WO2024116580A1 - Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board - Google Patents

Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board Download PDF

Info

Publication number
WO2024116580A1
WO2024116580A1 PCT/JP2023/035030 JP2023035030W WO2024116580A1 WO 2024116580 A1 WO2024116580 A1 WO 2024116580A1 JP 2023035030 W JP2023035030 W JP 2023035030W WO 2024116580 A1 WO2024116580 A1 WO 2024116580A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
heteroaromatic compound
treated copper
compound layer
layer
Prior art date
Application number
PCT/JP2023/035030
Other languages
French (fr)
Japanese (ja)
Inventor
翔平 岩沢
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Publication of WO2024116580A1 publication Critical patent/WO2024116580A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Definitions

  • This disclosure relates to surface-treated copper foil, copper-clad laminates, and printed wiring boards.
  • Copper-clad laminates are widely used in a variety of applications, including flexible printed wiring boards.
  • Flexible printed wiring boards are manufactured by etching the copper foil of a copper-clad laminate to form a conductor pattern (also called a "wiring pattern"), and then mounting electronic components on the conductor pattern by connecting them with solder.
  • the causes of signal power loss (transmission loss) in electronic circuits can be roughly divided into two categories: the first is conductor loss, i.e., loss due to copper foil, and the second is dielectric loss, i.e., loss due to resin substrate.
  • Conductor loss is characterized by the skin effect in the high frequency range, in which current flows along the surface of the conductor, so if the copper foil surface is rough, the current will flow along a complex path. Therefore, in order to reduce the conductor loss of high frequency signals, it is desirable to reduce the surface roughness of the copper foil.
  • transmission loss and “conductor loss” are used simply, they mainly mean “transmission loss of high frequency signals” and “conductor loss of high frequency signals.”
  • Patent Document 1 proposes a method of providing a roughening treatment layer formed from roughening particles on the copper foil, and forming a rust-proofing treatment layer thereon.
  • the rust-proofing treatment layer is composed of a nickel-cobalt alloy plating layer, a zinc plating layer, a chromate treatment layer, and a silane coupling treatment layer.
  • the surface-treated copper foil described in Patent Document 1 has the problem that many layers must be formed on the copper foil, increasing the time and cost required for its manufacture.
  • the anchor effect of the roughening particles may not be enough to ensure sufficient adhesion.
  • an object of the present invention is to provide a surface-treated copper foil that can enhance adhesion to a resin substrate, particularly a resin substrate suitable for high frequency applications, while reducing the time and cost required for production.
  • Another object of the present invention is to provide a copper-clad laminate having excellent adhesion between a resin substrate, particularly a resin substrate suitable for high frequency applications, and a surface-treated copper foil, while reducing the time and cost required for production.
  • an object of the present invention is to provide a printed wiring board having excellent adhesion between a resin substrate, particularly a resin substrate suitable for high frequency applications, and a circuit pattern while reducing the time and cost required for production.
  • the inventors conducted intensive research to solve the above problems, and surprisingly discovered that a specific heteroaromatic compound has the function of improving adhesion to a resin substrate. Based on this discovery, they found that the above problems can be solved by forming a heteroaromatic compound layer containing a specific heteroaromatic compound on at least one side of a copper foil and controlling the Sp of the surface within a predetermined range, and thus completed an embodiment of the present invention.
  • one embodiment of the present invention relates to a surface-treated copper foil having a copper foil and a heteroaromatic compound layer formed on at least one surface of the copper foil, the heteroaromatic compound layer containing a heteroaromatic compound having a heterocycle containing a nitrogen atom as a heteroatom, and Sp being 0.10 to 1.00 ⁇ m.
  • an embodiment of the present invention relates to a copper-clad laminate comprising the above-mentioned surface-treated copper foil and a resin substrate adhered to the heteroaromatic compound layer of the surface-treated copper foil.
  • an embodiment of the present invention relates to a printed wiring board having a circuit pattern formed by etching the surface-treated copper foil of the copper-clad laminate.
  • a surface-treated copper foil can be provided that can enhance adhesion to a resin substrate, particularly a resin substrate suitable for high frequency applications, while reducing the time and cost required for production.
  • a copper-clad laminate having excellent adhesion between a resin substrate, particularly a resin substrate suitable for high frequency applications, and a surface-treated copper foil can be provided while reducing the time and cost required for production.
  • a printed wiring board can be provided that has excellent adhesion between a resin substrate, particularly a resin substrate suitable for high frequency applications, and a circuit pattern while reducing the time and cost required for production.
  • 1 is an example of a load curve for a heteroaromatic layer.
  • the surface-treated copper foil according to the embodiment of the present invention has a copper foil and a heteroaromatic compound layer formed on at least one surface of the copper foil.
  • the heteroaromatic compound layer may be formed on only one side of the copper foil, or on both sides of the copper foil.
  • the types of the heteroaromatic compound layers may be the same or different.
  • the copper foil is not particularly limited, and may be either an electrolytic copper foil or a rolled copper foil.
  • high purity copper such as tough pitch copper (JIS H3100 alloy number C1100) and oxygen-free copper (JIS H3100 alloy number C1020 or JIS H3510 alloy number C1011) which are usually used as circuit patterns of printed wiring boards can be used.
  • copper alloys such as copper containing Sn, copper containing Ag, copper alloys containing Cr, Zr, Mg, etc., and Corson copper alloys containing Ni and Si can also be used.
  • the term "copper foil” is a concept that includes copper alloy foil.
  • the thickness of the copper foil is not particularly limited, but can be, for example, 1 to 1000 ⁇ m, or 1 to 500 ⁇ m, or 1 to 300 ⁇ m, or 3 to 100 ⁇ m, or 5 to 70 ⁇ m, or 6 to 35 ⁇ m, or 9 to 18 ⁇ m.
  • the heteroaromatic compound layer includes a heteroaromatic compound having a heterocycle containing a nitrogen atom as a heteroatom.
  • the number of ring members of the heterocycle is not particularly limited, but is, for example, 3 to 9, preferably 4 to 6, and more preferably 5.
  • the heteroatom contained in the heterocycle may consist of only a nitrogen atom, or may consist of a nitrogen atom and other atoms (for example, an oxygen atom, a sulfur atom, etc.).
  • the number of heteroatoms contained in the heterocycle is determined depending on the number of ring members, and is, for example, 1 to 5, preferably 1 to 4, and more preferably 1 to 3.
  • the heterocycle may be either a saturated ring or an unsaturated ring.
  • the term "unsaturated ring" includes a partially unsaturated ring.
  • heterocycles include aridine (unsaturated three-membered ring containing one nitrogen atom), diazirine (unsaturated three-membered ring containing two nitrogen atoms), azeto (unsaturated four-membered ring containing one nitrogen atom), diazeto (unsaturated four-membered ring containing two nitrogen atoms), pyrrole (unsaturated five-membered ring containing one nitrogen atom), pyrrolidine (saturated five-membered ring containing one nitrogen atom), imidazole and pyrazole (unsaturated five-membered ring containing two nitrogen atoms), imidazolidine and pyrazolidine (saturated five-membered ring containing two nitrogen atoms), oxazole and isoxazole (unsaturated five-membered ring containing one nitrogen atom and one oxygen atom), oxazolidine and isoxazolidine (saturated saturated five
  • the heterocycle is preferably a 5-membered ring containing 1 to 3 nitrogen atoms, and more preferably an unsaturated 5-membered ring containing 1 to 3 nitrogen atoms (pyrrole, imidazole, pyrazole, oxazole, isoxazole, thiazole, isothiazole, triazole).
  • the heteroaromatic compound having a heterocycle may be a condensed ring compound of a benzene ring and a heterocycle, a condensed ring compound of two or more heterocycles, or a monocyclic compound of a heterocycle.
  • the condensed ring compound of a benzene ring and a heterocycle is not particularly limited, but examples thereof include indole, indazole, isoindole, benzimidazole, benzotriazole, quinoline, isoquinoline, quinazoline, quinoxaline, cinnoline, acridine, and carbazole.
  • the condensed ring compound of two or more heterocycles is not particularly limited, but examples thereof include triazolopyridine, purine, and pteridine.
  • the monocyclic heterocyclic compound is not particularly limited, and examples thereof include the compounds exemplified above as the heterocyclic ring.
  • the condensed ring compound and the monocyclic compound may have a substituent.
  • the substituent is not particularly limited. Examples of the substituent include an alkyl group such as a methyl group or an ethyl group, a vinyl group, and a nitro group.
  • the heteroaromatic compound layer is a layer containing the above-mentioned heteroaromatic compound.
  • the heteroaromatic compound contained in the heteroaromatic compound layer may be of a single type or of two or more different types.
  • the heteroaromatic compound layer may contain components other than the heteroaromatic compound, as long as the components do not impair the effects of the embodiment of the present invention. Examples of such components include solvents and additives that are mixed in when the heteroaromatic compound layer is formed.
  • the heteroaromatic compound layer has lower peaks (protrusions) than conventional surface treatment layers including roughened layers.
  • the heteroaromatic compound layer has high smoothness. This is because the conventional surface treatment layers including roughened layers improve the adhesion between the surface treatment layer and the resin substrate by the anchor effect, whereas the heteroaromatic compound layer does not aim to obtain the effect of improving adhesion by the anchor effect.
  • the heteroaromatic compound layer improves the adhesion between the surface-treated copper foil and the resin substrate by the adhesive properties of the heteroaromatic compound, so that even if the peaks on the surface are low, the desired effect of improving adhesion can be obtained.
  • the heteroaromatic compound layer has a higher surface smoothness than conventional surface treatment layers including roughened layers, so that the transmission loss due to the skin effect can be reduced.
  • Sp maximum peak height
  • Sp represents the maximum height of the surface from the mean plane.
  • Sp is a peak height parameter defined in ISO 25178-2:2012, and a surface with a small Sp can be said to be a smooth surface.
  • the heteroaromatic compound layer has an Sp of 0.10 to 1.00 ⁇ m.
  • the heteroaromatic compound layer having an Sp controlled within such a range is smooth, and therefore the adhesive properties of the heteroaromatic compound can improve the adhesiveness between the surface-treated copper foil and the resin substrate. In addition, the transmission loss can be reduced.
  • the heteroaromatic compound layer has a thickness Sp of preferably 0.10 to 0.85 ⁇ m, more preferably 0.10 to 0.78 ⁇ m, and further preferably 0.30 to 0.78 ⁇ m.
  • the Sp of the heteroaromatic compound layer can be measured in accordance with ISO 25178-2:2012.
  • the heteroaromatic compound layer has fewer peaks on its surface than conventional surface-treated layers including a roughening treatment layer because of the absence of roughening particles.
  • Vmp solid volume of peaks
  • Vmp is a functional (volume) parameter defined in ISO 25178-2:2012 and represents the solid volume of the peaks of the heteroaromatic compound layer.
  • Vmp can be determined in accordance with ISO 25178-2:2012 by measuring the surface roughness and analyzing the load curve calculated from the measurement data. In explaining the load curve, first, the load area ratio will be explained.
  • the area ratio is a ratio obtained by dividing the area corresponding to the cross section of a three-dimensional object to be measured when the object is cut at a certain height by the area of the measurement field.
  • the object to be measured is assumed to be a copper foil or a heteroaromatic compound layer of a surface-treated copper foil.
  • the load curve is a curve that represents the area ratio at each height.
  • the area ratio near 0% represents the height of the highest part of the object to be measured, and the height near 100% represents the height of the lowest part of the object to be measured.
  • the load curve can be used to express the volume of the solid part and the volume of the space part of the heteroaromatic compound layer.
  • the volume of the solid part corresponds to the volume of the part occupied by the substance of the object to be measured in the measurement field of view
  • the volume of the space part corresponds to the volume occupied by the space between the solid parts in the measurement field of view.
  • the load curve is divided into a valley part, a core part, and a peak part with the positions of the areal load ratio of 10% and 80% as the boundaries.
  • Vvv means the volume of the space part in the valley part of the heteroaromatic compound layer
  • Vvc means the volume of the space part in the core part of the heteroaromatic compound layer
  • Vmp means the volume of the solid part in the peak part of the heteroaromatic compound layer
  • Vmc means the volume of the solid part in the core part of the heteroaromatic compound layer.
  • the volume Vmp of the solid part in the peak portion is the volume of the solid part in the peak portion, i.e., the part where the height of the object to be measured is high, and means the volume of the solid part in the part where the height is particularly high in the heteroaromatic compound layer.
  • the Vmp of the heteroaromatic compound layer is preferably 0.001 to 0.010 ⁇ m 3 / ⁇ m 2 , more preferably 0.001 to 0.006 ⁇ m 3 / ⁇ m 2 .
  • the range of Vmp, which is the solid volume in the particularly high part, means that the heteroaromatic compound layer is smooth.
  • Vmp By controlling Vmp in this range, it is possible to obtain an effect of improving the adhesion between the surface-treated copper foil and the resin substrate due to the adhesive properties of the heteroaromatic compound. In addition, it is also possible to obtain an effect of reducing transmission loss.
  • the Vmp of the heteroaromatic compound layer can be measured in accordance with ISO 25178-2:2012.
  • the heteroaromatic compound layer is smoother than conventional surface treatment layers including a roughening treatment layer because of the absence of roughening particles.
  • Such a heteroaromatic compound layer also has shallow valleys on the surface.
  • Sv maximum valley depth of the valley
  • Sv is a height parameter defined in ISO 25178-2:2012 and represents the minimum height from the average plane of the surface of the heteroaromatic compound layer.
  • the Sv of the heteroaromatic compound layer is preferably 1.50 ⁇ m or less, more preferably 0.10 to 1.25 ⁇ m, and even more preferably 0.50 to 1.20 ⁇ m.
  • the Sv of the heteroaromatic compound layer can be measured in accordance with ISO 25178-2:2012.
  • the copper foil and the heteroaromatic compound layer are in direct contact with each other, but a functional layer may be provided between the copper foil and the heteroaromatic compound layer as long as it does not impair the effects of the embodiment of the present invention.
  • a functional layer include a heat-resistant treatment layer, a rust-prevention treatment layer, and a chromate treatment layer.
  • the method for producing the surface-treated copper foil according to the embodiment of the present invention is not particularly limited, but it can be produced, for example, by the following method.
  • the copper foil is produced by a method known in the art.
  • an electrolytic copper foil when used as the copper foil, it can be generally produced by electrolytically depositing copper on a titanium or stainless steel drum from a copper sulfate plating bath.
  • a rolled copper foil When a rolled copper foil is used as the copper foil, it can be generally produced by sequentially subjecting a copper ingot to homogenization annealing, hot rolling, cold rolling, annealing, etc.
  • a commercially available product may be used.
  • a coating solution of a heteroaromatic compound is prepared.
  • the coating solution may contain a solvent such as water, additives, etc.
  • the concentration of the heteroaromatic compound in the coating solution may be adjusted depending on the type of the heteroaromatic compound used, and is not particularly limited, but is, for example, 0.1 to 10 mass %.
  • the coating solution of the heteroaromatic compound is applied to the surface of the copper foil and dried to form a heteroaromatic compound layer.
  • the coating method is not particularly limited, and various methods such as immersion, spray coating, curtain flow coater coating, roll coater coating, brush coating, and roller brush coating can be used.
  • the drying method is also not particularly limited, and room temperature drying or heat drying can be selected depending on the type of solvent used.
  • the coating solution of the heteroaromatic compound may be applied and dried once, but may be applied and dried multiple times to form a heteroaromatic compound layer of a desired thickness.
  • the Sp, Vmp and Sv of the heteroaromatic compound layer can be controlled mainly by adjusting the surface roughness of the copper foil on which the heteroaromatic compound layer is formed.
  • the roughness of the copper foil can be controlled by adjusting the manufacturing conditions of the copper foil, the degreasing conditions before the formation of the heteroaromatic compound layer, the pickling conditions, etc.
  • the surface-treated copper foil according to an embodiment of the present invention has a heteroaromatic compound layer that contains a specific heteroaromatic compound, and the Sp of the heteroaromatic compound layer is controlled to 0.10 to 1.00 ⁇ m, which reduces the time and cost required for production while improving adhesion to resin substrates, particularly resin substrates suitable for high-frequency applications.
  • a copper-clad laminate according to an embodiment of the present invention comprises the above-mentioned surface-treated copper foil and a resin substrate adhered to the heteroaromatic compound layer of the surface-treated copper foil.
  • This copper-clad laminate can be produced by adhering a resin substrate to the heteroaromatic compound layer of the above-mentioned surface-treated copper foil.
  • the resin substrate is not particularly limited, and may be one known in the art. Examples of the resin substrate include paper-based phenolic resin, paper-based epoxy resin, synthetic fiber cloth-based epoxy resin, glass cloth/paper composite substrate epoxy resin, glass cloth/glass nonwoven fabric composite substrate epoxy resin, glass cloth-based epoxy resin, polyester film, polyimide resin, liquid crystal polymer, fluororesin, etc. Among these, the resin substrate is preferably polyimide resin.
  • the resin substrate may be made of a low dielectric material. Examples of the low dielectric material include liquid crystal polymer, low dielectric polyimide, etc.
  • the method for bonding the surface-treated copper foil to the resin substrate is not particularly limited and may be any method known in the art.
  • the surface-treated copper foil and the resin substrate may be laminated and then thermocompressed.
  • the copper-clad laminate produced as described above can be used in the production of printed wiring boards.
  • the copper-clad laminate according to an embodiment of the present invention uses the above-mentioned surface-treated copper foil, and therefore can enhance adhesion between a resin substrate, particularly a resin substrate suitable for high-frequency applications, and the surface-treated copper foil while reducing the time and cost required for production.
  • a printed wiring board includes a circuit pattern formed by etching the surface-treated copper foil of the above-mentioned copper-clad laminate.
  • This printed wiring board can be manufactured by etching the surface-treated copper foil of the copper-clad laminate to form a circuit pattern.
  • the method for forming the circuit pattern is not particularly limited, and known methods such as the subtractive method and the semi-additive method can be used. Among them, the subtractive method is preferable as the method for forming the circuit pattern.
  • a printed wiring board is manufactured by the subtractive method, it is preferably carried out as follows. First, a resist is applied to the surface of the surface-treated copper foil of a copper-clad laminate, and a predetermined resist pattern is formed by exposing and developing it. Next, the surface-treated copper foil in the portion where the resist pattern is not formed (unnecessary portion) is removed by etching to form a circuit pattern. Finally, the resist pattern on the surface-treated copper foil is removed.
  • the conditions for this subtractive method are not particularly limited, and the method can be carried out according to the conditions known in the art.
  • the printed wiring board according to the embodiment of the present invention uses the above-mentioned copper-clad laminate, which reduces the time and cost required for production while improving adhesion between the resin substrate, particularly a resin substrate suitable for high-frequency applications, and the circuit pattern.
  • Example 1 A commercially available rolled copper foil (HA-V2 manufactured by JX Metals Corporation; thickness 12 ⁇ m) was prepared as the copper foil, and both sides of the copper foil were degreased and pickled.
  • the degreasing was performed by electrolyzing the surface of the rolled copper foil in a 20 g/L aqueous solution of GN Cleaner 87 (JX Metals Trading Corporation) under conditions of a current density of 11.3 A/ dm2 and a time of 8.6 seconds.
  • the pickling was performed by immersing the foil in a 20 g/L aqueous solution of sulfuric acid for 30 seconds.
  • an aqueous solution of benzotriazole (coating liquid) was prepared using benzotriazole represented by the following formula (1) as a heteroaromatic compound: The concentration of benzotriazole in the aqueous solution was 1% by mass.
  • the copper foil was immersed in an aqueous solution of benzotriazole for 30 seconds, rinsed with water, and dried with a dryer. In this way, a surface-treated copper foil was obtained in which a benzotriazole layer (heteroaromatic compound layer) was formed on the surface of the copper foil.
  • Example 2 A surface-treated copper foil having an indazole layer (heteroaromatic compound layer) formed on the surface of the copper foil was obtained under the same conditions as in Example 1, except that an indazole represented by the following formula (2) was used as the heteroaromatic compound.
  • Example 3 A surface-treated copper foil having a benzimidazole layer (heteroaromatic compound layer) formed on the surface of the copper foil was obtained under the same conditions as in Example 1, except that benzimidazole represented by the following formula (3) was used as the heteroaromatic compound.
  • Example 4 A surface-treated copper foil having an indole layer (heteroaromatic compound layer) formed on the surface of the copper foil was obtained under the same conditions as in Example 1, except that indole represented by the following formula (4) was used as the heteroaromatic compound.
  • Example 5 A surface-treated copper foil having a triazolopyridine layer (heteroaromatic compound layer) formed on the surface of the copper foil was obtained under the same conditions as in Example 1, except that a triazolopyridine represented by the following formula (5) was used as the heteroaromatic compound.
  • Example 6 A surface-treated copper foil having a 1-methylbenzotriazole layer (heteroaromatic compound layer) formed on the surface of the copper foil was obtained under the same conditions as in Example 1, except that 1-methylbenzotriazole represented by the following formula (6) was used as the heteroaromatic compound.
  • Example 7 A surface-treated copper foil having a 5-methylbenzotriazole layer (heteroaromatic compound layer) formed on the surface of the copper foil was obtained under the same conditions as in Example 1, except that 5-methylbenzotriazole represented by the following formula (7) was used as the heteroaromatic compound.
  • Example 8 A surface-treated copper foil having a 1,2,3-triazole layer (heteroaromatic compound layer) formed on the surface of the copper foil was obtained under the same conditions as in Example 1, except that 1,2,3-triazole represented by the following formula (8) was used as the heteroaromatic compound.
  • Comparative Example 1 A comparative sample was prepared by degreasing and pickling both sides of a commercially available rolled copper foil (HA-V2 manufactured by JX Nippon Mining & Metals Corporation; thickness 12 ⁇ m) (copper foil without a heteroaromatic compound layer). The degreasing and pickling were carried out under the same conditions as in Example 1.
  • the roughened layer was formed by electroplating.
  • the electroplating was performed in three stages.
  • the plating solution composition and current density were basically rounded off to the first decimal place.
  • Electroplating conditions current density 40 A/ dm2 , time 1.4 seconds
  • Plating solution composition 20 g/L Cu, 100 g/L sulfuric acid Plating solution temperature: 50°C
  • Electroplating conditions current density 5 A/ dm2 , time 2.0 seconds
  • Plating solution composition 16 g/L Cu, 8 g/L Co, 10 g/L Ni Plating solution pH: 2.4 Plating solution temperature: 36°C
  • Electroplating conditions current density 32 A/dm 2 , time 0.2 seconds
  • the anti-corrosive layer was formed by electroplating, which was carried out in three stages.
  • ⁇ Silane coupling treatment layer> A 4.0% by volume aqueous solution (pH: 10.4) of N-2-(aminoethyl)-3-aminopropyltrimethoxysilane (KBM603, manufactured by Shin-Etsu Chemical Co., Ltd.) was applied and dried to form a silane coupling treatment layer.
  • the roughened layer was formed by electroplating, which was carried out in two stages.
  • First stage conditions Plating solution composition: 11 g/L Cu, 50 g/L sulfuric acid Plating solution temperature: 25°C Electroplating conditions: current density 42.7 A/ dm2 , time 1.4 seconds
  • second stage conditions Plating solution composition: 20 g/L Cu, 100 g/L sulfuric acid Plating solution temperature: 50°C Electroplating conditions: current density 3.8 A/dm 2 , time 2.8 seconds
  • Heat-resistant layer was formed by electroplating.
  • Plating solution composition 23.5 g/L Ni, 4.5 g/L Zn Plating solution pH: 3.6
  • Plating solution temperature 40°C
  • Electroplating conditions current density 1.1 A/dm 2 , time 0.7 seconds
  • Plating solution composition 3.0 g/L K2Cr2O7 , 0.33 g/L Zn Plating solution pH: 3.6 Plating solution temperature: 50°C Electroplating conditions: current density 2.1 A/dm 2 , time 1.4 seconds
  • the surface-treated copper foils or copper foils obtained in the above Examples and Comparative Examples were subjected to the following property evaluations.
  • ⁇ Sp, Vmp and Sv> Images were taken using a laser microscope (LEXT OLS4000) manufactured by Olympus Corporation. The captured images were analyzed using analysis software for a laser microscope (LEXT OLS4100) manufactured by Olympus Corporation. Measurements of Sp, Vmp and Sv were performed in accordance with ISO 25178-2:2012. The measurement results were the average values measured at any three locations. The temperature during measurement was 23 to 25°C.
  • the main settings of the laser microscope and analysis software were as follows.
  • the measurement was performed using a MiniScan (registered trademark) EZ Model 4000L manufactured by HunterLab Co., Ltd., in accordance with JIS Z8730:2009 to measure L*, a*, and b* of the CIE L*a*b* color system.
  • the surface-treated copper foil or copper foil to be measured obtained in the above examples and comparative examples was pressed against the photosensitive part of the measurement device, and measurements were performed while preventing light from entering from the outside.
  • the measurements of L*, a*, and b* were performed based on the geometric condition C of JIS Z8722:2009.
  • the main conditions of the measurement device are as follows.
  • Optical system d/8°, integrating sphere size: 63.5 mm, observation light source: D65 Measurement method: Reflection Lighting diameter: 25.4 mm Measurement diameter: 20.0 mm Measurement wavelength/interval: 400-700 nm/10 nm Light source: Pulsed xenon lamp, 1 emission/measurement Traceability standard: National Institute of Standards and Technology (NIST) calibration based on CIE 44 and ASTM E259 Standard observer: 10°
  • the white tiles used as the measurement standards were the following object colors: When measured at D65/10°, the CIE XYZ color system values are X: 81.90, Y: 87.02, and Z: 93.76.
  • ⁇ Peel strength> After laminating the surface-treated copper foil with a resin substrate made of a low dielectric material, a circuit with a width of 3 mm was formed in the MD direction (the longitudinal direction of the rolled copper foil). The formation of the circuit was carried out according to a normal method. Next, the strength (MD 90° peel strength) when the circuit (surface-treated copper foil) was peeled off from the surface of the resin substrate at a speed of 50 mm/min in a 90° direction, i.e., vertically upward from the surface of the LCP substrate, was measured in accordance with JIS C6471:1995. The measurement was carried out three times, and the average value was taken as the peel strength result. If the peel strength is 0.50 kgf/cm or more, it can be said that the adhesion between the circuit (surface-treated copper foil) and the LCP substrate is good.
  • the surface-treated copper foils of Examples 1 to 8 which had a heteroaromatic compound layer and an Sp in the range of 0.10 to 1.00 ⁇ m, had peel strengths comparable to those of the surface-treated copper foil of Comparative Example 2, which had a surface treatment layer such as a roughening layer, and had good adhesion between the LCP substrate and the surface-treated copper foil.
  • the copper foil of Comparative Example 1 which did not have a heteroaromatic compound layer, had a low peel strength.
  • the copper foil of Comparative Example 3 had a smaller roughening than that of Comparative Example 2, which is thought to be the reason for the low peel strength. The above results are surprising.
  • the adhesion between copper foil and a resin substrate such as an LCP substrate is generally improved by forming a surface treatment layer containing roughening particles.
  • the presence of a heteroaromatic compound layer having a smooth surface sufficiently ensures the adhesion to the resin substrate such as an LCP substrate.
  • a surface-treated copper foil that can enhance adhesion to a resin substrate, particularly a resin substrate suitable for high frequency applications, while reducing the time and cost required for production.
  • a copper-clad laminate that has excellent adhesion between a resin substrate, particularly a resin substrate suitable for high frequency applications, and the surface-treated copper foil, while reducing the time and cost required for production.
  • a printed wiring board that has excellent adhesion between a resin substrate, particularly a resin substrate suitable for high frequency applications, and a circuit pattern, while reducing the time and cost required for production.
  • the embodiment of the present invention may take the following aspects.
  • the heteroaromatic compound layer contains a heteroaromatic compound having a heterocycle containing a nitrogen atom as a heteroatom, and the surface-treated copper foil has an Sp of 0.10 to 1.00 ⁇ m.
  • the heteroaromatic compound is at least one selected from the group consisting of benzotriazole, indazole, benzimidazole, indole, triazolopyridine, 1-methylbenzotriazole, 5-methylbenzotriazole, and 1,2,3-triazole.
  • ⁇ 5> The surface-treated copper foil according to any one of the above ⁇ 1> to ⁇ 4>, wherein the Sp is 0.10 to 0.85 ⁇ m.
  • ⁇ 6> The surface-treated copper foil according to the above item ⁇ 5>, wherein the Sp is 0.10 to 0.78 ⁇ m.
  • ⁇ 7> The surface-treated copper foil according to the above ⁇ 5>, wherein the Sp is 0.30 to 0.78 ⁇ m.
  • ⁇ 8> The surface-treated copper foil according to any one of the above ⁇ 1> to ⁇ 7>, wherein the heteroaromatic compound layer has a Vmp of 0.001 to 0.010 ⁇ m 3 / ⁇ m 2 .
  • ⁇ 9> The surface-treated copper foil according to the above item ⁇ 8>, wherein the Vmp is 0.001 to 0.006 ⁇ m 3 / ⁇ m 2 .
  • ⁇ 10> A copper-clad laminate comprising the surface-treated copper foil according to any one of ⁇ 1> to ⁇ 9> above and a resin substrate bonded to the heteroaromatic compound layer of the surface-treated copper foil.
  • ⁇ 11> A printed wiring board comprising a circuit pattern formed by etching the surface-treated copper foil of the copper-clad laminate according to ⁇ 10> above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is a surface-treated copper foil that has a copper foil and a heteroaromatic compound layer formed on at least one surface of the copper foil. The heteroaromatic compound layer contains a heteroaromatic compound having a heterocyclic ring containing a nitrogen atom as a hetero atom and having Sp of 0.10-1.00 μm.

Description

表面処理銅箔、銅張積層板及びプリント配線板Surface-treated copper foil, copper-clad laminates and printed wiring boards
 本開示は、表面処理銅箔、銅張積層板及びプリント配線板に関する。 This disclosure relates to surface-treated copper foil, copper-clad laminates, and printed wiring boards.
 銅張積層板は、フレキシブルプリント配線板などの各種用途において広く用いられている。このフレキシブルプリント配線板は、銅張積層板の銅箔をエッチングして導体パターン(「配線パターン」とも称される)を形成し、導体パターン上に電子部品を半田で接続して実装することによって製造される。 Copper-clad laminates are widely used in a variety of applications, including flexible printed wiring boards. Flexible printed wiring boards are manufactured by etching the copper foil of a copper-clad laminate to form a conductor pattern (also called a "wiring pattern"), and then mounting electronic components on the conductor pattern by connecting them with solder.
 近年、パソコン、モバイル端末などの電子機器では、通信の高速化及び大容量化に伴い、電気信号の高周波化が進んでおり、これに対応可能なフレキシブルプリント配線板が求められている。特に、電気信号の周波数は、高周波になるほど信号電力の損失(減衰)が大きくなり、データが読み取れなくなり易いため、信号電力の損失を低減することが求められている。 In recent years, electronic devices such as personal computers and mobile terminals have been using higher frequencies for electrical signals in line with faster and larger capacity communications, and flexible printed wiring boards that can handle this are in demand. In particular, the higher the frequency of the electrical signal, the greater the loss (attenuation) of signal power, making it easier for data to become unreadable, so there is a demand to reduce signal power loss.
 電子回路における信号電力の損失(伝送損失)が起こる原因は大きく二つに分けることができる。その一は、導体損失、すなわち銅箔による損失であり、その二は、誘電体損失、すなわち樹脂基材による損失である。
 導体損失は、高周波域では表皮効果があり、電流は導体の表面を流れるという特性を有するため、銅箔表面が粗いと複雑な経路を辿って、電流が流れることになる。したがって、高周波信号の導体損失を少なくするためには、銅箔の表面粗さを小さくすることが望ましい。以下、本明細書において、単に「伝送損失」及び「導体損失」と記載した場合は、「高周波信号の伝送損失」及び「高周波信号の導体損失」を主に意味する。
The causes of signal power loss (transmission loss) in electronic circuits can be roughly divided into two categories: the first is conductor loss, i.e., loss due to copper foil, and the second is dielectric loss, i.e., loss due to resin substrate.
Conductor loss is characterized by the skin effect in the high frequency range, in which current flows along the surface of the conductor, so if the copper foil surface is rough, the current will flow along a complex path. Therefore, in order to reduce the conductor loss of high frequency signals, it is desirable to reduce the surface roughness of the copper foil. Hereinafter, when the terms "transmission loss" and "conductor loss" are used simply, they mainly mean "transmission loss of high frequency signals" and "conductor loss of high frequency signals."
 誘電体損失は、樹脂基材の種類に依存するため、高周波信号が流れる回路基板においては、低誘電材料(例えば、液晶ポリマー、低誘電ポリイミド)から形成された樹脂基材を用いることが望ましい。
 銅箔と樹脂基材との間の接着性を確保するために、銅箔の少なくとも一方の面に粗化粒子を含む表面処理層を形成することが提案されている。これは粗化粒子が樹脂基材に食い込むアンカー効果による接着性向上を狙ったものである。例えば、特許文献1には、銅箔上に粗化粒子から形成される粗化処理層を設け、その上に防錆処理層を形成する方法が提案されている。防錆処理層は、ニッケル-コバルト合金めっき層、亜鉛めっき層、クロメート処理層及びシランカップリング処理層から構成されている。
Since the dielectric loss depends on the type of resin base material, it is desirable to use a resin base material made of a low dielectric material (for example, liquid crystal polymer, low dielectric polyimide) for a circuit board through which a high frequency signal flows.
In order to ensure adhesion between the copper foil and the resin substrate, it has been proposed to form a surface treatment layer containing roughening particles on at least one side of the copper foil. This is aimed at improving adhesion by the anchor effect of the roughening particles biting into the resin substrate. For example, Patent Document 1 proposes a method of providing a roughening treatment layer formed from roughening particles on the copper foil, and forming a rust-proofing treatment layer thereon. The rust-proofing treatment layer is composed of a nickel-cobalt alloy plating layer, a zinc plating layer, a chromate treatment layer, and a silane coupling treatment layer.
特開2012-112009号公報JP 2012-112009 A
 特許文献1に記載の表面処理銅箔は、銅箔上に多くの層を形成する必要があるため、その製造に要する時間及びコストが増加するという問題がある。また、樹脂基材、特に低誘電材料の中には、粗化粒子によるアンカー効果では十分な接着性が確保できない場合がある。 The surface-treated copper foil described in Patent Document 1 has the problem that many layers must be formed on the copper foil, increasing the time and cost required for its manufacture. In addition, for some resin substrates, particularly low-dielectric materials, the anchor effect of the roughening particles may not be enough to ensure sufficient adhesion.
 本発明の実施形態は、上記のような問題を解決するためになされたものであり、一つの側面において、製造に要する時間及びコストを抑えつつ、樹脂基材、特に高周波用途に好適な樹脂基材との接着性を高めることが可能な表面処理銅箔を提供することを目的とする。
 また、本発明の実施形態は、別の側面において、製造に要する時間及びコストを抑えつつ、樹脂基材、特に高周波用途に好適な樹脂基材と表面処理銅箔との間の接着性に優れた銅張積層板を提供することを目的とする。
 さらに、本発明の実施形態は、別の側面において、製造に要する時間及びコストを抑えつつ、樹脂基材、特に高周波用途に好適な樹脂基材と回路パターンとの間の接着性に優れたプリント配線板を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a surface-treated copper foil that can enhance adhesion to a resin substrate, particularly a resin substrate suitable for high frequency applications, while reducing the time and cost required for production.
Another object of the present invention is to provide a copper-clad laminate having excellent adhesion between a resin substrate, particularly a resin substrate suitable for high frequency applications, and a surface-treated copper foil, while reducing the time and cost required for production.
Furthermore, in another aspect, an object of the present invention is to provide a printed wiring board having excellent adhesion between a resin substrate, particularly a resin substrate suitable for high frequency applications, and a circuit pattern while reducing the time and cost required for production.
 本発明者らは、上記の問題を解決すべく鋭意研究を行った結果、驚くべきことに、特定の複素芳香族化合物が、樹脂基材との接着性を向上させる機能を有しているという知見を得た。この知見に基づき、特定の複素芳香族化合物を含む複素芳香族化合物層を銅箔の少なくとも一方の面に形成し、その表面のSpを所定の範囲に制御することにより、上記の問題を解決し得ることを見出し、本発明の実施形態を完成するに至った。 The inventors conducted intensive research to solve the above problems, and surprisingly discovered that a specific heteroaromatic compound has the function of improving adhesion to a resin substrate. Based on this discovery, they found that the above problems can be solved by forming a heteroaromatic compound layer containing a specific heteroaromatic compound on at least one side of a copper foil and controlling the Sp of the surface within a predetermined range, and thus completed an embodiment of the present invention.
 すなわち、本発明の実施形態は、一つの側面において、銅箔と、前記銅箔の少なくとも一方の面に形成された複素芳香族化合物層とを有し、前記複素芳香族化合物層は、ヘテロ原子として窒素原子を含む複素環を有する複素芳香族化合物を含み、Spが0.10~1.00μmである表面処理銅箔に関する。
 また、本発明の実施形態は、別の側面において、前記表面処理銅箔と、前記表面処理銅箔の前記複素芳香族化合物層に接着された樹脂基材とを備える銅張積層板に関する。
 さらに、本発明の実施形態は、別の側面において、前記銅張積層板の前記表面処理銅箔をエッチングして形成された回路パターンを備えるプリント配線板に関する。
That is, one embodiment of the present invention relates to a surface-treated copper foil having a copper foil and a heteroaromatic compound layer formed on at least one surface of the copper foil, the heteroaromatic compound layer containing a heteroaromatic compound having a heterocycle containing a nitrogen atom as a heteroatom, and Sp being 0.10 to 1.00 μm.
In another aspect, an embodiment of the present invention relates to a copper-clad laminate comprising the above-mentioned surface-treated copper foil and a resin substrate adhered to the heteroaromatic compound layer of the surface-treated copper foil.
Furthermore, in another aspect, an embodiment of the present invention relates to a printed wiring board having a circuit pattern formed by etching the surface-treated copper foil of the copper-clad laminate.
 本発明の実施形態によれば、一つの側面において、製造に要する時間及びコストを抑えつつ、樹脂基材、特に高周波用途に好適な樹脂基材との接着性を高めることが可能な表面処理銅箔を提供することができる。
 また、本発明の実施形態によれば、別の側面において、製造に要する時間及びコストを抑えつつ、樹脂基材、特に高周波用途に好適な樹脂基材と表面処理銅箔との間の接着性に優れた銅張積層板を提供することができる。
 さらに、本発明の実施形態によれば、別の側面において、製造に要する時間及びコストを抑えつつ、樹脂基材、特に高周波用途に好適な樹脂基材と回路パターンとの間の接着性に優れたプリント配線板を提供することができる。
According to one aspect of the present invention, a surface-treated copper foil can be provided that can enhance adhesion to a resin substrate, particularly a resin substrate suitable for high frequency applications, while reducing the time and cost required for production.
In addition, according to another aspect of the present invention, a copper-clad laminate having excellent adhesion between a resin substrate, particularly a resin substrate suitable for high frequency applications, and a surface-treated copper foil can be provided while reducing the time and cost required for production.
Furthermore, according to another aspect of the present invention, a printed wiring board can be provided that has excellent adhesion between a resin substrate, particularly a resin substrate suitable for high frequency applications, and a circuit pattern while reducing the time and cost required for production.
複素芳香族化合物層の負荷曲線の一例である。1 is an example of a load curve for a heteroaromatic layer.
 以下、本発明の好適な実施形態について具体的に説明するが、本発明はこれらに限定されて解釈されるべきものではなく、本発明の要旨を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、改良などを行うことができる。以下の実施形態に開示されている複数の構成要素は、適宜な組み合わせにより、種々の発明を形成できる。例えば、以下の実施形態に示される全構成要素からいくつかの構成要素を削除してもよいし、異なる実施形態の構成要素を適宜組み合わせてもよい。 Below, preferred embodiments of the present invention are specifically described, but the present invention should not be interpreted as being limited to these, and various modifications and improvements can be made based on the knowledge of those skilled in the art as long as they do not deviate from the gist of the present invention. The multiple components disclosed in the following embodiments can be combined appropriately to form various inventions. For example, some components may be deleted from all the components shown in the following embodiments, or components from different embodiments may be combined appropriately.
 本発明の実施形態に係る表面処理銅箔は、銅箔と、銅箔の少なくとも一方の面に形成された複素芳香族化合物層とを有する。
 複素芳香族化合物層は、銅箔の一方の面のみに形成されていてもよいし、銅箔の両方の面に形成されていてもよい。銅箔の両方の面に複素芳香族化合物層が形成される場合、複素芳香族化合物層の種類は同一であっても異なっていてもよい。
The surface-treated copper foil according to the embodiment of the present invention has a copper foil and a heteroaromatic compound layer formed on at least one surface of the copper foil.
The heteroaromatic compound layer may be formed on only one side of the copper foil, or on both sides of the copper foil. When the heteroaromatic compound layer is formed on both sides of the copper foil, the types of the heteroaromatic compound layers may be the same or different.
 銅箔としては、特に限定されず、電解銅箔又は圧延銅箔のいずれであってもよい。
 銅箔の材料としては、プリント配線板の回路パターンとして通常使用されるタフピッチ銅(JIS H3100 合金番号C1100)、無酸素銅(JIS H3100 合金番号C1020又はJIS H3510 合金番号C1011)などの高純度の銅を用いることができる。また、例えば、Sn入り銅、Ag入り銅、Cr、Zr又はMgなどを添加した銅合金、Ni及びSiなどを添加したコルソン系銅合金のような銅合金も用いることができる。なお、本明細書において「銅箔」とは、銅合金箔も含む概念である。
The copper foil is not particularly limited, and may be either an electrolytic copper foil or a rolled copper foil.
As the material of the copper foil, high purity copper such as tough pitch copper (JIS H3100 alloy number C1100) and oxygen-free copper (JIS H3100 alloy number C1020 or JIS H3510 alloy number C1011) which are usually used as circuit patterns of printed wiring boards can be used. In addition, copper alloys such as copper containing Sn, copper containing Ag, copper alloys containing Cr, Zr, Mg, etc., and Corson copper alloys containing Ni and Si can also be used. In this specification, the term "copper foil" is a concept that includes copper alloy foil.
 銅箔の厚みは、特に限定されないが、例えば1~1000μm、或いは1~500μm、或いは1~300μm、或いは3~100μm、或いは5~70μm、或いは6~35μm、或いは9~18μmとすることができる。 The thickness of the copper foil is not particularly limited, but can be, for example, 1 to 1000 μm, or 1 to 500 μm, or 1 to 300 μm, or 3 to 100 μm, or 5 to 70 μm, or 6 to 35 μm, or 9 to 18 μm.
 複素芳香族化合物層は、ヘテロ原子として窒素原子を含む複素環を有する複素芳香族化合物を含む。
 複素環の環員数は、特に限定されないが、例えば3~9、好ましくは4~6、より好ましくは5である。
 複素環に含まれるヘテロ原子は、窒素原子のみから構成されていてもよいし、窒素原子とそれ以外の原子(例えば、酸素原子、硫黄原子など)とから構成されていてもよい。
 複素環に含まれるヘテロ原子の数は、環員数に応じて決定されるが、例えば1~5、好ましくは1~4、より好ましくは1~3である。
 複素環は、飽和環、不飽和環のいずれであってもよい。ここで、不飽和環とは、部分不飽和環を含む概念である。
The heteroaromatic compound layer includes a heteroaromatic compound having a heterocycle containing a nitrogen atom as a heteroatom.
The number of ring members of the heterocycle is not particularly limited, but is, for example, 3 to 9, preferably 4 to 6, and more preferably 5.
The heteroatom contained in the heterocycle may consist of only a nitrogen atom, or may consist of a nitrogen atom and other atoms (for example, an oxygen atom, a sulfur atom, etc.).
The number of heteroatoms contained in the heterocycle is determined depending on the number of ring members, and is, for example, 1 to 5, preferably 1 to 4, and more preferably 1 to 3.
The heterocycle may be either a saturated ring or an unsaturated ring. Here, the term "unsaturated ring" includes a partially unsaturated ring.
 複素環の具体例としては、アリジン(1個の窒素原子を含む不飽和3員環)、ジアジリン(2個の窒素原子を含む不飽和3員環)、アゼト(1個の窒素原子を含む不飽和4員環)、ジアゼト(2個の窒素原子を含む不飽和4員環)、ピロール(1個の窒素原子を含む不飽和5員環)、ピロリジン(1個の窒素原子を含む飽和5員環)、イミダゾール及びピラゾール(2個の窒素原子を含む不飽和5員環)、イミダゾリジン及びピラゾリジン(2個の窒素原子を含む飽和5員環)、オキサゾール及びイソキサゾール(1個の窒素原子及び1個の酸素原子を含む不飽和5員環)、オキサゾリジン及びイソキサゾリジン(1個の窒素原子及び1個の酸素原子を含む飽和5員環)、チアゾール及びイソチアゾール(1個の窒素原子及び1個の硫黄原子を含む不飽和5員環)、チアゾリジン及びイソチアゾリジン(1個の窒素原子及び1個の酸素原子を含む飽和5員環)、1,2,3-トリアゾールや1,2,4-トリアゾールのようなトリアゾール(3個の窒素原子を含む不飽和5員環)、テトラゾール(4個の窒素原子を含む不飽和5員環)、ペンタゾール(5個の窒素原子を含む不飽和5員環)、フラザン及びオキサジアゾール(2個の窒素原子及び1個の酸素原子を含む不飽和5員環)、チアジアゾール(2個の窒素原子及び1個の硫黄原子を含む不飽和5員環)、ジオキサゾール(1個の窒素原子及び2個の酸素原子を含む不飽和5員環)、ジチアゾール(1個の窒素原子及び2個の硫黄原子を含む不飽和5員環)、オキサテトラゾール(4個の窒素原子及び1個の酸素原子を含む不飽和5員環)、チアテトラゾール(4個の窒素原子及び1個の硫黄原子を含む不飽和5員環)、ピリジン(1個の窒素原子を含む不飽和6員環)、ピペリジン(1個の窒素原子を含む飽和6員環)、ジアジン(2個の窒素原子を含む不飽和6員環)、ピペラジン(2個の窒素原子を含む飽和6員環)、オキサジン(1個の窒素原子及び1個の酸素原子を含む不飽和6員環)、モルホリン(1個の窒素原子及び1個の酸素原子を含む飽和6員環)、チアジン(1個の窒素原子及び1個の硫黄原子を含む不飽和6員環)、チオモルホリン(1個の窒素原子及び1個の硫黄原子を含む飽和6員環)、トリアジン(3個の窒素原子を含む不飽和6員環)、テトラジン(4個の窒素原子を含む不飽和6員環)、ペンタジン(5個の窒素原子を含む不飽和6員環)、アゼピン(1個の窒素原子を含む不飽和7員環)、アゼパン(1個の窒素原子を含む飽和7員環)、ジアゼピン(2個の窒素原子を含む不飽和7員環)、ジアゼパン(2個の窒素原子を含む飽和7員環)、アゾシン(1個の窒素原子を含む不飽和8員環)、アゾカン(1個の窒素原子を含む飽和8員環)、アゾニン(1個の窒素原子を含む不飽和9員環)、アゾナン(1個の窒素原子を含む飽和9員環)などが挙げられる。これらの中でも、樹脂基材との接着性を安定して向上させる観点から、複素環は、1~3個の窒素原子を含む5員環であることが好ましく、1~3個の窒素原子を含む不飽和5員環(ピロール、イミダゾール、ピラゾール、オキサゾール、イソキサゾール、チアゾール、イソチアゾール、トリアゾール)であることがより好ましい。 Specific examples of heterocycles include aridine (unsaturated three-membered ring containing one nitrogen atom), diazirine (unsaturated three-membered ring containing two nitrogen atoms), azeto (unsaturated four-membered ring containing one nitrogen atom), diazeto (unsaturated four-membered ring containing two nitrogen atoms), pyrrole (unsaturated five-membered ring containing one nitrogen atom), pyrrolidine (saturated five-membered ring containing one nitrogen atom), imidazole and pyrazole (unsaturated five-membered ring containing two nitrogen atoms), imidazolidine and pyrazolidine (saturated five-membered ring containing two nitrogen atoms), oxazole and isoxazole (unsaturated five-membered ring containing one nitrogen atom and one oxygen atom), oxazolidine and isoxazolidine (saturated five-membered ring containing one nitrogen atom and one oxygen atom), 5-membered ring), thiazoles and isothiazoles (unsaturated 5-membered ring containing one nitrogen atom and one sulfur atom), thiazolidines and isothiazolidines (saturated 5-membered ring containing one nitrogen atom and one oxygen atom), triazoles such as 1,2,3-triazole and 1,2,4-triazole (unsaturated 5-membered ring containing three nitrogen atoms), tetrazoles (unsaturated 5-membered ring containing four nitrogen atoms), pentazoles (unsaturated 5-membered ring containing five nitrogen atoms), furazans and oxadiazoles (unsaturated 5-membered ring containing two nitrogen atoms and one oxygen atom), thiadiazoles (unsaturated 5-membered ring containing two nitrogen atoms and one sulfur atom), dioxazoles (unsaturated 5-membered ring containing one nitrogen atom and two oxygen atoms), saturated 5-membered ring), dithiazole (unsaturated 5-membered ring containing one nitrogen atom and two sulfur atoms), oxatetrazole (unsaturated 5-membered ring containing four nitrogen atoms and one oxygen atom), thiatetrazole (unsaturated 5-membered ring containing four nitrogen atoms and one sulfur atom), pyridine (unsaturated 6-membered ring containing one nitrogen atom), piperidine (saturated 6-membered ring containing one nitrogen atom), diazine (unsaturated 6-membered ring containing two nitrogen atoms), piperazine (saturated 6-membered ring containing two nitrogen atoms), oxazine (unsaturated 6-membered ring containing one nitrogen atom and one oxygen atom), morpholine (saturated 6-membered ring containing one nitrogen atom and one oxygen atom), thiazine (unsaturated 6-membered ring containing one nitrogen atom and one sulfur atom), membered ring), thiomorpholine (saturated 6-membered ring containing one nitrogen atom and one sulfur atom), triazine (unsaturated 6-membered ring containing three nitrogen atoms), tetrazine (unsaturated 6-membered ring containing four nitrogen atoms), pentazine (unsaturated 6-membered ring containing five nitrogen atoms), azepine (unsaturated 7-membered ring containing one nitrogen atom), azepane (saturated 7-membered ring containing one nitrogen atom), diazepine (unsaturated 7-membered ring containing two nitrogen atoms), diazepane (saturated 7-membered ring containing two nitrogen atoms), azocine (unsaturated 8-membered ring containing one nitrogen atom), azocane (saturated 8-membered ring containing one nitrogen atom), azonine (unsaturated 9-membered ring containing one nitrogen atom), azonane (saturated 9-membered ring containing one nitrogen atom), and the like. Among these, from the viewpoint of stably improving adhesion to resin substrates, the heterocycle is preferably a 5-membered ring containing 1 to 3 nitrogen atoms, and more preferably an unsaturated 5-membered ring containing 1 to 3 nitrogen atoms (pyrrole, imidazole, pyrazole, oxazole, isoxazole, thiazole, isothiazole, triazole).
 複素環を有する複素芳香族化合物は、ベンゼン環と複素環との縮合環化合物、2つ以上の複素環の縮合環化合物、又は複素環の単環化合物であることができる。
 ベンゼン環と複素環との縮合環化合物としては、特に限定されないが、例えば、インドール、インダゾール、イソインドール、ベンゾイミダゾール、ベンゾトリアゾール、キノリン、イソキノリン、キナゾリン、キノキサリン、シンノリン、アクリジン、カルバゾールなどが挙げられる。
 2つ以上の複素環の縮合環化合物としては、特に限定されないが、例えば、トリアゾロピリジン、プリン、プテリジンなどが挙げられる。
 複素環の単環化合物としては、特に限定されず、複素環として上記で例示した化合物が挙げられる。
 なお、上記の縮合環化合物及び単環化合物は、置換基を有していてもよい。置換基としては、特に限定されない。置換基としては、例えば、メチル基やエチル基などのアルキル基、ビニル基、ニトロ基などが挙げられる。
The heteroaromatic compound having a heterocycle may be a condensed ring compound of a benzene ring and a heterocycle, a condensed ring compound of two or more heterocycles, or a monocyclic compound of a heterocycle.
The condensed ring compound of a benzene ring and a heterocycle is not particularly limited, but examples thereof include indole, indazole, isoindole, benzimidazole, benzotriazole, quinoline, isoquinoline, quinazoline, quinoxaline, cinnoline, acridine, and carbazole.
The condensed ring compound of two or more heterocycles is not particularly limited, but examples thereof include triazolopyridine, purine, and pteridine.
The monocyclic heterocyclic compound is not particularly limited, and examples thereof include the compounds exemplified above as the heterocyclic ring.
The condensed ring compound and the monocyclic compound may have a substituent. The substituent is not particularly limited. Examples of the substituent include an alkyl group such as a methyl group or an ethyl group, a vinyl group, and a nitro group.
 複素芳香族化合物層は、上記の複素芳香族化合物を含む層である。
 複素芳香族化合物層に含まれる複素芳香族化合物は、単一の種類であっても2種以上の異なる種類であってもよい。
 また、複素芳香族化合物層は、本発明の実施形態による効果を阻害しない範囲において、複素芳香族化合物以外の成分を含んでもよい。当該成分としては、複素芳香族化合物層を形成する際に混入する溶媒や添加剤などが挙げられる。
The heteroaromatic compound layer is a layer containing the above-mentioned heteroaromatic compound.
The heteroaromatic compound contained in the heteroaromatic compound layer may be of a single type or of two or more different types.
In addition, the heteroaromatic compound layer may contain components other than the heteroaromatic compound, as long as the components do not impair the effects of the embodiment of the present invention. Examples of such components include solvents and additives that are mixed in when the heteroaromatic compound layer is formed.
 複素芳香族化合物層は、粗化処理層を含む従来の表面処理層に比べて山部(凸部)が低い。すなわち、複素芳香族化合物層は、平滑性が高いということである。これは、粗化処理層を含む従来の表面処理層が、アンカー効果によって表面処理層と樹脂基材との間の接着性を向上させているのに対し、複素芳香族化合物層がアンカー効果による接着性の向上効果を得ることを目的としていないためである。すなわち、複素芳香族化合物層は、複素芳香族化合物の接着特性によって表面処理銅箔と樹脂基材との間の接着性を向上させているため、表面の山部が低くても、所望の接着性の向上効果を得ることができる。また、複素芳香族化合物層は、粗化処理層を含む従来の表面処理層に比べて、表面の平滑性が高いため、表皮効果による伝送損失を少なくすることができる。 The heteroaromatic compound layer has lower peaks (protrusions) than conventional surface treatment layers including roughened layers. In other words, the heteroaromatic compound layer has high smoothness. This is because the conventional surface treatment layers including roughened layers improve the adhesion between the surface treatment layer and the resin substrate by the anchor effect, whereas the heteroaromatic compound layer does not aim to obtain the effect of improving adhesion by the anchor effect. In other words, the heteroaromatic compound layer improves the adhesion between the surface-treated copper foil and the resin substrate by the adhesive properties of the heteroaromatic compound, so that even if the peaks on the surface are low, the desired effect of improving adhesion can be obtained. In addition, the heteroaromatic compound layer has a higher surface smoothness than conventional surface treatment layers including roughened layers, so that the transmission loss due to the skin effect can be reduced.
 表面の平滑性を表す指標の一つとして、Sp(最大山部高さ)を用いることができる。Spは表面の平均面からの高さの最大値を表す。Spは、ISO 25178-2:2012に規定される山高さのパラメータであり、Spが小さい表面というのは平滑な表面であるということができる。
 複素芳香族化合物層のSpは、0.10~1.00μmである。このような範囲にSpが制御された複素芳香族化合物層は平滑であるため、複素芳香族化合物の接着特性による表面処理銅箔と樹脂基材との間の接着性の向上効果を得ることができる。また、伝送損失の低減効果を得ることもできる。
 複素芳香族化合物層のSpは、上記の効果を安定して得る観点から、好ましくは0.10~0.85μm、より好ましくは0.10~0.78μm、更に好ましくは0.30~0.78μmである。
 なお、複素芳香族化合物層のSpは、ISO 25178-2:2012に準拠して測定することができる。
As one of the indices for expressing the smoothness of a surface, Sp (maximum peak height) can be used. Sp represents the maximum height of the surface from the mean plane. Sp is a peak height parameter defined in ISO 25178-2:2012, and a surface with a small Sp can be said to be a smooth surface.
The heteroaromatic compound layer has an Sp of 0.10 to 1.00 μm. The heteroaromatic compound layer having an Sp controlled within such a range is smooth, and therefore the adhesive properties of the heteroaromatic compound can improve the adhesiveness between the surface-treated copper foil and the resin substrate. In addition, the transmission loss can be reduced.
From the viewpoint of stably obtaining the above-mentioned effects, the heteroaromatic compound layer has a thickness Sp of preferably 0.10 to 0.85 μm, more preferably 0.10 to 0.78 μm, and further preferably 0.30 to 0.78 μm.
The Sp of the heteroaromatic compound layer can be measured in accordance with ISO 25178-2:2012.
 複素芳香族化合物層は、粗化処理層を含む従来の表面処理層に比べて、粗化粒子が存在しないため、表面の山部が少ない。このような複素芳香族化合物層の表面の山部の割合を表す指標としては、Vmp(山部の実体部体積)を用いることができる。Vmpは、ISO 25178-2:2012に規定される機能(体積)パラメータであり、複素芳香族化合物層の山部における実体部体積を表す。
 Vmpは、ISO 25178-2:2012に準拠し、表面性状粗さを測定し、測定データから算出した負荷曲線を解析することによって特定することができる。
 負荷曲線の説明をするにあたり、まず、負荷面積率について説明する。
 負荷面積率とは、立体的な測定対象物を、ある高さの面で切断した場合の測定対象物の断面に相当する領域を測定視野の面積で除して求められる割合のことである。なお、本開示において、測定対象物としては、銅箔や表面処理銅箔の複素芳香族化合物層などを想定している。負荷曲線は、各高さにおける負荷面積率を表した曲線である。負荷面積率0%付近は測定対象物の最も高い部分の高さを表し、負荷面積率100%付近の高さは測定対象物の最も低い部分の高さを表す。
The heteroaromatic compound layer has fewer peaks on its surface than conventional surface-treated layers including a roughening treatment layer because of the absence of roughening particles. As an index representing the proportion of peaks on the surface of such a heteroaromatic compound layer, Vmp (solid volume of peaks) can be used. Vmp is a functional (volume) parameter defined in ISO 25178-2:2012 and represents the solid volume of the peaks of the heteroaromatic compound layer.
Vmp can be determined in accordance with ISO 25178-2:2012 by measuring the surface roughness and analyzing the load curve calculated from the measurement data.
In explaining the load curve, first, the load area ratio will be explained.
The area ratio is a ratio obtained by dividing the area corresponding to the cross section of a three-dimensional object to be measured when the object is cut at a certain height by the area of the measurement field. In this disclosure, the object to be measured is assumed to be a copper foil or a heteroaromatic compound layer of a surface-treated copper foil. The load curve is a curve that represents the area ratio at each height. The area ratio near 0% represents the height of the highest part of the object to be measured, and the height near 100% represents the height of the lowest part of the object to be measured.
 次に、図1に負荷曲線の一例を示す。負荷曲線を活用して、複素芳香族化合物層の実体部体積及び空間部体積を表現することができる。実体部体積とは、測定視野において測定対象物の実体が占める部分の体積に相当し、空間部体積とは、測定視野における実体部分の間の空間が占める体積に相当する。負荷曲線においては、負荷面積率が10%及び80%の位置を境界として、谷部、コア部及び山部に分けられる。図1を参照しつつ、本発明の実施形態に係る複素芳香族化合物層に対応させて説明すると、Vvvは複素芳香族化合物層の谷部における空間部体積、Vvcは複素芳香族化合物層のコア部における空間部体積、Vmpは、複素芳香族化合物層の山部における実体部体積、Vmcは、複素芳香族化合物層のコア部における実体部体積をそれぞれ意味する。
 なお、山部とは、測定対象物の中でも高さが高い部分のことである。谷部とは、測定対象物の中でも高さが低い部分のことである。コア部とは、測定対象物のうち、山部と谷部以外の部分、すなわち、平均に近い高さの部分である。
Next, an example of the load curve is shown in FIG. 1. The load curve can be used to express the volume of the solid part and the volume of the space part of the heteroaromatic compound layer. The volume of the solid part corresponds to the volume of the part occupied by the substance of the object to be measured in the measurement field of view, and the volume of the space part corresponds to the volume occupied by the space between the solid parts in the measurement field of view. The load curve is divided into a valley part, a core part, and a peak part with the positions of the areal load ratio of 10% and 80% as the boundaries. With reference to FIG. 1, in the case of the heteroaromatic compound layer according to the embodiment of the present invention, Vvv means the volume of the space part in the valley part of the heteroaromatic compound layer, Vvc means the volume of the space part in the core part of the heteroaromatic compound layer, Vmp means the volume of the solid part in the peak part of the heteroaromatic compound layer, and Vmc means the volume of the solid part in the core part of the heteroaromatic compound layer.
The peaks are the high parts of the object, the valleys are the low parts, and the cores are the parts of the object that are not the peaks or valleys, that is, the parts that are close to the average height.
 山部における実体部体積Vmpは、山部、すなわち、測定対象物の高さが高い部分における実体部体積であり、複素芳香族化合物層の中でも高さが特に高い部分における実体部の体積を意味する。
 複素芳香族化合物層のVmpは、好ましくは0.001~0.010μm3/μm2、より好ましくは0.001~0.006μm3/μm2である。高さが特に高い部分における実体部体積であるVmpの範囲がこのような範囲であることは、複素芳香族化合物層が平滑であることを意味している。そして、このような範囲にVmpを制御することにより、複素芳香族化合物の接着特性による表面処理銅箔と樹脂基材との間の接着性の向上効果を得ることができる。また、伝送損失の低減効果を得ることもできる。
 なお、複素芳香族化合物層のVmpは、ISO 25178-2:2012に準拠して測定することができる。
The volume Vmp of the solid part in the peak portion is the volume of the solid part in the peak portion, i.e., the part where the height of the object to be measured is high, and means the volume of the solid part in the part where the height is particularly high in the heteroaromatic compound layer.
The Vmp of the heteroaromatic compound layer is preferably 0.001 to 0.010 μm 3 /μm 2 , more preferably 0.001 to 0.006 μm 3 /μm 2 . The range of Vmp, which is the solid volume in the particularly high part, means that the heteroaromatic compound layer is smooth. By controlling Vmp in this range, it is possible to obtain an effect of improving the adhesion between the surface-treated copper foil and the resin substrate due to the adhesive properties of the heteroaromatic compound. In addition, it is also possible to obtain an effect of reducing transmission loss.
The Vmp of the heteroaromatic compound layer can be measured in accordance with ISO 25178-2:2012.
 複素芳香族化合物層は、粗化処理層を含む従来の表面処理層に比べて、粗化粒子が存在しないため、平滑である。このような複素芳香族化合物層は、表面の谷部も浅くなる。谷部の深さを表す指標としては、Sv(谷部の最大谷深さ)を用いることができる。Svは、ISO 25178-2:2012に規定される高さパラメータであり、複素芳香族化合物層の表面の平均面からの高さの最小値を表す。
 複素芳香族化合物層のSvは、好ましくは1.50μm以下、より好ましくは0.10~1.25μm、更に好ましくは0.50~1.20μmである。このような範囲にSvを制御することにより、複素芳香族化合物の接着特性による表面処理銅箔と樹脂基材との間の接着性の向上効果を得ることができる。また、伝送損失の低減効果を得ることもできる。
 なお、複素芳香族化合物層のSvは、ISO 25178-2:2012に準拠して測定することができる。
The heteroaromatic compound layer is smoother than conventional surface treatment layers including a roughening treatment layer because of the absence of roughening particles. Such a heteroaromatic compound layer also has shallow valleys on the surface. Sv (maximum valley depth of the valley) can be used as an index representing the depth of the valleys. Sv is a height parameter defined in ISO 25178-2:2012 and represents the minimum height from the average plane of the surface of the heteroaromatic compound layer.
The Sv of the heteroaromatic compound layer is preferably 1.50 μm or less, more preferably 0.10 to 1.25 μm, and even more preferably 0.50 to 1.20 μm. By controlling the Sv within such a range, it is possible to obtain an effect of improving the adhesion between the surface-treated copper foil and the resin substrate due to the adhesive properties of the heteroaromatic compound. In addition, it is also possible to obtain an effect of reducing the transmission loss.
The Sv of the heteroaromatic compound layer can be measured in accordance with ISO 25178-2:2012.
 本発明の実施形態に係る表面処理銅箔は、銅箔と複素芳香族化合物層とが直接接触していることが好ましいが、本発明の実施形態の効果を阻害しない範囲において銅箔と複素芳香族化合物層との間に機能層が設けられていてもよい。機能層としては、例えば、耐熱処理層、防錆処理層、クロメート処理層などが挙げられる。 In the surface-treated copper foil according to the embodiment of the present invention, it is preferable that the copper foil and the heteroaromatic compound layer are in direct contact with each other, but a functional layer may be provided between the copper foil and the heteroaromatic compound layer as long as it does not impair the effects of the embodiment of the present invention. Examples of functional layers include a heat-resistant treatment layer, a rust-prevention treatment layer, and a chromate treatment layer.
 本発明の実施形態に係る表面処理銅箔の製造方法としては、特に限定されないが、例えば、次の方法によって製造することができる。
 まず、銅箔を当該技術分野において公知の方法によって製造する。例えば、銅箔として電解銅箔を用いる場合、硫酸銅めっき浴からチタン又はステンレスのドラム上に銅を電解析出させることによって一般に製造することができる。また、銅箔として、圧延銅箔を用いる場合、銅インゴットに対して均質化焼鈍、熱間圧延、冷間圧延、焼鈍などを順次行うことによって一般に製造することができる。或いは、銅箔は市販されているため、市販品を用いてもよい。ただし、市販品の銅箔を用いる場合、銅箔の表面に防錆剤や油などが付着している場合があるため、銅箔を脱脂及び酸洗する。これは、銅箔の表面に各種表面処理層が形成されていると、銅箔の表面に複素芳香族化合物層を形成し難くなるためである。
The method for producing the surface-treated copper foil according to the embodiment of the present invention is not particularly limited, but it can be produced, for example, by the following method.
First, the copper foil is produced by a method known in the art. For example, when an electrolytic copper foil is used as the copper foil, it can be generally produced by electrolytically depositing copper on a titanium or stainless steel drum from a copper sulfate plating bath. When a rolled copper foil is used as the copper foil, it can be generally produced by sequentially subjecting a copper ingot to homogenization annealing, hot rolling, cold rolling, annealing, etc. Alternatively, since copper foils are commercially available, a commercially available product may be used. However, when a commercially available copper foil is used, since rust inhibitors, oils, etc. may be attached to the surface of the copper foil, the copper foil is degreased and pickled. This is because if various surface treatment layers are formed on the surface of the copper foil, it becomes difficult to form a heteroaromatic compound layer on the surface of the copper foil.
 次に、複素芳香族化合物の塗布液を準備する。塗布液は、水などの溶媒や添加剤などを含むことができる。また、塗布液中の複素芳香族化合物の濃度は、使用する複素芳香族化合物の種類などに応じて調整すればよく、特に限定されないが、例えば0.1~10質量%である。
 次に、複素芳香族化合物の塗布液を銅箔の表面に塗布して乾燥させることにより、複素芳香族化合物層を形成する。塗布方法としては、特に限定されず、例えば、浸漬、スプレー塗布、カーテンフローコータ塗装、ロールコータ塗装、刷毛塗り、ローラブラシ塗りなどの各種方法を用いることができる。また、乾燥方法としては、特に限定されず、使用する溶媒の種類に応じて常温乾燥又は加熱乾燥を選択すればよい。複素芳香族化合物の塗布液の塗布及び乾燥は1回行えばよいが、所望の厚さの複素芳香族化合物層を形成するために複数回行ってもよい。
 なお、複素芳香族化合物層のSp、Vmp及びSvは、主として複素芳香族化合物層が形成される銅箔の表面の粗さを調整することによって制御することができる。銅箔の粗さは、銅箔の製造条件、複素芳香族化合物層形成前の脱脂条件や酸洗条件などを調整することによって制御することができる。
Next, a coating solution of a heteroaromatic compound is prepared. The coating solution may contain a solvent such as water, additives, etc. The concentration of the heteroaromatic compound in the coating solution may be adjusted depending on the type of the heteroaromatic compound used, and is not particularly limited, but is, for example, 0.1 to 10 mass %.
Next, the coating solution of the heteroaromatic compound is applied to the surface of the copper foil and dried to form a heteroaromatic compound layer. The coating method is not particularly limited, and various methods such as immersion, spray coating, curtain flow coater coating, roll coater coating, brush coating, and roller brush coating can be used. The drying method is also not particularly limited, and room temperature drying or heat drying can be selected depending on the type of solvent used. The coating solution of the heteroaromatic compound may be applied and dried once, but may be applied and dried multiple times to form a heteroaromatic compound layer of a desired thickness.
The Sp, Vmp and Sv of the heteroaromatic compound layer can be controlled mainly by adjusting the surface roughness of the copper foil on which the heteroaromatic compound layer is formed. The roughness of the copper foil can be controlled by adjusting the manufacturing conditions of the copper foil, the degreasing conditions before the formation of the heteroaromatic compound layer, the pickling conditions, etc.
 本発明の実施形態に係る表面処理銅箔は、特定の複素芳香族化合物を含む複素芳香族化合物層を有し、複素芳香族化合物層のSpを0.10~1.00μmに制御しているため、製造に要する時間及びコストを抑えつつ、樹脂基材、特に高周波用途に好適な樹脂基材との接着性を高めることができる。 The surface-treated copper foil according to an embodiment of the present invention has a heteroaromatic compound layer that contains a specific heteroaromatic compound, and the Sp of the heteroaromatic compound layer is controlled to 0.10 to 1.00 μm, which reduces the time and cost required for production while improving adhesion to resin substrates, particularly resin substrates suitable for high-frequency applications.
 本発明の実施形態に係る銅張積層板は、上記の表面処理銅箔と、この表面処理銅箔の複素芳香族化合物層に接着された樹脂基材とを備える。
 この銅張積層板は、上記の表面処理銅箔の複素芳香族化合物層に樹脂基材を接着することによって製造することができる。
 樹脂基材としては、特に限定されず、当該技術分野において公知のものを用いることができる。樹脂基材の例としては、紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂、ガラス布基材エポキシ樹脂、ポリエステルフィルム、ポリイミド樹脂、液晶ポリマー、フッ素樹脂などが挙げられる。これらの中でも樹脂基材はポリイミド樹脂が好ましい。また、樹脂基材は低誘電材料から形成されていてもよい。低誘電材料の例としては、液晶ポリマー、低誘電ポリイミドなどが挙げられる。
A copper-clad laminate according to an embodiment of the present invention comprises the above-mentioned surface-treated copper foil and a resin substrate adhered to the heteroaromatic compound layer of the surface-treated copper foil.
This copper-clad laminate can be produced by adhering a resin substrate to the heteroaromatic compound layer of the above-mentioned surface-treated copper foil.
The resin substrate is not particularly limited, and may be one known in the art. Examples of the resin substrate include paper-based phenolic resin, paper-based epoxy resin, synthetic fiber cloth-based epoxy resin, glass cloth/paper composite substrate epoxy resin, glass cloth/glass nonwoven fabric composite substrate epoxy resin, glass cloth-based epoxy resin, polyester film, polyimide resin, liquid crystal polymer, fluororesin, etc. Among these, the resin substrate is preferably polyimide resin. The resin substrate may be made of a low dielectric material. Examples of the low dielectric material include liquid crystal polymer, low dielectric polyimide, etc.
 表面処理銅箔と樹脂基材との接着方法としては、特に限定されず、当該技術分野において公知の方法に準じて行うことができる。例えば、表面処理銅箔と樹脂基材とを積層させて熱圧着すればよい。
 上記のようにして製造された銅張積層板は、プリント配線板の製造に用いることができる。
The method for bonding the surface-treated copper foil to the resin substrate is not particularly limited and may be any method known in the art. For example, the surface-treated copper foil and the resin substrate may be laminated and then thermocompressed.
The copper-clad laminate produced as described above can be used in the production of printed wiring boards.
 本発明の実施形態に係る銅張積層板は、上記の表面処理銅箔を用いているため、製造に要する時間及びコストを抑えつつ、樹脂基材、特に高周波用途に好適な樹脂基材と表面処理銅箔との間の接着性を高めることができる。 The copper-clad laminate according to an embodiment of the present invention uses the above-mentioned surface-treated copper foil, and therefore can enhance adhesion between a resin substrate, particularly a resin substrate suitable for high-frequency applications, and the surface-treated copper foil while reducing the time and cost required for production.
 本発明の実施形態に係るプリント配線板は、上記の銅張積層板の表面処理銅箔をエッチングして形成された回路パターンを備える。
 このプリント配線板は、上記の銅張積層板の表面処理銅箔をエッチングして回路パターンを形成することによって製造することができる。回路パターンの形成方法としては、特に限定されず、サブトラクティブ法、セミアディティブ法などの公知の方法を用いることができる。その中でも、回路パターンの形成方法はサブトラクティブ法が好ましい。
A printed wiring board according to an embodiment of the present invention includes a circuit pattern formed by etching the surface-treated copper foil of the above-mentioned copper-clad laminate.
This printed wiring board can be manufactured by etching the surface-treated copper foil of the copper-clad laminate to form a circuit pattern. The method for forming the circuit pattern is not particularly limited, and known methods such as the subtractive method and the semi-additive method can be used. Among them, the subtractive method is preferable as the method for forming the circuit pattern.
 サブトラクティブ法によってプリント配線板を製造する場合、次のようにして行うことが好ましい。まず、銅張積層板の表面処理銅箔の表面にレジストを塗布、露光及び現像することによって所定のレジストパターンを形成する。次に、レジストパターンが形成されていない部分(不要部)の表面処理銅箔をエッチングによって除去して回路パターンを形成する。最後に、表面処理銅箔上のレジストパターンを除去する。
 なお、このサブトラクティブ法における各種条件は、特に限定されず、当該技術分野において公知の条件に準じて行うことができる。
When a printed wiring board is manufactured by the subtractive method, it is preferably carried out as follows. First, a resist is applied to the surface of the surface-treated copper foil of a copper-clad laminate, and a predetermined resist pattern is formed by exposing and developing it. Next, the surface-treated copper foil in the portion where the resist pattern is not formed (unnecessary portion) is removed by etching to form a circuit pattern. Finally, the resist pattern on the surface-treated copper foil is removed.
The conditions for this subtractive method are not particularly limited, and the method can be carried out according to the conditions known in the art.
 本発明の実施形態に係るプリント配線板は、上記の銅張積層板を用いているため、製造に要する時間及びコストを抑えつつ、樹脂基材、特に高周波用途に好適な樹脂基材と回路パターンとの間の接着性を高めることができる。 The printed wiring board according to the embodiment of the present invention uses the above-mentioned copper-clad laminate, which reduces the time and cost required for production while improving adhesion between the resin substrate, particularly a resin substrate suitable for high-frequency applications, and the circuit pattern.
 以下、本発明の実施形態を実施例によって更に具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。 The following provides a more detailed explanation of the embodiments of the present invention using examples, but the present invention is not limited to these examples.
(実施例1)
 銅箔として市販の圧延銅箔(JX金属株式会社製HA-V2;厚さ12μm)を準備し、銅箔の両面を脱脂及び酸洗した。脱脂は、20g/LのGNクリーナー87(JX金属商事株式会社)水溶液中、電流密度11.3A/dm2、時間8.6秒の条件で圧延銅箔の表面を電気分解することにより実施した。また、酸洗は20g/Lの硫酸水溶液中に30秒浸漬することにより実施した。
 次に、複素芳香族化合物として下記式(1)で表されるベンゾトリアゾールを用い、ベンゾトリアゾールの水溶液(塗布液)を準備した。水溶液中のベンゾトリアゾールの濃度は1質量%とした。
Example 1
A commercially available rolled copper foil (HA-V2 manufactured by JX Metals Corporation; thickness 12 μm) was prepared as the copper foil, and both sides of the copper foil were degreased and pickled. The degreasing was performed by electrolyzing the surface of the rolled copper foil in a 20 g/L aqueous solution of GN Cleaner 87 (JX Metals Trading Corporation) under conditions of a current density of 11.3 A/ dm2 and a time of 8.6 seconds. The pickling was performed by immersing the foil in a 20 g/L aqueous solution of sulfuric acid for 30 seconds.
Next, an aqueous solution of benzotriazole (coating liquid) was prepared using benzotriazole represented by the following formula (1) as a heteroaromatic compound: The concentration of benzotriazole in the aqueous solution was 1% by mass.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 次に、銅箔をベンゾトリアゾールの水溶液に30秒浸漬した後、水洗し、ドライヤーで乾燥させた。このようにして銅箔の表面にベンゾトリアゾール層(複素芳香族化合物層)が形成された表面処理銅箔を得た。 Then, the copper foil was immersed in an aqueous solution of benzotriazole for 30 seconds, rinsed with water, and dried with a dryer. In this way, a surface-treated copper foil was obtained in which a benzotriazole layer (heteroaromatic compound layer) was formed on the surface of the copper foil.
(実施例2)
 複素芳香族化合物として下記式(2)で表されるインダゾールを用いたこと以外は、実施例1と同様の条件によって、銅箔の表面にインダゾール層(複素芳香族化合物層)が形成された表面処理銅箔を得た。
Example 2
A surface-treated copper foil having an indazole layer (heteroaromatic compound layer) formed on the surface of the copper foil was obtained under the same conditions as in Example 1, except that an indazole represented by the following formula (2) was used as the heteroaromatic compound.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(実施例3)
 複素芳香族化合物として下記式(3)で表されるベンゾイミダゾールを用いたこと以外は、実施例1と同様の条件によって、銅箔の表面にベンゾイミダゾール層(複素芳香族化合物層)が形成された表面処理銅箔を得た。
Example 3
A surface-treated copper foil having a benzimidazole layer (heteroaromatic compound layer) formed on the surface of the copper foil was obtained under the same conditions as in Example 1, except that benzimidazole represented by the following formula (3) was used as the heteroaromatic compound.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(実施例4)
 複素芳香族化合物として下記式(4)で表されるインドールを用いたこと以外は、実施例1と同様の条件によって、銅箔の表面にインドール層(複素芳香族化合物層)が形成された表面処理銅箔を得た。
Example 4
A surface-treated copper foil having an indole layer (heteroaromatic compound layer) formed on the surface of the copper foil was obtained under the same conditions as in Example 1, except that indole represented by the following formula (4) was used as the heteroaromatic compound.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(実施例5)
 複素芳香族化合物として下記式(5)で表されるトリアゾロピリジンを用いたこと以外は、実施例1と同様の条件によって、銅箔の表面にトリアゾロピリジン層(複素芳香族化合物層)が形成された表面処理銅箔を得た。
Example 5
A surface-treated copper foil having a triazolopyridine layer (heteroaromatic compound layer) formed on the surface of the copper foil was obtained under the same conditions as in Example 1, except that a triazolopyridine represented by the following formula (5) was used as the heteroaromatic compound.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(実施例6)
 複素芳香族化合物として下記式(6)で表される1-メチルベンゾトリアゾールを用いたこと以外は、実施例1と同様の条件によって、銅箔の表面に1-メチルベンゾトリアゾール層(複素芳香族化合物層)が形成された表面処理銅箔を得た。
Example 6
A surface-treated copper foil having a 1-methylbenzotriazole layer (heteroaromatic compound layer) formed on the surface of the copper foil was obtained under the same conditions as in Example 1, except that 1-methylbenzotriazole represented by the following formula (6) was used as the heteroaromatic compound.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(実施例7)
 複素芳香族化合物として下記式(7)で表される5-メチルベンゾトリアゾールを用いたこと以外は、実施例1と同様の条件によって、銅箔の表面に5-メチルベンゾトリアゾール層(複素芳香族化合物層)が形成された表面処理銅箔を得た。
(Example 7)
A surface-treated copper foil having a 5-methylbenzotriazole layer (heteroaromatic compound layer) formed on the surface of the copper foil was obtained under the same conditions as in Example 1, except that 5-methylbenzotriazole represented by the following formula (7) was used as the heteroaromatic compound.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(実施例8)
 複素芳香族化合物として下記式(8)で表される1,2,3-トリアゾールを用いたこと以外は、実施例1と同様の条件によって、銅箔の表面に1,2,3-トリアゾール層(複素芳香族化合物層)が形成された表面処理銅箔を得た。
(Example 8)
A surface-treated copper foil having a 1,2,3-triazole layer (heteroaromatic compound layer) formed on the surface of the copper foil was obtained under the same conditions as in Example 1, except that 1,2,3-triazole represented by the following formula (8) was used as the heteroaromatic compound.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(比較例1)
 市販の圧延銅箔(JX金属株式会社製HA-V2;厚さ12μm)の両面を脱脂及び酸洗したもの(複素芳香族化合物層を形成していない銅箔)を比較サンプルとした。なお、脱脂及び酸洗は、実施例1と同じ条件で行った。
(Comparative Example 1)
A comparative sample was prepared by degreasing and pickling both sides of a commercially available rolled copper foil (HA-V2 manufactured by JX Nippon Mining & Metals Corporation; thickness 12 μm) (copper foil without a heteroaromatic compound layer). The degreasing and pickling were carried out under the same conditions as in Example 1.
(比較例2)
 市販の圧延銅箔(JX金属株式会社製HA-V2;厚さ12μm)の両面を実施例1と同じ条件で脱脂及び酸洗した。
 次に、銅箔の表面に粗化処理層、防錆層及びシランカップリング処理層を順次形成することによって表面処理銅箔を得た。各層を形成するための条件は、下記の通りとした。
(Comparative Example 2)
Both sides of a commercially available rolled copper foil (HA-V2 manufactured by JX Metals Corporation; thickness 12 μm) were degreased and pickled under the same conditions as in Example 1.
Next, a roughening layer, an anticorrosive layer, and a silane coupling treatment layer were successively formed on the surface of the copper foil to obtain a surface-treated copper foil. The conditions for forming each layer were as follows:
 <粗化処理層>
 電気めっきによって粗化処理層を形成した。電気めっきは3段階に分けて行った。なお、めっき液組成及び電流密度は、基本的に小数点第一位を四捨五入した値である。
 (1段目の条件)
 めっき液組成:11g/LのCu、50g/Lの硫酸 
 めっき液温度:27℃
 電気めっき条件:電流密度40A/dm2、時間1.4秒
 (2段目の条件)
 めっき液組成:20g/LのCu、100g/Lの硫酸 
 めっき液温度:50℃
 電気めっき条件:電流密度5A/dm2、時間2.0秒
 (3段目の条件)
 めっき液組成:16g/LのCu、8g/LのCo、10g/LのNi
 めっき液pH:2.4
 めっき液温度:36℃
 電気めっき条件:電流密度32A/dm2、時間0.2秒
<Roughened Treatment Layer>
The roughened layer was formed by electroplating. The electroplating was performed in three stages. The plating solution composition and current density were basically rounded off to the first decimal place.
(First stage conditions)
Plating solution composition: 11 g/L Cu, 50 g/L sulfuric acid
Plating solution temperature: 27°C
Electroplating conditions: current density 40 A/ dm2 , time 1.4 seconds (second stage conditions)
Plating solution composition: 20 g/L Cu, 100 g/L sulfuric acid
Plating solution temperature: 50°C
Electroplating conditions: current density 5 A/ dm2 , time 2.0 seconds (third stage conditions)
Plating solution composition: 16 g/L Cu, 8 g/L Co, 10 g/L Ni
Plating solution pH: 2.4
Plating solution temperature: 36°C
Electroplating conditions: current density 32 A/dm 2 , time 0.2 seconds
 <防錆層>
 電気めっきによって防錆層を形成した。電気めっきは3段階に分けて行った。
 (1段目の条件)
 めっき液組成:3g/LのCo、13g/LのNi
 めっき液pH:2.0
 めっき液温度:50℃
 電気めっき条件:電流密度2A/dm2、時間0.8秒
 (2段目の条件)
 めっき液組成:5g/LのZn、24g/LのNi
 めっき液pH:3.6
 めっき液温度:40℃
 電気めっき条件:電流密度4A/dm2、時間0.4秒
 (3段目の条件)
 めっき液組成:3g/LのK2Cr27、0.3g/LのZn
 めっき液pH:3.7
 めっき液温度:55℃
 電気めっき条件:電流密度3A/dm2、時間0.8秒
<Anti-rust layer>
The anti-corrosive layer was formed by electroplating, which was carried out in three stages.
(First stage conditions)
Plating solution composition: 3 g/L Co, 13 g/L Ni
Plating solution pH: 2.0
Plating solution temperature: 50°C
Electroplating conditions: current density 2 A/dm 2 , time 0.8 seconds (second stage conditions)
Plating solution composition: 5 g/L Zn, 24 g/L Ni
Plating solution pH: 3.6
Plating solution temperature: 40°C
Electroplating conditions: current density 4 A/ dm2 , time 0.4 seconds (third stage conditions)
Plating solution composition: 3 g/L K2Cr2O7 , 0.3 g /L Zn
Plating solution pH: 3.7
Plating solution temperature: 55°C
Electroplating conditions: current density 3 A/dm 2 , time 0.8 seconds
 <シランカップリング処理層>
 N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン(信越化学工業株式会社製KBM603)の4.0体積%水溶液(pH:10.4)を塗布し、乾燥させることでシランカップリング処理層を形成した。
<Silane coupling treatment layer>
A 4.0% by volume aqueous solution (pH: 10.4) of N-2-(aminoethyl)-3-aminopropyltrimethoxysilane (KBM603, manufactured by Shin-Etsu Chemical Co., Ltd.) was applied and dried to form a silane coupling treatment layer.
(比較例3)
 市販の圧延銅箔(JX金属株式会社製HA-V2;厚さ12μm)の両面を実施例1と同じ条件で脱脂及び酸洗した。
 次に、銅箔の表面に粗化処理層、耐熱層、クロメート処理層及びシランカップリング処理層を順次形成することによって表面処理銅箔を得た。各層を形成するための条件は下記の通りとした。
(Comparative Example 3)
Both sides of a commercially available rolled copper foil (HA-V2 manufactured by JX Metals Corporation; thickness 12 μm) were degreased and pickled under the same conditions as in Example 1.
Next, a roughening treatment layer, a heat-resistant layer, a chromate treatment layer and a silane coupling treatment layer were successively formed on the surface of the copper foil to obtain a surface-treated copper foil. The conditions for forming each layer were as follows.
 <粗化処理層>
 電気めっきによって粗化処理層を形成した。電気めっきは2段階に分けて行った。
 (1段目の条件)
 めっき液組成:11g/LのCu、50g/Lの硫酸 
 めっき液温度:25℃
 電気めっき条件:電流密度42.7A/dm2、時間1.4秒
 (2段目の条件)
 めっき液組成:20g/LのCu、100g/Lの硫酸 
 めっき液温度:50℃
 電気めっき条件:電流密度3.8A/dm2、時間2.8秒
<Roughened Treatment Layer>
The roughened layer was formed by electroplating, which was carried out in two stages.
(First stage conditions)
Plating solution composition: 11 g/L Cu, 50 g/L sulfuric acid
Plating solution temperature: 25°C
Electroplating conditions: current density 42.7 A/ dm2 , time 1.4 seconds (second stage conditions)
Plating solution composition: 20 g/L Cu, 100 g/L sulfuric acid
Plating solution temperature: 50°C
Electroplating conditions: current density 3.8 A/dm 2 , time 2.8 seconds
 <耐熱層>
 電気めっきによって耐熱層を形成した。
 めっき液組成:23.5g/LのNi、4.5g/LのZn
 めっき液pH:3.6
 めっき液温度:40℃
 電気めっき条件:電流密度1.1A/dm2、時間0.7秒
<Heat-resistant layer>
The heat-resistant layer was formed by electroplating.
Plating solution composition: 23.5 g/L Ni, 4.5 g/L Zn
Plating solution pH: 3.6
Plating solution temperature: 40°C
Electroplating conditions: current density 1.1 A/dm 2 , time 0.7 seconds
 <クロメート処理層>
 電気めっきによってクロメート処理層を形成した。
 めっき液組成:3.0g/LのK2Cr27、0.33g/LのZn
 めっき液pH:3.6
 めっき液温度:50℃
 電気めっき条件:電流密度2.1A/dm2、時間1.4秒
<Chromate Treatment Layer>
The chromate treatment layer was formed by electroplating.
Plating solution composition: 3.0 g/L K2Cr2O7 , 0.33 g/L Zn
Plating solution pH: 3.6
Plating solution temperature: 50°C
Electroplating conditions: current density 2.1 A/dm 2 , time 1.4 seconds
 <シランカップリング処理層>
 N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン(信越化学工業株式会社製KBM603)の1.2体積%水溶液(pH:10)を塗布し、乾燥させることでシランカップリング処理層を形成した。
<Silane coupling treatment layer>
A 1.2% by volume aqueous solution (pH: 10) of N-2-(aminoethyl)-3-aminopropyltrimethoxysilane (KBM603, manufactured by Shin-Etsu Chemical Co., Ltd.) was applied and dried to form a silane coupling treatment layer.
 上記の実施例及び比較例で得られた表面処理銅箔又は銅箔について、下記の特性評価を行った。
<Sp、Vmp及びSv>
 オリンパス株式会社製のレーザー顕微鏡(LEXT OLS4000)を用いて画像撮影を行った。撮影した画像の解析は、オリンパス株式会社製のレーザー顕微鏡(LEXT OLS4100)の解析ソフトを用いて行った。Sp、Vmp及びSvの測定はISO 25178-2:2012にそれぞれ準拠して行った。また、これらの測定結果は、任意の3か所で測定した値の平均値を測定結果とした。なお、測定時の温度は23~25℃とした。また、レーザー顕微鏡及び解析ソフトにおける主要な設定条件は下記の通りである。
 対物レンズ:MPLAPON50XLEXT(倍率:50倍、開口数:0.95、液浸タイプ:空気、機械的鏡筒長:∞、カバーガラス厚:0、視野数:FN18)
 光学ズーム倍率:1倍
 走査モード:XYZ高精度(高さ分解能:60nm、取込みデータの画素数:1024×1024)
 取込み画像サイズ[画素数]:横257μm×縦258μm[1024×1024]
(横方向に測定するため、評価長さとしては257μmに相当)
 DIC:オフ
 マルチレイヤー:オフ
 レーザー強度:100
 オフセット:0
 コンフォーカルレベル:0
 ビーム径絞り:オフ
 画像平均:1回
 ノイズリダクション:オン
 輝度むら補正:オン
 光学的ノイズフィルタ:オン
 カットオフ:λc=200μm、λs及びλfは無し
 フィルタ:ガウシアンフィルタ
 ノイズ除去:測定前処理
 表面(傾き)補正:実施
 明るさ:30~50の範囲になるように調整する
 明るさは測定対象の色調によって適宜設定すべき値である。上記の設定はL*が-69~-10、a*が2~32、b*が2~21の表面処理銅箔の表面を測定する際に適切な値である。
The surface-treated copper foils or copper foils obtained in the above Examples and Comparative Examples were subjected to the following property evaluations.
<Sp, Vmp and Sv>
Images were taken using a laser microscope (LEXT OLS4000) manufactured by Olympus Corporation. The captured images were analyzed using analysis software for a laser microscope (LEXT OLS4100) manufactured by Olympus Corporation. Measurements of Sp, Vmp and Sv were performed in accordance with ISO 25178-2:2012. The measurement results were the average values measured at any three locations. The temperature during measurement was 23 to 25°C. The main settings of the laser microscope and analysis software were as follows.
Objective lens: MPLAPON50XLEXT (magnification: 50x, numerical aperture: 0.95, immersion type: air, mechanical lens barrel length: ∞, cover glass thickness: 0, field of view: FN18)
Optical zoom magnification: 1x Scanning mode: XYZ high precision (height resolution: 60nm, number of pixels of captured data: 1024 x 1024)
Captured image size [number of pixels]: 257 μm horizontal x 258 μm vertical [1024 x 1024]
(Since the measurement is performed in the horizontal direction, the evaluation length corresponds to 257 μm.)
DIC: Off Multilayer: Off Laser Intensity: 100
Offset: 0
Confocal level: 0
Beam diameter aperture: Off Image averaging: 1 time Noise reduction: On Brightness unevenness correction: On Optical noise filter: On Cutoff: λc = 200 μm, λs and λf are none Filter: Gaussian filter Noise removal: Pre-measurement processing Surface (tilt) correction: Implemented Brightness: Adjust to be in the range of 30 to 50 Brightness is a value that should be set appropriately depending on the color tone of the object to be measured. The above settings are appropriate values when measuring the surface of surface-treated copper foil with L* of -69 to -10, a* of 2 to 32, and b* of 2 to 21.
<測定対象の色調の測定>
 測定器としてHunterLab社製のMiniScan(登録商標)EZ Model 4000Lを用い、JIS Z8730:2009に準拠してCIE L*a*b*表色系のL*、a*及びb*の測定を行った。具体的には、上記の実施例及び比較例で得られた表面処理銅箔又は銅箔の測定対象面を測定器の感光部に押し当て、外から光が入らないようにしつつ測定した。また、L*、a*及びb*の測定は、JIS Z8722:2009の幾何条件Cに基づいて行った。なお、測定器の主な条件は下記の通りである。
 光学系:d/8°、積分球サイズ:63.5mm、観察光源:D65
 測定方式:反射
 照明径:25.4mm
 測定径:20.0mm
 測定波長・間隔:400~700nm・10nm
 光源:パルスキセノンランプ・1発光/測定
 トレーサビリティ標準:CIE 44及びASTM E259に基づく、米国標準技術研究所(NIST)準拠校正
 標準観察者:10°
 また、測定基準となる白色タイルは、下記の物体色のものを使用した。
 D65/10°にて測定した場合に、CIE XYZ表色系での値がX:81.90、Y:87.02、Z:93.76
<Measurement of color tone of object>
The measurement was performed using a MiniScan (registered trademark) EZ Model 4000L manufactured by HunterLab Co., Ltd., in accordance with JIS Z8730:2009 to measure L*, a*, and b* of the CIE L*a*b* color system. Specifically, the surface-treated copper foil or copper foil to be measured obtained in the above examples and comparative examples was pressed against the photosensitive part of the measurement device, and measurements were performed while preventing light from entering from the outside. The measurements of L*, a*, and b* were performed based on the geometric condition C of JIS Z8722:2009. The main conditions of the measurement device are as follows.
Optical system: d/8°, integrating sphere size: 63.5 mm, observation light source: D65
Measurement method: Reflection Lighting diameter: 25.4 mm
Measurement diameter: 20.0 mm
Measurement wavelength/interval: 400-700 nm/10 nm
Light source: Pulsed xenon lamp, 1 emission/measurement Traceability standard: National Institute of Standards and Technology (NIST) calibration based on CIE 44 and ASTM E259 Standard observer: 10°
The white tiles used as the measurement standards were the following object colors:
When measured at D65/10°, the CIE XYZ color system values are X: 81.90, Y: 87.02, and Z: 93.76.
<ピール強度>
 表面処理銅箔を低誘電材料から形成された樹脂基材と貼り合わせた後、幅3mmの回路をMD方向(圧延銅箔の長手方向)に形成した。回路の形成は通常の方法に則って実施した。次に、回路(表面処理銅箔)を樹脂基材の表面に対して、50mm/分の速度で90°方向に、すなわち、LCP基材の表面に対して鉛直上向きに、引き剥がすときの強さ(MD90°ピール強度)をJIS C6471:1995に準拠して測定した。測定は3回行い、その平均値をピール強度の結果とした。ピール強度は、0.50kgf/cm以上であれば、回路(表面処理銅箔)とLCP基材との接着性が良好であるといえる。
<Peel strength>
After laminating the surface-treated copper foil with a resin substrate made of a low dielectric material, a circuit with a width of 3 mm was formed in the MD direction (the longitudinal direction of the rolled copper foil). The formation of the circuit was carried out according to a normal method. Next, the strength (MD 90° peel strength) when the circuit (surface-treated copper foil) was peeled off from the surface of the resin substrate at a speed of 50 mm/min in a 90° direction, i.e., vertically upward from the surface of the LCP substrate, was measured in accordance with JIS C6471:1995. The measurement was carried out three times, and the average value was taken as the peel strength result. If the peel strength is 0.50 kgf/cm or more, it can be said that the adhesion between the circuit (surface-treated copper foil) and the LCP substrate is good.
 上記の特性評価の結果を表1に示す。 The results of the above characteristic evaluation are shown in Table 1.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表1に示されるように、複素芳香族化合物層を形成し、そのSpが0.10~1.00μmの範囲にある実施例1~8の表面処理銅箔は、粗化処理層などの表面処理層を形成した比較例2の表面処理銅箔と同程度のピール強度を有しており、LCP基材と表面処理銅箔との接着性が良好であった。
 これに対して複素芳香族化合物層を形成していない比較例1の銅箔は、ピール強度が低かった。また、比較例3は、比較例2と比較して粗化が小さいため、ピール強度が低くなったと考えられる。
 上記の結果は驚くべきことである。既に述べたように、銅箔とLCP基材などの樹脂基材との接着性向上は、一般的には粗化粒子を含む表面処理層を形成することによって行われている。本発明の実施形態においては、表面が平滑な複素芳香族化合物層の存在により、LCP基材などの樹脂基材との接着性が十分担保されている。
As shown in Table 1, the surface-treated copper foils of Examples 1 to 8, which had a heteroaromatic compound layer and an Sp in the range of 0.10 to 1.00 μm, had peel strengths comparable to those of the surface-treated copper foil of Comparative Example 2, which had a surface treatment layer such as a roughening layer, and had good adhesion between the LCP substrate and the surface-treated copper foil.
In contrast, the copper foil of Comparative Example 1, which did not have a heteroaromatic compound layer, had a low peel strength. Also, the copper foil of Comparative Example 3 had a smaller roughening than that of Comparative Example 2, which is thought to be the reason for the low peel strength.
The above results are surprising. As already mentioned, the adhesion between copper foil and a resin substrate such as an LCP substrate is generally improved by forming a surface treatment layer containing roughening particles. In the embodiment of the present invention, the presence of a heteroaromatic compound layer having a smooth surface sufficiently ensures the adhesion to the resin substrate such as an LCP substrate.
 以上の結果からわかるように、本発明の実施形態によれば、製造に要する時間及びコストを抑えつつ、樹脂基材、特に高周波用途に好適な樹脂基材との接着性を高めることが可能な表面処理銅箔を提供することができる。また、本発明の実施形態によれば、製造に要する時間及びコストを抑えつつ、樹脂基材、特に高周波用途に好適な樹脂基材と表面処理銅箔との間の接着性に優れた銅張積層板を提供することができる。さらに、本発明の実施形態によれば、製造に要する時間及びコストを抑えつつ、樹脂基材、特に高周波用途に好適な樹脂基材と回路パターンとの間の接着性に優れたプリント配線板を提供することができる。 As can be seen from the above results, according to an embodiment of the present invention, it is possible to provide a surface-treated copper foil that can enhance adhesion to a resin substrate, particularly a resin substrate suitable for high frequency applications, while reducing the time and cost required for production. Furthermore, according to an embodiment of the present invention, it is possible to provide a copper-clad laminate that has excellent adhesion between a resin substrate, particularly a resin substrate suitable for high frequency applications, and the surface-treated copper foil, while reducing the time and cost required for production. Furthermore, according to an embodiment of the present invention, it is possible to provide a printed wiring board that has excellent adhesion between a resin substrate, particularly a resin substrate suitable for high frequency applications, and a circuit pattern, while reducing the time and cost required for production.
 本発明の実施形態は、以下の態様をとることもできる。
<1>
 銅箔と、前記銅箔の少なくとも一方の面に形成された複素芳香族化合物層とを有し、
 前記複素芳香族化合物層は、ヘテロ原子として窒素原子を含む複素環を有する複素芳香族化合物を含み、Spが0.10~1.00μmである表面処理銅箔。
<2>
 前記複素環が1~3個の窒素原子を含む5員環である、上記<1>に記載の表面処理銅箔。
<3>
 前記複素芳香族化合物が、ベンゼン環と前記複素環との縮合環化合物、2つ以上の前記複素環の縮合環化合物、又は前記複素環の単環化合物である、上記<1>又は<2>に記載の表面処理銅箔。
<4>
 前記複素芳香族化合物が、ベンゾトリアゾール、インダゾール、ベンゾイミダゾール、インドール、トリアゾロピリジン、1-メチルベンゾトリアゾール、5-メチルベンゾトリアゾール、及び1,2,3-トリアゾールからなる群から選択される1種以上である、上記<1>~<3>のいずれか一つに記載の表面処理銅箔。
<5>
 前記Spが0.10~0.85μmである、上記<1>~<4>のいずれか一つに記載の表面処理銅箔。
<6>
 前記Spが0.10~0.78μmである、上記<5>に記載の表面処理銅箔。
<7>
 前記Spが0.30~0.78μmである、上記<5>に記載の表面処理銅箔。
<8>
 前記複素芳香族化合物層は、Vmpが0.001~0.010μm3/μm2である、上記<1>~<7>のいずれか一つに記載の表面処理銅箔。
<9>
 前記Vmpが0.001~0.006μm3/μm2である、上記<8>に記載の表面処理銅箔。
<10>
 上記<1>~<9>のいずれか一つに記載の表面処理銅箔と、前記表面処理銅箔の前記複素芳香族化合物層に接着された樹脂基材とを備える銅張積層板。
<11>
 上記<10>に記載の銅張積層板の前記表面処理銅箔をエッチングして形成された回路パターンを備えるプリント配線板。
The embodiment of the present invention may take the following aspects.
<1>
A copper foil and a heteroaromatic compound layer formed on at least one surface of the copper foil,
The heteroaromatic compound layer contains a heteroaromatic compound having a heterocycle containing a nitrogen atom as a heteroatom, and the surface-treated copper foil has an Sp of 0.10 to 1.00 μm.
<2>
The surface-treated copper foil according to the above-mentioned <1>, wherein the heterocycle is a 5-membered ring containing 1 to 3 nitrogen atoms.
<3>
The surface-treated copper foil according to the above item <1> or <2>, wherein the heteroaromatic compound is a condensed ring compound of a benzene ring and the heterocycle, a condensed ring compound of two or more of the heterocycles, or a monocyclic compound of the heterocycle.
<4>
The heteroaromatic compound is at least one selected from the group consisting of benzotriazole, indazole, benzimidazole, indole, triazolopyridine, 1-methylbenzotriazole, 5-methylbenzotriazole, and 1,2,3-triazole. The surface-treated copper foil according to any one of <1> to <3> above.
<5>
The surface-treated copper foil according to any one of the above <1> to <4>, wherein the Sp is 0.10 to 0.85 μm.
<6>
The surface-treated copper foil according to the above item <5>, wherein the Sp is 0.10 to 0.78 μm.
<7>
The surface-treated copper foil according to the above <5>, wherein the Sp is 0.30 to 0.78 μm.
<8>
The surface-treated copper foil according to any one of the above <1> to <7>, wherein the heteroaromatic compound layer has a Vmp of 0.001 to 0.010 μm 3 /μm 2 .
<9>
The surface-treated copper foil according to the above item <8>, wherein the Vmp is 0.001 to 0.006 μm 3 /μm 2 .
<10>
A copper-clad laminate comprising the surface-treated copper foil according to any one of <1> to <9> above and a resin substrate bonded to the heteroaromatic compound layer of the surface-treated copper foil.
<11>
A printed wiring board comprising a circuit pattern formed by etching the surface-treated copper foil of the copper-clad laminate according to <10> above.

Claims (11)

  1.  銅箔と、前記銅箔の少なくとも一方の面に形成された複素芳香族化合物層とを有し、
     前記複素芳香族化合物層は、ヘテロ原子として窒素原子を含む複素環を有する複素芳香族化合物を含み、Spが0.10~1.00μmである表面処理銅箔。
    A copper foil and a heteroaromatic compound layer formed on at least one surface of the copper foil,
    The heteroaromatic compound layer contains a heteroaromatic compound having a heterocycle containing a nitrogen atom as a heteroatom, and the surface-treated copper foil has an Sp of 0.10 to 1.00 μm.
  2.  前記複素環が1~3個の窒素原子を含む5員環である、請求項1に記載の表面処理銅箔。 The surface-treated copper foil according to claim 1, wherein the heterocycle is a five-membered ring containing 1 to 3 nitrogen atoms.
  3.  前記複素芳香族化合物が、ベンゼン環と前記複素環との縮合環化合物、2つ以上の前記複素環の縮合環化合物、又は前記複素環の単環化合物である、請求項1に記載の表面処理銅箔。 The surface-treated copper foil according to claim 1, wherein the heteroaromatic compound is a condensed ring compound of a benzene ring and the heterocycle, a condensed ring compound of two or more of the heterocycles, or a monocyclic compound of the heterocycle.
  4.  前記複素芳香族化合物が、ベンゾトリアゾール、インダゾール、ベンゾイミダゾール、インドール、トリアゾロピリジン、1-メチルベンゾトリアゾール、5-メチルベンゾトリアゾール、及び1,2,3-トリアゾールからなる群から選択される1種以上である、請求項1に記載の表面処理銅箔。 The surface-treated copper foil according to claim 1, wherein the heteroaromatic compound is at least one selected from the group consisting of benzotriazole, indazole, benzimidazole, indole, triazolopyridine, 1-methylbenzotriazole, 5-methylbenzotriazole, and 1,2,3-triazole.
  5.  前記Spが0.10~0.85μmである、請求項3に記載の表面処理銅箔。 The surface-treated copper foil according to claim 3, wherein the Sp is 0.10 to 0.85 μm.
  6.  前記Spが0.10~0.78μmである、請求項3に記載の表面処理銅箔。 The surface-treated copper foil according to claim 3, wherein the Sp is 0.10 to 0.78 μm.
  7.  前記Spが0.30~0.78μmである、請求項3に記載の表面処理銅箔。 The surface-treated copper foil according to claim 3, wherein the Sp is 0.30 to 0.78 μm.
  8.  前記複素芳香族化合物層は、Vmpが0.001~0.010μm3/μm2である、請求項1~7のいずれか一項に記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 7, wherein the heteroaromatic compound layer has a Vmp of 0.001 to 0.010 µm 3 /µm 2 .
  9.  前記Vmpが0.001~0.006μm3/μm2である、請求項8に記載の表面処理銅箔。 The surface-treated copper foil according to claim 8, wherein said Vmp is 0.001 to 0.006 μm 3 /μm 2 .
  10.  請求項8に記載の表面処理銅箔と、前記表面処理銅箔の前記複素芳香族化合物層に接着された樹脂基材とを備える銅張積層板。 A copper-clad laminate comprising the surface-treated copper foil according to claim 8 and a resin substrate bonded to the heteroaromatic compound layer of the surface-treated copper foil.
  11.  請求項10に記載の銅張積層板の前記表面処理銅箔をエッチングして形成された回路パターンを備えるプリント配線板。 A printed wiring board having a circuit pattern formed by etching the surface-treated copper foil of the copper-clad laminate described in claim 10.
PCT/JP2023/035030 2022-11-29 2023-09-26 Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board WO2024116580A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-190453 2022-11-29
JP2022190453 2022-11-29

Publications (1)

Publication Number Publication Date
WO2024116580A1 true WO2024116580A1 (en) 2024-06-06

Family

ID=91323507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035030 WO2024116580A1 (en) 2022-11-29 2023-09-26 Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board

Country Status (1)

Country Link
WO (1) WO2024116580A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266241A (en) * 1985-05-21 1986-11-25 株式会社日立製作所 Surface treating method of copper
JPS6453495A (en) * 1987-08-25 1989-03-01 Toshiba Chem Corp Substrate for multilayer printed wiring
JPH08311658A (en) * 1995-05-17 1996-11-26 Nippon Parkerizing Co Ltd Composition for surface treatment of copper based metallic material
JP2006253424A (en) * 2005-03-10 2006-09-21 Nikko Kinzoku Kk Method of manufacturing printed wiring board
JP2011108848A (en) * 2009-11-17 2011-06-02 Ube Nitto Kasei Co Ltd Metal foil with insulation function membrane, flexible metal cladded laminated plate, electronic component mounting module, and manufacturing method thereof
WO2014017183A1 (en) * 2012-07-24 2014-01-30 三井金属鉱業株式会社 Electrode foil and organic light-emitting device
JP2016151046A (en) * 2015-02-17 2016-08-22 四国化成工業株式会社 Surface treatment agent, resin composition, and use of the same
WO2017130721A1 (en) * 2016-01-27 2017-08-03 株式会社新技術研究所 Copper or copper alloy article comprising surface-modifying polyester resin and manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266241A (en) * 1985-05-21 1986-11-25 株式会社日立製作所 Surface treating method of copper
JPS6453495A (en) * 1987-08-25 1989-03-01 Toshiba Chem Corp Substrate for multilayer printed wiring
JPH08311658A (en) * 1995-05-17 1996-11-26 Nippon Parkerizing Co Ltd Composition for surface treatment of copper based metallic material
JP2006253424A (en) * 2005-03-10 2006-09-21 Nikko Kinzoku Kk Method of manufacturing printed wiring board
JP2011108848A (en) * 2009-11-17 2011-06-02 Ube Nitto Kasei Co Ltd Metal foil with insulation function membrane, flexible metal cladded laminated plate, electronic component mounting module, and manufacturing method thereof
WO2014017183A1 (en) * 2012-07-24 2014-01-30 三井金属鉱業株式会社 Electrode foil and organic light-emitting device
JP2016151046A (en) * 2015-02-17 2016-08-22 四国化成工業株式会社 Surface treatment agent, resin composition, and use of the same
WO2017130721A1 (en) * 2016-01-27 2017-08-03 株式会社新技術研究所 Copper or copper alloy article comprising surface-modifying polyester resin and manufacturing method

Similar Documents

Publication Publication Date Title
US7691487B2 (en) Electrodeposited copper foil with carrier foil
WO2019208522A1 (en) Surface-treated copper foil, copper clad laminate, and printed wiring board
KR102274906B1 (en) Copper foil and copper clad laminate having the same
JP7114499B2 (en) Surface treated copper foil, copper clad laminate and printed wiring board
JP4709575B2 (en) Copper foil roughening treatment method and roughening treatment liquid
TWI747088B (en) Surface treatment copper foil, copper clad laminate and printed wiring board
WO2024116580A1 (en) Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board
WO2024116579A1 (en) Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board
WO2024116581A1 (en) Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board
JP7300976B2 (en) Surface treated copper foil, copper clad laminate and printed wiring board
TW202421859A (en) Surface treatment of copper foil, copper clad laminates and printed wiring boards
TW202421846A (en) Surface treatment of copper foil, copper clad laminates and printed wiring boards
WO2024070245A1 (en) Surface-treated copper foil, copper-clad laminate plate, and printed wiring board
WO2024070246A1 (en) Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board
KR20220013547A (en) Surface-treated copper foil, copper clad laminate and printed wiring board
WO2023281773A1 (en) Surface-treated copper foil, copper-clad laminate and printed wiring board
WO2024070247A1 (en) Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board
WO2023281776A1 (en) Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board
WO2023281774A1 (en) Surface-treated copper foil, copper-clad laminate and printed wiring board
WO2024070248A1 (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board
WO2022154102A1 (en) Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board
TW202415155A (en) Surface treated copper foil, copper clad laminates and printed wiring boards
WO2023281778A1 (en) Surface-treated copper foil, copper-clad laminate board, and printed wiring board
WO2023281777A1 (en) Surface-treated copper foil, copper-clad laminate plate, and printed wiring board
WO2023281775A1 (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board