WO2024116571A1 - Adhesive composition - Google Patents

Adhesive composition Download PDF

Info

Publication number
WO2024116571A1
WO2024116571A1 PCT/JP2023/034529 JP2023034529W WO2024116571A1 WO 2024116571 A1 WO2024116571 A1 WO 2024116571A1 JP 2023034529 W JP2023034529 W JP 2023034529W WO 2024116571 A1 WO2024116571 A1 WO 2024116571A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive composition
acid
adhesive
composition according
group
Prior art date
Application number
PCT/JP2023/034529
Other languages
French (fr)
Japanese (ja)
Inventor
武久 家根
哲生 川楠
隆幸 米澤
正也 柿本
真 山本
Original Assignee
東洋紡エムシー株式会社
住友電気工業株式会社
住友電工プリントサーキット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡エムシー株式会社, 住友電気工業株式会社, 住友電工プリントサーキット株式会社 filed Critical 東洋紡エムシー株式会社
Priority to CN202380045192.5A priority Critical patent/CN119317682A/en
Publication of WO2024116571A1 publication Critical patent/WO2024116571A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J179/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09J161/00 - C09J177/00
    • C09J179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09J179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to an adhesive composition that combines a polyimide resin and a curing agent, and more specifically, to an adhesive composition that has excellent adhesion, insulation reliability, and solder heat resistance, and is suitable for flexible printed wiring board applications such as copper-clad laminates, coverlay films, and adhesive sheets.
  • Flexible printed circuit boards are circuit boards that are widely used in electronic devices that require flexibility and space-saving features, such as smartphones, tablets, and digital cameras. As devices become smaller and more sophisticated, the number of components mounted on them increases, and flexible printed circuit boards are required to form wiring at a finer pitch than before.
  • Polyimide resins are one of the materials used in flexible printed wiring boards. Polyimide resins are mainly synthesized from aromatic monomers, and because they exhibit high heat resistance, insulating reliability, and mechanical strength, they are used as base films for copper-clad laminates and coverlay films.
  • adhesives are required for copper-clad laminates made by bonding a base film to copper foil for wiring, coverlay films to protect circuits, and adhesive sheets for bonding boards together, and the production process requires the use of heat-curing adhesives.
  • polyimide resins made from aromatic monomers have a high glass transition temperature, making it difficult to bond them together using a normal heat press, and therefore difficult to use as adhesives.
  • polyimide resins as adhesives while maintaining their characteristics such as heat resistance, insulating reliability, and mechanical strength
  • methods are being investigated that involve copolymerizing long-chain monomers and oligomers such as aliphatic ones to impart fluidity and flexibility when bonding, and then combining them with a curing agent.
  • Patent Document 1 proposes using modified polyamideimide, a polyimide resin in which siloxane containing an amine, a reactive functional group, has been introduced to the molecular chain end, as the main component of the adhesive.
  • Patent Document 2 proposes using modified polyamideimide, a polyimide resin in which acrylonitrile-butadiene rubber containing a carboxylic acid, a reactive functional group, has been introduced to the molecular chain end, as the main component of the adhesive.
  • the polyimide resin with the siloxane structure described in Patent Document 1 requires the use of a starting material with a very expensive siloxane bond to impart a level of flexibility that allows its use as an adhesive, and is therefore less economical. There was also concern that the adhesiveness of the resin would decrease as the amount of siloxane structure introduced increased. In addition, in order to achieve sufficient adhesiveness with the modified polyamideimide described in Patent Document 2, it is necessary to introduce a large amount of acrylonitrile-butadiene rubber, and as a result, insulation reliability decreases due to the influence of moisture absorption by the nitrile in the acrylonitrile-butadiene rubber, making it difficult to use for wiring with a narrow pitch. Therefore, in applications for flexible printed wiring boards, a polyimide resin that can be used as an adhesive is desired, but conventional technology has not been able to obtain a resin that satisfies both adhesiveness and insulation reliability at the same time.
  • the present invention was made to solve the problems of the conventional technology described above, and its purpose is to provide an adhesive composition that is suitable for use in flexible printed wiring boards and that simultaneously satisfies the adhesive properties, insulation reliability, and solder heat resistance.
  • the inventors conducted extensive research to achieve the above-mentioned objective, and discovered that introducing a dimer acid as a long-chain monomer constituting a polyimide resin and further introducing an acid dianhydride compound having an ester group or ether group can provide fluidity and flexibility during lamination without using a highly hygroscopic raw material such as acrylonitrile-butadiene rubber, and thus the present invention was completed.
  • the present invention comprises the following configurations [1] to [9].
  • An adhesive composition comprising an imide group-containing resin (A) and an epoxy resin (B), wherein the imide group-containing resin (A) has an acid dianhydride compound (C) having an ester group or an ether group, and a dimer acid (D) as structural units.
  • the acid dianhydride compound (C) is an alkylene glycol bisanhydrotrimellitate.
  • E phosphorus-based flame retardant
  • a copper-clad laminate comprising an insulating plastic film and a copper foil laminated on at least one surface of the insulating plastic film via the adhesive composition according to any one of [1] to [3].
  • a coverlay film comprising an adhesive layer made of the adhesive composition according to any one of [1] to [3] and an insulating plastic film laminated thereon.
  • An adhesive sheet comprising an adhesive layer made of the adhesive composition according to any one of [1] to [3] and a peelable protective film laminated thereon.
  • a flexible printed wiring board comprising a layer made of the adhesive composition according to any one of [1] to [3].
  • the adhesive composition of the present invention can simultaneously exhibit excellent adhesion, high insulation reliability, and solder heat resistance. Therefore, the adhesive composition of the present invention can be suitably used as an adhesive for flexible printed wiring boards.
  • the adhesive composition of the present invention since the adhesive composition of the present invention has high insulation reliability after curing and high fluidity before curing, it can be suitably used as a coverlay film and lamination adhesive film for flexible printed wiring boards for fine pitches with narrow wiring spacing between circuits and flexible printed wiring boards for coils that generate strong magnetic forces.
  • the adhesive composition of the present invention contains an imide group-containing resin (A), an epoxy resin (B), and, if necessary, a flame retardant, and is characterized in that the imide group-containing resin (A) has, as structural units, an acid dianhydride compound (C) having an ester group or an ether group (hereinafter also referred to as the acid dianhydride compound (C) or simply as the (C) component), and a dimer acid (D).
  • an imide group-containing resin (A) has, as structural units, an acid dianhydride compound (C) having an ester group or an ether group (hereinafter also referred to as the acid dianhydride compound (C) or simply as the (C) component), and a dimer acid (D).
  • the imide group-containing resin (A) is a resin having imide groups as a repeating unit, and refers to a so-called polyimide resin.
  • the resin may also have other bonds, such as amide groups, urethane groups, ester groups, and ether groups, as repeating units.
  • the acid dianhydride compound (C) having an ester group or an ether group has the effect of enhancing the interaction between the adhesive and the surface of the adherend due to the polarity of the ester group or ether group when the resulting imide group-containing resin (A) is used as an adhesive composition, thereby enabling the adhesive to exhibit stronger adhesive strength. As a result, it also has the effect of making peeling and swelling less likely to occur in solder heat resistance evaluation.
  • Examples of the acid dianhydride compound (C) having an ester group include alkylene glycol bisanhydrotrimellitates such as ethylene glycol bisanhydrotrimellitate, propylene glycol bisanhydrotrimellitate, 1,4-butanediol bisanhydrotrimellitate, hexamethylene glycol bisanhydrotrimellitate, polyethylene glycol bisanhydrotrimellitate, and polypropylene glycol bisanhydrotrimellitate.
  • Examples of the acid dianhydride compound (C) having an ether group include 4,4'-(4,4'-isopropylidenediphenoxy)diphthalic dianhydride and oxydiphthalic dianhydride.
  • the copolymerization amount of the (C) component is preferably 1 to 80 mol%, more preferably 10 to 60 mol%, and even more preferably 15 to 50 mol%, when the total amount of polycarboxylic acid components constituting the imide group-containing resin (A) is taken as 100 mol%. If the amount of copolymerization of component (C) is less than the lower limit, the adhesiveness may be poor, and if it is more than the upper limit, the raw material cost may become high, which may be industrially disadvantageous.
  • Dimer acid (D) is a dicarboxylic acid having 36 carbon atoms produced by dimerization of an unsaturated fatty acid having 18 carbon atoms.
  • dimer acid (D) one in which the unsaturated bond has been hydrogenated can also be used.
  • Aromatic polyimide resins have poor fluidity and flexibility during the adhesive bonding process, making it difficult to obtain sufficient adhesive strength.
  • the imide group-containing resin (A) used in the present invention is copolymerized with dimer acid (D) as a structural unit, and the aliphatic chain imparts fluidity and flexibility to the resin, allowing it to fill in unevenness on the adherend surface during thermocompression bonding, thereby improving adhesion.
  • the copolymerization amount of dimer acid (D) is preferably 1 to 80 mol%, more preferably 10 to 70 mol%, and even more preferably 30 to 60 mol%, when the total amount of polycarboxylic acid components constituting the imide group-containing resin (A) is taken as 100 mol%. If the copolymerization amount of dimer acid (D) is less than the lower limit, adhesion may be poor, and if it is more than the upper limit, the imide group-containing resin may not have good heat resistance.
  • the imide group-containing resin (A) may have a polycarboxylic acid component other than the above-mentioned (C) component and dimer acid (D).
  • a polycarboxylic acid component it is preferable to use a polycarboxylic acid component having an aromatic ring from the viewpoint of improving the heat resistance of the obtained imide group-containing resin (A) and adhesive composition.
  • polycarboxylic acid components having an aromatic ring examples include trimellitic anhydride, pyromellitic dianhydride, benzophenone tetracarboxylic dianhydride, biphenyl tetracarboxylic dianhydride, naphthalene tetracarboxylic dianhydride, diphenyl sulfone tetracarboxylic dianhydride, perylene tetracarboxylic dianhydride, (hexafluoroisopropylidene) diphthalic anhydride, terephthalic acid, isophthalic acid, orthophthalic acid, and naphthalenedicarboxylic acid. These may be used alone or in combination.
  • the copolymerization amount of the polycarboxylic acid component having an aromatic ring is preferably 20 to 90 mol%, more preferably 30 to 80 mol%, and even more preferably 40 to 70 mol%, when the total amount of polycarboxylic acid components constituting the imide group-containing resin (A) is taken as 100 mol%. Note that if the acid dianhydride compound (C) has an aromatic ring, it is included in this calculation.
  • polycarboxylic acid component In addition to the polycarboxylic acid components having an aromatic ring already described, aliphatic or alicyclic polycarboxylic acids or monoanhydrides or dianhydrides of polycarboxylic acids can be used as the polycarboxylic acid component to the extent that the effects of the present invention are not impaired.
  • any of the above-mentioned polycarboxylic acid components having an aromatic ring may be hydrogenated, meso-butane-1,2,3,4-tetracarboxylic acid dianhydride, pentane-1,2,4,5-tetracarboxylic acid dianhydride, cyclobutane tetracarboxylic acid dianhydride, cyclopentane tetracarboxylic acid dianhydride, cyclohex-1-ene-2,3,5,6-tetracarboxylic acid dianhydride, cyclohexane dicarboxylic acid, succinic acid, glutaric acid, adipic acid, heptanedioic acid, octanedioic acid, azelaic acid, sebacic acid, undecadioic acid, dodecanedioic acid, 2-methylsuccinic acid, etc. may be used alone or in combination.
  • the imide group-containing resin (A) can be obtained by polymerizing a polycarboxylic acid component and an amine component or an isocyanate component as the main raw materials.
  • the amine component can be a compound with an amino group having two or more functionalities
  • the isocyanate component can be a compound with an isocyanate group having two or more functionalities.
  • the isocyanate component constituting the imide group-containing resin (A) one having an aromatic ring is preferable from the viewpoint of improving the heat resistance of the adhesive composition, and examples thereof include diphenylmethane-4,4'-diisocyanate and its structural isomers, as well as dimethyldiphenylmethane diisocyanate, diethyldiphenylmethane diisocyanate, dimethoxydiphenylmethane diisocyanate, diphenylether diisocyanate, benzophenone diisocyanate, diphenylsulfone diisocyanate, tolylene diisocyanate, xylylene diisocyanate, naphthalene diisocyanate, 4,4'-[2,2-bis(4-phenoxyphenyl)propane]diisocyanate, dimethylbiphenyl diisocyanate, diethylbiphenyl diisocyanate, dimethoxybiphenyl di
  • an aliphatic or alicyclic isocyanate component or amine component can be used as the isocyanate component or amine component to the extent that the effect of the present invention is not impaired.
  • any of the isocyanate components or amine components having an aromatic ring described above that have been hydrogenated isophorone diisocyanate, 1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, ethylene diisocyanate, propylene diisocyanate, hexamethylene diisocyanate, etc.
  • the amine component can be any of these isocyanate components in which the isocyanate group has been replaced with an amino group. These may be used alone or in combination. From the viewpoint of the heat resistance and flame retardancy of the resulting adhesive composition using the imide group-containing resin (A), the copolymerization amount of these components is preferably 50 mol% or less, and more preferably 20 mol% or less, when the total amount of isocyanate components and amine components is taken as 100 mol%.
  • a compound having three or more functional groups with the imide group-containing resin (A).
  • examples include polyfunctional carboxylic acids such as trimesic acid, dicarboxylic acids having a hydroxyl group such as 5-hydroxyisophthalic acid, dicarboxylic acids having an amino group such as 5-aminoisophthalic acid, compounds having three or more hydroxyl groups such as glycerin and polyglycerin, and compounds having three or more amino groups such as tris(2-aminoethyl)amine.
  • the amount of copolymerization is preferably 20 mol% or less when the total amount of all polycarboxylic acid components, or the total amount of all isocyanate components and all amine components is taken as 100 mol%. If it exceeds 20 mol%, there is a risk of gelation or the generation of insoluble matter during resin polymerization.
  • the imide group-containing resin (A) can be copolymerized with polyesters, polyethers, polycarbonates, polysiloxanes, etc., as components that impart flexibility to the resulting resin, to an extent that does not impair the effects of the present invention.
  • the copolymerization amount of these components in the imide group-containing resin (A) is large, there is a risk that the heat resistance, insulation reliability, and economic efficiency will be impaired, so it is preferable that the copolymerization amount of these components is 10 mol % or less when the total amount of all polycarboxylic acid components, or the total amount of all isocyanate components, and the total amount of all amine components is taken as 100 mol %.
  • the content of the imide group-containing resin (A) in the adhesive composition of the present invention is preferably 1 to 80 mass %, and more preferably 10 to 70 mass %, assuming that the entire non-volatile content of the adhesive composition is 100 mass %. If the content of the imide group-containing resin is too low, the adhesive composition will contain less high molecular weight components, which may make it brittle and difficult to handle. On the other hand, if the content of the imide group-containing resin is too high, the proportion of the epoxy resin, which is a thermosetting component, will decrease, which may result in insufficient curing and reduced heat resistance.
  • the imide group-containing resin (A) can be produced by known methods such as a method of reacting a polycarboxylic acid component with an isocyanate component (isocyanate method), a method of reacting a polycarboxylic acid component with an amine component to form an amic acid and then ring-closing the amic acid (direct method), or a method of reacting a compound having a carboxylic acid anhydride and a carboxylic acid chloride with an amine component (acid chloride method).
  • isocyanate method is advantageous in that the by-product carbon dioxide is removed from the system as a gas.
  • imide group-containing resins typically using the isocyanate method
  • imide group-containing resins can also be produced using the direct method and acid chloride method by using compounds that contain the corresponding amine components or carboxylic acid chlorides.
  • the polymerization reaction of the imide group-containing resin (A) can be carried out by stirring the polycarboxylic acid component and the isocyanate component in a solvent while heating them to 60°C to 200°C.
  • the molar ratio of the polycarboxylic acid component/isocyanate component is preferably in the range of 90/100 to 100/90.
  • the content (copolymerization amount) of the polycarboxylic acid component and the isocyanate component in the imide group-containing resin is the same as the ratio of each component during polymerization.
  • catalysts such as alkali metals such as sodium fluoride, potassium fluoride, and sodium methoxide, amines such as triethylenediamine, triethylamine, 1,8-diazabicyclo[5,4,0]-7-undecene, and 1,5-diazabicyclo[4,3,0]-5-nonene, and dibutyltin dilaurate can be used.
  • the amount of these catalysts is too small, the desired catalytic effect will not be fully achieved, and if the amount is too large, side reactions may occur, so it is preferable to use 0.01 to 5 mol%, and more preferably 0.1 to 3 mol%, of the polycarboxylic acid component or the isocyanate component, whichever is larger, taken as 100 mol%.
  • Solvents that can be used in the polymerization reaction of the imide group-containing resin (A) include, for example, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-butyl-2-pyrrolidone, ⁇ -butyrolactone, dimethylimidazolidinone, dimethylsulfoxide, dimethylformamide, dimethylacetamide, cyclohexanone, and cyclopentanone.
  • N-methyl-2-pyrrolidone or dimethylacetamide is preferred because of the solubility of the resulting imide group-containing resin and the efficiency of the polymerization reaction.
  • the non-volatile content and solution viscosity can be adjusted by diluting with the solvent used in the polymerization reaction or another low-boiling point solvent. These may be used alone or in combination.
  • Low boiling point solvents for dilution include aromatic solvents such as toluene and xylene, aliphatic solvents such as hexane, heptane, and octane, alcohol solvents such as methanol, ethanol, propanol, butanol, and isopropanol, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and cyclopentanone, ether solvents such as diethyl ether and tetrahydrofuran, and ester solvents such as ethyl acetate, butyl acetate, and isobutyl acetate.
  • aromatic solvents such as toluene and xylene
  • aliphatic solvents such as hexane, heptane, and octane
  • alcohol solvents such as methanol, ethanol, propanol,
  • the adhesive composition of the present invention contains an epoxy resin (B).
  • an epoxy resin (B) By using a combination of the imide group-containing resin (A) and the epoxy resin (B), the state in which the imide group-containing resin (A), which has excellent heat resistance, is sufficiently adhered to a substrate can be strengthened by reaction with the epoxy resin (B), and excellent solder heat resistance is imparted, making the adhesive composition suitable as an adhesive for flexible printed wiring board applications.
  • the epoxy resin (B) may be modified with silicone, urethane, polyimide, polyamide, etc., and may contain sulfur atoms, nitrogen atoms, etc. in the molecular skeleton.
  • the epoxy resin (B) include bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, and bisphenol S type epoxy resin, novolac type epoxy resins such as phenol novolac type epoxy resin and cresol novolac type epoxy resin, alicyclic epoxy resins such as hexahydrophthalic acid glycidyl ester, hydrogenated products of the bisphenol type epoxy resins, and hydrogenated products of the novolac type epoxy resins, linear aliphatic epoxy resins such as dimer acid glycidyl ester, epoxidized polybutadiene, and epoxidized soybean oil.
  • the epoxy equivalent of the epoxy resin (B) is preferably 100 to 300 g/eq, and more preferably 150 to 200 g/eq.
  • the type of epoxy resin (B) is preferably one having an aromatic ring, and bisphenol-type epoxy resins and novolac-type epoxy resins are more preferred.
  • epoxy resins (B) include, for example, bisphenol A type epoxy resins such as jER828 and 1001 manufactured by Mitsubishi Chemical Corporation, hydrogenated bisphenol A type epoxy resins such as ST-2004 and 2007 manufactured by Nippon Steel Chemical & Material Co., Ltd., bisphenol F type epoxy resins such as EXA-9726 manufactured by DIC Corporation and YDF-170 and 2004 manufactured by Nippon Steel Chemical & Material Co., Ltd., phenolic resins such as jER152 and 154 manufactured by Mitsubishi Chemical Corporation and DEN-438 manufactured by The Dow Chemical Company.
  • Volac type epoxy resins dicyclopentadiene type epoxy resins such as HP7200 and HP7200H manufactured by DIC Corporation, YDCN-700 series manufactured by Nippon Steel Chemical & Material Co., Ltd., cresol novolac type epoxy resins such as EOCN-125S, 103S, and 104S manufactured by Nippon Kayaku Co., Ltd., flexible epoxy resins such as YD-171 manufactured by Nippon Steel Chemical & Material Co., Ltd., Epon 1031S manufactured by Mitsubishi Chemical Corporation, Araldite 0163 manufactured by BASF Japan Ltd., Nagase Chemtec Co., Ltd.
  • epoxy resins examples include polyfunctional epoxy resins such as DENACOL EX-611, EX-614, EX-622, EX-512, EX-521, EX-421, EX-411, and EX-321 manufactured by Nippon Steel Corporation; heterocycle-containing epoxy resins such as EPICOAT 604 manufactured by Mitsubishi Chemical Corporation, YH-434 manufactured by Nippon Steel Chemical & Material Co., Ltd., and Araldite PT810 manufactured by BASF Japan Ltd.; alicyclic epoxy resins such as CELLOXIDE 2021 and EHPE3150 manufactured by Daicel Chemical Industries, Ltd., and ERL4234 manufactured by UCC Corporation; Examples of such epoxy resins include bisphenol S type epoxy resins such as Epiclon EXA-1514 (trade name) manufactured by Nissan Chemical Industries, Ltd., triglycidyl isocyanurates such as TEPIC (trade name) manufactured by Nissan Chemical Industries, Ltd., bixylenol type epoxy resins such as YX-4000 (trade name)
  • the content of the epoxy resin (B) in the adhesive composition of the present invention is preferably 1 to 50 mass %, and more preferably 10 to 40 mass %, assuming that the entire non-volatile content of the adhesive composition is 100 mass %. If the epoxy resin content is too low, sufficient thermosetting properties cannot be obtained, and as a result, the heat resistance of the adhesive composition may be poor. If the epoxy resin content is too high, the flexibility of the adhesive composition may be impaired, reducing the adhesive strength, or the insulation reliability may be reduced due to impurities contained in the epoxy resin.
  • a flame retardant can be added to the adhesive composition of the present invention for the purpose of imparting flame retardancy.
  • the flame retardant used in the present invention is not limited, but is preferably non-halogen-based from an environmental perspective.
  • non-halogen flame retardants include nitrogen-based and metal hydroxide flame retardants
  • phosphorus-based flame retardants (E) are preferred because of their excellent flame retardant effect.
  • the phosphorus-based flame retardant (E) is not particularly limited as long as it contains a phosphorus atom in its structure, but phosphinic acid derivatives and phosphazene-based flame retardants are preferred from the standpoints of hydrolysis resistance, heat resistance, and low bleed-out properties.
  • the content of the flame retardant in the adhesive composition of the present invention is preferably 1 to 50 mass% of the non-volatile content of the adhesive composition, and more preferably 10 to 40 mass%. If the content of the flame retardant is low, sufficient flame retardancy may not be obtained, and if the content of the flame retardant is high, the heat resistance, adhesion, and insulation reliability of the adhesive composition may be reduced.
  • Phosphinic acid derivatives that are preferred are phenanthrene-type phosphinic acid derivatives, such as 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (manufactured by Sanko Co., Ltd., product name: HCA), 10-benzyl-10-hydro-9-oxa-10-phosphaphenanthrene-10-oxide (manufactured by Sanko Co., Ltd., product name: BCA), 10-(2,5-dihydroxyphenyl)-10H-9-oxa-10-phosphaphenanthrene-10-oxide (manufactured by Sanko Co., Ltd., product name: HCA-HQ), and XZ-92741 manufactured by Olin.
  • phenanthrene-type phosphinic acid derivatives such as 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (manufactured by Sanko Co., Ltd., product name
  • the phosphazene flame retardant is represented by the following general formula (1) or (2) (wherein X may be the same or different and is hydrogen, a hydroxyl group, an amino group, an alkyl group, an aryl group, a phenoxy group, an allyl group, a cyanophenoxy group, a hydroxyphenoxy group, or the like, and n is an integer of 3 to 25).
  • phosphazene flame retardants include, for example, cyclic phenoxyphosphazene (manufactured by Otsuka Chemical Co., Ltd., product names: SPB-100, SPE-100), cyclic cyanophenoxyphosphazene (manufactured by Fushimi Pharmaceutical Co., Ltd., product name: FP-300), and cyclic hydroxyphenoxyphosphazene (manufactured by Otsuka Chemical Co., Ltd., product name: SPH-100).
  • cyclic phenoxyphosphazene manufactured by Otsuka Chemical Co., Ltd., product names: SPB-100, SPE-100
  • cyclic cyanophenoxyphosphazene manufactured by Fushimi Pharmaceutical Co., Ltd., product name: FP-300
  • cyclic hydroxyphenoxyphosphazene manufactured by Otsuka Chemical Co., Ltd., product name: SPH-100
  • the phosphorus-based flame retardant (E) it is preferable to use in combination (i) a phosphorus-based flame retardant that does not have a functional group that reacts with an epoxy group, and (ii) a phosphorus-based flame retardant that has a functional group that reacts with an epoxy group, especially a phosphorus-based flame retardant that has two or more functional groups that react with an epoxy group.
  • the ratio of the phosphorus-based flame retardants (i) and (ii) is preferably 1:9 to 9:1, more preferably 2:8 to 8:2, by mass. If there is too much phosphorus-based flame retardant (i), the insulation reliability may decrease, and if there is too much phosphorus-based flame retardant (ii), the adhesion may decrease.
  • Phosphorus-based flame retardants that do not have a functional group that reacts with epoxy groups are not incorporated into the crosslinked structure during heat curing, and therefore play a role in imparting flexibility to the adhesive after heat curing.
  • flame retardants include the aforementioned cyclic phenoxyphosphazene (manufactured by Otsuka Chemical Co., Ltd., product names: SPB-100, SPE-100), cyclic cyanophenoxyphosphazene (manufactured by Fushimi Pharmaceutical Co., Ltd., product name: FP-300), 10-benzyl-10-hydro-9-oxa-10-phosphaphenanthrene-10-oxide (manufactured by Sanko Co., Ltd., product name: BCA), and phosphate ester-based flame retardants (manufactured by Daihachi Chemical Co., Ltd., product name: PX-200).
  • Phosphorus-based flame retardants that have a functional group that reacts with epoxy groups are incorporated into the crosslinked structure during heat curing, and thus play a role in suppressing bleed-out and preventing a decrease in heat resistance.
  • the aforementioned cyclic hydroxyphenoxyphosphazene manufactured by Otsuka Chemical Co., Ltd., product name: SPH-100
  • 10-(2,5-dihydroxyphenyl)-10-H-9-oxa-10-phosphaphenanthrene-10-oxide manufactured by Sanko Co., Ltd., product name HCA-HQ
  • Olin's XZ-92741 fall into this category.
  • there is only one functional group that reacts with epoxy it becomes the end of the crosslinked structure and cuts the network, so there is a possibility that the effect of not reducing heat resistance (ii) will be insufficient.
  • phosphorus-based flame retardants may be used alone or in combination of two or more types as necessary, as long as the flame retardancy, solder heat resistance, and low bleed-out properties are not impaired.
  • the adhesive composition of the present invention may contain an additional curing agent for curing the epoxy resin (B) or a curing catalyst for promoting the reaction between the epoxy resin (B) and the imide group-containing resin, as long as the properties are not impaired.
  • a curing agent is not particularly limited as long as it is a compound that reacts with the epoxy resin (B), and examples thereof include amine-based curing agents, compounds having a phenolic hydroxyl group, compounds having a carboxylic acid, and compounds having an acid anhydride. These curing agents are used to adjust the functional group equivalent between the epoxy resin (B) and the imide group-containing resin.
  • the curing catalyst is not particularly limited as long as it promotes the reaction between the epoxy resin (B) and the imide group-containing resin and the curing agent.
  • imidazole derivatives such as 2MZ, 2E4MZ, C11Z, C17Z, 2PZ, 1B2MZ, 2MZ-CN, 2E4MZ-CN, C11Z-CN, 2PZ-CN, 2PHZ-CN, 2MZ-CNS, 2E4MZ-CNS, 2PZ-CNS, 2MZ-AZINE, 2E4MZ-AZINE, C11Z-AZINE, 2MA-OK, 2P4MHZ, 2PHZ, and 2P4BHZ manufactured by Shikoku Chemical Industry Co., Ltd.; guanamines such as acetoguanamine and benzoguanamine; diaminodiphenylmethane, m-phenylenediamine, m- Xylylenediamine, diaminodiphenylsulfone,
  • curing agent and curing catalyst examples include quaternary ammonium salts such as tetraphenylammonium chloride, the polycarboxylic acid anhydrides, diphenyliodonium tetrafluoroborate, triphenylsulfonium hexafluoroantimonate, 2,4,6-triphenylthiopyrylium hexafluorophosphate, photocationic polymerization catalysts such as Irgacure 261 (manufactured by Ciba Specialty Chemicals Co., Ltd.) and Optomer SP-170 (manufactured by ADEKA Corporation), styrene-maleic anhydride resins, equimolar reactants of phenylisocyanate and dimethylamine, and equimolar reactants of organic polyisocyanates such as tolylene diisocyanate and isophorone diisocyanate and dimethylamine.
  • quaternary ammonium salts such as t
  • a silane coupling agent can be added to the adhesive composition of the present invention to improve adhesion.
  • Specific examples include aminosilane, mercaptosilane, vinylsilane, epoxysilane, methacrylsilane, isocyanatesilane, ketiminesilane, or mixtures or reactants thereof, or compounds obtained by reacting these with polyisocyanates.
  • silane coupling agents include aminosilanes such as 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldimethoxysilane, 3-aminopropylethyldiethoxysilane, bistrimethoxysilylpropylamine, bistriethoxysilylpropylamine, bismethoxydimethoxysilylpropylamine, bisethoxydiethoxysilylpropylamine, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2-(aminoethyl)-3-aminopropyltriethoxysilane, and N-2-(aminoethyl)-3-aminopropylethyldiethoxysilane; mercapto
  • silane coupling agent examples include methacrylsilanes such as epoxy silane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, and 3-methacryloxypropyltriethoxysilane; isocyanate silanes such as isocyanatepropyltriethoxysilane and isocyanatepropyltrimethoxysilane; and ketimine silanes such as ketimine propyltrimethoxysilane and ketimine propyltriethoxysilane. These may be used alone or in combination of two or more.
  • methacrylsilanes such as epoxy silane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, and 3-methacryloxypropyltrieth
  • epoxy silane has a reactive epoxy group and can react with an imide group-containing resin, so it is preferable in terms of improving heat resistance and moist heat resistance.
  • the amount of the silane coupling agent is preferably 0 to 3 mass%, and more preferably 0 to 2 mass%, when the entire non-volatile content of the resin composition is 100 mass%. If the amount exceeds the above range, the heat resistance tends to decrease.
  • the adhesive composition of the present invention may contain an organic or inorganic filler for the purpose of improving the solder heat resistance, as long as the effect of the present invention is not impaired.
  • organic filler include powders of heat-resistant resins such as polyimide and polyamideimide.
  • inorganic fillers examples include silica (SiO 2 ), alumina (Al 2 O 3 ), titania (TiO 2 ), tantalum oxide (Ta 2 O 5 ), zirconia (ZrO 2 ), silicon nitride (Si 3 N 4 ), barium titanate (BaO.TiO 2 ), barium carbonate (BaCO 3 ), lead titanate (PbO.TiO 2 ), lead zirconate titanate (PZT), lead lanthanum zirconate titanate (PLZT), gallium oxide (Ga 2 O 3 ), spinel (MgO.Al 2 O 3 ), mullite (3Al 2 O 3.2SiO 2 ), cordierite (2MgO.2Al 2 O 3.5SiO 2 ), talc (3MgO.4SiO 2.H 2 O), aluminum titanate (TiO 2 -Al 2 O 3 ), yttria-containing zirconia (Y 2 O
  • silica is preferred because of its ease of dispersion and heat resistance improvement effect. These may be used alone or in combination of two or more.
  • the amount of these organic fillers and inorganic fillers added is preferably 1 to 30 mass % and more preferably 3 to 15 mass % based on the non-volatile components of the adhesive composition. If the amount of organic filler or inorganic filler added is too large, the adhesive coating film may become embrittled, and if the amount added is too small, the effect of improving heat resistance may not be sufficient.
  • the adhesive composition of the present invention is suitable for use in flexible printed wiring boards.
  • the adhesive composition of the present invention can be used for copper-clad laminates, coverlay films, and adhesive sheets.
  • the copper-clad laminate of the present invention has a structure in which copper foil is bonded to at least one side of an insulating plastic film using the adhesive composition of the present invention.
  • the copper foil is not particularly limited, but rolled copper foil or electrolytic copper foil that is conventionally used in flexible printed wiring boards can be used.
  • the coverlay film of the present invention has a structure in which an adhesive layer made of the adhesive composition of the present invention and an insulating plastic film are laminated, and in particular has a structure of insulating plastic film/adhesive layer or insulating plastic film/adhesive layer/protective film.
  • the insulating plastic film is a film made of plastic such as polyimide, polyamideimide, polyethylene terephthalate, polyethylene naphthalate, liquid crystal polymer (LCP), fluororesin, polyphenylene sulfide, polyethersulfone, polyetheretherketone, aramid, polycarbonate, polyarylate, etc., having a thickness of 1 to 200 ⁇ m, and a plurality of films selected from these may be laminated.
  • plastic such as polyimide, polyamideimide, polyethylene terephthalate, polyethylene naphthalate, liquid crystal polymer (LCP), fluororesin, polyphenylene sulfide, polyethersulfone, polyetheretherketone, aramid, polycarbonate, polyarylate, etc.
  • the protective film there are no particular restrictions on the protective film as long as it can be peeled off without impairing the properties of the adhesive, and examples of the protective film include plastic films such as polyethylene, polypropylene, polyolefin, polyester, polymethylpentene, polyvinyl chloride, polyvinylidene fluoride, polyphenylene sulfide, etc., films coated with silicone, fluoride, or other release agents, paper laminated with these, and paper impregnated or coated with peelable resin.
  • plastic films such as polyethylene, polypropylene, polyolefin, polyester, polymethylpentene, polyvinyl chloride, polyvinylidene fluoride, polyphenylene sulfide, etc.
  • films coated with silicone, fluoride, or other release agents paper laminated with these, and paper impregnated or coated with peelable resin.
  • the adhesive sheet of the present invention has a structure in which an adhesive layer made of the adhesive composition of the present invention and a peelable protective film are laminated together, and in particular has a structure of protective film/adhesive layer or protective film/adhesive/protective film.
  • An insulating plastic film layer may be provided within the adhesive layer.
  • the adhesive sheet can also be used for multilayer printed circuit boards.
  • a solution of the adhesive composition of the present invention is applied onto the insulating plastic film or copper foil substrate, the solvent is dried, and the adhesive is thermocompressed to the adherend and then thermoset before use.
  • a heat treatment may be performed after the solvent is dried to cause a partial reaction between the imide group-containing resin and the curing agent. The state before thermocompression is called the B stage.
  • coverlay films and adhesive sheets using the adhesive of the present invention have high fluidity in the B-stage state and high insulation after heat curing, and flexible printed wiring boards using them can accommodate fine pitch patterns with circuit widths and circuit spacings of several ⁇ m to 20 ⁇ m, and can also accommodate flexible printed wiring boards for coils with a large ratio of circuit height to circuit width (aspect ratio) and narrow circuit spacing.
  • the solution of the adhesive composition was applied to a polyimide film (Apical 12.5NPI, manufactured by Kaneka) so that the thickness after drying was 20 ⁇ m, and dried in a hot air dryer at 140 ° C for 3 minutes to obtain a sample in a B-stage state.
  • the adhesive-coated surface of this B-stage sample was overlapped with the glossy surface of a copper foil (BHY, manufactured by JX Nippon Oil & Gas Exploration Co., Ltd., thickness 18 ⁇ m), set in a press, heated from room temperature, and thermocompressed at 60 minutes x 30 kg / cm 2 after reaching 180 ° C.
  • the polyimide film was peeled off in a 180 ° direction at a speed of 50 mm / min in an atmosphere of 25 ° C. using a tensile tester (Autograph AG-X plus, manufactured by Shimadzu), the adhesive strength was measured, and the adhesiveness was evaluated according to the following evaluation criteria.
  • Evaluation criteria ⁇ : Adhesive strength is 0.7 N/mm or more.
  • Adhesive strength is less than 0.5 N/mm.
  • thermocompression-bonded sample was evaluated according to the following evaluation criteria in accordance with the UL-94VTM standard. (Evaluation criteria) ⁇ : VTM-0 is satisfied. ⁇ : VTM-0 is not satisfied.
  • Insulation reliability-2 is an evaluation method in which the L/S of the comb-type circuit pattern is narrower than that in insulation reliability-1, making the conditions stricter.
  • Trimellitic anhydride NBR HUNTSMAN CTBN1300x13NA, acrylonitrile-butadiene rubber having carboxy groups at both ends
  • MDI Fujifilm Wako Pure Chemical Industries, Ltd.
  • Diphenylmethane diisocyanate TDI Tokyo Chemical Industry Co., Ltd.
  • Tolylene diisocyanate ToDI Nippon Soda Co., Ltd.
  • o-Tolidine diisocyanate NMP Fujifilm Wako Pure Chemical Industries, Ltd.
  • N-Methyl-2-pyrrolidone DMAc N,N-dimethylacetamide manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • Example 1 An adhesive composition was prepared by mixing 55 parts by mass of a solution of the imide group-containing resin (A1) as a solid content, 25 parts by mass of jER828 (epoxy resin (B)) as a solid content, 10 parts by mass of BCA (phosphorus-based flame retardant (E)) as a solid content, and 6 parts by mass of ZX-92741 (phosphorus-based flame retardant (E)) as a solid content.
  • jER828, BCA, and ZX-92741 a dimethylacetamide solution with a solid content of 30% by mass was prepared in advance and used.
  • the adhesive composition obtained was evaluated for adhesion, flame retardancy, insulation reliability, and solder heat resistance. The results are shown in Table 2.
  • Adhesive compositions were prepared in the same manner as in Example 1, except that the types and amounts of the imide group-containing resin (A), the epoxy resin (B), and the phosphorus-based flame retardant (E) were changed to obtain the adhesive composition formulation shown in Table 2. Note that for the epoxy resin (B) and the phosphorus-based flame retardant (E), a dimethylacetamide solution with a solid content of 30 mass% was prepared in advance and used. The adhesive compositions obtained were evaluated for adhesion, flame retardancy, insulation reliability, and solder heat resistance. The results are shown in Table 2.
  • jER828 Mitsubishi Chemical epoxy resin (bisphenol type epoxy resin, epoxy equivalent: 189 g/eq)
  • jER152 Epoxy resin manufactured by Mitsubishi Chemical (phenol novolac type epoxy resin, epoxy equivalent: 177 g/eq)
  • jER1001 Mitsubishi Chemical epoxy resin (bisphenol type epoxy resin, epoxy equivalent: 475 g/eq)
  • BCA 10-benzyl-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide
  • HCA 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide
  • ZX-92741 Olin, phosphorus phenol compound having two phenolic hydroxyl groups
  • the adhesive compositions of Examples 1 to 13, which satisfy the requirements of the present invention were able to simultaneously exhibit excellent adhesion, high insulation reliability, and solder heat resistance.
  • the imide group-containing resin did not have dimer acid as a constituent unit, so the flexibility as an adhesive was insufficient and the adhesive properties could not be satisfied.
  • the imide group-containing resin did not have an acid dianhydride compound having an ester group or ether group as a constituent unit, so the solder heat resistance was poor.
  • the imide group-containing resin did not have dimer acid as a constituent unit, and instead acrylonitrile-butadiene rubber (NBR) was used as a raw material, so the insulation reliability was poor due to the influence of moisture absorption by the nitrile in the NBR.
  • NBR acrylonitrile-butadiene rubber
  • the adhesive composition of the present invention has excellent adhesion, insulation reliability, and solder heat resistance, making it suitable for use in coverlay films, adhesive sheets, copper-clad laminates, and the like. Therefore, the present invention is extremely useful in this industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Provided is an adhesive composition that sufficiently and simultaneously satisfies the adhesiveness, insulation reliability, and soldering heat resistance suitable for flexible printed wiring board applications. The adhesive composition contains an imide group-containing resin (A) and an epoxy resin (B) and is characterized in that the imide group-containing resin (A) has, as constituent units, an acid dianhydride compound (C) having an ester group or an ether group, and a dimer acid (D). The adhesive composition according to the present invention can further contain a phosphorus-based flame retardant (E). The adhesive composition according to the present invention can be suitably used in flexible printed wiring board applications such as, in particular, a copper-clad laminate, a coverlay film, and an adhesive sheet.

Description

接着剤組成物Adhesive Composition
 本発明は、ポリイミド系樹脂および硬化剤を組み合わせた接着剤組成物に関するものであり、さらに詳しくは、接着性、絶縁信頼性、半田耐熱性に優れ、銅張積層板、カバーレイフィルム、接着剤シートなどのフレキシブルプリント配線板用途に好適な接着剤組成物に関するものである。 The present invention relates to an adhesive composition that combines a polyimide resin and a curing agent, and more specifically, to an adhesive composition that has excellent adhesion, insulation reliability, and solder heat resistance, and is suitable for flexible printed wiring board applications such as copper-clad laminates, coverlay films, and adhesive sheets.
 フレキシブルプリント配線板は、柔軟性や省スペースが求められる電子機器、例えばスマートフォン、タブレット、デジタルカメラなどに広く使用されている回路基板である。機器の小型化や、高機能化による搭載部品数の増加に伴い、フレキシブルプリント配線板には、従来よりもより狭いピッチで配線を形成することが求められている。 Flexible printed circuit boards are circuit boards that are widely used in electronic devices that require flexibility and space-saving features, such as smartphones, tablets, and digital cameras. As devices become smaller and more sophisticated, the number of components mounted on them increases, and flexible printed circuit boards are required to form wiring at a finer pitch than before.
 フレキシブルプリント配線板で使用される材料として、ポリイミド系樹脂が挙げられる。ポリイミド系樹脂は、主として芳香族系のモノマーから合成され、高い耐熱性、絶縁信頼性、機械強度を示すことから、銅張積層板やカバーレイフィルムのベースフィルムとして使用されている。 Polyimide resins are one of the materials used in flexible printed wiring boards. Polyimide resins are mainly synthesized from aromatic monomers, and because they exhibit high heat resistance, insulating reliability, and mechanical strength, they are used as base films for copper-clad laminates and coverlay films.
 一方で、ベースフィルムと配線となる銅箔を貼り合わせた銅張積層板や、回路を保護するためのカバーレイフィルム、基板同士の貼り合わせを行う接着剤シートでは、接着剤が必要であり、その生産工程より熱硬化の接着剤を用いることとなるが、芳香族系のモノマーからなるポリイミド系樹脂は、ガラス転移温度が高いために通常の熱プレスで張り合わせを行うことが困難であり、接着剤として使用することは困難であった。 On the other hand, adhesives are required for copper-clad laminates made by bonding a base film to copper foil for wiring, coverlay films to protect circuits, and adhesive sheets for bonding boards together, and the production process requires the use of heat-curing adhesives. However, polyimide resins made from aromatic monomers have a high glass transition temperature, making it difficult to bond them together using a normal heat press, and therefore difficult to use as adhesives.
 そこで、ポリイミド系樹脂の耐熱性や絶縁信頼性、機械強度といった特徴を維持しつつ接着剤として使用する方法として、脂肪族などの長鎖のモノマーやオリゴマーを共重合することで、貼り合わせ時の流動性や柔軟性を付与したうえで、硬化剤と組み合わせる方法が検討されている。 Therefore, in order to use polyimide resins as adhesives while maintaining their characteristics such as heat resistance, insulating reliability, and mechanical strength, methods are being investigated that involve copolymerizing long-chain monomers and oligomers such as aliphatic ones to impart fluidity and flexibility when bonding, and then combining them with a curing agent.
 特許文献1では、反応性官能基であるアミンを有するシロキサンを分子鎖末端に導入したポリイミド系樹脂である変性ポリアミドイミドを接着剤の主剤として使用することが提案されている。 Patent Document 1 proposes using modified polyamideimide, a polyimide resin in which siloxane containing an amine, a reactive functional group, has been introduced to the molecular chain end, as the main component of the adhesive.
 また、特許文献2においては、反応性官能基であるカルボン酸を有するアクリロニトリル-ブタジエンゴムを分子鎖末端に導入したポリイミド系樹脂である変性ポリアミドイミドを接着剤の主剤として使用することが提案されている。 In addition, Patent Document 2 proposes using modified polyamideimide, a polyimide resin in which acrylonitrile-butadiene rubber containing a carboxylic acid, a reactive functional group, has been introduced to the molecular chain end, as the main component of the adhesive.
特開2005-179513JP2005-179513 特許3931387号Patent No. 3931387
 特許文献1に記載のシロキサン構造を導入したポリイミド系樹脂は、接着剤としての使用を可能にするレベルの柔軟性付与のために非常に高価なシロキサン結合を有する出発原料を用いる必要があり、経済性に劣っていた。また、シロキサン構造の導入量が増加するに伴い、樹脂の接着性が低下する懸念があった。また、特許文献2に記載の変性ポリアミドイミドで十分な接着性を発現させるためには、アクリロニトリル-ブタジエンゴムの導入量を多くする必要があり、その結果としてアクリロニトリル-ブタジエンゴム中のニトリルによる吸湿の影響で絶縁信頼性が低下するため、狭いピッチの配線に使用することは困難であった。したがって、フレキシブルプリント配線板の用途では、接着剤として使用可能なポリイミド系樹脂が望まれているが、従来の技術では、接着性や絶縁信頼性を同時に十分に満足する樹脂は得られていなかった。 The polyimide resin with the siloxane structure described in Patent Document 1 requires the use of a starting material with a very expensive siloxane bond to impart a level of flexibility that allows its use as an adhesive, and is therefore less economical. There was also concern that the adhesiveness of the resin would decrease as the amount of siloxane structure introduced increased. In addition, in order to achieve sufficient adhesiveness with the modified polyamideimide described in Patent Document 2, it is necessary to introduce a large amount of acrylonitrile-butadiene rubber, and as a result, insulation reliability decreases due to the influence of moisture absorption by the nitrile in the acrylonitrile-butadiene rubber, making it difficult to use for wiring with a narrow pitch. Therefore, in applications for flexible printed wiring boards, a polyimide resin that can be used as an adhesive is desired, but conventional technology has not been able to obtain a resin that satisfies both adhesiveness and insulation reliability at the same time.
 本発明は、上記の従来技術の問題点を解消するためになされたものであり、その目的は、フレキシブルプリント配線板の用途に好適な、接着性や絶縁信頼性、半田耐熱性を同時に十分に満足する接着剤組成物を提供することにある。 The present invention was made to solve the problems of the conventional technology described above, and its purpose is to provide an adhesive composition that is suitable for use in flexible printed wiring boards and that simultaneously satisfies the adhesive properties, insulation reliability, and solder heat resistance.
 本発明者らは、上記目的を達成するために鋭意検討した結果、アクリロニトリル-ブタジエンゴムのような吸湿性の高い原料を使用せずとも、ポリイミド系樹脂を構成する長鎖のモノマーとしてダイマー酸を導入し、さらにエステル基またはエーテル基を有する酸二無水物化合物を導入すると、貼り合わせ時の流動性や柔軟性が付与され、その結果、このようなポリイミド系樹脂とエポキシ樹脂とを組み合わせた接着剤組成物が前記課題を解決できることを見出し、本発明の完成に至った。 The inventors conducted extensive research to achieve the above-mentioned objective, and discovered that introducing a dimer acid as a long-chain monomer constituting a polyimide resin and further introducing an acid dianhydride compound having an ester group or ether group can provide fluidity and flexibility during lamination without using a highly hygroscopic raw material such as acrylonitrile-butadiene rubber, and thus the present invention was completed.
 すなわち本発明は、以下の[1]~[9]の構成からなるものである。
[1]イミド基含有樹脂(A)およびエポキシ樹脂(B)を含有する接着剤組成物であって、前記イミド基含有樹脂(A)が、エステル基またはエーテル基を有する酸二無水物化合物(C)、およびダイマー酸(D)を構成単位として有することを特徴とする接着剤組成物。
[2]前記酸二無水物化合物(C)が、アルキレングリコールビスアンヒドロトリメリテートであることを特徴とする、[1]に記載の接着剤組成物。
[3]前記酸二無水物化合物(C)が、4,4′-(4,4′-イソプロピリデンジフェノキシ)ジフタル酸二無水物又はオキシジフタル酸二無水物であることを特徴とする、[1]に記載の接着剤組成物。
[4]前記イミド基含有樹脂(A)を構成する全ポリカルボン酸成分量を100モル%としたとき、前記酸二無水物化合物(C)および前記ダイマー酸(D)の共重合量がそれぞれ1~80モル%の範囲であることを特徴とする、[1]~[3]のいずれかに記載の接着剤組成物。
[5]リン系難燃剤(E)をさらに含有することを特徴とする、[1]~[3]のいずれかに記載の接着剤組成物。
[6]絶縁性プラスチックフィルムの少なくとも片面に、[1]~[3]のいずれかに記載の接着剤組成物を介して銅箔が積層されてなることを特徴とする銅張積層板。
[7][1]~[3]のいずれかに記載の接着剤組成物からなる接着剤層と絶縁性プラスチックフィルムとが積層されてなることを特徴とするカバーレイフィルム。
[8][1]~[3]のいずれかに記載の接着剤組成物からなる接着剤層と、剥離可能な保護フィルムとが積層されてなることを特徴とする接着剤シート。
[9][1]~[3]のいずれかに記載の接着剤組成物からなる層を有することを特徴とするフレキシブルプリント配線板。
That is, the present invention comprises the following configurations [1] to [9].
[1] An adhesive composition comprising an imide group-containing resin (A) and an epoxy resin (B), wherein the imide group-containing resin (A) has an acid dianhydride compound (C) having an ester group or an ether group, and a dimer acid (D) as structural units.
[2] The adhesive composition according to [1], wherein the acid dianhydride compound (C) is an alkylene glycol bisanhydrotrimellitate.
[3] The adhesive composition according to [1], characterized in that the acid dianhydride compound (C) is 4,4'-(4,4'-isopropylidenediphenoxy)diphthalic dianhydride or oxydiphthalic dianhydride.
[4] The adhesive composition according to any one of [1] to [3], characterized in that, when the total amount of polycarboxylic acid components constituting the imide group-containing resin (A) is taken as 100 mol %, the copolymerization amounts of the acid dianhydride compound (C) and the dimer acid (D) are each in the range of 1 to 80 mol %.
[5] The adhesive composition according to any one of [1] to [3], further comprising a phosphorus-based flame retardant (E).
[6] A copper-clad laminate comprising an insulating plastic film and a copper foil laminated on at least one surface of the insulating plastic film via the adhesive composition according to any one of [1] to [3].
[7] A coverlay film comprising an adhesive layer made of the adhesive composition according to any one of [1] to [3] and an insulating plastic film laminated thereon.
[8] An adhesive sheet comprising an adhesive layer made of the adhesive composition according to any one of [1] to [3] and a peelable protective film laminated thereon.
[9] A flexible printed wiring board comprising a layer made of the adhesive composition according to any one of [1] to [3].
 本発明の接着剤組成物は、優れた接着性、高い絶縁信頼性および半田耐熱性を同時に発現することができる。このため、本発明の接着剤組成物は、フレキシブルプリント配線板用の接着剤として好適に使用することができる。特に、本発明の接着剤組成物は、硬化後の高い絶縁信頼性と硬化前の高い流動性を有しているため、回路間の配線間隔が狭いファインピッチ向けフレキシブルプリント配線板や強い磁力を発生するコイル向けフレキシブルプリント配線板のカバーレイフィルムおよび積層用接着剤フィルムとして好適に使用することができる。 The adhesive composition of the present invention can simultaneously exhibit excellent adhesion, high insulation reliability, and solder heat resistance. Therefore, the adhesive composition of the present invention can be suitably used as an adhesive for flexible printed wiring boards. In particular, since the adhesive composition of the present invention has high insulation reliability after curing and high fluidity before curing, it can be suitably used as a coverlay film and lamination adhesive film for flexible printed wiring boards for fine pitches with narrow wiring spacing between circuits and flexible printed wiring boards for coils that generate strong magnetic forces.
 以下、本発明の実施形態について詳述するが、本発明は、これに限定されるものではない。 The following describes in detail an embodiment of the present invention, but the present invention is not limited to this.
 本発明の接着剤組成物は、イミド基含有樹脂(A)およびエポキシ樹脂(B)、必要により難燃剤を含有するものであり、イミド基含有樹脂(A)が、エステル基またはエーテル基を有する酸二無水物化合物(C)(以下、酸二無水物化合物(C)または単に(C)成分とも言う)、およびダイマー酸(D)を構成単位として有することを特徴とする。 The adhesive composition of the present invention contains an imide group-containing resin (A), an epoxy resin (B), and, if necessary, a flame retardant, and is characterized in that the imide group-containing resin (A) has, as structural units, an acid dianhydride compound (C) having an ester group or an ether group (hereinafter also referred to as the acid dianhydride compound (C) or simply as the (C) component), and a dimer acid (D).
<イミド基含有樹脂(A)>
 イミド基含有樹脂(A)は、イミド基を繰り返し単位として有する樹脂であり、いわゆるポリイミド樹脂を指すが、イミド基以外に、例えばアミド基、ウレタン基、エステル基、エーテル基などのその他の結合も繰り返し単位として有していてもよい。
<Imido Group-Containing Resin (A)>
The imide group-containing resin (A) is a resin having imide groups as a repeating unit, and refers to a so-called polyimide resin. In addition to imide groups, the resin may also have other bonds, such as amide groups, urethane groups, ester groups, and ether groups, as repeating units.
<酸二無水物化合物(C)>
 エステル基またはエーテル基を有する酸二無水物化合物(C)は、得られるイミド基含有樹脂(A)を接着剤組成物として使用する際に、そのエステル基またはエーテル基の極性によって、接着剤と被着体表面との相互作用を高め、より強固な接着強度を発現できる効果を有する。また、その結果として、半田耐熱評価においても剥がれや膨れを発生しにくくなる効果を有する。
<Acid dianhydride compound (C)>
The acid dianhydride compound (C) having an ester group or an ether group has the effect of enhancing the interaction between the adhesive and the surface of the adherend due to the polarity of the ester group or ether group when the resulting imide group-containing resin (A) is used as an adhesive composition, thereby enabling the adhesive to exhibit stronger adhesive strength. As a result, it also has the effect of making peeling and swelling less likely to occur in solder heat resistance evaluation.
 エステル基を有する酸二無水物化合物(C)としては、例えば、エチレングリコールビスアンヒドロトリメリテート、プロピレングリコールビスアンヒドロトリメリテート、1,4-ブタンジオールビスアンヒドロトリメリテート、ヘキサメチレングリコールビスアンヒドロトリメリテート、ポリエチレングリコールビスアンヒドロトリメリテート、ポリプロピレングリコールビスアンヒドロトリメリテート等のアルキレングリコールビスアンヒドロトリメリテートが挙げられる。また、エーテル基を有する酸二無水物化合物(C)としては、例えば、4,4′-(4,4′-イソプロピリデンジフェノキシ)ジフタル酸二無水物、オキシジフタル酸二無水物などが挙げられる。また、これらの化合物のいずれかを水素添加したものを用いることもできる。これらは、単独で使用することもできるし、複数を組み合わせて使用しても良い。(C)成分の共重合量は、イミド基含有樹脂(A)を構成する全ポリカルボン酸成分量を100モル%としたとき、好ましくは1~80モル%であり、より好ましくは10~60モル%であり、さらに好ましくは15~50モル%である。(C)成分の共重合量が前記下限未満では、接着性に劣る恐れがあり、前記上限より多いと、原料価格が高くなり工業的に不利となる恐れがある。 Examples of the acid dianhydride compound (C) having an ester group include alkylene glycol bisanhydrotrimellitates such as ethylene glycol bisanhydrotrimellitate, propylene glycol bisanhydrotrimellitate, 1,4-butanediol bisanhydrotrimellitate, hexamethylene glycol bisanhydrotrimellitate, polyethylene glycol bisanhydrotrimellitate, and polypropylene glycol bisanhydrotrimellitate. Examples of the acid dianhydride compound (C) having an ether group include 4,4'-(4,4'-isopropylidenediphenoxy)diphthalic dianhydride and oxydiphthalic dianhydride. Hydrogenated versions of any of these compounds can also be used. These can be used alone or in combination. The copolymerization amount of the (C) component is preferably 1 to 80 mol%, more preferably 10 to 60 mol%, and even more preferably 15 to 50 mol%, when the total amount of polycarboxylic acid components constituting the imide group-containing resin (A) is taken as 100 mol%. If the amount of copolymerization of component (C) is less than the lower limit, the adhesiveness may be poor, and if it is more than the upper limit, the raw material cost may become high, which may be industrially disadvantageous.
<ダイマー酸(D)>
 ダイマー酸(D)は、炭素数が18の不飽和脂肪酸の二量化によって生成される炭素数36のジカルボン酸である。ダイマー酸(D)としては、不飽和結合を水素添加したものを用いることもできる。
<Dimer acid (D)>
Dimer acid (D) is a dicarboxylic acid having 36 carbon atoms produced by dimerization of an unsaturated fatty acid having 18 carbon atoms. As dimer acid (D), one in which the unsaturated bond has been hydrogenated can also be used.
 芳香族を主体とするポリイミド系樹脂では、接着剤貼り合わせ工程において流動性および柔軟性が乏しく、結果として十分な接着強度を得ることが難しかった。本発明に用いられるイミド基含有樹脂(A)は、構成単位としてダイマー酸(D)が共重合されることで、その脂肪族鎖により流動性および柔軟性が付与され、熱圧着の際に被着体表面凹凸を埋めることができ、結果として接着性を向上できる。ダイマー酸(D)の共重合量は、イミド基含有樹脂(A)を構成する全ポリカルボン酸成分量を100モル%としたとき、好ましくは1~80モル%であり、より好ましくは10~70モル%であり、さらに好ましくは30~60モル%である。ダイマー酸(D)の共重合量が前記下限未満では、接着性に劣る恐れがあり、前記上限より多いと、イミド基含有樹脂が良好な耐熱性を得られない恐れがある。 Aromatic polyimide resins have poor fluidity and flexibility during the adhesive bonding process, making it difficult to obtain sufficient adhesive strength. The imide group-containing resin (A) used in the present invention is copolymerized with dimer acid (D) as a structural unit, and the aliphatic chain imparts fluidity and flexibility to the resin, allowing it to fill in unevenness on the adherend surface during thermocompression bonding, thereby improving adhesion. The copolymerization amount of dimer acid (D) is preferably 1 to 80 mol%, more preferably 10 to 70 mol%, and even more preferably 30 to 60 mol%, when the total amount of polycarboxylic acid components constituting the imide group-containing resin (A) is taken as 100 mol%. If the copolymerization amount of dimer acid (D) is less than the lower limit, adhesion may be poor, and if it is more than the upper limit, the imide group-containing resin may not have good heat resistance.
 イミド基含有樹脂(A)は、前記(C)成分およびダイマー酸(D)以外のポリカルボン酸成分を有していてもよい。そのようなポリカルボン酸成分としては、得られるイミド基含有樹脂(A)および接着剤組成物の耐熱性を向上させる観点から、芳香環を有するポリカルボン酸成分を用いることが好ましい。芳香環を有するポリカルボン酸成分としては、例えば、トリメリット酸無水物、ピロメリット酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物、ナフタレンテトラカルボン酸二無水物、ジフェニルスルホンテトラカルボン酸二無水物、ペリレンテトラカルボン酸二無水物、(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、テレフタル酸、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸などが挙げられる。これらは単独で使用しても良いし、複数を組み合わせて使用しても構わない。芳香環を有するポリカルボン酸成分の共重合量は、耐熱性や柔軟性、接着強度とのバランスから、イミド基含有樹脂(A)を構成する全ポリカルボン酸成分量を100モル%としたとき、20~90モル%であることが好ましく、30~80モル%であることがより好ましく、さらに好ましくは40~70モル%である。なおここで、酸二無水物化合物(C)が芳香環を有する場合は、この計算に含める。 The imide group-containing resin (A) may have a polycarboxylic acid component other than the above-mentioned (C) component and dimer acid (D). As such a polycarboxylic acid component, it is preferable to use a polycarboxylic acid component having an aromatic ring from the viewpoint of improving the heat resistance of the obtained imide group-containing resin (A) and adhesive composition. Examples of polycarboxylic acid components having an aromatic ring include trimellitic anhydride, pyromellitic dianhydride, benzophenone tetracarboxylic dianhydride, biphenyl tetracarboxylic dianhydride, naphthalene tetracarboxylic dianhydride, diphenyl sulfone tetracarboxylic dianhydride, perylene tetracarboxylic dianhydride, (hexafluoroisopropylidene) diphthalic anhydride, terephthalic acid, isophthalic acid, orthophthalic acid, and naphthalenedicarboxylic acid. These may be used alone or in combination. In order to balance heat resistance, flexibility, and adhesive strength, the copolymerization amount of the polycarboxylic acid component having an aromatic ring is preferably 20 to 90 mol%, more preferably 30 to 80 mol%, and even more preferably 40 to 70 mol%, when the total amount of polycarboxylic acid components constituting the imide group-containing resin (A) is taken as 100 mol%. Note that if the acid dianhydride compound (C) has an aromatic ring, it is included in this calculation.
 また、ポリカルボン酸成分として、すでに説明した芳香環を有するポリカルボン酸成分の他に、本発明の効果を損なわない程度に、脂肪族あるいは脂環族のポリカルボン酸もしくはポリカルボン酸の一無水物もしくは二無水物を用いることができる。例えば、前記の芳香環を有するポリカルボン酸成分のいずれかを水素添加したもの、meso-ブタン-1,2,3,4-テトラカルボン酸二無水物、ペンタン-1,2,4,5-テトラカルボン酸二無水物、シクロブタンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、シクロヘキサ-1-エン-2,3,5,6-テトラカルボン酸二無水物、シクロヘキサンジカルボン酸、コハク酸、グルタル酸、アジピン酸、ヘプタン二酸、オクタン二酸、アゼライン酸、セバシン酸、ウンデカ二酸、ドデカン二酸、2-メチルコハク酸などが挙げられる。これらは単独で使用しても良いし、複数を組み合わせて使用しても良い。 In addition to the polycarboxylic acid components having an aromatic ring already described, aliphatic or alicyclic polycarboxylic acids or monoanhydrides or dianhydrides of polycarboxylic acids can be used as the polycarboxylic acid component to the extent that the effects of the present invention are not impaired. For example, any of the above-mentioned polycarboxylic acid components having an aromatic ring may be hydrogenated, meso-butane-1,2,3,4-tetracarboxylic acid dianhydride, pentane-1,2,4,5-tetracarboxylic acid dianhydride, cyclobutane tetracarboxylic acid dianhydride, cyclopentane tetracarboxylic acid dianhydride, cyclohex-1-ene-2,3,5,6-tetracarboxylic acid dianhydride, cyclohexane dicarboxylic acid, succinic acid, glutaric acid, adipic acid, heptanedioic acid, octanedioic acid, azelaic acid, sebacic acid, undecadioic acid, dodecanedioic acid, 2-methylsuccinic acid, etc. may be used alone or in combination.
 イミド基含有樹脂(A)は、ポリカルボン酸成分とアミン成分またはイソシアネート成分とを主原料として重合することにより得ることができる。ここで、アミン成分としては二官能以上のアミノ基を持つ化合物、イソシアネート成分としては二官能以上のイソシアネート基を持つ化合物を用いることができる。 The imide group-containing resin (A) can be obtained by polymerizing a polycarboxylic acid component and an amine component or an isocyanate component as the main raw materials. Here, the amine component can be a compound with an amino group having two or more functionalities, and the isocyanate component can be a compound with an isocyanate group having two or more functionalities.
 イミド基含有樹脂(A)を構成するイソシアネート成分としては、接着剤組成物の耐熱性を向上させる観点から芳香環を有するものが好ましく、例えば、ジフェニルメタン-4,4′-ジイソシアネートおよびその構造異性体、ならびにジメチルジフェニルメタンジイソシアネート、ジエチルジフェニルメタンジイソシアネート、ジメトキシジフェニルメタンジイソシアネート、ジフェニルエーテルジイソシアネート、ベンゾフェノンジイソシアネート、ジフェニルスルホンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、ナフタレンジイソシアネート、4,4′-[2,2-ビス(4-フェノキシフェニル)プロパン]ジイソシアネート、ジメチルビフェニルジイソシアネート、ジエチルビフェニルジイソシアネート、ジメトキシビフェニルジイソシアネート、ジエトキシビフェニルジイソシアネートおよびこれらの構造異性体等が挙げられる。また、アミン成分としては、前記イソシアネート成分のイソシアネート基をアミノ基に置き換えたものが挙げられる。これらは単独で使用しても良いし、複数を組み合わせて使用しても良い。 As the isocyanate component constituting the imide group-containing resin (A), one having an aromatic ring is preferable from the viewpoint of improving the heat resistance of the adhesive composition, and examples thereof include diphenylmethane-4,4'-diisocyanate and its structural isomers, as well as dimethyldiphenylmethane diisocyanate, diethyldiphenylmethane diisocyanate, dimethoxydiphenylmethane diisocyanate, diphenylether diisocyanate, benzophenone diisocyanate, diphenylsulfone diisocyanate, tolylene diisocyanate, xylylene diisocyanate, naphthalene diisocyanate, 4,4'-[2,2-bis(4-phenoxyphenyl)propane]diisocyanate, dimethylbiphenyl diisocyanate, diethylbiphenyl diisocyanate, dimethoxybiphenyl diisocyanate, diethoxybiphenyl diisocyanate, and structural isomers thereof. In addition, examples of the amine component include those in which the isocyanate group of the isocyanate component is replaced with an amino group. These may be used alone or in combination with one another.
 また、イソシアネート成分またはアミン成分として、すでに説明した芳香環を有するイソシアネート成分またはアミン成分の他に、本発明の効果を損なわない程度に、脂肪族あるいは脂環族のイソシアネート成分またはアミン成分を用いることができる。例えば、前記の芳香環を有するイソシアネート成分またはアミン成分のいずれかを水素添加したもの、イソホロンジイソシアネート、1,4-シクロヘキサンジイソシアネート、1,3-シクロヘキサンジイソシアネート、4,4′-ジシクロヘキシルメタンジイソシアネート、エチレンジイソシアネート、プロピレンジイソシアネート、ヘキサメチレンジイソシアネート等が挙げられ、アミン成分としては、これらのイソシアネート成分のイソシアネート基をアミノ基に置き換えたものが挙げられる。これらは単独で使用しても良いし、複数を組み合わせて使用しても良い。これらの成分の共重合量は、得られるイミド基含有樹脂(A)を用いた接着剤組成物の耐熱性や難燃性の観点から、全イソシアネート成分およびアミン成分量を100モル%としたとき、50モル%以下であることが好ましく、さらに好ましくは20モル%以下である。 In addition to the isocyanate component or amine component having an aromatic ring already described, an aliphatic or alicyclic isocyanate component or amine component can be used as the isocyanate component or amine component to the extent that the effect of the present invention is not impaired. For example, any of the isocyanate components or amine components having an aromatic ring described above that have been hydrogenated, isophorone diisocyanate, 1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, ethylene diisocyanate, propylene diisocyanate, hexamethylene diisocyanate, etc. can be mentioned, and the amine component can be any of these isocyanate components in which the isocyanate group has been replaced with an amino group. These may be used alone or in combination. From the viewpoint of the heat resistance and flame retardancy of the resulting adhesive composition using the imide group-containing resin (A), the copolymerization amount of these components is preferably 50 mol% or less, and more preferably 20 mol% or less, when the total amount of isocyanate components and amine components is taken as 100 mol%.
 イミド基含有樹脂(A)には、硬化剤との反応点を増やして、得られる接着剤組成物の耐熱性を向上させるために、官能基を3個以上有する化合物を共重合することが可能である。例えばトリメシン酸等の多官能カルボン酸、5-ヒドロキシイソフタル酸等の水酸基を有するジカルボン酸、5-アミノイソフタル酸等のアミノ基を有するジカルボン酸、グリセリン、ポリグリセリン等の水酸基を3個以上有するもの、トリス(2-アミノエチル)アミン等のアミノ基を3個以上有するものが挙げられる。その共重合量は、全ポリカルボン酸成分量、もしくは全イソシアネート成分量および全アミン成分量の合計量を100モル%としたとき、20モル%以下であることが好ましい。20モル%を超えると樹脂重合時にゲル化したり、不溶物を生成したりする恐れがある。 In order to increase the number of reaction sites with the curing agent and improve the heat resistance of the resulting adhesive composition, it is possible to copolymerize a compound having three or more functional groups with the imide group-containing resin (A). Examples include polyfunctional carboxylic acids such as trimesic acid, dicarboxylic acids having a hydroxyl group such as 5-hydroxyisophthalic acid, dicarboxylic acids having an amino group such as 5-aminoisophthalic acid, compounds having three or more hydroxyl groups such as glycerin and polyglycerin, and compounds having three or more amino groups such as tris(2-aminoethyl)amine. The amount of copolymerization is preferably 20 mol% or less when the total amount of all polycarboxylic acid components, or the total amount of all isocyanate components and all amine components is taken as 100 mol%. If it exceeds 20 mol%, there is a risk of gelation or the generation of insoluble matter during resin polymerization.
 イミド基含有樹脂(A)には、本発明の効果を損なわない程度に、得られる樹脂の柔軟性を付与する成分として、ポリエステル、ポリエーテル、ポリカーボネート、ポリシロキサンなどを共重合することができる。その場合、イミド基含有樹脂(A)中のこれらの成分の共重合量が多いと、耐熱性や絶縁信頼性や経済性が損なわれる恐れがあるため、これらの成分の共重合量は、全ポリカルボン酸成分量、もしくは全イソシアネート成分量および全アミン成分量の合計量を100モル%としたとき、10モル%以下であることが好ましい。 The imide group-containing resin (A) can be copolymerized with polyesters, polyethers, polycarbonates, polysiloxanes, etc., as components that impart flexibility to the resulting resin, to an extent that does not impair the effects of the present invention. In this case, if the copolymerization amount of these components in the imide group-containing resin (A) is large, there is a risk that the heat resistance, insulation reliability, and economic efficiency will be impaired, so it is preferable that the copolymerization amount of these components is 10 mol % or less when the total amount of all polycarboxylic acid components, or the total amount of all isocyanate components, and the total amount of all amine components is taken as 100 mol %.
 本発明の接着剤組成物におけるイミド基含有樹脂(A)の含有量は、接着剤組成物の不揮発分全体を100質量%とした場合、1~80質量%であることが好ましく、さらに好ましくは10~70質量%である。イミド基含有樹脂の含有量が少なすぎると、接着剤組成物中の高分子量成分が少なくなるために脆くなり、取り扱いが困難になる恐れがある。一方、イミド基含有樹脂の含有量が多すぎると、熱硬化性成分であるエポキシ樹脂の比率が少なくなり、硬化が不十分となるために耐熱性が低下する恐れがある。 The content of the imide group-containing resin (A) in the adhesive composition of the present invention is preferably 1 to 80 mass %, and more preferably 10 to 70 mass %, assuming that the entire non-volatile content of the adhesive composition is 100 mass %. If the content of the imide group-containing resin is too low, the adhesive composition will contain less high molecular weight components, which may make it brittle and difficult to handle. On the other hand, if the content of the imide group-containing resin is too high, the proportion of the epoxy resin, which is a thermosetting component, will decrease, which may result in insufficient curing and reduced heat resistance.
<イミド基含有樹脂(A)の製造方法>
 イミド基含有樹脂(A)は、ポリカルボン酸成分とイソシアネート成分とを反応させて製造する方法(イソシアネート法)、または、ポリカルボン酸成分とアミン成分とを反応させてアミック酸を形成させた後、閉環させる方法(直接法)、または、カルボン酸無水物およびカルボン酸クロライドを有する化合物とアミン成分とを反応させる方法(酸クロライド法)などの公知の方法で製造することができる。工業的には、副生成物である二酸化炭素が気体として系外へ除かれる点でイソシアネート法が有利である。
<Method for producing imide group-containing resin (A)>
The imide group-containing resin (A) can be produced by known methods such as a method of reacting a polycarboxylic acid component with an isocyanate component (isocyanate method), a method of reacting a polycarboxylic acid component with an amine component to form an amic acid and then ring-closing the amic acid (direct method), or a method of reacting a compound having a carboxylic acid anhydride and a carboxylic acid chloride with an amine component (acid chloride method). From an industrial perspective, the isocyanate method is advantageous in that the by-product carbon dioxide is removed from the system as a gas.
 以下、イミド基含有樹脂の製造法については、代表的にイソシアネート法について述べるが、それぞれ対応するアミン成分やカルボン酸クロライドを有する化合物を用いることで上記の直接法、酸クロライド法でも同様にイミド基含有樹脂を製造することができる。 The following describes the method of producing imide group-containing resins, typically using the isocyanate method, but imide group-containing resins can also be produced using the direct method and acid chloride method by using compounds that contain the corresponding amine components or carboxylic acid chlorides.
 イミド基含有樹脂(A)の重合反応は、ポリカルボン酸成分およびイソシアネート成分を溶剤中で60℃~200℃に加熱しながら撹拌することによって行なうことができる。この時、ポリカルボン酸成分/イソシアネート成分のモル比率は、90/100~100/90の範囲であることが好ましい。なお、一般的には、イミド基含有樹脂中のポリカルボン酸成分およびイソシアネート成分の含有量(共重合量)は、重合時の各々の成分の比率と同じである。また、反応を促進するために、フッ化ナトリウム、フッ化カリウム、ナトリウムメトキシド等のアルカリ金属類、トリエチレンジアミン、トリエチルアミン、1,8-ジアザビシクロ[5,4,0]-7-ウンデセン、1,5-ジアザビシクロ[4,3,0]-5-ノネン等のアミン類やジブチル錫ジラウレート等の触媒を用いることができる。これらの触媒は、少なすぎると目的とする触媒効果が十分に得られず、多すぎると副反応が起きる可能性があるため、ポリカルボン酸成分またはイソシアネート成分のいずれか多い方を100モル%として、0.01~5モル%を使用することが好ましく、より好ましくは0.1~3モル%である。 The polymerization reaction of the imide group-containing resin (A) can be carried out by stirring the polycarboxylic acid component and the isocyanate component in a solvent while heating them to 60°C to 200°C. At this time, the molar ratio of the polycarboxylic acid component/isocyanate component is preferably in the range of 90/100 to 100/90. Generally, the content (copolymerization amount) of the polycarboxylic acid component and the isocyanate component in the imide group-containing resin is the same as the ratio of each component during polymerization. In addition, in order to promote the reaction, catalysts such as alkali metals such as sodium fluoride, potassium fluoride, and sodium methoxide, amines such as triethylenediamine, triethylamine, 1,8-diazabicyclo[5,4,0]-7-undecene, and 1,5-diazabicyclo[4,3,0]-5-nonene, and dibutyltin dilaurate can be used. If the amount of these catalysts is too small, the desired catalytic effect will not be fully achieved, and if the amount is too large, side reactions may occur, so it is preferable to use 0.01 to 5 mol%, and more preferably 0.1 to 3 mol%, of the polycarboxylic acid component or the isocyanate component, whichever is larger, taken as 100 mol%.
 イミド基含有樹脂(A)の重合反応に用いることのできる溶剤としては、例えばN-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-ブチル-2-ピロリドン、γ-ブチロラクトン、ジメチルイミダゾリジノン、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、シクロヘキサノン、シクロペンタノンなどが挙げられる。この中でも、得られるイミド基含有樹脂の溶解性と重合反応の効率の良さから、N-メチル-2-ピロリドンまたはジメチルアセトアミドが好ましい。また、重合反応後は重合反応に用いた溶剤または他の低沸点溶剤で希釈して不揮発分濃度や溶液粘度を調整することができる。これらは、単独で使用しても良いし、複数を組み合わせて使用しても良い。 Solvents that can be used in the polymerization reaction of the imide group-containing resin (A) include, for example, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-butyl-2-pyrrolidone, γ-butyrolactone, dimethylimidazolidinone, dimethylsulfoxide, dimethylformamide, dimethylacetamide, cyclohexanone, and cyclopentanone. Among these, N-methyl-2-pyrrolidone or dimethylacetamide is preferred because of the solubility of the resulting imide group-containing resin and the efficiency of the polymerization reaction. After the polymerization reaction, the non-volatile content and solution viscosity can be adjusted by diluting with the solvent used in the polymerization reaction or another low-boiling point solvent. These may be used alone or in combination.
 希釈用の低沸点溶剤としては、トルエン、キシレンなどの芳香族系溶剤、ヘキサン、ヘプタン、オクタンなどの脂肪族系溶剤、メタノール、エタノール、プロパノール、ブタノール、イソプロパノールなどのアルコール系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノンなどのケトン系溶剤、ジエチルエーテル、テトラヒドロフランなどのエーテル系溶剤、酢酸エチル、酢酸ブチル、酢酸イソブチルなどのエステル系溶剤などが挙げられる。 Low boiling point solvents for dilution include aromatic solvents such as toluene and xylene, aliphatic solvents such as hexane, heptane, and octane, alcohol solvents such as methanol, ethanol, propanol, butanol, and isopropanol, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and cyclopentanone, ether solvents such as diethyl ether and tetrahydrofuran, and ester solvents such as ethyl acetate, butyl acetate, and isobutyl acetate.
<エポキシ樹脂(B)>
 本発明の接着剤組成物は、エポキシ樹脂(B)を含有する。イミド基含有樹脂(A)と、エポキシ樹脂(B)とを組み合わせて使用することで、耐熱性に優れるイミド基含有樹脂(A)が十分に基材に密着した状態を、エポキシ樹脂(B)との反応により強固にすることができ、優れた半田耐熱性が与えられ、フレキシブルプリント配線板用途の接着剤として好適となる。
<Epoxy resin (B)>
The adhesive composition of the present invention contains an epoxy resin (B). By using a combination of the imide group-containing resin (A) and the epoxy resin (B), the state in which the imide group-containing resin (A), which has excellent heat resistance, is sufficiently adhered to a substrate can be strengthened by reaction with the epoxy resin (B), and excellent solder heat resistance is imparted, making the adhesive composition suitable as an adhesive for flexible printed wiring board applications.
 エポキシ樹脂(B)としては、シリコーン、ウレタン、ポリイミド、ポリアミド等で変性されていてもよく、また分子骨格内に硫黄原子、窒素原子等を含んでいてもよい。エポキシ樹脂(B)としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、ヘキサヒドロフタル酸グリシジルエステルや前記ビスフェノール型エポキシ樹脂の水素添加物、前記ノボラック型エポキシ樹脂の水素添加物等の脂環族エポキシ樹脂、ダイマー酸グリシジルエステル、エポキシ化ポリブタジエン、エポキシ化大豆油等の線状脂肪族エポキシ樹脂等が挙げられる。これらは単独で使用してもよいし、複数を組み合わせて使用しても構わない。得られる硬化物の耐熱性の観点から、エポキシ樹脂(B)のエポキシ当量は100~300g/eqであることが好ましく、150~200g/eqであることがより好ましい。また、エポキシ樹脂(B)の種類は芳香環を有するものが好ましく、ビスフェノール型エポキシ樹脂およびノボラック型エポキシ樹脂がさらに好ましい。 The epoxy resin (B) may be modified with silicone, urethane, polyimide, polyamide, etc., and may contain sulfur atoms, nitrogen atoms, etc. in the molecular skeleton. Examples of the epoxy resin (B) include bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, and bisphenol S type epoxy resin, novolac type epoxy resins such as phenol novolac type epoxy resin and cresol novolac type epoxy resin, alicyclic epoxy resins such as hexahydrophthalic acid glycidyl ester, hydrogenated products of the bisphenol type epoxy resins, and hydrogenated products of the novolac type epoxy resins, linear aliphatic epoxy resins such as dimer acid glycidyl ester, epoxidized polybutadiene, and epoxidized soybean oil. These may be used alone or in combination. From the viewpoint of the heat resistance of the obtained cured product, the epoxy equivalent of the epoxy resin (B) is preferably 100 to 300 g/eq, and more preferably 150 to 200 g/eq. In addition, the type of epoxy resin (B) is preferably one having an aromatic ring, and bisphenol-type epoxy resins and novolac-type epoxy resins are more preferred.
 エポキシ樹脂(B)の市販品としては、例えば、三菱ケミカル(株)製の商品名jER828、1001等のビスフェノールA型エポキシ樹脂、日鉄ケミカル&マテリアル(株)製の商品名ST-2004、2007等の水添ビスフェノールA型エポキシ樹脂、DIC(株)製のEXA-9726、日鉄ケミカル&マテリアル(株)製の商品名YDF-170、2004等のビスフェノールF型エポキシ樹脂、三菱ケミカル(株)製の商品名jER152、154、ダウケミカル社製の商品名DEN-438等のフェノールノボラック型エポキシ樹脂、DIC(株)製の商品名HP7200、HP7200H等のジシクロペンタジエン型エポキシ樹脂、日鉄ケミカル&マテリアル(株)製の商品名YDCN-700シリーズ、日本化薬(株)製の商品名EOCN-125S、103S、104S等のクレゾールノボラック型エポキシ樹脂、日鉄ケミカル&マテリアル(株)製の商品名YD-171等の可撓性エポキシ樹脂、三菱ケミカル(株)製の商品名Epon1031S、BASFジャパン(株)製の商品名アラルダイト0163、ナガセケムテックス(株)製の商品名デナコールEX-611、EX-614、EX-622、EX-512、EX-521、EX-421、EX-411、EX-321等の多官能エポキシ樹脂、三菱ケミカル(株)製の商品名エピコート604、日鉄ケミカル&マテリアル(株)製の商品名YH-434、BASFジャパン(株)製の商品名アラルダイトPT810等の複素環含有エポキシ樹脂、ダイセル化学工業(株)製の商品名セロキサイド2021、EHPE3150、UCC社製のERL4234等の脂環式エポキシ樹脂、DIC(株)製の商品名エピクロンEXA-1514等のビスフェノールS型エポキシ樹脂、日産化学工業(株)製のTEPIC等のトリグリシジルイソシアヌレート、三菱ケミカル(株)製の商品名YX-4000等のビキシレノール型エポキシ樹脂、三菱ケミカル(株)製の商品名YL-6056等のビスフェノール型エポキシ樹脂、三菱ガス化学(株)製の商品名TETRAD-X、TETRAD-C、日本化薬(株)製の商品名GAN、住友化学(株)製の商品名ELM-120等のグリシジルアミン型エポキシ樹脂が挙げられる。 Commercially available epoxy resins (B) include, for example, bisphenol A type epoxy resins such as jER828 and 1001 manufactured by Mitsubishi Chemical Corporation, hydrogenated bisphenol A type epoxy resins such as ST-2004 and 2007 manufactured by Nippon Steel Chemical & Material Co., Ltd., bisphenol F type epoxy resins such as EXA-9726 manufactured by DIC Corporation and YDF-170 and 2004 manufactured by Nippon Steel Chemical & Material Co., Ltd., phenolic resins such as jER152 and 154 manufactured by Mitsubishi Chemical Corporation and DEN-438 manufactured by The Dow Chemical Company. Volac type epoxy resins, dicyclopentadiene type epoxy resins such as HP7200 and HP7200H manufactured by DIC Corporation, YDCN-700 series manufactured by Nippon Steel Chemical & Material Co., Ltd., cresol novolac type epoxy resins such as EOCN-125S, 103S, and 104S manufactured by Nippon Kayaku Co., Ltd., flexible epoxy resins such as YD-171 manufactured by Nippon Steel Chemical & Material Co., Ltd., Epon 1031S manufactured by Mitsubishi Chemical Corporation, Araldite 0163 manufactured by BASF Japan Ltd., Nagase Chemtec Co., Ltd. Examples of the epoxy resins include polyfunctional epoxy resins such as DENACOL EX-611, EX-614, EX-622, EX-512, EX-521, EX-421, EX-411, and EX-321 manufactured by Nippon Steel Corporation; heterocycle-containing epoxy resins such as EPICOAT 604 manufactured by Mitsubishi Chemical Corporation, YH-434 manufactured by Nippon Steel Chemical & Material Co., Ltd., and Araldite PT810 manufactured by BASF Japan Ltd.; alicyclic epoxy resins such as CELLOXIDE 2021 and EHPE3150 manufactured by Daicel Chemical Industries, Ltd., and ERL4234 manufactured by UCC Corporation; Examples of such epoxy resins include bisphenol S type epoxy resins such as Epiclon EXA-1514 (trade name) manufactured by Nissan Chemical Industries, Ltd., triglycidyl isocyanurates such as TEPIC (trade name) manufactured by Nissan Chemical Industries, Ltd., bixylenol type epoxy resins such as YX-4000 (trade name) manufactured by Mitsubishi Chemical Corporation, bisphenol type epoxy resins such as YL-6056 (trade name) manufactured by Mitsubishi Chemical Corporation, TETRAD-X and TETRAD-C (trade names) manufactured by Mitsubishi Gas Chemical Company, Inc., GAN (trade name) manufactured by Nippon Kayaku Co., Ltd., and ELM-120 (trade name) manufactured by Sumitomo Chemical Co., Ltd., and other glycidyl amine type epoxy resins.
 本発明の接着剤組成物におけるエポキシ樹脂(B)の含有量は、接着剤組成物の不揮発分全体を100質量%とした場合、1~50質量%であることが好ましく、さらに好ましくは10~40質量%である。エポキシ樹脂の含有量が少なすぎると、十分な熱硬化性を得ることができず、結果として接着剤組成物の耐熱性が劣る場合がある。エポキシ樹脂の含有量が多すぎると、接着剤組成物の柔軟性が損なわれて接着強度が低下したり、エポキシ樹脂に含まれる不純物に由来して絶縁信頼性が低下する恐れがある。 The content of the epoxy resin (B) in the adhesive composition of the present invention is preferably 1 to 50 mass %, and more preferably 10 to 40 mass %, assuming that the entire non-volatile content of the adhesive composition is 100 mass %. If the epoxy resin content is too low, sufficient thermosetting properties cannot be obtained, and as a result, the heat resistance of the adhesive composition may be poor. If the epoxy resin content is too high, the flexibility of the adhesive composition may be impaired, reducing the adhesive strength, or the insulation reliability may be reduced due to impurities contained in the epoxy resin.
<難燃剤>
 本発明の接着剤組成物には、難燃性を付与する目的で、難燃剤を添加することができる。本発明で使用する難燃剤としては制限はないが、環境志向から非ハロゲン系であることが好ましい。非ハロゲン系難燃剤としては、窒素系や金属水酸化物などの難燃剤もあるが、難燃性の効果に優れる点でリン系難燃剤(E)が好ましい。リン系難燃剤(E)としては、構造中にリン原子を含むものであれば特に限定されないが、耐加水分解性、耐熱性、低ブリードアウト性といった点から、ホスフィン酸誘導体、ホススファゼン系難燃剤が好ましい。これらは単独でまたは2種類以上組み合わせて用いても構わない。本発明の接着剤組成物中における難燃剤の含有量は、接着剤組成物の不揮発分中1~50質量%であることが好ましく、さらに好ましくは10~40質量%である。難燃剤の含有量が少ないと十分な難燃性を得ることができない場合があり、また難燃剤の含有量が多いと接着剤組成物の耐熱性、接着性、絶縁信頼性が低下する恐れがある。
<Flame retardants>
A flame retardant can be added to the adhesive composition of the present invention for the purpose of imparting flame retardancy. The flame retardant used in the present invention is not limited, but is preferably non-halogen-based from an environmental perspective. Although non-halogen flame retardants include nitrogen-based and metal hydroxide flame retardants, phosphorus-based flame retardants (E) are preferred because of their excellent flame retardant effect. The phosphorus-based flame retardant (E) is not particularly limited as long as it contains a phosphorus atom in its structure, but phosphinic acid derivatives and phosphazene-based flame retardants are preferred from the standpoints of hydrolysis resistance, heat resistance, and low bleed-out properties. These may be used alone or in combination of two or more types. The content of the flame retardant in the adhesive composition of the present invention is preferably 1 to 50 mass% of the non-volatile content of the adhesive composition, and more preferably 10 to 40 mass%. If the content of the flame retardant is low, sufficient flame retardancy may not be obtained, and if the content of the flame retardant is high, the heat resistance, adhesion, and insulation reliability of the adhesive composition may be reduced.
 ホスフィン酸誘導体としては、フェナントレン型のホスフィン酸誘導体が好ましく、例えば、9,10-ジヒドロ-9-オキサ-10ホスファフェナントレン-10-オキシド(三光(株)製、商品名:HCA)、10-ベンジル-10-ヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド(三光(株)製、商品名:BCA)、10-(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキサイド(三光(株)製、商品名HCA-HQ)、Olin製XZ-92741等が挙げられる。 Phosphinic acid derivatives that are preferred are phenanthrene-type phosphinic acid derivatives, such as 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (manufactured by Sanko Co., Ltd., product name: HCA), 10-benzyl-10-hydro-9-oxa-10-phosphaphenanthrene-10-oxide (manufactured by Sanko Co., Ltd., product name: BCA), 10-(2,5-dihydroxyphenyl)-10H-9-oxa-10-phosphaphenanthrene-10-oxide (manufactured by Sanko Co., Ltd., product name: HCA-HQ), and XZ-92741 manufactured by Olin.
 ホスファゼン系難燃剤は下記一般式(1)または(2)で示される(式中、Xは、同一または異なり、水素、水酸基、アミノ基、アルキル基、アリール基、フェノキシ基、アリル基、シアノフェノキシ基、ヒドロキシフェノキシ基等であり、nは3~25の整数である)。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-I000002
The phosphazene flame retardant is represented by the following general formula (1) or (2) (wherein X may be the same or different and is hydrogen, a hydroxyl group, an amino group, an alkyl group, an aryl group, a phenoxy group, an allyl group, a cyanophenoxy group, a hydroxyphenoxy group, or the like, and n is an integer of 3 to 25).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-I000002
 これらホスファゼン系難燃剤の市販品としては、例えば、環状フェノキシホスファゼン(大塚化学(株)製、商品名:SPB-100、SPE-100)、環状シアノフェノキシホスファゼン((株)伏見製薬所製、商品名:FP-300)、環状ヒドロキシフェノキシホスファゼン(大塚化学(株)製、商品名:SPH-100)等が挙げられる。 Commercially available phosphazene flame retardants include, for example, cyclic phenoxyphosphazene (manufactured by Otsuka Chemical Co., Ltd., product names: SPB-100, SPE-100), cyclic cyanophenoxyphosphazene (manufactured by Fushimi Pharmaceutical Co., Ltd., product name: FP-300), and cyclic hydroxyphenoxyphosphazene (manufactured by Otsuka Chemical Co., Ltd., product name: SPH-100).
 リン系難燃剤(E)としては、(i)エポキシ基と反応する官能基を有さないリン系難燃剤と、(ii)エポキシ基と反応する官能基を有するリン系難燃剤、特にエポキシ基と反応する官能基を2個以上有するリン系難燃剤とを併用することが好ましい。(i)と(ii)のリン系難燃剤の割合は、質量比で好ましくは1:9~9:1、より好ましくは2:8~8:2である。(i)のリン系難燃剤が多すぎると絶縁信頼性が低下するおそれがあり、(ii)のリン系難燃剤が多すぎると接着性が低下することがある。 As the phosphorus-based flame retardant (E), it is preferable to use in combination (i) a phosphorus-based flame retardant that does not have a functional group that reacts with an epoxy group, and (ii) a phosphorus-based flame retardant that has a functional group that reacts with an epoxy group, especially a phosphorus-based flame retardant that has two or more functional groups that react with an epoxy group. The ratio of the phosphorus-based flame retardants (i) and (ii) is preferably 1:9 to 9:1, more preferably 2:8 to 8:2, by mass. If there is too much phosphorus-based flame retardant (i), the insulation reliability may decrease, and if there is too much phosphorus-based flame retardant (ii), the adhesion may decrease.
 (i)エポキシ基と反応する官能基を有さないリン系難燃剤は、熱硬化時に架橋構造に取り込まれないので、熱硬化後の接着剤に柔軟性を付与する役割を有する。例えば、前述の環状フェノキシホスファゼン(大塚化学(株)製、商品名:SPB-100、SPE-100)、環状シアノフェノキシホスファゼン((株)伏見製薬所製、商品名:FP-300)、10-ベンジル-10-ヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド(三光(株)製、商品名:BCA)や、リン酸エステル系(大八化学製、商品名:PX-200)などがこれに該当する。(ii)エポキシ基と反応する官能基を有するリン系難燃剤は、熱硬化時に架橋構造に取り込まれることでブリードアウトが抑制されるとともに耐熱性を低下させない役割を有する。例えば、前述の環状ヒドロキシフェノキシホスファゼン(大塚化学(株)製、商品名:SPH-100)、10-(2,5-ジヒドロキシフェニル)-10-H-9-オキサ-10-ホスファフェナントレン-10-オキサイド(三光(株)製、商品名HCA-HQ)、Olin製XZ-92741などがこれに該当する。ここで、エポキシと反応する官能基が1個のものについては、架橋構造の末端となり、ネットワークを切断してしまうため、(ii)の耐熱性を低下させない効果が不十分になる可能性がある。 (i) Phosphorus-based flame retardants that do not have a functional group that reacts with epoxy groups are not incorporated into the crosslinked structure during heat curing, and therefore play a role in imparting flexibility to the adhesive after heat curing. Examples of such flame retardants include the aforementioned cyclic phenoxyphosphazene (manufactured by Otsuka Chemical Co., Ltd., product names: SPB-100, SPE-100), cyclic cyanophenoxyphosphazene (manufactured by Fushimi Pharmaceutical Co., Ltd., product name: FP-300), 10-benzyl-10-hydro-9-oxa-10-phosphaphenanthrene-10-oxide (manufactured by Sanko Co., Ltd., product name: BCA), and phosphate ester-based flame retardants (manufactured by Daihachi Chemical Co., Ltd., product name: PX-200). (ii) Phosphorus-based flame retardants that have a functional group that reacts with epoxy groups are incorporated into the crosslinked structure during heat curing, and thus play a role in suppressing bleed-out and preventing a decrease in heat resistance. For example, the aforementioned cyclic hydroxyphenoxyphosphazene (manufactured by Otsuka Chemical Co., Ltd., product name: SPH-100), 10-(2,5-dihydroxyphenyl)-10-H-9-oxa-10-phosphaphenanthrene-10-oxide (manufactured by Sanko Co., Ltd., product name HCA-HQ), and Olin's XZ-92741 fall into this category. Here, if there is only one functional group that reacts with epoxy, it becomes the end of the crosslinked structure and cuts the network, so there is a possibility that the effect of not reducing heat resistance (ii) will be insufficient.
 上記のリン系難燃剤のほかに、難燃性、半田耐熱性、低ブリードアウト性を損なわない範囲で必要に応じ、他のリン系難燃剤を単独または2種以上組み合わせて用いても構わない。 In addition to the above phosphorus-based flame retardants, other phosphorus-based flame retardants may be used alone or in combination of two or more types as necessary, as long as the flame retardancy, solder heat resistance, and low bleed-out properties are not impaired.
<その他成分>
 本発明の接着剤組成物には、エポキシ樹脂(B)を硬化させるためのさらなる硬化剤やエポキシ樹脂(B)とイミド基含有樹脂との反応を促進させるための硬化触媒を特性を損なわない範囲で加えることができる。かかる硬化剤としては、エポキシ樹脂(B)と反応する化合物であれば特に制限は無いが、例えば、アミン系硬化剤、フェノール性水酸基を有する化合物、カルボン酸を有する化合物、酸無水物を有する化合物などが挙げられる。これらの硬化剤は、エポキシ樹脂(B)とイミド基含有樹脂との官能基当量の調整のために用いられる。硬化触媒としては、エポキシ樹脂(B)とイミド基含有樹脂および上記硬化剤との反応を促進するものであれば特に制限されないが、例えば、四国化成工業(株)製、2MZ、2E4MZ、C11Z、C17Z、2PZ、1B2MZ、2MZ-CN、2E4MZ-CN、C11Z-CN、2PZ-CN、2PHZ-CN、2MZ-CNS、2E4MZ-CNS、2PZ-CNS、2MZ-AZINE、2E4MZ-AZINE、C11Z-AZINE、2MA-OK、2P4MHZ、2PHZ、2P4BHZ等のイミダゾール誘導体、アセトグアナミン、ベンゾグアナミン等のグアナミン類、ジアミノジフェニルメタン、m-フェニレンジアミン、m-キシレンジアミン、ジアミノジフェニルスルホン、ジシアンジアミド、尿素、尿素誘導体、メラミン、多塩基ヒドラジド等のポリアミン類、これらの有機酸塩および/またはエポキシアダクト、三フッ化ホウ素のアミン錯体、エチルジアミノ-S-トリアジン、2,4-ジアミノ-S-トリアジン、2,4-ジアミノ-6-キシリル-S-トリアジン等のトリアジン誘導体類、トリメチルアミン、トリエタノールアミン、N,N-ジメチルオクチルアミン、N-ベンジルジメチルアミン、ピリジン、N-メチルモルホリン、ヘキサ(N-メチル)メラミン、2,4,6-トリス(ジメチルアミノフェノール)、テトラメチルグアニジン、DBU(1,8-ジアザビシクロ[5,4,0]-7-ウンデセン)、DBN(1,5-ジアザビシクロ[4,3,0]-5-ノネン)等の三級アミン類、これらの有機酸塩および/またはテトラフェニルボロエート、ポリビニルフェノール、ポリビニルフェノール臭素化物、トリブチルホスフィン、トリフェニルホスフィン、トリス-2-シアノエチルホスフィン等の有機ホスフィン類、トリ-n-ブチル(2,5-ジヒドロキシフェニル)ホスホニウムブロマイド、ヘキサデシルトリブチルホスホニウムクロライド、テトラフェニルホスホニウムテトラフェニルボロエート等の四級ホスホニウム塩類、ベンジルトリメチルアンモニウムクロライド、フェニルトリブチルアンモニウムクロライド等の四級アンモニウム塩類、前記ポリカルボン酸無水物、ジフェニルヨードニウムテトラフルオロボロエート、トリフェニルスルホニウムヘキサフルオロアンチモネート、2,4,6-トリフェニルチオピリリウムヘキサフルオロホスフェート、イルガキュアー261(チバ・スペシャルティ・ケミカルズ(株)製)、オプトマ-SP-170((株)ADEKA製)等の光カチオン重合触媒、スチレン-無水マレイン酸樹脂、フェニルイソシアネートとジメチルアミンの等モル反応物や、トリレンジイソシアネート、イソホロンジイソシアネート等の有機ポリイソシアネートとジメチルアミンの等モル反応物等が挙げられる。これらの硬化剤および硬化触媒は、単独で用いることもできるし、または2種類以上組み合わせて用いても構わない。
<Other ingredients>
The adhesive composition of the present invention may contain an additional curing agent for curing the epoxy resin (B) or a curing catalyst for promoting the reaction between the epoxy resin (B) and the imide group-containing resin, as long as the properties are not impaired. Such a curing agent is not particularly limited as long as it is a compound that reacts with the epoxy resin (B), and examples thereof include amine-based curing agents, compounds having a phenolic hydroxyl group, compounds having a carboxylic acid, and compounds having an acid anhydride. These curing agents are used to adjust the functional group equivalent between the epoxy resin (B) and the imide group-containing resin. The curing catalyst is not particularly limited as long as it promotes the reaction between the epoxy resin (B) and the imide group-containing resin and the curing agent. For example, imidazole derivatives such as 2MZ, 2E4MZ, C11Z, C17Z, 2PZ, 1B2MZ, 2MZ-CN, 2E4MZ-CN, C11Z-CN, 2PZ-CN, 2PHZ-CN, 2MZ-CNS, 2E4MZ-CNS, 2PZ-CNS, 2MZ-AZINE, 2E4MZ-AZINE, C11Z-AZINE, 2MA-OK, 2P4MHZ, 2PHZ, and 2P4BHZ manufactured by Shikoku Chemical Industry Co., Ltd.; guanamines such as acetoguanamine and benzoguanamine; diaminodiphenylmethane, m-phenylenediamine, m- Xylylenediamine, diaminodiphenylsulfone, dicyandiamide, urea, urea derivatives, melamine, polyamines such as polybasic hydrazides, organic acid salts and/or epoxy adducts thereof, amine complexes of boron trifluoride, triazine derivatives such as ethyldiamino-S-triazine, 2,4-diamino-S-triazine, and 2,4-diamino-6-xylyl-S-triazine, trimethylamine, triethanolamine, N,N-dimethyloctylamine, N-benzyldimethylamine, pyridine, N-methylmorpholine, hexa(N-methyl)melamine, 2,4,6-tris(dimethylaminophenol), tetramethylguanidine, DBU(1,8- tertiary amines such as diazabicyclo[5,4,0]-7-undecene (DBN) and DBN-5-nonene (DBN), organic acid salts thereof and/or tetraphenylborate, polyvinylphenol, polyvinylphenol bromide, organic phosphines such as tributylphosphine, triphenylphosphine and tris-2-cyanoethylphosphine, quaternary phosphonium salts such as tri-n-butyl(2,5-dihydroxyphenyl)phosphonium bromide, hexadecyltributylphosphonium chloride and tetraphenylphosphonium tetraphenylborate, benzyltrimethylammonium chloride, phenyltributary phosphate, etc. Examples of the curing agent and curing catalyst include quaternary ammonium salts such as tetraphenylammonium chloride, the polycarboxylic acid anhydrides, diphenyliodonium tetrafluoroborate, triphenylsulfonium hexafluoroantimonate, 2,4,6-triphenylthiopyrylium hexafluorophosphate, photocationic polymerization catalysts such as Irgacure 261 (manufactured by Ciba Specialty Chemicals Co., Ltd.) and Optomer SP-170 (manufactured by ADEKA Corporation), styrene-maleic anhydride resins, equimolar reactants of phenylisocyanate and dimethylamine, and equimolar reactants of organic polyisocyanates such as tolylene diisocyanate and isophorone diisocyanate and dimethylamine. These curing agents and curing catalysts can be used alone or in combination of two or more.
 本発明の接着剤組成物には、接着性向上の目的で、シランカップリング剤を添加することができる。その具体例としては、アミノシラン、メルカプトシラン、ビニルシラン、エポキシシラン、メタクリルシラン、イソシアネートシラン、ケチミンシランもしくはこれらの混合物もしくは反応物、または、これらとポリイソシアネートとの反応により得られる化合物等が挙げられる。このようなシランカップリング剤としては、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルエチルジエトキシシラン、ビストリメトキシシリルプロピルアミン、ビストリエトキシシリルプロピルアミン、ビスメトキシジメトキシシリルプロピルアミン、ビスエトキシジエトキシシリルプロピルアミン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルエチルジエトキシシラン等のアミノシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、γ-メルカプトプロピルエチルジエトキシシラン等のメルカプトシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、トリス-(2-メトキシエトキシ)ビニルシラン等のビニルシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルジメチルエトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン等のメタクリルシラン、イソシアネートプロピルトリエトキシシラン、イソシアネートプロピルトリメトキシシラン等のイソシアネートシラン、ケチミン化プロピルトリメトキシシラン、ケチミン化プロピルトリエトキシシラン等のケチミンシランが挙げられる。これらを1種単独、または2種類以上併用して用いても構わない。これらのシランカップリング剤のうち、エポキシシランは、反応性のエポキシ基を有するため、イミド基含有樹脂と反応できるので、耐熱性、耐湿熱性向上の点で好ましい。シランカップリング剤の配合量は、樹脂剤組成物の不揮発分全体を100質量%とした場合、好ましくは0~3質量%であり、より好ましくは0~2質量%である。配合量が上記範囲を超えると耐熱性が低下する傾向にある。 A silane coupling agent can be added to the adhesive composition of the present invention to improve adhesion. Specific examples include aminosilane, mercaptosilane, vinylsilane, epoxysilane, methacrylsilane, isocyanatesilane, ketiminesilane, or mixtures or reactants thereof, or compounds obtained by reacting these with polyisocyanates. Examples of such silane coupling agents include aminosilanes such as 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldimethoxysilane, 3-aminopropylethyldiethoxysilane, bistrimethoxysilylpropylamine, bistriethoxysilylpropylamine, bismethoxydimethoxysilylpropylamine, bisethoxydiethoxysilylpropylamine, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2-(aminoethyl)-3-aminopropyltriethoxysilane, and N-2-(aminoethyl)-3-aminopropylethyldiethoxysilane; mercaptosilanes such as γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropylmethyldiethoxysilane, and γ-mercaptopropylethyldiethoxysilane; vinyl silanes such as tris-(2-methoxyethoxy)vinyl silane, γ-glycidoxypropyl trimethoxy silane, γ-glycidoxypropyl dimethyl ethoxy silane, γ-glycidoxypropyl methyl diethoxy silane, β-(3,4-epoxycyclohexyl) ethyl methyl dimethoxy silane, γ-glycidoxypropyl trimethoxy silane, β-(3,4-epoxycyclohexyl) ethyl trimethoxy silane, etc. Examples of the silane coupling agent include methacrylsilanes such as epoxy silane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, and 3-methacryloxypropyltriethoxysilane; isocyanate silanes such as isocyanatepropyltriethoxysilane and isocyanatepropyltrimethoxysilane; and ketimine silanes such as ketimine propyltrimethoxysilane and ketimine propyltriethoxysilane. These may be used alone or in combination of two or more. Among these silane coupling agents, epoxy silane has a reactive epoxy group and can react with an imide group-containing resin, so it is preferable in terms of improving heat resistance and moist heat resistance. The amount of the silane coupling agent is preferably 0 to 3 mass%, and more preferably 0 to 2 mass%, when the entire non-volatile content of the resin composition is 100 mass%. If the amount exceeds the above range, the heat resistance tends to decrease.
 本発明の接着剤組成物には、本発明の効果を損なわない範囲で、半田耐熱性を向上させる目的で、有機フィラーや無機フィラーを添加することができる。有機フィラーとしては、耐熱性樹脂であるポリイミド、ポリアミドイミドなどの粉末が挙げられる。また、無機フィラーとしては、例えば、シリカ(SiO)、アルミナ(Al)、チタニア(TiO)、酸化タンタル(Ta)、ジルコニア(ZrO)、窒化硅素(Si)、チタン酸バリウム(BaO・TiO)、炭酸バリウム(BaCO)、チタン酸鉛(PbO・TiO)、チタン酸ジルコン酸鉛(PZT)、チタン酸ジルコン酸ランタン鉛(PLZT)、酸化ガリウム(Ga)、スピネル(MgO・Al)、ムライト(3Al・2SiO)、コーディエライト(2MgO・2Al・5SiO)、タルク(3MgO・4SiO・HO)、チタン酸アルミニウム(TiO-Al)、イットリア含有ジルコニア(Y-ZrO)、硅酸バリウム(BaO・8SiO)、窒化ホウ素(BN)、炭酸カルシウム(CaCO)、硫酸カルシウム(CaSO)、酸化亜鉛(ZnO)、チタン酸マグネシウム(MgO・TiO)、硫酸バリウム(BaSO)、有機ベントナイト、クレー、マイカ、水酸化アルミニウム、水酸化マグネシウム、ホスフィン酸金属塩などが挙げられる。この中でも分散の容易さや耐熱性向上効果からシリカが好ましい。これらは単独でも二種以上を組み合わせて用いても構わない。また、これらの有機フィラーおよび無機フィラーの添加量は、接着剤組成物の不揮発成分に対して、1~30質量%が好ましく、3~15質量%がさらに好ましい。有機フィラーや無機フィラーの添加量が多すぎると接着剤塗膜が脆化する恐れがあり、添加量が少なすぎると十分な耐熱性向上の効果を得ることができない恐れがある。 The adhesive composition of the present invention may contain an organic or inorganic filler for the purpose of improving the solder heat resistance, as long as the effect of the present invention is not impaired. Examples of the organic filler include powders of heat-resistant resins such as polyimide and polyamideimide. Examples of inorganic fillers include silica (SiO 2 ), alumina (Al 2 O 3 ), titania (TiO 2 ), tantalum oxide (Ta 2 O 5 ), zirconia (ZrO 2 ), silicon nitride (Si 3 N 4 ), barium titanate (BaO.TiO 2 ), barium carbonate (BaCO 3 ), lead titanate (PbO.TiO 2 ), lead zirconate titanate (PZT), lead lanthanum zirconate titanate (PLZT), gallium oxide (Ga 2 O 3 ), spinel (MgO.Al 2 O 3 ), mullite (3Al 2 O 3.2SiO 2 ), cordierite (2MgO.2Al 2 O 3.5SiO 2 ), talc (3MgO.4SiO 2.H 2 O), aluminum titanate (TiO 2 -Al 2 O 3 ), yttria-containing zirconia (Y 2 O 3 -ZrO 2 ), barium silicate (BaO.8SiO 2 ), boron nitride (BN), calcium carbonate (CaCO 3 ), calcium sulfate (CaSO 4 ), zinc oxide (ZnO), magnesium titanate (MgO.TiO 2 ), barium sulfate (BaSO 4 ), organic bentonite, clay, mica, aluminum hydroxide, magnesium hydroxide, metal phosphinate, etc. are included. Among these, silica is preferred because of its ease of dispersion and heat resistance improvement effect. These may be used alone or in combination of two or more. The amount of these organic fillers and inorganic fillers added is preferably 1 to 30 mass % and more preferably 3 to 15 mass % based on the non-volatile components of the adhesive composition. If the amount of organic filler or inorganic filler added is too large, the adhesive coating film may become embrittled, and if the amount added is too small, the effect of improving heat resistance may not be sufficient.
<フレキシブルプリント配線板>
 本発明の接着剤組成物は、フレキシブルプリント配線板の用途に好適である。フレキシブルプリント配線板を構成する部材として、本発明の接着剤組成物は、銅張積層板、カバーレイフィルム、接着剤シートに用いられることができる。
<Flexible printed wiring board>
The adhesive composition of the present invention is suitable for use in flexible printed wiring boards. As components constituting flexible printed wiring boards, the adhesive composition of the present invention can be used for copper-clad laminates, coverlay films, and adhesive sheets.
 本発明の銅張積層板は、本発明の接着剤組成物によって絶縁性プラスチックフィルムの少なくとも片面に銅箔を貼り合わせた構成を有する。銅箔は、特に制限されないが、フレキシブルプリント配線板に従来用いられている圧延銅箔、電解銅箔を使用することができる。 The copper-clad laminate of the present invention has a structure in which copper foil is bonded to at least one side of an insulating plastic film using the adhesive composition of the present invention. The copper foil is not particularly limited, but rolled copper foil or electrolytic copper foil that is conventionally used in flexible printed wiring boards can be used.
 本発明のカバーレイフィルムは、本発明の接着剤組成物からなる接着剤層と絶縁性プラスチックフィルムとが積層された構成を有し、特に絶縁性プラスチックフィルム/接着剤層または絶縁性プラスチックフィルム/接着剤層/保護フィルムの構成を有する。絶縁性プラスチックフィルムとは、ポリイミド、ポリアミドイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、液晶ポリマー(LCP)、フッ素樹脂、ポリフェニレンスルフィド、ポリエーテルスルホン、ポリエーテルエーテルケトン、アラミド、ポリカーボネート、ポリアリレート等のプラスチックからなる厚さ1~200μmのフィルムであり、これらから選ばれる複数のフィルムを積層してもよい。保護フィルムは、接着剤の特性を損なうことなく剥離可能であれば特に制限はないが、例えば、ポリエチレン、ポリプロピレン、ポリオレフィン、ポリエステル、ポリメチルペンテン、ポリ塩化ビニル、ポリフッ化ビニリデン、ポリフェニレンスルフィド等のプラスチックフィルム、およびこれらをシリコーンあるいはフッ化物あるいはその他の離型剤をコーティング処理したフィルム、これらをラミネートした紙、剥離性のある樹脂を含浸あるいはコーティングした紙などが挙げられる。 The coverlay film of the present invention has a structure in which an adhesive layer made of the adhesive composition of the present invention and an insulating plastic film are laminated, and in particular has a structure of insulating plastic film/adhesive layer or insulating plastic film/adhesive layer/protective film. The insulating plastic film is a film made of plastic such as polyimide, polyamideimide, polyethylene terephthalate, polyethylene naphthalate, liquid crystal polymer (LCP), fluororesin, polyphenylene sulfide, polyethersulfone, polyetheretherketone, aramid, polycarbonate, polyarylate, etc., having a thickness of 1 to 200 μm, and a plurality of films selected from these may be laminated. There are no particular restrictions on the protective film as long as it can be peeled off without impairing the properties of the adhesive, and examples of the protective film include plastic films such as polyethylene, polypropylene, polyolefin, polyester, polymethylpentene, polyvinyl chloride, polyvinylidene fluoride, polyphenylene sulfide, etc., films coated with silicone, fluoride, or other release agents, paper laminated with these, and paper impregnated or coated with peelable resin.
 本発明の接着剤シートは、本発明の接着剤組成物からなる接着剤層と、剥離可能な保護フィルムとが積層された構成を有し、特に保護フィルム/接着剤層または保護フィルム/接着剤/保護フィルムの構成を有する。接着剤層の中に絶縁性プラスチックフィルム層を設ける場合もある。接着剤シートは多層プリント基板に使用されることもできる。 The adhesive sheet of the present invention has a structure in which an adhesive layer made of the adhesive composition of the present invention and a peelable protective film are laminated together, and in particular has a structure of protective film/adhesive layer or protective film/adhesive/protective film. An insulating plastic film layer may be provided within the adhesive layer. The adhesive sheet can also be used for multilayer printed circuit boards.
 上記のいずれの用途においても、本発明の接着剤組成物の溶液を基材となる絶縁性プラスチックフィルムもしくは銅箔の上に塗布、溶剤乾燥を行い、被着体と熱圧着、熱硬化処理を行い使用する。また、熱圧着時の接着剤の流動性を調整する目的で、溶剤乾燥後に加熱処理を行い、イミド基含有樹脂と硬化剤を一部反応させることもある。また、熱圧着前の状態をBステージと呼ぶ。 In any of the above applications, a solution of the adhesive composition of the present invention is applied onto the insulating plastic film or copper foil substrate, the solvent is dried, and the adhesive is thermocompressed to the adherend and then thermoset before use. In order to adjust the fluidity of the adhesive during thermocompression, a heat treatment may be performed after the solvent is dried to cause a partial reaction between the imide group-containing resin and the curing agent. The state before thermocompression is called the B stage.
 上記のいずれの用途においても、熱硬化後に耐熱性、接着性、柔軟性、絶縁性が求められ、難燃性を有していることが好ましい。また、カバーレイフィルムおよび接着剤シートにおいては、Bステージ状態で巻き取り、保存、切断、打ち抜きなどの加工を行うことが一般的であり、Bステージ状態での柔軟性も必要である。一方、銅張積層板においては、Bステージ状態形成後にすぐに熱圧着および熱硬化を行うことが一般的であり、カバーレイフィルムおよび接着剤シートほどはBステージ状態での柔軟性が求められない。本発明の接着剤を用いたカバーレイフィルムおよび接着剤シートは、Bステージ状態での高い流動性と熱硬化後の高い絶縁性を有しており、これを使用したフレキシブルプリント配線板は、回路幅および回路間隔が数μm~20μm程度のファインピッチパターンに対応することができ、また、回路幅に対する回路高さの比(アスペクト比)が大きく回路間隔が狭いコイル向けフレキシブルプリント配線板にも対応することができる。 In any of the above applications, heat resistance, adhesion, flexibility, and insulation are required after heat curing, and flame retardancy is preferable. In addition, in the case of coverlay films and adhesive sheets, it is common to wind, store, cut, punch, and perform other processing in the B-stage state, so flexibility in the B-stage state is also necessary. On the other hand, in the case of copper-clad laminates, it is common to perform thermocompression bonding and thermocuring immediately after forming the B-stage state, so flexibility in the B-stage state is not required as much as in the case of coverlay films and adhesive sheets. The coverlay films and adhesive sheets using the adhesive of the present invention have high fluidity in the B-stage state and high insulation after heat curing, and flexible printed wiring boards using them can accommodate fine pitch patterns with circuit widths and circuit spacings of several μm to 20 μm, and can also accommodate flexible printed wiring boards for coils with a large ratio of circuit height to circuit width (aspect ratio) and narrow circuit spacing.
 以下、本発明の効果を実施例により実証するが、本発明はこれらに限定されるものではない。なお、実施例中の特性の評価は、以下の方法で行なった。 The effects of the present invention will be demonstrated below with examples, but the present invention is not limited to these. The characteristics in the examples were evaluated using the following methods.
(接着性の評価方法)
 接着剤組成物の溶液をポリイミドフィルム(カネカ製 アピカル12.5NPI)に乾燥後の厚みが20μmとなるように塗布し、140℃で3分間熱風乾燥機で乾燥させ、Bステージ状態のサンプルを得た。このBステージサンプルの接着剤塗布面と銅箔(JX日鉱日石製 BHY 厚み18μm)の光沢面とを重ね合わせ、プレス機にセットし、室温から昇温して、180℃到達後60分×30Kg/cmで熱圧着させた。熱圧着後のサンプルについて、引っ張り試験機(島津製 オートグラフAG-X plus)を用いて25℃の雰囲気下でポリイミドフィルムを180°の方向に50mm/minの速度で引き剥がし、接着強度を測定し、以下の評価基準に従って接着性を評価した。
(評価基準)
 ◎:接着強度が0.7N/mm以上
 ○:接着強度が0.5N/mm以上0.7N/mm未満
 ×:接着強度が0.5N/mm未満
(Method of Evaluating Adhesion)
The solution of the adhesive composition was applied to a polyimide film (Apical 12.5NPI, manufactured by Kaneka) so that the thickness after drying was 20 μm, and dried in a hot air dryer at 140 ° C for 3 minutes to obtain a sample in a B-stage state. The adhesive-coated surface of this B-stage sample was overlapped with the glossy surface of a copper foil (BHY, manufactured by JX Nippon Oil & Gas Exploration Co., Ltd., thickness 18 μm), set in a press, heated from room temperature, and thermocompressed at 60 minutes x 30 kg / cm 2 after reaching 180 ° C. For the sample after thermocompression, the polyimide film was peeled off in a 180 ° direction at a speed of 50 mm / min in an atmosphere of 25 ° C. using a tensile tester (Autograph AG-X plus, manufactured by Shimadzu), the adhesive strength was measured, and the adhesiveness was evaluated according to the following evaluation criteria.
(Evaluation criteria)
◎: Adhesive strength is 0.7 N/mm or more. ○: Adhesive strength is 0.5 N/mm or more and less than 0.7 N/mm. ×: Adhesive strength is less than 0.5 N/mm.
(難燃性の評価方法)
 接着性の評価方法と同様にBステージサンプルを作製し、接着剤塗布面とポリイミドフィルム(カネカ製 アピカル12.5NPI)とを180℃×60分で熱圧着させた。熱圧着後のサンプルについて、UL-94VTM規格に準拠して、以下の評価基準に従って難燃性を評価した。
(評価基準)
 ○:VTM-0を満足する
 ×:VTM-0を満足しない
(Method of evaluating flame retardancy)
A B-stage sample was prepared in the same manner as in the adhesiveness evaluation method, and the adhesive-coated surface and a polyimide film (Apical 12.5NPI, manufactured by Kaneka) were thermocompression-bonded at 180° C. for 60 minutes. The flame retardancy of the thermocompression-bonded sample was evaluated according to the following evaluation criteria in accordance with the UL-94VTM standard.
(Evaluation criteria)
○: VTM-0 is satisfied. ×: VTM-0 is not satisfied.
(絶縁信頼性-1の評価方法)
 接着性の評価方法と同様にBステージサンプルを作製し、銅箔で回路幅であるLと回路間隔であるSがL/S=50μm/50μmのくし型回路パターンに形成したポリイミド製のプリント基板上に180℃×60分で熱圧着させた。その後、温度85℃、湿度85%の環境下、50Vの電圧を1000時間印加し、以下の評価基準に従って絶縁信頼性を評価した。
(評価基準)
 ○:1000時間後の抵抗値が5×10Ω以上であり、デンドライトの発生なし
 ×:1000時間後の抵抗値が5×10Ω未満、またはデンドライトが発生した
(絶縁信頼性-2の評価方法)
 絶縁信頼性-2は、くし型回路パターンのL/Sを絶縁信頼性-1より狭くして条件を厳しくした評価方法である。
 絶縁信頼性-1の評価と同様にBステージサンプルを作製し、セミアディティブ法で回路形成したL/S=10μm/10μmのくし型回路パターン上に180℃×60分で熱圧着させた。その後、温度85℃、湿度85%の環境下、50Vの電圧を500時間印加し、以下の評価基準に従って絶縁信頼性を評価した。
(評価基準)
 ◎:500時間後の抵抗値が1×10Ω以上であり、デンドライトの発生なし
 ○:500時間後の抵抗値が1×10Ω以上であるが、僅かにデンドライトが発生
 ×:500時間までに絶縁破壊した
(Evaluation method for insulation reliability-1)
Similar to the adhesiveness evaluation method, a B-stage sample was prepared and thermocompression-bonded to a polyimide printed circuit board formed with copper foil in a comb-shaped circuit pattern with a circuit width L and a circuit spacing S of L/S=50 μm/50 μm at 180° C. for 60 minutes. After that, a voltage of 50 V was applied for 1000 hours in an environment of a temperature of 85° C. and a humidity of 85%, and the insulation reliability was evaluated according to the following evaluation criteria.
(Evaluation criteria)
◯: Resistance after 1000 hours is 5×10 8 Ω or more, and no dendrites have been generated. ×: Resistance after 1000 hours is less than 5×10 8 Ω, or dendrites have been generated (evaluation method for insulation reliability-2).
Insulation reliability-2 is an evaluation method in which the L/S of the comb-type circuit pattern is narrower than that in insulation reliability-1, making the conditions stricter.
A B-stage sample was prepared in the same manner as in the evaluation of insulation reliability-1, and was thermocompression bonded to a comb-shaped circuit pattern with L/S=10 μm/10 μm formed by a semi-additive method at 180° C. for 60 minutes. Thereafter, a voltage of 50 V was applied for 500 hours in an environment of a temperature of 85° C. and a humidity of 85%, and the insulation reliability was evaluated according to the following evaluation criteria.
(Evaluation criteria)
⊚: Resistance after 500 hours is 1×10 8 Ω or more, and no dendrites are generated. ◯: Resistance after 500 hours is 1×10 8 Ω or more, but slight dendrites are generated. ×: Dielectric breakdown occurs within 500 hours.
(半田耐熱性の評価方法)
 接着性の評価方法と同様に熱圧着後のサンプルを作製し、20mm角に切断し、280℃もしくは300℃の半田浴にポリイミドフィルム面を上にして1分間フロートさせ、以下の評価基準に従って半田耐熱性を評価した。
(評価基準)
 ◎:280℃および300℃のいずれの温度においても膨れや剥がれの発生なし
 ○:280℃では膨れや剥がれの発生なし、300℃では膨れまたは剥がれが発生した
 ×:280℃で膨れまたは剥がれが発生した
(Method of evaluating solder heat resistance)
Similar to the method for evaluating adhesion, samples were prepared after thermocompression bonding, cut into 20 mm squares, and floated in a solder bath at 280°C or 300°C for 1 minute with the polyimide film side facing up, and the solder heat resistance was evaluated according to the following evaluation criteria.
(Evaluation criteria)
⊚: No blistering or peeling occurred at either 280°C or 300°C. ◯: No blistering or peeling occurred at 280°C, but blistering or peeling occurred at 300°C. ×: Blistering or peeling occurred at 280°C.
(イミド基含有樹脂(A1)の製造例)
 撹拌機、冷却管、窒素導入管および温度計を備えた4つ口のセパラブルフラスコに、無水トリメリット酸30モル部、BPADA20モル部、ダイマー酸50モル部、ジフェニルメタンジイソシアネート100モル部および脱炭酸後の樹脂分の濃度が40質量%となるよう重合溶剤としてN-メチル-2-ピロリドンを加え、窒素下で100℃まで昇温して2時間反応させ、さらに150℃に昇温して5時間反応させた。その後、樹脂分の濃度が30質量%となるよう希釈溶剤としてシクロヘキサノンを加えて希釈し、イミド基含有樹脂(A1)の溶液を得た。
(Production Example of Imido Group-Containing Resin (A1))
In a four-necked separable flask equipped with a stirrer, a cooling tube, a nitrogen inlet tube and a thermometer, 30 molar parts of trimellitic anhydride, 20 molar parts of BPADA, 50 molar parts of dimer acid, 100 molar parts of diphenylmethane diisocyanate and N-methyl-2-pyrrolidone as a polymerization solvent were added so that the concentration of the resin after decarbonation was 40% by mass, and the mixture was heated to 100° C. under nitrogen and reacted for 2 hours, and further heated to 150° C. and reacted for 5 hours. Thereafter, the mixture was diluted with cyclohexanone as a dilution solvent so that the concentration of the resin was 30% by mass, to obtain a solution of imide group-containing resin (A1).
(イミド基含有樹脂(A2)~(A12)の製造例)
 表1に示す樹脂組成となるように原料および溶剤の種類および量を変更した以外はイミド基含有樹脂1と同様の方法で、イミド基含有樹脂(A2)~(A12)の溶液を作製した。
(Production Examples of Imido Group-Containing Resins (A2) to (A12))
Solutions of imide group-containing resins (A2) to (A12) were prepared in the same manner as for imide group-containing resin 1, except that the types and amounts of raw materials and solvents were changed so as to obtain the resin compositions shown in Table 1.
 表1で用いた原料の詳細は以下のとおりである。
ダイマー酸:クローダ製 PRIPOL1013
水素添加ダイマー酸:クローダ製 PRIPOL1009
BPADA:富士フイルム和光純薬工業株式会社製 4,4′-(4,4′-イソプロピリデンジフェノキシ)ジフタル酸無水物
ODPA:東京化成工業製 オキシジフタル酸二無水物
TMEG:新日本理化株式会社製 エチレングリコールビスアンヒドロトリメリテート
TMPG:Tryleadケミカル製 プロピレングリコールビスアンヒドロトリメリテート
TMA:富士フイルム和光純薬工業株式会社製 無水トリメリット酸
NBR:HUNTSMAN製CTBN1300×13NA、両末端にカルボキシ基を有するアクリロニトリル-ブタジエンゴム
MDI:富士フイルム和光純薬工業株式会社製 ジフェニルメタンジイソシアネート
TDI:東京化成工業製 トリレンジイソシアネート
ToDI:日本曹達製 o-トリジンジイソシアネート
NMP:富士フイルム和光純薬工業株式会社製 N-メチル-2-ピロリドン
DMAc:富士フイルム和光純薬工業株式会社製 N,N-ジメチルアセトアミド
Details of the raw materials used in Table 1 are as follows.
Dimer acid: PRIPOL1013 manufactured by Croda
Hydrogenated dimer acid: PRIPOL1009 manufactured by Croda
BPADA: Fujifilm Wako Pure Chemical Industries, Ltd. 4,4'-(4,4'-isopropylidenediphenoxy)diphthalic anhydride ODPA: Tokyo Chemical Industry Co., Ltd. Oxydiphthalic dianhydride TMEG: New Japan Chemical Co., Ltd. Ethylene glycol bisanhydrotrimellitate TMPG: Trylead Chemical Co., Ltd. Propylene glycol bisanhydrotrimellitate TMA: Fujifilm Wako Pure Chemical Industries, Ltd. Trimellitic anhydride NBR: HUNTSMAN CTBN1300x13NA, acrylonitrile-butadiene rubber having carboxy groups at both ends MDI: Fujifilm Wako Pure Chemical Industries, Ltd. Diphenylmethane diisocyanate TDI: Tokyo Chemical Industry Co., Ltd. Tolylene diisocyanate ToDI: Nippon Soda Co., Ltd. o-Tolidine diisocyanate NMP: Fujifilm Wako Pure Chemical Industries, Ltd. N-Methyl-2-pyrrolidone DMAc: N,N-dimethylacetamide manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<実施例1>
 イミド基含有樹脂(A1)の溶液を固形分として55質量部、jER828(エポキシ樹脂(B))を固形分として25質量部、BCA(リン系難燃剤(E))を固形分として10質量部およびZX-92741(リン系難燃剤(E))を固形分として6質量部混合し、接着剤組成物を作製した。なお、jER828、BCAおよびZX-92741については事前に固形分30質量%のジメチルアセトアミド溶液を調製し、使用した。得られた接着剤組成物について、接着性、難燃性、絶縁信頼性および半田耐熱性の各評価を実施した。結果を表2に示す。
Example 1
An adhesive composition was prepared by mixing 55 parts by mass of a solution of the imide group-containing resin (A1) as a solid content, 25 parts by mass of jER828 (epoxy resin (B)) as a solid content, 10 parts by mass of BCA (phosphorus-based flame retardant (E)) as a solid content, and 6 parts by mass of ZX-92741 (phosphorus-based flame retardant (E)) as a solid content. Note that for jER828, BCA, and ZX-92741, a dimethylacetamide solution with a solid content of 30% by mass was prepared in advance and used. The adhesive composition obtained was evaluated for adhesion, flame retardancy, insulation reliability, and solder heat resistance. The results are shown in Table 2.
<実施例2~13、比較例1~3>
 表2に示す接着剤組成物配合となるようにイミド基含有樹脂(A)、エポキシ樹脂(B)およびリン系難燃剤(E)の種類および量を変更した以外は実施例1と同様にして接着剤組成物を作製した。なお、エポキシ樹脂(B)およびリン系難燃剤(E)については、事前に固形分30質量%のジメチルアセトアミド溶液を調製し、使用した。得られた接着剤組成物について、接着性、難燃性、絶縁信頼性および半田耐熱性の各評価を実施した。結果を表2に示す。
<Examples 2 to 13 and Comparative Examples 1 to 3>
Adhesive compositions were prepared in the same manner as in Example 1, except that the types and amounts of the imide group-containing resin (A), the epoxy resin (B), and the phosphorus-based flame retardant (E) were changed to obtain the adhesive composition formulation shown in Table 2. Note that for the epoxy resin (B) and the phosphorus-based flame retardant (E), a dimethylacetamide solution with a solid content of 30 mass% was prepared in advance and used. The adhesive compositions obtained were evaluated for adhesion, flame retardancy, insulation reliability, and solder heat resistance. The results are shown in Table 2.
 表2で用いたエポキシ樹脂(B)およびリン系難燃剤(E)の詳細は、以下のとおりである。
jER828:三菱ケミカル製エポキシ樹脂(ビスフェノール型エポキシ樹脂 エポキシ当量189g/eq)
jER152:三菱ケミカル製エポキシ樹脂(フェノールノボラック型エポキシ樹脂 エポキシ当量177g/eq)
jER1001:三菱ケミカル製エポキシ樹脂(ビスフェノール型エポキシ樹脂 エポキシ当量475g/eq)
BCA:10-ベンジル-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド
HCA:9,10-ジヒドロ-9-オキサ-10-フォスファフェナントレン-10-オキサイド
ZX-92741:Olin製、フェノール性水酸基を2つ有するリンフェノール化合物
Details of the epoxy resin (B) and phosphorus-based flame retardant (E) used in Table 2 are as follows.
jER828: Mitsubishi Chemical epoxy resin (bisphenol type epoxy resin, epoxy equivalent: 189 g/eq)
jER152: Epoxy resin manufactured by Mitsubishi Chemical (phenol novolac type epoxy resin, epoxy equivalent: 177 g/eq)
jER1001: Mitsubishi Chemical epoxy resin (bisphenol type epoxy resin, epoxy equivalent: 475 g/eq)
BCA: 10-benzyl-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide HCA: 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide ZX-92741: Olin, phosphorus phenol compound having two phenolic hydroxyl groups
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2からわかるように、本発明の要件を満たす実施例1~13の接着剤組成物は、優れた接着性、高い絶縁信頼性および半田耐熱性を同時に発現することができた。これに対して、比較例1ではイミド基含有樹脂が構成単位としてダイマー酸を有していないため、接着剤としての柔軟性が不足して接着性を満たすことができなかった。比較例2では、イミド基含有樹脂が構成単位としてエステル基またはエーテル基を有する酸二無水物化合物を有していないため、半田耐熱性が劣った。比較例3では、イミド基含有樹脂が構成単位としてダイマー酸を有しておらず、代わりにアクリロニトリル-ブタジエンゴム(NBR)を原料に使用したため、NBR中のニトリルによる吸湿の影響で絶縁信頼性に劣った。 As can be seen from Table 2, the adhesive compositions of Examples 1 to 13, which satisfy the requirements of the present invention, were able to simultaneously exhibit excellent adhesion, high insulation reliability, and solder heat resistance. In contrast, in Comparative Example 1, the imide group-containing resin did not have dimer acid as a constituent unit, so the flexibility as an adhesive was insufficient and the adhesive properties could not be satisfied. In Comparative Example 2, the imide group-containing resin did not have an acid dianhydride compound having an ester group or ether group as a constituent unit, so the solder heat resistance was poor. In Comparative Example 3, the imide group-containing resin did not have dimer acid as a constituent unit, and instead acrylonitrile-butadiene rubber (NBR) was used as a raw material, so the insulation reliability was poor due to the influence of moisture absorption by the nitrile in the NBR.
 本発明の接着剤組成物は、接着性、絶縁信頼性、半田耐熱性に優れるため、カバーレイフィルム、接着剤シート、銅張積層板などに好適である。従って、本発明は、当業界において極めて有用である。 The adhesive composition of the present invention has excellent adhesion, insulation reliability, and solder heat resistance, making it suitable for use in coverlay films, adhesive sheets, copper-clad laminates, and the like. Therefore, the present invention is extremely useful in this industry.

Claims (9)

  1.  イミド基含有樹脂(A)およびエポキシ樹脂(B)を含有する接着剤組成物であって、前記イミド基含有樹脂(A)が、エステル基またはエーテル基を有する酸二無水物化合物(C)、およびダイマー酸(D)を構成単位として有することを特徴とする接着剤組成物。 An adhesive composition containing an imide group-containing resin (A) and an epoxy resin (B), characterized in that the imide group-containing resin (A) has an acid dianhydride compound (C) having an ester group or an ether group, and a dimer acid (D) as structural units.
  2.  前記酸二無水物化合物(C)が、アルキレングリコールビスアンヒドロトリメリテートであることを特徴とする、請求項1に記載の接着剤組成物。 The adhesive composition according to claim 1, characterized in that the acid dianhydride compound (C) is an alkylene glycol bisanhydrotrimellitate.
  3.  前記酸二無水物化合物(C)が、4,4′-(4,4′-イソプロピリデンジフェノキシ)ジフタル酸二無水物又はオキシジフタル酸二無水物であることを特徴とする、請求項1に記載の接着剤組成物。 The adhesive composition according to claim 1, characterized in that the acid dianhydride compound (C) is 4,4'-(4,4'-isopropylidenediphenoxy)diphthalic dianhydride or oxydiphthalic dianhydride.
  4.  前記イミド基含有樹脂(A)を構成する全ポリカルボン酸成分量を100モル%としたとき、前記酸二無水物化合物(C)および前記ダイマー酸(D)の共重合量がそれぞれ1~80モル%の範囲であることを特徴とする、請求項1~3のいずれかに記載の接着剤組成物。 The adhesive composition according to any one of claims 1 to 3, characterized in that the copolymerization amounts of the acid dianhydride compound (C) and the dimer acid (D) are each in the range of 1 to 80 mol % when the total amount of polycarboxylic acid components constituting the imide group-containing resin (A) is taken as 100 mol %.
  5.  リン系難燃剤(E)をさらに含有することを特徴とする、請求項1~3のいずれかに記載の接着剤組成物。 The adhesive composition according to any one of claims 1 to 3, further comprising a phosphorus-based flame retardant (E).
  6.  絶縁性プラスチックフィルムの少なくとも片面に、請求項1~3のいずれかに記載の接着剤組成物を介して銅箔が積層されてなることを特徴とする銅張積層板。 A copper-clad laminate comprising an insulating plastic film and a copper foil laminated on at least one side thereof via the adhesive composition according to any one of claims 1 to 3.
  7.  請求項1~3のいずれかに記載の接着剤組成物からなる接着剤層と絶縁性プラスチックフィルムとが積層されてなることを特徴とするカバーレイフィルム。 A coverlay film characterized by being formed by laminating an adhesive layer made of the adhesive composition according to any one of claims 1 to 3 and an insulating plastic film.
  8.  請求項1~3のいずれかに記載の接着剤組成物からなる接着剤層と、剥離可能な保護フィルムとが積層されてなることを特徴とする接着剤シート。 An adhesive sheet comprising an adhesive layer made of the adhesive composition according to any one of claims 1 to 3 and a peelable protective film laminated thereon.
  9.  請求項1~3のいずれかに記載の接着剤組成物からなる層を有することを特徴とするフレキシブルプリント配線板。 A flexible printed wiring board having a layer made of the adhesive composition according to any one of claims 1 to 3.
PCT/JP2023/034529 2022-11-28 2023-09-22 Adhesive composition WO2024116571A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380045192.5A CN119317682A (en) 2022-11-28 2023-09-22 Adhesive composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022189567 2022-11-28
JP2022-189567 2022-11-28

Publications (1)

Publication Number Publication Date
WO2024116571A1 true WO2024116571A1 (en) 2024-06-06

Family

ID=91323474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034529 WO2024116571A1 (en) 2022-11-28 2023-09-22 Adhesive composition

Country Status (3)

Country Link
CN (1) CN119317682A (en)
TW (1) TW202436579A (en)
WO (1) WO2024116571A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042730A (en) * 2009-08-20 2011-03-03 Hitachi Chem Co Ltd Adhesive composition, film-shaped adhesive, adhesive sheet, and semiconductor device
JP2022089494A (en) * 2020-12-04 2022-06-16 東洋インキScホールディングス株式会社 Insulating compositions, thermosetting adhesive sheets, thermally conductive adhesive layers and composite members

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042730A (en) * 2009-08-20 2011-03-03 Hitachi Chem Co Ltd Adhesive composition, film-shaped adhesive, adhesive sheet, and semiconductor device
JP2022089494A (en) * 2020-12-04 2022-06-16 東洋インキScホールディングス株式会社 Insulating compositions, thermosetting adhesive sheets, thermally conductive adhesive layers and composite members

Also Published As

Publication number Publication date
TW202436579A (en) 2024-09-16
CN119317682A (en) 2025-01-14

Similar Documents

Publication Publication Date Title
KR101312754B1 (en) Polyamide resin, resin composition thereof, flame-retardant adhesive composition and adhesive sheet made of said composition, coverlay film, and printed wiring board
KR102218936B1 (en) Adhesive composition using polyamide-imide resin
CN108368412B (en) Adhesive composition using polyamideimide resin
JP5782583B1 (en) Adhesive composition using polyamideimide resin
KR102665140B1 (en) Adhesive composition using a resin having an imide bond and a phosphorus compound
KR102587386B1 (en) Adhesive composition comprising acrylonitrile butadiene rubber copolymerized polyamide imide resin
JP7028182B2 (en) Polycarbonate imide resin and resin composition containing it
JPWO2019244452A1 (en) Adhesive composition containing acrylonitrile butadiene rubber copolymerized polyamideimide resin
WO2024116571A1 (en) Adhesive composition
WO2020071364A1 (en) Adhesive composition using imide bond-containing resin and phosphorous compound
JP6130980B1 (en) Adhesive composition using polyamideimide resin
WO2024116572A1 (en) Imide group-containing resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23897230

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024561199

Country of ref document: JP