139112A1 (en) Coating particles
TWI817988B (en) Epoxy resin composition
KR20210078480A (en) resin composition
WO2024116693A1 (en) Resin composition, adhesive, sealing material, die attachment material, cured product and electronic device
JP6620273B1 (en) Epoxy resin composition
JP2021031666A (en) Epoxy resin composition
JP2022089702A (en) Thermosetting resin composition, cured product, and adhesive
JP6651161B1 (en) Epoxy resin composition
JP2020164628A (en) Resin composition
KR102187518B1 (en) Epoxy resin composition
WO2023026872A1 (en) Epoxy resin composition
WO2024089905A1 (en) Resin composition, adhesive, sealant, cured product, semiconductor device and electronic component
WO2023181831A1 (en) Resin composition, adhesive or encapsulation material, cured object, semiconductor device, and electronic component